
AFIPS
CONFERENCE
PROCEEDINGS

VOLUME 35

1969
FALL JOINT
COMPUTER

CONFERENCE

November 18 - 20, 1969
Las Vegas, Nevada

The ideas and opinions expressed herein are solely those of the authors and are
no necessarily representative of or endorsed by the 1969 Fall Joint Computer
Conference ComInittee or the American Federation of Information Processing
Societies.

Library of Congress Catalog Card Number 55-44701

AFIPS PRESS
210 Summit Avenue
Montvale, New Jersey 07645

c 1969 by the American Federation of Information Processing Societies, Montvale,
New Jersey, 07645. All rights reserved. This book, or parts thereof, may not be
reproduced in any form without permission of AFIPS Press.

Printed in the United States of America

CONTENTS

OPERATING SYSTEl\1S

A survey of techniques for recognizing parallel processable stre2,ms
in computer programs•............................

Performance modeling and. empirical measurements in a system
designed for batch and time-sharing users

Dynamic protection structures
The ADEPT-50 time sharing system

An operational memory share supervisor providing multi-task
processing within a single partition

ARRAY LOGIC-LOGIC DESIGN OF THE 70's

Structured logic 0 •••••

Characters-Universal architecture for LSI
Fault location in cellular arrays ' ..
Fault mUltiplication cellular arrays for LSI implementation

The pad relocation technique for interconnecting LSI arrays of
imperfect yield '

COMPUTERS FOR CONGRESS

(Panel Session-No papers in this volume)

THE COMPUTER SECURITY AND PRIVACY CONTROVER.SY
The application of cryptographic techniques to data processing
Security controls in the ADEPT-50 time-sharing system
Management of confidential information

PROGRAMMING LANGUAGES AND LANGUAGE PROCESSOR.S

Some syntactic methods for specifying extendible programming
languages , .. .

SYMPLE-A.general syntax directed macro processor

An algebraic extension to LISP
An on-line machine language debugger for OS/360
The multics PL/1 compiler

1 M. J. Gonzalez
C. V. Ramamoorthy

17 J. E. Shemer
D. W. Heying

27 B. W. Lampson
39' R. R. Linde

C. Weissman
C. Fox

51

61

69
81
89

99

111
119
135

145
157

169
179
187

J. E. Braun
A. Oart~nhaus

R. A. Henle
I. T. Ho
O. A. Maley
R. Waxman
F. D. Erwin
K. J. Thurber
C. V. Ramamoorthy
S. C. Economides

D. F. Calhoun

R. O. Skatrud'
C. Weissman
E. V. Comber

V. Schneider
J. E. Vander Mey
R. C. Varney
R. E. Patchen
P. Knowlton
W. H. Josephs
R. A. Freibeurghouse

FORTHCOMING COMPUTER ARCHITECTURES

A design for a fast computer for scientific calculations
A display processor design

The system logic and usage recorder.
Implementation of the NASA modular computer with LSI func-

tional characters .. .

DIGITAL SIMULATION OF CONTINUOUS SYSTEMS

Project DARE: Differential analyzer replacement by on-line
digital simulation

MOBSSL-UAF: An augmented block structured continuous sys-
tems simulation language for digital and hybrid computers

A hybrid computer programming system•.................

Hybrid executive-User's approach

PROBLEMS IN MEDICAL DATA PROCESSING

A system for clinical data management

Medical education: A challenge for natural language analysis,
artifical intelligence, and interactive graphics

ARCHITECTURES FOR LONG TERM RELIABILITY

Design principles for processor maintainability in real-time systems ..

Effects and detection of intermittent failures in digital systems

Modular computer architecture strategies for long-term mission ...

A compatible airborne multiprocessor

PUBLISHING VERSUS COMPUTING

(Panel Session-No papers in this volume)

INFORMATION MANAGEMENT SYSTEM,S FOR THE 70's

(Panel Session-No papers in this volume)

209

219

231

247

255

275

287

297

307

319

329

337

347

P. M. M elliar-Smith
R. W. Watson
T. H. Myer
I. E. Sutherland
M. K. Vosbury
R. W. Murphy

J. J. Pariser
H. E. Maurer

O. A. Korn

D. S. Miller
M. J. Merritt
M. A. Franklin
J. C. Strauss
W. L. Oraves
R. A., MacDonald

R. A. Oreenes
A. N. Pappalardo
C. W. Marble
O. O. Barnett

J. C. Weber
W. D. Hagamen

H. Y. Chang
J. M. Scanlon
M. Ball
F. Hardie
F. D. Erwin
E. Bersoff
E. J. Dietrich
L. C. Kaye

WHAT HAPPENED TO LSI PROMISES

LSI-Past promises and present accomplishment-The dilemma
of our industry

What has happened to LSI-A supplier's view'

TOPICS IN ON-LINE TECHNIQUES

Real-time graphic display of time-sharing system operating
characteristics.

A graph manipulator for on-line network picture processing

On-line recognition of hand generated symbols

MANAGING MONEY WITH ,COMPUTERS

(Panel Session-No papers in this volume)

DATA BASE AND FILE MANAGEMENT STRATEGIE.S

Common file organization techniques compared
An information retrieval system based on superimposed coding

Establishment and maintenance of a storage hierarchy for an
on-line data base \lnder TSS/360

Resources management subsystem for a large corporate informa-
tion system .. .

Incorporating complex data structures in a language designed for
social science research

CIRCUIT /MEMORY INNOVATIONS

A nanosecond threshold logic gate
Silicon-on-sapphire complementary MOS circuits for high speed

associative memory ,

A main frame semiconductor memory for fourth generation
computers '. , .. .

A new approach to memory and logic-Cylindrical domain devices.

A new integrated magnetic memory

Mated film memory-Implementation of a new design and
production concept. . . . ••...........•......................

359
369

379
387

399

H. G. Rudenberg
C. G. Thornton

J. M. Grochow
H. A. DiGiulio
P. L. Tuan
G. M. Miller

413 N. Chapin
423 J. R. Files

H. D. Huskey

433 J. P. Considine
A. H. Weiss

441 H. Liu
W. S. Peck
P. T. Pollard

453 S. Jr. Kidd

463

469

479

489

499

505

L. Micheel

J. R. Burns
J. H. Scott

T. W. Hart,Jr
D. W. Hillis
J. Marley
R. C. Lutz
C. R. Hoffman
A. H. Bobeck
R. F. Fischer
A. J. Perneski
M. Blanchon
M. Carbonel

L. A. ProhoJsky
D. W.Morgan

THE IMPACT OF STANDARDIZATION FOR THE 70's

(Panel Session-No papers in this volume)

USING COMPUTERS IN EDUCATION

A computer engineering laboratory
Evaluation of an interactive display system for teaching numerical

::.nalyBiJ.a. • .

Computer based instruction in computer programming: A symbol
manipulation-List processing approach

COMPUTER RELATED SOCIAL PROBLEMS: EFFECTIVE
ACTION ALTERNATIVES

(Panel Session-No papers in this volume)

DEVELOPING A SOFTWARE ENGINEERING DISCIPLINE

(Panel Sossion-N 0 papers in this volume)

PROPRIETARY SOFTWARE PRODUCTS

(Panel Session-:-No papers in this volume)

HARDWARE TECHNIQUES FOR INTERFACING MAN WITH
THE COMPUTER

A touch sensitive X-Y position encoder for computer input
A queueing model for Bcan conversion
Charcter generation from resistive storage of time derivatives
Economical display generation of a large character set

COMPUTER-AIDED DESIGN OF COMPUTERS

ISDS: A program that designs computer instruction sets
Directed library search to minimize cost
Computer-aIded-design for custom integrated systems

MANAGEMENT PROBLEMS IN HYBRID COMPUTER
FACILITIES

(Panel Session-No papers in this volume)

COMPUTER OUTPUT MICROFILM SYSTEMS

An overview of the computer output microfiJm field
The microfilm page printer~oftware considerations
Computer microfilm: A cost cutting solution to the EDP output

bottleneck ' ,

515

525

535

D. M. Rob.inson

P. Oliver
F. P. Brooks, Jr.

P. Lorton, Jr.
J. Slimick

545 A. M. Hlady
553 T. W. (lay, Jr.
561 M. L. Dertouzos
569 K. Nezu

S. Naito

575
581
599

613
625

629

F. M. Haney
B. A. Chubb
W. K. Orr

D. M. Avedon
S. A. Brown

J. K. Koeneman
J. R. Schwanbeck

THE FUTURE IN DATA PROCESSING WITH
COMMUNICATIONS

A case study of a distributed communications-oriented data
processing system

Analysis of the communications aspects of an inquiry-response
system ' .. .

A study of asynchronous time division multiplexing for time-sharing
computer systems .. .

TOPICAL PAPERS

The jnvolved generation: Computing people and the disadvantaged .
The CUE approach to problem solving
Self-contained exponentiation

DCDS digital simulating system

Pattern recognition in speaker verification.

HYBRID TECHNIQUES AND APPLICATIONS

A hybrid/digital software package for the solution of chemical
kinetic parameter identification problems ..•..................

Extended space technique for hybrid computer solution of partial
differential equations :

Extension and analysis of use of derivatives for compensation of
hybrid solution of linear differential equations

HYPAC-A hybrid-computer circuit simulation program

REAL-TIME HYBRID COMPUTATIONAL SYSTEMS

A time-shared I/O processor for real-time hybrid computation

On-line software checkout facility for special purpose computers ...

A hybrid frequency response technique and its application to
aircraft flight flutter testing

637 N. Nisenoff

655 J. S. Sykes

669

679 D. B. Mayer
691 J. D. McCully
701 N~ W. Clark

W. J. Cody
707 H. Potash

D. Allen
S. Joseph

721 S. K. Das
W. S. Mohn

733

751

761
771

781

789

801

A. M. Carlson

D'. J. Newman
J. C. Strauss

N. H. Kemp
P. Balaban

T. R. Strollo
R. S.' Tomlinson
E. R. Fiala
T. H. Witzel
S. S. Hughes

J. M. Simmons
W. Benson
J. P. Fiedler .

A survey of techniques for recognizing

parallel processahle streams in

computer programs *

by C. V. RAMAMOORTHY and M. J. GONZALEZ

The University of Texas
Austin, Texas

lNTRODUCTIOK

State-of-the-art advances-in particular, anticipated
advances generated by LSI-have given fresh impetus
to research in the area of parallel processing. The
motives for parallel processing include the following:

1. Real-time urgency. Parallel processing can
increase the speed of computation beyond the
limit imposed by technological limitations.

2. Reduction of turnaround· time of high priority
jobs.

:~ Reduction of memory and thne requirements
for "housekeeping" chores. The simultaneous
but properly interlocked operations of reading
inputs into memory and error checking and
editing can reduce the need for large inter­
mediate storages or costly transfers between
members in a storage hierarchy.

4. An increase in simultaneous service to many
users. In the field of the computer utility, for
example, periods of peak demand are difficult to
predict. The availability of spare processors
enables an installation to minimize the effects
of these peak periods. In addition, in the event
of a system failure, faster computational speeds
permit service to be provided to more users
before the failure occurs.

'" This work was supported by NASA Grant NGR 44-012-144.

1

."). Improved performance in a uniprocessor multi­
progra~med environment. Even in a unipro­
cessor environment, parallel processable seg­
ments of high priority jobs can be overlapped so
that when one segment is waiting for I/O, the
processor can be computing its companion
segment. Thus an overall speed up in execution
is achieved.

With reference to a single program, the term "paral­
lelism" can be applied at several levels. Parallelism
within a program can exist from the level of statements
of procedural languages to the level of micro operations.
Throughout this paper, discussion will be confined to
the more general "task" parallelism. The term "task"
(process) generally is intended to mean a self-contained
portion of a computation which once initiated can be
carried out to its completion without the need for
additional inputs. Thus the term can be applied to a
single statement or a group of statements.

In contrast to the way the term "level" was used
above, task parallelism can exist at several levels within
a hierarchy of levels. The statements of the main
program of a FORTRAN program, for example, are
said to be tasks of the first level. The statements within
a subroutine called by the main program would then
be second level tasks. If this subroutine· itself called
another subroutine, then the statements within the
latter subroutine would be of the third level, etc. Thus
a sequentially organized program can be represented
by a hierarchy of levels as shown in Figure 1. Each

2 Fall Joint Computer Conference, 1969

LEVEL 1 LEVEL 2 LEVEL 3 LEVEL n

Figure I-Hierarchical represen ta tion of a seq uen tially
organized program

block within a level represents a single task; as before,
a task can represent a statement or a group of state­
ments.

Once a sequentially organized program is resolved
into its various levels, a fundamental consideration of
parallel processing becomes prominent-namely that
of recognizing tasks within individual levels which can
be executed in parallel. Assuming the existence of a
system which can process independent tasks in parallel,
this problem can be approached from two directions.
The first approach provides the programmer with
additional tools which enable him to explicitly indicate
the parallel processable tasks. If it is decided to make
this indication independent of the programmer, then
it is necessary to recognize. the parallel processable
tasks implicitly by analysis of the relationship between
tasks within the source program.

After the information is obtained by either of these
approaches, it must still be communicated to and
utilized by the operating system. At this point, efficient
resource utilization becomes the prime consideration.

The conditions which determine whether or not two
tasks can be executed in parallel have been investi­
gated by Bernstein.1 Consider several tasks, T i, of a
sequentially organized program illustrated by a flow
chart as shown in Figure 2(a). If the execution of

(a) (b) (c)

Figure 2-Sequential and parallel execution of a
computational process

task Ts is independent of whether tasks Tl and T2 are
executed sequentially as shown in Figure 2(a) or 2(b),
then parallelism is said to exist between tasks T 1 and
T2. They can, therefore, be executed in parallel as
shown in Figure 2(c).

This "commutativity" is a necessary but IlLOt suffi­
cient condition for parallel processing. There may exist,
for instance, two processes which can be exelcuted in
either order but not in parallel. For example:, the in­
verse of a matrix A can be obtained in either of the
two ways shown below.

(1)
a) Obtain transpose of A

b) Obtain matrix of co­
factors of the transposed
matrix

c) Divide result by
determinant of A

(2)
a) Obtain matrix of

cofactors of A
b) Transpose matrix

of cofactors

c) Divide result by
determinu.nt of A

Thus obtaining the matrix of cofactors and the trans­
position operation are two distinct processes which can
be executed in alternate order with the same result.
They cannot, however, be executed in parallel.

Other complications may arise due to hardware
limitations. Two tasks, for example, may need to access
the same memory. In this and similar situations,
requests for service must be queued. Djkstra, Knuth,
and Coffman2 •8 •4 have developed efficient scheduling
procedures for using common resources.

In terms of sets- representing memory locations,
Bernstein has developed the conditions which must be

Techniques for Recognizing Parallel Processable Streams 3

satisfied before sequentially organized processes can be
executed in parallel. These are based on four separate
ways in which a sequence of instruct'ions can use a
memory location:

(1) The location is only fetched during the execution
ofT i .

(2) The location is only stored during the execution
ofT i •

(3) The first operation within a task involves a fetch
with respect to a location; one of the succeeding oper­
ations of T i stores in this location.

(4) The first operation within a task involves a store
with respect to a location; one of the succeeding oper­
ations of T i fetches this location.

Assuming a machine model in which processors are
allowed to communicate directly with the memory
and multi-access operations are permitted, the con­
ditions for strictly parallel execution of two tasks or
program blocks can be stated as fo11ows.

(1) The areas of memory which Task 1 "reads"
and onto which Task 2 "writes" should be mutually
exclusive, and vice-versa.

(2) With respect to the next task in a sequential
process, Tasks 1 and 2 should not store information in
a common location.

The conditions listed by Bernstein are sufficient to
guarantee commutativity and parallelism of two
program blocks. He has shown, however, that there do
not exist algorithms for deciding the commutativity or
parallelism of arbitrary program blocks.

As an example of what has been discussed here
consider the tasks shown below \vhich represent FOR­
TRAN statements for evaluation of three arithmetic
expressions.

x = (A+B) * (A-B)

Y = (C-D) / (C+D)

z = X+y

Because the execution of the third expression is inde­
pendent of the order in which the first two expressions
are executed, the first two expressions can be executed
in parallel.

Parallelism within a task can also exist when indi­
vidual components of compound tasks can be executed
concurrently. In the same manner that ind.ividual
processors can be assigned to independent tasks,

individual functional units can be assigned to inde­
pendent components within a task. The motivation
remains the same-- a decrease in execution time of
indjvidual tasks. The CDC 6600, for example, can
utilize several arithmetic units to perform several
operations simultaneously. This type of parallelism can
be illustrated by the arithmetic expression which
follows.

x = (A+B) * (C-D)

Normally, this expression would be evaluated in a
manner similar to that shown in Figure 3(a). The
independent components within the expression, how­
ever, permit parallel execution as shown in Figure
3(b) with the same results.

Explidt and implicit parallelsim

In the explicit approach to parallelism, the program­
mer himself indicates the tasks within a computational
process which can be executed in parallel. This is
normally done by means of additional instructions in
the programming language. This approach can be
illustrated by the techniques described by Conway,
Opler, Gosden, and others5,6,7. FORK in the FORK
and JOIN technique6 indicates thep arallel process­
ability of a specified set of tasks,within a process. The
next sequence of tasks will not be initiated until all

(a) (b)

Figure 3-Illustre,tion of pamllelism within a compound
task

4 Fall Joint Computer Conference, 1969

the tasks emanating from a FORK converge to a
JOIN statement.

In some instances, some of the parallel operations
initiated by the FORK instruction do not have to be
completed before processing can continue. For example,
one of these branch operations may be designed to
alert an I/O unit to the fact that it is to be used mo­
mentarily. The conventional FORK must be modified
to take care of these situations. Execution of an IDLE

Figure 4-FORK and JOIN technique

statement, for example, permits proceSSOrB to be
released without initiation of further action.7 The
FORK and .JOIN TECHNIQUE is illust:rated in
Figure 4.

Another example of the explicit approach is the
PARALLEL FOR7 which takes advantage of parallel
operations generated by the FOR statement in ALGOL
and similar constructs in other languages. For example,
the sum of two n X n matrices consists essentially of
n2 independent operations. If n processors were availa­
ble, the addition process could be organized such that
entire rows or columns could be added simultaneously.
Thus the addition of the two matrices could he accom­
plished in n units of time. Another example of this
approach is the programming language PL/l which
provides the TASK option with the CALL staten;.ent
which indicates concurrent execution of parallel
tasks.

An additional way of indicating parallelism explicitly
is to write a language which exploits the parallelism in
algorithms to be implemented by the operating system.
This is the case with TRANQUIL,8,21 an ALGOL­
like language to be utilized by the array processors of
the ILLIAC IV. The situation is unique in that the
language was created after a system was devised to
solve an existing problem. "The task of compiling a
language for the ILLIAC IV is more difficult than
compiling for conventional machines simply because of
the different hardware organization and the need to
utilize its parallelism efficiently." A limitation of this
app:roach is that programs written in that particular
language can only be run on array-type computers and
is, therefore, heavily machine dependent.

The implicit approach to parallelism does not depend
on the programmer for determination of inherent
parallelism but relies instead on indicators existing
within the program itself. In contrast to the relative
ease of implementation of explicit parallelism, the
implicit approach is associated with complex compiling
and supervisory programs.

The detection of inherent parallelism between a set
of tasks depends on thorough analysis of the source
pro,gram using Bernstein's conditions. Implementati.on
of a recognition scheme to accomplish this detecti.on
is dependent on the source langua,ge. Thus a r€lco:~nizer
which is universally applicable cannot be implomented.

An algorithm developed by Fisher9 approaches the
problem of parallel task detection in a general manner.
His algorithm utilizes the input and output. sets of
each task (process) to determine essential ordering
and thus inherent parallelism. Given such information
as the number of processes to be analyzed, the input
and output set for each process, the given permissible

Techniques for Recognizing ParaUelProcessable Stream.s 5

ordering among the processes, and any initially known
essential order among the processes, the algorithm
generates the essential serial ordering relation and the
covering for the essential serial ordering relation. This
covering provides an indication of the tasks within the
overall process which can be executed concurrently.

Basically, this work formalizes in the form of an
algorithm the conditions for par2Jlel processing devel­
oped by Bernstein. The conditions for parallel processing
between two tasks are extended to an overall process

Detection of task paraUelism-A new approach

,The next subject covered in this paper involves
implicit detection of parallel processable tasks within
programs prepared. for serial execution. An indication
is desired of the tasks which can be executed in parallel
and the tasks which must be completed before the
start of the next sequence of tasks. Thus the problem
can be broken down in two parts-recognizing the
relationships between tasks within a level and using
this information to indicate the ordering between tasks.

The approach presented here is based on the fact
that computational processes can be modeled by
oriented graphs in which the vertices (nodes) represent
single tasks and the oriented edges (directed branches)
represent the permissible transition to the next task
in sequence. The graph (and thus the computational
process) can be represented in a computer by means
of a Connectivity Matrix, C.IO.ll C is of dimension
n X n such . that C ij is a "1" if and only if there is a
directed edge from node i to node j, and it is "0"
otherwise. The properties of the directed graph and
hence of the computational process it represents can
be studied by simple manipulations of the connectivity
matrix.

A graph consisting of a set of vertices is said to be
strongly connected if and only if any node in it is reach­
able from any other. A subgraph of any graph is defined
as consisting of a subset of vertices with all the edges
between them retained. A maximal strongly connected
(l\!£.S.C.) subgraph is a strongly connected subgraph
that includes all possible nodes which are strongly
connected with each other. Given a connectivity matrix
of a graph, all its M.S.C. subgraphs can be determined
simply by well-known methods. to A given program
graph can be reduced by replacing each of its M.S.C.
sub graphs by a single vertex and retaining the edges
. connected . betwe~n these vertices and others. After
the reduction, the reduced graph will not contain any
strongly connected components.

The paragraphs which follow will describe the se­
quence of operations needed to prepare for parallel

processing in a multiprocessor computer a program
written for a uniprocessor machine.

(1) The first step is to derive the program graph
which identifies the sequence in which the computation
al tasks are performed in the sequentially code­
program. Figure 5(a) illustrates an example program
graph. The program graph is represented in the com­
puter by its connectivity matrix. The connectivity
matrix for the example is given in Figure 5(b).

(2) By an analysis of the connectivity matrix, the
maximal strongly connected subgraphs are determined
by simple operations.1O This type of subgraph is i:l­
lustrated by tasks 2 and 12 in Figure .5. Each M.S.C.
subgraph is next considered as a single task, and the
graph, called the reduced graph, is derived. The re­
duced graph does not contain any loops or strongly

1 2 2b 3 4 5 6 7 8 9 10 11 12 12b 12 13 14 a a c
0 1 0 0 o 0 000 0 0 0 0 0 0 0 0

2a 0 0 1 1 o 0 o 0 o 0 0 0 0 0 0 0 0
2b 0 1 0 0 000 000 0 0 0 0 0 0 0
3 0 0 0 0 1 1 o 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 1 o 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
12a 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
12b 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
12c 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(b)

Figure 5-Program graph of a serially coded program
and its connectivity matrix

6 Fall Joint Computer Conference, 1969

connected elements. In this graph; when two or more
edges emanate from a vertex, a conditional branching
is indicated. That is, the execution sequence ",-m take
only one of the indicated alternatives. A vertex which
initiates the branching operation wdl be called a
decision or branch vertex. The reduced graph for the
example program graph is shown in Figure 6. In this
graph. vertex 3 represents a branch vertex.

(3) The next step is to derive the final program
graph and its connectivity matrix T. The elements of
T are obtained by analyzing the inputs of each vertex
in the reduced graph. An element, T ii, iF! a "I" if
and only if the j-th task (vertex) of the reduced graph
has as one of its inputs the output of task i; othCf\vise
T ii is a "0". Figure 7 illustrates the final program for
the example after consideration iR given to the input­
output relationships of each taRk. The connectivity
matrix for the final program gr9ph is shown in F"gure R.

From the sufficiency conditions for task parallelism.
two tasks can be executed in parallel if the input set of
one task does not depend on the output Ret of the other
and vice versa. The technique outlined in Step 4 detects
this relationship and uses it to provide an ordering
for task execution.

(4) The vertices of the final program graph are

F!gure 6--Reduced program graph of the serially coded
program

1=

,
E) 6 = f{S)

.4

a
9

10

11

12

13

14

Figure 7-Final progra:n graph of the parallel

0

0

0

0

0

0

0

0

0

0

0

processable i)rogram

0 0 0

0 0 0

0 0

0

0 0

0 0 0

0

0 0 0

0 0 0

0

Precedence
Partitlons

0

0

0

0

0

0

0

0

0

0

10 11

0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0

0 0 0 0

0 0 0 0

0 0 0 0 0

0 0

0 0 0 0

0 0 0 0 0

[I} , (2} , {3,a} , (4,5,9,lO}

(6,11,12}, (7,131, (141

1"

0

0

0

0

0

0

0

0

Figure 8-Connectivity matrix of the final program
graph

13 14

0 0

0 0

0 0

0

0 0

0 0

0

0 0

0

0

0

0

partitioned into "precedence partitions"P as follows.
Using the connectivity matrix T, a column (or columns)
containing only zeroes is located. Let this eolumn
correspond to vertex Vl. Next delete from T both the
column and the row corresponding to this vertex. The
first precedence partiton is P 1 = {vI} . Using the re­
maining portion of T, locate vertices {V21, Vzz, . .. } which
correspond to columns containing only zeroes. The
second precedence partition Pz thus contains vertices
{VZ1, Vzz, .. . }. This implies that tasks in set p z=

Techniques for Recognizing Parallel Processable Streams 7

{V21, V22, ••• } can be initiated and executed in parallel
after the tasks in the previous partition (i.e., PI) have
been completed. Next delete from T the columns and
rows corresponding to vertices in P 2• This procedure is
repeated to obtain precedence partitions P a,P4,' .. Pp ,

until no more columns or rows remain in the T matrix.
It can be shown that this partitioning procedure is
valid for connectivity matrices of graphs which contain
no strongly connected components.

The implication of this precedence partitioning is
that if P1,P2, ••• P p corresponds to times t 1,t2,. • • t p , the
earliest time that a task in partition Pi can be initiated
is ti.

The final program graph contains the following types
of vertices: (1) The branch or decision type vertex
from which the execution sequence selects a task from
a set of alternative tasks. (2) The Fork vertex which
can initiate a set of parallel tasks. (3) The Join vertex
to which a set of parallel tasks converge after their
execution .• (4) The normal vertex which receives its
input set from the outputs of preceding tasks. Figure 7a
indicates the final program graph with the first three
types of vertices indicated by B, F, and J, respectively.

(5) From precedence partitioning and the final
program graph, a Task Scheduling Table can be
developed. This table, shown in Table I, serves as an
input to the operating system to help in the scheduling
of tasks. For example, if the task being executed is a
Fork task, a look-ahead feature of the system can
prepare for parallel execution of the tasks to be ini­
tated upon compl~tion of the currently active task.

(6) The precedence partitions of Step 4 provide an
indication of the earliest time at which a task may be
initiated. It is also desirable, however, to provide an
indication of the latest time at which a task may be
initiated. This information can be obtained by per­
forming precedence partitions on the transpose of the
T matrix. This process can be referred to as "row par­
titions". The implication here is that if task is in the
partition corresponding to time period h, then h is
the latest time that the task i can be initiated.

Using both the row and column partitions, the per­
missible initiation time for each task can be derived as
shown in Table II. Task 4, for example, can be in­
itiated during t4 or to depending on the availability of
processors.

At this point it is desirable to clarify some possible
misinterpretations of the implications of this method.
The method presented here does not try to determine
whether any or· all of the iterations within a loop can
be executed simultaneously. Rather the iterations
executed sequentially are considered as a single task.

TABLE I-Tp.sk scheduling table

INPUTS TASK TASK
TIME TO TASKS NUMBER TYPE

tl - 1

t2 1 2 FORK

t3 2 3 BRANCH

t3 2 8 FORK

t4 3 4

t4 3 5

t4 8 9 FORK

t4 8 10

ts 5 6

ts 9 11

ts 9 12

t6 4,6 7 JOIN

to 10,11,12· 13 JOIN

t7 7 ,13 14 JOIN

For this reason, the undecidability problem introduced
by Bernstein is not a factor here.

In addition, precedence partitions may place the
successors of a conditional within the same partition.
The interpretation of this is that only one of the suc­
cessots will be executed, and it can be executed in
parallel with .the other tasks within that partition.

The FORTRAN parallel task recognizer

In order to determine the degree of applicability of
the method described above, it was decided to apply
the method to a sample FORTRAN program. This
was accomplished by writing a program whose input
consists of a FORTRAN source program; its output
consists of a listing of the tasks within the first level
of the source program which can be executed in parallel. .
The program written to accomplish this parallel task

8 Fall Joint Computer Cqnference, 1969

TABLE II-Permissible task initiation time

COLUMN PARTITIONS PERMISSIBLE TASK

TIME TASK INITIATION PERIODS

t1 1 TASK TIME

t? 2 1 t1

t3 3,8 2 t2

t4 4,S,9,1O 3 t3

ts 6,11,12 4 t4 , ts

t6 7 ,13 S t4

t7 14 6 ts

ROW PARTITIONS
7 t6

t1 1 8, t3

t2 2 9 t4

t3 3,8 10 t4 , ts

t4 S,9 11 ts

ts 4,6,10 ,11,1:1 12 ts

t6 7 ,13 13 t6

t7 14 1~ t7

detection is known in its final form as a FORTRAN
Parallel Task Recognizer .13

The recognizer, also written in FORTRAN, relies
on indicators generated by the; way in which the
program is actually written. ConSider the expressions
given below.

Xl = f1(A,B)

X2 = f2(C,D)

Because the right-hand side of the second expression
does not contain a parameter gen~rated by the compu­
tation which immediately preced~s it, the two expres­
sions can be executed in parallel. ~f, on the other hand,
the expressions were rewritten as shown below, the

termination of the first computation would have to
precede the initiation of the second.

Xl = fl(A,B)
X2 = f2(XI,C)

The recognizer performs this determination by com­
paring the parameters on the right-hand of the equality
sign to outcomes generated by previous statements.

Other FORTRAN instructions can be analyzed
similarly. Consider the arithmetic IF:

IF (X - Y) 3,4,5

Here the parameters within the parentheses must be
compared to the outputs of preceding statements in
order to determine essential order.

Other FORTRAN instructions are analyzed in a
similar manner in order to generate the connectivity
matrix for the source program. During t.b.is analysis
the recognizer assigns numbers to the executable
statements of the source program. After this is com­
pleted, the recognizer proceeds with the method of
precedence partitions described earlier. Precedence
partitions yield a list of blocks which contain the state­
ment numbers which can be executed concurrently,

Figure 9 shows a block diagram of the steps t:a.ken by
the recognizer to generate the parallel processable
tasks within the first level of a FORTRAN source
program.

Some statements within the FORTRAN set are
treated somewhat differently. The DO statement, for
example, does not itself contain any input or output
parameters but instead generates a series of repeated
operations. Because of the loop considerations men­
tioned earlier, and because the rules of FOHTRAN
require entrance into a loop only through the DO
statement, all the statements contained within a DO
loop are considered as a single task. A loop, however,
may contain a large number of statements, and a great
amount of potential parallelism may be lost if con­
sideration is not given to the statements within the
loop. For this reason, the recognizer generates a sepa­
rate connectivity matrix for each DO loop within the
program.

The recognizer itself possesses limitations which
must be eliminated before it can be applied to programs
of a complex nature. For example, only a subset of
the entire FORTRAN set is considered for recogniton.
This could be corrected by expanding the recognition
process to include a more complete set of instructions.

In addition to the DO statement, loops can also be

Techniques for Recognizing Parallel Processable Streams 9

SCAN EXECUTABLE
STATEMENTS AND
COMPARE INPUT
PARAMETERS TO
OUTPU1S a' FRLVlCUS
STATEMENTS

HEN MATCH IS
FOUND ,MJKE ENI'RY
IN C,i.e. , SHOW A
CONNECTION FROM
PREDECESSOR TO
SUCCESSOR

AFTER GENERATION
OF CIS CCMPLETE,
GEm:RATE
PRECEDENCE
PARTITIONS

N

READ NEXT
SOURCE
PROGRAM
IN3'1RUCTION

IF THIS TAS< IS THE
SUCCESSOR OF A
BRANCH OR TRAN3HR
CPERJU'ION, REOORD
THIS I!'lFffiMATION

ECORDINPUT
ND OUTPUT

>-_"":_'1ARAME TERS
QUIRED BY

HIS TASK

USING THE As)IGNED
STATEMENT NUMBERS
INDICATE THOSE

I-----I~TASKS WI'lHIN THE
FIRST LEVEL WHICH
CAN BE DONE IN
PARALLEL

Figure 9-Block diagram of the FORTRAN
parallel te.sk recognizer

created by branch and transfer operations such as
the IF and GO TO instructions. To eliminate these
loops, it would be necessary to analyze the connectiv­
ity matrix in the manner mentioned earlier before
beginning the process of precedence partitions. The
recognizer does not presently perform this analysis.

Nested DO loops are not permitted, and the source
program size is limited in the number of executable
statements it may have and in the number of param­
eters anyone statement can contain.

Some of these limitations could be eliminated quite
easily; others would require a considerable amount of
effort. To allow a source program of arbitrary size
would require a somewhat more elaborate handling of
memory requirements and associated problems. At the

C

C
9
10
11
12
13
14
15
16
17
18
19
20

21

20

10

30
40

50

60

100
200

3057
315

4
52

THIS IS A TEST PROGRAM DESIGNED TO CHECK PPS
DIMENSION Al(lO) ,A2(l0) ,A3(l0)
INTEGER Al ,A2 ,ABC ,A2X2, B ,C ,D
READ 100, (Al(I) ,1=1 ,10), B ,C ,D
READ 100, (A2(I),I=1,10),NS,NST,NSTU
DO 10 1=1,10
IF (Al(I) -A2(I)) 20,30,40
Xl=(Al(I))*(B-C)
X2=D+(B/c)
A3(I)=Xl*X2
CONTINUE
THIS IS A TEST COMMENT
PRINT 200 ,B,C ,D
CALL ALPHA(Al ,A2 ,ABC, B4 ,B5)
PRINT 3057 ,Xl ,X2, (A3(I) ,1=1 ,10)
CALL BETA(Xl ,X2 ,A3, B6)
IF(B4-B5) 50.50,60
READ 315, E , F • G • H
X3=(E*F)+(G-H)
X4=B6+G
X5=X3-X4
X6=(B4+B5)* X5
PRINT 4,X3,X4,X5
PRINT 52, (Al(I) , 1=1,10) .ABC ,C, (A3(I) ,1=1.10)
FORMAT(lOI2,3I3)
FORMAT(1HO,8 B C D* ,/,313)
FORMAT(1H ,213 .lOF7 .1)
FORMAT(4F7 • 4)
FORMAT(3F7 • 4)
FORMAT(12I3 ,10F7 .1)
END

(a)

PAR}\LLEL
PROCESSABLE
TASKS

(1,2)
(3)
(9,10.11,12)
(13)
(14)
(15,16)
(17)
(18.19,20)

(b)

Figure IO-An exe.mple of the recognition process.

present time the recognizer consists of a main program
and six subroutines. In its present form the recognizer
consists of approximately 1300 statements.

The recognizer is presently written in such a manner
that it will detect only first level parallelism. The
method it uses, however, can be applied to parallelism
at any level.

The theory of operation of the FORTRAN parallel
task recognizer will be illustrated by applying the
recognition techniques to a sample FORTRAN program.
Figure IOCa) is a listing of the sample program showing
the individual tasks. Figure IOCb) is a listing of the
parallel processable tasks as determined by precedence
partitions. The numbers to the left of the executable
statements are the numbers assigned by the recognizer
during the recognition phase.

Elimination of the limitations mentioned here and
other limitations not mentioned explicitly will be the
subject of future effort.

Observations and comments

Regardless of the manner in which the subject of
parallel processing is approached, common problems
arise. Prominent among these is a need to protect
common data. If two tasks are considered for con­
current execution and one task accesses a memory
location and the other amends it, then strict observance
must be paid to the order in which this is done. The

10 Fall Joint Computer Conference, 1969

FORTRAN recognizer, for example, may determine
that two subroutines can be executed in parallel. At
the present time no consideration is given to the fact
that both subroutines may access common data
through COMMON or EQUIVALENCE statements.

In order to truly optimize execution time for a
program which is set up for parallel process'llg, it
would be highly desirable to determine the time re­
quired for execution of the individual tasks ·within
the process. It is not enough to merely determine that
two tasks can be executed concurrently; the primary
goal is that this parallel execution result in higher
resource utilization and improved throughput. If the
time required for the execution of one task is 100 tImes
that of the other, for example, then it may be desirable
to execute the two tasks serially rather than in parallel.
The reasoning here is that no time wou~d be spent
in allocating processors and so forth.

Determinat;.on of task execution time, however, is
not a simple matter. Exhaustive measurements of the
type suggested by Russell and Estrin14 would provide
the type of information mentioned here.

Another problem area involves implementation of
special purpose languages such as TRANQUIL. It
was mentioned earlier that programs written in a
language of this type are highly machine-limited. It
would be highly desirable to be able to implement
progr9ms written in these languages in systems whicl~
are not designed to take advantage of parallelism.
Along these lines, the programming generality sug­
gested by Dennis15 may be significant.

It should be pointed out that aU the techniques
whl.ch have been discussed here will create a certain
amount of overhead. For this reason it is felt that a
parallel task recognizer, for example, would be best
suited for implementation with production programs.
Thus even though some time would be lost initially,
in the long run parallel processing would result in a
significant net gain.

Conclusions

The method of indicating parallel processable tasks
introduced here and illustrated in part by the FOR­
TRAN Parallel Recognizer appears to provide enough
generality that it is independent of the language, the
application, the mode of compilation, and the number
of processors in the system. It is anticipated that this
method will remain as the basis for further effort in
this area.

In additi.on to the comments made earlier, some
possible future areas of effort include determination of

possible paralleljsm of individual iterations within a
loop. It is hoped that additional information can be
provided to the operating system other than a mere
indication of the tasks which can be executed in paral­
lel. This would include the measurements mentioned
earlier and an indication of the frequency of execution
of individual tasks.

I t is also hoped that a sub-language may be de­
veloped which can be added to existing languages to
assist in the recognition process and the development
of recognizer code.

Detection of parallel components within
compound tasks

Several algorithms exist for the detection of inde­
pendent components within compound tasks.16.17.1b.19
These algorithms are concerned pr·.marily with de­
tection of this type of parallelism within arithmetic
expressions. The first three algorithms referenced
above are summarized in [19] where a new all~orithm
js also introduced.

The arithmetic expression which will be used as an
example for each algorithm is given below.

A+B+C+D*E*F+G+H

Throughout this discussion. the usual precedence
between operators will apply. In order of increasing
precedence, the precedence between operators will be
as follows: + and - , * and/, and t, where l' stands
for exponentiation.

Hellerman's algorithm

This algorithm assumes that the input string is
written in reverse Polish notation and contailns only
binary operators. The string is scanned from left to
right replacing by temporary results each occmrrence
of adjacent operands immediately followed by an
operator. These temporary results will be considered
as operands during the next passes. Temporary results
generated during a given pass are said to be at the
same level and therefore can be executed in parallel.
There will be as many passes as there are levels in the
~;;yntactic tree. The compilation of the expression
listed above is shown in Figure 11.

Although this algortihm is simple and fast, it has
two shortcoming'). The first is a possible difficulty in
implementation since it requires the input string to
be in Polish notation; the second is its inabilit.y to
handle operators which are not commutative.

0

2

4

5

Techniques for Re,cognizing Parallel Processable Streams 11

TEMPORARY RESULTS
INPUT STRING AFTER THE lth PI\SS GENERATED DURING lth PASS

AB+C+DE*F* +G+H+

Rl=A+B
Rl C+R2 F*+G+H+ R2=D*E

R3=Rl+C
R3 R4+G+H+ R4=R2*F

RS G+H+ RS=R3+R4

R6 H+

R7

LEVEL

5

4

o

R6=RS+G

R7=R6+H

~~
It"" H

/RS""" G

A"-c 1',\
;I.;", / R: '" F
A B D E

Figure ll-Parallel computation of
A+B+C+D*E*F+G+H using Hellerman's

algorithm

Stone's algorithm

The basic function of this algorithm is to combine
two subtrees of the same level into a level that is one
higher. For example, A and B, initially of level 0, are
combined to form a subtree of level 1. The algorithm
then searches for another subtree of level 1 byattempt­
ing to combine C and D. Since precedence relation­
ships between operators prohibit this combination, the
level of subtree (A+B) is incremented by one. The
algorithm now searches for a subtree of level 2 by
attempting to combine C, D, and E. Since this com­
bination is also prohibited, 'subtree (A+B) is incre­
mented to level 3. The next search is successful, and a
subtree of level 3 is obtained by combining C, D, E
and F. These two subtrees are then combined to form a
single subtree of level 4 .

In a similar manner the subtree (G+H), originally
of level 1, is successively incremented until it achieves
a level of 4; at that time it is combined with the other
subtree of the same level to form a final tree of level 5.

The algorithm yields an output string in reverse
Polish which does not expressly show which operations
can be performed in parallel. Even though the output
string is generated in one pass, the recursiveness of

the algorithm causes it to be slow, and at least one
additional pass would be required to specify parallel
computations.

Squire's algorithm

The goal of this algorithm is to form quintuples of
temporary results of the form:

Ri (operand 1, operator, operand 2, start level
= max [end level op. 1; end level op. 2], end level=
start level + 1) .

All temporary results which have the same start level
can be computed in parallel. Initially, all variables
have a start and end level equal to zero.

Scanning begins with the rightmost operator of the
input string and proceeds from right to left until an
operator is fouIld whose priority is lower than that of
the previously scanned operator. In the example thp
scan would yield the following substring:

D*E*F+G+H

N ow a left to right scan proceeds until an operator is
found whose priority is lower than that of the left­
most operator of the substring. This yields: D*E*F.
At this point a temporary result Rl is available of the
form:

HI (D, *,E,O,I).

The temporary result, Rl, replaces one of the operands
and the other is deleted together with its left operator
The new substring is then:

R1*F+G+H.

The left to right scans are repeated until no further
qunituple can be produced, and at that time, the right
to left scan is re-initiated. The results of the process
are shown in Figure 12.

Although the example shm,'s the algorithm applied
to an expression containing only binary operators, the
algorithm can also handle subtraction and division
with a corresponding increase in complexity.

A significant feature of this algorithm is that Polish
notation plays no part in either the input string or
the output quintuples. Because of the many scans and
comparisons the algorithm requires, it becomes more
complex as the length of the expression and the di­
versity of operators within the expression increase.

12 Fall Joint Computer Conference, 1969

INITIAL STRING: A+B+C+D*E*F+ G+H

RIGHT TO LEFT SCAN LEFT TO RIGHT SCAN

D*E*F+G+H Rl*F+G+H
R2+G+H

A+B+C+R2+G+H R3+C+R2+G+H
R4+R3+R2+H
R4+RS+R2
R6+R2
R7

QUINTUPLES Op.l OPERATOR Op.2 START

Rl D E 0
R2 F Rl 1
R3 A + B 0
R4 C + G 0
RS H + R3 1
R6 R4 + RS 2
R7 R2 + .R6 3

LEVEL

4

3

o

Figure 12-Parallel computation of
A+B+C+D*E*F+G+H uE-ing Squire's p,lgorithm

Baer and Bovet's algorithm

END

J
2
1
1
2
3
4

The algorhhm uses mUltiple passes. To each pass
corresponds a level. All temporary results which can
be generated at that level are constructed and inserted
appropriately in the output string produced by the
corresponding pass. Then, this output string becomes
the input string for the next level until the whole
expression has been compiled. Thus the number of
passes will be equal to the nUInber of levels in the
syntactic tree. During a pass the scanning proceeds
from left to right and each operator and operand is
scanned only once.

The simple intermediate language which this al­
gorithm produces is the most appropriate for multi­
processor compilation in that it shows directly all
operations which can be performed in parallel, namely
those having the same level number. The syntactic
tree generated by this algorithm is shown in Figure
13.

A new algorithm

This section will introduce a technique whose goals
are: (1) to produce a binary tree which illustrates the
parallelism inherent in an arithmetic expression; and

LEVEL

4

3

2

1

o

Figure 13-Parallel computation of
A+B+C+D*E*F+G+H using Baer and

Bovet's algorithm

(2) to determine the number of registers needed to
evaluate large arithmetic or Boolean expressions with­
out intermediate transfers to main memory.

This technique is prompted by the fact that existing
computing systems possess multiple arithmetic units
which can contain a large number of active storages
(registers). In addition, the superior memory band­
widths of the next generation of computers will simplify
some of the requirements of this technique.

In the material presented below, a complex arithmet­
ic expression· is examined to determine its maximum
computational parallelism. This is accomplished by
repeated rearrangement of the given expression. During
this process the given expression in reverse Polish form
is also tested for "well formation", i.e., errors and
oversights in the syntax, etc.

The arithmetic expression which was used aB a model
earlier will also be used here, namely A+B+C+D
*E*F+G+H. The details of the algorithm follow:

(1) The first step is to rewrite the expression in
reverse Polish form and to reverse its order.

+H+G+*F*E D+C+B+A

(2) Starting with the rightmost symbol of the string,
assign a weight to each member of the string based on
the following procedure:

Techniques for Recognizing Parallel Processable Streams 13

Assign to symbol Si the value Vi = (V i-I) + Ri
i = 1,2, ... ,n

where Ri = 1 - O(Si) given that

O(Si) = 0 if Sds a variable

O(Si) = 1 if Si is a unary operator

O(Si) = 2 if Si is a binary operator

and V i-l = V i-2+R i - 1, V i-2 =, V i-3 + H i- 2,
etc.,

such that V i-(i-l) = VI = HI. and \'0 = 0

Using this procedure, the following expression results:

Root
Xode

8
14 13 12 11 10

Si H + G + *
Vi 2 1 2 2

Vm

9 8

8 6 5 4 3 2 1

F * D + C + B A

3 2 2 1 2 2 1

Note that for a "well-formed expression" of n symbols
V1l = 1.

(3) At this point the root node of the proposed
binary tree can be determined. Thus the given string
can be divided into two independent sub-strings. To
determine the root node, draw a line to the left of the
firRt symbol with a weight of 1 (i = 11, Si=+, V i =l)
to the left of the symbol with the highest weight,
Vm(i=7, Si=E, Vi=Vm=3). The two independent
substrings consist of the strings to the left and to the
right of this line. The root node will be the leftmost
member of the string to the left of the line (i= 15,
St=+, Vi=l). Note that Vi also equals 3 for j=9;
however V m is chosen from the etuliest occurrence of
a symbol with the highest weight.

(4) The next step is to look for parallelism withni
each of the new substrings. Consider the rightmost
substring. Form a new substring consisting of the
symbols within the values of Vi = 1 to the right and to
the left of V m' Transpose this substring with the sub­
string to the right of it whose leftmost member has a
weight of V i= 1.

INITIALRIGHTMOSTS i + *F*ED+C+BA

SUBSTRING ViI 2 3 2 3 2 1 2 1 2 1

---. .--
FINAL RIGHTMOST 11 10 9 8 7 6543 2 1

SUBSTRING Si + + C + B A * F * E D

Vi 12 3 1321212 1

This procedure is repeated until the initia,l V m occupies
the position i = 2 in the substring. For this example
this is already the case. Thus the rightmost substring
is in the proper form.

(5) The transposition procedure of step 4 is applied
next to the leftmost substring. However, since the
leftmost substring of this example consists of only two
operands and one operator, no further operations are
necessary.

(6) The resultant binary tree is shown in Figure 14.
The numbers assigned to each node represent the final
weight V i of the symbol as determined in steps 1-5
above.

Some observations and comments on this algorithm
are given below.

(1) The two branches on either side of the root node
can be executed in parallel. Within each main branch,
the transposition procedure of step 4 yields supplemen­
tary root nodes. The sub-branches on each side of the
supplementary nodes can be executed in parallel.

(2) The number of levels in the binary tree can be

LEVEL

4

o

Figure 14-Bin:;>,ry tree for pt',rallel computation of
A+B+C+D*E*F+G+H

14 Fall Joint Computer Conference, 1969

predicted from the Polish form of the original string.
No. of LEVELS = MAX [NUMBER OF 1's; Vm]

in the substring (rightmost or leftmost) containing Vm.
(3) The tree is traversed in a modified postorder

form.20 The resulting expression is

D*E*F+A+B+C+G+H

(4) An added feature of this technique is that the
number of registers required to evaluate this expression
without intermediate STORE and FETCH operations
is obtained directly from the binary tree. This infor­
mation is provided by the highest weight assigned to
any node within the tree. Thus for this example the
expression could be evaluated using at most two
registers without resorting to intermediate stores and
fetches.

(5) This technique of recognizing parallelism orr a
local level has been applied to a single instruction, in
particular, an arithmetic expression. It is worthwhile
mentioning that each variable within the expression
can itself be the result of a processable task. Thus this
technique can be extended to a higher level of parallel
stream recognition, i.e., level parallelism.

In order to implement the techniques mentioned
here for components within tasks and the techniques
mentioned earlier for individual tasks, several system
features are desirable. Schemes for detecting parallel
processable components within compound tasks are
oriented primarily toward arithmetic expressions. For
these situations string manipulation ability would be
highly desirable. Since individual tasks are repre­
sented by a graph and its matrix, the ability to ma­
nipulate rows and columns easily would be very im­
portant. In this same area, an associative memory
could greatly reduce execution time in the implemen­
tation of precedence partitions.

ACKNOWLEDGMENTS

The authors would like to thank the referees of the
FJCC for their comments and suggestions which
resulted in improvements of this paper.

REFERENCES

1 A J BERNST.EIN
Analysis of programs for parallel processing
IEEE Trans on EC Vol 15 No 5 757-763 Oct 1966

2 E W DJKSTRA
Solution of a problem in concurrent programming control
Comm ACM Vol 8 No 9 569 Sept 1965

:~ D KNUTH
Additional comments on a problem in concurrent
programming control
Comm ACM Vol 9 ~o 5 :~21-322 Nlay 1966

-1 E G COFFMA~ H. R MUNTZ
Models of pu~e lime sharing disciplines for research
allocation
Proc 1969 Natl ACM Conf

5 M E CONWAY
A. mult1:processor 8ystem de8ign
Proc FJCC Vol 23 139-146 1963

6 A OPLER
Procedure-oriented statements to facilitate parallel proce8sing'
Comm ACM VoIR No 5 306-307 May 1965

7 J A GOSDEN
Explicit parallel processing description and control in
programs for multi- and nni-proce8.'?or computers
Proe FJCC Vol 29 651-660 1966

R N E ABEL P P BUDNIK D J KUCK
Y MURAOKA R S NORTHCOTE
H. B WILHELMSON
TRANQUIL: A. languaqc for an array proce8sing computer
Proc SJCC 57-68 1969

9 D A FISHER
Program analY8i8 for multiproces.'?ing
Burrougfi1 Corp May 1967

10 C V RAMAMOORTHY
Analysis oj graphs by connectivity considerations
Journal ACM Vol 1:~ No 2 211-222 April 1966

11 C V RAMAMOORTHY M J GONZALEZ
Recognition and representation of parallel processable streams
'in computer progranv~--Il (task/proce88 parallelis'm)
1969 Nr,tl ACNI Cont'

12 C V RAMAMOORTHY
A. structural theory of machJne diaf!nOsl:s
Proc SJce 74;{-756 1967

13 M J GONZALEZ C V RAMAMOORTHY
Rec)g'1,itia. ad repres'nt'ltiJn, '),{ p1.rallel proces8abl~e
8treams in CJmputer programs
Symposia on Parallel PrOCe3'30r System"! Technolol~ie3 and
Applications Ed. L C Hobbs Spartan Books June 1969

14 E C RUSSELL G ESTRIN
Mea8urement based automatic analYI~is of FORTRAN
programs
Proc SJCC 1969

15 J B DENNIS
Programming generality, parallelism and computer
architecture
Proc IFIPS Cong;res'l 68 CI-C7

16 H HELLERMAN
Parallel processing of algebraic expres,~ions
IEEE Trans on E C Vol 15 No 1 Feb 1966

17 H S STONE
One-pa8b compilation of arithmetic expre88ions for C~
parallel proce8sor
Comm ACM Vol 10 No 4 220-223 April 1967

18 J S SQUIRE
A translation algorithm for a multiprocessor computer
Proc 18th ACM Natl Conf 1963

19 J L BAER D P BOVET
Compilation of arithmetic expre.~sions for parallel
computation

Techniques for R.ecognizing Parallel Processable Streams 15

Proc IFIPS 68 B4-BI0
20 D KNUTH

The art oj computer programming, Vol. 1, fundamental
algorithms

Addison-Wesley 316
21 R S NORTH COTE

Software developments for the array computer ILLIAC IV,
Univ of Illinois Rpt Ko 313 March 1969

Performance Illodeling and empirical

measurements in a system designed for

batch and time-sharing users

by JACK E. SHEMER and DOUGLAS W. HEYING

Scientific Data Systems, a Zerox Company
EI Segundo, California

INTRODUCTION

If any design goal is common to all computer system
organization schemes, it is that of providing "effective
service" both externally to the user of the computational
facility and internally with respect to utilization of
system resources. Thus, generally speaking, there are at
least two dimensions to this design objective. On the one
hand, effective service is the external satisfaction of a
broad spectrum of user demands. For example, the ideal
system might be visualized as one which economically
provides a large number of programming languages;
machine compatibility with other computers of widely
diverse hardware; and rapid computation. On the other
hand, effective service is the internal utilization of all
system components so as to increase computational
efficiency. In this respect, system structures are im­
plemented which strive to maximize sub-system
simultaneity and system throughput. For example, a
degree of macro-parallelism is attained in many present
day systems by allowing a central processing unit (CPU)
and input/output controller to share the use of a main
memory register, thereby enabling processing and
input/output (I/O) to proceed concurrently (for one or
several independent programs, depending upon the
system software).

In general, external effectiveness is all that the user
sees, and it is therefore of primary interest to him.
Whereas, the purveyor of the equipment is vitally
concerned with internal utility and coordination.
However, this latter consideration indirectly relates to

17

the quality of service the user receives (his waiting time
for service completion, the price he is charged for
service, etc.).

The ramifications of hardware and software designs to
achieve such service can be investigated both internally
and externally; yet, a particular design strategy need
not supplement effective service from both viewpoints.
On the contrary, schemes tailored to improve external
utilization often degrade internal service effectiveness
and vice versa. Unfortunately, in confronting these
design trade-offs, the designer often had to rely upon
heuristic and intuitive arguments, since there is a
general lack of design models which quantitatively
relate system variables to reflect a priori performance
estimates. Hence, the design is complicated not only by
trade-offs between the often dissimilar aims of external
and internal effective service, but also by a deficiency of
design tools for investigating various implementation
alternatives.

These problems are especially amplified with the
advent of time-shared cqmputer systems. In time­
sharing systems, an ideal goal is to respond to interactive
on-line users such that each user receives the impression
that he has his own computer, yet at a price he can
afford. Thus in these systems, the computer complex is
shared among a number of independent users who are
concurrently communicating with the system, generat­
ing programs and interactive service requests via
on-line remote terminal equipment. This action enables
one to achieve economies of scale and distribute the cost

18 Fall Joint Computer Conference, 1969

of the system among all users according to their usage
of the facilities. Similarly, the objective of rapid response
is realized by time slicing CPU service and sharing it
among the on-line users. A request for program execution
is not necessarily serviced to completion; but rather jobs
are granted finite intervals (quanta~ of processing time.
If a job fails to exhaust its demands during a quantum
allocation, then it is truncated and postponed according
to a scheduling discipline, thereby facilitating rapid
response to short requests.1- 4 This preferential treatment
of short jobs increases the programmer's productiveness,
since one-attempt efforts, editing, debugging, and other
typically short interactive demands often encounter
exorbitant turn-around times in batch processing
environments (i.e., in relation to the amount of actual
processing time consumed, due to problems of key
punching, printer output, card stacking, and total
system demand).

However, since computation is not necessarily run to
completion and main memory size is limited (by both
economic and physical reasons), programs must be
swapped into and out of main memory as the CPU
commutates its service from request to request.
Therefore, unless swapping is achieved with no loss in
time, it is obvious that service in the time-sharing sense
is less efficient in CPU utilization than service to
completion. Also, the time spent scheduling, allocating
buffers, and controlling swap input/output represents
overhead or wasted processing time which, due to
incomplete servicing, is greater in time-sharing systems
than batch processing systems. Furthermore, if the
system is dedicated to servicing on-line requests, the
CPU is essentially idle during periods of low on-line
input traffic. Hence, a design compromise must be
attained between external response rapidity and internal
efficiency since system performance, in the general case,
is a function of both response to selected classes of users
and utilization of system resources.

Yet, exploring such problem areas prior to design is
complicated, because any performance investigation is
incorrigibly statistical. Performance is not only a
function of software characteristics such as the input/
output, memory, and processing requirements of each
on-line request together with the occurrence rate of such
requests, but also dependent upon hardware character­
istics such as the instruction processing rate and rates
accessing secondary memory.

This paper presents one approach to mitigating some
of these difficulties. A system design is briefly described
and then analyzed utilizing a mathematical model. The
system is structured to accommodate both batch and
time-sharing users with the goal being to achieve a

balance of system efficiency and responsiveness. A set
of variables are defined which characterize on-line user
demands and the servicing capacity of variou8 units
within the system. These variables are then quantita­
tively related in a mathematical model to derive salient
performance measures. Examples are given which
graphically display these measures versus various ranges
of the system variables. These a priori performance
estimates are then compared with empirical data
extracted from the system during its actual operation.
Here the emphasis is given to mathematical modeling
because this analysis method is more expedient and
generally less costly than the alternative approach of
simulation. Moreover, since many of the variables are
non-independent and rely upon characterization of user
demands, and siilce these are difficult to accurately
describe prior to actual operation, the macroscopic and
statistical indications provided by a mathematical model
are perhaps all that one can feasibly obtain.

Design and performance study

System design

The Batch/Time-Sharing Monitor (BTM) is designed
to afford SDS Sigma 5 and Sigma 7 users with interactive
and on-line time-sharing without disrupting batch
operations. For considerations of efficiency, the primary
objective of the BTM design is to provide limited time­
sharing service while concentrating on throughput of
batch jobs-the servicing of time-sharing u:sers is
allocated to minimize response for interactive users with
no special service given to the compute bound on-line
users (because high-efficiency batch service is avaHable).

Thus, the system is structured with resources for the
batch and time-sharing portions of the system separated
as much as possible. Different areas of main memory are
allocated so that a (compute bound.) batch user is
always "ready to run." The file device is common
because files may be shared between batch and time­
sharing users. However, the management tec:hnique
used minimizes the interference from this factor. The
swapping Rapid Access Disc (RAD) for time-i~haling
users is independent of the file device, thus insuring that
swaps in process do not affect on-going batch programs.

The batch user is kept essentially compute bound by
buffering all of his unit record I/O via a RAD. This
allows the compute portion of each job to follow that
of the previous job without waiting for the printout,
etc., to complete. Thus, there is no need to attEmpt to
reclaim swap time from one time-sharing user to
another-a natural claimant: the batch job is readily
available.

Performance Modeling and Empirical Measurements 19

Hence, a very simple (and low overhead) swapping
and scheduling algorithm can be used. As a particular
user is dismissed, other users are polled in turn to see
who is "ready to run." If someone is found (not the
same user), a replacement swap is initiated and the
CPU is allocated to the batch job. When the swap-out/
swap-in is complete, the new user is given one quantum
(Le., providing the batch job has already had at least its
quantum) ; then the cycle is repeated.

In this way, batch is guaranteed a certain percentage
of the machine (and typically gets much more), and a
moderate number of time-sharing users receive rapid
response to conversational request. Yet with this
relatively simple framework, a number of questions are
unavoidable: How does on-line response and batch
throughput vary with the number of on-line users, and
how do other variables such as quantum size and swap
time relate to system performance? Moreover, how
does one characterize system performance and the
variables which influence it?

Parameterizations and performance measures

The subject of "on-line" response is unfortunately
plagued by many interpretations of what constitutes
response (and, moreover, what defines adequate
response). For the purposes of this paper, "typical
on-line requests" are those which require minimal
central processor time-less than one quantum alloca­
tion. Thus, the response time C1 to a "typical on-line
demand" is that period elapsing between request
generation (the keying in of a control character such as
"carriage return") and the termination of the first time
quantum * which is allocated to the servicing of the
request. This definition provides the basis upon which
the on-line performance of the BTM system is analyzed
in this paper, since it is assumed that on-line users are
typically in phases of program preparation. ** Thus,
providing the quantum is large enough, the great
majority of user interactions (e.g., "open the next
line," "delete source image," "perform syntax check
and insert into text," etc.) can be satisfied ·with single
quantum allocations.

The mathematical model developed in the Appendix
enables one to characterize the system by selecting
values for the variables:

N = total number of active on-line communication

* Also note that if the scheduling algorithm is round-robin then
0 1 provides a basis for approximating the response time for
a request which requires multiple quanta.'
** Note that this is not the case in system environments in which
the on-line users run production (compute bound) programs.

sources (i.e., the number of remote users who
are concurrently using the system).

A = average uf>er interaction rate (frequency at
which a single user requests service by the
CPU).

J.t = mean rate at which on-line requests are
serviced by the CPU (1/ J.t = average
amount of CPU time required to complete
each request given that the CPU was
dedicated to the servicing of the request).

S = the average amount of time required to swap
an old user out of core and load a new user
(clearly, S is dependent upon the swapping
device as well as program size).

qR = time quantum allocated to on-line requests
(time-sharing users).

qB = time quantum given to batch requests
(background users).

ill = the average cumulative quantum extension
(for monitor services such as scheduling, file
I/O, service calls, etc.) incurred during the
period elapsing between successive quantum
allocations to on-line jobs.

To supplement analysis efforts, the BTM system
software is capable of monitoring these (and other)
variables and accumulating their statistical distributions
during actual system operation. This does not impose
any significant overhead since much of this data is
already accumulated in the accounting log, and (as in
many other commercial systems) used as a basis for
charging users.

Upon establishing reasonable values for the above
variables, the model can then be used to derive per­
formance measures. In terms of resptmse, the salient
performance index is E[C1] where

E[C1] == the expected response time which "typical
on-line demands" experience (see defini
tion given above).

In addition, the model can readily be used to estimate
the percentage of CPU time available for batch jobs; the
percentage of CPU time received by time-sharing users;
utilization of the swapping RAD; expectations of
system revenues; and a variety of other indices obtained
from combinations of the derived parameters.

A priori estimates for some of these performance
measures are given in Figures 1-5 for reasonable ranges

20 Fall Joint Computer Conference, 1969

Avera9"
Response

6~~'~t!kal 2

Demands"
(sec.)

qR= 200 ms.

~
as mi. IF 7212 RAD

S 248 mi. IF 7232 RAD
443 mi. IF 7204 RAD

Aa 1 Request/20 user.sec.
1/ 400 ms./request

iii,. 100 mi.

_. "Swap Limited"

.... "Batch limited"

10 14 18 22 26 30 34

N_

NUMBER OF CONCURRE NT
USERS

Figure I-E[Cll vs. N (p. = 2.5 requests/sec.)

Avero9"
Reoponse
To "Typkal
On-Line
Demands II

(Sec.)

QR=200m ••

1
85 ms IF 7212 RAD

S = 248 ms. IF 7232 RAD
443 ms. IF 72)4 RAD

A = 1 Request!20 u_.sec:.

1/ .. = 200 ms./request

iii = 100 ms.

e-0 A 'Swap limited"

l-II, -~--r--.---,..--r"----. ,..., _.....-~--r--=.t _"Batch limited"

10 14 18 22 26 30 34

N--
NUM8ER OF CONCURRENT

USERS

Figure 2-E[Cl l vs. N (I-' = 5 requests/sec.)

of the variables N, A, JJ., S, qn, qB, and m· Obviously,
these variables will differ from ()ne environment to
another. Therefore, before discussing conclusions which
can be drawn from these graphical results, it is appro­
priate to clarify the parameterizations and assumptions
which were used in the calculations:

I
PERCENT OF
CPU TIME
AVAILABLE
FOR BATCH
JOBS
(Pr[B]X 100%)

120

100

.1 10

MAXIMUM
NUMIfII Of
CONCUHENT
USERS '"

20

100

80

60

20

o 10 20 30

N •

NUMBER OF CONCURRENT USERS

Figure 3-Relative batch capability

LIMIT FOR
7212 RAD .<:

i

40

--
1~.O----;---~10-C-~-SP-EE-D-~(-~~-I*-.-)~100~------~~~

(LOGSC"LE)

Figure 4-Nmax vs. CPU speed I-'

1. The average swap time S was conservatively
calculated assuming that four RAD accesses are
required per swap with an average total of 16K
words transferred during each swap. (The RAD's
are head per track rotating memories operating
at 1800 rpm; and the SDS model 7204, 7~~32 and
7212 RAD transfer data at rates 187 X 10

3

bytes/sec., 384 X 103 bytes/sec. and 3 X 10
6

bytes/sec., respectively.)
2. The user interaction rate A was estimated from

statistics gathered at RAND6 and other data
extracted from the GE/Dartmouth BASIC
system6 and the SDS 940 system.

Performance Modeling and Empirical Measurements 21

E[C 1]

Average -4
Response
To "Typ;cal
On-Une
Demands II
(Sec.)

\
\

7212 RAD

N ~ 18
qe = 85 1115. (;.e. "swap lim;ted")

(

85 mi. IF 7212 RAD
S = 2048 rris. IF 7232 RAD

«3 1115. IF 7204 RAD

>. = 1 request/20 user·sec.
;;; = 100 mi.

7232 RAD

r.i.. -....:--~ ___ ;... _ ~ _ ~ __ ~ __ ~
7204 RAD

'.!.- - ~J -iJr- -<1> __ -ar- -ar - -.I> - -.I>- - -&. - -Jo,. - -iJr --.....

0-0. ,,= 2.5 requests/sec.
&r • ..!. " = 5 requelts/sec.

0.1 0.:1 .0.3 0.-4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

qR(sec.)-

QUANTUM ALLOCATION
TO

ON-LINE USERS

Figure 5-E[011 vs. qn (N = 18)

3. The selection of qn = 200 ms. was established
such that the majority of user interactions are
satisfied with single quantum allocations. Where­
as, selecting qB = 85 ms. and 200 ms. was done
merely to demonstrate "swap limited" and
"batch limited" operation, respectively.

4. The value of the average monitor time ill per
on-line/batch quantum cycle was approximated
utilizing batch accounting information and
timing studies of monitor services.

5. Values of p, were chosen such that the average
on-line quantum qn would be ,:::::: 125 ms. to
150 ms. when 200 ms. was allocated. This
selection was inferred from data extra~ted from
the SDS 940 System and BTM code traces. (Yet,
note that a single parameter p, does not provide a
characterization covering the more general case
in which the processing time distribution is
multi-modal.t However,for purposes of studying
interactive response, it provides a good approx­
imation and lends itself to the mathematical
analysis.)

t The multi-modal case arises because of a multiplicity of lan­
guage facilities and the natural division of requests into interactive
or compute demands.

Mathematical results

Given this framework, let us now turn our attention
to the 'figures. Employing the mathematical model,
a priori estimates of average interactive response time
E[C1] are displayed versus N in Figure 1 and Figure 2
for p, = __ 2.5 requests/sec. and p, = 5 requests/sec.,
respeetively. Here, three different curves are plotted in
each :figure to demonstrate the limiting effects of each
swapping device (i.e., "swap limited" operation when
the batch quantum qB is less* than the swap time S).
Also, note that an additional, curve is given for the
model 7212 RAD to display the effects of selecting a
batch quantum which exceeds the swap time (i.e.,
"batch limited" operation). This latter curve shows that
the fastest swapping device effectively becomes a slower
device when qB is set such that operation is "batch
limited"-the model 7~12 RAD is almost equivalent to
a model 7232 RAD when qB = 200 ms.

Now since N ·is the total number of concurrent users
(active communication sources), Figures 1 and 2 enable
one to estimate a value for the maximum number of
users N max which the system can simultaneously
accommodate by: (1) assuming "swap limited" operation
and (2) defining what constitutes adequate response to
typical on-line demands. For example, if one assumes
that adequate interactive response is achieved if :::::: 80%
of the time a user experiences a delay of less than 5 sec.
then, depending upon p" one concludes:**

i. the model 7204 RAD will accommodate a
maximum of 10 to 16 concurrent users for***
p, = 2.5 requests/sec. to p, = 5 requests/sec.,
respectively;

ii. the model 7232 RAD will accommodate a
maximum of 16 to 26 concurrent users for
p, = 2.5 requests/sec. to p, = 5 requests/sec.,
respectively;

iii. the model 7212 RAD will accommodate a
maximum of 26 to 38 users for p, = 2.5 requests/
sec. to p, = 5 requests/sec., respectively.

However, the actual number of on-line users who

'" For this situation, the actual batch quantum allocation is the
swap time S.

""" These conclusions were made by assuming that the probabil­
ity distribution for response time 0 1 is such that twice the mean
E[Oll is (at least) the 80 percent point. This is a reasonable assump­
tion in light of both the mathematical characterizations used in
the model and empirical measuresments.

""""'Note that reducing J.L from 5 requests/sec. to 2.5 'requests/sec.
is tantamount to reducing processing speed by a factor of 1/2.

22 Fall Joint Computer Conference, 1969

concurrently use the system is a statistical parameter
which generally is less than N max and varies according
to the total number of on-line subscribers, their
demands, processing speed, N max, etc. In practice, the
total number of on-line subscribers typically exceeds
Nmax by at least a factor of three.

For the above cases, nominally 50--80% of the CPU
time is available for batch jobs. This is shown in
Figure 3. Similarly, utilizing this same response
criterion, it is interesting to observe the effects of
increasing**** CPU speed J.I.. This is demonstrated in
Figure 4 for each of the swapping devices. As CPU speed
increases indefinitely, the capacity of the system to
service on-line requests approaches a limit established
by the swapping device.

Additional insight into system responsiveness is
provided by Figure 5. Here, E[C1] is graphically
displayed versus the on-line user quantum qR for "swap
limited" operation and N = 18 (with all other variables
the same as those employed in Figures 1 and 2.) Note
that the selection of a minimum qR is very critical;
however, having estabIished a minimum qR, the varia­
tions are not dramatic for a relatively large range above
minimum qR. Also, notice that as J.I. is reduced from 5
requests/sec. to 2.5 requests/sec., a model 7232 RAD
must be used to achieve what a model 7204 RAD
accomplished in the former case; and similarly, a model
7212 RAD is required to equal the performance of a
model 7232 RAD.

Experimental results

Extensive statistics were gathered from the system
(while running typical jobs) with a twofold purpose in
mind. First, it was necessary to substantiate the validity
of the assumptions employed in the model; i.e., establish
that the chosen parameters were indeed consistent with
the actual environment. Secondly, a correlation between
empirically measured performance and the results of the
model would lend credence to the validity of the model,
and therefore allow us to extrapolate and predict
performance for other user environments and system
configurations.

The first objective was accomplished by observing a
BTM system which used a model 7212 RAD for
swapping with quanta qR = qB == 200 ms. Values for
A, J.I., ill and program size were tabulated for many
different observation periods. For each (jj these monitor­
ing sessions different average values were obtained, but

**** Note that this latitude is only possible on a limited basis
(e.g., code optimization, faster memory, faster operation unit,
multi-processing, etc.)

the values J.I. = 3.5 requests/sec., A = 1 request/15
user-sec., § = 85 msec. and ih = 100 msec. were found
t~ be quite representative of most samples. The variables
J.I. and A were most subject to variation and ran~~ed from
2 to 6 requests/sec. and from 1 request/25 use:r·sec. to
1 request/l0 us~r·sec., respectively. Also, the data
indicated that the assumptions of exponentinlly dis­
tributed CPU time and request inter-arrival time
provided good approximations of user demandEI.

Given that the first objective was satisfied, realization
of the second objeetive is buttressed by Figure 6 which
plots the average of all sampled values for two of the key
performance indications (average response time E[C1J
and CPU time available for batch Pr[B]) as a function
of the number of users N. Upon comparing these results
with the mathematical predictions (also see Figures 1-3),
one can infer that (at least for the range of variables
considered) the mathematical model is reasonably
consistent with actual system operation.

Comments

The analysis presented above primarily focused atten­
tion on the system's capacity to accommodate user
demands. Even though no mention was given to
cost/performance tradeoffs, the model lends itself to
this latter design consideration. For example, the
variables N, Pr[B] , and J.I. might be combined to reflect
the revenue derived for service to batch jobs and the
revenue obtained for servicing interactive users which
could then be weighted against the cost expended to

1
Soltlpled
E [c~
(Sec.)

Measured
- "EI Percentage af CPU Time

)a... Available for Batch Jobs

Prediction /
Obtained :1il,

From Madel

.4 12 16 24 28

N •
NUMBER OF CONCURRENT

USERS

Figure 6-Empirical results

32

100

I
80 SAMPLED

60

20

Pr[B] X 100%
(PERCENT)

Performance Modeling and E.mpiricalMeasurements 23

provide (and maintain) the system complement. This
would provide a basis for the designer to balance CPU
cost/performance with that of other system elements.

The process of selecting and examining performance
indexes similar to those discussed here enables the
designer to better appraise the many implementation
tradeoffs which confront him. Moreover., when supple­
mented with empirical data, these techniques provide a
basis for not only configuring existing systems but also
synthesizing new systems. However, it should be
emphasized that apart from the mathematical model
itself and its macroscopic treatment of the system, the
fidelity of the results and conclusions obtained in this
analysis (or any analysis of this sort) can only be as good
as the accuracy attributed to the independent variables
(N, X, J.l, m, S). The values possessed by these variables
dramatically affect performance and will vary from one
environment to another. Therefore, one should be
cautious before inferring any explicit and universal
characterizations of system performance.

REFERENCES

1 B KRISHNAMOORTHI R C WOOD
Time-shared computer operations with both interarrival and
service time expone11 tial
J A C M Vol 13 317-338 July 1966

2 E G COFFMAN JR
Stochastic models of multiple and time-shared computer
operations
Report 66-38 Dept of Eng Univ of Calif Los Angeles
June 1966

3 L KLEINROCK
Time-shared systems: A theoretical treatment
J A C M Vol 14 242-261 April 1967

4 J E SHEMER
Some mathematical considerations of time-sharing scheduling
algorithms
J A C M Vol 14 262-272 April 1967

5 G E BRYAN
JOSS: 20,000 hours at a cOrlsole-a statistical summary
Proc F J C C 769-777 1967

6 H CANTRELL
. Time-sharing data

General Electric Technical Information Series Report
R65CD12 December 1965

7 T L SAATY
Elements of queueing theory
McGraw-Hill New York 1961

APPENDIX

BTM mathematical model

Consider the generation of on-line requests on each
communication channel is an exponential process with
parameter X. Hence, the time interval x between

completion of a request and generation of a new request
on a given line is described by the distribution function

(
I - e-}..~

A(x) = 0
for x ~ 0
for x < 0

Similarly, assume that the service time t required by
each on-line request is exponentially distributed with
parameter J.l and characterized by the distribution
function

for t ~ 0
for t < 0

Given that there are N channels, let p (~l denote the
probability that n on-line requests are queue 1 at f 0 ne
arbitrary time t for n = 0, 1, .. ·N, then

- NXpo(t) + J.lPr[R(t)]Pl(t)
for n = 0

[(N - n)X + J.lPr[R(t)]]Pn(t)
+ (N - n + 1)XPn-l(t)

+ J.lPr[R(t)]Pn+1(t)
for 0 < n < N

J.lPr[R(t)]PN(t) + XPN-l(t)
for n = N

where Pr[R(t)] denotes the probability that at time t
t'le computer is servicing one of the remotely generated
on-line requests. Note that in the above equations, the
input rate is (N - n)X when n requests are queued.
Thus the model accounts for the natural variations in
demand intensity which r ~sult because there are a finite
number N of input sources.

From these equations, the stationary probability7

that n on-line requests are queued is

where

p. = eN ~I n)! C ;r[Rl)" po

Pr[R] = limit Pr[R(t)] and
t ----? 00

1
po = ---------------------------

[1 + t;, (N~! n) ! C ;'[R1YJ
The probability Pr[R] can be estimated by considering

24 Fall Joint Computer Confer·ence, 1969

the interval which elapses between successive allocations
of a quantum to on-line users. Let;Tk denote the total
time between the oth on-line quantum completion and
the kth on-line quantum completion. If the kth comple­
tion leaves the on-line queue in an empty state, then the
expected value of the time ATk until the next on-line
quantum completion is

where qB is the avera~e quantum which batch users
receive; qR is the expected duration of an on-line
(remote user) quantum; (l/NA) is :the mean time until
the generation of the next on-line request; and ill is the
expected monitor overhead time per batch/on-line
quantum cycle. Here, ill accounts. for 'any scheduling;
I/O overhead; file operations, and any other CPU time
pre-empted by the monitor which results during the
cycle of a quantum allocation to a batch job followed by
a quantum allocation to an on-linejob.

In the case when the kth on-line quantum completion
does not leave the interactive user queue empty, then
with probability (1 - po)

Now let T B , T R , and Tm denote respectively the length
of time out of T k which the system spends servicing
batch jobs, on-line jobs, and monitor functions)
respectively.

Then as k goes to infinity, the ratios TB/k, TR/k, and
Tm/k converge with probability one to (qB + palNA) ,
qR, and m, respectively. Therefore, in the limit, an
approximation to the fraction of the time which the
system spends servicing on-line requests is

Pr[R] = lim [TRJ = lim [TR/kJ
k-HD Tk k-+<LJ Tk/k

Then, noting that qB + qR is essentially the computa­
tion cycle, this leads one to express Pr[R] as

qR (m) Pr[R] = f(+) where f > 1 + + qB qR qB qR

Here, f is an appropriate scale factor introduced to

facilitate solving for {pn}~ The numerical technique
n-O

is to let f increase by some small Af uutil a solution for
po is obtained which is consistent with Pr[R,]. The
variable f satisfying this criterion will vary drama.tically
depending upon N, m, J.L, A and qB.

Upon solving for Po, the percentage of CPU time
available for batch jobs is

qB + Po (l/NA)
Pr[B] = =qR-+-=-q B--'-+~m::::::-:-+"":"-p-o ~(l-/-N-A)

The variables qB and qR are heavily infiueneed by
quantum periods and swap time. If one assumes that
(with the exception of a batch quantum allocation every
other quantum) on-line jobs run on a demand basis
(i.e., the batch quantum qB is less than the swap time S),
then qB = S. Hence, the swap time limits the rate at
which successive quantum allocations are provided to
the on-line requests (i.e., maximum service capacity is
given to on-line requests). Whereas, if the batch
quantum limits the servicing of on-line requests
(qB > S), then qB = qB. Therefore, for completeness

_, [qB if S < qB
qB =

l S if S ~ qB

and from the exponential distribution of service time
for on-line requestsl - 4

Given the foregoing relations, it is now pos8ible to
estimate the expected cycle time E[C l] which an
individual on-line (remote user) request experiences
before it is granted its first quantum allocation. As
emphasized in an earlier section, attention is focused
upon E[C I] since it provides an indication of the :respon­
siveness of the system to handling "typical on-line
requests" which require less than one quantum of CPU
time. By considering the system only at epochs of
transition between batch to on-line, monitor to batch
(or on-line), idle to batch (or on-line), etc., one obtains
the approximation

where

N

E[n] = L: npn

and E[ToJ is the expected time remaining subsequent to

Performance Modeling and Empirical Measurements 25

the arrival of an on-line request before the next quantum
allocation is initiated. The value of E[ToJ is difficult to
accurately express since it is a function of the probability
densities for qB and m together with machine state
probabilities; however, it is clear that

At any rate, E[To] is not a dominant factor in E[C I]

unless E[C I] is extremely small (i.e., E[C I] ~ qR + E[To],
for example). Hence, the precise value of E[ToJ is not
Qritical in those cases which are of particular interest
(namely, those resulting when the on-line queue tends
toward saturation; i.e., E[n] ~ N).

In addition to the above result for E[C I], since the
scheduling discipline is round-robin, it is possible to
estimate2-

4 the expected total response time E[rl t] for
an on-line request which requires a processing time t in
excess of a single quantum qR

E[Rlt] ~t + <t/qR> [E[C I] - (po E[To] + qR)

+ qB + ill]

where < alb > is the smallest integer greater than a/b.

Alternate model

Let Pmn(Tk) denote the probability that non-line
requests are queued at epoch T k marking the completion
of the kth on-line quantum allocation, given that at
epoch T k- l there were m on-line requests awaiting
service from the system.I ,2 Then independent of k
since the CPU servicing of requests is characterized as
an exponential process

[

y+QR-E
+ 0 Pr[n - m + 11 m, t] PB+R(t) dt.

for 1 :::; m S n
pmn =

o for n :::; m - 2; m ~ 1

[

1J+qR-E
o Pr[OI m, t] PB+R(t) dt

for n = m - 1 ~ 0

where E ~ 0 and Pr[kl m,t] denotes the conditional
probability of generating k new on-line requests in a

time interval t given that m requests are queued. For
example, with exponential inter-arrival

Also, in the above equations

y=

Smax if service to on-line customers is swap
limited (i.e., qB < S)

qB if batch quantum limits on-line service
(i.e., qB ~ S)

Here, p B denotes the probability density function which
describes the batch quantum allocation, and p B+R is
the convolution of PB with the density function PR
defining the distribution of an on-line quantum alloca­
tion. Both PB and PR include overhead functions to
account for file I/O, monitor overhead, etc.

,The density function PB is derived from the swap time
distribution when qB < S; whereas, it depicts the CPU
servicing of batch requests when S < qB. For example,
in the latter case with o(z) representing the Dirac-delta
function describing an independent variable z, one
could characterize the constant batch allocation interval
by

PB(t) = oCt - ('YB + qB»

where the constant 'Y B reflects batch overhead. Similarly,
letting 'YR denote the overhead incurred during an
on-line quantum allocation

! 0 for t :::; 'YR or t > 'YR + qR
PR(t) = p,e-JJ.t + e-MR oCt - (qR + 'YR»

l for 'YR :::; t :::; 'YR + qR

For completeness, the transitions from the O-state are
assumed to be

Then, having formulated the state transitions {Pmn}
and defined the density functions PB(t) and PB+R(t), the
problem remains to solve for the steady-state proba­
bilities. This is accomplished by noting that the Pmn'S
define an ergodic Markovian chain whereby in matrix
form with!!.. = (Pmn) there exists a unique set of number~
f Pm } ~ =0 such that

26 Fall Joint Computer Cpnference, 1969

and

N

LPn = 1
n=O

The solution of these equations produces the limiting
stationary probabilities {P16}n~o which could be used in
calculating E[n] to provide a more accurate estimate of
E[C1]. (That is, providing one can accurately describe
PB, PB+R, A, etc.).

However, since the accuracy of such variables would
be highly questionable in the absence of any empirical
information and since this latter model presents a
number of non-trivial mathematical difficulties, it was
not utilized to derive the result.s given in this paper.
Yet, in the future, as sufficient data is accumulated from

the actual operation of BTl\1 systems, then the latter
model will enable us to extrapolate and better predict
the effects of alterations to the system (e.g., improve­
ments resulting from faster swapping devices or
increases in CPU speed).

ACKNOWLEDG~\1ENT

The authors are indebted to ::,\1. Leavitt, D. Cumming,
.J. Doeppel, T. l\1artin and G. E. Bryan for their many
contributions to the BTl\1 design effort and also wish to
extend thanks to all those other individuals at Scientific
Data Systems who helped to make this project possible.
In particular, the authors are grateful to D. Cota,
E. lVlaso and Dr. R. Spinrad for their guidance in these
efforts.

Dynamic protection structures

byB. W.LAMPSON

Berkeley Computer Corporation
Berkeley, California

INTRODUCTION

A very general problem which pervades the entire field
of o,Perating sys.tem design is the construction of pro­
tectIOn mechamsms. These come in many different
forms, ranging from hardware which preve~ts the exe­
cution of input/output instructions by user programs,
to password schemes for identifying customers when
t~ey log onto a time-sharing system. This paper deals
wIth one aspect of the subject, which might be called
the meta-theory of protection systems: how can the
information which specifies protection and authorizes
access, itself be protectea and manipulated. Thus, for
example, a memory protection system decides whether a
program P is allowed to store into . location T . We are
concerned with how P obtains this permission and how
he passes it on to other programs.

In order to lend immediacy to the discussion it'
will be helpful to have some examples. To pro~ide
some background for the examples, we imagine a
computation C running on a general multi-access
system 1\1. The computation responds to inputs from
a terminal or a card reader. Some of these look like
commands: to compile file A, load B and print the
output double-sI;>aced. Others may be program state­
ments or data. As C goes about its business, it executes
a l~rge n~mber of different programs and requires at
varIOUS tImes a large number of different kinds of
access to the resources of the system and to the various
objects which exist in it. It is necessary to have some
way of knowing at each instant what privileges the
comput~ti?n ha~, and of establishing and changing
these prIvIleges In a flexible 'vay. We will establish a
fairly general conceptual framework for this situation ,

and consider the details of implementation in a specific
system.

Part of this framework is common to most modern
operating systems; we will summarize it briefly. A
program running on the system M exists in an environ­
ment created by M, just as does a program running in
supervisor state on a machine unequipped with soft­
ware. In the latter case the environment is simply the
available memory and the available complement of
~achine instructions and input/output commands;
SInce these appear in just the form provided by the
hardware designers, we call this environment the bare
machine. By contrast, the, environment created by IVI
for a program is called a virtual or user machine.6 It
normally has less memory, differently organized, and
an instruction set in which the input/output at least
has been greatly changed. Besides the machine reg­
isters and memory, a user machine provides a set of
objects which can be manipulated by the program. The
instructions for manipulating objects are probably
implemented in software, but this is of no concern to
the user machine program, which is generally not able
to tell how a given feature is implemented.

The basic object which executes programs is called
a task or process;6 it corresponds to one copy of the
user machine. What we are primarily concerned with
in this paper is' the management of the objects which
a process has access to: how are they identified, passed
around, created, destroyed, used and shared.

Beyond this point, three ideas are fundamental to
the framework being developed:

27

1. Objects are 'named by capabilities,a which are
names that are protected by' the system in the

28 Fall Joint Computer Conference, 1969

sense that programs can move them around but
not change them or create them in an arbitrary
way. As a consequence, possession of a capa­
bility can be taken as prima facie proof of the
right to access the object it names.

2. A new kind of object called a domain is used to
group capabilities. At any time a process is
executing in some domain and hence can exercise
the capabilities which. belong to the domain.
When control passes from one domain to an­
other (in a suitably restricted fashion) the capa­
bilities of the process will change.

3. Capabilities are usually obtained by presenting
domains which possess them with suitable
authorization, in the form of a special kind of
capability called an access key. Since a domain
can possess capabilities, including access keys,
it can carry its own identification.

A key property of this framework is that it does not
distinguish any particular part of the computation. In
other words, a program running in one domain can
execute, expand the computation, access files and in
general exercise its capabilities without regard to who
created it or how far down in any:hierarchy it is. Thus,
for example, a user program runnipg under a.debugging
system is quite free to create another incarnation of
the debugging system underneath him, which may in
turn create another user program which is not aware
in any way of its position in the i scheme of things. In
particular, it is possible to reset 'things to a standard
state in one domain without disrupting higher ones.

The reason for placing so much weight on this prop­
erty is two-fold. First of all, it 'provides a guarantee
that programs can be glued tog~ther to make larger
programs without elaborate pre1arrangements about
the nature of the common environment. Large systems
with active user communities quickly build up sizable
collections of valuable routines. The large ones in the
collections, such as compilers, often prove useful as
sub-routines of other programs. Thus, to implement
language X it may be convenient to translate it into
language Y, for which a compiler already exists. The X
implementor is probably unawar~ that Y's implemen­
tation involves a further call on an assembler. If the
basic system organization does not allow an arbitrarily
complex structure to be built up~ from any point, this
kind of operation will not be feasible.

The second reason for concern about extendibility
is that it allows deficiencies in the design of the system
to be made up without changes in the basic system
itself, simply by interposing another layer between the
basic system and the user. This is especially important

when we realize that different people may have different
ideas about the nature of a deficiency.

We now have outlined the main ideas of the paper.
The remainder of the discussion is devoted to filling
them out with examples and explanations. The entire
scheme has been developed as part of the operating
system for the Berkeley Computer Corporation IVfodel
I. Since many details and specific mechanisms a,re
dependent on the characteristics of the surrounding
system and underlying hardware, we digress briefly
at this point to describe them.

Environment

The BCC Model I is an integrated hardware ~md soft­
ware system designed to support a large number (up to
500) of time-sharing users. This system consists of
two central processors, several small processors, a large
central (core and integrated circuit) memory, androtat­
ing magnetic memory. The latter contains more than
500x 106 bytes, including approximately 12X 106 bytes
of drum having a transfer rate of more than 5X 106

bytes per second.
The hardware allows each process more than 512k

bytes of virtual memory. The central processors can
accommodate operands of various sizes including 48-
and ~6-bit floating point numbers. The addresslng
structure allows characters, part-word fields and array
elements to be referenced directly. The subroutine­
calling instruction passes parameters and allocates
stack space automatically. System calls are handled
exactly like ordinary function calls.; when anays or
labels are passed to the system they are checked auto­
matically by the hardware so that they can be used
by the system without further ado.

The memory management system organizes memory
into pages. A page is identified by a 48-bit unique name
which is guaranteed different for each page ever created
in the system. Tables are maintained in the central
memory which allow the page to be found in the various
levels of the memory system. These tables are auto­
matically accessed by the address mapping hardware
the first time the page is referenced after the processor
starts to run a new process. Thereafter its real core
address is kept in fast registers. It is therefore unneces­
sary for any program other than a small part of the
basic system to be concerned about the location of a
page in the memory system; when it is referenced, it
will be brought into the central memory if it is not
already there. Extensive facilities are provided, how­
ever, to allow a process to control the level in the memo­
ry hierarchy of the pages it is interested in. 'The work
of managing the memory is done by a processor with

read-only program memory and data access to the
central memory; this processor has a 100 ns cycle
time, so that it can handle the large amount of com­
puting required to keep up with demands placed on
the memory system. Another small processor handles
-the remote terminals, which are multiplexed in groups
of 20 to 100 at remote concentrators and brought.
into the system over high-speed lines.

Pages are grouped into files, ·which are treated as
randomly addressable sequences of pages. The only
mechanism provided to access the data in a file is to
put a page of the file into the virtual memory of a
process. Files and processes are named and have pro­
tection information associated with them.

Domains in action

Before plunging into a detailed analysis of capa­
bilities and domains, we will look at some of the practi­
cal situations which these facilities are designed to
serve. They all have the same general character: several
programs with different privileges exist. Each program
corresponds to one domain. Some of the domains con-

. trol others, in the sense that the capabilities of a con­
trolled domain are a subset of those of its controlling
domain. As a first example, consider the command
process CP of an operating system. This program
accepts a command, perhaps from a remote terminal,
and attempts to recognize it as a call on a program X
which CP knows about. If it succeeds, CP calls on X for
execution, passing it any parameters which were in­
cluded in the command. To do this, CP must set up
a suitable environment for X to function in. In par­
ticular, enough memory must be provided for X to
run, X must be loaded properly, and suitable input/
output must be available. When X is finished, it will
return and CP can process a new command.

The key point is that we want CP to be protected
from X, to ensure that the user's commands continue
to be processed even if X has bugs. In particular, we
want to be sure that

1. X does not destroy CP's memory or files, so
that CP can continue to run when X returns.

2. CP can stop X if it goes wild. Usually we want
the ability to set a time limit and also to inter­
vene from the terminal.

In other words, we want CP and X to run in separate
domains, as illustrated in Figure 1 (since this is an
informal discussion, we do not trouble to distinguish
carefully between the program X and the domain in
which it runs). Here we have shown the call from CP

Dynamic Protection Structures 29

cP: command processor X: command

command input Capabilities

command output required by

Directory of commands X

Domain X Return to CP

Domains Calls

Figure 1-A command processor and its comma.nd

to X in two forms: in the picture on the right, and as
a return capability in X. The reason for the capability
is that X cannot return with a simple branch oper­
ation, since it would then be able to start CP running
at any point, which would destroy the protection.

Suppose now that we want to allow X to get addition­
al commands executed. X might, for example, be a
Fortran compiler whose output must be passed
through an assembler. A simple way to do this is to
put the assembler input on a file called, say, FOR­
TRANTEl\1P, and issue the command.

ASSElVIBLE FORTRANTEMP, BINARY

This command is just a string, which can easily be
constructed by the compiler X. To get it executed,
however X must be able to call CP; This situation ,
is illustrated in Figure 2; note the call capability in X,
which is quite different from the return capability.
Weare ignoring for the moment the question of how
CP knows that X is authorized to call the assembler.

If the idea of the preceding paragraph is pursued, it
suggests the value of being able to switch the source
of command input and the destination of command
output in a flexible way. By these terms we mean the

cP: command processor X: Command Y: Command (0
I

! command input

Capabilities capabili ties

0 required by required by

command output

Directory of commands
X X

(0
call CP

Domain X

I Domain Y

I Return to CP
I 0 i
i Return to CP ! Return to X

i

Figure 2-A recursive command processor

30 Fall Joint Computer Conference, 1969

traffic between a program and the entity by which it
is directed. In a time-sharing system this is normally
a terminal at which the user is sitting; in a non-inter­
active system it will be a file of control cards. It is
often desirable, however, to switch between the two,
so that routine processing can be done automatically
when the user's attention is elsewhere, yet he can
regain control when things go awry. Again, it is not
uncommon to wish to capture a complete record of a
conversation between user and machine for later
analysis and replay. More radical, it may be of interest
to replace the user at his terminal with a program
which can manipulate the strings of characters which
constitute commands and responses. In this way major
changes in the external appearance of a system can
be obtained with little effort.

All of these things can be accomplished by giving
interactions with the command I/O device the form of
calls to a different domain which acts as a switch. A
generalization to include the possibility of different
command devices for different domains is easy. Thus,
a user may initiate a program in a domain X which,
while continuing to communicate with him, starts a

CP 1: cOllllUlnd
proceSlIOr 1

call CIO

Domain J«:

Directory
of caa.and.

Domain CIO

X: user proaram

call CIO

Return to CP2

J«:: aacro
c~d

call CIO

Doaain CP2 .

Return to Cpl

Return to CIO

CIO· control I/O

call CPl

call CP2

call Me

Return to X

CP2: command
processor 2

call CIO

Domain X

Return to Me

Figure 3a-Switchable control I/O--the- domains

~ Top-level command processor initiates a

cornmand

~ which wants to drive another command

processor with some pre-stored or computed

input. It therefore creates another CP

and calls it, telling CIO to use Me fClr

its I/O

8 The lower CP is given a command to cal.l

the user program x.

This program needs input

which it gets by calling CIO, the domclin

which is switching the control I/O. CIO calla

~ the current input source, which is Me

Figure 3b-Switchable control I/O-the calh

subsidiary domain and feeds it commands. The sub­
sidiary, unaware of the way in which it is being; driven,
may iterate the process by creating Z. The key fact
which makes it all work is the isolation of one domain
from others. Thus, Y may decide to close all its files
without disturbing X, since Y has no way of even
knowing about X's files,. much less accessing t.hem. Z,
on the other hand, can be an open book to Y. Various
aspects of the situation are illustrated in Figure 3.

This section concludes by analyzing a problem of
great practical importance: how to construct H debug­
ging system. This example is a good source of insights
into the facilities required of a protection system be­
cause of the great variety of things which can be ex­
pected to go wrong during debugging. There are two
domains, one for the debugger D and one for the pro­
gram X being debugged. We of course want D to be
protected from X. Equally important, we want X to
be completely open to D, so that every object a{}cessible
to X is also accessible to D, and furthermore that D
can find all the objects accessible to X as well as access
them. Otherwise D will not be able to find out what X
has done or to undo any damage. Furthermore, we
want D to be able to imitate any actions which X
can take, so that D can create suitable initial conditions
for debugging parts of X. Thus, D needs operations
which, given a capability for X, allow D to

find all the capabilities in X
copy capabilities between D and X
destroy capabilities in X
enter X at any point with any machine state

With these powers, D can also handle domains whicll
X has created, since it can get hold of X's capabilities
for them. Breakpoints can be inserted in X in the
form of calls on D.

Domains and capabilities

The nature of capabilities

As we have already said, a capability is a protected
name of an object. When any object is created, a
capability is created to name it; without the capability
the object might as well not exist, since there is no
way to talk about it. The capability may be thought
of as an ordinary data item enclosed in a box which
prevents tampering with the contents. Thus, for ex­
ample, it may be convenient to make a capability for
a file consist of simply the disc address of its index.
This is entirely satisfactory, since programs which
handle the capability cannot modify it. If they could,
disaster would ensue, since any program could put
any desired disc address into a file capability, and
there would be no protection at all. If the machine
hardware allows a word to be tagged so that it cannot
be modified except by the supervisor, then we have
precisely what we want for a capability. The situation
is illustrated in Figure 4. It should be possible to load
and store such a word (including the tag bits) in order
to give programs the necessary freedom to manipulate
the names of the objects they are working with.

If this kind of hardware is not available a different
and potentially confusing implementation is required.
The potential can be kept from realization by referring
back to the "pure" implementation of the last para­
graph. What is required is to hide the capabilities
away in the supervisor and provide programs with
unprotected names which can be used to refer to them.
When a program running in domain D presents one
of these names, it is necessary to check that it actually
names a capability which belongs to D. This can easily

Capabili ty: TAG TYPE VALUE

TAG = read-only, except to supervisor

TYPE = FILE

VALUE = disk address of index

Figure 4--Structure of a eapability

DYnamic Protection Structures 31

NAME TYPE VALUE DOMAINS

1

2

4

6

A 1: 0 o : 0
I I

I
B 0 1 o : 0

I

C 0 0 1:0
I

D 0 0 0·: 1
I
I

E 1 1 o : 1
I

F 0 1 1:0
I

(a) capabilities grouped, with

bits for ownership

1

2

1 ITJ~in]

1 ITJD~ain4
(b) capabilities separate

for each domain

Figure 5-Capabilities and unprotected names

be done, if there are n such capabilities, by using
numbers between 1 and n for the names.3 An attractive
alternative, if domains can be grouped into larger units
which share many capabilities, is to number the
domains from 1 to i and the entire collection of capa­
bilities from 1 to n and to attach a string of i bits to
each capability. Bit d is on exactly when the capability
belongs to domain d. Figure 5 illustrates.

A somewhat more expensive implementation is to
search a table associated with the domain whenever
an unprotected name is used. This scheme shares with
the bit-string idea the advantage that it is easy for
different domains to use the same names for the same
object.

There are capabilities for all the different kinds of
objects in the system. On the Model I these are

files
pages of memory
processes
domains
interrupt calls
terminals
access keys

Domains and memory

The nature of a domain is considerably more de­
pendent on the underlying system than is the case
for capabilities, mainly because of the treatment of
memory. From a purist's viewpoint, every access to a

32 Fall Joint Computer Conference, 1969
!

--------------------------~--
memory word is an exercise of a, capability for that
word. A more moderate positio~, and one which is
quite feasible on suitable hardw~re, is to view each
access as the exercise of a cap~bility for a segrnen t
which contains the word.2 The! mapping hardware
which implements segmentation is thus viewed as part
of the capability system, and ~ satisfying unity of
outlook is gained. Since a seg~ent is identified by
number, the preceding section applies. We shall not
consider the formidable difficulties which arise if differ­
ent domains use different names for the same segment.

If segments are accessed through capabilities like
everything else, then a domain cOJilsists of nothing more
than a collection of capabilities. On machines not
equipped with the proper hard\\'are a domain has an
address space as well. In the lVlodel I this is a list of
the pages which occupy each of the 64 slots for pages
in the 128k memory which is acc:essible to a user pro­
gram.

It is also necessary to deal w~th the fact that the
hardware does not allow one domain to access the
address space of another one directly. This fact is of
great importance when we consider how data is passed
back and forth between domains, since it implies that
arrays cannot be passed simply by specifying their
addresses. It is therefore extremely convenient to in­
clude as part of a call the abilitN' to pass scalar data
items, and essential to include th~ ability to pass capa­
bilities. From this foundation arQitrarily complex com­
munication can be built, since capabilities for pages,
files and domains can be passed. 'rhus, if an array needs
to be passed as a parameter, i~ is sufficient to pass
capabilities for the pages or file !containing the array,
together with its base address a:pd length. The called
domain can then put the pages into its address space
and access the array. This is of course much less con­
venient than passing an entire segment as a parameter,
but it is quite workable. '

An alternative approach is to organize the hardware
so that the address space of one domain is a subset to
that of another. This eliminates all problems when the
smaller one calls the larger, although it does not help
at all when we want to share only part of the address
space. A subset organization fits well with a linear or
"ring"-like system4 in which the domains are numbered,
and the capabilities of domain i are a subset of those
of domain i-I. As we shall see, there are good reasons
for wanting a more flexible sch¢me, but for a great
many applications a linear orderirlg is quite satisfactory.
To allow these to be handled more efficiently, the
Model I hardware breaks the address space of a process
into three rings:

monitor
utility
user

in decreasing order of strength. The hardware enforces
a restriction that addressing cannot go into fI, higher
ring. It also provides protected entry points :into the
utility and monitor rings and automatically checks
addresses passed into these rings as param1eters to
ensure that they are legal in the ring from which they
came.

This simple hardware-implemented structure permits
three domains to transfer control around among each
other and to address each other's memory in a very
convenient and efficient way. The price paid is a ri­
gidity in structure, and a drastic incompatibility with
the main, software-implemented domain meehanism.
The incompatibility is resolved by requiring a change
in ring to be reported to the software, except \yhen the
only processing to be performed before returJl1ing the
original ring can be done with the capabilities of the
original ring. Short calls thus remain cheap, while the
overhead added to longer ones is not excessive.

Domains and processes

The relationship between domains and processes is
another area greatly influenced by the surrounding
system. The logical nature of the two kinds of object
allows a great deal of freedom: in fact, a domain has
much the same appearance to a process that a segment
of memory does. The storage for capabilities ~provicled
by a domain can accommodate many processes, and a
single process can switch from one domain to another
(subject to restrictions which are considered in the
next section).

In the ::Uodel I, however, storage is allocated in 2k
pages, and one of these, called the context block, is
used to hold the system-maintained private data for
each process. The cost of ha.ving a process is thus high,
and there is considerable incentive to minimize the
number of processes; usually one is enough per compu­
tation, if advantage is taken of the interrupt facilities
described later. When the usage of space in the context
block is analyzed, it turns out that there are only two
items which would have to be duplicated to allow
~everal processes to run with the same address space.
These are a 14-word machine state and a stack used
for local storage when the supervisor is executing in
the process. This stack has a minimum of about 60
words and can grow to several hundred words at certain
points during supervisor execution. It is therefore the

main barrier to the existence of cheap processes. The
problem can be greatly alleviated by allocating stack
space dynamically at each function call and releasing
it at each return, but this would require some major
changes in system organization.

Although processes are expensive, domains are quite
cheap, since the bit-string method is used to assign
capabilities to domains. Each process in the Model I
can have about a dozen domains associated with it.
The process can run in any of its associated domains
but in no others. This implies that two processes never
run in the same domain.

In a system in which processes are cheap, it is possible
to take an entirely different approach which encourages
the creation of processes for every purpose. In such a
system, parallel processing is of course greatly facili­
tated. In addition, free creation of processes can be
used to give a somewhat different form to many of
the facilities described in this paper.3

It is perhaps worthwhile to point out that a machine
whose addressing is not organized around a stack or
base registers cannot reasonably run several processes
out of the same domain unless they are executing total­
ly disjoint code, because of the problem of address
p.onflicts.

Transfers of control

Calls

The only reason for creating a domain is to establish
an environment in which a process may execute with
different protection than that provided by any existing
domain. If this objective is to be fulfilledJ transfers of
control between domains must be handled with great
care, since they generally imply the acquisition of
new capabilities. If it is possible for a process' running
in domain X to suddenly jump into domain Y and
continue execution at any arbitrary point, X can cer­
tainly induce Y to damage the objects accessible
through Y's capabilities.

To provide an adequate mechanism for transfers
between domains, we introduce the idea of a protected
entry' point or gate, and make the rule that transfer
into a domain is normally allowed only at a gate. A
gate is a new kind of capability which can be created
by anyone with a capability for the domain. It specifies
a location to which control is to go when the gate is
used. Gates can be passed around freely like other
capabilities, and each one may be viewed as conferring
a certain amount of power, namely the power to ac­
complish whatever the routine entered by the gate is

Dynamic Protection Structures 33

designed to do. With gates it is possible to selectively
distribute the powers of a domain in a flexible way.

A transfer through a gate usually takes the form of
a subroutine call; some provision must therefore be·
made for a return. It is not satisfactory to create
another gate which the called process may return
through, since he might save it away and use it to
return at some later and unexpected time. Instead,
the domain and location to return to are saved on a.
call stack in the supervisor, from which the return
operation can retrieve them. It is possible to call a.
domain recursively with this mechanism, a feature
which is generally desirable and also quite important
for the trap and interrupt system about to be described.

In order to allow the stack to be reset in case of an
error, or for any of the other reasons which prompt
programmers to reset stacks, a jump-return (n) oper­
ation is provided which returns to the domain n levels
back. Protection is maintained by requiring the domain
doing the jump-return to have capabilities for all the
domains being jumped over.

Traps

A trap is caused by the occurrence of some unusti~l
event in the execution of the program which requires
special handling, such as a floating point overflow, a
memory protection violation or an end of file. When a
trap occurs, it forces control to go to a specified place,
where presumably a routine has been put to deal with
the event. Whether any particular event causes a trap
or simply sets a flag which can be tested by the program
is a decision which should be under the programmer's
control. Traps may be initiated by hardware (e .g ..
floating overflow) or may be artifacts of the software;
as with most distinctions between hard ware and soft­
ware implementation, this one is of little importance,
and we expect all traps to be transmitted to the program
in the same form, regardless of their origin.

These are all obvious points which are generally
accepted, and have even become embedded in the
definition of PL/I. What concerns us here is the re­
lationship between traps and domains, which is not
quite so obvious. The basic problem is that the re­
sponse to a trap must be made to depend on the environ­
ment in which is occurs. The 'occurrence of, say, a
floating overflow is simply a fact, and has nothing to
do with who is running. The action to be taken, on the
other hand, is entirely a function of the situation.
Consider the example in Figure 6. If a floating overflow
occurs with the call stack in state (b), it is clear that

34 Fall Joint Computer Conference, 1969

Name Domain Traps

A I Command processor I CATCHALL I

B

C

Statl.stl.cal
package

Matrl.x
Inversion

FLTOV, I
SINGMTX

I FLTOV

a) Domains and
enabled traps

o o
0FLTOV

(0
c) the matrix

inverter pro­
cesses a
floating over­
flow

~SIN~
o

d) the matrix
inverter re­
turns with
trap-return
(SINGMTX)

o o
G

b) The call stack
during matrix
inversion

o o CATCHALL

8

e) the matrix
inverter returns
with trap­
return
(BAD DATA)

Figure 6--Traps and trapreturns

C should have the first chance to handle the trap. If
it is not interested, the domain B which called it should
have the second chance. In state Cc}, on the other hand,
domain B should have the first chance, and then A.
The reasons for this, is that we do not wish to give up
control to a weaker domain when a trap occurs.

The idea is then the following: Each domain is
considered to have a father. When a trap occurs, it is
first directed to the domain S which is running. If S
does not have the trap enabled, the father of S is
tried in the same way. If no one can be found to handle
the trap, there are two possibilities:

ignore it;
generate a catchall trap which any domain that
lacks a father is forced to handle.

If a domain T is found with the trap enabled, it is
called with the name of the trap as argument. It can
then return and allow execution to proceed if it is
able to clear things up. Alternatively, it can do a
jump-return to someone farther back on the call stack
if it finds the situation to be hopeless. An important
property of this scheme is that the trap routine can do
arbitrarily complex processing without disturbing the
situation at the time of the trap.

Conceptually, we wish to think of traps as identified
by symbolic names. Each domain must then include a
list of names of the traps it has enabled. Conesponding

to each hardware-generated trap is a standard name.
Software-generated traps can use £tny names, including
the ones for hardware traps. This makes it easy for a
subroutine to simulate the occurrence of a hardware
condition which it may not be convenient to produce.

A simple extension of the return operation. to a
trap-return allows a routine to signal an error without
leaving any traces of itself; the trap-return does a
return and immediately causes the specified trap,
without allowing any execution beyond the return
point. The domain which handles the trap then sees
it as having occurred in the calling routine, which is
exactly what is wanted. Thus in Figure 6 we have n
matrix inversion routine which processes its own
floating overflows, but reflects two other conditions
to its caller with trap-return. Another useful con­
vention is to disable the trap when it occurs. This
makes it much less likely that the program will get
into a loop, especially for such traps as illegal in­
struction and memory protection violation.

Interrupts

There remains one more way to cause n tlmnsfer
between domains: the occurrence of nn interrupt. This
is not intended to be the normal mechanism for com­
munication between coopernting processes; the basic
block ,and wnke-up mechanismso are expected to per­
form that function. There nre times, however, when it
is desirable to force a process to do something:, even
if it is not paying attention. Two obvious reasons for
this are:

n quit signal from the terminal, which indicates
that the user wants to regain control over a process
which hns gone into a loop, or perhaps ,simply
become unnecessarily wordy;

the elapse of a certain amount of time, which
has much the same meaning.

The action required in these two cases is different.
When n timer interrupt is requested (and there may be
two kinds, for real time and CPU time) the desired
action is usually to cnll a specific domain, often the
one which is setting the timer. If another domain
wants a timer, it will use one which is logically different.
The user's quit signal, on the other hand, is context
dependent like a trap; the desired action is a function
of the routine which is running when the signal 2~rrives.
Thus an iterntive root-finder may interpret a quit as
an indication that the solution is accurate enough,
but the debugging system under which it may be run-

ning will curtail its printing when it sees a quit and
await a new command. This' analysis suggests a simple
implementation: convert the quit into a trap from the
currently executing domain. Each interrupt, then, will
give rise to a call or a trap, depending on its type as
declared by the programmer.

Even when we see how to convert them into oper­
ations within the process, interrupts still pres.eut one
serious problem which does not arise in the handling
of traps. This is the fact that a program occasionally
needs to be allowed to compute for a while without
losing control. Usually this happens when modifi­
cations are being made to a data base; if a quit signal
should appear or a timer run out halfway through this
operation, the data is left in a peculiar state. The
obvious solution is to allow a process to become non­
interruptible for a limited period of time. The function
of the limit is to prevent the process from getting into
a state from which it cannot be retrieved; exceeding
it is a programming error and always causes the process
to become interruptible again and an error trap to
occur, regardless of whether an interrupt is actually
pending. The limit is properly measured in real time,
since its primary purpose is to put a bound on the
frustration of the user at his console.

N on-interruptibility is a process-wide condition. It
must be possible, however, for a newly -called domain
to extend the limit exactly once, so that it can function
properly even though its caller is about to exceed his
limit. The limit is thus part of a call stack entry. When
a return occurs, the old limit comes back into force,
and an immediate trap may occur if it has been ex­
ceeded.

Table I summarizes the operations connected with
transfers of control between domains.

TABLE I-Operations for transfers

Operation

Call
Return
Jump
Jump-return
Trap
Trap-return

Proprietary programs

Arguments

Gate, Parameters
Parameters
Gate, Parameters
Depth, Parameters
Trap number
Trap number

The remainder of this paper deals with the pro­
tection problems introduced when objects are allowed

Dynamic Protection Structures 35

to have external, mnemonic names. The examples in
this section are intended to introduce this subject, and
are also of interest in their own right. Suppose then
that a user U has a program executing in domain P
and wishes to perform a circuit analysis. P has gener­
ated the input data for the analysis, and intends to
use the results for further calculation. Within the
system M on which P is running, some user V has
written a suitable analysis program A which he has
offered for sale, and U has decided to use V's prog.ram.
I t happens that U and V are competitors.

Both users in this situation have selfish interests
to protect. First, and most obvious, V does not want
his program stolen. He therefore insists that while it
is executing U must not be allowed to read it. Equally
important, however, is the fact that U does not want
V's program to be able to read the calling program P
and its data; although U may not be trying to market
P, it, and especially its data, contain valuable infor­
mation about U's current development work which
must be kept from competitors. The relationship
between U and V, and between their programs P and A,
is therefore one of mutual suspicion. Each is willing
to entrust the other with just enough information
to allow the circuit analysis to be completed, and no
more. The system must support this requirement if it
is to be a suitable vehicle for selling programs.

Furthermore, cale must be taken beyond the pro­
grams. While P is running it needs the ability to ac­
cess U's files by name, to read input data and record
results. This privilege must certainly not be extended
to A, since it can learn even more about U's secrets
by examining his files than by looking at his program,
not to mention the possibility of modifying them. On
the other hand, A may need access to V's files to obtain
data for the analysis and to collect statistics and ac­
counting information; this access must not be available
to p,. The. protection mechanisms must therefore pro­
vide for isolating P and A at the level of file naming as
well as on the lower levels which have been the subject
of this paper so far.

What is required then is a system facility something
like this. V establishes A as a proprietary program,
specifying the file on which it resides. Another user's
program P may then ask the system to attach this
file. To do this, the system creates a new domain A,
installs the program in it, provides it with some storage,
and returns to P a gate into A. When P wants to call
A, he uses the gate and passes whatever parameters
he thinks are needed for Ato function.. When A is
finished, he retmns. The protection mechanisms we

36 Fall Joint Computer Conference, 1969

have been discussing prevent undesired interference
between P and A. Safeguards for the files are discussed
below.

The example abcwe is one of a great variety of similar
situations. The system itself creates many of them. A
LOGOUT command, for example, requires special ac­
cess to accounting files and to capabilities for destroying
a process, but it would be nice to call it with the
standard command processor. Similarly, driving a
special peripheral like a printer requires special capa­
bilities. If a company maintains a large data base, it
may wish to give different classes of users access to
different parts of it by allowing them to call different
accessing programs. These and many other applications
fall within the general outline established by our pro­
prietary program example. We now proceed to consider
how to handle the file naming problems it presents.

External names

Table II lists the goals of a naming system for objects,
and indicates some of the distinctions between the
use of capabilities in names which have been discussed
in previous sections, and the use of external names,
which are strings of characters such as 'FILEl' or
'CIRCUIT'. In summary, it says, that capabilities are
very convenient for use by a program, since they are
cheap and self-validating. On the other hand, they are
very bad for people, since they cannot be typed in or
remembered. Names for people ~hould also have the
property that the same name can :refer to many differ­
ent objects, the distinctions to be made by context.
Thus, Smith's file 'ALPHA' is not the same as Jones'
'ALPHA'.

TABLE 11- Goals of a naming system for objects

Goal
Achieved by
Capabilities

N ames are mnemonic
N ames can be relative

to other names
N ames can be used exter­

nally
Possession of name X

authorizes access
N ames are cheap X

to use
N ames can be ma- X

nipulated by programs

Achieved by
external names

X
X

X

X

Techniques for achieving all these goals are well
known. They depend on the introduction of a new kind
of object called a directory, which consists of pairs:
< external name, capability>, and an operation of
opening an object by supplying the name to obtain
the capability. Since the external name is interpreted
relative to a directory, there is a suitable basis for
establishing the context of a name. A tree-structured
naming system is implicit in the scheme, because
directories are themselves objects accessed by capa­
bilities. It is now easy to see how a program in 2~ domain
D accesses the objects belonging to owner U. 'When D
is created, it is supplied with a capability for TJ's
directory, which it simply exercises.

There is more controversy over the proper methods
of accessing objects belonging to other users. A popular
approach is to use passwords: a public read-only
directory is filled with capabilities for all other directo­
ries which allow the objects in them to be accessed
provided a correct password (usually different for each
object) is supplied as part of the opening operation.
This method is not satisfactory. First, it is inconvenient,
since it requires the person accessing the fillS to re­
member the password. Second, it is insecure. If he
writes the password down, or includes it in a program,
the possibility increases that it will become known. It
is bad enough to have to use a password tOo obtain
entry to the system, but at least only one password is
involved, it is used only once per session, and it can
be changed, if need be after each session, without too
much fuss. None of these things is true of passwords
attached to files: there are many of them, many people
need to know them, and one must be used each time
a file is opened. This scheme has no advantage except
economy of implementation.

A method based entirely on capabilities suffers only
one of these drawbacks: it is inconvenient, but secure.
It is also, however, quite complex. The idea is that if
a file (or anything else) is to be shared, a capability
for it should be passed from its owner to those who
wish to share it. The problem is that a capability,
being a protected object, must be passed through pro­
tected channels; it cannot be sent in a letter, even a
registered letter. The solution is illustrated in Figure
7. Every user has (at least) two directories, a private
one which he works with, and a transfer directory. The
public directory PUB, for which every user has a read
capability, contains write capabilities for all the trans··
fer directories. The object is to move the capability
for X from PDA to PDB. Proceed as follows:

PUB:
Name Ac_c~~~_ va!.ue..

A W TOA

B W TOB

public directory, con­
taining a write-only
capability for the
transfer directory
of each user.

* '" temporary capa­
bility for
copying

** .. final copied
capability

-.. .. path for copying

Name Access Value

mAl A '. L . ..J .,J.y
R PUB

RW TDA

• OBJ D W TOB *

ser A's priv!te directory

8
u

c:: 1_. -- -:-1-- ~ _~l-o~:
user B' s transfer directory

C Rr-:~ l
~ OBJ **

user B' s private directory

Figure 7-Sharing capabilities without aecess keys

A moves a capability for TDB into PDA
Using it, A moves his capability for X to TDB
B moves the capability for X from TDB to PDB

Since only B can access TDB, security is preserved. A
malicious user can confuse things by writing random
capabilities into the TDs, but it is easy for B to check
that he has gotten the right thing. Furthermore, if X
is a directory, future communication can be carried
out quite conveniently, since A and B can then com­
municate through X without any worries about out­
side interference.

A much better method is based on the simple idea
of attaching to a directory entry a list of the users
who are allowed to access it; with each user we can
also specify options, so that Rosenkrantz may be
granted write access to the file while Guildenstern can
only read it. This scheme, which was first used in
CTSS/ has two drawbacks. The first is that if the list
of users who are authorized to access a file is long, it
takes a lot of space to store it; this problem is espe~ially
annoying if there are several files to be accessed by the
same group of users. The second drawback is that there
is no provision for giving different kinds of access to
different domains of a computation. Both difficulties
can be overcome in a rather straightforward manner.

Before we pursue this point, it is important to notice
-why the difficulty encountered above in the capability­
passing scheme does not arise here. We can think of
the computation of a logged-in user as possessing a
special kind of capability which identifies it as be­
longing to him. If SMITH is the user, we will refer to
thiA capability as SMITH*, meaning that the string

Dynamic Protection Structures 37

SMITH*

Capabilities for
SMITH's computa­
tion before opening
the file.

I--::.:AL=P:..:.HA::.:...a.I~R~~ ~- - ~ ... "

S~11TH*

Capabil1ties for
SMITH's computa­
tion after opening
the file.

.-

I

I

I

I

I
I

I
I

I

I

I
I

I

I

Figure 8--Use of access keys

JONES' directory

'SNIITH' has been enclosed in a tamper-proof box.
When JONES wishes to give SMITH access to his
file ALPHA, he puts the name SMITH on the access
list; JONES can do this since he has a capability for
ALPHA. When a computation presents the capability
SMITH*, ~the system observes that the string (or user
number) which is the contents of the capability matches
the string on the ac~ess list and grants the access.
At no time is it necessary for JONES to have SMITH*
in his possession. He needs only the name SMITH
which, since it is not a protected object, can be com­
municated to him by shouting across the room. Figure
8 illustrates.

To generalize the method we need two ideas. One
is that of an access key. This is an object (i.e., it can
be referenced only by using a c.apability) which con­
sists simply of a bit string of modest length, long
enough that the number of different access keys is
larger than the number of microseconds the system
will be in existence. Any user may ask the system for a
new access key; the system will create one never seen
before and return a capability for it. The object SMITH*

38 Fall Joint CoIllJ)uter Conference, 1969

mentioned in the last paragraph is an example of an
access key; one is kept for each user in the system.
Since an access key is an object, capabilities for it
appear in the directories and are protected exactly as
is done for any other object (since the access key is a
small object, it may be convenient for the imple­
mentation not to give it any existence independently
of the capabilities for it, i.e., to make the value of the
capability the object itself, rather than a pointer to
it as in the case of files). To give a group of users access
to some files, all we have to do is distribute a new
access key GROUP* to the users and put GROUP
on the access list for each file. The distribution is
accomplished by creating GROUP* and putting all
the users on its access list; once they have copied it
into their directories they can be removed from the
access list, so that no space need be wasted. In practice,
as we have pointed out, numbers of perhaps 64 bits
would be used instead of strings like 'GROUP'.

The second idea is not new at all. It consists of the
observation that since an access key is just an object,
different domains can have different access keys and
hence different kinds of access to the file system. Thus,
for example, a user's computation may be started with
two domains, one for his program with his name as
access key, and the other for system accounting with
an access key which allows it to write into the billing
files. With a single suitable access: key, a domain can
easily get hold of an arbitrarily large collection of
othAl' objects which are protected by other keys, since

the first key can be used to obtain other keys from the
directory system.

SUMMARY

We have described a very general scheme for dis­
trlbuting access to objects among the various parts of
a computation in an extremely specific and flexible
way. The scheme allows two domains to work together
with any degree of intimacy, from complete 1~rust to
bitter mutual suspicion. I t also allows a domain to
exercise firm control over everything created by it or
its subsidiaries. .

REFERENCES

P A CRISMAN editor
The compatible time-sharing system: A. programmer's guide
MIT Press 2nd ed Cambridge Mass 1 965

2 J P DENNIS
Segmentation and the design of mu,lti-programmed computer
systems
.J ACM Vol 12 Oct 1965 589

3 J B DENNIS E C VAN HORN
Programming semantics Jor multiprogrammed compuuuion
CACM Vol 8 No 3 March 1966 143

4 R M GRAHAM
Protection in an information proce8sing utility
CACM VollI No 5 May 1968 368

5 B W LAMPSON
A scheduling philosophy for multi-proce8.<;iny 8ystems
CACM VollI No 5 May 1968347

6 B W LAMPSON et al
A user machine in a time-sharing system
Proc IEEE Vol 54 No 12 Dec 1966

The ADEPT-50 time-sharing system

by R. R. LINDE and C. WEISSMAN

System Development Corporation
Santa Monica, California

and

C. E. FOX
King Resources Company
Los Angeles, California

INTRODUCTION

In the past decade, many computer systems intenderl
for operational use by large military and govern­
mental organizations have been "custom made" to
meet the needs of the particular operational situation
for which they were intended. In recent years, how­
ever, there has been a growing realization that this
design approach is not the best method for long term
system development. Rather, the development of
general purpose systems has been promoted that
provide a broad, general base on which to configure
new systems. The concepts of time-sharing and gen­
eral-purpose data management have been under de­
velopment for several years, particular.ly in university
or research settings.1 ,2,3 These methods of computer
usage have been tested, evaluated, and refined to
the point where today they are ready to be exploited
by a broad user community.

Work on the Advanced Development Prototype
(ADP) contract was begun in January 1967 for the
purpose of demonstrating-in an operational envi­
ronment-the potential of automatic information­
handling made possible by recent advances in com­
puter technology, particularly advances in time­
sharing executives and general-purpose data manage­
ment techniques. The result of this work is a large­
scale, multi-purpose system known as ADEPT, which

operates on IBM system 360 computers. *
The entire ADEPT system is now being used at

four field installations in the Washington, D. C. area,
as well as at SDC in Santa Monica. The system was
installed at the National Military Command System
Support Center in May 1968, at the Air Force Com­
mand Post in August 1968, and at two other govern­
ment agenc;es in January 1969. These four field sites
collectively run ADEPT from 80 to 100 hours per
week providing a total of some 2000 terminal hours , .
of time-sharing service monthly to theIr users.

The ADEPT system consists of three major com­
ponents: a time-sharing executive; a data manage­
ment system adapted from SDC's Time-Shared Data
Management System (TDMS) described by Bleier,4
and a programmer's package. This p~per deals .ex­
clusively with the ADEPT Time-SharIng Executr~re,
and particularly with the more novel asp~~ts of Its
architecture and construction. Before examInIng these
aspects it will be instructive if we review the basic
design and hardware configuration of the system.

A general purpose operating system

The ADEPT executive is a general-purpose time-

* Development of ADEPT was supported in part by the Ad­
vanced Research Projects Agency of the Department of Defense.

39

40 Fall Joint Computer Conference, 1969

sharing system. The system operates on a 360 Model
50 with approximately 260,000 bytes of core memory,
4 million bytes of drum memory, and over 250 million
bytes of disc memory, shown graphically in Figure
1 and schematically in the appendix. With this machine
configuration, ADEPT is designed to provide respon­
sive on-line interactive service, as well as background
service to approximately 10 concurrent user jobs. It
handles a wide variety of different, independent ap­
plication programs, and supports the use of large
random-access data files. The design-basically a
swapping system·-provides for flexibility and expan­
sion of system functions, and growth to more powerful
models in the 360 family.

ADEPT functions both as a batch processor (where­
by jobs are accumulated and fed to the CPU for opera­
tion one by one) and as an interactive, on-line system
(in which the user controls his job directly in real
time simply by typing console requests).

Viewed as a batch system, ADEPT allows jobs to
be sub"mitted to console operators or submitted from
consoles via remote batch commands (remote job
entry). In either case, jobs are "stacked" for execution
by ADEPT in a first-in/first-out order. The stack is
serviced by ADEPT as a background task, subject
to the priorities of the installation and the demands
of "foreground" interactive users.' Viewed as an inter­
active system, ADEPT allows the user to work with
a typewriter, allowing computer-user dialog in real
time. Via ADEPT console commands, the u,ser iden­
tifies himself, his programs, and his data files, and
selectively controls the sequence and extent of opera­
tion of his job in an ad lib manner. A prime advantage
of the interactive use of ADEPT is that the system
provides an extendable library of service programs
that permit the user to edit data files, compile or
assemble programs, debug and: eliminate program
errors, and generally manage large data bases in a
responsive on-line manner.

System architecture

The architecture of the ADEPT executive is that
of the "kernel and the shell". The "kernel," referred
to as the Basic Executive (BASEX), handles the
major problems of allocating and scheduling hard­
ware resources. It is small enough to be permanently
resident in low core memory, per~itting rapid response
to urgent tasks, e.g., interrupt control, memory al­
location, and input/output traffic. The "shell," re­
ferred to as the Extended Executive (EXEX), provides
the interface between the user's application program
and the "kernel". It contains those non-urgent, large-

/ CORE (26M BYTES)

lj
2303 DRUM
(3.9M BYTES)

2311 DISC PACKS
(7.25M BYTES PER PACK)

2314 DISC STORAGE
(207M BYTES)

2302 DISC STORAGE
(226M BYTES)

Figure 1-Relative capacity of various ADEPT direct-access
storage media available in less than 0.2 seconds. The initial
system that operates at SDC utilizes core, 2303 drum, ~~311 and
2314 disc packs, and 2302 disc storage. The NMCSSC system
utilizes 2314 disc storage in lieu of 2311 or 2302 discs. The archi­
tecture of the ADEPT executive is such that it permitR any
combination of the e..bove types of disc storage in varying a.mounts

task extensions of the basic "kernel" prqcesses that
are user-oriented rather than hardware-oriented;
they may, therefore, be scheduled and swapped.

The version of the ADEPT time-sharing system,
thus far developed has multiple levels of control
beyond the two-level "kernel-shell" structure--i.e.,
it can be thought of figuratively as an "onion skin".
Figure 2 shows these relationships graphically.

Beyond EXEX, "object systems" may exist as
subsystems of ADEPT (developed by the user com­
munity without modification to EXEX or BASEX.),
thus further distributing and controlling the system
resources for the object programs that form still
another level of the system. The design ideas embodied
in ADEPT parallel those of Dijkstra,o Corbato,6
and Lampson,7 but differ in techniques of implemen­
tation.

The ADEPT Basic Executive operates in the lower
quarter of memory, ther~by providing three quarters
of memory for user programs. With the current H
core configuration, ADEPT preempts the first 65,000
bytes of core memory, the bulk of which is dedicated
to BASEX; EXEX must then operate in user memory

,.,..-------
",. /' OTHER FUNCTIONS "

/ ,
/ ,

/ \
/ \

I \
I \
, I
, I
\ I
\ I
\ II

\ / , /

" / " ./"
"'"'-----,.,."

Figure 2-Multiple levels of control in ADEPT

in a fashion similar to user programs. ADEPT is
designed to operate itself and user programs as a
collection of 4096-byte pages. BASEX is identified
as certain pages that are fixed in main storage and
that cannot be overlayed or swapped. EXEX and
other programs are identified as sets of pages· that
move dynamically between main storage and swap
storage (i.e., drum). It is necessary to maintain con­
siderably more descriptive information about these
swapp able programs than about BASEX. This
descriptive information is carried in a set of system
tables that, at any point in time, describe the current
state of the system and each program.

ADEPT views the 'User as a job consisting of some
number of programs (up to four for the 360/50H
configuration) that were loaded at the user's reouest.
These programs may be independent of one another
or, with proper design, different segments of a larger
task. Implicitly, EXEX is considered to be one of
these programs. To simplify system scheduling, com­
munication, and control, only one program in the
user's set may be active (eligible to run) at a time.
When ADEPT scheduling determines that a job may
be serviced, the current job in core is saved on swap
storage, and the active program of the next job is
brought into core from swap storage and f'xecuted
for a maximum period of time, called a quantum. The
process then repeats for other jobs. Figures 3 and 4
schematically depict these relationships.

The AD!E:PT-50 Time-Sharing System 41

....

Figure 3-Simple commutation of users programs. This figure
illustrates the relationship between user's programs' EXEX
and BASEX. Each spoke represents a user's job, with his EXEX
providing the interface between BASEX and the hardware
resources. The maximum number of interactive job the

IBM 360j50H configuration is ten.

Figure 4-ADEPT's basic sequence of operation. This figure
shows the basic operating system cycle: idle loop is interrupted
by an external interrupt (an activity request); a program is
scheduled, swapped into core from the drum, and executed
escape from the execution phase occurs when quantum termina­
tion condition (e.g., time expiro'l.tion, service or I/O call, error
condition) is met; the program i"! then swapped out and control
is returned to the idle loop (if no other program"! are eligible to

be scheduled).

Basic executive (BASEX)

Table I lists the BASEX components and their
general functions as of the eighth and latest executive
release. These basic system components form an
integrated, non-reentrant, non-relocatable, perma-

42 Fall Joint Computer Conference, 1969

nently-resident, core memory package 16 pages long
(each page is 4096 bytes). They are invoked by hard­
ware interrupts in response to service requests by
users of terminals and their programs. Note the

. division of input/output control into cataloged (SP AM
and lOS), terminal (TWRI), and drum (BXEC)
activities to permit local optimization for improved
system performance.

TABLE I-Basic executive components

Component

ALLOC

BXBUG

BXEC

BXECSVC

EXEX

INTRUP

lOS

RECORD

SKED

SPAM

TWRI

System Tables

Function

Drum and core memory allocation.

Debugger for executive programs.

Basic sequence and swap control.

SVC handlers for WAIT, TIME,
DEVICE, STOP AND DISMISS
calls.

Linkage routines for EXEX (BASEX/
EXEX interfaces); also services com­
mands DIALOFF, DIALON.

First-level interrupt control.

Channel-program level input/output
supervisory control.

Records SVC, interrupt activity in
BASEX.
Scheduler.

Input/ output access methods to cata­
loged storage.

Terminal input/output control.

Resident system data areas for com­
municationtable (COMTAB) 1 logged­
in user's table (JOB), loaded programs
table (PQU) , drum and core status
tables (DSTAT, GSTAT), and a
variety of other tables.

Extended executive (EXEX)

Unlike the tight, closed package of integrated
BASEX components, EXEX is; a loose, open-ended
collection of semiautonomous programs. Table II
lists this collection of programs. EXEX is treated
by BASEX as a user program, with certain privileges,
and each user is given his own "'copy" of the EXEX.
I t is transparent to the user that EXEX is reentrant

TABLE II-Extended executive components

Component

AUDIT

BMON

CAT

DTD

DBUG

LOGIN

SERVIS

RUN

XXTOO

SYSDEF

SYSLOG

TEST

SYSDATA

Function

Maintains a real-time recording of all
security transactions as an account­
ability log.

Batch monitor for control of back­
ground job execution.

Cataloger for file storage access con­
trol; also services FORGET command.

Transfers recording information from
drum to disc.

Debugger for non-executive (user)
programs.

User authentication and job creation.

Library of service commands 'Ghat are
reentrant, interruptible and scheduled:
APPEND, CHANGE, CREATE,
CYLS, DELETE, DRIVES;I INIT,
LISTF, LISTU, LOAD, LOADD,
LOAD and GO, OVERLAY, RE­
PLACE, RESTORE, RESTORED,
SAVE, SEARCH, VAItYOFF,
VARYON.

Remote batch job submission control
servicing commands RUN and

\ OANCEL.

Library of small, fast, executive
service commands: CPU, BGO,
BQUIT, BSTOP, DIAL, DRUMS,
GO, LOGOUT, QUIT, R~BTART,
SKED, SKEDOFF, STATUS,
STOP, TIME; USERS.

Defines input/output hardwa.re con­
figuration at time of system start up.

Defines authorized user/terminal se­
curity profiles at time of system
start up.

Initializes system tables at time of
system start up.

Non-resident, shared, system data
table for dial messages and other
common data, e.g., lists of all logged-in
users; other non-resident, job-specific
tables also exist, e.g., job environment
pagel push-down list data page.

and is being shared with other users, except for its
data space. Each job has its own "machine state"
tables saved in its unique set of environment pages.
This structure permits flexible modification and orderly
system expansion in a modular fashion. EXEX is
always scheduled in the same way as other user pro­
grams.

Though EXEX components are, in large part,
non-self-modifying reentrant routines and thus, could
at sm!1ll cost, be relocatable; neither user programs
nor EXEX components are relocated between swaps.
The lack of any mapping hardware on the IBM 360/50
and the design goal and knowledge that most user
programs would be of maximum size made unnecessary
a software provision to relocate programs dynamically.
User programs may be relocated once at load time.
however.

Communication and control techniques used in ADEPT

Communication is the generic term used to cover those
services that permit two (or more) programs to inter­
communicate, be they system program, user program,
or both. From this communication vantage point we
shall examine the connective mechanism used between
the Basic and Extended Executives; the techniques
that allow components within the EX EX to make
use of one another; and the system design that permits
an object program to control its own behavior as well
as to communicate with the system and with other
object programs.

The ADEPT job or process

Before we discuss the system mechanics, let us
examine how the system treats each user logically.
A user in the system is assigned a job number. Each
job in the system may be viewed as a separate process,
and each process is, by definition, independent of all
other processes running on the machine. A process­
or job- is not a program. It is the logical entity for
the execution of a program on the physical processor,
and it may contain as many as four separate programs.
A program consists of the set of machine instructions
swapped into the processor for execution, and the
Extended Executive is one of these programs.

The ADEPT executive requires a large number of
system tables to permit Basic and Extended Execu­
tive communication. Conceptually, the use of descrip­
tive tables defining the condition of a user's process
is analogous to the state vector (or state word) dis­
cussed by Lampson and Saltzer.8•9 That is, the col­
lection of information contained by these tables is

The ADEPT-50 Time-Sharing System 43

sufficient to define an inactive user's process state
at any given moment. By resetting the central proc­
essor from the state vector, a user's job proceeds
from an inactive to an active state as if no interrup­
tion had occurred. The state vector contains such
items as the program counter, the processor's general
registers, the core and drum map of all the programs
in the job, and the peripheral storage file data. All
of the collective data for each program or task in the
process are contained in the state vector.

Basic and extended executive communication

Each ADEPT user (i.e., any person who initiates
some activity within the system by typing in com­
mands) is given a job number and assigned an entry
in the JOB table. The JOB table contains the system's
top-level bookkeeping on user activity. I t contains
the user's identification, his location, his security
clearance, and a pointer to his program queue. Each
user is assigned one entry, or JOB, in the table. As­
sociated with each JOB are the one or more programs
that the user is running.

Top-level bookkeeping on programs is contained
in the Program Queue (PQU) table. Each PQU entry
contains a program identification and some (but not
all) information that describes that program in terms
of its space requirements, its current activity, its
scheduling conditions, and its relationship to other
programs in the PQO that belong to the same JOB.
The detailed descriptive information and the status
of each JOB and its programs are carried in the swap­
pable environment space.

The environment pages (there can be as many as
four) comprise a number of separate tables that con­
tain such information as the contents of the general
registers, the swap storage page numbers where the
balance of the program resides, the program map,
and lists of all active data files. A single environment
page (or pages) is shared by all programs that belong
to the same JOB (user). The system design allows for
environment page overflow at which time additional
pages are assigned dynamically. The environment
pages, PQU table, JOB table, and data pages com­
prise the state vector of the user's job.

To permit storage of "global" system variables,
and to allow system components to reference system
data that may be periodically relocated, there exists
a system communication table, which resides in low
core so that it can be referenced without loading a
base register.

The IBM 360 supervisor call (SVC) is used exclu-

44 Fall Joint Computer Conference, 1969

sively by EXEX components and object programs to
request BASEX services. Though additional overhead
is incurred in the handling of the attendant interrupt,
the centralization of context switching provided is
of considerable value in. system design, fabrication,
and checkout.

Extended executive communication

An EXEX may make use of another EXEX fUIlc­
tion by use of the sve call m~chanism. To support
the recursive EXEX, an additional sve processing
routine is required to manage the different recursive
contexts. This routine, called the sve Dispatcher,
processes calls from user and EXEX functions alike,
manages a swappable data page, and switches to an
interface linkage routine. The· data page contains
a system communication stack that consists of a
program's general registers and the Program Status
Word at the time of the sve. This technique is
analogous to the push-down logic of recursive pro­
cedure calls found in ALGOL or LISP language
systems. The stack provides a convenient means of
passing parameters between routines in the EXEX.
Since each job has its own unique data page and en­
vironment page, EXEX is both recursive and reentrant.

The environment status table (ESTAT) contains
the swap and core location for each component in
the EXEX and for each program in the job. It resides
in the job environment page. When an EX EX service
is requested, only that particular EXEX program is
brought in from swap storage,: rather than the full
service library. The interface linkage routine provides
this management function; it lies as a link between
the sve Dispatcher and the particular EXEX
function. The interface routine picks up necessary
work pages for the EXEX component involved and
branches to that component aner it is brought into
core. The interface routine maintains a separate push­
down stack of return addresses: providing the means
for the EXEX component to properly exit and return
control to its interface routine and then to the system.

The EXEX component called; may make additional
EXEX sve calls before exiting. To provide correct
work page allocation during recursive calls, the inter­
face routine also saves the work page core and drum
page addresses in the push-down stack. Upon com­
pletion of a call, the EXEX component returns to
its interface routine; the interface routine releases
all allocated work pages to the system and branches
to a common unwind procedure.

The unwind procedure, like the sve Dispatcher,
is simply a switching mechanism. It determines, via

the stack, whether to return to a still higher level
EXEX function, or to turn the EXEX off and exit
to the Basic Sequence. This recursive/reentrant con­
trol is the most complex portion of ADEPT and is
the "glue" that binds BASEX and EXEX together.
Figure.5 illustrates the recursive process.

Object program communication

One of the more stringent services required of an
operating system is the rapid interchange of large
quantities of data between object programs. The
interchange of even simple arrays, matrices, and tables
via stack parameters or a common fil~ suffers from the
inadequacy of limited capacity or extensive I/O time.
Many operating systems ignore this requirement,
thereby restricting the general-purpose appllications.
Yet there are solutions to this problem, and one suc­
cessful technique employed in the ADEPT system is
that of "shared memory". Shared memory is achieved
by using the basic mechanism for managing reentrancy,
namely the program environment page map. Through
the ADEPT SHARE Page call, an object program
can request that designated pages of another program

SVC
DISPATCHER
STACKS
EXEX
COMPONENT'S
GENERAL
REGISTERS

DATA PAGE PUSH
DOWN STACK.

NUMBER OF ENTRI ES

EX EX
"A" COMPONEN·r

REGISTER~

EX EX
"B" COMPONENl

REGISTERS

Figure 5-Block diagram of EXEX behavior g,nd
control

UNWIND
DECREMENTS
STACK

0)

in the job be added to its map. If core page numbers
are passed as parameters in various service calls, whole
pages of data may be passed between programs. EXEX
and many object programs operating under this system
use this method for inter-program communication.

ADEPT operating on the IBM 360/.50H restricts
its user programs to 46 active core pages. However,
by utilizing the GETPAGE call, an object program
may acquire up to 128 drum pages and may subse­
quently activate and deactivate various page sets
by utilizing another service call, ACTDEACT (acti­
vate/ deactivate). This scheme permits bulk data from
disc storage to be placed on drum and operated upon
at "swap" speeds. Thus skilled system users can
achieve efficient use of time and memory by managing
their own "paging". We consider this the best alterna­
tive considering the questionable state of other, auto­
matic paging algorithms.1O ,1l,12,13 Most EXEX com­
ponents use these calls for just such purposes. For
example, the interface routines mentioned above use
activate calls to "turn on" called components of the
EXEX.

The Allocator component of ADEPT manages the
page map for each program. This software map re­
flects the correspondence between drum and core
pages, established initially by the SERVIS (service)
component at load time. The Allocator's function is
to inventory available core and drum pages by main­
taining two resident system tables: one for core, the
other for drum. Whenever drum pages are released .
or obtained, the Allocator updates the page map in
the job's environment page. The Allocator processes
the SHARE (page), GETPAGE, FREEPAGE, and
ACTDEACT calls from EXEX and object programs.
SERVIS allows a program at run time to add data
pages or to overlay program segments from disc or
tape. In so doing, SERVIS makes use of the various
Allocator calls.

Simulating console commands

An importan.t attribute of ADEPT time-sharing
is that nearly all the functions and services that can
be initiated at the user's console can also be called
forth within a user's program. A program designer
can, for example, build a system of programs, which
can operate in batch mode under the control of a pro­
gram by issuing internal commands in much the same
manner as the user sitting at the console .. With this
approach, the ADEPT batch monitor controls back­
ground tasks by simulating user terminal requests.
Ba.tch requests can be enqueued by users from any

The ADEPT-50 Time-Sharing System 45

console and then processed in turn. by this supervisor
function.

Armed interrupts and rescue function

The basic design of ADEPT conveniently provides
for prooessing object program "armed" interrupt
calls. This means that an obje-ct program is able to
conditionally start (wakeup) and stop (sleep) the
execution of its own programs, and others as well.
The conditions for ~mploying wakeup calls include
too much elapsed time, or the occurrence of unpre­
dictable but anticipated events, e g., errors and other
program calls. In "arming" these "software-inter­
rupt" conditions by object program calls, the program
entry point(s) for the various conditions are specified.
When such conditions occur, the operating system
transfers to the specified entry' point and gives the
appropriate condition code. (Note that if we take this
call one step further, and permit one object program
to arm the software and hardware interrupts of another
object program, we have the basic control mechanism
necessary to permit the operation of "object systems.
necessary to permit the operation of "object systems,"
i.e., subexecutives-another level in the "onion skin"
of ADEPT control.)

User programs interface with the ADEPT system
primarily via the supervisor call (SVC)· instruction;
a secondary interface is provided via the program
check interrupt that protects the program and system
after various error conditions. The executive design
allows user programs to trap all such interfaces with
the system via its rescue arming mechanism. This
means that one program can trap and get first-level
control of all occurrences of SVC's and program checks
within a single job. This mechanism also means, then,
that the responsibility and meaning for these inter­
faces can be redefined at the user program level.

As of this writing, this mechanism is being employed
to eonstruct object systems for an improved batch
monitor, an interface for the proposed ARPA Net­
work,14 and to experiment with automatic translators
for compatibility with other operating systems. Other
uses include improvements in program recovery in
a variety of user tools, e.g., compiler diagnostics.

Resource allocation, access, and management

ADEPT system design, of course, includes a com­
plete set of resource controls that monitor secondary
storage devices.

46 Fall Joint Computer Conference, 1969

The cataloger

The Cataloger, an EXEX component, is functionally
analogous to the core/drum Allocator, but is used
for devices accessible by user programs. It maintains
an inventory of all assignable storage devices, assigns
unused storage on the devices,· maintains descrip­
tions of the files placed on these devices, controls
access to these files, and-upon authorized request­
deletes any file. Specifically, the Cataloger:

• Assigns storage on 2302, 2311 and 2314 discs.

• Assigns tape drives.

• Locates an inventoried file by its name and cer­
tain qualifiers that uniquely identify the file.

• Issues tape or disc pack mounting instructions
to the operator when necessary.

• Verifies the mounting of labeled volumes.

• Passes descriptive information to the user pro­
gram opening a file.

• Allows the user of a file to request more storage
for the file.

• Denies unauthorized users access to files.

• Returns assigned storage to available storage
whenever a file is deleted.

• Maintains a table of contents on each disc volume.

As the largest single compon~nt of the ADEPT
Eexcutive (65,000 bytes), the Cataloger was written
in a new, experimental programming language called
MOL-360 (Machine-Oriented Language for the 360).16
I t is a "higher-level machine language" developed
under an ARPA-sponsored SDC research project on
metacompilers. It resolved the dilemma involving
our desire for higher-level source language and our
need to achieve flexibility with machine code. The
Cataloger design and che6kput, enhanced by the use
of MOL-360, showed simultaneously the validity
of MOL compilers for difficult machine-dependent
programming.

The SP AM component

SPAM is a BASEX component that permits sym­
bolic, user-oriented I/O. It can be viewed as a special­
purpose compiler that compiles sytnbolicuser program
I/O calls into 360 channel programs, and delivers them
to the Input/Output Supervisor (lOS) for execution
via the EXCP (execute channel program) call. The

results of EXCP for the call are "interpreted" by
SP AM and returned to the user program as status in­
formation. As such, SPAM represents a more symbolic
I/O capability than the EXCP level. It provides a
relatively simple method for executing the operations
of reading, writing, altering, searching for, ELnd po­
sitioning records within ADEPT cataloged and con­
trolled disc-based and tape-based file structures,.

Resource mana,gement

As of this writing, the computer operator has a set
of commands at his disposal that allow him to control
the system resources. Various privileged on-line com­
mands enable him to monitor the terminal activities
of system users and to control assignment and availa­
bility of storage devices. However, there is an in­
creasing need for a "manager" to be given more
latitude in dynamically controlling the system re­
sources and observing the status of system users,
particularly because ADEPT was designed to handle
sensitive information in classified government and
military facilities. To meet these objectives, a design
effort is under way that gives the computer operator
system-manager status, with the ability to observe
and control the actions of system users. The result
will be a program that encompasses some of the man­
agement techniques reported by Linde and Chaney16

tailored to present needs.

Swapping and scheduling user programs .

Most of the programs that run under ADEPT
occupy all of the core memory that is not used by
the resident Basic Executive (46 pages on the 360/
50H). If the set of needed pages could be reduced
considerable reduction in swap overhead could be
expected. One way to achieve this is to mark fo][, swap­
out only those pages that were changed during pro­
gram execution. The hardware needed to automatically
mark changed pages is unavailable for the 3:60/50;
however, through use of the store-protect feature on
the Model 50, ADEPT software can simulate the ef­
fect and produce noteworthy savings in swap time.

Page marking

Whenever a user program is swapped into ClOre, its
pages are set in a read-only condition. As the program
executes, it periodically attempts to store data (write)
in its write-protected pages. The resulting interrupt
is fielded by the system. After s~tisfying itself that
the store is legal for the program, the executive marks
the target page as "written," turns off write-protect

for that page, and resumes the program's execution.
The situation repeats for each additional page written.
At the completion of the program's time slice, the
8wapper has a map of all the program pages that
were changed (implied in the storage keys with no
write protection). Only the changed pages are swapped
out of core. Measurement of this scheme shows that
about 20 percent of t·he pages are changed; hence,
for every five pages swapped in, only one need be
swapped out, for a total swap of six pages, rather
than the full swap of ten pages (five in, five out). The
scheme makes the drum appear to be 40 percent faster.

The use of the storage protection keys is based on
the functional status of each page rather than on
some user identity. User programs always run with
a program status word key of one, and the bits in
the storage key associated with the programs start
out at zero. After a page has been initially changed,
its key is set to one also. The other bits in the key are
used to indicate: first, a page is transient, not yet
completely moved to or from swap storage; second,
a page is unavailable, i.e., it belongs to someone else;
third, a page is locked and cannot be swapped or
changed; and finally, a page is fetch-protected because
it may contain sensitive information.

Scheduling algorithm

The scheduling algorithm provides for three levels
of scheduling. Jobs that are in a "terminal I/O com­
plete" state get first preference in the schedule. Jobs
in the second level, or background queue, are run if
there are no level-one jobs to run. A job is placed in
level two when the two-second quantum clock alarm
terminates its operation two consecutive times. Com­
pute and I/O-bound programs are treated alike. A
level-two job-when allowed to run-is given quantum
interval equal to the basic quantum time multiplied
by the scheduling level (i.e., 2 sec X 2 = 4 sec).
However, a level-two background job may be pre­
empted after two seconds for terminal I/O. Anyopera­
tion a level-two job makes that terminates its quan­
tum prematurely will return the job to a level-one
status. The batch monitor job is run when the first
two queues are empty. User programs may be written
to overlap execution and I/O activity. Our choice of
scheduling parameters for quantum size, and num­
ber of service levels was selected empirically and as a
result of prior experience.17

A command SKED, which is limited to the opera­
tor's terminal, has the effect of forcing top priority
for a job (the job stays at level one all the time). Only

The ADEPT-50 Time-Sharing System 47

one job may run in this privileged scheduling state
at a time.

Pervasive security controls

Integrated throughout the ADEPT executive are
software controls for safeguarding security-sensitive
information. The conceptual framework is based
upon four "security objects": user, terminal, file,
and job. Each of these security objects is formally
identified in the system and is also described by a
security profile triplet: Authority (e.g., TOP SE­
CRET, SECRET), N eed-to-Know Franchise, and
Special Category (e.g., EYES ONLY, CRYPTO).
At system initialization time, user and terminal
security profiles are established by security officers
via the system component SYSLOG. SYSLOG also
permits the association of up to 64 passwords with
each user. At LOGIN time, a user identifies himself
by his unique name, up to 12 characters, and enters
his private password to authenticate his identity. The
LOGIN component of ADEPT validates the user
and dynamically derives the security profile for the
user's job as a complex function of the user and ter­
minal security profiles. The job security profile is
used subsequently as a set of "keys," used when access
is made to ADEPT files. The file security profile is
the "lock" and is under control of the file subsystem.

File access Need-to-Know is permitted for Private,
Semi-Private, and Public use. With the CREATE
command, a list of authorized users and the extent of
their access authorization (i.e., read-only, write-only,
read and write) can be established easily for Semi­
Private files. Newly created files are automatically
classified with the job's "high water mark" security
triplet-a cumulative security profile history of the
security of files referenced by the job. Through ju­
dicious use of the CHANGE command, these proper­
ties may be altered by the owner of the file.

Security controls are also involved in the control
of classified memory residue. Software and hardware
memory protection is extensively used. Software
memory protection is achieved by interpretive, le­
gality checking of memory bounds for I/O buffer
transfers, legality checking of device addresses for
unauthorized hardware access, and checks of other
user program attempts to seduce the operating system
into violating security controls.

The hardware protection keys are used to fetch­
protect all address space outside the user program and
data area. Also, newly allocated space to user programs
is zeroed out to avoid classified memory residue.

for that page, and resumes the program's execution.
The situation repeats for each additional page written.
At the completion of the program's time slice, the
swapper has a ma,p of all the piogram pages that
were changed (implied in the storage keys with no
write protection). Only the changed pages are swapped
out of core. Measurement of this scheme shows that
about 20 percent of the pages are changed; hence,
for every five pages swapped in, ; only one need be
swapped out, for a total swap ot six pages, rather
than the full swap of ten pages (five in, five out). The
scheme makes the drum appear to be 40 percent faster.

The use of the storage protection keys is based on
the functional status of each page rather than on
some user identity . User programs always run with
a program status word key of one, and the bits in
the storage key associated with the programs start
out at zero. After a page has been initially changed,
its key is set to one also. The other bits in the key are
used to indicate: first, a page is transient, not yet
completely moved to or from sw~p storage; second,
a page is unavailable, i.e., it belongs to someone else;
third, a· page is locked and cannot be swapped or
changed; and finally, a page is fetch-protected because
it may contain sensitive information.

Scheduling algorithm

The scheduling algorithm provides for three levels
of scheduling. Jobs that are in a "terminal I/O com­
plete" state get first preference in ,the schedule. Jobs
in the second level, or background queue, are run if
there are no level-one jobs to run. A job is placed in
level two when the two-second quantum clock alarm
terminates its operation two consecutive times. Com­
pute and I/O-bound programs are treated alike. A
level-two job-when allowed to run-is given quantum
interval equal to the basic quantum time multiplied
by the scheduling level (i.e., 2 sec X 2 = 4 sec).
However, a level-two background. job may b~ pre­
empted after two seconds for terminal I/O. Anyopera­
tion a level-two job makes that terminates its quan­
tum prematurely will return the job to a level-one
status. The batch monitor job is run when the first
two queues are empty. User programs may be written
to overlap execution and I/O activity. Our choice of
scheduling parameters for quantum size, and num­
ber of service levels was selected eritpirically and as a
result of prior exp~rience.17 . !

A command SKED, which is limIted to the opera­
tor's terminal, has the effect of f~rcing top priority
for a job (the job stays at level one all the time). Only

The ADEPT-50 Time-Sharing System 48

one job may run in this privileged scheduling state
at a time.

Pervasive. security controls

Integrated throughout the ADEPT executive are
software controls for safeguarding security-sensitive
information. The conceptual framework is based
upon four "security objects": user, terminal, file,
and job. Each of these security objects is formally
identified in the system and is also described by a
security profile triplet: Authority (e.g., TOP SE­
CRET, SECRET), Need-to-Know Franchise, and
Special Category (e.g., EYES ONLY, CRYPTO).
At system initialization time, user and terminal
security profiles are established by security officers
via the system component SYSLOG. SYSLOG also
permits the association of up to 64 passwords with
each user. At LOGIN time, a user identifies himself
by his unique name, up to 12 characters, and enters
his private password to authenticate his identity. The
LOGIN component of ADEPT validates the user
and dynamically derives the security profile for the
user's job as a complex function of the user and ter­
minal security profiles. The job security profile is
used subsequently as a set of "keys," used when access
is made to ADEPT files. The file security profile is
the "lock" and is under control of the file subsystem.

File access N eed-to-Know is permitted for Private,
Semi-Private, and Public use. With the CREATE
command, a list of authorized users and the extent of
their access authorization (i.e., read-only, write-only,
read and write) can be established easily for Semi·,
Private files. Newly created files are automa1jcally
classified with the job's "high water mark" security
triplet-a cumulative security profile history of the
security of files referenced by the job. Through ju­
dicious use of the CHANGE command, these proper­
ties may be altered by the owner of the file.

Security cdntrols are also involved in the control
of classified memory residue. Software and hardware
memory protection is extensively used. Software
memory protection is achieved by interpretive, le­
gality checking of memory bounds for I/O buffer
transfers, legality checking of device addresses for
unauthorized hardware access, and checks of other
user. program attempts to seduce the operating system
into violating security controls.

The hardware protection keys are used to fetch­
protect all address space outside the user program and
data area. Also, newly allocated space to user prog;rams
is zeroed out to avoid classified memory re:3idue.

Typically, the complete system reaches "on the air"
status in less than a minute.

System instrumentation

Many of the parameters built into the scheduling
and swapping of early ADEPT versions were based
upon empirical knowledge. The latest versions of
the' Basic and Extended Executives include routines
to record system performance, reliability, and security
locks.

Built into the BASEX is a routine to measure the
overall and the detailed system performance.20 Such
factors as the number of users, file usage, hardware
and software errors, and page transaction response
time are recorded on unused portions of the 2303
drum. These measurements provide a better under­
standing of the system under a variety of inputs and
give the designers insight into how the hardware and
software components of the system affect the per­
formance of the human user.

An AUDIT program was made part of the EXEX
to record the security interaction of terminals, users,
and files., AUDIT records EXEX activity in the areas
of LOGIN, LOGOUT, and File Manipulation. This
routine strengthens the security safeguards of the
executive. Specific items that are recorded involve:
type of event, user identification, user account num­
ber, job security, device identification, time of event,
file identification1 file security and event success. In
addition, this routine provides accounting informa­
tion and is used as a means of debugging the security
locks of new system releases.

In addition to the BASEX recording function,
several object programs have been written that simu­
late various modes of user activity and provide con­
trolled job distributions. These programs, called
"benchmarks," run under controlled conditions and
enhance the means of improving system performance
and throughput, as described elsewhere by Karush.21
The programs are designed to gather performance
measures on the major routines of the executive and
have been of considerable help in system "tuning,"
because they renect the effect of coding and design
changes to various system routines. The routines in
the executive that are of primary concern are the
swapper, the scheduer ,the terminal read/write pack ..
age, and the interrupt handling processes. Attempts
are being made to design a set of benchmarks that
represent a typical job mix. However, we are primarily
interested in measuring the performance of our system
against various modifications of itself and in measuring
its behavior with respect to different job mixes.

The ADEPT-50 Time-Sharing System 49

SUMMARY

The ADEPT executive is a second-generation, general­
purpose, time-sharing system designed for IBM 360
computers .. Unlike the monolithic systems of the past,l,2
it is structured in modular fashion, employing distrib­
uted executive design technIques that have permitted
evolutionary development. This design has not only
produced a flexible executive system but has given the
user the same facilities used by the executive for
controlling the behavior of his programs. ADEPT's
security aspects are unique in the industry, and the
testing and fabrication methods employ a number
of novel approaches to system checkout that con­
tribute to its operational reliapility.

It is important to note that this system deals par­
ticularly well, with size limitation problems of very
large files and very large programs. The provisions
made for multiple programs per job, active/inactive
page status for programs larger than core size, page
sharing between programs, common file access across
programs within jobs, and the commitment of con­
siderable space to active fil~ environment tables (up
to four pages worth) contribute to this success. Never­
theless, all these capabilities are designed to handle
the smaller entities as well. We feel ADEPT-50 is
a significant contribution to the technology of general­
purpose time-sharing.

ACKNOWLEDGMENTS

We would like to express our appreciation for the
dedicated efforts of some very adept individuals who
participated in the design and building of this time­
sharing system. Our thanks go to Mr. Salvador Aranda,
Mr. Peter Baker, Mrs. Martha Bleier, Mr. Arnold
Karush, Mrs. Patricia Kribs, Mr. Reginald Martin,
Mr. Alexander Tschekaloff and all the others who
have followed their lead.

REFERENCES

1 P CRISMAN editor
The compatible time-sharing system: A programmer's guide
MIT Press Cambridge Mass 1965

2 J SCHWARTZ et al
,A general-purpose time-sharing system .
Proc SJCC Vol 25 1964397-411 Spartan Books BaltImore

3:E W FRANKS
A data management system for time-shared file-processing
using a cross-index file and self-defining entries
AFIPS Proc Vol 28 196679-86 Also available as SDO
document SP-2248 21 April 1966

5(} Fall Joint Computer Conference, 1969

4 R E BLEIER
Treating hierarchical data structures in the SDC time-shared
data management system (TDMS)
Proc 22nd Nat ACM Conf Thompson Book Co 196741-49

5 E W DIJKSTRA
The structure of T.H.E. multi-programming system
C A C M Vol 11 No 5 May 1968

6 F J CORBATO V A VYSSOTSKY
Introduction and overview of the multws system
Proc FJCC Nov 30 1965 Las Vegas Nevada

7 B W LAMPSON
Time-sharing system reference manual
Working Doc Univ of Calif Doc No 30.1030
Sept 1965 Dec 1965

8 B W LAMPSON
A sch6duling philosophy for multi-processing systems
C A C M Vol 11 No 5 May 1968

9 J H SALTZER
Traffic control in a multiplexed computer system
MAC-TR-30 thesis MIT Press July 1966

10 G H FINE et al
Dynamic program behavior under paging
Proc ACM 1966223-228 Thompson Book Co Wash D C

11 E G COFFMAN L C VARIAN
Further experimental data on the behavior of programs in a
paging environment
C A C M Vol 11 No 7 July 1968471-474

12 L A BELADY
A study of replacement algorithms for d, virtual storage computer
IBM Systems Journal Vol 5 No 2 1966

13 R W O'NEIL
Experience using a time-shared multi-programing system

APPENDIX A: Advanced development prototype sys­
tem block diagram.

IWT MOOI.&I....::::===+--""
ONlY
..uJICIYTIS

"" SECOND
IACH

ClIYTEWIDI)

ADDITIONAL
DlIVES
2.8 'IOSQ

AVE ACCISS W/O
MOVING HIAD • 17 MS,
WITH MOVING HlAO 120 MS
TlANS.IIIAn
'41KIYTDi\K
CA'''',TY m .. Ivm

~y31O

\ ."SOlUTE VECTO« AND CONUOL
ALfttANUMEllC KEV'OAIO 124.5
IKIUFF£ltl499
CHARACTER GENElATOI 1680
LIGHT 'EN41B5
FUI\fClION KEVIO ... IO st55
2J8K IVTESlSfC

OVAL 'APE DRIVES
800BITS!INCH
7 9~TRJ.CK AND 1 7-TRACK
90 K eVTES:SEC TUNSFU. ~A TE
112.SIN/SEC

3." M IYTE CA'ACITY
312.5K IVTEJUC TRANSon_ lATE
•.• M SIC AVEUGE ACCESS TIM!

with dynamic address relocation hardware
Proc SJCC 1967 Vol 30 611-627 Thompson Book Go
Washington D C

14 L G ROBERTS
Multiple computer networks and intercomputer networks and
intercomputer communication
ACM Symposium on Operating System Principles
Oct 1-4 1967 Gatlinburg Tenn

15 E BOOK D C SCHORRE S J SHERMAN
Users manual for MOL-360
SCC Doc TM-3086/003/01

16 R R LINDE P E CHANEY
Operational management of time-sharing systems
Proc ACM 1966 149-159

17 P V McISSAC
Job descriptions and scheduling in the SDC Q-32 time­
sharing system
SDe Doc TM-2996 June 196628

18 C WEISSMAN
Security controls in the ADEPT-50 time-sharing system
AFIPS Proc FJCC Vol 35 1969

19 W A BERNSTEIN J T OWENS
Debugging in a time-sharing environment
AFIPS Proc FJCC Vol 33 19687-14

20 A D KARUSH
The computer system recording utility: application and
theory
SDC Doc SP-3303 Feb 1969

21 A D KARUSH
Benchmark analysis of time-sharing system
SDC Doc SP-3343 April 1969

UNIVUSAL CHAl SeT '1640
HN2 NINT 'lAIN ott"...
6/'0 LINES/INCH (.,Q) w,,9'10

4615 lUMINAL
CONTIOL TV'! I

1912TEllGlAPH

3233

TEiMlNAL CONTlOL lPO Q 20569

'EVISID 3OA""L '96'

TY,11l c. IICOGNITION

7U5T1iM'NAl
CONnOt.
IX'ANS'ON

MU)(CAlLI
ASS~V

5ni2t2

lPOQ23'6oI
IT>! 'NTlIIU"

' LL(t OATA AO""Ul
ptAYUlil1 '5.500

EX'.ANOED
CAPA,BILITY
'381'

(1) IILONGS TO CCD
DOIS NOT HAVI TY_TIC

(2) ON ONI. V ON1274'

TO REMOTE CONSOLES VIA OATA SETS (lNHEN NUOEO)

An operational memory share supervisor

providing multi-task processing within a

"single partition

byJ.E.BRAUN

Penna. -N. J. -Md. Interconnection
Philadelphia, Pa.

and

A.GARTENHAUS

Applied Programming Services, Inc
Philadelphia, Pa.

INTRODUCTION

The real-time digit"al process control system, of which
the Partition Share Supervisor is an operational feature
was designed and implemented to assist in the function~
of monitoring, evaluating and controlling an inter­
connected system of electrical power utility com­
panies. The main processing unit is located at the
central control office with teleprocessing communi­
cations to remote lower level control centers.

The basic addressable unit within the main processor
is the byte (8 data bits + 1 parity bit), with a word
consisting of four bytes. There is a storage protect
option which is implemented through assignment of
storage and "keys" to contiguous 2048 byte blocks of
memory. A group of memory blocks with matching
protect keys comprise a partition or task area. This
protection feature permits non destructive read-out
across partition boundaries but will cause termination
of any task which attempts to write in another task's
memory area.

The arithmetic-logic unit maintains its current status
in a program status word which contains such infor­
mation as whether or not I/O is currently being per­
mitted on each of the data channels, the protect key for

the instruction presently being executed, present
machine status, length of current instruction, the ad­
dress of the next in"struction to be fetched, etc. There
are certain instructions within the instruction set
which can only be executed when the machine is in
the "supervisor" state, i.e., when the portion of the
program status word which indicates machine status
is correctly set." These instructions are classified as
"privileged" instructions and perform such functions
"as disabling data channel interrupts, altering storage
keys, resetting the program status word, etc.

The ability of the computer to disallow certain of
its instructions when operating in the normal problem
program state prevents inadvertent destruction of
critical storage area or catastrophic conditions being
caused by problem programs which could lead to
system shutdown.

51

This system utilizes the indeperldent I/O channel
concept which permits the main processor to continue
execution of program instructions while the channel
transfers data from I/O devices into main storage by
cycle interleaving.

The multi-tasking capability of the manufacturer
supplied software support system permits priority

52 Fall Joint Computer Conference, 1969

scheduling of several tasks all utilizing the resources of
one processing unit. The design of the real-time control
system requires that it perform certain of its functions
in a cyclic basis. Therefore, the internal storage has been
divided into' four task areas (partitions) with time de­
pendent and critical programs placed in partitions
with relatively higher priorities. The following task de­
scriptions are listed in order of task priorities:

Task 1 (core requirement) == 42K)
\

Task 1 is dedicated to the manufacturer supplied
operating system (O/S) which contains supervisory
routines, data management routines priority scheduler,
etc.

Task 2 (Icore requirement ==72K)

Task 2 incorporates the process control family of
programs. It also includes the remote typewriter/caTd
reader communications programs since they use little
processing time and benefit from both the independence
of input/output channel operations and quick response
time available to the task. D~ring power system
emergency situations, Task 2 additionally initiates
routines which, due to their critical nature, retain
system resources and dispatch emergency communi­
cations until the disturbance is relieved.

Task 3 (core requirement == 40K)

Task 3 contains special digital console message pro­
cessing routines, text output gene*ators for programs
operational within Task 2, routines! for processing card
inputs from the telecommunications system and rou­
tines which monitor and control inter-task communi­
cations.

Task 4 (core requirement == 6K)

Task 4 is the Partition Share, Supervisor (PSS)
which causes Tasks 5 and 6 to share the remaining
available memory. The detailed description of this
task is the subject of this paper.

Task 5 (core requirement == 96K)

Task 5 consists primarily of scientific application
programs. These programs are run as required either on
special demand from real-time on~line tasks or peri­
odically with the length of the period depending on
the nature of the program.

HIGH
MEMORY
ADDRESS

LOW
MEMORY
ADDRESS

/
TASK 2

TASK 3

TASK 4

TASK 5/TASK 6

TASK I
(NUCLEUS)

.//

REAL TIME PROCESS CONTROL

TYPEWRITER/CARD READER
TELECOMMUN I CATI ONS CONTROL

ANALOG/DIGITAL TELECOMMUNICATIONS
CONTROL

EMERGENCY DISPATCH ROUT I NES

V/
DIG I TAL CONSOLE MESSAGE PROCESS I NG

OUTPUT TEXT GENERATION FOR TASK 2

REMOTE CARD I NPUT PROCESSOR

TASK-TO-TASK COMMUNICATIONS MONITORING

~::: PART I T I ON SHARE SUPERY I SOR (PSS)

(SHARED PART IT ION)

TI ME DEPENDENT AND SPEC I AL DEMAND

SC I ENT I F I C APPLI CAT! ON PROGRAMS

(TASK 5)

OR

OFFL I NE MISCELLANEOUS USES

(TASK B)

V/
OPERATING SYSTEM CONSISTING OF:

SUPERY I SORY, DATA MANAGEMENT,
PRIORITY SCHEDULER ROUTINES, ETC.

V/

Figure I-Initial memory configuration with task
functional descriptions and relative locations shown

Task 6 (core requirement == 96K)

72K

6K

961t

This task is the off-line* task and is dedicat.ed for
miscellaneous uses such as compiles, assemblies, ac­
counting routines, etc.

Figure 1 is a functional diagram of the tasks just
discussed and shows their re1ative locations in com­
puter memory.

General discussion

Task dispatching

Task dispatching is under the control of the oper­
ating system. From a copceptual standpoint, the
operating system can be considered to be the only
main program in storage and all other tasks within
the computer as subroutines.

* The term off-line is used in this paper when referring to tasks
which do not directly operate within the real-time environment.
This use is similar to the term "background" which the re9.der
may have previously encountered.

The dispatching function consists of allocating the
resources of the processor to the highest priority task
which is in the Hready" state. When no tasks are in
the ready state, the processor is not working and is in
a wait state. When any task reaches a point where it
no longer can process until the completion of some
event (such as an I/O operation), it relinquishes con­
trol of computer facilities to lower priority tasks via
the scheduler. It will regain these facilities when the
event it is awaiting is completed and there are no
higher priority tasks which are in the ready state.

Inter partition communication

The subject real-time system requires that oper­
ational tasks be able to communicate for the purpose
of exchanging information such as live data, requests
to run various subtask routines, etc. Tasks which
communicate with other tasks are equipped with inter­
task communication routines which are considered the
highest priority routines within the individual task. In
this fashion, when the task is dispatched, the internal
task priority scheme allows the communication routines
to be processed first. Furthermore, any task can be
interrupted to allow its communication routines to
operate. Thus tasks can communicate at any time
(asynchronously) .

Partition sharing

The Partition Share Supervisor (PSS) is required to
be able to handle three basic functions:

1. Suspend processing of the off -line task when
required.

2. Load and process the lowest priority on-line
task (LPOL).

3. Upon completion of (2) above, be able to restore
and restart the off-line task.

There are two conditions under which PSS suspends
off-line processing. One is when the previously set
real-time clock causes an interrupt. This interrupt is
recognized as indicating the LPOL is to be recycled
for a periodic run. The other is when a communication
is received' from another task indicating that one of the
routines within the LPOL task is to be executed.

Figure 1 shows the computer configuration in the
normal mode. Normal mode is considered to be when
the shared partition is occupied by off-line programs.
Note that there are four problem program partitions
(excluding the nucleus).

Figure 2 shows the configuration when the off-line
programs are "rolled out" and the LPOL programs
are operational. There are now three problem program

An Operational Memory Share Supervisor 53

HIGH
MEMORY
ADDRESS

/'"
TASK 2

TASK 3

TASK 4 PARTITION SHARE SUPERVISOR {PSS'

TASK 5

(LO' PR lOR I TV ON LI NE TASK)

/

/

V

7 2K

4 OK

"6

9

~

6K

COMBINED
SINGLE

TASK
AREA

(102K)

Vi'"

LO.
MEMORY
ADDRESS

TASK 1 (NUCLEUS)

V
42 K

Figure 2-Showing memory configuration when low
priority on line (LPOL) task is active

partitions and the area dedicated to the PSS and LPOL
tasks is one contiguous partition.

Detailed discussion

The following description details the operations in­
volved in reconfigurating the system from that of
Figure 1 to that of Figure 2 and returning to that of
Figure 1.

As previously stated, the PSS task is initiated for
one of two reasons:

1. Timer interrupt indicating a need to run the
LPOL task for time dependent programs.

2. External interrupt triggered by communication
from another task indicating a need to process
a requested program.

Prior to either type of interrupt, the PSS task is
in a wait state (i.e., the task cannot be dispatched
until the completion of one of the above two events).

E4 Fall Joint Computer Conference, 1969

Upon being initiated, PSS takes the following steps:

1. Places its own task in the supervisor state in
order to allow execution of privileged instructions
required to modify system control blocks in the
nucleus, override the storage protection feature,
and disable system interrupts at critical times.

2. Allows all outstanding I/O to complete in the
off-line partition (quiescing the partition).

3. Erases the boundary between the PSS task
and off-line task.

4. Deletes reference to the now non-existent off­
line task from operating system control blocks.

5. Writes a copy of the off-line partition, which is
now an extension of the memory area of the
PSS task, on a disc file.

6. ~eads the LPOL task into the vacated area.
7. Executes the LPOL task.

At this point, we have gone from the configuration
shown in Figure 1 to that of Figure 2 and the LPOL
task is now able to process its requests. Upon com­
pletion by the LPOL task of all required processing,
the following steps are taken by PSS to return to the
off-line configuration:

8. Writes the LPOL task on a disc file.
9. Reads the off-line task into the vacated area.

10. Re-establishes task boundaries erased in 3.
11. Restores system reference to the off-line task.
12. Places the PSS task in a "wait state" awaiting

an interrupt which will cause a recycle.

At thi'3 point, the off-line task is fully restored to the
system and in a "ready state". It will then be red is­
patched by the task dispatching routines on a priority
basis.

System 'control blocks

Prior to a detailed discussion of PSS mechanics, we
will discuss relevant system control blocks utilized in
effecting partition sharing.

Task Control Block (TCB)

There is a TCB associated with each task. Contained
in the TCB are various boundaries, indicators, etc.,
used in performing task controL Figure 3 shows those
fields (with references labeled as used in this paper)
which are accessed or modified by PSS.

TCB List (TCBLIST)

The TCBLIST is located in the nucleus and is a
list of TCB 10cationR in ord~r of task priority. There

FIELD C(I.ENTS

TCBTAHB PO I NTEfI TO TASK
MSS (B(JUNDARY
BOX-SEr: FIG.5)

TCBPKE CONTA HIS STORAGE
PROTECTION KEY
FOR THlt TASK

TCBIDF TASK I DIENTI F I cn I ON
NUMBER

TCBTCB PO I NTEFI TO NEXT
LOIER F'R I OR I TV
TASK T(:B

Figure 3~Task control block (TCB)

is an entry in the list for each task in the system (see
Figure4).

Task Area Boundary Block (T ABB)

There is a TABB associated with each task. The
TABB contains addresses defining the upper and lower
boundaries of the task region and also has a pointer
to the first free area label within the task. The format
of a TABB is shown in Figure 5.

Free Area Label (FAL)

There is an F AL which is an integral part of every
available free storage area in memory. An F AL is

POINTER TO TCB OF HIGHEST PRIORITY TASK
~------------------------------------~~--
POINTER TO TCB OF NEXT HIGHEST PRrORITY TASK
~--.-

•
•

•

•

POINTER TO TCB OF LOWEST PRIORITY TASK

Figure 4-TCB list (TCBLIST)

.!.,.. .. ,..

LABLE ~
FALPT POINTER TO FIRST FREE AREA

FALPT
LABEL (FAL) IITHIN TASK
AREA. (SEE FIGURE 8)

LOADDR LOADDR THE ADDRESS OF THE LOW

HIADDR
BOUNDARY OF THE TASK

HIABOR THE ADDRESS OF THE HIGH
BOUNDARY OF THE TASK.

Figure 5-Task area boundary block (TAB B)

effectively a label for each free storage area which
defines the size of it and contains a linkage pointer to
the next FAL. The format of an FAL is shown in
Figure 6.

Input/Output Request Element (lORE)

There is a chain of IOREs for all outstanding or
queued I/O operation requests from any partition.
Each lORE contains information used by the system
I/O interrupt handling routines as I/O operations are
completed. Figure 7 shows the format of an lORE.

System Vector Table (SVT)

The SVT is resident in the nucleus and contains
essential pointers required by the operating system.
Included is a pointer to the start of the lORE chain.
The location of the SVT is retrieved from a fixed memo­
ry location which is conditioned with the SVT address
during system initialization.

As mentioned under General Discussion the PSS . ' task IS required to run in supervisor state at times.
Although the state of, the PSS task changes from
problem to supervisor and back throughout its exe­
cution, these changes of state will not be noted in
this discussion. It should be understood that PSS
operates in problem state at all times where it is not
required to be executing privileged instructions modi­
fying storage in another partition or the nucieus or
disabling I/O interrupts. '

FAUXT

FALCOUIIT

FAL .. n

FALCOU .. T

PO I NTER TO NEXT FAL I N THE
CNAIN OF FAL' S ..
NOTE: IF THIS FIELD IS ALL
ZEROS, THIS IS THE LAST fAL
IN THE CHAIN.

..... T OF FREE MEIORY
AVAILAILE SURTING AT THE
IEII.I. OF THI S FAL.

Figure 6--Free area label (FAL)

An Operational Memory Share Supervi.sor 55

I 01 ESTAT STATUS INDICATOR FOR THIS
lORE. THE LAST lORE IN THE
CHAIN HAS AN lORE STAT FIELD
11TH A VALliE OF 1-

I OREI 0 FIELD SET TO SAlE I D NUMBER
AS THAT OF THE TCBIDF FI ELD
OF THE TASK IHICH INITIATED
I/O REQUEST (SEE FIGURE 3)

Figure 7-1/0 request element (lORE)

Quiescing a partition

Prior to rolling out the off-line partition, PSS must
be sure all I/O is quiesced in order to prevent the I/O
supervisor routines from accessing some storage area
which is in a transitory state.

There is an lORE for all outstanding and queued
I/O requests. Within each lORE is an identification
number field (IOREID-see Figure 7) which links it
with the initiating task. When that task is involved in
an I/O operation, the TCBIDF field of the TCB
(Figure 3) has a task identification number that will
match the 10REID field of some active lORE.

As I/O interruptions occur, the I/O Interrupt Han­
dler services the interrupt and removes the appropriate
lORE from the chain and makes it inactive.

Partition quiescing is accomplished by initially dis­
abling I/O interrupts, obtaining the TCBIDF field
from the TCB of the task involved, locating the lORE
chain by using the pointer in the SVT, and scanning
the IOREs checking for 10REID fields which match
the TCBIDF field of the TCB. If none are found, there
are no 10REs for the task and it is already in a quiescent
state. If any are found, then the task has a pending
I/O interrupt or outstanding I/O requests. If this is
the case, PSS enables interrupts allowing the I/O
Supervisor to process, if necessary, and then immediate­
ly disables them. If the I/O in question has been com­
pleted, the lORE will have been removed from the
chain during the time interrupts were enabled.

PSS restarts at the beginning of the chain and checks
again, repeating the above steps until it comes to the
end of the chain without having found any active
elements for the task. When it rea-ches this point, there
are no longer any 10REs associated with the task and
it is in fact quiescent.

It should be noted that since the PSS task has a
higher priority than the task to be quiesced, it does
not anow any new I/O requests to be initiated by that
task since PSS retains the computer resources.

Erasing of a partition boundary and
task deletion

There is control information which is received by

56 Fall Joint Computer Conference, 1969

the communications routines within the PSS task
which must be accessible to the, LPOL task for both
reading and writing (such as indications which LPOL
routine to is be run, the replacement value for the
next cycle time which is calculated by the LPOL task
as a function of its current running time, entry point
addresses of routines mutually shared by the PSS and
LPOL tasks, etc.). Additionally; task management is
greatly facilitated by extending the PSS task aroa to
include the LPOL function while controlling via the
PSS Task Control Block (TCB) rather than modifying
the off-line task TCB or creating a newone.

In order to make the shared I task area a memory
extension of the' PSS task, the memory areas must be
linked. This is achieved by modifying the TABB (see
Figure 5) of the PSS task so that the LOADDR field
points to the low address of th~ shared task. Figures
8 and 8a show the pointer relationships before and
after these TABB modifications.

The storage protection feature must now be satisfied
to make the two storage areas completely contiguous.
Since there is a mismatch in storage keys between the
PSS and shared tasks, the keys associated with each
protected block of memory within the shared task are
reset to match those of the PSS task. At this point,

1
ON LINE REAL TIME

T ASK AREAS

PSS TASK AREA

1

OPERATING
\I--l-O-AD-O-R~ S~ ~1~M

AREA
HI ADDR HI ADDR

PSSTABB OFFLINE TABB
NUCLEUS

Figure 8-TABB pointers in PS$ and offline task
prior to modification

1

$..7r:.\
7 " // "

ON LINE REAL TIME
TASK AREAS

PSS TASK AREA

I ~s~ SHARED f ' "
/ r//"- " "",

TASK AREA
If' ~ , \ \\ .. \ \ \\
I, '
, \\1 1 OPE:RATING
"--t---~)'\\ ----4 Sl'STEM

LOADDR \ \ LOADDR TASK
\' 'IREA

HIADDR HIADDR

PSSTABB OFFLINE TABB
NUCLEUS

Figure 8a-TABB pointers after modification

the two task areas have become a contiguous block of
memory assigned to the PSS task area.

Figure 9 shows how, TCBs are linked together within
the system. Note that each entry in the TCBLIST
points to a TCB and each TCB points to t.he next
lowest priority TCB in the chain. Figure 9a shows the
arrangement of the TCBLIST and the TCBTCB field
in the next-to-Iast TCB in the chain after modification
to three partitions. This has been done by replacing
the pointer to the last TCB in the TCBLIST with a
pointer to the next-to-Iast TCB, and setting TCBTCB
field of the next-to-Iast TCB to zero. These modifi-

Figure 9-Portion of nucleus showing TCBIJIST gond
TCBTCB pointer relationship prior to modification

Figure 9a-TCBLIST and TCBTCB pointers after
modification

cations have additionally made the last task non­
existent to the operating system.

Rollout jRollin

The process of rolling out the off-line task and rolling
in the LPOL task is a straightforward write/read
operation to a disc file. Since storage is divided into
2048 byte units for assignment of storage keys, the
task area read or written is some multiple of 2048
bytes in length. Thus the records are read or written
in 2048 byte blocks for purposes of simplicity and
efficiency.

Free area modification

The PSS and LPOL tasks now occupy the same task
area. It is neceRsary, therefore, to make certain modifi­
cations which will cause all requests for work storage
to be satisfied from that portion of the task area wholly
dedicated to the LPOL task. Although no task bound­
ary exists between LPOL and PSS, if work storage
were to be allocated from the PSS domain, it would
not be subsequently saved and restored in future
cycles since the PSS area is not included in the dynamic
area which is stored on the disc file.

Figures 10 and lOa show how these modifications
are accomplished. Initially (Figure 10) the FALPT field
of the PSS TABB is pointing to the free area within
what was its own task area. This is the normal condition
for this pointer when there is an operating off-line
task. However, we have modified the configuration to
three task areas and we now wish to make the only
available free area all exist in the LPOL area. Figure
lOA shows that the FALPT field of the PSS TABB
has been re-pointed to the first F AL within the LPOL
task area.

At this point, the LPOL task is ready to process

An Operational Memory Share Supervisor 57

1 ON LINE REAL TIME 1 TASK AREAS

~ PSS TASK AREA

OPERA­
t-------1 T I NG

SYSTEM
t-------1 TASK

AREA

PSS TABS (NOT BEING USED)
NUCLEUS

Figure lO--F ALPT relationship with F AL locations
prior to modification

I ,.,.,
ON LINE REAL TIME

TASK AREAS

PSS TASK AREA
.J'", FALNXT 1 FALCOUNT 1 ,'

1
'r-

------------------FORMER TASK BOUNDARY

-- VACANT TASK AREA

(
t~f:::----~--:"'-::::-~

ZERO I 9SK ~~"
..... "

FALPT FALPT OPERA-
TING
SYSTEM
TASK

.AREA

PSS TABB (NOT BEING USED)
NUCLEUS

Figure lOa-F ALPT fields after modification

58 Fall Joint Computer Confer'ence, 1969

whatever request caused it to be activated. We have
now covered steps 1 through 7, under General Dis­
cussion. In returning from the three partition to the
four partition environment, the steps are essentially
the reverse of those detailed.

Upon restoring the off -line task, PSS enters a wait
state and will be restarted as previously outlined. The
task dispatcher port.ion of O/S will restart the off-line
task as soon as there is available computer time and
no higher priority tasks require the computer resources.

Initialization

The initialization process for PSS consists of:

1. Suspending of off-line processing.
2. Reconfiguration from forir to three partitions.
3. Rolling out the off-line task.
4. Making the off-line task area one contiguous

free area.
5. Loading the LPOL task and allowing it to

ini tialize itself .
6. Rolling out the LPOL task.
7. Rolling in and restarting the off-line task.
8. Entering the normal cycle at the wait point.

Step 4 above has not been previously covered in
detail. In order to force the initial loading of LPOL into
the desired location, 'the F ALs for PSS are initially
modified. Figures 10 and lOA show the PSS TABB
before and after this is done. The F ALPT field of the
PSS TABB initially points to the first FAL within
the PSS area. The FALPT field of the LPOL TABB
points to the first FAL of its task area. By altering
the FALPT of the PSS TABB to make it point to the
LPOL first F AL and by altering the F AL by both
making it the last F AL in the chain and indicating
one large block of free memory, we have created a
large free area available to PSS for loading the LPOL
programs.

As the LPOL task acquires and releases memory
blocks for work storage, the FALs within the area
are modified by the operating system consistent with
memory availability. PSS simply saves the pointer to
the first LPOL FAL prior to each rollout and restores it
after rollin and prior to reinitiating LPOL. Continuity
of FAL linking is maintained in this fashion.

Special handling

There are occasions when the off-line partition can­
not be quiesced. This could be caused by a card reader
jam, a printer being out of paper, etc., causing an
lORE associated with the I/O to remain linked in the

chftin beyond some reasonable amount of time (pres­
ently 10 seconds). These conditions are relatively
infrequent; however, provision has been made for them
by advising the operator via the computer console
typewriter and an attention bell that the off-line task
is non-quiescent and requires attention.

The memory area actually required by PSS is less
than 6K. However, in order to initially load PSS into
memory, a large enough partition must be available to
furnish the operating system job scheduler routines
their required amount of core. This requirement is in
the order of 24K. Thus there is a pre-initialization
phase during which PSS changes the initial configur­
ation (Figure 11) of 50K and, 52K to 6K and 96K for
the PSS and off-line tasks, respectively (Figure 1).
The technique for doing this will not be detailed; hmv­
ever, the essential steps are as follows:

1. Heferring to Figure 12, the initial PSS task area
is shown iri three segments (B, C, D) and the
initial off-line task area is shown in one segment
(A). The PSS Pre-Initializer is loaded by the
operating system into area B.

72K
TASK 2 (ON LINE)

40K

TASK 3 (ON LI NE)

TASK 4 (PSS) 50K

TASK 5/6 (OFF-LINE/LPOL) 52K

TASK 1 (OPERATING SYSTEM) 42K

NUCLEUS

Figure ll--Initial task core allocations

/'"

(0)

©

®

®

TASK 2
(OK LINE)

TASK 3
(ON LINE)

PSS TASK

PRE-INITIALIZATION PROGRAM

OFF-LINE TASK AREA
(llHTlALLY)

OPERATING SYSTEM
(NUCLEUS)

/

/'

~

/'

/'

72K

40K

~ 6K

UPPE R BOUNDARY OF
PSS

TASK AREA

~---UWE R BOUNDARY OF
PSS

>- 5QK TASK AREA
AFTER

NI.TIALIZATION PRE-I

I~

"""---. I N ITIAL LOWER
BOUNDARY

OF P SS TASK AREA

52K

/'
42K

V
Figure 12

An Operational Memory Share Supervisor 59

2. In ord~r to place the PSS main program in the
area where it can control storage, it must be
forced into area D. To achieve this, the task
area boundary block is modified to make area
D free and areas Band C unavailable.

3. The PSS main program is loaded into area D.
4. The off-line boundary block is, modified to in­

clude areas Band C as free areas.
5. Control is passed to PSS main.

The configuration is now that of Figure 1.

CONCLUSION

Implementation of PSS has effectively added 96K of
additional processor memory to the real-time system
of which it is an integral part. This coupled with the
facility to process off-line tasks while having an availa­
ble stand-by on-line task; has greatly enhanced the
capability of the system. The application of PSS has
effected a maximal utilization of computer resources
by the system.

REFERENCES

1 IBM System/360 operating system control blocks
Form No 028-6628

2 JRM system/360 operating system input/output supervisor
Program Logic Manual Form No Y-28-6616

3 IRM sysfem/360 operating system control program with MFT
Program Logic Manual Form No Y27-712~

4 IBM system / 360 operating system fixed task supervisor
Program Logie Manual Form No Y28-6612

Structured logic

by R. A. HENLE, 1. T. HO, G. A. MALEY
and R. WAXMAN

IBM Components Division
Hopewell Junction, N.Y.

INTRODUCTION

Large-scale integration for computer applications
has been predicted for several years, but close examina­
tion shows that the progress has been uneven. Memory
designers continually demand higher levels of inte­
gration for larger and faster memory systems, and
new memory concepts are being developed to further
exploit the characteristics of large-scale integration.
The one-thousand-circuit chip will become nothing
more than a milestone.

But what of the logic area? Here, we struggle along
hoping to find some high-volume applications for chips
with a mere fifty circuits. When we design a medium­
sized machine we find that so much unit logic is re­
quired that the average level of integration falls below
ten. Orderly memory and random logic integrated
circuit fabrication procedures are growing so different
that thought is being given to building different types
of manufacturing facilities. This represents a rather
drastic approach and in the authors' opinions may
prove unnecessary.

The success to date in memory is encouraging, for
it gives direction to logic. Memory products should
therefore be examined critically for they may well
hold the key to success for logic products. The salient
features of a chip used in a memory product are:

• Regularity. Memory arrays are regular in com­
ponents and wiring. The layout geometry is well
defined and can be highly optimized for total
chip utilization.

• Low Power. Memory systems are designed and
partitioned so that all circuits on a chip do not

61

dissipate maximum power at the same time.

• Well-Defined Function. The memory chip de­
signer knows exactly how his chip fits into the
entire memory system. He therefore can opti­
mize on a high level. As examples, he uses special
circuits for the latch functions and uses de­
coders redundantly to save pads.

• Volume. • While the initial memory chip design
is quite complex, the volume requirement makes
the initial design cost nearly negligible. With
this ground rule the chip can be highly engineered,
and nearly order of magnitude improvement
can be expected and obtained.

Structured logic, or array logic as it is sometimes
called, is an attempt to design logic with more of the
characteristics· of memory. Many unsuccessful starts
have taken place, but we shall discuss some of the
more successful efforts. We shall also add some thoughts
of our own, but it should be pointed out that the prob­
lem is far from solved.

Logic arrays

The basis of all array logic is a matrix of elements
with programmable interconnections. Diode structures
have been proposed in the past, and a matrix of com­
mon collector transistors is of recent interest. The
transistor array is programmed in the factory by
connecting or not connecting the emitter of each
transistor to a common line. (See Figure 1.) We shall
use transistor arrays in our examples, for that is what
we have been working with, but diode arrays should
not be ruled out.

62 Fall Joint Computer Conference, 1969

Figure I-A tn3,l1sistor array

The ROS

The read-only store (ROS) array in its simplest
form uses two decoders to feed the array: one feeds
the horizontal lines and the other the vertical lines,
as shown in Figure 2. A particular grid position in the
array is selected by activating ~he appropriate hori­
zontal and vertical decoder line~. The addressed cell
of the array is located at the intersection of the two
activated lines. If the emitter at this address is COll-

ROS

C 0

Figure 2-Read-only store

nected to the horizontal decoder line, then a, 1 has
been programmed into this particular cell in the array.
If the emitter is unconnected, a 0 is said to be pro­
grammed into the array. The presence of the pro­
grammed 1 or 0 is sensed at the output when that
particular cell is addressed. The horizontal output lines
are dot ORed together to produce one common output
line, as shown in Figure 3.

Conceptually, the ROS is related directly to a
Karnaugh map, one bit position in the array for each
square in the appropriate Karnaugh map. Figure 4
depicts the four-variable K-map that relates to the
ROS of Figure 2. This relationship proves the uni­
versality of a ROS, for any Boolean function that
can be K-mapped can be implemented directly. Uni­
versality is the feature of the ROS chip most often
described as an asset, but in practice it is seldom use­
ful except in code translators. The Boolean functions
used in the design of any computer are definitely not
random and not evenly distributed among all pos­
sible function"! of n variables. This fact is well docu­
mented in the many failures with other universal
logic blocks (ULB's). The real problem with the ROS
array is that it doubles in size each time an input
variable is added. This doubling in size is necessary
to maintain the dubious value of being universal.

The ROAM

The read-only associative memory (ROAl\1) IS a

ROS CIRCUITS

2 4
+6

z

Figure 3-Read-only-store circuits

K-MAP

CD J

AJ B 00 01 11 10

00 1 1 0 1

01 0 1 0 1
~

11 1 0 0 1

10 1 0 1 0

Figure 4-Karnaugh map

matrix of common collector transistors that may be
programmed by conneoting or not connecting the base
of each transistor to a common line in its own column
(Figure 5.) The emitters of each row are commoned
and feed the emitter of an output transistor. Each
row of array transistors and the associated output
transistor form a current switch.

Through phase splitters, each input variable has
both true and complement lines available to the array.
Hence each variable controls a true line and a com-,
plement line (column) in the array. This gives rise

A

ROAM

B C

Figure 5-Read-only associative memory

Structured Logic 63

to the word "associative" in the name. By program­
ming each row in the array to a particular pattern
of l's and O's, the input word pattern will "associate"
(compare) with the appropiate row in the array. If
there is no match, the outputs will remain logical zeros.
If at least one row has a pattern the same as the input
pattern, there will be a logical one output on that
horizontal line (row).

To program the array, each base is tied to a true
line (column), a complement line (column), or is
left floating. Thus, for a base tied to a true line, a 1
on that input line will yield a 1 at the emitter and a
1 at the output, since the row of emitters effectively
forms a DOT -OR (positive logic). Bases tied to a true
line are equivalent to a logical 1, since a 1 at that in­
put causes a 1 at the output.

Conversely, a base tied to a compleme~t line is
equivalent to a logical O. A 0 at a particular input
raises the complement line of the phase splitter,
thereby raising to the 1 level all emitters of transistors
in that column that have their bases tied to the com­
plement line (column).

If the base is left floating, that array grid position
is effectively a DON'T CARE. That is, the output
line will not be raised to 1 by either a 1 or 0 at that

. transistor's column input.
Figure 6 illustrates the implementation of an adder

position with SUlVf and CARRY outputs using a
ROAM array. A black triangle connecting a vertical
line and a horizontal line indicates a base connection;
lack of a black triangle indicates a floating base. Note
that if a true line is connected, then the complement
line is not connected, and vice versa for each array
grid position. Thus, at most, only 50 percent of the hori­
zontal and vertical intersections will ever be used.

To conceptually understand the ROAM and relate
it to the Karnaugh Map it is convenient to think in
terms of negative logic. Thus, down levels are logical
1, the commoned emitters of each row form a DOT­
AND (all emitters down results in a down level, any
emitter up results in an up level), and dotting the output
transistors results in a DOT -OR.

Each row of the ROAl\I represents a term of a
logical expression in the sum-of-products form. The
logical expression CARRY = B . C + A . B + A . C
is in sum-of-products form, and B . C, A . B, and
A . C are each terms of the expression. Each term
may be implemented on one row of the ROAM. For
example, Figure 6 illustrates the implementation of
the CARRY function. Note that the A true and B
true columns are both connected to a transistor base
in the second row of the ROAM array, yielding the
term A . B. The three rows B . C, A . B, and A . C

64 Fall Joint Computer Conference, 1969

--.
<:Ij

~ c
R.::
'-"

~
~

j
R.

~

SUM

,0 C
A,S

o o 0

o lQJ
1 0

0[2]

1

OJ
0

[0
0

A S

C
A,S
o 0

o 1

11

10

C

CARRY

0 1
(l) 0

0 1""
111 T

0 1 -

~ - -+-+---t-~- CARRY

SUM

Figure 6-ROAM adder position

are DOT-ORed at the output to yield B . C + A .
B + A . C = CARRY. In forming the term A . B,
the variable C does not have its true or complement
column line connected to a base. CARRY is 1 if A is
1 and B is 1 regardless of the value of C.

Each term of a logical expression in sum-of-products
form is an "implicant" on a Karnaugh Nlap. An im­
plicant is formed by looping the l's in the Karnaugh
map and "reading" the loops from the ma,p. Loops
can only contain adjacent l's and the number of ones
in a loop must be equal to 1, 2, 4, ... , a power of 2.
This results from the fact that adjacent squares on a
Karnaugh map always differ only by the value of
one variable. Two squares looped yields a term with
n-l variables (n = number of variables), four squares
looped yields a term with n-2 variables, etc. Thus,
each implicant requires one row in a ROAM. The
bigger the loop of l's the fewer connections need be
made in that row. The complete expression i.s formed
by DOT -ORing the rows which is the same ,as ORing
the implicants.

The example of Figure 6 uses three loopi3 of two
l's each to form the CARRY. The SUM is formed
by four loops of one 1 each. In this case three con-

TABLE I----+Bits required for n variables in ROS and ROAM ARRAYS

VARIABLES
2 3 4 5 6 7 8 n

BITS

ROS
Always Universal 4 8 16 32 64 128 256 2''J

ROAM
2 8 12 16 20 24 28 32 4·n
3 18 24 30 36 42 48 6'n
4 24 32' 40 48 56 64 8·n
5 40 50 60 70 80 10'n
6 48 60 72 84 96 12·n
7 56 70 84 98 112 14·n
8 64 80 96 112 128 16·n
9 90 108 126 144 18·n

16 160 192 224 256 32·n
2n/2 Rows (Universal) 8 24 64 160 384 .. 896 2048 n·2 n

nections must be made in each of the four required rows
to obtain

SUM = A . 13 . C + A . B . C + A . B . C

+A· 13·(3

In contrast to the ROS, the ROAM can have uni~
versal capability with only one-half the number of
rows as the ROS needs bits for the same number of
variables. Moreover, the ROAM does not need to be
universal to be useful, thus allowing even further
reduction in size. Table I illustrates the difference
brought about by the ROS requiring one bit per K-map
position and the ROAM requiring one row per K-map
implicant.

Historically, computer functions are composed of
about four implicants or terms. The chart shows that
a four-implicant function is cheaper to implement
with a ROAM than with a ROS when the function
contains six variables or more. When the decoders
required for the ROS are considered, even four-vari­
able functions with four implicants are more econom­
ical in ROAlVI than in ROS.

Two useful formulas to compare ROS bits required
with ROAM bits required for a given function are:

ROS bits = 2n

Structured Logic 65

ROAM bits = 2 In,

where n = number of variables, I = number of im­
plicants. Thus, it is more economical to build a function
with the ROAM when 2 I n < 2n. This does not
consider the cost of the ROS decoders, which add a
factor to the inequality.

If we assume that the decoders for n-even take
2n(2n/2) bits, and for n-odd take [en + 1) 2(n+1)/2 +
(n - 1) 2(n-l)/2] bits, then the cases for which ROAM
should be used are:

1. n even
2 I n < 2n + 2 n(2 n / 2) ;

2. nodd

2 In < 2n + (n + 1) (2[n+l1/2) + (n - 1) (2[n-ll/2)

Thus, ROAM is more economical than ROS in most
practical problems.

A realistic example of control logic for a small ma­
chine model has been implemented using the ROAM
array. Table II gives a comparison of the number of
bits required for a ROAM implementation versus the
number of bits required for a ROS implementation.
Note that the ROAM is significantly more economical.

A partitioning of functions could have been devised
for the ROS implementation. The ROAM would still

TABLE II -ROS vs. ROAM -a control logic example

TOTAL NUMBER OF VARIABLES. .. 14
TOTAL NUMBER·OF FUNCTIONS ... 0... 6
TOTAL NUMBER OF IMPLICANTS 0 0................................ 12

One 7 -implicant function of 13 variables
Four I-implicant functions of 7 variables
One I-implicant function of 11 variables

ROAM
ARRAY SIZE: 28 X 12 .. 0

ROS 1
ARRAY SIZE/FUNCTION: 214•.............•............. 0 0 •••••••••• 0

6 ARRAYS FOR 6 FUNCTIONS: 6 X 16,384
SHARED DECODER 0 ••••• 0 • 0 ••••••• 0 ••••••••••• 0 ••••

TOTAL BITS .. · 00 •••• 00000.

ROS 2
ARRAY SIZE FOR 13 V A'RTABLES: 213 .••.......••...... 0 ••• 0 ••• 0 • 0 ••• 0 0 0 •• 0 •

ARRAY SIZE FOR 7 VARIABLES: 27 X 4.0.0 ••••••• 0 •• 00 ••••• 0 ••••••• 0 ••••• 0

ARRAY SIZE FOR 11 VARIABLES: 211 ••••••••••.•••••.. 0.0 •••••••••• 0 ••• 0.0.

SHARED DECODER 0 •••• 0 • 0 ••••• 0 ••••••••••• 0 ••• 0 0 ••••••••••••••••• 0 0 0 0

1"OTAL BITS 0 0 ••••••• 0 •• 0

336 BITS

16,384 BITS
98,304 BITS

3,584 BITS
101,888

8,192 BITS
512 BITS

2,048 BITS
3,584 BITS

14,336

66 Fall Joint Computer Conference, 1969

be more economical than the ROS, however, especially
when one considers the additional wiring complication
-of connecting several small ROB arrays and the ad­
ditional design time required to effectively partition
the functions.

The optimum size for a ROAM has not been de­
termined, but chips with at least 512 bits on them are
desirable. This capacity would provide between eight
8-variable, 4-implicant functions, and one 64-variable,
4-implicant function (an extreme case, needless to say)
on a chip. The practicality of building and using such
a chip is yet to be determined.

The SLT array

Arrays can be designed so that they may be used for
direct replacement of present logic. The SLT array
performs the function AND-OR-INVERT in nega­
tive logic or OR-AND-INVERT in positive logic
and can be used directly to replace SL T logic. While
direct replacement of random logic with array chips
may prove to be the wrong approach in the long run,
it may well be the only way to get array logic started.

The SLT array has the same advantages over or­
dinary logic that all arrays have: orderliness of design
and layout, and high density with relatively low cost.

Figure 7 -8L T array

In addition, this type of array has a higher bit usage
than other arrays, since it more closely resembles the
familiar random logic, functionally. The SLT array
does not have decoders or phase splitters on its input
lines, as do other types of arrays. This makes the array
less universal than even the ROAIVI array ibut more
effective for r2,ndom logic. It is fair to say that arrays
of this type make poor code translators just as SLT
logic builds poor translators. It is difficult to believe
that any array will be effectiv3 in both random logic
and code translation problems.

As already stated, the ROAM array has specific
applications to decoders and associative memory
problems. The SLT array may very well be the ele­
ment required to do general logic design. The reason
for this is the placement of the inverters as shown in
Figure 7. This movement of the inverters to the out­
put lines may appear a minor modification, but it
should be remembered that there has never been a
useful logic block with inverters on the input lines. It
may pay to have both true and complemented out­
puts from a current switch logic block. Figure 8 shows
a full adder implementation in SLT logic 2~nd in an
SLTarray.

Array-driving arrays

The SLT array in Figure 8 demonstrates one neces­
sary feature of an array that has yet to be discussed:
Any logic array must be able to drive any other array
in the same family, including itself. Note in Figure
8 the CARRY output fed back into the array. This
line probably will be an external wire. This technique
is required since it is in effect Boolean faetorin~~, a
proven necessity. This type of feedback is al80 needed
to produce sequential circuits, giving memory to the
arrays.

Figure of merit

I t is less meaningful to compare array logic with
random logic in each individual term of power con­
sumption, propagation delay time, and silieon area,
since one can usually be traded for the other, such 9·S

power with delay. Instead a comparison is made of
their figures of merit, chosen to be the product of
power consumption P, delay time T, and silicon area
A, all with weight function of one (PTA). Since no
isolation wall is needed between collector transistors,
a ROS or ROAM cell including approprifl,te inter­
connections can be laid out on a silicon chip area equiva­
lent to 20-25 percent of that occupied by a transistor
that needs isolation walls. As shown in Figures 5 and 7,

A
B

B
C

~--------------CARRY

ABC

Figure 8-SLT full adder position

the delay time of an array is two levels of current
switch emitter follower (CSEF) independent of the
number of inputs. For sophisticated functions, such
as the one-bit adder shown in Figure 8, more than two
levels of logic may be required.

Some typical comparisons of array logic and random
logic include the sampling design of array logic chips
to perform the same function a random logic chip
would. This comparison helps to partially discover
the merit and the limitation of the array logic. In
comparison with random logic chips that perform
sophisticated functions or have two or more cascading
levels of CSEF's, array logic chips have superior
PTA figures.

CONCLUSIONS

Various array configurations described here suggest
that random logic may be implemented by use of an
array of programmable crosspoints. Comparisons of
array logic with conventional logic indicate that in
many cases the PTA figure of merit is superior for
arrays. The most significant problem with arrays ap-

Structured Logic 67

pears to be the limited useful size of a single array,
and the difficulty in standardizing a particular array
configuration. As a minimum achievement at this
time, it appears that arrays will be useful in develop­
ment of complex functions within a silicon chip.

Array logic will not eliminate the need for a circuit
designer in the future, since specialized designs will
be needed to optimize circuit and component technol­
ogy. In some of these design cases, the importance of
array logic techniques will be obvious, but in others
it will not be.

At this point, array logic does not appear to strongly
affect the system designer's approach to machine de­
sign, and a knowledge of array logic may never be re­
quired.

In the future, however, to the extent that array
logic techniques influence the design and optimization
of highly efficient functions, the system designer's
work will be significantly influenced by progress made
in developing array logic techniques.

BIBLIOGRAPHY

1 R RICE
Computers of the future
IBM Research Report RC-151 April 201959

2 R RICE
Systematic procedures for digital system realization from logic
design to production
Proc IEEE Vol 52 12 1691-1702 pec 1964

3 R C MINNICK
Application of cellular logic to the de:~ign of monolithic digita
systems
Microelectronics and Large Systems
Spartan Books Wash D C 1965 225-247

4 L C HOBBS
Effects of large arrays on machine organization and hardware
software tradeoffs
Proc FJCC 1966 Vol 2989-96

5 R C MINNICK
Cutpoint cellular logic
IEEE Transactions on Electronic Computers Dec 1964

6 W E KING III A GUISTI
Can logic arrays be kept flexible?
AFCR!. Report 65-547 Aug 1965

7 D C FORSLUND R WAXMAN
The universal logic block (ULB) and its application to logic
design
IEEE Conference Record 1966 Seventh Annual Symposium
on Switching and Automata Theory 236-250

8 S S Y AU C K TANG.
Universal logic circuits and their mod1~lar realization
Proc SJCC 1968

9 R C MINNICK
A survey of microcellular research
Jour ACM Vol 142 April 1967 203-241

Characters-Universal architecture

for LSI

by F. D. ERWIN and J. F. McKEVITT

Hughes AircraJt Company
Fullerton, California

BACKGROUND

Since the advent of LSI technology, several schemes
have evolved for the utilization of large arrays to their
full potential. A common and straightforward approach
involves the designer restricting himself to the equip­
ment being designed at the moment. Faced with only
a limited set of problems, it is not difficult to specify
a small number of LSI array types which will efficiently
complete the design. While the results are quite en­
couraging for specific cases,! the drawbacks of any mass
adoption of these techniques are obvious. This, the
so-called "custom approach," would require the semi­
conductor manufacturer to be responsive to each cus­
tomer with numerous low-output production runs of
highly specialized devices. The per-unit cost to the
user, for his own efforts as well as those of the manu­
facturer, would be quite high due to the inability to
spread initial costs over many devices. In addition,
the complexity of lOO-gate-plus arrays is such that it
is difficult to substitute one for another (with efficient
results). This would severely limit the· off-the-shelf
capabilities of both user and manufacturer.

An obvious solution to these problems is the intrq­
duction of a small set of standard LSI chips. Semi­
conductor suppliers, making tentative advances into
LSI product marketing, have already proposed such
devices as adders, counters, and shift registers. How­
ever, this does not represent the solution to the general
problem. A design heavily committed to the use of these
devices must fall back on MSI or standard I C for the
large remainder of the circuitry. The reason is that
adders, counters, registers and other orderly, well-

69

defined areas represent the regions of the system with
the highest gate-to-pin ratios. After these portions are
lifted out of the system, the remainder is characterized
by very low gate-to-pin ratios (notably control and
data routing functions). Unable to satisfy the LSI
design criteria of high gate-to-pin ratios any longer,
the designer must look to more standard components.
Unfortunately, any proposed solution to the LSI
partitioning problem which lacks a total system ap­
proach tends to drift towards this pitfall.

Researchers striving towards partitioning for total
or near-total LSI implementation tend to diverge
along one of two conceptual paths; bit-slicing and
functional partitioning. To illustrate the difference,
consider the data portion of the computer. In functional
partitioning one may specify an adder as one LSI ar­
ray, registers as another, a shift register as a third, and
so forth. On the other hand, in bit-slicing one would
design an LSI array consisting of a combined one- or
two-bit adder, registers, shift registers, etc., then build
up his system from this chip type according to the de­
sired word length.

The bit-slice approach has resulted in some notable
advantages, particularly the ability to achieve very
high gate-to-pin ratios and implement systems using
a small number of different array types.1 ,2 However,
bit-sliced mod~les have the basic flaw of being system­
dependent, a drawback described by Pariser in an
early paper.3 This means that behind such bit-slicing
approaches there lie systems, real or implied, for which
the resulting arrays are most efficient. An attempt to
apply the arrays to a significantly different system
results in a poor design. Considering the types of bit-

70 Fall Joint Computer Conference, 1969

.~--------------~--~---

slice devices being proposed, inefficiencies would most
often be manifest in the design of a simple device in
which the majority .of the gates qf the array intended
to accomplish complex functions ~re wasted. Although
this may be acceptable in some: situations, it is un­
likely that it would satisfy the strict requirements of
size, weight, power, and reliability imposed by aero­
space and military systems.

It is the contention of this p~per that a judicjous
partitioning of digital systems in general, divorced
from bias towards any particular system, results in a
set of LSI devices that can entirely implement many
different computer systems of varying functional com­
plexities and word lengths.

The resulting group of array~, referred to as a
"character set" and each one indiyidually as a different
"character", is sufficiently small ib. number (10), with
each type having acceptable size· and gate/pin ratio,
to be considered acceptable and desirable in view of its
wide range of app~ications. These! building blocks are
referred to as characters because of the metaphor that
may be made between the building blocks and char­
acters of the alphabet (letters). Letters form words
to express the language whereas ~uilding blocks form
units to build the machine. In both cases a closed set
(of characters) is used to produce the desired end.

Although the character set is neither rigidly func­
tionally-partitioned nor bit-sliced, it is biased towards
functional partitioning to give it the versatility to
efficiently implement both comple* and simple digital
devices. As an approach, functio~al partitioning has
a detailed and successful backgtound.3 ,4 Bit-slicing
consideratoins give the character set its ability to
implement systems of varying word lengths.

In addition to providing the u~er with a standard
set of chips to implement many different digital ma­
chines, the completeness of the approach (the ability
of the characters to implement the whole machine)
relieves the user of the burden of: logic design. These
tasks are reduced to the selection of character types
and word lengths.

Introduction to the character set

A universal conclusion among LSI researchers is
that control functions are more difficult to modularize
than functions related to data :operations. Micro­
memory control technique was chdsen as the solution
for LSI implementation for several reasons. A micro­
memory, meaning here a read-only Bolid-state memory
with its sequencer and instruction register, is easily
partitioned into the large modules! necessary for LSI
implementation. Control fUllctions in this form are

then amenable to reproduction in large quantities
of identical units. Also,design with control centered
in one level of micro memory is more orderly and
straightforward.

The micro memory has been provided with a rela­
tively sophisticated microprogram instruction reper­
toire. This means that the microprogram contains the
essence of the machine's major mathematical func­
tions, such as multiply and complex sequencing. This
is desirable since it represents an efficient use of hard­
ware for these purposes and also reduces the number of
different array types necessary. Also, a versatile rep­
ertoire leaves the designer free to make units which
operate as simply or as complexly as desired. The
~egree of flexibility which this repertoire gi ves the
character set is a major factor in its success. It should
be stressed that the "micro operations" of the I~harac­
ter set are as important a factor as its logic design. This
fact, a critical one in all LSI solutions committed to
micromemory control, cannot be overemphasized.

Interest in designing a character set at Hughes was
concurrent with the development of an advanced com­
puter system. The character set itself was developed
with the ultimate objective of implementing all future
Hughes digital data processing equipment with a com­
mon family of LSI circuits.

The outcome of that original effort revealed that
computer structures in general are frequently ordered,
or at least amenable to such ordering, as shown in
Figure 1.

The divisions of Figure 1 are functional. That is,
regardless of the hardware characteristics, the computer
philosophy is such that its functions may be identified,
separated, and diagrammed as shown in the figure.

From Figure 1 came the concept of the funetional
character set. With the fundamentals of LSI design
in mind, logic was designed to accomplish each computer

COMPUTER
CONTROL
FUNCTIONS

AUXILIARY DEVICES

• COUNTERS
• CLOCKS

: ~~:CT~~:AD

BOOLEAN LOGIC FUNCTIONS

• MINORI TRANSFER, SHIF1',
ROTATE, COMPLEMENT,
INCREMENT, LOGICAL
OR, ETC .

• MAJOR, ADO, SUBTRACT,
EXCLUSIVE OR, ETC.

'NPUT/OUTPUT FUNcn"'~

FAST ACCESS I
REGISTER STORAGE ~

'-----1
L

CORE MEMORY ______J

Figure I-Computer functional organization

Ml

M2 taM

INPUT /OUTPUT II
FUNCTIONS L.. __ ----I. ___ -...J

~:~~s~~~~ss II
L... __ ----1. ___

SCRATCHPAD !
~----j.----I

g~~~'::-ER·I ~ __ --j. ___ -I

SWITCH I L..-__ ---I. ___ ~

~.BITS---1

CORE MEMORY DEFINED
AS AN I/O-TVPE DEVICE

Figure 2-Functional charf:l.cter set

function indicated by the picture. Each unique LSI
chip type which resulted was referred to as,a different
character type and given an identifying name and
number. Figure 2 shows the character set which re­
sulted from the logic design according to the concepts
outlined in Figure 1.

The character set and repertoire have been through
several improvement cycles and used in the test im­
plementation of a NASA computer to be discussed
later. Current plans include test design of the H4400
(a new Hughes computer) with the improved character
set, implementation of the character set with high
speed ~IOS circuits, and construction of one computer
using the characters.

These ten LSI characters alone provide the entire
hardware complement for the logic of a broad range of
computers and digital equipment. No extra logic in
the form of either IC, MSI, or custom LSI need be
added to the characters to finish the job. An important
by-product of this is that the user need never consider
logic design. His tasks are reduced to selection of the
necessary characters and the writing of the appropriate
microprograms for them. In fact, it is possible for the
character set to fit into a realistic total design automa­
tion procedure as discussed later.

Description of the character set

This section describes each of the ten characters.
They are summarized below for reference.

G 1 Register storage
Ll Generallogic
L2 Arithmetic logic
L3 Input/Output
Ml Micromemory counter
M2 Micro-instruction Register

Characters-Universal Architecture for LSI 71

M.M Micro-array
PI Scratch pad memory
P2 Up/Down counter
P3 Switch

Characters of the same letter are logically grouped
into a common unit as illustrated in Figure 3.

G 1 character

The G 1 character provides the bulk of storage for
operands of the microprogram. Each character con­
tains four registers of eight bits each accompanied by
reading and writing selector gates. The storage element
is provided with simultaneous dual reading and
writing capability. The storage flip flop itself is designed
for minimum read after write delay.

Eaeh of the two input busses is common to all
registers and carries to the G 1 character eight lines
per bus, one line from each bus for each bit of the
register. Input data selection is accomplished at the
memory element by a coincidence of positive infor­
mation on a particular input bus and register selection
for that bus by destination decoding logic within the
character. The destination decoding logic is duplicated
to provide for writing from the two input busses into
the same character under control of two different micro­
commands. As will be illustrated later, this is a key
factor for the machine expandability property of the
character set as it allmvs G 1 to form a data path link
between individual logic units under control of up to
two' different micromemories. Different registers in
r,he character may be written into simultaneously.

Reading of the register is provided by dual source
decoding logic which gates data to independent dual
output busses. This duality provides for information
from any two registers to be simultaneously placed on
two output busses. The conceptual structure of the G 1
character is shown in Figure 4.

Several G 1 characters placed in parallel provide
registers of more than eight bits in length.

Figure 3-Typical functional character configuration

72 Fall Joint Computer Conference, 1969

L1 character

The Ll character provides the basic logic functions
selectable by microprogram. In addition input bussing
is provided for nine channels (eight bits/channel).
One channel of the bus is required for each G 1, L2 or
or L3 character connected to the L1 character. The
logic functions provided consist of the rotates, shifts
(logical), no-operation, complement., and incrementa­
tion. Also associated with the L1 charac>ter is the de­
coding logic for these logic operations. The type of
microprogramming used with the functional character
system relies heavily upon the fast and efficient manip­
ulation of bits within the various operands. To this
end, shifts and rotates have been: provided which exe­
cute from 1 to 31 positions in a single step (as op­
posed to serial operation). Incrementation is accom­
plished with the use of a logic register which may also
be used as a simple holding register. The L1 character
is eight bits wide and contains the following logic:

1. Bussing gates
2. Decoding logic
3. Rotate, slJift, and complement logic
4. Incrementer
5. L register
6. Gating to output bus

In Figure 5 is shown a block diagram of the L1
character. Several L1 characters may be connected
together to form logic operations on words longer than

r---­
I
I
I

ENCODED ENCODED
SIGNALS SIGNALS

Figure 4--G 1 character block diagram

91112-1'

L_-,
I
I
I

MICRO.
MEMORV
CONTROL

GENERAL LOGIC I L ____________ F~I~ .J

Figure 5-Ll character block diagram

une byte. A limit of four bytes exists in order to main­
tair! consistency of definition in the rotates and shifts.

Information entering the L1 card from the various
sources is bussed to form the input bus. Then it is
operated upon and the resultant is bussed to the out­
put bus where it leaves the character or is optionally
stored in the L regist.er (",here it would thus be available
at the next mirro-instruction time for use in the incre­
ment operation or as an "L" source).

L2 character

The L2 character provides the major arithmetic
functions used by the microprogram. The arithmetic
unit provides the 2's complement sum of the con­
tents of the A and B registers. Addition is performed
with carry look-ahea'l byte parallel. Control signals
may copditioll the adder to alternately provide either
of two special results (a) a mod 2 addition instea.d
of full addition or (b) an input carry to the lowest order
bit for full addition (this forced carry in conj unction
with a negated operand accomplishes a 2'B com­
plement operand for subtraction). The L2 character
consists of two holding registers for the operands of
the adder, the adder itself, decoding and error logic,
and bussing gates. Figure 6 dia.grams function-wise
the L2 character.

A typical arithmetic operation using the L2 charac­
ter might proceed as follows: (1) first operand traIlS"
ferred to· B register (from output bus), (2) second
operand transferred to A register, (3) after appro,priat.e
delay access result and transfer out of L2 charact.er via
the input. bus. The error logic provides overflow and
carry-out information.

Characters-Universal Architecture for LSI 73

r----------------------~
I
1
1
I
I
I
I

Figure 6-L2 character block diagram

L3 character

The L3 character provides input/output capability
for the microprogram machine. For purposes here
input/ output includes not only the usual peripherals
but also main memory, scratch pads, real time clocks,
an P -charact.ers-namely all elements of the computer
not directly controlled by the micromemory. The L3
character provides iDput gating for external devices­
four buffered and three non-buffered channels. The
buffered-input gatiDg may be controlled either by the
microprogram or the external I/O device itself. Four
I/O output channels are provided. Interrupt signal
storage and int.errupt mask storage for four channels are
available. Parity generation and checking along with
odd/even control is provided for the four buffpre<i
channels. L3 also contains the necessary register des­
tination and selection logic. Figure 7 is a block diagram
ofL3.

To input data, an input line is selected under micro­
program control resulting in selected data entering
an.E register or, in the case of a non-buffered input,
entering the input bus. To output data, the micro­
memory places the data in the appropriate E register
and signals the corresponding I/O unit. The E registers
themselves are available to the logic unit in a manner
identical to the 0 registers (01) independent of their
input/output functions.

Ml character

The MI character provides the micro memory address
register and related functions. The ten address bits
of MI allow for addressing up to 1024 micromemory
words. The address is containod in the lV[lvIC (Micro

r-----.,.LL..L...U.
I ~~+h
I
I
I
I
I
I

INPUT _;...1 -++-~--+--I

I
I
I
I
I
I
I
I
I
I

DESTINATION
'---_~OECODE

'------
ENCODED
SIGNALS

ENCODED
SIGNALS

Figure 7-L3 character block diagram

INTERRUPT
(mIl

Memory Counter) register and serves to address the
micro memory proper. Associated with the. lVIl\IC
register is a five-bit incrementer which automatically
steps through 32 microprogram address states and
then repeats addresses. This produces the effect of
a microprogra.m riLg of 32 words in which the program
will loop until the microprogram issues an unconditional
transfer command. There is an S (save) register that
allows for subroutine jumps. The S register saves the
content of MMC upon command, keeping it available
for reinsertion into MMC. Figure 8 shows the block
diagram for Ml.

Branching or transferring within the microprogram
is provided by two modes: unconditional transfer ~f
full 10-bit width and conditional transfers of four bIt

Figure 8-M 1 character block diagram

74 Fall Joint Computer Conference, 1969

width. The Ml character carries the time base whose
signal is distributed to other characters.

M2 character

The M2 character contains a micro memory word
register. The register is 49 bits long providing for a full
micromemory word. Forty-nine bits are divided into two
16 bit fields and a 17 bit field. The first and the second
fields are instructions and the third is a constant. The
second instruction is transferred into the register loca­
tion of the first for execution resulting in sequential exe­
cution of the two instructions in the micromemory
word: Timing is derived from the timing base on the
Ml card. Figure 9 shows the block diagram of M2.

MM character

The MM character contains the i micro memory array.
The address register and word register for the array
are located on Ml and M2 respectively. MM is a read­
only array. The presence of an address on the input
lines causes the contents of the referenced location to
appear on the output lines after an appropriate delay.
The Ml\1 character consists of 256 words of 49 bits

r----- ----,
I
I
I
I
I
I

MICROMEMORV
ADDRESS

I
I
I
I
I

jM'CROMEMORV :.
WORD REGISTER I

~--~~~~ I
... tc:.:.!!!;:c~ ::!,d

MICROAAAAV ClO-tllS

Figure 9--M2 char<1octer block diagram

r--------,
I

MICAOME'-WAY
WORD

Figure lO--MM character block diagram

each. Figure 10 shows the block diagram of MM.
Several MM characters may be combined to form a

larger micro memory array. The maximum organization
is 1024 words by 98 bits.

PI character

The PI character is a scratch pad memory of 256
bits of storage with associated address decode logic,
address register and data register. The scratch pad is
arranged into 16 registers of 16 bits each. Figure 11
is a block diagram of PI.

The PI character is connected to the L3 character
through which its data flows. Up to 16 PI's may be
connected in series to produce a total scratch pad of
256 registers. Generally the bit width will match that
of the logic unit.

P2 character

The P2 character is an expandable eight-bit eounter
with byte look-ahead logic. The introduction of a time
signal produces a real-time binary clock. The eounter
may be read in parallel and is resettable to any desired
value. Zero detection is provided which may optionally
interrupt the microprogram and/or the main program.
The P2 character is connected to the L3 character
through which data and control pass. Figure 1~: shows
the block diagram detail.

The P2 character contains control logic allowing the
counter to be in a run state or stop state dep~ndent
upon microprogram control.

P3 character

The P3 character provides the capability of switching
any three input channels to any three output channels.

,--_________________ 91112-10

II 0 ~:;:::S :ST:-
,~­
I

16 BITS

1.:: ::RAY

-,
I

Figure ll-Pl character block dia.gram

Characters-Universal Architecture for LSI 75

--

PREVIOUS

6 READ/WRITE

r------- :sL _____ ,
STAGE(P"~7 N£XT STAGE (P2,

CLOCK I. I
(Ml)

I ~RUN/sTOP QUP/OOWN I
L3 L_~ ______!E~M~OC.:J

Figure 12-P2. character block diagram

L ___ -'

Figure 13-P3 character block diagram

A 16-bit width is provided. This configuration allows
three simplex simultaneous connections. Figure 13
shows the block diagram for the switch.

The input and output channels of P3 may be con­
nected to any external interfaces which are electrically
compatible. Storage is provided on the character for
nine bits of control information establishing the state
of the switch.

There is no restriction on the switch state; all pos­
sible configurations are allowed (such as three inputs
to three outputs, one input to three outputs, three
inputs to one output, etc).

Hardware applications

Provided these ten characters and given a design
performance specification, the decisions the designer
must make involve considerations of character types
and selection of word lengths.

Figure 14 illustrates the levels of machine complexi­
ties available to the designer. Part A illustrates a very
basic eight-bit machine, with simple logical, I/O, and
register capabilities. Part B is the machine of part A
expanded to 16 bits in its logic and register portions;
however, no new functional capabilities have been added.
Functional expansion is demonstrated in part 0, where
an eight-bit adder card and four eight-bit registers are
added. Part D represents a significantly greater jump.
Illustrated is the dual-logic unit capability of the
character set. If desired, it is possible to have two logic

:~':: ::,'" I ~~~"oRV :~~"oRV
I M'M' I
L"":" ___ ..J ~
----l ... ,," I

~----------------------~

I
I L ________I

Figure 14-Four st.ages of expandability

units, with different but coordinated microprograms,
operating in' parallel. They share the same sequencer
(M1), which both control. The G 1 bank is common to
both logic units.

Part E illustrates an even higher level of expansion.
Two totally independent micro memory units (memory
and sequencer) drive three different logic units, linked
together through G 1 cards. This level of complexity
can be carried to an almost limitless expansion of micro­
memories and logic units bound together by shared G 1
characters. A comparison of parts A and E of Figure
14 illustrates the versatility of the character set as it
is adapted to both simple and complex situations.

With the hardware specified, the next major task
is the writing of microprograms. As stated before, in
machines of this type this is as important as the hard­
ware design. Often the only essential difference between
units designed for different purposes is their micro­
programs.

The microprogram repertoire designed fvr the char­
acter set is described in the next section.

Description of m.icroprogram. repertoire

The micromemory word provides the control neces­
sary for the functions of the characters under its direct
influence. A 11 these characters so controlled are -defined
to belong to a common instruction group. There is one
and only one M2 character per ip.struction group. A

76 Fall Joint Computer Conference, 1969

phase group consists of usually one or two co-instruc­
tion groups containing a common timing base. There
is one and only one lVII character per phase group as
illustrated below.

M2 M2
, Ml

lVIM MM

In a phase group containing two instruction groups
one micro memory word, accessed from the first micro­
memory array· (MlVl), operates ;upon a.nd through its
logic unit while the other word, accessed frJffi the second
micromemory array (lVIlVI), op~rates upon a second
logic unit. Operations are carri6d out simultaneously
in each unit with some cross trJ,llslat.ion. The option
of including a second micromemory word allows for
greater system capability by providing simultaneous
operations; however, this does not affect the number
of bits in the data word. (The data width is indepen-
dently variable by byte.) .

A micro memory word is composed of two 16-bit
fields and a 17 bit field-two instruction fields and a
constant field (See Figure 15). The first and second
instruction fields are identical differing only in that
execution of the second instruction follows the first by
1/2 of cycle time (a cycle time is the time required
for a complete cycle of the micromemory). The in­
structions can access the constant field, introducing
into the data stream this constant from the micro-

91112·20

1ST 2ND
INSTRUCTION INSTRUCTION CONSTANT

Figure 15-Micromemory word

91112-21

SOURCE OPERATO~
!

DESTINATION I
16 BITS

Figure 16-Instruction field

memory. At those times when the constant field is not
used as such, it takes on additional capability as a
transfer and machine control field.

Instruction Fields-Each instruction field iE: divided
into three subfields-source, operator, and destination
su~fields as shown in Figure 16.

The source specifies the origin of the data to be
operated upon as defined by the operator field. 1'he
destination specifies the location where the da,ta result
will be stored after the operation is performed.

Source Subfield-The source subfield specifies the
source of information for the micro-instruction. Data
accessed by the source code appears on the input data
bus. Typical sources are:

Gl -GI6-The general set of registers

El -EI2-The I/O registers located on the L3
characters

CNT -The constant field from the miero-
memory word

INC -The incremented value of the L-

A

ADD

L

ECS

*ADD

register

·-A register located on card L2

-The sum from the L2 character

-The L register of the Ll character

-The error code

- The sum from the L2 character of a
co-instruction group logic unit.

Operator Subfield-The operator subfield specifies
the type of operation the micro-instruction .involves.
These operators operate upon the data from 1ihe input
bus and present the result at the output bus. Typical
operators are:

RSI 31-A Right Shirt from 1 to 31 positions

LSI

MSK

NPP

Rl

CPM

31-A Left Shift from 1 to 31 positions

-The source data masked by the
constant field of the micromemory
word

-The no-operation

-R31-A left rotate from 1 to 31 positions

-The ones complement

Destination Subfield-The Destination SubfLeld spec-

Characters-Universal Architecture for LSI 77

ifies directly the register to receive the instruction re­
sult. These register designations are described below:

Gl -G16-The general set of registers

El -E12-The twelve I/O registers of the L3
characters

B - The B register of the L2 card

L -The logic register of the Ll card

A -The A register of the L2 card

*A -The A register of a co-instruction
group L2 character

Transfer Field-The transfer field allows for micro­
program specification of both conditional and uncon­
ditional transfers within the microprogram. The un­
conditional transfer provides a ten-bit address, the full
microprogram addressing capability, while conditional
transfers provide four-bit addresses. At all times when
a transfer is not effected (either conditional or uncon­
ditional) the micro memory counter is incremented by
one modulo 32.

There are basically three testable functions. They
are: (1) least significant bit-true; (2) most significant
bit-true, and (3) all bits-false (true = 1, false = 0).

Further, some of these functions may be tested as
inputs to the logic unit or as outputs and in various
combinations.

There exist eleven conditional transfer test combina­
tions and one unconditional transfer.

A n application of the character set

In addition to investigation for use with the H4400,
the Hughes Character Set was used in a test design of
the NASA Modular Computer Breadboard (MCB).
The NASA MCB, a prototype of an advanced aerospace
computer, is a dual-redundant reconfigurable machine
consisting of five different module types. One each of
the Control Unit (CU), Arithmetic Unit (AU), Memory
Unit (MU), and Input-Output Unit (I/O) are required
for a working computer. The fifth module type, the
Configuration Assignment Unit (CAU) , is not dupli­
cated. For a detailed description of the NASA MCB,
see "Implementation of the NASA Modular Computer
with LSI Functional Characters," by Pariser and
Maurer, in these Proceedings.

Figure 17 shows how the NASA MCB can be im­
plemented using the Hughes character set. Notice
that the CU is the only module equipped with the
double-logic unit feature.

Figure 17-MCB-Modular computer breadboard block
diagram

.aul-.

The design of the NASA MCB showed that a fairly
complex computer could be implemented using only
the ten characters. Comparison of the gate counts with
that of a computer built to similar specifications in­
dicates that design with the character set involves
approximately 35 percent more gates (exclusive of
ROM). The comparison machine was composed of
23 different card types contrasted to the character
set's ten. The overall gate-to-pin ratio was 2.6 for the
character set version and 0.75 for the comparison ma­
chine.

Table I is a representative sampling of the estimated
l\tlCB instruction execution rates. By these estimations,
the character set version is capable of running as much
as 55 percent faster than the prototype machine. A
large part of the speed and versatility of the l\tICB
were attributed to the total microprogram approach
of the character set. Since each unit has its own micro­
memory control, it was possible to utilize unit overlap
to the maximum advantage.

Performance specifications for machines built from
the character set assume the following about the
characters themselves. Each character involves approxi-

78 Fall Joint Computer Conference, 1969

mately 300 gates based on SURL II type logic. Most
characters may be sUb-partitioned into two identical
LSI wafers of 150 gates each. Gate-to-pin ratios6 vary
from character to character with an overall average of
about 2.6. Each level of gating must involve a propa­
gation delay of no more than 12 nanoseconds t.o achieve
the indicated speeds. Read-only-memory access time
is assumed to be no more than 80 nanoseconds with a
cycle time of 200 ns.

Evaluation of the character set

Design work to date indicates that most digital data
processing equipment can be irhplemented using only
the ten characters. Gate counts run higher than equip­
ment configured from discrete lC's, with 140 percent
of the IC gate count representing an approximate
upper bound. Speeds appear to: be comparable to the
latest airborne development computers, and promise
to be compet.itive with ground equipment as well.

For all systems where maintainability is a factor, muts
constructed from the character set have the obvious
advantage that only ten types of spares are needed to
insure system repairability. Nine of the characters are
identical in all applications. The tenth, the micro­
memory, stores a unique program for each application.
To bypass the requirement for spare ROM's of specific
patterns, research is currently under way at Hughes
to develop an electrically alterable ROM. The MIVI
charactet's could be delivered "blank" from the
manufacturer to be written into by the user with a one­
shot process.

Reliability of character-built LSI computers will be
enhanced by the reduction in the number of lead-bonds.
Beyond that, the most significant reliability factor
probably will be the type of LSI technology chosen.
Bipolar TTL is a candidate for the character set
mechanization due to its speed :and drive capabilities.
MOS is also being considered for its high packaging
densities and simplicity of man~facture. Use of either
or both technologies is possible depending on system
requirements.

LSI enjoys a natural advantage in the diagnostic
field. The arrays establish repla'ceable units which are
quite large, thus minimizing the degree of fault isola­
tion required. The character set in pa,rticular has several
features beneficial to diagnostic procedures. The bussed
structure provides several convenient points for ap­
plication and observation of diagnostic signals. Also,
there are only a certain number of allowable ways to
inter-connect characters. This, plus the fact that there
is no intervening logic, precludes the possibility of
unexpected timing or logic problems arising. Once the

fault detection and isolation problems are solved rela­
tive to a character, the solution is applicable to all
combinations in which that character is found.

Furthermore, since every character is under the
control of some micromemory, a third major approach,
along with more traditional hardware and software
approaches., to diagnostics becomes available. Investi­
gations have shown that microprogram techniques are
extremely effective in both detecting and isolating
faults in the characters. This approach also promises
fast diagnustic speeds. Not only are the diagnostics
carried out at micro-instruction speeds rather than
machine-instruction speeds, but in large machines each
micro memory can simultaneously diagnose the charac­
ters under its control.

As au example, consider the application of these
techniques to the diagnosis of the NASA l\1CB. Each
of nine micromemories can simultaneously diagnose
seven to 38 characters each. Any fault need be isolatuble
to one of only 206 characters, for which a replacement
is chosen, assuming an operator is present, from ten
basic part types. (Of cours¢, the NASA MCB actually
reconfigures automatically in case of error.)

Problems currently under, investigation are diagnosis
of the micromemory itself,amount and type of hard­
ware required, and the applicability of more conven­
tional techniques. Goals include the develo:pment of
techniques for 100 percent fault detection and isolation
to the character level.

The area of application stressed for the character
set was computer implementation. Though the comput­
er makes a meaningful application, there is, however,
great economical advantage to be gained through ap­
plication of the characters to digital equipment of
unique or low volume design. Using the character
methodology in such systems can reduce by lar;ge factors
the engineering costs, design, and checkout time in­
volved. To effectively achieve such a goal several de­
sign aids are desirable--a character assembler;1 a micro­
program assembler, and a system simulator. These
three programs would allow for complete design auto­
mation capability.

The character assembler input would consist of en­
coded instructions having the information content of
a block diagram as exemplified by Figur~ 3. This in­
formation in conjunction with the characte:r charac­
teristics (which form the data base of the a8sembler)
is processed by the assembler- to produce an output
consisting of wiring information for the interconnection
of the characters. The character assembler output may
be in th'3 form, for example, of a wire list, an N /C
tape for automatic wiring machine, or a ta,pe input

Characters-Universal Architecture for LSI 79

TABLE I -Estimated MCB execution times

INSTRUCTION

FLOATING POINT ADD/SUBTRACT
FLOATING POINT MULTIPLY
FLOATING POINT DIVIDE
STORE (MAIN 1\1EMORY)
LOAD (MAIN MEMORY)
CONDITIONAL BRANCH
ALL SHIFTS (REGARDLESS OF LENGTH)
OR/AND
DIRECT ADD
ADD/SUBTRACT
MULTIPLY

TIME IN Il-Sec

5.4 + A
21.8 + l:l
21.0 + jj.

7.0
7.7
3.8
5.8
6.2
4.6
6.8

20.8

jj. = (EQUALIZATION + NORMALIZATION TIME) < 5.2 Il-SEC FOR 32 BITS.

to a routing program for printed circuit card etch layout.
The encoding information for the micromemory

array iR provided on tape by the microprogram as­
sembler. This tape is used directly in the manufacture
or alteration of the array. The microprogram code is
assembled with the usual aids provided by machine
language assemblers.

System simulation would be accomplished from (1) in­
formation of the machine structure as input to the
character assembler, (2) the microprogram code as in­
put to the microprogram assembler and (3) instructions
from the system designer input directly to the system
simulator. The degree to which system checkout would
be accomplished would of course be dependent upon
the sophistication of the simulator. However, because
of the high level of definition of the characters them­
selves the simulator would not be concerned with details
of the Boolean logic or signal interface consistency
between characters. Therefore a worthwhile simulator
is seen as a feasible task.

Thus, the complete system-microprogrammable
characters, character assembler, microprogram as­
sembler, and system simUlator-provide the system
designer the capability for total system design from
his desk. Furthermore, he is not concerned with logic
design in any form. When he specifies the following:

1. character configuration
2. microprograms
3. simulation instruction

these item are provided for:

1. character assembly

2. back panel wiring
3. micro-array encoding
4. system checkout

all without the services of a logic designer or the tech­
nician's help. In fact, it is conceivable that no human
intervention need take place between the system de­
signer and his designed hardware!

ACKNOWLEDGMENT

The research reported in this paper was sponsored in
part by the Electronics Research Center under Con­
tract NAS 12-665.

REFERENCES

1 R C JENNINGS
Design and fabrication of a general purpose airborne computer
using LSI arrays
Digest 1968 IEEE Compu'ter Group Conf June 1968

2 N CSERHALMI 0 LOWENSCHUSS B SCHEFF
Efficient partitioning for the batch-fabricated fourth
generation computer
Proc FJCC 1968

3 J J PARISER
Connection considerations with a veiw toward balch fabrication
Proc of the Nat Symposium of the Impact of Ba.tch
Fabrica.tion on Future Computers April 1965 213

4 H R BEELITZ S LEVY R J LINDHARDT
H S MILLER
System architecture jor lar(jiJ scale integration
Proc FJCC 1967

5 J J PARISER H E MAURER
Implementation of the NASA modular computer with LSI
functional characters
Proc FJCC 1969

Fault location in cellular arrays *

by K. J. THURBER

Honeywell Systems and Research Center
St. Paul, Minnesota

INTRODUCTION

Testing of complex integrated cellular logic circuits
fabricated using LSI techniques has become a source of
concern to users and manufacturers. Since an economi­
cally feasible solution to testing problems is not visible
for the complex arrays contemplated for the near future,
manufacturers have acknowledged the seriousness of
the problem. Currently some observers believe that LSI
cannot be tested because general procedures for testing
and diagnosing digital circuits are applicable to small
networks of approximately 30 gates, while cellular
arrays are contemplated as containing hundreds or
thousands of gates on one chip. However, if arrays are
constrained to be in a cellular form, then testing
problems can be simplified and test schedules can be
produced which use the interconnection structure of
cellular arrays.

In some cases the iterative intercormection structure
of cellular arrays enables derivation of test schedules
that exhibit an iterative nature, thus reducing the
complexity of the testing problem in comparison with
testing problems encountered in testing a noniterative
structure containing an equal number of gates. It has
been shown that the structure of single-rail cascades can
be used to great advantage in the derivation of test
algorithms for cascades 6 and that this testing can be
accomplished from the edge of the cascade. These results
are extendable to a large class of arrays. However,

* The author was formerly with the Electrical Engineering
Department, Montana State University, Bozeman, Montana.
This work has been supported by a National Science Foundation
Grant, No. GJ-158, a National Defense Education Act Title IV
Fellowship, No. 67-06596, and an Air Force Cambridge Research
Labora tories Contract, No. F19628-67 -C-0293.

Kautz1•2 has shown that cellular arrays exist which
cannot be tested from their edge terminals.

Problem definition

The iterative interconnection structure of cellular
arrays allows decomposition of testing problems for LSI
cellular arrays into several subproblems. One sub­
problem is the testing of single-rail cascades, such as the
one shown in Figure 1. These cascades can be used in the
production of more-complex cellular arrays, and tech­
niques can be derived such that if a single-rail cascade
can be tested then certain complex arrays can be tested.
Examination of problems encountered during solution
of the problem of testing single-rail cascades using only
input and output terminals of cascades produces
methods that can be used to test more-complex arrays.
Specifieally, the solution of problems involved in testing
single-rail cascades lends insight to methods useful in
testing cellular arrays from their edge terminals by
computers using an average of only two or three tests
per cell contained in the array.

Figure 2 indicates the construction of an important
class of cellular arrays. An example of an important class
of arrays that has this interconnection structure is a
cutpoint array.4 This array consists of collector rows and
vertical cascades. Busses extend across all collector rows
and distribute every variable across the vertical cas­
cades. This construction reduces the testing of this
array to the testing of a single-rail cascade, since each
collector row can be tested as a single-rail cascade (under
the added assumption that· both a 0 and a 1 can be
placed on the input to each buss that extends across
the collector rows) and each vertical cascade can be
tested as a single-rail cascade. Output values of vertical

81

82 Fall Joint Computer Conference, 1969

Figure I-Interconnection structure of cascade"!

I
I

c[---dxtKhcb------cb-- f[

I I I I ; I
I I I I I
I I I I

----.,.fm _ 1

f _m

Figure 2-Construction of a te~table cellula,r array

cascades are measured at the' bottom of the array
whereas collector row output values are measured on
the right-hand side of the array; Admittedly, it would
be desirable to test all collector: rows (and all vertical
cascades) simultaneously; howe\~er, to accomplish this,
a restriction on the array struct&re must be made that
restricts the class of testable arr~ys until the procedure
becomes practically useless. '

Practical considerations

Consideration of testing problems produced by LSI
chips may help develop test algorithms that could be
used to test today's complex printed circuit boards.
However, complex cellular arrays in practice will be
more difficult to test than printed circuit boards.
Consider that not only must exact error locations be
indicated, but that a decision must be made based on
the number of errors and their l~cations as to what can

be done with imperfect arrays. Are imperfeet arrays
discarded or can they be salvaged in some manner?
~/finnick5 and Spandorfer8 have suggested that extra
vertical cascades and collector rows be installed at
predetermined intervals in arrays, such as in Figure 2.
If a vertical cascade or collector row has an error, then
the extra cascade or row could be used to produce the
correct function.

Before any test procedures can be established, an
error or circuit failure criterion must be established
which allows definition of possib:e error types that may
appear in LSI construction. In a later section an
expanded allowable set of errors for certain types of
cellular arrays will be presented.

Placing an accessible test pad on an interconnection
between cells reduces the effective area usable for the
cells. For this reason attempts should be made to
accomplish all testing and location of faulty eeils from
the terminals of the array without any test p,ads being
included in the array.

A test schedule could verify the complete truth table,
transfer function, or state table for any given device;
however, this procedure would require too much time
and would add greatly to the expense of the array.
Instead of a complete verification procedure, another
Rolution could be to test certain input conditions on a
probabalistic or expeeted utilization basis; however,
this method is still very unsatisfactory. A feasible
approach is to decide on a dominant failure mode from
which a set of allowable errors can be derived for each
cell type used in arrays under consideration. With this
knowledge manufacturers could construct arrays using
certain interconnection structures and could design cells
with redundant properties. This would cause an increase
in the probability that, if a failure occurs which is one
of the dominant failure types, the cell error that oceurs
is a cell error that is contained in the set of allowable
errors.

Generation of tests and test equipment

Redundant design, failure modes, allowable errors,
and required confidence level contribute to the deter­
mination of the number of tests required; however, the
array's structure can almost determine the number of
tests independently of these factors. Test schedules are
constructed to verify whether each cell is producing its
specified function. This method of testing was chosen in
preference to verifying an array's truth table because
the number of tests needed is generally much less than
m(2n+1) , where m functions of n + 1 variables are
produced. Under certain assumptions, choosing test

schedules capable of accomplishing the task of locating
every error in arrays such as shown in Figure 2 is
plausible (see Theorem 1), and these test schedules can
be programmed for testing using digital computers.
Because of their iterative structures, cellular arrays
simplify problems encountered in the detection and
location of faults.

Since test schedules can be programmed for single-rail
cascades, computers will be able to test many types of
arrays with very minor software input changes. In
particular, for the single-rail cascade under the assump­
tions of Theorem 1, a general fault detection program
could be written. To test a cascade the only needed input
information would be the cell types and their location
in the cascade. With this information the general
program is able to test all cascades of one type. When
the type of cascade changes, this information can be
given the computer as input data and all cascades of the
new type can then be tested. Because of the structural
interconnection of arrays shown in Figure 2, no repro­
gramming of the computer is needed when a new type
of array appears.

Assumptions and definitions

Figure 1 illustrates the interconnection structure of a
Maitra cascade.3 Every cell in the cascade is a two-input,
one output cell. It is assumed that the Boolean variables
applied to the cascade are numbered as illustrated on the
cascade shown in Figure 1. All testing of the cascade is
accomplished using only the input leads and the output
lead of each cascade (and of arrays). The ability to
measure the functional value produced by a cell by
means of probing a buss connecting two adjacent cells js
not assumed. To minimize the "uncertainties" (the
functional values between cells cannot. be measured and
the location of the error is unknown; therefore, the
functional values between cells are uncertain) involved
in testing cascades, it is assumed that cell n is tested first
(see Figure 1), then cell n-l, etc. If an error occurs in
cell n-j, its propagation may be stopped by one of cells
n-1, n-2, ... , n-j + 1. Once cell n is tested, it may be
set such that it transmits the output of cell n-1 to the
output terminal of the cascade. In this manner (under
certain error assumptions) the cells may be tested in the
following order until error location results: n, n-1, ... , 1.
The number of tests needed to test a cellular cascade is
O(n) *, where n is the number of cells in the cascade.

I t is assumed that only one error (faulty cell) may
appear in a cascade. Also, the interconnections between
cells do not fail, the error is time independent; i.e.,

* See Definition 6.

Fault Location in Cellular Arrays 83

if cell m is in error at time tl, then cell m is still in error
at t2 > tl and the error type in cell m has not changed.
Further, the input and output leads of the cascade do
not fail.

I t is assumed that the 12 allowable cell functions for a
Maitra cascade are fI, f2, f3, f4, f5, f6, 17, fs, f9, flO, fn, f13,
and f14. (See Definition 1 for an explanation of the notation
Ii.) Seven allowable errors are assumed for each cell;
these are hb (s-a-l; stuck-at-one), fo (s-a-O; stuck-at­
zero), fl5-p (complementation where p is the cell
function), f12 (the input X), f3 (the complement of the
input X), flO (the input V), and f5 (the complement of
the input V). These seven errors consist of the two
failure types (s-a-O and s-a-l) usually assumed by
most fault diagnosticians augmented by f15-p, h2, fa, fIr'>
and fs. [Note that flO and i5 have different allowable
error sets; i.e., Ehu = (fr, i15, f5, f12, f3) and Ef5
(fr, f15, flO, f3, i12).J

Definition 1. The cell functions are numbered as
follows:

Xi Y i-I fo fl h f3 f4 f5 f6 17 /s /9 flO /n !I2 !I3 f14 /15

0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

Definiton 2. An error occurs in a cell whenever the
cell produces a function that is not the same as the
function specified for that cell.

Definition 3. G = (ft, i2, 14, fs, f6, 17, fa, jg, ho, /n, h3,
!t4).

Definition 4. I p denotes (1, 2, 3, 4, ... p).

Definition 5. The error function E is a mapping
from G x In to G, where EUh j) = A denotes that cell j
was theoretically to produce fi€,G but instead it
produced AeG. Clearly, E(jj, j) = fi indicates that cell j
does not have an error occurring in it.

Definition 6. X* means either X or X', but not both.

Definition 7. O(n) means the same order of mag­
nitude as n.

11 necessary and sufficient condition for fault
location in cascades

Location of a single fault in a cascade is considered in
this section. A necessary and sufficient condition for
location of a single fault in a cascade is proven. The

84 Fall Joint Computer Conference, 1969

proof of Theorem 1 can be utilized to obtain an algo­
rithm to loca,te faults in a cellular cascade or array.

Theorem 1. Given a cascade with n cells, then the error

Proof:

can be located if a,nd only if for every
iEln - (1)

(1) E(fl4, i) ~ fIi)? f12
(2) E(fll, i) ~ f10i h
(3) E(fs, i) ~ fo, 112
(4) E(h, i) ~ fo, f3,
(5) E(fa, i) ~ f9, J12' f3
(6) E(f9, i) ~ f6, ~12' f3
(7) E(f13, i) ~ f12; flo
(8) E(h, i) ~ f3,!t6
(9) E(f4, i) ~ fo, f12

(10) E(fl, i) ~ fo, f3
(11) E(flO, i) ~ fo, f15, f6
(12) E(j5, i) ~ f10,fl),!I5

The proof is an inquction proof. Clearly,
the theorem is truJ for the case n = 1.
Assume that the ~heorem is true for a
positive integer k and consider a cascade
with k + 1 cells. Given the cell function
for cell k + 1, if it can be shown that the
error can be located in cell k + 1 if and
only if assumptions (1) through (12) are

Figure 3-Test decision map for fu

Figure 4-Test decision map for f11

Figure 5-Test decision map for fs

Figure 6-Test decision map for f2

Figure 7-Test decision map for f8

valid for cell k + 1, then the proof is
complete.

Assume conditions (1) through (12).
This part of the proof is now completed in
Figures 3 through 14. Note that if Co,
G1, "', G i are used to set Yi = C at time
tI, then if Y i = C is wanted at time ~ if
Go, G1, "', Ci are utilized again, Y i is the
same value as it was at it; however all that
can be said about Y i is that it is either C
or C', but not both. This fact is used in the
proof of this theorem. In the figures with
the circled function number it may be
necessary to add one more test to deter-

Figure 8-Test decision map for f9

Figure 9-Test decision map for f1a

Figure lO-Test decision map for f7

Figure ll-Test decision map for f4

Fault Location in Cellular Arrays 85

Figure 12-Test decision map for f1

Figure 13-Test decision map for flo

Figure 14-Test decision map for fr;

mine whether the cell is in error or is
receiving the complemented sequence.

The proof of the other half of the
theorem will be by contradiction. Assume
that the error can be located, but that the
restlictioIlS (1) through (12) are not
needed. Then it can be verified that the
following pairs of conditions give the same
output at the cascade's t~rminal. Since the
two conditions give the same outputs, the
error cannot be located, which is a con··
tradiction of the assumption; therefore,

86 Fall Joint Computer Conference, 1969

the assumption that the restrictions are
not needed iA incorrect and the proof is
completed. After (1) an abbreviated nota­
tion is used. Note: Using the Test
Decision lVlaps and the contradiction part
of this proof one can actually determine
the values of Y i-I.

(1) Y k = 1, 1, 1 and E(f14, k + 1) = f14
are equivalent to Y k = 0, 1, ° and
E (f14, . k + 1) = fl5 at the cascade's
output terminal.

Y k = 0,0, ° and E(f14, k + 1) = f14
are equivalent to Y k = 0, 1, ° and
E(f14, k + 1)= it2 at the cascade's
output terminal.

(2) Yk = 0, 0, ° and E(fll, k + 1) = fn;
Yk = 0, 0, 1 and E(fn, k + 1) = fa.
Y k = 1, 1, 1 and E(fn, k + 1) = fn;

Y k = 0,0,1 and E (fn, k + 1) = fIr,.

(3) Yk = 1, 1, 1 and E(fs, k + 1) = fs;
Yk = 1,0, 1 an.;! E(fs, k + 1) = !t2.
Y k = 0, 0, ° ~nd E(fs, k + 1) = fs;

Y k = 1, 0, 1 and E(fs, k + 1) = fo.

(4) Yk = 1, 1, 1 and E(f2, k + 1) = f2;
Yk = 0, 1, 1 and E(f2, k + 1) = fa.
Y k = 0, 0, ° and E(f2, k + 1) = f2;

Yk = 0, 1, 1 and E(f2, k + 1) = fo.

(5) Yk = 1, 1, 1 and E(f6, k + 1) = f6;
Y k = 0, 1, ° and E(f6, k + 1) = fa.
Y k = 0, 0, ° and E(f6, k + 1) = f6;

Y k = 0, 1, ° and E(f6, k + 1) = f12.
Y k = 1, 0, 1 and E(fe, k + 1) = f6;

Y k = 0, 1, 0 and E(f6, k + 1) = fg.

(6) Yk = 1, 1, 1 and E(fg, k + 1) = fg;
Yk = 0, 1, ° and E(jg, k + 1) = !12.
Yk = 0, 0, ° and E(fg, k + 1) = fg;

Yk = 0, 1, ° and E(fo, k + 1) = fa.
Yk = 1, 0, 1 and E(fo, k + 1) = fo;

Yk = 0, 1, ° and E(fg, k + 1) = f6'

(7) Yk = 1, 1, 1 and E(fla, k + 1) = f13;
Yk = 0, 1, 1 and E(jla, k + 1) = f12.
Yk = 0, 0, ° and. E(fla, k + 1) = f13;

Yk = 0, 1, 1 and E(fla, k + 1) = f16.

(8) Yk = 1, 1, 1 and E(h, k + 1) = f7;
Yk = 1, 0, 1 and E(j7, k + 1) = fa.

Yk = 0,0, ° andE(j7, k + 1) = f7;
Y k = 1, 0, 1 anp E(J7, k + 1) = fu).

(9) Yk = 1, 1, 1 and E(f4, k + 1) = h;
Yk = 0, 0, 1 and E(h, k + 1) = fo.
Y k = 0,0, ° and E(h, k + 1) = h;

Yk = 0, 0, 1 and E(j4, k + 1) = !J.2'

(10) Y k = 1, 1, 1 and E(fl, k + 1) = it;
Yk = 0, 1, ° and E(it, k + 1) = fo.
Yk = 0, 0, ° and E(Jl, k + 1) = fl;

Yk = 0, 1, ° and E(it, k + 1) = fa.

(11) Yk = 1, 1, 1 and E(flO, k + 1) = ito;
Yk = 0, 1, ° and E(ito, k + 1) = f15'

Y k = 0, 0, ° and E(flO,k + 1) = flO;
Yk = 0, 1, ° and E~!lO, k + 1) = 10.
Yk = 1, 0, 1 and E(flO, k + 1) = .flO;

Yk = 0, 1, ° and E(ito, k + 1) = /5'
(12) Y k = 1, 1, 1 and E(f5, k + 1) = !5;

Yk = 0, 1, ° and E(f5, k + 1) = !o.
Y k = 0, 0, ° and E(Is, k + 1) = /5;

Yk = 0, 1, ° and E(/5) k + 1) = f15'
Yk = 1, 0, 1 and E(f5, k + 1) = is;

Yk = 0, 1, ° and E(/5, k + 1) = ito.

If the cascade meets the assumptions of Theorem 1,
then Theorem 1 can be used to determine test schedules
for the location of an error in cascades. It should be
noted that when cell k is tested, one obtains information
about the cells k - 1, k - 2, .. " 1, and therefore a test
schedule with O(n) tests will test any cascade with n
cells under the allowable error set6• Clearly, if the
conditions of Theorem 1 are relaxed, then fault detection
(and maybe isolation) can be accomplished in the same
number of tests; however, if one is only interested in
fault detection, Theorem 2 is the best technique to use.

If a more complex cascade than the casca.des con­
sidered here is under consideration,· then a good
understanding of the method used to derive the
theorems in this paper will allow one to extend the
theories presented. If the cell functions fo, fa, !J.2, and f16
are allowed, then the fault techniques may be easily
extended since none of these functions depend on the Y
value; however, one must exercise care in the use of the
theory because it is based on the ability of the tester to
place theoretically both a ° and a 1 on the Y inter­
connection, and examples (trivial) in which this cannot
be accomplished do exist.

Fault detection in Maitra cascades

In this section the detection of a single ftmlt in a
cascade is considered. The theory for this section is
based on the observation that every n cell Maitra

cascade (as defined in this. paper) produces :;I. function
dependent on X 06.

The purpose of this detection scheme is to utilize
exactly two tests to detect whether a cascade has a
faulty cell.

Theorem 2. Let the Maitra cascade have n cells. If e1

e2, "', c'n are such that f(Xo, e1, e2,

Proof:

en) = Xo*, then

(1) f(l, e1, "', en) = f(O, e1, "', en)
implies that there exists a cell i such
that E(fp, i) = fo, f16, itz, or fa.

(2) f(l, e1, "', en) = (1 *)' and f(O,
e1, "', en) = (0*)' imply that there
exists a cell i such that E(f p, i) =
it6-p or is·

(3) f(l, e1, "', en) = 1 * and f(O,
e1, "', en) = 0* imply that there is
no error in the cascade or that there
exists a cell such that E(f p, i) = flO
and p r6 10.

In part (1) f does not depend on Xo;
therefore, there must be a cell i such that
E(jp, i) = fo, f15, it2, or fs. In part (2) f
depends on (X 0 *) '; therefore, there is a
cell i such that E(f p, i) = f15-p or f5'
Whereas, the proof of part (3) is now
obvious.

X 0 was chosen as the variable to be used in Theorem 2
because of the symmetry of the resulting theorem.
Since Xl can be made (by a suitable choice of constants~
to pass theoretically through every cell *, the theorem
could be rewritten in terms of Xl. In terms of the
complexity of the detection scheme it is seen that
cascades could have a very simple detection test
schedule. It should be noted that Theorem 2 can very
easily be adapted to provide fault detection in cascades
if it is assumed that flO is not an allowable error for any
of the 12 cell functions.

Examples

This section consists of examples of the use of
Theorems 1 and 2. fA denotes the measured value of
f whereas fT denotes the theoretical value of f.

* Assuming the cell function for cell 1 is not flO or f6•

Fault Location in Cellular Arrays 87

Example 1. Assume that there is no error in the
cascade shown in Figure 15.

Test
Xo Xl X 2 Xa X 4 fT fA
0 0 0 1 0 0 0
0 0 1 1 0 1 1
0 0 0 1 1 1 1
0 0 1 0 0 0 0
0 1 0 1 0 1 1
1 0 0 1 0 1 1

Example 2. Assume that E(fs, 3)
shown in Figure 15.

Test
Xo Xl X 2 Xs X 4 fT fA
0 0 0 1 0 0 1
0 0 1 1 0 1 1
0 0 0 1 1 1 0
0 0 1 0 0 0 1

Example 3. Assume that E(f14, 2)
shown in Figure 15.

Test
Xo Xl X 2 Xa X 4 fT fA
0 0 0 1 0 0 1
0 0 1 1 0 1 0
0 0 0 1 1 1 0
0 0 1 0 0 0 0

0000000

0101011

Conclusion

E(fa, 4) = fa
E(fs, 3) = fs
E(f14, 2) = f14
E(f14, 1) = f14

= it6 in the cascade

Conclusion

E(fa, 4) = f6
E(fs, 3) = f15

= fain the cascade

Conclusion

E(fa, 4) = fa
E(fs, 3) = f6 80
an extra test is
needed.

E(fs, 3) ~ f5 and
the complemen­
ted sequence
Y2 IS being
received.
E(f14, 2) = f3

Example 4. This example satisfies the hypothesis of
Theorem 2. Assume that E(fs, 4) = fo for
the cascade shown in Figure 1.5.

[(Xo + Xl + X z) Xa] EB X 4 = fT(X O, Xl, X 2, Xa, X 4)

!T(XO, 0, 0, 1, 0) = Xo

fA(O, 0, 0, 1,0) = fT(I, 0, 0, 1,0) = 0 implies that there
is a cell i such that E(f p, i) = fo, it5, it2, or fa.

88 Fall Joint Computer Conference, 1969

xo--1 t
H

C (3 r4

f14 f14 H fa H f6 ~f
Figure 15-A cascade to: be tested

CONCLUSION

Techniques for fault location an~ detection in cellular
arrays with an allowable error set of fo, f16, !I6-p, fa, !I2,
f6, or flO were described in this paper. It was shown that
the problem of testing an array could be reduced to the
problem of testing a cascade. The solutions presented
are particularly attractive because of their simplicity.
To locate an error, O(n) tests are needed for an n cell
cascade. Detection of an error requires only two tests
if the allowable error set is reduced by one error (flO).

A necessary and sufficient conclition for single-error
location was given. If the restrictions of this condition
are relaxed, then an isolation theorem such as given by
Thurber 6,7 can be derived; however, this isolation
condition will be more complex t~an the theorem given
by Thurber 6,7. A criterion that enables detection of a
single error in only two tests was! derived.

Although the theories presenited were derived for
regular arrays of logic, they have ,potentially wide areas
of application. A good understanding of the philosophies
presented here will allow the extension of the results to
cascades of m input n output cellf';. Also, some irregular
arrays may be tested using this ,theory if they can be
decomposed into sections composed of some form of a
cascaded structure (or sections composed of structures

closely resembling a cascaded structure).

ACKNOWLEDGMENT

The author wishes to thank R. C. Minnick for his help
in the preparation of this paper.

REFERENCES

1 W H KAUTZ
Testing for faults in combinationa,l cellular logic armys
1967 Switching and Automata Theory Symposium

2 W H KAUTZ
Diagnosis and testing oj cellular arrays, properties of
cellular arrays jor logic and storage
SRI Project 5876 Scientific Rpt No 3 July 1967 119-145

3 K K MAITRA
Cascaded switching networks oj two-input flexible cells
IRE Trans on Electronic Computers Vol EC-ll April
1962 136-143

4 R C MINNICK
Cutpoint cellular logic
IEEE Trans on Electronic Computers Vol EC-13 Dec
1964 685-698

5 R C MINNICK
A survey of microcellular research
Journal Association for Computing Machinery Vol 14 April
1967 203-241

6 K J THURBER
Fault location in cellular arrays
PhD dissertation Montana State Univ June 1969

7 K J THURBER
Fault location in cellular cascades
Submitted to IEEE Trans on Computers

8 L M SPANDORFER J V MURPHY
Synthesis of logic .functions on an array of integrated circuits
Scientific Rpt ~o 1 for UNIVAC Project 4645 AFCRL-
63-.528 Contract AF 19(628)2907 Sperry Rand Corp
UNIVAC Engineering Center Oct 1963

Fast multiplication cellular arrays for

LSI implementation

by C. V. RAMAMOORTHY and
S. C. ECONOl"fIDES

The Univer.~ity of Texas at Austin
Austin, Texas

INTRODUCTION

The inherent capabilities Qf Large Scale IntegratiQn
technQIQgy have recently shifted attentiQn tQward twO'
majQr cQncepts in the design Qf functiQnal cQmputer
subsystems; the cQncepts Qf FunctiQnal MQdules and
Cellular Arrays.

The FunctiQnal MQdule cQncept emphasizes the
PQssible standardizatiQn Qf frequently used CQmmQn
digital subsystem units such as registers, adders,
cQunters, etc. Because Qf the unique iterative prQper­
ties alsO' displayed by these units it is CQmmQn to' view
them as building blQcks (functiQnal mQdules), built
Qn a single substrate Qf material, the intercQnnectiQn
Qf which can expand significantly their functiQnal
capabilities. In additiQn to' standardizatiQn, their
massive prQductiQn may suggest IQW CQst subsyst~ms.

The Cellular Array cQncept allQws the intercQnnec­
tiQn Qf several types Qf mutually independent logic
blQcks, the cells, in various geQmetric CQnfiguratiQns
to' perfQrm a desired QperatiQn.

This paper is an attempt to' cQmbine the abQve twO'
apprO' aches in the realizatiQn Qf a Binary Cellular
Array multiplicatiQn unit easily adaptable to' the
LSI realizatiQn techniques and speculate the PQssibili­
ties Qf the realizatiQn Qf Qther similar such functiQnal
units aiming to' IQwer the CQst per unit Qf cQmputa­
tiQn and PQssibly increase the Qverall system reliability.

MultiplicatiQn was chQsen in the study because it
fQrms the basis Qf divisiQn and square rQQt operatiQns
by iterative methods as well as others indicated by
design trend Qf present day cQmputing systems.

89

The methQdQIQgy and retrQactive design prQcedures
Qf the lVlultiplicatiQn Array are presented. IntercQn­
nectiQn arrangements at the cell level, fQr the array
fQrmatiQn, as well as the mQdule level by. bringing all
mQdule inputs and Qutputs at the terminals Qf the
"package", fQr the purpQse Qf assembling larger mul­
tiplicatiQn units, are alsO' shQwn.

Since in any LSI circuit testing impQses a cQmplex
prQblem SQme diagnQstic schemes are suggested for
recQnfiguratiQn and QperatiQn under reduced capabili­
ties 0'1' even by autQmatically switching in Qf a per­
manently cQnnected spare mQdule.

Other LSI cQnsiderations in terms Qf cell or module
fan-in/fan-Qut, tQtal number Qf pins required per
package, chip sizes and densities and rough cost es­
timates are alsO' discussed.

Single bit multiplier

;'Figures 1 and 2 show the integral parts and the de­
tailed cellular array structure Qf the multiplication
unit, in which each rQW of the array cQrresPQnds to'
Qne bit Qf the multiplier. The array uses K-bit Qperands
prQducing 2K bit prQduct.

TO' achieve fast executiQn time the mUltiplication
is done by perfQrming K-l carry save additiQns (simple
EXCLUSIVE-OR QperatiQns) followed by a full
binary addition. Since the cells in the array Qperate
asynchrQnQusly, the unit as a whQle can Qperate faster
without using a clock pulse.

We, shall next explain the single-bit multiplication
unit in some detail.

90 Fall Joint Computer Conference" 1969
------------------------------------~~-----------------------------

r-------------
1

I
I
I
I
I
I
I
I

AND

CARRY SAVE ADDER

I~--~~~~--~~~I

I ,...x.---:1I.~"------"'--""'----"'---JI

I
I
I I L _______________ _ - - __ I

Figure l-The integral part.s of the asynchronouH
multiplication array

Let the multiplicand be represented by the binary
vector M = (mJ, m2, ... mk) and :the multiplier by the
binary vector N = (n 1, n2, .. . nk).

A kx2k, P matrix is now generated starting from righ t
to left (whose elements Pij are computed from the
relation Pij = m 1:' nj, PijE fO, 1} with the follO\ving
conditions

Pii =

fl SiS k for i = 1,

mj-Hl if ni = 1 and/or 1
2,3, ... k

i-l<j<k+l
I for i = 1, 2, 3 ... k

11 SiS k for i
} ... k

o if ni = 0 and/or 1

Ik + 1 S j S i
i=I,2,3 ... k

- 1,2,3

- 1 for

In terms of the array to be implemented, this condition
implies that for the range "i," "j" where Pij = 0 no cell
will be required to perform a 10giO function. Thus the
[PJ matrix has the following form: '

Pl,2k-2 ... Pl,A: ... P13 P12 Pu

P2,2k-Z' •• P2,A:' .. P23 P21

Pk,2k-l

m\ m. m~_ .. um2 m, --"I
, -n2

~~~C' -n3 

C C _..J'. 
C P~ P~ 

~-I-I----.l¥--_ - __ n\ 

P~ 
-+f-,¥,-------", 

~c-------_n7 

'\ 

FigurE' 2-The "single-bit" asynchronous mult.iplieation 
cellular array 

The following example will illustrate the above 
matrix formation. 

EXAl\IPLE 
----- .:.vI (10101) and N = (111111) 
lVIUI. TIP L Y ... 

then the P matrix is P = 000 0 101 0 1 

00010 L 0 1 0 

o 0 1 0 1 0 100 

o 1 0 1 0 100 0 

101 0 1 000 0 

The above matrix can be realized by selective AND­
ing of components of M and N. This "Shifting Net­
work" accomplishes the proper positioning of the 
numbers to be added before their addition, just as in 
the conventional multiplication. Arrays of Carry 
Save Adders are used to perform the addition IOf these 
binary numbers utilizing Wallace's algorithm.! 

The first stage of the Carry Save Adder adds the 
first two rows of the P matrix (first two generated 
partial products) thus generating two vectors-the 
first partial sums and the first carry having the form: 

S = (SI, 2k-l SI, 2k-2 • •• SI, k • •• SI1) 

The double subscript is used to identify the above 
vectors with corresponding positions of the P matrix 
that contributes to their generation. 



The logic functions yielding the elements S2i and 
C2j are: 

where j = 2, 3,," 2k - 1. The composite cells are 
shown in Figure 3a. 

In the subsequent stages the Carry Save Adder will 
add three vectors: The sum vector generated at the 
previous stage, the carry vector generated at the 
previous stage shifted once to the left and the next row 
vector of the P matrix. 

The logic functions producing the new sand c vectors 

for i = 3,4, ... k, and j = 1,2,3 ... 2k - 1 are: 

SHl,j = SiiPHl'iCi'i-l + SiiPi+l,iC i,i-l + 
+ SiiPi+l,iCi,j-l + SiiPi+l,i-l 

The composite cell 'C' is shown on Figure 3b. After 
the Carry Save Addition has been performed for all 
the partial product row vectors of the matrix P, a 
Ripple Binary Adder is used to add the sum and carry 
row vectors of the last stage of the Carry Save Adder. 
The typical cell of this Ripple Binary Adder has the 
same structure as "cell C" of the Carry Save Adder, 
except that it ripples through the carries generated to 
next high order position and puts out the correct 
binary sum which of course involves any carry inci­
dent into it from the previous stage. The output of 
the Ripple Binary Adder is the final product of the 
multiplication. 

The superposition of the "Shifting Array", the "Car­
ry Save Adder" and the "Ripple Binary Adder" re­
sulting in the "Single Bit l\1ultiplication Cellular 
Array" is as shown in Figures 1 and 2. 

It was found that with a Carry Save Adder there is 
considerable gain in the time propagation over the 
choice of]'ullBinary Adder. Assuming a uniform delay 
d for each cell in the array, the total execution time 
T p of k bit by k bit multiplication is bounded between 
the limits (k-1) d :::; Tp :::; 2kd. The lower limit (k-l) 
d is the total delay in the Carry Save Adder while the 

Faist Multiplication Cellular Arrays 91 

C 
1) 

c MAJORITY Plj 
Slj~ 
l,j-1 • + FUNCTION OF P2j=t!)--c1J 

THREE 
PHI,j • VARIABLES P 

~~J>S S. ~L·+IJ 
IJ "EXCLUSIVE-OR" 

c • FUNCTION OF 
I,J-I + THREE 

• VARIABLES 

PHI,J 

Figure 3a, b-CeU "S", Cell "C" 

-cp MAJORITY 
I ruNCTION 

OF TWO 
VARIABLES 

-<P 
"EXCLUSIVE-

2 OR" 
FUNCTION 
OF TWO 
VARIABLES 

upper limit 2kd depends on the choice of the device 
for the final Full Binary Addition. This, as compared 
to the maximum delay requirement in a conventional 
multiplier due to k(k-l) d full binary additions plus 
k-single bit left shifts. The asynchronous multipli­
cation array, as implemented is shown in Figure 2. 

Two-bit multiplier 

Upon examination of this array it was decided that 
the time propagation and therefore the computational 
speed could be further improved by reducing the Carry 
Save Adder stages, in other words, the rows of the 
array. This also improves the attenuation factor of 
the cell inputs as they ripple throug the array. 

An alternate multiplying algorithm, examining the 
multipli.er bits in subsets of two, was investigated re­
sulting in the block diagram of Figure 4 which dis­
plays the integral parts of the modified array. To il­
lustrate the algorithm better, this was assumed to be 
an m X n instead of a square array and the multiplier 
parts now are: 

1. The m + n + 2-bitregisterforthemultiplicand 
2. The n + 2 -bit register for the multiplier 
3. The m + n + 3-bit r~gisters for the final 

product 
4. The Binary Shifting Array (BSA) 
5. The Input Control Circuit (ICC) 
6. The Carry Save Adder (CSA) 
7. The "End Around Carry" Accumulator (EACA). 

Before investigating the above circuits the general 
algorithm concept must be established. This algorithm 



92 Fall Joint Computer Conference, 1969 

M+N+2 --------1 

1 
Figure 4--The modified "two bit" multiplier 

calls for three types of decisions in each multiplication 
stage: ADD or SUBTRACT a single multiple' of the 
multiplicand and SHIFT without generating any mul­
tiples of the multiplicand. Th~ is opposed to the 
conventional multiplication which requires only shifts 
of the multiplicand and their addition. For the pos­
sible four 2-bit combination one has the following 
obvious interpretation: 

a. Combination 002 = 010 Add nothing to the 
partial product 

b. Combination 012 = 110 Aqd one times the mul­
tiplicand to the partial product 

c. Combination 102 = 210 Add two times the mul­
tiplicand to the partial product 

d. Combination 112 = 310 Add three times the 
multiplicand to the partial product. 

Combinations (a), (b) impose no difficulty in their 
generation. Combination (c) requires a I-bit shift of 
the multiplicand to the left accqrding to the obvious 
simple fact: to generate any 2n-th mUltiple of a binary 
number (the multiplicand in this:case), where n is any 
integer n ~ 0, shift the number in-bit position to the 
left. For example, to generate 16Xm = 24Xm, shift 
m four bit positions to the left. For combination (d) 
one notices that the multiplicand can be expressed 
in the following two ways: 

(1) (4xm) - (lxm) (2) (2Xm) + (IXm). 

The first representation was cnosen for this multi­
plication algorithm, according to which a comple­
mentation (2's complement) of one times the multi­
plicand is performed and added. to the corresponding 
present stage of the mUltiplication array while a re-

quest is issued to add one times the multiplieand in 
the following stage in that order. The latter request is 
taken care of by adding "I" to the bit pair of the 
multiplier corresponding to the next multiplication 
stage, thus increasing the pair's integer value by one. 
This is commonly known as a "carryout." 

The subtraction of multiplicand from the partial 
product is performed in two stages. The one's comple­
ment of m is "added" into the Carry Save Adder of 
the row. A "one" in the lowest order bit position cor­
responding to the row is generated and inserted into 
the End-Around-Carry Accumulator (EACA), at 
the appropriate column. Together this constitutes 
adding the two's complement of m after appropriate 
shifting. Thus any sequential borrow propagation is 
prevented at the Carry Save Adder stages. Since the 
"End-Around-one's" if generated by any or all rows 
are inserted at distinct columns of the EACA the 
latter performs at most one accumulation during a 
complete multiplication cycle. It must be remembered 
that partial products generated at each row are bussed 
to the next row of cells with a 2-bit left shift. 

The following two tables indicate the decisions that 
have to be made when the various bit pair combina­
tions are encountered at a given stage when no carry­
out (Table I) or a carryout (Table II) has been gen­
erated in the previous stage.6 

Multiple of Multiple of 
Bits m generated Carry out Bits m generated Cm'ryout 

00 0 0 00 1 0 
01 1 1 01 2 0 
10 2 2 10 -1 1 
11 -1 -1 11 0 1 

Table I Table II 

Finally to illustrate the overall performance of the 
modified multiplier with minimum effort an example 
of a 4-bit positive multiplicand times a 6-bit positive 
multiplier producing a 6 + 4 = 10-bit Ion? product 
is presented. The extension of the algorIthm and 
techniques involved can be easily ex.te~ded for an 
arbitrary bit length multiplicand or muitipher. 

The binary shifting array 

The BSA generates the elements Pij e(O,I) and such 
that 

P .. = 0 for 1 < J' < m + 1; i ~ 3 
~J - -

j :::; m + n; i ~ 3 



where 

m = no. of bits in 1\1 

n = no. of bi ts in ::\ 

with the rest of the Pi/S varying according to the 
corresponding multiplicand bits. Its implementation 
procedure is as follows: 

1. Provide for one additional bit pair at the most 
significant part of the multiplier by inserting 
two zeroes in the register. This will take care 
of a possible generation of a "carryout" at the 
two most significant bits of the multiplier. Pro­
vide for as many zeros to the left-hand side of 
the multiplicand register to make it (m + n + 2) 
bits long. . 

2. Examine the multiplier bits two at a time from 
the least significant to the most significant bits. 

3. Generate the following three numbers for each 
multiplier bit pair: 

a. The multiplicand 
b. The multiplicand inverted (one's comple­

complement) 
c. Twice the multiplicand. 

Repeat for the next bit pair until all n-multiplier bits 
are used. For this particular example the proce­
dure will yield the formation of possible CSA inputs, 
where the "boxed in" numbers will be the rows of the 
P matrix chosen by the control lines of the ICC (Fig­
ure 5a). 
The two numbers are placed in the registers with the 
least significant bit of the multiplier starting at the 
top. For every bit pair of the mUltiplier there is a 
corresponding triplet of "AND" gate rows and one of 
inverters, all together being capable of generating any 
of the desired forms of the multiplicand called for in 
Tables I and II. 

The "AND" gates ha.ve two inputs and one output, 
one of the inputs being a multiplicand bit bussed 
across and the other being the appropriate line acti­
vated by the ICC. The outputs of the leftmost column 
are used to keep count of the "End Around Carries" 
and are directly connected to the appropriate positions 
of the EACA. 

The input control circuit 

The ICC is a column of (n/2 + 2) rectangular cells 
(see Figure 4). Its operation is to select the appropriate 
multiplicand multiple for each possible bit pair com­
bination, by the way of three output lines: L1., L2~ La. 

Fa,st Multiplication Cellular Arrays 93 

0 1 Multiplicand 

0 0 0 0 Multiplier 
J. I 

0 1 0 I 0 0 0 0 0 0 0 1 

• 
[1 : 1 1 0 0 0 

I 
I 

010 0 0 0 0 0 1 0 
.- I 

0 1 0 
I 

0 0 0 0 0 

11 ! 1 0 0 0 

0 1 0 
• 

0 0 0 0 

o f 0 0 0 0 
I 

[1~ 1 0 0 0 

I 
010 0 0 

I 

t 0 ~ 0 
0 1 I 

1 : 1 0 0 0 
I 

o I 1 0 1 

Figure 5a-Multiplication example 

Co 

L
I

_ 

B1 

L2 

B2 

L3 · 

Figure 5b-Cell-K of the input control circuit 



94 Fall Joint Computer Cc>nference, 1969 

LI aotivates the single multiple of the multiplicand (first 
"AND" gate row of each group of rows in the ESA). 
L2 activates the 2's complement of the multiplicand 
(second "AND" gate row, directly under each row of 
inverters).L3 activates the double multiple of the 
mUltiplicand. Therefore, the typical cell of the ICC has 
BI, B2, and Co as inputs and LI, L2 and L3 as outputs. 
Its logic functions are shown below. BI and B2 are any 
two consecutive bits and Co is the darryout. The logic: 

M M 2M 
BI B2 Co LI L2 L3 

0 0 0 0 0 0 
0 0 1 1 0 0 
0 1 0 0 0 1 
0 1 1 0 1 0 
1 0 0 1 0 0 
1 0 1 0 0 1 
1 1 0 0 1 0 

1 0 0, 0 

Note: The interpretation of BII B2 = 01 is not one times 
the multiplier as it would obviously appear, but it is 
instead two times the multiplicand because of the way 
the multipli,er is plaGed in the register, vertically with 
the least significant bit on the tOli>. The B I , B2 = 10 
combination is interpreted in a similar manner 

Figure 6-The binary multiplying cellular array 

The typical cell "K" of the ICC is shown in detail in 
Figure 5b. 

The ,carry save adder, end around carry 
accumulator and full binary adder 

A layout of the inputs to the CSA stages, the EACA 
and FBA is displayed below. The groups of binary 
numbers between the lines represent the actuall inputs 
to a particular row of cells. The first three groups are 
CSA row inputs. The fourth group represents the EACA 
inputs and the final group, those of the FBA. An binary 
numbers representing partial products are of cou~se 
P matrix row vectors activated by the ICC lines dne 
to a .particular multiplier bit pair combination. 

1 1 1 1 1 1 1 0 1 0 0 1st partial product 
1 1 1 1 1 0 1 0 0 2nd partial product, 

o 0 0 0 0 1 001 0 0 
1 1 1 1 101 0 0 0 0 0 

1 1 101 0 0 

1st partial sum 
1st carry 
3rd partial product 

1 0 0 0 1 1 0 0 0 1 0 0 2nd partial su m 
o 1 1 1 0 0 1 6 0 0 0 0 0 2nd carry 

o 1 0 1 1 4th partial product 

o 1 0 0 0 1 0 0 0 1 0 0 3rd partial su m 
1 0 1 0 1 1 0 0 0 0 0 0 0 3rd carry 

o 1 1 1 End Around Carries 

1 0 0 0 1 1 1 0 1 0 0 0 14th partial sum 
o 1 0 0 0 0 0 0 0 1 0 0 0 4 th carry 

1 1 0 0 1 1 1 0 1 1 0 0 1 Final Sum (Result) 

Figure 6 shows array after superimposing the in­
dividual circuits. 

It can be easily noticed that there is a reduction 
by a factor of two in the total number of cell rows re..., 
quired for the array and therefore in the total finml 
propagation T p, at the expense of some ,additional 
control logic, a number of inverters and an additional 
stage for the EACA. No further complexity in the 
cell structure results, thus the o'tiginally developed 
cells were used, with a minor modification for cell S 
as shown in Figure 7 a. This cell may also, be present 
in the single bit multiplication array. 

It must also be noticed that the overflow of bits 
resulting in the left-most significant part of the final 



Figure 7a-Cell "S"-A form of Cell "S" 

NS 

S ____ -++--_ ... 

Figure 7b-CelJ "R"-Reconfiguration cell 

product register may be advantageously utilized for 
sign and decimal point consideratlons. 

Diagnostics and reconfiguration 

In order to incorpora te diagnostics in the array 
and study- the interconnection problem, a standard 
size module had to be assumed. It was felt that the 
implementation of a 64 X 64 bit multiplier would be 

Fast Multiplication Ce,llularArrays 95 

a good choice for all practical purposes. An intercon­
necting scheme of standard dimension 64 X 8 bit 
modules to realize the 64 bit multiplier was then de­
vised aiming to minimize the number of pins per 
module necessary for the interconnection. 

As seen in Figure 8, the resulting 64 X 64 multi­
plication unit requires 2-Full Binary addition stages 
and 4-Carry Save addition stages per module, a 
total of 32-Carry Save additions and 15-Binary Addi­
tions (only one for the first module). However, there 
is a real time overlap between these various stages, 
and by utilizing a pipelining technique and a series 
of flip-flops after each FBA, a 100 percent utilization 
of the unit during computation is achieved, and the 
multiplication cycle is considerably faster. This is 
illustrated shortly in connection with Table III. 

The basic module as displayed in Figure 6 has to be 
modified further for the interconnection. An extra 
FBA and additional gating for diagnostic purposes is 

10 I- -I , 64 • 
MODULE - 1 

PRIl_ 

l[ 
Flln-Plnn .<;toraae 

MODULE - 2 

-
-

L MODULE -3 

r MODULE-4 

I 1 MODULE - 5 
~ 

l MODULE - 6 1 
MODULE - 7 1 

I 

~I'"I 

l ~ ....:...J 

1 

1 

Bits 

Bits 
+- 2 - Bits 

Figure 8-Example of an assembled 64 X 64-bit 
mUltiplication unit using the pipelining scheme 



96 Fall Joint Computer Conference, 1969 

----,---------------...:.----~-------

introduced in every module between the output of its 
respective FBA and what is shown as a product 
register. The typical newly developed cell for the 
diagnostics and reconfigura tion is shown in Figure 
7b, while the above mentioned modifications are dis­
played in detail in Figure 9 for a typical module. 

As seen, three additional control lines are needed 
to perform the following functions. 

a. To relay a Fault or No-Fault signal, indicating 
that a fauft has or has not occurred in one par­
ticular module (NF/F) (e.g., if F = 0 NF = 1). 

b. To relay a No Shift signal for the output of this 
module, (NS = 1) if no fault has occurred in 
the preceding module. 

c. To relay a shift, eight-bits to the right, (S = 1) 
for the output of this and all subsequent modules 
if a fault has been detected in the preceding 
module. 

The detection of the fault could be accomplished by 
a software routine which may check the final product 
of the unit periodically and appropriately set the flip­
flops of the control signals. 

By shifting the outputs of all subsequent modules 
to the malfunctioning one eight-bit positions to the 
right while forcing the output of the faulty module to be 
equal to zero at the same time and simultaneously 
introducing the spare module which is permanently 
connected to the unit, one can still achieve 100 percent 
computational efficiency. If another module fails to 
function properly, by applying again the same recon­
figuration scheme the unit will function with a reduced 
capability since the eight-least significant bits of the 
multiplier will be lost. No provision has been made at 
this point if two modules fail to function properly 

I .. 
OVERFWW 6 .. ··8 

1:.,---
BlTS 

NF/..-F -+--+-..+-----1--rI'--

Figure 9-The comhinationallogic gating 
for reconfiguration 

at the same time. At least one of them must be replaced 
to put the multiplication unit back in service. 

Aiming to maximize the number of multiplications 
per unit time, as already mentioned, one can introduce 
storage elements at intermediate points. This allows 
the unit to accept a new set of operands without waiting 
for the total completion of the present computation. 

Consider an m X m bit multiplier module. If the 
intermediate computations are stored after the Carry 
Save adders, the first Binary adder and the second 
Binary adder, the rate of multiplications in the module 
per unit time will be 

1 
Rm = where 

max [tcs, t b] 

tC8 = Total time propagation through the CHA. 

tb = Total time propagation through the FBA for 
the binary addition of two m-bit binary 
numbers. 

Then the number of storage elements required per 
module is 2m + m + m = 4m. If, however, storage 
elements are inserted at the outputs of the two Binary 
Adders only, as shown in Figure 8, the maximum rate 
of multiplications in each module per unit time will be 

while the total number of storage elements required 
will be decreased by half, that is 2m. 

The table below gives the sequence of events in 
the first four modules of the 64 X 64 composite mul­
tiplier unit of eight modules, based on the pipelining 
technique. 

Table III 

MODULES 

TIME UNITS 1 2 3 4 

1 Bll Bll Bll Bll 
2 B2l B2t, Bl2 Bu BZI 

3 Bn BSI, B22 Bal B13 
4 B41 B41, B32 B41, B23 B41, B14 
5 B51 Bn , B41 B51, B33 Bn, B24 

Each time unit in the above table corresponds to the 
factor tb + t es , and B ij represents the j th bimtry 
addition of the i th multiplication. 



Fast Multiplication Cellular Arrays 97 

---~-----,------------------------------------------------------------------------

Figure lO-An alternate. interconnecting scheme for 
the 8-modules of the 64 X 64 multiplication unit 

Another interconnecting scheme which has not been 
investigated yet in detail but seems to be equally as 
efficient, considerably faster and adaptable to the 
proposed reconfiguration technique is the one shown in 
Fig. 10, where each level of nodes represents FBA's 
Figure 10, where each level of nodes represents FBA's 
performing in parallel with an anticipated multiplication 
cycle of 

LSI implementation 

The implementation shown for the 64 X 8 module 
reveals a number of characteristics suitable for large 
scale integration. Among them are the repetitive 
interconnections of simple identical cells and the 
modularity suitable for expansion and reconfiguration. 

Below some of the approximate hardware require­
ments are pointed out. 

Approximate 'number of PINS/MODULE 

1. m + n + 2 needed for the multiplicand register 
2. m + n + 2 needed as inputs to the second FBA 
3. m + n + 2 needed for the product 
4. n + 2 needed for the multiplier register 
5. three-control pins for reconfiguration 

Approximate number of CELLS/MODULE 

The cells are the kinds already discrussed: C, S, 
S', R, K. All are present in a module. 

1. m X n/2 cells needed for the CSA stages 
2. m + n cells needed for the EACA stage 
3. m + n reconfiguration cells 
4. 2 (m + n + 2) cells needed for the two FBS's 
5. n/2 + 1 cells needed for the ICC. 

Approximate number of GATES/CELL* 

For cell "C" approximately seven-gates are required 
For cell "S", itS'"~ approximately three-gates are 

required 
For cell "R" approximately two-gates are required 
For cell "K" approximately nine-gates are required 

The above estimates point out the fact that testing 
at the individual cell or circuit level (item yet to be 
examined) becomes a problem, especially when the 
complexity of the chip is increased, with a paralleled 
decrease in reliability and yield of non-defective chips. 
However, using the modular approach it is advisable 
to perform the testing externally on the module and 
discard the malfunctioning units. This would consider­
ably decrease the amount of logic on a chip, which would 
otherwise have to be inserted for the testing of the 
individual circuits. This approach seems to be eco­
nomically feasible since it is estimated that by 1970 
an LSI chip of 100 X 100 mils in size may contain 
200 components, at five cents per component, while 
by 1975 an LSI chip of 300 X 300 mils in size may 
contain as many as 3,600 components at the cost of 
about one cent per component. Therefore, miniaturi­
zation of LSI chips will discourage the testing on the 
individual circuit level, while the loss due to the 
discarding of modules after tesing at the frame level, 
will be negligible. 

In view of the above considerations and since the 
present state-of-art high density MOS circuits are 
being driven at 10 MHz, implementation of the 
multiplier modules as the one presented by MOS cir­
cuits appears very desirable from a manufacturing 
viewpoint. A reasonable building block might be a 
64 X 64 bit multiplication unit requiring an approxi­
mate number of 5000 active elements (field effect 
transistors) . One could also visualize the whole unit 
incorporated in one or two chips. Where speed is the 
primary requirement, the unit can be designed using 
fast bipolar transistors, with an expected five ns delay. 
Assuming then a 64 X 64 bit module is implemented 
by bipolar transistors, the execution time could be 
in the neighborhood of 0.22.5MS, which when pipelined, 
the maximum number of multiplications per second may 
be approximately 5 X 106 • An MOS array of the same 
module will perform in an order of magnitude slower 
than in the bipolar case. 

* The above gates 9,re mostly "AND" gates with the "OR" gate 
not included in the count. They are also 2(m + n) additional 
gates needed for the reconfiguration scheme and m X n gates for 
shifting each array. 



98 Fall J Qint Computer Co¢erence, 1969 

The pin count also indicates that the current design 
is within the state-of-art of the MOS technology. 

The performance figures given :above are educated 
guesses since the circuit and int~rmodule delays are 
dependent on the circuit types, their interconnections, 
the chip topology, etc. In addition1 the design examples 
described in the previous sections indicate the ease 
with which the array could b~ partitioned to fit 
reasonable unit or chip sizes. 

CONCLUSION 

Since fast multiplication has become the basis of 
iterative divisions and square root~ in fast computers6 • 7 

there appears to be a need for ch~ap array type, LSI 
realizable multiplication subsystems. This paper reports 
the design methodology and the detailed implementa­
tion of one such structure. Ease of diagnosis and capa­
bility of reconfiguration were used ~s twin requirements 
in the final design. When the unit is composed of a 
number of modules and a malfunction is detected in 
one of them, a method of switching automatically in 
a spare module was presented. An estimate of the 
logic circuitry in the hard core (that portion of the 
unit which must be operating without any faults) 
during testing is found to be less that 14 percent for 
a 32 X 32 module, 9.7 percent ~or 64 X 64 module 
and 4 percent for 128 X 128: module. Therefore, 
as the size of the multiplication module-unit increases 
the relative size of the hard core decreases very rapidly. 

To conclude, the cellular array implementation of an 
asynchrouous multiplication unit using mostly non­
carry-propagating Carry Save add~rs was accomplished. 
The final cell design and the cOJitrol and the recon­
figuring circuitry are quite simple. 

A number of additional studies needs to be done in 
the future. The design of self-diagnosable and repairable 

functional arrays appear quite feasible and, worth 
considering. The possibility of composite design of 
a multiplication, division and square rooting unit using 
techniques presented in this paper could be very use­
ful, particularly if the division and square root al­
gorithms are based on the availability of fast multi­
plication units such as those discussed in this paper. 

ACKNOWLEDGMENTS 

The authors would like to thank Mr. Gary Vvang of 
the NASA Electronics Research Center for sharing 
with them some of his thoughts on the subjeet. Also 
Mr. W. R. Adrion, graduate student at the University 
of Texas at Austin for his constructive sugg;estions. 

REFERENCES 

1 C S WALLACE 
A suggestion for a last multiplier 
IEEE Trans Prof Group on Electronic Computers Vol 13 
No 1 Feb 1964 

2 'Methods for high-speed addition and multiplication 
NBS Cir No 591 1958 

3 0 L MAcSOREL Y 
High-speed arith/11.R,tic in binary computers 
Proc IRE Vol 49 No 1 Jan 1961 

4 1\1 LEHMAN 
Short-cut multiplication and division in automatic binary 
digital computers 
Proc Inst Elec Eng Paper No 2693M Vol105B Sept 1958 

5 I FLORES 
The logic of computer arith/11.R,lic 
Prentice-Hall Inc 1963 

6 D FERRARI 
A division method using a parallel multiplier 
IEEE Trans Prof Group on Electronic Computers Vol 16 
No 2 April 1967 

7 S F ANDERSON et al 
I BM system model .91: Floating point execution unit 
IBM Journal of Research and Development Jan 19167 



The Pad Relocation technique for 

interconnecting LSI arrays of imperfect 

yield 

by D. F. CaLHOUN 

Hughes Aircraft Company 
Culver City, California 

INTRODUCTION 

The interconnection of circuits required in Large Scale 
Integration (LSI) using multi-level metalization above 
monolithic semiconductor arrays is taking basically 
two approaches. One is predicated on processing with 
a reasonable yield entire arrays without any semicon­
ductor defects (i.e., 100 percent yield chips) which 
allows once-generated fixed-wiring patterns to obtain 
the required interconnect. The second approach aims 
at much larger semiconductor hrrays (i.e., full-slice 
LSI) for which defect-free processing cannot be ex­
pected. Thus, probe tests are made of the semicon­
ductor circuits processed on each LSI slice (or wafer) 
and record is made of the good and bad circuit posi­
tions. Unique interconnection masks are then generated 
to interconnect good circuits in each wafer's particular 
yield pattern using certain "discretion" in avoiding 
the bad circuits. As a result, the 100 percent yield 
approach emphasizes the need to use standard inter­
connect masks but is complexity limited by the oc­
currence of defective circuits in larger arrays, whereas 
approaches capable of routing around the defective 
circuits have required a full set of unique signal inter­
connect masks for each wafer's particular yield pattern. 

The Pad Relocation approach, however, allows the 
interconnection of full .. slice LSI arrays containing de­
fective circuits to be accomplished with a minimal 
amount of unique interconnect per array. Only a 
portion of one of the typically three interconnect levels 
varies from array to array, thus allowing significant 

improvements in the cost, reliability, and testability 
of the finished arrays as well as less limitation on cell 
yields and array complexities. 

Description of the Pad Relocation technique 

Pad Relocation is a technique which allows a pre­
determined standard pattern of good circuits to be 
established on all LSI slices used to perform the same 
array function regardless of the varying yield patterns 
determined by DC wafer probe tests. This is accom­
plished by relocating the pads of nearby good circuits 
to the positions where good circuits were specified 
by a presc~ibed master pattern, but were not· found 
during wafer probe tests. The pad positions above a 
bad circuit (or any unused circuit) are isolated from 
that circuit by a layer of dielectric. Where good cir­
cuits are found in expected good circuit locations, 
those circuits are used without relocation. Thus, the 
Pad Relocation technique functionally establishes a 
specified pattern of good circuits as if there had actually 
been a 100 percent circuit yield in that pattern. A 
single wiring pattern can then be generated for all 
the LSI arrays of the same function to accomplish the 
much more complex signal interconnect between the 
master pattern circuits. By determining standard 
cross-under areas within the Pad Relocation layer 
where relocation lines need never occur, it has been 
shown that large arrays can be interconnected with 
the same number of total interconnect layers as re­
quired by discretionary techniques. 

99 



100 Fall Joint Computer Conference, 1969 

With each wafer's good circuits located in the pre­
determined master pattern, an optimal standard 
interconnect of the circuits can be made for each 
wafer. Since this signal routing and mask-making 
expense is incurred only once for each function, much 
more effort can be spent optimizing the signal routing. 
As a result, the total number of interconnect levels 
(including Pad Relocation) may actually be fewer 
(for very complex arrays) than pther techniques by 
which the interconnect is generated for each wafer's 
particular yield pa,ttern. 

The Pad Relocation technique has been 100 per­
cent successful for all integrated circuit and special 
LSI wafers considered so far. The "master pattern" 
gives the prescribed locations of good circuits to 
which each LSI array's particular yield will be tailored. 
Statistically, if M is the percentage of wafer circuits 
in the master pattern and Y is the wafer circuit yield 
from probe tests, then only M(100 - Y)/100 percent 
of all wafer circuits need to be relocated. For example, 
if Y = 35 percent and M = 30 percent, then the 
relocation (as a statistical average) of 19.5 percent 
of the wafer circuits will establish a master pattern 
that uses 86 percent of all the good wafer circuits. 
This would allow 120 good circuits to be located in 
prescribed positions, leaving an average of only 20 
good circuits unused. 

An example 

The methodology of the Pad lRelocation technique 
is best described by example. Figure 1 shows the map­
ping of circuits on an LSI wafer. : Each dot represents 
the position of a semiconductor. cell such as a full 
adder, or a quad two-input NAND gate cell, or a flip­
flop, etc. Figure 2 identifies with a slash (/) the loca­
tion of all circuits determined to be good by dc wafer 
probe tests on a particular slice., The yield of wafer 
circuits varies from 10 percent to 90 percent depending 
on the circuit complexity, and the locations of the 
good circuits cannot be predicted from wafer to wafer. 
This makes it impossible to use standard intercon­
nect patterns without first transforming the various 
wafer yielq patterns to a single standard pattern. 
The circuit yield (the percent of :total circuits which 
are good) for the wafer in Figure 2; is nearly 30 percent 
and yet there is not a single area :of 100 percent yield 
that is larger than three circuits by two circuits. Thus, 
100 percent yield could obtain urtits with only about 
5 percent of the complexity allowed by full-slice inter­
connection techniques. The goal ~s to tailor by some 
efficient means the locations of the good circuits in 
Figure 2 to a standard pattern that may be used for 

Figure I-Integrated circuit wafer 

.. // .. 
. // .. / . 

/ . / . . / . 
. III ... / .. 
........ //./.// 

./ ... //././/.//. 

.. / .. / .. /./ .. ////. 
/// ...... /.////./ ... / .. " / . / ..... . . / . . . . . / /. . / . / / . . . . 

... /// ... /// .. /./ .... 
.. ////./ .. / .... ///. 
..... //./ .// .... . 

. . //./// .. / .. / ... . 
/ .. -././ .... ////./. 

... //.//././ .. ////. 
/ ... / . / .... / ..... 

/.///./ .. // ... / . // ... 
/ .. 
. / . 

Figure 2-Wafer after test-Slashes show good cireuit 
positions 

all wafers with about the same circuit yield. For higher 
yield wafers, there are other standard patterns. which 
use more good circuits. 

Figure 3 shows a master pattern (in heavy dots) 
which can be used for wafers having at least a 25 per­
cent yield. That pattern is characterized by a, more 



• •• • • • • • • • • • • • 
• • • • • •• • •• • • • • • •• • • • • •• • •••••••• 

•••••••••••••••••••• 
• • • • • •• • •• • • • • • • • • • • 

• ••••••••••••••••••••• 
• ••••••••••••••••••••• •••••••••••••••••••••• 
• •••••••••••••••••••••• · ' ....•.•.•...•........ 
•••••••••••••••••••••• · ...................... . 
• ••••••••••••••••••••• 
• ••••••••••••••••••••• •• • ••••• • • • • • • •• • • • • 

• • • • • • • •• • • • • • • • 
• •• • • • • • • • •• •• • 

••••• ••••••••••• 
• • • • • • • • • • • •• • 

• • • • • • • • e • 

Figure 3-A master pattern of good circuits-All wafers 
will be matched to this pattern by the Pad 

Relocation technique 

dense usage of good circuits toward the center of the 
wafer \vith good circuit positions never adjoined on 
more than one side by another circuit in the master 
pattern. The latter characteristic facilitates the routing 
of standard signal interconnect as well as the reloca­
tion of circuits in at least three directions. The matching 
of the master pattern to the expected yield distri­
bution as a function of distance from the wafer center 
optimizes the conflicting goals of minimum number of 
relocations and maximum probability of fulfilling the 
master pattern. 

Figure 4 shows the Figure 3 master pattern super­
imposed on the particular \vafer yield of Figure 2. 
The objective now is to route a nearby good circuit, 
shown by a slash, to each heavy dot (i.e., master pat­
tern position) which initially is \vithout a good cir­
cuit. This specification can be completed manually 
giving a coding sheet descr~ption of necessary circuit 
relocations; or a simple computer routing program can 
output a punched tape or cards that can be used to 
make a mask automatically. The computer routine for 
Pad Relocation \vill use about two orders of magni­
tude less run time than a customized signal routing 
primarily because no circuit placement or logic signal 
routing are required. Pad Relocation requires only 
that a good circuit be identified for relocation to each 
position in the master pattern which did not initially 
have a good circuit. A later paper will present work 
that is under way to automate the Pad Relocation 

The Pad Relocation Technique 101 

•••••• • . . I I .. 
. .• I I • . , • 

.1.1·····1··· 
·111·.·1·.·.········ 
. ··.··.·1'·1·'1···1. .. ... II . I. I I . , I .•... I I 

. ·1·.1'.1·1·'11'1··111 
III·.· '."'.1'1.1". . •. I .•...•. I .•....•.. 
.. ·1.···.11··1·11··· 

.··1.1·' ··1.1··.·'·.· 
·.·11'1.1··.···.111. 

., ·.11·.·· ·.1· .•.. 
.·11·1.1··.··1··· . 
1·.·.·1··· ·1.1"1 • 
. 11·11'.'" ·1111 

.,. '.1·1··· '1.' .•. 
l·ll'.I·.II· 

..•. '1·11' ..• 
·1· •. 
el 

Figure 4-Master pattern superimposed on the particular 
yield of the Figure 2 wafer 

selection and Rpecification with the use of interactive 
graphics. 

Figure 5 shows a manually generated specification 

AREA A 

. :ri-J::1·· 

: { 1.r..~ :ill ~ f: J n: ~g. 
•.. ·Ihl-e//,·.;-..... 11 
·J-e1·'/,·/6·11.' "if 
~~~~:~:::~~~.~ 

. . foe r--:..J . -./ I---e / . / /-' -.....-/--.....,1. I.~ia~n ~ ~ r-J4
.... 'fH/'"'' ·.1 .•
. ·e--I/·I.h·,,· ./ ..
e---t. e-J flf· I'" . 1.1.· I.e

'11'11·· ·.··1111·
•. ·-.t·I··· !-e .. ,.
.. hll.fH·~h··
. '~:i~:{q:"

fH· ~ ..
Figure 5-Specification of a set of relocations necessary

to completely implement the master pattern of
Figure 3

102 Fall Joint Computer Conference, 1969

of posdible relocations that cOn)pletely satisfies the
master pattern of Figure 3, us~ng the good circuit
positions of the wafer in Figure! 2. The longest relo­
cation line length is less than 10.45 inch. Figure 6
shows how the relocation in area A of Figure 5 can be
accomplished without crossovers for a quad two-input
gate cell. Each gate of the bad ci~cuit at the lower left
is functionally replaced with a good gate from the top
right circuit. It should be noteq that the computer
needs only subroutines for leaving (or entering) a cell
from the top, bottom, left, and right, for moving paral­
lel lines' over some number of c~lls, and for making
ninety degree turns in order to dq all the possible Pad
Relocation routing patterns. Figure 7 shuws the actual
Pad Relocation of an SN5480 g~ted full adder above
a silicon wafer using 0.002 incl~ aluminum lines on
0.0035 inch centers. Figure 8 s~ows how simple the
Pad Relocation mask is if it is cbnsidered as a set of
the above mentioned subroutines.

Intermedia.te step to full wafer LSI

Figure 9 shows an intermediate step to full-wafer
LSI using the Pad Relocation te;chnique. Three 4-bit
Modular Multiplier modules are ~o be fabricated from
the three bordered half-inch square areas (as was sug­
gested in a 1968 FJCC paper by D. F. Calhoun).
Within the three bordered areas,; slashes again repre­
sent good circuits and circles show the master pattern

n
~

......

..I

t • II .

.It

,

rr.....-r
~

... ,

• I

c~t f.--

I
I

I

I
!

i

I ;

I

~

I

-

,

r-II

I

- -,
I
I
I

L _____ _ ----------

Figure 6-A set of pad relocations ;necessary to replace
functionally the quad two-inptit gate circuit in

area A of Figure 5

Figure 7-Pad Relocation of an SN5480 gated full
adder above a silicon wafer (Using O.002-inch
aluminum lines on O.0035-inch centers)

locations. The lines terminating in arrowheads show
how three, eight, and five good circuits can be relo­
cated into the positions circled to establish the same
pattern of good circuits for each module, thus allowing
the use of one standard signal interconnect pattern
for all subsequent modules tailored to that pattern.

Figure 10 demonstrates the simplicity of a coding
sheet specification of the necessary circuit relocations

'1--' , .. _.-
L-- .. __ .

~:~~:I

1
_··1 ...
. ------
~

.. _,.
__ •J .

::!.~~
. :.J ..
.. r' - --

. - :-,
~:

Figure 8-Mask pattern for the pad relocations specified
in Figure 5

Figure 9-Pad Relocation routing for three 200-gate
modules on a single l-Yzinch wp,fer

for the three multipliers of Figure 9. Figure 11 shows
the four possible Pad Relocation interconnect patterns
which are necessary for the LSI multipliers. For these
modules it seems appropriate to incorporate simple

..... PAD RELOCATION LSI PHONE HUGHES 0."

CiRCUit Rtt6CAliuN biMteflbN

~T~~+W++W++W~~w+~~~~~~C~L~U;fl~:t3~1~*,
_,: I T S I F I S THE

...L..I-i-I-I-U+~-I--I-+--I--I--l~I-++W++++-j-E~!~2f-+--I-W-++-~~~~ C*~+'ll ."J'+-j ~-+~.+-I-i-+-+-I-+-I-+-l

-'-l-U!--W-J.-l-l-iW-l-+-W-~--+-l-I-I-l--I-l-+-l-I-1'~L 4"IH++H-H-I~H~~ C: ~ L U ~~"I-+++++++-l++-l
iLU!--W-J.~UL+-W-~--+-l-W+-I-l-+~~~L*2+-W-~+h~~L~~CA E :

I L 2 • R I H

C N 33
PECIFI S

IC R L -
CA INS

AT R I
E USED

L, I H T C I RC IT
S I I

II

,I

II

Figure lo-Coding sheet specification

The Pad Relocation T'echnique 103

Figure ll--Four relocation patterns for SN5480's

signal cross-under lines and power distribution in
the Pad Relocation level so as to require only two
additional levels of interconnect above the tested
LSI chips.

A Pad Relocation LSI hardware program

An LSI hardware development program began in
January 1969 (in which Hughes Aircraft Company
contracted Texas Instruments to do the multi-level
processing) and which resulted in fully tested and
packaged 207 gate arrays in May 1969. During this
program, (1) TI fabricated and tested one type of
their LSI wafers having a certain mix of gates and
flip-flops, (2) TI supplied the yield information on
each wafer to be processed for Hughes, (3) Hughes
generated both the one standard signal interconnect
mask for all wafers as well as an iI).dividual Pad Reloca­
tion mask for each wafer, and (4) using the mask speci­
fications from Hughes, TI processed the two additional
levels of interconnect and tested and packaged each
of the finished units. Similar programs for higher
complexity arrays have since been initiated. The
results of this program are described below.

The logi,c array to be built in: LSI

Investigations were made three years ago at Hughes
Aircraft Company into the applicat:on of LSI arrays

104 Fall Joint Computer Conference, 1969
j

to techniques for doing the verx high speed sum-of­
products computations required: in advanced digital
filtering systems. A result of thi;s study ,vas the de-

.velopment of the high speed ":l\10dular Carry Advance
l\1ultiplier" which was described l in a 1968 Fall Joint
Computer Conference paper by D. F. Calhoun. Among
its characteristics is its modularity \vhich allows
longer wordlength multiplication$ to be efficiently ac­
complished (in terms of speed ~nd parts) simply by
paralleling more of the identic~l modules. A 5-bit
sign-and-magnitude Modular Multiplier designed with
four types of logic gates and a JK flip-flop was thus
chosen as the vehicle for LSI development on this
program. Such an array forms and. stores in a register
the 9-bit sign-and-magnitude product of two 5-bit
operands. The 5-bit multiplier design uses 153 NAND
gates and 9 flip-flops (each equi\ralent to six NAND
gates) for a total of 207 interconpected gates per LSI
wafer.

The logical interconnection of, 207 gates using less
than one square inch of an LSI ~afer represents well
any state-of-the-art bipolar LSI ~pproach. Two levels
of interconnect (including the Pad Relocation) were
used above the tested wafer which already had a first
level of metalization for component interconnect.
In terms of cross-over complexity, signal linelengt.hs,
and circuit fan-outs, the IVToduhtr l\1ultiplier design
can be considered typical of a 200 gate logic array.

Description of the chosen LSI slice

The chosen semiconductor slice :for this LSI develop­
ment program was the Texas Instruments type HK"
slice. Basically, the K slice is a hiploar array of tran­
sistor-transistor logic (TTL) ga~es and flip-flops oc­
cupying an active area of about 11.1 square inches. A
picture of this LSI wafer is shown in Figure 12. The
array is subdivided into 298 cell!3 of dimension 0.084
inch by 0.044 inch. Of the 298 Basic wafer cells, 170
are split into two 42 by 44 mil halt-cells for gates while
the 128 JK flip-flops on the wafkr occupy full 84 by
44 mil cells. The distribution of logic elements on the
K slice is shown in Figure 13. Each cell labeled "3"
has two independent three-input NAND gates while
the adjacent cells labeled "5" have an independent
five-input NAND gate and a on~-input NAND gate.
In three of the rows of gates ~ single seven-input
NAND gate designated by a "7" was processed instead
of two three-input NAND gates. The rows of full­
sized 84 by 44 mil cells contain the JK flip-flops, which
are labeled "FF". In total there! are 642 logic gates
(170 ones, 264 threes, 170 fives, 'and 38 sevens) and
128 JK flip-flops processed on the wafer.

Figure 12-Texas Instruments LSI type "K" slice
(HAC Photo 4R07185)

LSI ARRAY· SLICE "K"

- 1176 MILS I t IM~LSr-
44 MILS 3 5 3 5 3 5 3 5

~ 3/5 3 5 3 5 3 5 3 5 31&

3/5 3 6 3 6 3 5 3 6 316 3r5

315 315 3 5 3 5 3 5 3 5 31 5 315

F

3} a 3/ 5 3/6 315 3 5 3 5 3 5 3 5 315 3T 5 3/5 31 5

F F F F F F F F F F F F F F F F F, F F F F F F F

7/ 5 7/ 5 d6 ih 7 5 7 5 7 5 7 5 dB 715 715 715

F F 'F

3 T 6 31, 31 6 315 315 3 6 3 5 3 5 3 6 315 315 315 31 6 31 5

F

315 31 5 31 6 3\ 6 31 6 3 6 3 5 3 5 3 & 31& 3T 5 31& 31 6 316

F

715 7\5 71 5 71' 71 6 7 B 7 6 7 5 7 5 7/5 71 5 71 5 71 5 715

F

31' 31 5 3/ 5 31' 31 5 3 & 3 5 3 5 3 5 3/ 5 31 & 3/ & 3/ 5, 31 5

F

3j1 3j5 3/ & 3/ 5 31 6 3 & 3 6 3 6 3 5 31 5 3 r 5 31& 31 B 31 5

F F F F F F F F F F F . F F F F F F F F F F F F F F F F F

71 5 71 6 715 71& 7 5 7 5 7 & 7 5 715 7/5 71 5 7ls

F

3T 5 31 e 31 5 315 3 5 3 5 3 5 3 5 3T 5 31 6 31 6 3\ 5

F

31 5 315 3 5 3 6 3 6 3 5 3T 5 31&

3/5 31 5 3 5 3 5 3 6 3 6 31 5 31 5

316 3 6 3 6 3 5 3 5 3\ 5

3 5 3 5 3 5 3 5

Figure 13-LSI array slice "K"

1188 MILS

I

Selection of the master pattern and
pad relocation patterns

First, a master pattern of circuits was chosen to
define the standard circuit positions on the K slice
that would be interconnected to form the Modular
Multiplier function. This master pattern (shown in
Figure 14) was defined with respect to (1) maximizing
the probability of successful fulfillment, Pr(M), of
the master pattern, (2) facilitating the standard signal
interconnect, and (3) using a minimum number of
relocation patterns efficiently. After the master pat­
tern and the repertoire of relocation patterns to be
used were determined, restricted areas in the Pad
Relocation level were defined to allow signal cross­
unders from the standard top level signal intercon­
nect. Sufficient cross-under capability for this design
was found in the flip-flop cells alone by using certain
areas of these cells which are not required by any of
the defined relocation patterns. Other cross-under
areas can be defined for any more complex designs
so as to still use only two metalization layers above
the tested circuits. A set of Pad Relocation patterns
was prepared to allow the efficient selection of the

Master Pattern Cell Designation Key:

t:. = 1 input gate

o = 3 input gates

o = 4 input gates

o = JK flip-flop

Figure 14~Pad Relocation worksheet with master
pattern locations shown

The Pad Relocation Technique 105

particular patterns and their positions necessary to
fulfill each wafer's master pattern. The chosen set
of K slice relocation patterns is shown in Figure 15.
This semiautomated specification has :fi~,cilitated a
very fast turnaround and low cost capabiiity for the
generation of Pad Relocation masks and for working
with new routing requirements, wafer layouts and
logic designs. '

LSI program results

The end results of the Hughes effort described in
this section were the two metalization mask specifi­
cations used by TI to process each wafer. Only one of
these is unique since the use of Pad Relocatio~ allowH
all signal interconnect to be obtained from a once­
generated standard mask. Figure 14 shows the work­
sheet specification of how the yield of a typical LSI
slice can be tailored to the chosen master pattern.
The lines with arrowheads at the end specify reloca­
tion patterns from the set of patterns shown in Figure
15. The completion of the K slice master pattern was
accomplished successfully on each of the 30 wafers
attempted. A typical time for a man to complete and
verify the specification shown in Figure 14 was two
minutes manually.

From the specifications like those in Figure 14, the
necessary relocation patterns were selected from the
standard set shown in Figure 15 and were added to

~

l 11111
/MIIIIIf "lI F u,

~

"'" l ~

'It .jill ~

.. II m

;!II'
-

1@!::siiil

ill

Figure 15-Set of K slice relocation patterns

106 Fall Joint Computer Conference, 1969

the standard cross-under pattern to complete the Pad
Relocation mask such as the on~ shown in Figure 16.
Only the particular circuit relocation patterns vary
within this mask which allows thb least possible varia­
tion of interconnect and testing from one array to
another. The more complex but standard mask is the
one shown in· Figure 17 which abcomplishes all neces­
sary. signal interconnect (except the cross-unders to
the Pad Relocation level) and the power distribution
for the 5-bit multiplier design. The design for this
mask can efficiently be done manually for arrays of
this and larger size since the ~aster pattern is well
distributed. In mask plotting itime alone, the Pad
Relocation mask required only about 20 percent the
time required to plot the signal interconnect metali­
zation patterns. A photograph of the final 207 gate
LSI multiplier is shown in Figure 18.

Statistics of Pad Relocation master patterns

The choice of a master pattern for Pad Relocation
is important since its definition affects the average
number of relocated circuits (and thus the routing
time and mask complexity) as well as the number and
simplicity of the signal interconnect levels. Also a good
statistical match between the ~aster pattern and the
expected wafer yield distribution will result in a higher

•

• \

•

-
I •• 'hi I • L - II =

II-II~=.- ill' - - . -
II1II 11111 ,

--.-~ - -:;D:5
It I ~

ill' • , • II .11 II I I II - ---- ~ 11111

- ~- - - q I • ~

L
II I •

iiIIIt
~- .

1.1

li'igure 16-Pad relocation mask with standard cross­
undel'S

Figure 17-5-bit. modular multiplier standard inter­
connect mask

probability of successful relocation. As an example,
consider a master pattern that is defined too densely
about a wafer's periphery. Since peripheral wafer
circuits show a much lower yield than the more central

'1IJJ'IJJIJIJ'IJJJJIII~J~llllllll.JI
.. t: ! . l ;. ~; ;.; ~ :. 1, :; ~ , c'· , '

'. . . ,

11111111111111111111"111111111111111111 .

Figure 18-207 gate multiplier LSI array usin.g Pad
Relocation (HAC Photo 4R09152)

ones, there will statistically be more relocations, longer
relocation lengths, more difficulty in satisfying the
master pattern, and a higher concentration of signal
interconnect above the master pattern than if the
master pattern had been chosen to match the "ex­
pected" yield distribution as was done for the example
shown in Figure 3.

A first question that must be answered is what is the
"expected" yield distribution? Investigations thus far
have pointed out only that there is a significant decrease
in yield as a function of the distance from the wafer
center which can be attributed to boundary defects,
and that when good or bad circuits occur, there is a
more than random clustering effect. No ability to
predict the locations of these clusters has been obtained.
What must be done is to examine the yield of large
samples of the wafer types that will be used to de­
termine the distribution that best describes their
expected yield patterns. This distribution will be dif­
ferent for different ranges of yield as well as for different
circuit complexities and wafer types. The master pat­
tern for a specific range of yield, wafer type, and wafer
size should be matched to the expected distribution
so as to take advantage of any knowledge of where
good circuits are more probable. By so doing, the
probability of successfully fulfilling a master pattern
is maximized while minimizing the expected length of
the longest relocations.

StatisticaJ techniques have been developed to de­
termine and compare the efficiency of various master
patterns in terms of maximizing both the utilization
of good circuits and the probability of successfully
fulfilling the master pattern. For example, if y is the
percentage of the total circuits that were found to be
good (i.e., the yield), m the percentage of total cir­
cuits that are in the master pattern, and r the number
of unused circuits from which a relocation could be
made to each master pattern circuit, then the proba­
bility of successfully fulfilling each master pattern
circuit independently is:

P(l) = Y + (1 - y)y + (1 - y)2y.+

k"'"r

+ (1 - y)ry = y L (1 - y)k (1)
k-O

where the first term is the probability that the master
pattern circuit itself is good, and each succeeding term
is the conditional probability of needing to examine
another candidate for relocation times its probability
of being good. Equation (1) can be simplified as follows:

'The Pad Relocation Technique 107

~ ~ (1 - y - 1)(1 - y)k
Y L.J (1 - y)k = Y LJ

k=O k=O (1 - Y - 1)

with

and

k=O

therefore,

~ (u - l)u k

= Y L.J
k=Q -Y

u = (1 - y)

k=r

L (u - l)uk

k=O

- (u r+1 - 1) 1 -(1 - y)r+l

P(l) = 1 - (1 - y)r+l

(2)

(3)

(4)

If the master pattern has a total of M circuits in
it, then the joint probability of successfully fulfillin g
all of the M circuits becomes:

P(M) = P(l)M = [1 - (1 - y)]r+1M (5)

Equation (5) is based on an uncorrelated and pseudo­
random distribution of good circuits (see Reference 10
with y 2:: 0.25) as well as the same assumption as
Equation (1) that there are r circuits (good or bad) for
each master pattern circuit fsom which a relocation can
be made independently of the other master pattern
circuits. It is, however, an unnecessary restriction to
assign r circuit positions which could only be used to
fulfill each master pattern circuit. Instead, consider
successively examining up to r circuit positions which
are the closest to each particular master pattern position
and, for which, there is still a free path in the Pad.
Relocation level to the master pattern position. Then
Equation (5) will give the probability of successfully
relocating (if necessary) to each of the M required
master pattern positions at least one of the r closest and
free circuit positions.

Equation (5) determines a family of curves. for
P reM) versus M for various yields and values o~ r.
Figure 19 shows the curves of PrOf) versus M With
y = 0.5 for r = 4 and r = 9. It should be noted that
each circuit of M may actually be many interconnected
gates of logic and M = 100 would represent 1000 gates

108 Fall Joint Computer Conference, 1969

1.00

0.90

0.80

0.70

0.60

~ 0.50 ... ~
0.40

0.30

0.20

0.10

0.0
20 50

M =220
FORP=O.S

100 200

y = 0.5" CIRCUIT YIELD

soc 1000

M

Figure 19--The probabilty Pr{M) of successfully
fulfilling a ma.ster pattern of M cifcuits by relocating from
one of up to r nearby circuits. Eeqh circuit is a tested unit

which may have many gates 6f logic complexity

if each circuit of M had 10 gates of equivalent logic
complexity. If it is desired to 'successfully fulfill the
master patterns of at least half the wafers considered,
Figure 19 shows that 220 circuits (and thus probably
750 or more gates) can be used if r = 4, and 680 cir­
cuits can be used if r = 9. Of ¢ourse, any wafers for
which the master pattern was hot easily fulfilled are
not lost since they can be inv~ntoried and used for
other master patterns, or for integrated circuits, or
diced and bonded to substrates~ As a comparison the
most complex current bipolar p.iscretionary unit has
an equivalent Al of 169 while the 100 percent yield
approach has reached an equivalent M of only 24.

Advantage of Pad Relocation to iJSI
signal interconnect

The prime advantage of Pad ~ Relocation LSI which
has been described above is th~t it places the pads of
all used circuits in standard positions which both al­
lows fixed-pattern signal' routing between these cir­
cuits as well as the utilization of more circuits than
allowed by other LSI techniques. There are further
advantages, however, to the rquting of the standard
signal interconnect. For exaIl1ple, the positions to
which circuit pads will always be brought can be modi­
fied and optimized to facilitate the necessary routing
of signals as well as to minimize the lengths of the
longest or the most critical signal paths. This will also

allow the standard signal interconnect to be designed
to require the minimum number of levels and the
minimum area per level. Thus, chip areas can be less
interconnect limited.

Improvement of testing and reliability of la:rge
scale integrated systems

Semiconductor device reliability, as well as propa~
gation delay, is highly dependent on proper main­
tenance of junction temperatures within certain
bounds. From the maximum specified junction tem­
perature, a maximum power dissipation per wafer
area can be computed which is dependent on the heat
conductive characteristics of the wafer and the cooling
techniques used, as well as on the area and power dis­
sipation of the particular circuits. Thus there will be
a maximum number of circuits that should be powered
up on the wafer. In addition, no region of t.he wafer
should exceed a certain maximum power density in
order to insure that the wafer will not have relative
"hot spots" where too many powered circuits are lo­
cated. Pad Relocation LSI can help insure that the
wafer power dissipation density is not excessive by
specifying the relocated circuits to be primarily those
from areas of sparce circuit utilization, thus obtaining
a more uniform pmver density across the enti.re wafer.
By so doing, the system cooling requirements can be
relaxed and/or more circuits can be used on the same
wafer. This more uniform power dissipation could be
quite difficu ~t to insure with other routing techniques
since there is less choice in the used circuit positioning.
A simple means by which a Pad Relocation <computer
program could insure a uniform power density would
be to either count the number of powered circuits in
various wafer regions as the Pad Relocations were
being assigned or to assign all Pad Relocations, com­
pute local power densities, and then reassign any
necessary Pad Relocations to meet the maximum local
power density.

A most s1gnificant advantage to Pad Relocation
LSI is that test pads can very easHy be placed in
standard positions in the top layer of wafer meiiali­
zation. Since they are in standard positions, these
test pads can readily be us'ed to facilitate automtLted
probe testing of interconnected wafers just prior
to final encapsulation without requiring a la,rge num­
ber of additional package leads. Especially for se­
quential arrays this will be important sinee it will
both allow the pre-setting of the flip-flops to known
states and the monitoring of their outputs w' thout
add:ng package leads. It is well known in testing

theory that only by having control over the states of
flip~flops can it be guaranteed that combinatorial-like
tests will be found for a logic array, if they exist. Thus,
the ability to define standard test pads will allow both
automated probe testing as well as making the defini­
tion and execution of the required test sequences
simpler.

The definit:on of standard test pads has further
applicability to systems partitioning, improvement
of effective processing yield, fault diagnosis, and the
testing of redundant networks.

ACKNOWLEDGMENT

The author sincerely wishes to acknowledge the
helpful counsel and encouragement of Professor Law­
rence P. McNamee of UCLA, and of Dr. Ira Terris
and Messrs. R. F. Stewart, J. M. Block, M. May,
and J. S. Steiner, all of Hughes Aircraft Company.
The work presented in this paper is part of the author's
doctoral research at UCLA supported by Hughes
Aircraft Company and conducted under Professor
McNamee.

REFERENCES

1 H R BEELITZ H S MULLER R J LINHARDT
R D SIDMAN
Partioning for large scale integration
International Solid-State Circuits Conference Digest 1967
Feb 1967 50-57

2 J 0 CAMPEAU
The block oriented computer
Computer Group Conference Digest IEEE New York
June 196857-60

3 D F CALHOUN
High 8peed modular multiplier and digital filter for LSI
development
Proc FJCC Vol 31 847-855

4 H G CRAGON et al
Large 8cale integrated circuit arraY8
AF33(615)3546 Texas Instruments Dallas Texas 1966-1969

5 A G F DINGWALL
High-yield processing for fixed interconnect large 8Cale

Project DARE 109

integrated arraY8
IEEE Transactions on Electron Devices Vol ED-15
~ept 1968631-637

6 L HAZLETT
The polycell approach to large scale integration
Electronics February 20 1967

7 G B HERZOG et al
Large 8cale integrated arraY8
AF33(615)3491 Radio Corp America Princeton N J 1966-
1968

8 J W LATHROP R S CLARK J E HULL
R M JENNINGS
A discretionary wiring 8ystem as the interface betweeen
design automation and 8emiconductor array manufacturer
Proc IEEE Vol 55 Nov 1967

9 R C MINNICK
Application of celbdar logic to the design of monolithic
digital 8ystem8
Microelectronics and Large Systems Spartan Books
Washington D C 1965225-247

10 B T MURPHY
C08t-size optima of monolithic integrated circuits
Froc IEEE Vol 52 1537-1545 Dec 1964

11 J J PARISER
Connection considerations with a view toward batch fabrication
Proc IEEE Batch Fabrication April 1965 263-319

12 R L PETRITZ
Current 8tatu8 of large 8cale integration technology
IEEE Journal Solid State Circuits Vol SC-2 No 4 Dec 1967
Also Proc FJCC Vol 31 196865-85

13 W T RHOADES
SY8tem considerations in large scale integration designs
Nat Electronic Packaging Production Conference 1968
708-719

14 R B SEEDS
Y ield8, eonomics and logistic models for complex digital arrays
Conference Record 1967 IEEE Internat Convention and
Exhibition March 20-23 1967

15 L M SPANDORFER
llarge scale integration-an appraisal
Advances in Computers 1968179-238

16 E~ TAMMARU J B ANGELL
Redundancy for LSI yield enhancement
IEEE Journal Solid State Circuits Vol 8C-2 No 4 Dec 1967

17 R E TH UN R L DONNERSTEIN
A hybrid circuit approach to LSI
Digest of Government Microcircuit Applications Conf
Wash., D. C.
Vol 1 Od 1968 169-171

A consideration of the application of

cryptographic techniques to data

processing

by R. O. SKATRUD

IBM Corporation
Research Triangle Park, North Carolina

INTRODUCTION

Two digital cryptographic techniques are described
which may have potential applications in Data Pro­
cessing Systems. A method of digital substitution
analogous to a Vernan double tape system is presented
using a controlled combination of data and the content~
of two memories. The second method uses a digital route
transposition matrix using a combination of row and
column transposition under memory control. Possible
ways of achieving key leverage in each ciphering process
are described. .

The large growth in digital computers and computer
usage proliferating to time-shared remote systems
p~es~nts an increasing need to provide data security
withm a system as well as applying it to data transmitted
over communications media.1 Two fundamental ap­
proaches to producing security in data use are developed
in this presentation. One is a digital-substitution
technique and the second involves a digital-matrix
transposition.

Some of the earliest practical cryptographic systems
were the monoalphabetic substitution systems used by
the Romans.2 In these, one letter is substituted for
another. F or example, an A might be replaced by a C.
By the fifteenth century, an Italian by the name of
Alberti came up with a technique of cryptoanalyzing
letters by frequency analyses. As a result, he invented
probably the first polyalphabetic substitution system
using a cipher disk. Thus, he would encode several

words with one substitution alphabet, then he would
rotate the disk and encode several more words with the
next substitution alphabet.

Early in the sixteenth century Trithemius, a Bene­
dictine Monk, had the first printed book published on
cryptology. Trithemius described the square table or
tableau which was the first known instance of a pro­
gressive key applied to polyalphabetic substitution. It
provided a means of changing alphabets with each
character. Later in the sixteenth century, Vigenere
perfecj;ed the autokey: a progressive kfW in which the
last decoded character led you to the next substitution
alphabet in a polyalphabetic key. These were basically
the techniques that were widely applied in the crypto­
machines in the first half of the twentieth century.
Various transposition techniques have been employed
including the wide use of changing \vord order and
techniques such as rail transcriptions (used in the
Civil War).

In 1883, Auguste Kerckhoffs, a man born in Holland
but a naturalized Frenchman, published a book entitled
La Cryptographic M ilitaire. In it, he established two
general principles for cryptographic systems. They were:

111

1. A key must withstand the operational strains of
heavy traffic. It must be assumed that the
enemy has the general system. Therefore, the
security of the system must rest with the key.

2. Only cryptoanalysts can know the security
of the key. In this, he infers that anyone who pro-

112 Fall Joint Computer Conference, 1969

poses a cryptographic technique should be
familiar with the techniques that could be used to
break it.

From these two general principles, six specific
requirements emerged in his book:

1. The key should be, if not theoretically unbreak­
able, at least unbreakable in practice.

2. Compromise of the hardware system or coding
technique should not result in compromising the
security of communications that the system
carries.

3. The key should be remembered without notes
and should be easily changeable.

4. The cryptograms must be traIU~mittable by
telegraph. Today this would be expanded to
include both digital intelligence and voice (if
voice scramblers are employed) utilizing either
wire or radio as the medium.

5. The apparatus or documents should be portable
and operable by a single person. This require­
ment is met in the systems proposed in this paper
by the portability of the key in a dense storage
medium (such as magnetic tape), installable in a
processing system by one man.

6. The system should be easy, neither requiring
knowledge of a long list of rules nor involving
mental strain. In the proposed systems, the key
is an automatic-machine-cdntrolled process until
a key change occurs.

In 1917 Gilbert S. Vernan, a young engineer at
American Telephone and Telegraph Company, using
the Baudot code (teletype) invented a means of adding
two characters (exclusive or). Vernan's machine mixed a
key with text as illustrated by the following:

Clear Text
Key

Coded Character

1
o

1

o
1

1

1
o

1

1
1

o

1
o

1

To derive the text from the coded character, all that was
required was the addition of the key again to the coded
character.

Coded Character
Key

Clear Text

1
o

1

1
1

o

1
o

1

o
1

1

1
o

1

His machines used a key tape loop about eight feet long
which caused the key to repeat itself over a high volume
of traffic. This allowed cryp~oanalysts to derive the key.

William F. Friedman, in fact, solved cryptograms using
single-loop code tapes but appears to have been
unsuccessful when two code tapes were used. l\1ajor
Joseph O. :\Iauborgne (U. S. Army) then introduced the
one-time code tape derived from a random noise source.
This was one of the first theoretically (and in practice)
unbreakable code systems. The major disadvantage of
the system was the enormous amounts of key required
for high-volume traffic.

During the 1920's and 1930's, the rotor-code machines
having five and more rotors, each rotor representing a
scrambling step, were developed. They proved relatively
insecure, requiring only high-traffic volume for the
cryptoanalyst to bre~k them. In fact, the .J apanese used
a code-wheel-type machine for their diplomatic com­
munications well into World War II. It \vas vulnerable
to cryptoanalysis, and William F. Friedman and his
group not only solved the code but reconstructed a
model of the machine to break Japanese diplomatic
correspondence. Thus, President Roosevelt and others
were aware of the impending break in diplomatic
relations \vith Japan just prior to World War II.

The code wheels (or rotors) were nothing more than
key memories storing quantities of key which could
easily be changed by interchanging rotor positions,
specifying various start points for each rotor, and
periodically replacing a set of rotors. This provided a
means of producing what I will call key leverage.

Digital substitution

A system which uses the aexclusive or" technique
developed by Gilbert S. Vernan, applied directly to data
stored and distributed by a computer, is shown in
Figure 1.

Instead of using two tapes, this system would use two
key memories and an address memory. Synchronization
would be achieved by use of the address memory which
would be addressed by the first transmitted intelligence.
The contents of the two fI,ddresses obtained could come
into the address registers which would pull key words
from the associated addresses in each of the two key
memories. Data to be transmitted would be first
exclusive ORed with the contents of the first memory
location and then with the contents of an address of the
second memory. Each character transmitted would thus
be encoded twice.

This would represent an element of security depend­
ent on the contents of the two key memories. Order-of­
address usage of the key would be dependent on the
contents of the address memory. To derive the key,
contents of the key memories and address memory
would have to be solved. The larger the memory

Application of Cryptographic Techniques to Data Processing 113

DATA ENCODED
ADDRESS DATA

IN ADDRESS
IN

{

DATA
KEY MI

ENCODE" 1ST LEVEL CODE
KEY M2
ENCODER DATA
kEY MI

DECODE IITLEVEL DECODE
KEY M2
DATA

ilOilO
100" 0
010000
.u...uw.
.L.2l.2.LL.
100110
001101
111011
"0110

Figure I-Digital substitution logic

contents, the harder these would be to determine.
A large volume of traffic, where starting points in the
address control memory would be repeated, could begin
to provide clues that could be used to derive the key.
Therefore, one would, at frequent intervals determined
by usage, change the content of the address memory.

At less frequent intervals, one would change the
contents of the key memories. These intervals would be
chosen again on the basis of data traffic using the
system and the type of security expected from the
system.

The relative secllrity of the system would be a
function of the amount of memory. If a memory of
n bits is considered, total permutations available in the
memory of those bits would be 2n. If the key is derived
from a random noise source, probabilities of getting all
o's or all I's in the memory are very small, as wpuld
large imbalances existing between o's and I's. Therefore,
each key memory would have a distribution in the total
bit field available approximating a distribution of bits
whose permutations in practice would be more in the
neighborhood of 2n/2. Each of the two key memories
would have one of that many practically usable
permutations, each one of which could operate on the
other in the encoding process. Therefore, by probability
theory, the probable permutations would be the product
of the two memorypo tentials or (2n/2) (2n/2) or a poten­
tial key field of 2n permutations.

The 2n possible permutations of the key memories
would also be acted on by the m addresses of each
memory which would all exist in any order in the
address memory. Possible permutations of addresses,
taking them m at a time, would be m factorial for each
of the memories. Therefore, one would achieve the
possibility of each of the m-fdctorial, possible addresses
for one memory being able to operate ,on each of the
m-factorial, possible permutations of the other memory.
This would represent a total of (m!)2 possible permuta­
tions of the addresses.3

Therefore, if one were to completely break the key,
one would have to derive the one permutation used out
of a potential of a total possible equal to (m!)22n. Heavy
traffic on the system, with repetition of the key, would
however, give handles to the cryptoanalyst in deriving
the key so it could not be considered unbreakable.

I t is possible to achieve a system which would be
unbreakable in theory and achievable without using
great amounts of key. This is achievable by using a
one-time key with techniques of producing key leverage.
Since two memories are used for key, and each memory
has addresses associated with it in the address memory,
one can achieve key leverage by the fact that different
combinations of the contents of the addresses of the key
give different coding results. Proper choice of address
usage in the address memory will insure that each
message that is transmitted would be encoded with a
unique code until all the combinations of the addresses
were used for the two key memories.

I t is known that the Address Memory contains one
of m! permutations possible in the m addresses for each
key memory. If it is assumed that each memory location
contains a character in key memory, that somewhere in
the address memory is the address of that character,
and that each address is one address memory location,
then a practical means of control begins to emerge. If,
for example, m is c~msidered to be 1,000 addresses and a
usage scheme is used similar to that outlined in Table I,
synchronization would be achieved by message number­
ing consecutively from 000 to 999.

The first character transmitted would use the
contents of address 000 f~r Key Memory 1 and 000 for
Key Memory 2. The second character transmitted
would use the contents of address 001 in Address
Memory 1, and the contents of address 001 in Address
Memory 2. This progression could continue to address­
memory-location 999 for each of the two address­
memory slots.

The second message transmitted would be numbered
001. The address-register pairs for message number 2
would now be 000, and 001 for the first character. The

114 Fall Joint Computer Cpnference, 1969

TABLE I-Address m~mory usage

Address Address
Message Number Memory 1 Memory 2

000 000 000
001 001
002 002

f f
999 999

001 000 001
001 002
002 003

f f
999 000

002 000 002
001 003

J f
999 001
~----.. -----.-----

f f f
500 000 500

001 501

f f
999 499

999 000 999
001 000
002 001

f J
999 998

Refresh Address Memory and repeat cycle.

second character would be 001 and 002. The address
register would therefore be using different address pairs
for the second message than it did on the first.

At the 501st message, it would :bear number 500. The
address pairs for the first character transmitted would
now be 000 and 500. The second: character transmitted
would use address-memory locatIons 001 and 501.

Therefore, it can be seen that by continuing the
sequence through message 1000 bearing number 999, no
repetition of address pairs will e~ist. Therefore, with m
equal to 1,000 and two key memories and 2 address
memories, the system limit-if used in this way-is
1,000 messages of 1,000 characters each.

At the time the system limit is reached, one would
change the address memory by supplying a new

permutation of addresses for each of the two address­
memory slots. This would provide the capability of
transmitting and receiving another 1,000 messages of
1,000 characters each. It can be seen that the system
employs a progressive-key system and, in theory, one
could use m! combinations of addresses in eaeh of the
two ~ddress-memory slots before obvious key repetition
would begin, without changing the co:ntents of the key
memories. In practice however, one would; at pre­
determined intervals, change the contents of the key
memories.

It can be shown that the system is modular. By add­
ing a third key memory and a third address memory
slot, the system would be expanded to 1,000,000
messages each with a capacity of 1,000 characters. It can
also be shown that a trade-off exists between message
length and number. For example, if message length were
defined to be a maximum of 100 characters instead of
1,000 the message <iount on the expanded system could
go . to 10,000,000 messages before the key would be
repeated.

In a system using two levels of encoding l:wd m =
1,000 at a transmission rate of 2,000 bits per second, the
key will last for 1.4 hours of continuous transmission
before the address slots in the address memory would
have to be changed. This assumes that 10 bits arB
present in each key memory address. If transmission
loading was 50%, this figure would go to 2.8 hours.
Therefore, with heavy traffic, the Address Memory
Contents would have to be changed two or three times
per day. This could be arranged by pre-storing numbers
of changes on a dense-storage medium such as magnetic
tape.

Higher usage rates would require higher rates of
change for the Address Memory and/or a modlilar
expansion of the key system. There~ore, the :system is
applicable to any rate of key usage that is in use today.
It is also modular, as can be seen, by choice of m.

Thus, it is possible to use a system of digital sub­
stitution in a cryptographic computer system which
would, if system design parameters were properly
chosen, deny access to data in a system to aB who did
not possess the cryptographic key. The system described
here is basically a polyalphabetic substitution system.
I t employs the fundamental techniques employed by
Vern an and would also include some of the charac­
teristics of the rotor machines in achieving leverage in
the number of permutations available on d2~ta. It is,
however, different since we are now operating on the
digital makeup of the intelligence rather than on the
character as an entity, and we use electronics instead of
the mechanical rotor. We also avoid repetitive use of the

Application of Cryptographic Technique,s to Data Processing 115

key which was the reason that rotor-machine codes were
finally broken.

Digital route transposition

Transposition techniques can also be used in conjunc­
tion with data processing. If the route transposition
technique is applied to the read-in and read-out of
digital data from a matrix, it is possible to achieve the
results of poly alphabetic substitution, without a direct
substitution key being required. It can be shown that
key usage is ,far less than that required for direct
substitution. With the data-key leverage obtained,
some interesting possibilities on key transmission can be
obtained. With these, it becomes more feasible to
explore the possibility of single-use keys.

To illustrate the method, let us consider an n2 matrix
where n = 8. The matrix will be made up of 8 rows and 8
columns. Information can be read into and out of the
8 columns of the matrix in any order.

The information would be transmitted into the
receiving-matrix columns in the same order that it left
the transmitting matrix. To complete the data recon­
struction, the information in the receiving matrix now
would be read out in the same row order that it entered

,the transmitting matrix. Therefore, the process is
reversible.

Figure 2 shows the base matrix. If an 8-by-8 matrix is
considered, there are 8 factorial different orders possible
in both the rows and columns. For anyone matrix of
information (64 bits), there are a possible (8!)2 ways of
seeing this information when transmitted.2 Eight fac­
torial squared gives an approximate 1.6 X 109 possible

01234567

o

2

3

4

5

6

7

ROW CONTROL
8! = 40,320
2 16 = 65,536

.'. 16 BITS REQUIRED

COLUMN CONTROL
8! = 40,320
2 16 = 65,536

••• 16 BITS REQUIRED

Figure 2-Digital route transposition matrix

TABLE II-Effect of matrix size on permutations

Matrix Size: n

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

Read-Write Permutations: (n!)2

1 = 1.0 X 100

4 = 2:0 X 100

36 = 3.6 X 10
576 = 5.8 X 102

14,400 = 1.4 X 104

518,400 = 5.2 X 105

25,401,600 = 2.,5 X 107

1,625,702,400 = 1.6 X 109

131,681,894,400 = 1.3 X 1011
13,168,189,440,000 = 1.3 X 1013

= 1.6 X 1010

= 2.4 X 1017

= 3.9 X 1019

= 7.7 X 1021

1.7 X 1024

= 1.4 X 1()26

permutations on each matrix. Since it would be the
function of the key to select each matrix permutation,
each matrix would be transmitted with a different key.
Table II shows the effect of varying matrix size in terms
of available permutations on the data.

The elements of control required for the rows and
columns of the matrix must be independent. To keep
control independent, Row Key and Column Key
Memories can be used. Since in the example chosen there
are 8 rows and 8 columns, there are 8! different possible
orders to read into or out of each matrix. Thus 216 is
approximately equal to 8!. It can be shown that 16 bits
will be sufficient for reading information into or out of
the rows of the matrix. Likewise, 16 bits will allow
information to be read into or out of the 8 columns.
Therefore, 32 bits of key are required to encode and
decode 64 bits of information using a Digital Route
Transposition Matrix.

By looking at direct key usage and comparing it to
key usage described on Digital Substitution, we find
that key consumption per transmitted bit is reduced by
a factor of 4. For each 64 bits transmitted by the
Digital Route Transposition Matrix, 32 bits of key are
used. With Digital Substitution 2 bits of key are used
for each bit transmitted.

If 1,000 addresses are assumed in each of two address
slots in Address Memory, the potential for applying
them to something analogous to message number again
exists. However, since each step of the Address Memory
now transmits a full matrix of information, synchroniza­
tion would now be achieved by matrix count instead of
message number. Therefore, one would step through the

116 Fall Joint Computer Cqnference, 1969

address count. If 1,000 addresses were used in each of
the row and column memories, one would step through
the address-register counts 1,000,000 times, pairing up a
different row and column address count every step. In
terms of usable bits available for transmission, this
would yield 64,000,000 data bits. If the system were
transmitting 2,000 bits per second, this would represent
8.8 hours of continuous transmission. If transmission
utilization was 50%, this would represent 17.6 hours of
transmission. It would be applicable to any data rate by
varying the address memory-change rate. At the end of
the 64,000,000 bits, the address memories would be
refreshed with a new permutation and the process would
continue. Thus, no key repetition would occur.

If data rates were very high" one could consider
transmitting the address information encoded in the
one-time key. This could be accomplished by the
addition of an Address Buffer Memory whioh would be
loaded prior to the point where the system ran out of
address permutations. At the point of run-out, a new
permutation would be moved out of the Address Buffer
into the Address Memory and the process would
continue. Since both ends of a system must be syn­
chronized, the transfer would always occur simul­
taneously at both ends of the system.

After some predetermined number of address-permu­
tation changes, the key would be changed in the Row
and Column Key Memories. This change would not
have to be frequent unless a key compromise was
suspected. Frequency of change will normally be
determined by choice of memory size and other design
parameters in the system.

Figure 3 represents a diagram of the transmitting
function for a Digital Route Transposition Matrix. An
address followed by data would come into the system.
The starting address for the address memory would be
also transmitted to the receiving station. The station
would select a pair of key addresses in the address
memory which would pull the contents from Row-Key
and Column-Key memories to activate the row- and
column-scan selection control.

The row-scan selection control would activate read-in
to one matrix of data, which would fill all of its rows
with data. At that point in time, column-scan selection
control would take over and begin transmitting data
from the first filled "matrix. Whil~ the first matrix is
transmitting, a new row-key word would be brought out
by stepping the address-selection logic to get the next
row key from Row-Key Memory.

When the first matrix has finished transmitting,
address-selection would supply the second address for
the Column-Key lVIemory. With proper choice of timing

Figure 3--Digital route transposition matrix

relationships, continuous data transmission would occur
by permitting encoded data from matrix A or B to enter
the line. While one matrix is transmitting, the second
would be filling with data.

The receive function would be the reverse of the
transmitting function. It can be seen that a double
matrix is required to secure continuous transmission.

Error detection and recovery

Existing techniques of error detection could be
employed. When techniques of ciphering are used on a
system employing transmission lines, it would be
possible to use a polynomial accumulation which comes
very close to being unique for each block of data
transmitted. The one- or two-character accumulation
would be transmitted at the end of the block and
compared to that generated by the received data. An
error would be assumed only if there was a difference.

Error recovery would be initiated by transmittal of a
negative acknowledgment to that block of data. Action
at the transmitting end WOUld then consist of retrans­
mission of the data block with the same address
designations for key usage being held. This would be
necessary to prevent the same text from being trans­
mitted twice with different keys. Transmission twice
with different keys could provide information to a
cryptoanalyst which could possibly permit breaking a
portion of a key.

Polynomial accumulations would be equally appli-

Application of Cryptographic Technique,s to Data Processing 117

cable to either the double substitution or transposition
technique. Accumulations could be done eith~r before or
after encoding, depending on the handling of trans­
mission control characters.

Another possible error detection technique, particu­
larly with a transposition matrix, would be the utiliza­
tion of horizontal and vertical parity assignments. The
reliability of the technique would require evaluation for
the particular application to determine what types of
multiple-bit errors would result in lack of error detection.
It would be used only if the probability of detection
were sufficiently high for the application. Again,
detection of the error would require re-transmission by
the same key-address designators that were used for the
original transmission.

Both systems would satisfy all the criteria and
principles established by Auguste Kerckhoff's book
published in 1883. There would be no requirement for
manual intervention unless maintenance was required.
Since a one-time code would be used, it is in theory
unbreakable. The security of the system rests with the
key, not the hardware. In operation, the key is under­
going continuous change automatically and/or under
control of an operator, depending on application and
specific hardware design. Both systems would be simple,
and for all practical purposes, transparent to the

operators. Operators would handle the clear information
as is done today, even in the most confidential types of
operations.

Selection of operators would remain a management
function, as it is today. This system would be designed
to prevent unauthorized proliferation of confidential
information by direct access from other I/O devices that
do not possess the key, in spite of the fact that they
may have the hardware.

With integrated circuits becoming available and the
cost per circuit function decreasing, it becomes possible
to consider undertaking designs that would offer
relatively high degrees of privacy in computer systems
at reasonable cost. High-density memories and the
technology to support the logical control of crypto­
graphic systems exist today.

REFERENCES

1 A WESTIN
Privacy and freedom
Atheneum 1967

2 D KAHN
The code breakers
The Macmillan Co 1967

3 C H RICHARDSON
An introduction to statistical analysis
Harcourt Brace and Co 1934

Security controls in the ADEPT-50
time-sharing system

by C. WEISSMAN

System Development Corporation
Santa Monica, California

"A'uthority intoxicates/And makes mere
sots of magistrates" -Butler

FOREWORD

At present, the system described in this paper has not
been approved by the Department of Defense for
processing classified information. This paper does not
represent DOD policy regarding industrial application
of time- or resource-sharing of EDP equipment.

INTRODUCTION

Computer-based, resource sharing systems are, and
contain, things of value; therefore, they should be
protected. The valuables are the information data
bases, the processes that manipulate them, and the
physical plant, equipment, and personnel that form the
system plexus. An extensive lore is developing on the
subject of system protection.1 ,2 Petersen and Turn8

discuss in considerable detail the substance of protection
of non-mHitary information systems in terms of threats
and countermeasures. Ware4 ,6 contrasts "security" and
"privacy" for viewing protection in militarys ystems as
well. This paper describes the security controls imple­
mented in the ADEPT-50 time-sharing system6-a re­
source sharing system designed to handle sensitive
information in classified government and military
facilities. *

Our approach to security control is based on a set

* Development of ADEPT was supported in part by the Ad­
vanced Ref'earch Project.s Agency of the Department of Defense.

119

theoretic model of access rights. This approach appears
natural, since the important objects of security are sets
of things-users, terminals, programs, files-and the
operators of set theory-membership, intersection,
union-are easily programmed for, and quickly per­
formed by, computer. The formal model defines
time-sharing security control of user, terminal, job and
file security objects in terms of equations of access based
upon their security profiles-a triplet of Authority,
Category, and Franchise property sets. The correspond­
ence of these properties to government and military
Classification, Compartments, and Need-to-Know is
demonstrated. Implementation of the model in the
ADEPT-50 Time-Sharing System is described in detail,
as are features that transcend the model including
initialization of the security profiles, the LOGIN
decision procedure, system integrity checks, security
residue control, and security audit trails. Other novel
features of ADEPT security control are detailed and
include: automatic file classification based upon the
cumulative security history of referenced files; the
"security umbrella" of the ADEPT job; and once-only
passwords. The paper concludes with a recapitUlation
of the goals of ADEPT security control, approximate
costs of implementation and· operation of the security
controls, and suggested extensions and jmprovEments.

Historically, protection of a sensitive computer
faciJjtyhas been attained by Umiting physical access to
the computer room and sJ;tielding the computer complex

120 Fall Joint Computer Qonference, 1969

from electromagnetic radiation. This "sheltered"
approach promotes one-at-a-time, batch usage of the
facility. Modern hardware and software technology has
moved forward to more powerful and cost/effective
time-shared, multi-access, multiprogrammed systems.
However, three features of such systems pose a challenge
to the sheltered mode of protection: (1) concurrent
multiple users with different access rights operating
remote from the shielded room; (2) multiple programs
with different access rights co-resident in memory; and
(3) multiple files of different data sensitivities simul­
taneously accessible. These features appear to violate
traditional methods of accountability based upon a
single user (or multiple users with like clearances)
operating within strictly controlled facilities. The
problem is of such magnitude that no time-sharing
system has yet been certified for use in the manner
described! However, some multi-access systems are in
operation in a classified mode,7 ,8 and a number of
design approaches have been suggested.9 ,10,11 ,12

In addition to the usual goal of building an effective
time-sharing system,18 the ADEPT project began with a
number of security objectives as well:

1. Build a security control mechanism that supports
heterogeneous levels and ~ypes of classifications.

2. Design the security control mechanism in such a
manner that it is itself unclassified until primed
by security configuration parameters, a point
strongly supported by Baran14 regarding com­
municatons security.

3. Construct the security control mEchanism as an
isolated portion of the total tjme-sharing sybtem
so that it may be careful:y scrutinized for
correctness, completeness} and reliability.

4. Do the above in as frugal a manner as possible,
considering costs to design, fabricate, and
operate. Good system performance js our prin­
cipal criterion in selecting among alternative
technical solutions, as noted by the author
elsewhere.15

In approaching our task, we recognize security as a
total system problem involving hardware, communica­
tion, personnel, and software safeguards. However, our
focus is primarily on monitor software, and its interfaces
with the other areas. This view is not parochial: our
hardware is a standard IBl\1 360 model 50; communica­
tion security is an established field of study with
considerable technological know-how;14 and the policy,
doctrine, and procedures for personnel behavior in
classified environments are extensive, with legal founda-

tions. Thus, our only degree of freedom is the control we
build into the time-sharing executive softwaro.

A security control formalism

A formal model of software security control for access
to sensitive portions of ADEPT is developed here.

Security objects

Four kinds of security objects are to be managed by
our model: user, terminal, job, and file. Let u denote
!3ome user; t some terminal; j some job; andf some file.

Security properties

Each security object is described by a security profile
that is an ordered triplet of security properties--Au­
thority (A), Category (C), and Franchise (F). Authority
is a set of hierarchically ordered security jurisdictions.
Category is a set of discrete security jurisdictions.
Franchise is a set of users licensed with privileged
security jurisdiction.

The property "Authority" is defined as a se"t; A, where

A = {aO < a1 <, .. " < a"'} (1)

and the specific members, a i, of the set are security
jurisdictions hierarchically ordered.
"Category" is a discrete set of specific compartments, c i ,

(2)

Compartments are mutually exclusive security sanc­
tuaries with discrete jurisdictions.
"Franchise" is a security jurisdiction privileged to a"
given set of users, i.e.,

F = {ulu is a user} (0)

For a given terminal, t, let a given Authori.ty set, A,
be denoted by At, or in general, let a given security
object, a, denote a given property, P, for a as PC(' Hence
,ve can speak of Au, or C h etc., to mean the specific
Authority set for a given user, u, or the specifie Category
set for a given job, j, respectively.

Four important sets (of users) arise with respect to
the Franchise property, namely, Franchise for files,
terminals, jobs, and users. To distinguish the sense in
which a given user is being considered, we subscript u
by the security object under consideration. Hence, UI

means the user with jurisdiction to file f; uta.nd Uj are
similarly defined. For completeness, we de:fine Uu as

Security Controls in ADEPT'-50 Time-Sharing System 121

simply u. We can now define Franchise for each
security object.

Fu = {u} (4)

F t = {O 1 ;\} U h ut,.···, ut (5)

F j {uq u! ... u~}
:1' " 'J

(6)

F, {O 1 "} ul, ul' "', ul (7)

Equation (4) states that the Franchise for a user is
restricted to himself; his jurisdiction is unique, and no
other user is so endowed. Equation (5) states that the
terminal Franchise is possessed by A different users who
have jurisdiction over the terminal t. LikC\vise, equa­
tions (6) and (7) define the job and file Franchise sets.

In security discussions, one hears the familiar phrase,
"he needs a higher-level clearance. " We can now define
"higher level" with our model.

Let a and {3 be security objects and let p be some
function such that p(Ao) eA.
Then,

(8)

(9)

(10)

Equation (8) claims that the Authority of a security
object, Aa is at a "higher level" than another security
object A{3 when the specific authority, aa is greater than
the specific authority, a{3'

It is implicit in equations (1) and (8) that the specific
authorities, a i, must be numerically encoded for the
magnitude relationships to hold. Equations (9) and (10)
define P a to be greater than P {3 if and only if P (3 is a
subset of P a'

Events may alter the membership of property sets.
Let Pj be the eth P, in a given context.

Define the Authority history, A h , at the eth event as

Ah(e) = max (Ah(e - 1), p(Aj», e > 0 (12)

Likewbe, define the Category history Ch, at the eth
event.~'),~

(13)

(14)

Equations (11) through (14) recursively define two
useful sets that accumulate a history of file references as
a function of file reference events, e. A history of the
highest Authority, A h , is defined by equation (12) as
either the previous set, Ah(e --.:.. 1), or the current set,
p(Aj), whichever is larger in the sense of equation (8).
Equation (11) gives the initial condition as some low
specific file authority, aJ. Equation (14) defines the
highest Category history as the union of the previous
set, Ch(e - 1), and the current set, Cj; while equation
(13) states tha.t the union is initially the empty set.

Though Fh could be defined in our model, no need is
seen at this time for a Franchise history. More will be
said about these history sets later.

Property determination

Table I presents in a 3 X 4 matrix a summary of the
rules for determining the security profile triplets, P a'

We shall examine these rules here. For the user u,
Au and C u are given constants, and F u is given by
equation (4). For the terminal t, At and C t are given
constants, and F t is given by equation (5). Gjven Au and
At, we determine A j as:

(15)

L'kewise, given C u and Ct, we determine C j as:

(16)

Equation (6) gives F j to complete the job se::mrity
profile triplet.

An existing file has its secuIity profile predetermined
with A, and C I as given constants, and F I as given by
equation (7). However, a new file-one just created­
derives its security profile from the job's file access
history according to the following:

F, = u~

(17)

(18)

(19)

From equations (11) through (14) we see how the
Authority and Category histories accumulate as a
function of event e. These events are the specific times
when files are accessed by a job. To maintain security

122 Fall Joint Computer Conference, 1969
i

TABLE I-8ecurity property determination matrix

~roperty Authority
Object A

User, u Given Constant

Terminal, t Given Constant

Job, j min(A1o At)

Existing file
File, f Given Constant

Category
C

Given Constant

Given Constant

Cu T\ C,

Existing file
Given Constant

Franchise
F

u
.-------------------

u~

u~
J

New file New file
max(A(he-1), peA;»~, e > 0 Ch(e - 1) U Ci, e > 0

integrity, these. histories can n:ever exceed (i.e., be
greater than) the job security profile. This is specified as,

Ah(oo) ~ Ai (20)

(21)

For e::l 0, we see the properties initialized to their
simplest form. However, as e g~ts large, the histories
accumulate, but never exceed thai upper limit set by the
job. Ah(e) and Ch(e) are impQrtant new concepts,
discussed in further detail laterl We speak of them,
affectionately, as the securj~y "high-water mark," with
analogy to the bath tub ring that marks the highest
water level attained.

The Franchise of a new file is always obtained from
the Franchise of the job given by equation (6). When
i = II = 0, the job is controlled by the s~ngle user Uj who
becomes the owner and creator of the file wth the sole
Franchise for the file.

Access control

Our model is now rich enough tq expreSl:) the equations
of access control. We '\\ ish to control access by a user to
the system, to a terminal, and to a file. Access is granted
to the system if and only if

UEU (22)

where U is the set of all sanctioned users known to the
system.
Access is granted to a terminal if· and only if

If equations (22) and (23) hold, then by definition

u = Ut = Uj (24)

Access is granted to a file jf and only if

(25)

for propertjes A and C according to equationEI (8) a.nd
(9), and

(26)

If equations (25) and (26) hold, then access is granted
and Ah(e) and Ch(e) are calculated by equations (12)
and (14).

Model interpretation

Three different dimensions for restricting :Jiccess to
sfnsitive information and information processes are
possible with the security profile triplet. The generality
of this technique has considerable application 1;0 public
and military systems. For the system of interest,
however, the Authority property corresponds to the Top
Secret, Secret, etc., levEls of government and m~litary­
security ~ Category c)rresponds to the host- of special
control compartments used to restrict access by project
and area; such as those of the Intelligence and Atomic
Energv communities; and the Franchise property
corresponds to access sanctioned on the lbasis of

Security Controls in ADEPr-50 Time-Sharing Systetn 123

need-to-know. With this interpretation, the popular
security terms "classifics-tion" and "clearance" can be
defined by our model h the SB,me dimensions--as a
nUn/max test on the security plofile trjplet. CIgssifica­
tion is attached to a security object to designate the
minimum security profile required for access, vvhereas
clearance grants to a security object the maximum
security profile jt has permissjon to exercise. Thus, legal
aCCfSS obtains if the clearance is greater than or equal
to the classjfication, i.e., if equation (25) holds.

Another observation on the modEl is the "job
umbrella" concept implied by equatjons (22) through
(26); i.e.. tbe derived clearance of the job (not thf'
clearance of the user) is used as the securhy control
triplet for file access. The job umbrella spreads a
homogeneous clearance to normalize access to a
heterogeneous assortment of program and data files.
This simplifies the problem of control in a multi-level
security system. Also note how the job umbrella's
h;gh-water mark (equat;ons (11) through (14» is used
to automatically classify new files (equ9tions (17) and
(18»; this subject is discussed further below.

A final observp.tion on the model is its p,pplic["tion of
need-to-know to terminal access, equation (23). This
feature allows terminals to be restricted to special
people and/ or special groups for greater control of
personnel intmfaces-i.e., systems programmers, com­
puter operators, etc.

Security control implementation

The selection of a set ,theoretic model of security
control was not fortuitous, but [) deliberate choice biased
toward computation91 efficiency and ease of implemen­
tatjon. It permits the clean separation and isolation of
security control code from the security control data,
which enables ADEPT's security mechanjsms to be
openly discussed and still remain safe-a point advo­
cated by others.14.16 We achieve this safety by "arming"
the system with security control datB, only once at
start-up time by the SYSLOG procedure discussed later.
Also, the model jmproves the credibility of the security
system, enhancing its understanding and thereby pro­
moting its certification.

Security objects: Identity and structure

Each security object has a unique identification (ID)
within the system such that it can be managed indivjdu­
ally. The form of the ID depends upon the security­
object type; the syntax of each is given below.

User identification

For generality of definition, each user is uniquely
identified by his user:id, which must be less than 13
characters with no embedded blanks.

The user :id can be any meaningful encoding for the
local installation. For example, it can be the individual's
Social Security number, his military serial number, his
last name (if unique and less than 13 characters), or
some local installation man-number convention. The set
of all user :ids constitutes the universal set, U.

Terminal identification

All peripheral devices in ADEPT are identified
uniquely by their IBM 360 device addresses. Besides
interactive terminals, this includes disc drives, tape
drives, line printer, card reader-punch, drums, and 1052
keyboard. Therefore, terminal:id must be a two-digit
hexadecimal number corresponding to the unit address
of the device.

Job identification

ADEPT consists of two parts: the Basic Executive
(BASEX), which handles the allocation and schedul~ng
of hardware resources, and the Extended Executlve
(EXEX), which interfaces user programs 'with BASEX.
ADEPT is designed to operate itself and user programs
as a set 'of 4096-byte pages. BASEX is identified as
certain pages that are fixed in main core, whereas EXEX
and user programs are identified as sets of, pages that
move dynam.ically between main and s~ap memory.
A set of user programs are identified as a job, with page
sets for each program (the program map) described in
thejoh's environment area, Le., the job's "state tables."
Every job in ADEPT has an environment area that
is swapped with the job. It contains dynamic system
bookkeeping information pertinent to the job, including
the contents of the machine registers (saved when the
job is swapped out), internal file and ~/O control tables,
a map of all the program's pages on drum, user:id, and
the job security control parameters. The environment
page(s) are memory-protected against readin~ and
writing by user programs, 80S they are really swappable
extensions of the monitor's tables .

. The job:id is then a transitory internal parameter
which changes with each user entrance and exit from the
system. The job:id is a relative core memory address
used by the executive as a major index into central
system tables. It is mapped into an external two-digit
number that is typed to the user in response to a
successful LOG IN.

124 Fall Joint Computer Conference, 1969

File identification

ADEPT's file system is quite rich in the variety of
file types, file organization, and equipment permitted.
There are two file types: temporary and permanent.

Temporary files are transitory "scratch" disc files,
which disappear from the system: inventory when their
parent job exits from the syst~m. They are always
placed on resident system volumes, and are private to
the program that created them.

Permanent files constitute the majority of files
cataloged by the system. Their permanence derives from
the fact that they remain inventoried, cataloged, and
available even after the job that created or last refer­
enced them is no longer present, and even if they are not
being used. Permanent files may be placed by the user
on resident system volumes or on demountable private
volumes.

There are six file organizations from which a user may
select to structure the records of his file: Physical­
sequential, Sl; non-formatted, S2; index-sequential, S3 ;
partitioned, S4; multiple volume fixed record, S5; and
single volume fixed record, S9. Regardless of the
organization of the records, ADEPT manages them as a
collection, called a file. Thus, security control is at tho
file level only, unlike more definitive schemes of
sub-element control. 8,10--12

All the control information of a file that describes
type, organization, physical storage' location, date of
creation, and security is distinct from the data records
of the file, and is the catalog of the file.

All cataloged ADEPT files are uniquely identified by
a four-part name; each part has various options and
defaults (system assumptions). This name, the file:id,
has the following form:

file:id : : = name, jorm,·user:id, volume:id

Name is a user-generated cha~acter string of up to
eight characters with no embedded blanks. It must be
unique on a private volume as well as for Public files
(described below).

Form is a descriptor of the internal coding of a file.
Up to 256 encodings are possible, although only these
seven are currently applicable:

1 = binary data
2 = relocatable program
3 = non-relocatable program
4 = card images
5 = catalog
6 = DLO (Delayed Output)
7 = line images

U ser:id corresponds to th~ owner of the file, i.e., the
creator of the file.

Volume:id is the unique file storage device (tape, disc,
disc pack, etc.) on which the file resides. For various
reasons, including reliability, ADEPT file inventories
are distributed across the available storage media,
rather than centralized on one particular volume. Thus,
all files on a given disc volume are inventoried on
that volume.

Security properties: Encoding and structure

Implementation of the security properties in ADEPT
is not uniform across the security objects as suggested
by our model, particularly the Franchise property. Lack
of uniformity, brought about by real-world considera­
tions, is not a liability of the system but a reflection of
the simplicity of the model. Extensions to the model ~tre
developed here in accordance with that actually
implemented in ADEPT.

Authority

Authority is fixed at four leveJs (w = 3 for Hquation
(1)) in ADEPT, specifically, UNCLASSIFIED, CON­
FIDENTIAL, SECRET, and TOP SECB.ET in
accordance with Department of Defense security
regulations. The Authority set is encoded as :~ logical
4-bit item, where positional order is important. Magni­
tude tests are used extensively, such that the high-order
bits imply high Authority in the sense of equ2.tion (8).

Category

Category is limited to a maximum of 16 eompart·
ments (1/1 :::; 15 for equation (2)), encoded as a logical
16-bit item. Boolean tests are used exclusively on this
datum. The definition of (and bit position correspond­
ence to) specific compartments is an installation option
at ADEPT start-up time (see SYSLOG). Typical
examples of compartments are EYES ONLY,
CRYPTO, RESTRICTED, SENSITIVE, etc.

Franchise

Property Franchise corresponds to the military
concept of need-to-know. Essentially, this corresponds
to a set of user:ids; however, the ADEPT implementa­
tion of Franchise is different for each security object:

1. User: All users wishjng ADEPT service must be
knowIl to the system. This knowledge is imparted
by SYSLOG at start-up time and limited to
approximately 500 user:ids (max(U) :::; 500).

Security Controls in ADEPT-50 Time-Sharing System 125

2. Terminal: Equation. (5) specifies the Franchise
of a given terminal, F t, as a set or user:ids. In
ADEPT, Ft does not exist. One may define all
the users for a given terminal, i.e., F t ; or alterna­
tively, all the terminals for a given user. Because
SYSLOG orders its tab1es by user:id, the latter
definition was found more convenient to
jmplement.

3. Job: The Franchise of a job is the 'llser:id of the
creator of the job at the time of LOGIN to the
system. Currently, only one user has access to
(and control of) a job (p, = 0 for equation (6)).

4. File: Implementation of Franchise for a file (F f),
is more extensive than equation (7). In ADEPT,
we wish to control not only who accesses a file,
but also the quality of access granted. We have
defined a set of four exclusive qualities of access,
such that a given quality, q, is defined if

q E {READ, WRITE, READ-AND­
WRITE, READ-AND-WRITE-
WITH-LOCKOUT-OVERRIDE} (27)

ADEPT permits simultaneous access to a file by
many jobs if the quality of access is for READ
only. However, only one job may access a file
with WRITE, or READ-AND-WRITE quality.
ADEPT automatically locks out access to a file
being written to avoid simultaneous reading and
writing conflicts. A special access quality, how­
ever, does permit lockout override. Equation (7)
can now be extended as a set of pairs,

F f = {(uJ, qO), (u), ql), "', (ul, q'Y)} (28)

where q i are not necessarily distinct and are given
by equation (27).
The implementation of equation (28) is depend­
ent upon 1', the number of franchised u,sers.
When l' = 0, we have the ADEPT Private file,
exclusive to the owner, uJ; for l' = max(U), we
have the Public file; values of l' between these
extremes yield the Semi-Private file. l' is
implicitly encoded as the ADEPT "privacy"
item in the file's catalog control data, and takes
the place of F f for all cases except a Semi-Private
file. For that case exclusively, equation (28) holds
and an actual F f list of user:id, quality pairs
exists as a need-to-know list. The owner of a file
specifies and controls the file's privacy, including
the composition of the need-to-know list.

Security control initialization: SYSLOG

SYSLOG is a component of the ADEPT initialization
package responsible for arming the security controls. It
operates as one of a number of system start-up options
prior to the time when terminals are enabled. SYSLOG
sets up the security profile data for user:id and
terminal:id, i.E.:" the "given constants" of Table I.

SYSLOG creates or updates a highly sensitive
system disc file, where each record corresponds to an
authorized user. These records are constructed from a
deck of cards consisting of separate data sets for
compartment definitions, terminal:id classification, and
user:id clearance. The dictionary of compartment defini­
tions contains the less-than-9-character mnemonic for
each member of the Category set. Data sets are formed
from the card types shown in Table II. Use of passwords
is described later in the LOGIN procedure.

An IDT card must exist for each authorized user; the
PWD DEV SEC and CAT card types are optional. , , ,
Other card types are possible, but not germane to
security control, e.g., ACT for accounting purposes.
More than one PWD, DEV, and CAT card is acceptable
up to the current maximum data limits (i.e., 64 pass­
words, 48 terminal:ids, and 16 compartments).

A variety of legality checks for proper data syntax,
quantity, and order are provided. SYSLOG assumes ~he
following default conditions when the correspondlIlg
card type is omitted from each data set:

PWD
DEV
SEC
CAT

No password required
All terminal:ids authorized
A = UNCLASSIFIED
C = null (all zero mask)

This gives the lowest user clearance as the default,
while permitting convenient user access. Various options
exist in SYSLOG to permit maintenance of the internal
SYSLOG tables, including the replacement or deletion
of existing data sets in total or in part.

The sensitivity of the information in the security
control deck is obvious. Procedures have been developed
at each installation that give the function of deck
creation, control, and loading to specially cleared
security personnel. The internal SYSLOG file itself is
protected in a special manner described later.

Access control

A fund2.mental secur.1ty concern in multi-3ccess sys­
is that many users with different clearances will be
simultaneously using the system, thereby raising the

126 Fall Joint Computer Conference, 1969

TABLE II-SYSLOG control cards

Purpose Card Type
DICT
compartment 1 compartment16

I dentifies start of data set of compartment definitions.
Defines up to 16 compartments.

TERMINAL
UNIT terminal:id
IDT 'U,ser:id
PWD password
DEV terminal:id1

Identifies start of data sets of terminal definitions.
Identifies start of a terminal data set.
Identifies start of a user data set.

password'
terminal:id48

Defines legal passwords for user:id up to 64.
Defines legal terminals for user:id up to 48.

SEC Authority
CAT compartment 1 compartment16

Defines user:id Authority.
Defines user:id Category set.

possibility of security compromise. Since programs are
the "active agents" of the user, the system must
maintain the integrity of each and of itself from
accidental and/or deliberate intrusion. A multifile
system must permit concurrent access by one or more
jobs to one or more on-line, independently classified files.

ADEPT is all these things--multiuser, multiprogram,
and multifile system. Thus, this section deals with access
control over users, programs, and files.

User access control: LOGIN

To gain admittance to the system, a user must first
satisfy the ADEPT LOGIN decision procedure. This
procedure attempts to authenticate the user in a fashion
analogous to challenge-response practices.

The syntax of the ADEPT LOGIN command, typed
by a user on his terminal, is as follows:

/LOG IN user :id password accounting

Figure 1 pictorially displays the LOG IN decision
procedure based upon the user-specified input param­
eters. Usel':id is the index into the SYSLOG file used to
retrieve the user security profile. If no such record exists
(Le., equation (22) fails), the LOGIN is unsuccessful and
system access is denied. If the security profile is found,
LOGIN next retrieves the terminal:id for the keyboard
in use from internal system tables, and searches for a
match in the terminal:id list for which the user:id was
franchised by SYSLOG. An unsuccessful search is an
unsuccessful LOG IN.

If the terminal is franchised, then the current pass­
word is retrieved from the SYSLOG file for this usel':id
and matched against the password entered as a kevboard
parameter to LOGIN. An unsuccessful match i; again

an unsuccessful LOGIN. Furthermore, the terminal is
ignored (will not honor input) for approximately 30
seconds to frustrate high-speed, computer-assisted.
penetration attempts. If, however, the match is
successful (equation (22) holds), the current password in
the SYSLOG file for this user:id is discarded ,and
LOGIN proceeds to create the job clearance.

(start)

----- Equatic'n (22)

----- Equation (23)

----- Equation (22)

----- Equations (15) and (16)

Figure 1-LOGIN decision procedure

Security Controls in ADEPT-50 Time-Sharing System 127

Passwords in ADEPT obey the same syntax conven­
tions as user:id. (See the earlier description of User
Identification.) Although easily increased, currently
SYSLOG permits up to 64 passwords. Each successful
LOG IN throws away the user password; 64 successful
LOGINs are possible before a new set of passwords
need be established. If other than random, once-only
passwords are desired, the 64 passwords may be encoded
in some algorithmic manner, or replicated some number
of times. Once-only passwords is an .easily implemented
technique for user authentication, which has b~en
advocated by others.2,7 It is a highly effective and
secure technique because of the high permutability of
12-character-passwords and their time and order
interdependence, known only to the user.

Once the authentication process is completely satis­
fied, LOGIN creates the job security profile according to
equations (15) and (16) of our model. That is, the lower
Authority of the user and the terminal becomes Ai, and
the intersection (logical AND) of the user and terminal
Category sets becomes the Category of the job, Cj. For
example, a user with TOP SECRET Authority and a
Category set (1001 1001 0000 1101) operating from a
SECRET level terminal with a Category set (0000 0000
0000 0010) controls a job cleared to SECRET with an
empty Category set.

Program access control: LOAD

As noted earlier, the ADEPT Executive consists of
two parts: BASEX, the resident part, and EXEX, the
swapped part. EXEX is a body of reentrant code
shared by all users; however, it is treated as a distinct
program in each user's job. Up to four programs can
exist concurrently in the job. Each operates with the job
clearance-the job clearance umbrella.

LOAD is the ADEPT component used to load the
programs chosen by the user; it is part of EXEX and
hence operates as part of the user's job with the job's
clearance. Programs are cataloged files and as such may
be classified with a given security profile. As is described
in "File Access Control" below, LOAD can only load
those programs for which the job clearance is sufficient.
Once loaded, however, the new program operates with
the job clearance.

In this manner, we see the power of the job umbrella
in providing smooth, flexible user operation concurrent
with necessary security control. Program files may be
classified with a variety of security profiles and then
operate with yet another, i.e., the job clearance. By this
technique security is assured and programs of different
classifications may be operated by a user as one job. It

permits, for example, an unclassified program file (e.g.,
a file editor) to be loaded into a highly classified job to
process sensitive classified data files.

File access control: OPEN

Before input/output can be performed on a file,
a program must first acquire the file by an OPEN call
to the Cataloger. Each program must OPEN a file for
itself before it can manipulate the file, even if the file is
already OPENed for another program. A successful
OPEN requires proper specification of the file's descrip­
tors-some of which are in the OPEN call, others of
which are picked up directly by the Cataloger from the
job environment area (e.g., job clearance, user:id)-and
satisfactory job clearance and user:id need-to-know
qualifications according to equations (25) and (26) of
our model. Equation (25) is implemented as (8) as a
straightforward magnitude comparison between A j and
AI' Equation (25) is implemented as (9) as an equality
test between CI and (C j /\ C/). We use (C j /\ C /) to
ensure that C I is a subset of the job categories; i.e., the
job umbrella. Lastly, equation (26) is a NOP if the file
is Public; a simple equality test between Uj and UI if the
File is Private; and a table search of F I for Uj if the file
is Semi-Private. These tests do increase processing time
for file access; however, the tests are performed only
once at OPEN time, where the cost is insignificant
relative to the I/O processing subsequently performed
Qn the file.

The quality of access granted by a successful OPEN,
and subsequently enforced for all I/O transfers, is that
requested, even if the user hp"s a greater Franchise. For
example, during program debugging, the owner of a file
may OPEN it for HEAD access only, even though
READ-AND-WRITE access quality is perm.itted. He
thereby protects his file from possible uncontrolled
modification by an erroneous WRITE call.

Considerable controversy surrounds the issue of
automatic classification of new files form.ed by subset or
merger of existing files. The heart of the issue is the poor
accuracy of many such classification techniques17 and
the fear of too many over-cle.ssifIed files (a fear of
operations personnel) or of too many under-clPJssified
files (a fear of the security control officers). ADEPT
finesses the problem with a clever heuristic-most new
files are created. from. existing files, hence classify the new
file as a private file with the composite Authority BJnd
Cate.<T,ory of all files referep.ced.. This is achieved. in
ADEPT by use of the "hiv,h-w9.ter mark."

Starting with the bound8.ry conditions of eQufI,tions
(11) and (13), the Cataloger applies equations (12) and

128 Fall Joint Computer Conference, 1969

(14) for each successful file OPEN, and hence maintains
the composite classification history of all files referenced
by the job. For each new and temporary file OPEN, the
Cataloger applies equations (17), (I8), and (19); they
are reapplied for each CLOSE of a "new file, to update
the ~lassification (due to changes in the high-wa.ter mark
since the OPEN) when the file becomes an existing
cataloged file in the inventory. The scheme rarely
underclassifies, and tends to overclassify when the new
file is created late in the job cycle, as shown by boundary
equations (20) and (21).

Trans-formal security features

ADEPT contains a host of features that transcend
the formalism presented earlier. They are described here
because they are integral to the total security control
system and form a body of experience from which new
formalisms can draw.

Computer hardware

ADEPT operates on an IBM System 360/50 tmd is,
therefore, limited to the hardware available. Studies by
Bingham9 suggest a variety of hardware fe24tures for
security control, many of which are possessed by
System 360.

IBM System 360 can operate in one of two st2.tes: the
Supervisor state, or the Problem state. ADEPT execu­
tive programs operate in the Supervisor state; user
programs operate in the Problem state.

A number of machine instructions are "privileged" to
t4e Supervisor state only. An attempt to execute them
in the Problem state is trapped by the hardware and
control is returned to the executive program for
remedial action. ADEPT disposes of these alarms by
suspending the guilty job. (A suspended job may be
resumed by the user.) Clearly, in$tructions that ch[mge
the machine state aro privileged to the executive only.

Another class of privileged instructions consists of
those dealing with input/output. Problem state pro­
graI?ls cannot directly access information files on
secondary memory storage devices such as disc, tape, or
drum. They must access these files indirectly by
requests to the executive system. The requests are
subjected to interpretive screening by the executive
software.

Main memory is selectively protected against un­
authorized change (write protected). We have also had
the 360/50 modified to include fetch protection, which
guards against unauthorized reading of- or executing
from-protected memory. The memory protect instruc-

tions are also privileged only in the Supervisor state.
ADEPT software protects memory on a 4096-byte

"page" basis (the hardware permHs 2048-byte pages),
allowing a non-contiguous mosaic of protected pages in
memory for a given program. To satisfy multiprogram­
ming, many different protection groups are needed.
Through the use of programmable 4-bit hardware masks,
up to 15 difi'erent protection groups can be accom­
modated in core concurrently. ADEPT executive
programs operato with the all-zero "master key" mask,
permitting universal access by all Basic and Extended
Executive components.

There are five classes of interrupts processed by
System/3eO hardware: input/output, program, super­
visor call, external, and machine check. Any interrupts
that occur in the Problem state cause an automatic
hardware switch to the Supervisor state, \\'ith CPU
control flowing to the appropriate ADEPT executive
interrupt controller. All security-vulnerable functions
including hard\vare errors, external timer and keyboard
actions, user program service requests, illegal instruc­
tions, merr.ory protect violations, and input/output, are
called to the attention of ADEPT by the System/360
interrupt system. The burden for security int.egrity is
then one for ADEPT software.

Monitor software

Inducing the system to violate its own pJrotection
mechanisms is one of the most likely ways of breaking a
multi-access system. Those system components that
perform tasks in response to user or program requests
are most susceptible to such seduction.

On-Line debugging

The debugging program provides an on-line capability
for the professional program.mer to dynamicallY look at
and change selected portions of his program's memory.
DEBUG can be directed to access sensit.ive core
memory that would not be trapped by memory protec­
tion, since, as an EXEX component operating in the
Supervisor state, DEBUG operates with the memory

. k T 1 thO "t d " protectIOn master ey. . 0 c ose IS rap oor,
DEBUG always performs iI}.terpretive checks on the
legality of the debugging request. These checks are
based upon address-out-of-c.ounds criteria, i.e., the
requested debugging address must lie within t.he user's
program area. If not, the request will be denied. and the
user warned, but he will not be terminated as has been
suggested.7

Security Controls in ADEPT-50 Time-Sharing System 129

Input/ output

Input/output in System/360 is handled by a number
of special-purpose processors, called Selector Channels.
To initiate any I/O, it is necessary for a channel
program to be executed by the Selector Channel.

SP AM, the BASEX component that permits symbolic
input/ output calls from user programs, is really a
special-purpose compiler that produces I/O channel
programs from the SP AlVI calls. These channel progams
are subsequently delivered and executed by the ADEPT
Input/Output Supervisor, lOS.

SPAM permits a variety of ca1ls to read, write, alter,
search for, and position to records within cataloged files.
To achieve these ends, SP AM depends upon a variety
of control tables dynamically created by the Cataloger
in the job environment.

The initiating and subsequent monitoring of channel
program execution is the responsibility of the BASEX
Input/Output Supervisor, lOS. lOS is called to execute
a channel program (EXCP). System components, such
as SPAM, branch to lOS at a known entry point that is
fetch-protected against entry in the Problem state. lOS
is off-limits to user program.s attempting to access
cataloged storage. For protection against unauthorized
EXCP requests, lOS always performs legality checks
before executing a channel program. These checks begin
by examination of the device addressed by the channel
program. If it is the device address for cataloged
storage, further checks are made to determine the
machine state of the calling program. That state must be
Supervisor state for the call to be honored. A call in the
Problem state would indicate an illegal EXCP call from
a user program.

lOS m. k . i her checks to guarant.}e the validity of
an 1/(requbst j checks to see that the specified buffer
areas for the transfer do not overlay the channel
program itself) nn lie within the user's program
memory area, i.e., do not modify or access system or
protected memory.

Covert I/O violations are also forestalled since I/O
components take direction from information stored in
the job environment-an area read- and write-protected
from Problem state programs.

Classified residue

Classified residue is classified information (either code
or data) left behind in memory (i.e., core, drum or
disc) after the program that referenced it has been
dismissed, swapped out, or quit from the system. The
standard solution to the problem is to dynamically
purge the contaminated memory (e.g., overwrite with

random numbers, or zeros), In a system supporting over
.!i billion bytes of memory, that solution is unreasonable
and in conflict with high performance goals. ADEPT's
solution to the dilemma of denying access to classified
residue while maintaining high performance depends
upon techniques of controlled memory allocation.

1. C ore Residue
As noted earlier, all core storage is allocated as

4096-byte pages. These pages are always cleared
to zero when allocated, thereby overwriting any
potential residue.

Via the program's page map, the ADEPT
executive system labels all code and data pages
(they need not be contiguous) belonging to a
given program with a single hardware memory
protection key, thereby prohibiting unauthorized
reading or writing by other, potentially co­
resident user programs that may be in execution.
Furthermore, BASEX keeps a running account
of the status and disposition of all pages of core.

The Loader and Swap per components of
ADEPT always work with fu1l4096-byte pages.
Unfilled portions of pages at load time are kept
cleared to zero as when they were allocated, and
the full 4096 bytes are swapped into core, if not
already resident, each scheduled time slice.
Further, newly a1located pages are marked as
"changed" pages, thus guaranteeing subsequent
swap out to drum.

With these procedures, ADEPT denies access
by a user or program to those pages of core not
identified as part of his program, and clears core
residue by over-writing accessible core at load
and swap times.

2. Drum Residue
ADEPT always clears flo drum page to zero

before it is allocated. The page m.ay subsequently
be cleared again to user-specified data. ADEPT
also maintains a drum map that notes the
disposition of all d.rum pages (800 pages for the
IBM 2303 drum). Drum input/output, like all
ADEPT I/O, is controlled by executive privileged
instructions.

3. Disc Residue
Disc files in ADEPT are maintained as

"dirty" mem.ory. That is, the large capacity of
the file system makes it infeasible to consider
automatic over-writing techniques for residue
control; therefore, deleted disc tracks are re­
turned to the available eiJorage pool contaminated
and unclean. It then becomes the burden of the

130 Fall Joint Computer Conference, 1969

ADEPT file system to control any unauthorized
file access, whether to cfl,taloged files or un­
cataloged disc memory.

Team work bet\veen the Cataloger, SP AIVI and
lOS components of ADEPT achieves this control
via legality checking of all OPEN and I/O
requests.

For example, all d.isc packs are labeled
internally ahd externally with their volume:id,
and this label is checked. at the tiIr.e of mounting
by the Cataloger OPEN procedure to assure
proper volume mounting. Tapes may also be
labeled and checked as a user option.

Of particular note, SP A1VI 21lways assumes that
an end-of-file (EOF) immediately follows the
last record written in a new file, and it prohibits
reading beyond that EOP. Contaminated tr8,cks
allocated to new files cannot be read until they
are first written. The act of \vriting advan.ces the
EOF and the user simultaneously over-writes the}
classified residue with his own data. The user
cannot skip over the EOF, and the EOF location
is itself protected in the job environment area.

System files

Equation (28) led us to exmnllle Private, Semi­
Private, and Public files. ADEPT possesses two
additional file priv21cies that tr2,nscend our model; both
are system files. Privacy-4 system files are the need·-to­
know lists created by the Cataloger itself for Semi­
Private HIes. Privacy-5 system files 8.re private system
memory for the SYSLOG files [',nd the cat2,]ogs
themselves.

Access to these files is restricted to the system only.
Special access checks are made that d.ifler from. thos<B of
equati('ns (25) and (26). First, a special 1lser:id is
required that is not a member of F (i.e., not in the
SYSLOG file). Seco~ld, the program making the OPEK
call must be in Supervisor state. Third, the program
making the OPl'J\ call must be a member of a short list
of EXEX programs. The list is built into the Cataloger
at the time of compil[),tion. In this manner, access to
system files is severely restricted, even to system
programs.

Security service commands

4. Tape Residue
ADEPT provides a variety of service commands that

involve security control. The comm[),nds are listed in
Table III. Note that commands V AR.YON, VAR.YOFF,
REPLACE, LISTU, AUDIT, AUDOFF, and WB.AP­
UP are restricted to p, particular terminal-th'B Security
Officer's Station.

No speci2.l features for tape residue control are
implemented in ADEPT. Tape residue control is
easily satisfied by manual, off-line tape de­
gaussing prior to ADEPT use.

Command
AUDIT*
AUDOFF*
CHANGE

CREATE
LISTU*
RECLASS

RELOG

REPLACE *
SECURITY

VARYONjVARYOFF*

WRAPUP *

TABLE III-Security service commands

Turns on security audit recording.
Turns off security audit recording.

Purpose

Enables the owner of a file to chang;e any of the access control information of
the file.
Enables a user to create a Semi-Private file and its need-to-know list.
Lists by terminal:id all the current logged in user:ids.
Enables a user to raise or lower his job clearance between the bounds of the
original LOGIN and current high-water mark clearance.
Like LOGIN, but reconnects a user to an already existing job, as when a remote
terminal drops off the communications line.
Enables a user to move his job to another term.inal or to recl9Jssify a given device.
Print on the us~r's terminal approximately every 100 lines (or only by requestd
the job high-water mark (or clearance by request) as a reminder to the user au)
as a classification stamp of the level of current security activity.
Permits terminals to be varied on- and off-line for flexibility in system
maintenance and configuration control.
Shuts down system after a specified elapsed time.

* Restricted to Security Officer's Station only.

Security Controls in ADF.PT -50 Time-Sharing System 131

Audit

The AUDIT function records certain transactions
relating to files, terminals, and users, and is tl'.e elec­
tronic equivalent of manual security accountability logs.
I ts purpose is to provide a record of user access in order
to determine whether security violations have occurred
and the extent to which secure data has been com­
promised. The AUDIT function may be initiated only
at start-up time, but may be terminated at 21ny time.
All data re recorded on disc or tape in rog} time so the
data is safe if the system malfunctions. An aux'.liary
utility program, AUDLIST, may be used to list the
AUDIT file. The information recorded is shown in
Table IV.

Implementation of AUDIT is quite straightforward,
a product of general ADEPT recording and instrumen­
tation.18 •19 AUDIT is an EXEX component that is
called by, and at the completion of, each function 0 be
recorded. The information to be recorded is pass d to
AUDIT in the general registers. Additional I/O
overhead is the primary cost incurred in the operation
of AUDIT, for swapping and file maintenance. This
cost is nominal, however, amounting to less than one
percent of the CPU time.

SUlVIMARY

In summary we may ask: How well have we met our
goals? First, we believe we have developed and success-

TABLE IV-Security events and information audited by ADEPT-50

~~p~ ;..;; J'~ ""'0-8 YJ'~L> 4C'c YJ'~ ;.~~ C'"oy 4'~o/ ¢'~ ~-I'(~ 1'(~ :/~ 1'(~ -I'(~ oJ'~
~ 4l'. ,,0 J' ,,0 I o~~. '.l: ;. ~ A'./; 1l J' A ~ ~ UJ' :i?o~~C'~ ~o~ J'~c q,.;. '-I'.() ~(.t~ ¢'~ :i?oJt(~~ o~~ o~<: ~C'o. o~ o(~ c:.,~

J'~'.f>J'J' J'<e 0,>J' ~ " '1"", J'<~"e ;p <~ '1'<~ ~"b
r ~ ~~ If(C'Y<1> -I'.() 4'~ ~.,.

~ "l'lf. ~ ~
. ~<1> ~

J' EVENT

LOGIN X X X X X X X

LOGOUT X X X

OPEN FILE X X X X X X X

REOPENl FILE X X X X X X X

CHANGE FILE X X X X X X X

CLOSE FILE X X X X X

DELETE FILE X X X X ~- 1-.-

RECLASS X X X

REPLACE x x X x x

DEVICE LIST2 x X 1----f.------

CATEGORY DICTIONARy 3 x x

RESTART4
v

WRAPUp5 X

1 This is the "OPEN existing file" command.

2 A list. of all the terminal devices and their assigned security and categories is recorded at each system load.

3 A list of the prose category names is recorded at each system load.

4 Whenever the system is restarted on the same day (and AUDIT had been turned on earlier that day) the time of
the restart is recorded.

5 The time that the AUDOFF action was taken, or the time that the WRAPUP function called AUDIT, to terminate the
AUDIT function.

132 Fall Joint Computer Conference, 1969

fully demonstrated a security control mechanism that
more than adequately supports heterogeneous levels and
types of classification. Of note in thi~ rega~d is the
LOGIN decision procedure, access control tests, job
umbrella, high-wat.er mark, and audit trails recording.
The approach can be improved in the direction of more
compartments (on the order of 1000 or more), extension
of the model to include system files, and the imple­
mentation of a single Franchise test for all security
objects. The implementation needs redundant encoding
and error detection of security profile data to increase
confidence in the system-though we have not ourselves
experienced difficulty here. The increase in memory
requirements to achieve these improvements may force
numerical encoding of security data, particularly
Category, as suggested by Peters.7

Second, SYSLOG has been highly successful in
demonstrating the concept of "security armin.g" of the
system at start-up time. Our greatest difficulty in this
area has been with the human elem.ent-the computer
operators-in preparing and ha.ndling the control deck.
In opposition to Peters,7 we believe the operator should
not be "designed out of the operation as much as
possible," but rather his capabilitits should be upgraded
to meet the greater levels of sophistication B.nd responsi­
bility required to operate a time-sharing system.20 He
should be considered part of line management. ADEPT
is oriented in this direction and work now in progress is
aimed at building a real-time security surveillance and
operations station (SOS).

Third, we missed the target in our attempt to isolate
and limit the ~mount of critical coding. Though much
of the control mechanism is restricted to a few com­
ponents--LOGIN, SYSLOG, CATALOGER, AUDIT
-enough is sprinkled around in other areas to make it
impossible to restrict the omnipotent capabilities of the
monitor, e.g., to run EXEX in Problem state. Some
additional design forethought could have avoided some
of this dispersal, particularly the ·wide distribution in
memory of system data and programs that set and use
these data. The effect of this shortcoming is the need for
considerably greater checkout time, and the lowered
confidence in the system's integrity.

Lastly, on the brighter side, we were surprisingly
frugal in the cost of implementing this security control
mechanism: It took approximately five percent of our
effort to design, code, and checkout the ADEPT
security control features. The code represents about ten
percent of the 50,000 instructions in the system. Though
the code is widely distributed, SYSLOG, security
commands, LOGIN, AUDIT, and. the CATALOGER
account for about 80 percent of it. The overhead cost of

operating these controls is difficult to me8.sure, but it is
quite low, in the order of one or two percent of total
CPU time for norm.al operation, excluding SYSLOG.
(SYSLOG, of course, runs at card reader speed.) The
most significant area of overhead is in the checking of
I/O channel programs, where some 5 to 10 msec are
expended per call (on the average). Since this time is
overlapped with other I/O, only CPU bound programs
suffer degredation. AUDIT recording also cont.ributes
to service call overhead.. In actuality, the net operating
cost of our security controls may be zero or possibly
negative, since AUDIT recordings showed us numerous
trivial ways to measurably lower system overhead..

ACKNOWLEDGl\'lENTS

I would like to acknowledge the considerable encourage­
ment I received in the formative stages of the ADEPT
security control design from lVIr. Richard Cleaveland, of
the Defense Communications Agency (DCA). I woul.d
like to thank l\irs.l\1artha Bleier, l\1r. Peter Baker, and.
Mr. Arnold Karush for their patient care in designing
and implementing much of the work I've described
Also, I wish to thank Mr. l\Tarvin Schaefer for assisting
me in set theory notation. Finally, I would like to
applaud the· ADEPT system project personnel for
designing and building a time-sharing system so
amenable to the ideas discussed herein.

REFERENCES

1 A HARRISON
The problem of privacy in the computer age: An annotated
bibliography
RAND Corp Dec 1967 RM-5495-PR/RC

2 L J HOFFMAN
Computers and privacy: A survey
Stanford Linear Accelerator Center Stanford Univ Aug
1968 SLAC-PUB-479

8 H E PETERSEN R TURN
System implications of information privacy
Proc SJCC Vol 30 1967 291-300

4 W H WARE
Security and privacy in computer systems
Proc SJCC Vol 30 1967 279-282

5 W H WARE
Security and privacy: Similarities and differences
Proc SJCC Vol 80 1967287-290

6 R LINDE C WEISSMAN C FOX
The ADEPT-50 time-sharing system
Proc FJCC Vol 35 1969 Also issued as SDC Doc SP-3344

7 B PETERS
Security considerations in a multi-programmed comp uter
system
Proc SJCC Vol 30 1967 283-286

8 RYE CAPRI COINS OCTOPUS SADIE Systems

Security Controls iIi A:P,EPT'-50 Time-Sharing System 133

NOC Workshop National Security Agency Oct 1968
9 H W BINGHAM

Security technique8 for EDP oj multi-level cla88ified
information
Rome Air Development Center Dec 1965 RADC-TR-65-415

10 R M GRAHAM
Protection in an information proce88ing utility
ACM Symposium on Operating Systems Principles Oct
1967 Gatlinburg Tenn

11 L J HOFFMAN
Formularie8-Program controlled privacy in large data ba8e8
Stanford Univ Working Paper Feb 1969

12 D K HSIAO
A file 8y8tem for a problem 80lving facility
Dissertation in Electrical Engineering Univ of Pa 1968

13 J I SCHWARTZ C WEISSMAN
The SDC time-8haring 8Y8tem revi8ited
Proc ACM Conf 1967 263-271

14 P BARAN
On di8tributed communication8: IX, 8ecurity, 8ecrecy, and
tamper-free con8ideration8

RAND Corp Aug 1964 RM-3765-PR
15 C WEISSMAN

Programming protect'ion: What do you want to pay?
SDC Mag Vol 10 No 8 Aug 1967

16 J P TITUS
Wa8hinqton commentary-Security and privacy
CACM Vol 10 No 6 June 1967379-380

17 I ENGER et al
.{l utomatic 8ecurity cla88ification study
H.ome Air Development Center Oct 1967 H.ADC-TR-67-472

18 A KARUSH
The computer sY8tem recording utility: A pplication and
theory
System Development Corp March 1969 SP-3303

19 A KARUsiI
Benchmark analysi8 of time-8haring 8ystem8 : Methodology and
re8ults
System Development Corp April 1969 SP-3343

20 It R LINDE P E CHANEY
Operational management of time-8haring 8Y8tems
Proc 21st Nat ACM Conf 1966 149-159

Management of confidential information

b,y EDWARD V. COMBER

System Dynamics, 1m.
Oakland, California.

INTRODUCTION

For many years, informed persons have expended
considerable time and energy attempting to evolve
an acceptable philosophic assessment of the concept
of "privacy." Studies made in the fields of anthropology,
phychology, and sociology are in general agreement
that both the mental and physical well-being of an
individual requires fr~edom to experience some degree
of personal anonymity within the envir?nment.
While the significance of "privacy" has been recognized,
it has eluded the constraint of an acceptable defini­
tion. .The search for a workable definition continues
as man seeks a means for establishing, practical bounds
for inter-personal relations.

Recently, the concern for "privacy" has become a
rallying point for those who see the present growth
and applications of data automation as a threat to
the "rights of privacy" of the individual. These advo­
cates lament that the individual is unaware of the
threat to his "loss of privacy" as his attention is
diverted by the glowing promises of anticipated
benefits that may become available through data
automation.

It is the writer's belief that through the proper and
reasonable utilization of the tools of modern data tech­
nology man will have within his power a mechanism
that has the potential of becoming his strongest ally
in his search for means to preserve the values of "pri­
vacy." In reality, the critical element in this question
of "privacy" should not address itself to the electro­
mechanical capability of the computer or system tele­
communications functions. The true focal point is the
direct challenge to the discipline and conduct of man
who is the designer and user of the data system.6 Man

must be willing to abide by the standards he derives
from his own "privacy" criteria. He 'must staunchly
forego any temptation to engage in system shortcuts,
and he must hold to the position that he will not accept
lightly any violations of the "confidentiality controls"
established for system operation. Any breach in the
integrity 'of the system must be viewed as a direct
personal challenge to the integrity' of each person
associated with the undertaking.

SUMMARY

The following is a brief resume of significant elements
that have been identified with the question of "pri­
vacy." These comments are not offered as final nor
are they to be considered as embracing the entire
area of concern. The summary is presented simply as
a means of bringing together some key factors that
could serve as a foundation for a basic "privacy" con­
trol system. The working standards will evolve as
man gains more experience with this powerful ally
and is able to resolve philosophical and ethical ques­
tions that are inherent in the concept of "privacy".
As the environment and pace of modern life adjust
to current needs, the nature of "privacy" will probably
also reflect changes in priorities and the character of
the social stresses.

135

Elements in the invasion of privacy

No definitive statement exists which provides a
clear and acceptable statement of what is "private
information," or what constitutes an "unwarranted
invasion of privacy." Any criteria proposed to date
to identify "private information," or describe an act

136 Fall Joint Computer Conference, 1969

that would constitute "unwarranted invasion of pri­
vacy," must take into account whether or not such
disclosure of the specific data:

A. Would relate to an individual, a family or other
small group in such manner as to facilitate the
likelihood of the unwarranted identification of
the individuals, or

B . The data is not considered public information by
provision of legal statute, or

C. Would cause or be the basis for unjust economic
loss or social stigma or harassment to the
individual, or

D. Result in the unnecessary loss of a property
right.

What is private vs. what is confidential?

When attempting to discuss "privacy," the term
"confidentiality" inevitably will join the debate, but
does not promote clarification. What sort of personal
information do reasonable men interpret as "private?"
The answer to this question depends upon many
things; for example, anyone or more of the following
factors may apply:

A. The context within which the specific information
is embedded,

B. The amount of information assembled and ac­
cessible,

C. The intrinsic nature of the information.
D. The sophistication of the social values held by

the individuals concerned,
E. The character and scope of the sub-culture,
F. Significance of personal attributes such as: age,

ancestry, social status, race, etc.

Recently, the California Intergovernmental Board
on EDP was established by statute.1 It is charged
with responsibility to provide for intergovernmental
representation in the coordination of the many govern­
ment sponsored EDP programs and to take leadership
in the establishment of intersystem standards. The
Intergovernmental Board appointed a select Tech­
nical Advisory Committee to assist in the preparation
of a Manual to serve as a guideline for all agencies
in the development of local systems and facilitate
adequate interface capability as required. The manual
was completed and is under review by the Inter­
governmental Board prior to general release to official
agencies throughout the State of C~lifornia.

A sub-committee of the Technical Advisory Com­
mittee was specifically assigned to address the question
of "privacy". The members of the Privacy Sub-com-

mittee concluded, after some study, that there are a
number of personal information items that could be
made accessible to an integrated data system without
any threat to the individual "privacy". It was also
recognized that there are many other data items that
for one reason or another should be restricted from
wide access in the absence of an established right to
know. Some examples of these data items are as shown
below:

A. Information that may not be relevant to personal
privacy:

Name
Maiden Name
Address
Age or DOB
Race

Sex
Marital Status
N arne of Spouse
Next of Kin

B. Information that would probably be relevant to
personal privacy:

Occupation
Education
Income
Religious Preference
Political Preference
Family Size
N umber of Children
Ages of Children
Taxes Paid
History of Residence
Attitudes Toward Social Issues
Property Ownership
Value of Real Property
Marital History
Drinking Practices
Hospitalization Record
Medical Record
Symptoms of Illness
Record of Arrest
Ancestry
Nationality
Name of Relatives
Response to Psychological

or Medical Questions

Proliferation of data it'3ms throughout culture

While some of the information items mentioned
above may be found on records that are classified as
confidential, many of the information items may also
be found on records that are not subject to restriction

by law or policy. The current trend in social inter­
course and information exchange reflects an ever­
broadening depth of self-revealment by individuals.
Private and governmental services are being extended
into newer areas and thereby attracting the partici­
pation of an ever-growing segment of the citizenry.

The integration of interagency information systems
with data exchange introduces a new dimension as­
sociated with the creation of composite record images
of persons known to the total system. These images are
the product of independent and frequently unrelated
inputs of data to serve other specific needs. Any
integrated interagency information system with this
potential capability must be administered by profes­
sionally qualified persons who remain sensitive of the
need to verify both the identification of the subject
of inquiry and the inquirer's "right to know". As more
data systems are activated and interfaces are estab­
lished, the individual who is the initial source of the
data becomes more remote and isolated from the
operational inquiry that relates to his record. It should
be the constant aim of the system design, operational
programming, and user discipline to assure that system
integrity is not subverted.

Significance of developing standards for data verification

Attention should not be directed solely to provide
for the identification and classification of personal
data items. What is equally important, standards
must be developed and adopted to guide data ac­
ceptance and utilization with respect to the ability
to verify the information. For example, the confidence
in the operating system will be increased and utiliza­
tion encouraged if the user is assured that data items
are subject to verification as to:

A. Accuracy
B. Bias
C. Completeness
D. Currency
E. Documentation
F. Satisfaction of Legal Requirements

A safety value that will support a sound verifica­
'tion program is to initiate a practi,cal data purge
system. The best data system in terms of cost/benefit
analysis is one that has a high content of active data
and one that is adequately updated. The effect of estab­
lishing a continuous and critical purge system is to
provide an orderly review of file content, to remove
inactive or low value data.

Management of Confidential Information 137

One approach to a data classification plan

A number of studies have been undertaken in an
attempt to identify and define data items that should
be processed as classified or confidential. There have
been perhaps as many solutions offered as there have
been studies proposed. The Privacy Sub-committee
mentioned above proposed a simple three category
data plan for consideration and approval or the Cali­
fornia Intergovernmental Board on EDP.2 The con­
cept is summarized below:

A. Confidential:

This classification has the highest level of
restriction, and should be limited to data which
is prohibited from free and full disclosure by
statutory regulation (law).

B. Restricted:

This is data which:

1. Is not prohibited from full and free dis­
closure by statute (coufidential), and

2. An unauthorized intrusion could con­
stitute an unwarranted invasion of per­
sonal privacy, and

3. Has been administratively assigned a
security classification-restricted.

C . Unclassified:

All data maintained by a public agency not
otherwise classified as confidential or restricted
as defined below.

Sources of classification criteria

The criteria for the establishment of classification
of data arise from a variety of sources. In many in­
stances, the criteria is a result of the interaction of
one or more of the following:

A. Public Policy:
The living residue of tradition and social ac­
ceptance.

B. Statutory Law:
The formalized and legal codification of social
needs and standards of conduct.

C. Legal Interpretation:
The implementation of judicial and admin­
istrative decisions that have been sanctioned
through public acceptance.

D. User Agency Specifications:
Operational decisions that have been adopted

138 Fall Joint Computer Conference, 1969

and ennunciated to promote agency goals In
an atmosphere of public support.

E. Personal Needs of The Individual:
Acceptance of the system integrity by the pub­
lic who participate and furnish personal infor­
mation to assist an agency function with respect
to the needs of the individual (Federal Census,
Social Security, etc.).

Each of the sources of criteria utilized is subject
to its own characteristic variations, and will require
continuous reevaluation. The scope of data items
subject to the confidential classification are under
constant adjustment and reassessment due to the
dynamic character of the social conditions which give
rise to the data.

Identification of areas sensitive to intrusion3 .

One of the main deterrents to the development of
new ideas about privacy has been the lack of specificity
as to where the threats to privacy may arise. Many
agree that at· some future date, a serious threat may
develop. That a real danger exists today is not uni­
versally accepted.

Let us consider the potential challenge to "privacy"
that may originate from any of the;following sources:

A. The accidental observance of data by an individual.
B. The accidental dumping oj a volume of confi-

dential data to general view.
C. The solitary snoop.
D. The snoop-Jor-pay (hired spy).
E. The file stealer.
F. Misuse of confidential file by administrator having

access to system.
G. Organized crime.
H. Totalitarian government.
I. Another possibility might be the intrusion of the

private sector into government data files.

Establish policy on data classification

Before any acceptable automation program can
be developed to process information that may be con­
sidered "private" or "confidential," certain policy
decisions must be resolved.

A. The responsible administrators representing users
of the system must reach agreement on the data
content of the information' system. This agree­
ment must include the identification of any
data items or files that would be subject to
restricted access or inquiry. If the restriction

is pursuant to current policy, said policy should
be specified:

1. General Public Policy
2. Agency Administrative Policy
3. Statutory Provision
4. Judicial Ruling

B. Specific criteria should be established based on
the accepted policy statements, and serve as a
guide to test the classification of all data, intro­
duced into the system. The c011.tinued validity
of a classification should be based upon periodic
challenge and justification.

C. A policy manual should be prepared and main­
tained as a ready reference to facilitate system
operation.

1. Personnel participating in the system should
be held individually accountable for full
compliance with the "policy guidelines."

2. The policy manual should be subject to
continuous review and update to remain
current with system requirements, tech­
nology, and legal specifications.

D. Additional considerations in the development of
an Interagency Information System to main­
tain privacy control. Decisions regarding the
following elements of the system design and
operation will prove significant:

1. Facility Security:

(a) Location of Hardware
Single vs. Multiple Facility

(b) Physical Adequacy
Equipment
Personnel

(c) Access to Facility
Normal
Emergency

2. Equipment:

(a) Selection
(b) Configuration
(c) Operating Characteristics

Multi-processing
Multi-programming
Remote Terminals

3. Program Control:

(a) Single Management Responsibility

User Representation and Par­
ticipation

(b) Operating System
Monitor of System Services And
Access

(c) System Applications
(d) Man Machine Interface (Key Con­

sideration)
(e) Modularization of System Appli­

cations
Does Modularization Weaken
Privacy Control?

(f) Integration of Compatible Systems
Does Program Control Reside
With The Core System?

4. The Human Factor:
This is the critical and perhaps most
unpredictable element in the functioning
process.

(a) Personnel Recruitment, Selection
And Appointment

(b) Personnel Training And Super­
vision

(c) Maintenance of Operating Dis­
cipline

(d) Personnel Retention

Precautions to minimize potential for "privacy" violations

The same versatility and power that makes the
computer valuable as a data manipulator can be em­
ployed to monitor system services and support human
supervision procedures. The operating information
system should provide (assuming an adequate system
analysis and design):

A. A Sound Data Classification System

1. Specify data subject to restricted access
and special protection.

2. Provide for isolated storage of restricted
data if necessary.

3. Determine who has right to access to
confidential data and under what operating
conditions.

4. User agency personnel should be certi­
fied for access by administration.

B. Physical Conditions:

What levels of control should be imposed to
promote system integrity and at the same time
provide a functional environment that will

Management of Confidential Information 139

encourage system utilization by t:q.e partici­
pants for which it was designed.

1. Equipment (system hardware):

(a) Location and physical security of
equipment.

(1) Central Computer Instal­
lation

(2) Associated Peripheral
Equipment

(3) Back-Up Facilities­
Duplicate Files

(b) Remote terminal installations
(I/O devices.)

(c) Circuit Security

2. System Configuration

(a) Central Data Bank vs. Dispersed
Data Bases

(b) Central Data File vs. Central In­
dex Concept

(c) Central System Control vs. Remote
Terminal Activation

(1) Restricted Terminal Op­
eration

(2) Multiple Function Re­
mote Terminal

3. Software System Support-Programming
must be developed with an awareness of
the need for system integrity and data
security. Provision must be made to pro­
vide control over basic software com­
ponents, such as:

(a) Program Library
(b) Back-Up Documentation
(c) Diagnostic And Test Routines
(d) Continuous Coding of Update

Schedules That Support The
Identification Schemes Inherent
to The Confidentiality Control
Programs

(e) Transaction Monitor Logs Should
Be Designed to Provide The
Basis For Operational Super­
vision But Not Reveal The
Location or Content of The Con­
fidential Files Which Are Subject
to Monitor Control

140 Fall Joint Computer Conference, 1969

--
4. Personnel Requirements-If the system

equipment and facilities justify particu­
lar planning to minimize the hazards to
confidentiality, it is certain that considera­
tion be given to the personnel who will
function in the system. The scope of at­
tention should extend through both the
employees who perform the technical
services associated with EDP, and the
operating personnel of the agency for
which the information system was de­
veloped. Despite all that has been said
heretofore, the "key" to security of in­
formation rests with the individuals who
have access to the data system. Our
personnel planning should encompass
many specific areas. The following relate
most directly to physical factors:

(a) Personal Safety

(1) Area Accessibility
(2) Emergency Provisions

(b) Personal Accountability

(1) Identification Control
Plan

(a) Access to Instal­
lation

(b) Access to Specific
Work Areas

(2) Is the Plan Practical­
Used?

(c) Conveniences And Necessities

(1) Are They Adequate?
(2) Are They Properly Lo­

cated?

(d) What Special Precautions Are War­
ranted When Non-employee Per­
sonnel Are Permitted Access to
The Installation Area?

(1) Equipment Maintenance
(2) Building Service Main­

tenance

C. System Design Considerations:

Control provided through specific program­
ming techniques.

1. Limiting Terminal Access to The Sys­
tem-Programming

(a) Classification Schedule (Data Level
Control)

(1) Terminal Identification
(2) Terminal Verification
(3) User Identification
(4) User Verification
(5) Call-Back COnCep1j

(b) Restriction of Detail of Informa­
tion in Response to Inquiry
(Data Item Control)

(1) Refer to Index -. Pointer
to Source Data

(2) Status Indicator
(3) Advise Supervisory Sta­

tion

(a) Secure Permis-
sion to Inter­
rogate The Re­
stricted File

(b) Receive Seleet­
ed Hesponse
Throug;h Mon­
itor Agent

(4) Specific Limitation on
Terminal Operation

(a) Data Input
(b) Data Manipula­

tion
(c) Data Output
(d) Data Change or

Update
(e) Data Purl~e

2. Establish A Monitor On All Terminal
Action to Intercept and Identify un­
authorized attempts to access the system.

(a) Identify Transmitting Terminal
And Location

(b) Identify Terminal Operator(?)
(c) Identify Specific Nature of Re­

stricted Access Attempt
(d) Provide For Supervisory Level

Notification of The Attempt to
Support Maintenance of System
Discipline

(e) Abort The Unauthorized At-
tempt to Secure Data

3. Maintain audit review of selected files to

facilitate the orderly purge of files and to
check levels of file activity

(a) Establish, as necessary, periodic
file review procedures to chal­
lenge the continued "confiden­
tial" status of individual data
items to assure conformity with
system policy and user need

(b) Maintain necessary statistical
measures of activity in restricted
files to document operational
policy decisions.

(c) Provide special test routines to
challenge the confidentiality
procedures and verify system
functional integrity

(d) The Human Factor- The concern
for confidentiality of data and
file security eventually will fo­
cus on an assessment of problems
that arise from the human ele­
ment in the man-machine sys­
tem. Despite the sophistication
exercised in system analysis, de­
sign and implementation, specific
recognition must be given to
the fact that people participate
in system operations.

What about a future computer utility?4

With the rapid and diverse growth of computer
services and recognizing the intimate relation between
hardware facilities, communication channels and the
users of the systems, it is no accident that discussion
should arise about the future establishment of a com­
puter-communication utility. The need for such a
service becomes more apparent as we see the intro­
duction of time-sharing systems and the implemen­
tation of large integrated data services that support
major regional and even statewide programs. The
arguments pro, and con the justification for a com­
puter-communication utility are beyond the scope of
this paper. However, the utility concept does provide
the opportunity to propose several avenues of approach
to improving the "privacy" control aspect in personal
data· systems. One of the recurring suggestions has
been to establish a system of certification and licensing
for persons directly involved with the design, instal­
lation, management} and the operation of data systems
-nontaining sensitive personal information. A second
device that could prove of value w{)uld be to effect

Managem,ent of Confidential Information 141

control through regulation of the computer-communi­
cation utility service.

CONCLUSION

The challenge of privacy control

Violations of standards regarding confidentiality
or privacy of information occur when particplar items
of personal data furnished to an information system
for approved selective use are released to unauthorized
persons or in a manner that jeopardizes expected
system integrity.

A. The Predominance of The Human Factor

Tbe integrity of any information system re­
garding confidentiality or invasion of privacy
will eventually be resolved at the level of the
human factor. Machines, data sets, file cabinets,
index cards, tape drives, disk files, memory
modules, computers, report registers-each of
these devices is an inanimate object devised by
man to receive, transfer, or hold information
items made available to the system through
human intervention. Data stored in these de­
vices are significant only insofar as the output
is meaningful to man, and subject to change
or exposure by the action of an individual. Data
stored in an inactive or inaccessible device
without human interaction will not reveal in­
formation that would provide the basis for a
violation of privacy. The relationship between
man and his information system can be de­
scribed as consisting of the following basic ele­
ments:

(1) Man conceives the system.
(2) Man builds the elements necessary to pro­

vide the system.
(3) Man organizes the elements and es­

tablishes a scheme of operation.
(4) Man gathers the data that he intro­

duces into the system.
(5) Man activates the system.
(6) Man commands the resources of the

system.
(7) Man utilizes the results of the system in

his external contacts in society.

The consistent factor in the above summation
is the predominant relationship of man to the
system. Man is responsible for creation of
the system, the input of information, the
manipulation of that information, and the final

142 Fall Joint Computer Conference, 1969

disposition of the data produced or revealed by
the system.

B. Personnel Standards Are Necessary

Due to the prime significance of the human
element in the integrity of any data automated
system, the programs must address the fol­
lowing problems in a forthright manner:

(1) Personnel standards must be established
for all participants.

(2) All accepted personnel must be indoc­
trinated on a continuing basis regarding
the system objectives, functions, opera­
tional responsibility, etc.

(3) Specific training must be provided re­
garding system participation and
terminal operation.

(4) Each installation should have competent
supervision and a plan of routine
inspection of operations.

(5) Each agency participating in a larger
shared system must be accountable
for the performance and integrity
of its representatives. It must also be
responsible for the release of any
system information that is received
from a classified file.

(6) All personnel who have access to the sys­
tem should be required to sign a vol­
untary statement acknowledging their
individual responsibility to protect
the integrity of the system and respect
the confidentiality of classified data.
This statement could be a factor in the
initial as well as continued employ­
ment. 4

The operating system must prove convenient
and satisfactory to the User. It must provide
an effective service with assurance as to its
accuracy and adequacy. Outputs should be
tailored to meet the user need under the cir­
cumstances of the inquiry. The efficiency of
the system should discourage any user devel­
opment or maintenance of alternate or substi­
tute systems. The man-machine interface should
be maintained through the use of simple, direct
devices with a minimum requirement for coding
progressive verification, etc. An automated
data system should be so designed and sup­
ported that the user is free to direct his full
attention to his prime functional responsibility.

The information system must be a viable fmd
practical tool. It should function at the con­
venience of the user, with intelligible outputs
consistent in time and content to satisfy the
service requirement. Where a system re­
quires specific security restrictions, these must
be furnished and function without imposing
any awkward limitation on the legitimate user
of the system.

C. Weak Policy And Discipline Result8 in An
Inferior System

Recent critics have voiced objection to the de­
velopment of major data banks and interagency
information sharing systems in government ser­
vice. Their objection has been based, in part,
on certain practices associated with private
credit bureau operations. The lament, properly
uttered, pointed to a lack of data control fLnd
exercise of discretion by a number of these
private agencies. While the economic and social
value of credit rating bureaus is rendily ad­
mitted, the loose policies regarding "privacy
of data" casts a shadow regarding the ability
to maintain integrity in a major information
system. I believe it is an unfortunate and im­
proper inference to conclude that public in­
formation systems cannot protect the "privacy"
of information due to questionable practices
among some business organizations established
to collect and merchandise private informa­
tion for profit.

D. Limitation of Data Access of Specific
A uthorizalion

Suggestions have been made that an individual
should specify the extent of utilization of per­
sonal information and then the system be re­
quired to conform to the intention expressed
by the individual. This proposal sounds rea­
sonable, but on further consideration:. presents
subsequent problems in data management,
modification of data use authorization, etc.,
that demand thorough study.

E. Individual Right of Inspection of Record - File
Correction

Perhaps one of the most practical approaches
toward satisfaction of individual "right to pri­
vacy," and at the same time facilitate the
availability of the maximum of information re­
sources to solve social needs is to make pro-

VISIOn so that the individual can inspect the
system files that contain his personal data.
The individual should also have means to seek
correction of any data item that is in error and
subject to bias interpretation.

F. Develop Realistic Data Purge Policy

Attention should be given to the development
of basic guidelines regarding the longevity of
data resident in a file or information system.
The current trend is to collect and classify
more and more data on more and more people.
While hopefully most of the data will have
social value, I am sure that a significant quan­
tity will provide little benefit to the individual
or the community. It is not too early to con­
sider the need for sound purge criteria so that
the data retained in an operating system will
offer the highest potential return for the energy
expended.

G. Adequate Training Programs Must Be Developed
And Employed For The EDP Staff And Perso­
nnel of The User Agency Who Have Occasion
to Engage The Data System

The content should include an introduction to
system design concepts, the overall functions
and data processing applications that are com­
ponents of the system and a thorough instruc­
tion in terminal man-machine dialog. In ad­
dition, some attention should be given to ex­
plaining the service philosophy with particu­
lar attention to the rules regarding access to
and utilization of any information from confi­
dential or restricted files. The legal and mora]
issues must be clearly defined, and an under­
standing accepted by all who engage the system
that a violation of the security code regarding

Management of Confidential Information 143

restricted data may be sufficient grounds for
removal from system participation or dismissal.

The training program must be viewed as a con­
tinuing support function with periodic refresher
classes, problem sessions, review of privacy
criteria, etc. It is most important that the
agency administrators and key supervisory
personnel become involved in this program" and
not leave the system discipline t.ask to the tech­
nical staff who are not equipped nor responsible
for this duty.

H. Despite much uncertainty and misgivings as to
the effectiveness in terms of "privacy" control
that will result from the imposition of a licensing
scheme, such a potential mechanism will be the
subject of more intense consideration with the
passage of time.

REFERENCES

1 Intergovernmental Board on Electronic Data Processing
created by statute passed by Legislature of the State of
California. S B No 1100. This statute established under
sections No 11710-11720 of the Government Code

2 File Security Procedures-Report by Sub-Committee on
Privacy and Confidentiality of the Intergovernmental
Board on Electronic Data Processing Oct 18 1969

3 Ibid
4 D E SCHWEINFURTH

The coming computer utility-Laissez-Faire licensing or
regulation?
Computer Digest May 1968

5 A F WESTIN
Privacy and freedom
Atheneum New York 1967

6 Hearings Before a Sub-Committee on the Committee on
Government Operations House of Representatives-89th
Congress (Second Session) July 26 27 and 28 1966

7 System Development Corp "SDC Magazine" Vol 10 Nos
7 and 8 July Aug 1967 (This issue focussed on the question
of computer privacy.)

Some syntactic methods for specifying

extendible programming languages

by VICTOR SCHNEIDER

Purdue University
Lafayette, Indiana

Model of translator system

Our model of a programming-language translator
system is represented schematically in the block dia­
gram of Figure 1. This diagram divides the translator
system into two components. The first component T is
a translator program that reads in and translates the
valid programs of some programming language L.
The output of the translator is a subset T(L) of the
intermediate language. The second component is a
system M for executing the programs translated into
the intermediate language. It will be seen that, in this
intermediate language, the operators follow their
operands in postfix (reverse polish) form, and they are
relatively machine jndepend.ent. In this paper, we will
be mainly concerned with defining the operation of
the translator component by specifying the' input­
output relationships of the translator for a particular
programming language. These relationships will be
described in a syntactic notation that is independent
of the particulE r translation algorithm used. for imple­
menting the translator T.

The language that was chosen as an example for this
paper is Wirth and Weber's EULER.14 EULER is
quite similar to ALGOL 60 in appearance and capa­
bilities, and it has additional features found in the
LISP list-processing language. The original EULER

Input .Programs

in Language L

Figure I-Simplified block diagram of a translator
system

syntax was written to conform to the requirements of
a precedence translation algorithm,14 and contains a
number of syntactic rules whose purpose is to facilitate
construction of a precedence translator from these rules.
Because of the presence of these stylized rules, it was
decided to rewrite the EULER grammar into a more
compact and transparent form than the one in which
it originally appeared. An Irons-style notation2 ,3 was
used to specify the translation of this new EULER
grammar.

Reverse Polish translation of programming languages

To illustrate what we mean by a syntactic specifi­
cation of a programming-language translator, let us
consider as an example the following small portion of
the EULER syntax and examine some of the basic
devices used by our EULER sY:'ltem:

145

146 Fall Joint Computer Conference, 1969

Grammar 1. A Simplified Subset of EULER

Syntactic Rule

(expr) ---+ (var) = (expr)
I (sum)

(sum) ---+ (sum) + (term)
I (term)

(term) ---+ (term) * (factor)
I (factor)

(factor) ---+ (sum»)
lat (var)
I (var)
I (var). (expr-sequence)).

(var) ---+ (name)
(expr-sequence) ---+ (expr)

I (expr~sequence), (expr>

Note that the rules of translation above refer to
sequences of symbols on the right parts of syntactic
rules. In this example, we see that the rules of trans­
lation specify how symbols and sequences of symbols in
the source language are rearranged and rewritten in the
translated language. Where no change at all is indicated
in the translation of a particular rule, the symbol
·"1" appears as a translation rule. As an example of how
sequences of symbols are rearranged for translation, the
infix addition of

<sum> + <term>

is translated into the reverse polish sequence of symbols
consisting of a "<sum>" followed by a "<term>"
followed by the intermediate-language command for
adding together the values resulting from evaluation
of the previous two subexpressions. As in good polish
notation, parenthesis are removed from around ex­
pressions, and this process is specified by associating
the translation nde "<sum>" with the syntactic rule

<factor>---+(<sum».

The remaining rules having <factor> on the lefthand
side are used for translating arithmetic operands into
the intermediate language. For example, the syntactic
rule

<factor>---+ <var>

indicates that operands in arithmetic expressions are
variable names, and the translation of a <var> into
the sequence

Rule of Translation

(var) (expr > assign
I
(sum) (term)add
I
(term) (factor)multiply
I
(sum)
(var)
(var)in
(expr-sequence) (var)in
variable (name)
I
(expr-sequence) (expr)

<var> in

indicates that the "in" command is used for fetching
the value associated with <var> and for storing that
value on top of the run-time operand stack of systom
M.

The other syntactic rule

<factor>---+ at <var>

reflects the fact the EULER permits use of program
variables that are pointers to data named by other
program variables. Hence, the effect of the "at" com­
mand of the source language is to suppress the appear­
an~e of "in" in the translated program after the trans­
lated variable name. In this case, a pointer to the data
stored in <var> is left on top of the operand stack in
system M at run time. Finally, the rule

<var> -+ <name>

means that the names of program variables are trans­
lated into the sequence "variable <name> ." Here, the
effect of the "variable" command is to find a pDinter to
the data stored in the following name by system M alli
to place this pointer on top of the run-time op~rand
stack.

The sequence "<var>.(<expr-sequence>)." on
the right part of the remaining <factor> rule is ~he
definition of an EULER function call. FunctlOn
calls are translated with the parameters preceding the
function name in the translated program. In this way,
the function call can be made to look like a reverse
polish operator having n operands: with n the nnmber of

Syntactic Methods for SpecifyingEJxtendible Programming Languages 147

parameters. A parameterless function call is translated
exactly the same way as a program variable. Thus,
the sequence

"variable < name> in"

in a translated program serves both to fetch data and
to initiate a call on a function, depending on the
< name> involved. This calling sequence will be
referred to in the following discussion of extendible
language features.

In the full translation grammar for EULER given
in Appendix 2, it is possible to see how the methods
presented in the preceding example are applied to the
specification of a complete programming language.
Note that this larger grammar uses, e.g., the symbol
"+" in place of the "add" instruction of our small
example, and, in general, translates as many source­
language symbols as possible directly jnto commands
of the intermediate language. The description of EULER
programming given in Appendix 1 of this paper should
clarify the meaning of the EPLER operators used,
and the following section in thIs paper wHI discus 3 the
syntactic methods for optimizing and extending
EULER as they are developed in the EULER gram­
mar. A full description of the intermediate reverse­
polish language specified by the EULER rules of
translation can be found in Schneider. 10

Syntactic methods of optimizing expressions

In the EULER grammar of Appendix 2, the rules of
translation specify that a conditional statement or
expression of the form

"IF < expr> 1 THEN < expr> 2 ELSE < .. expr> 8"

is translated into its intermediate language version in
the form

"<expr>l$IF <expr>2 $THEN <expr>3 $ELBE"

Note that each of the expressions here can themselves
contain conditional expressions of any desired degree
of nesting, and each of the subexpressions will be re­
arranged aFi shown above. In this intermediate language

Syntactic Rule

(prim) ~ (stringprim)
(stringprim) ~ (stringhead) I
(stringhead) ~ I

I (stringhead) (symbol)

the "$IF" command causes an interpretive scan to
the matching "$THEN" label if <expr> 1 is false.
Otherwise execution continues until a "$THEN" is
reached, at which point a scan occurs to the "$ELSE"
label that matches this "$THEN" . In this way,
"$THEN" and "$ELBE" behave like baJanced pa­
rentheses around expressions, and also serve as place­
markers to which control can be transferred in the
translated program.

This mechanism for executing translated cond tional
expressions is used also as the basis for translating
logical expressions into a partially optimized form.
To take an example, the EULER sequence correspond­
ing to a disjunction is represented by

"<disj> OR <conj>".

Its translated form is

" < disj > $IF $TR UE $THEN < conj > $ELSE".

Here .. if the first operand" <disj >" of the expression
is true, the entire expression is true. Therefore, the
second operand is evaluated only if the first operand
is false. A similar mechanism is used for the sequence

" < conj > AND < neg> ".

Here, if the first operand is false, the second operand
need not be evaluated. Hence, the translated con­
junction is of the form

"<conj> $IF <neg> $THEN $FALSE $ELSE."

Some syntactic methods of extending E U LE R

After developing the appropriate techniques for
translating conditional expressions and for optimizing
logical expressions, the next order of business is to
use these syntactic tricks to provide extended facilities
in the EULER language. The introduction of full
string-processing facilities into the EULER system is
the first example to be considered. Without altering
the EULER interpreter, and with a little reprogram­
ming of the translator, we can effect the following
improvement:

Rule of Translation

I
(stringhead)).

(stringhead). * (symbol),

148 Fall Joint Computer Conference, 1969

Here, a string of arbitrary length is translated into a
list whose cells store the symbols in the string one
symbol in the cell in sequence. With this arrangement,
it is possible to manipulate strings using the list con­
catenation operator provided by EULER, and using
EULER subroutines to perform tests for list equality
and containment.

The second example involves the addition of facili-

Syntactic Rule

ties for reading in data at run time within the frame­
work of the EULER system. In this case, additional
facilities must be provided in the EULER polish string
interpreter. These facilities take the form of routines
for converting numbers into their internal representa­
tion and for packing string data. The added syntax
consists of the following set of rules:

Rule of Translation

(program) -+ .ENTRY (block).EXIT.
\.EKTRY (data)., (block) .EXIT.

(data) -+ (datahead) END
(datahead) -+ DATA (item)

(block)
(data> (block)
I
$DATA (item)
I \ (datahead)., (item)

(item) -) (number)
I (stringprim)
I (datalist)

(datalist) -+ .0.
I (datalisthead) (item»).

(datalisthead> -+ .(

I (datalisthead > (item),

With this program structure, the data portion could
be read in by a run-time subroutine that leaves the
data in a pre-arranged location of memory. The
interpreter routine could then be read in over the data
routine, and the translated program would be executed.
A statement of the form "READ < prim>" would
then store an appropriate link to some segment of
the read-in <data> on top of the run-time operand
stack.

The third example involves the use of a syntactic
notation to expand the EULER language into a self­
extendible programming language similar to MAD / 1
(4) and ALGOL 68 (11). By an extendible programming
language, people currently mean the following two
things.

a. A language in which the programmer can specify
new data types and data structures composed
of novel configurations of data elements.

b. A language in which the programmer is able to
reorder the priorities of expression operators and
is able to specify arbitrary new operations at
will.

In EULER, there already exists a general mechanism
for allowing programmers to manipulate data structures,
namely, the list mechanism. EULER lists can be
constructed from arbitrary combinations of data

I
I
I
I
I
I
I

elements. However, EULER only has eight data types
with no facilities for extending their ranges. Such range­
extension facilities depend on the machine on which
the language is implemented, and algorithms for speci­
fying such data types as numbers of arbitrary precision
must be written for the machine in question. Hence,
our example will concentrate on the machine-independent
problem of specifying new operators in programs.

Any reasonable programming language must pre­
suppose the existence of a standard set of expre~~ion
operators before provision is made for aUa wing pro­
grams to expand this set of operators. VVith each
standard operator will be associated a standard pre­
cedence level, and the operators to be introduce:l by
the programmer must also have precedence levels. A"
the term is currently used, operator precedence (or
priority) is a measure of how expression operators
compare in binding power. For example, exponentia.tion
is said to have lower precedence than addition, bec:aus~

. exponentiation is performed before addition in
2.rithmetic expressions. Thus, precedence impose<:J an
ordering on the operations of a language. This ordering
is reflected in the ordering of syntax rules in program­
ming language grammars. In the EULER grammar
above rules are ordered so that list concltenation is , .
performed first, then exponentiation, and so on, unttl
the operation of value assignment. From concatenation

Syntactic Methods for Specifying E,xtendible Programming Languages 149

to assignment of value there are nine levels of prece­
dence.

Our approach in providing, for the programming of
new operations js to assign these operations to one of
nine c:asses of operators, reflecting the nine levels in
original grammar. This means that the translator must
now treat operators as though they are procedure calls
that ca.n only be written into the translated program

where their associated precedence level permits th eir
operations to occur. In order to permit the programmer
to tell the translator what precedence is associated with
a newly defined operator, we require an additi onal
operator declaration in our language. This declaration ,
together with the precedence syntax of express)ons
that follows, is sufficient to provide the expanded
operator-definition facility

Grammar 2. An Expression Grammar for Defining New Operators

Syntactic Rule

(expr) ~ (var) (opname) (expr)
I (disj)

(disj) ~ (disj) (opname) (conj)
I (conj)

(conj) --? (conj) (opname) (neg)
I (neg)

(catena) ~ (catena) (opname) (prim)
I (prim)

(blockhead) ~ (blockhead)
(operatordec).,

(operatordec) ~ OPERATOR
(opname)

I (operatordec), (opname)

(explI) ~ (opname) = (opdef)
(opdef) ~ (defhead) (expr) $.
(defhead) ~ (rankpart)

(operand part).,

Rule of Translation

(var) (expr) $V ARBL (opname) $IN
I
(disj) (conj) $VARBL (opname) $IN
I
(conj) (neg) $VARBL (opname) $IN
I

(catena) (prim) $V ARBL (opname) $IN
I

(blockhead) (operatordec)

$NEW (opname)

(operatordec) $NEW (opname)

(opname) (opdef) =
I
(rankpart) (operandpart)

(rankpart) ~ RANK OF (digit)., (Not Translated)
(operand part) ~ OPERANDS (name) $FORMA (name)

I (operandpart), (name) $FORMA (name) (operand part)
(opname) ~ (symbol) I

I (opname) (symbol) I

In the expression syntax above, the <opname>
in each rule is translated into a procedure call, \vith
parameters consisting of the one or more operands
associated with each <opname>. These procedure
calls either refer to the "Standard" operator associated

with a particular precedence level or refer to the trans­
lated <opdef> declared by the programmer. It is
assumed that the translator will automa.tically enclose
each translated program with an extra outer block
containing procedure definitions for the set of standard

150 Fall Joint Computer Conference, 1969

operators basic to the language. In this way, the
standard operators can be redefined within a particular
program, but will regain their usual meaning upon exit
from the block in which. the redefining statement
occurred. A consequence of this method of allowing
new operator definitions is that program subroutines
may use operators global to their definitions, but may
not have operators passed to them as parametsrs,
since all assignment of precedence is performed at
translation time.

A certain amount of optimization is still possible
within the framework of this extendible translator. As
an example, suppose that we write the following pro~
cedure correspond to the standard operator for logical
conjunction:

AND = RANK OF 7., OPERANDS X, Y., IF Y
THEN X ELSE FALSE $.

The actual parameters in the procedure call for logical
AND above are expressions surrounded by ".$" and
"$.". Thus, the effect of the conditional expression in
the operator definition given above is to evaluate the
Y parameter only once and not to evaluate the X
parameter unless Y is true.

Programmer~defined syntactic augments to existing
languages

As a next step in allowing programmers to decide on
the nature of their own programming languages, we
could conceive of a translator facility for allowing
programmer~specified syntactic and semantic augments
to existing programming languages. The idea behind
this definitional facility is that the translator can be
provided with facilities for accepting new syntactic
rules and associating their right parts with :rules of
translation that are essentially calls on global pro­
cedures. The operands within the new syntactic aug­
ments are than translated as parameters supplied to
the procedures for executing the augments. The
feasibility of such augments, provided they do not
lead to problems of syntactic ambiguity, can be inferred
from the algorithms presented in Schneider.9 .10

As an example of what a programmer might be
tempted to add to his language, and of the methods he
could use, we consider the problem of adding ALGOL
W-style iteration to the EULER language. In the
folloWing translation grammar, the global procedures
used in translated programs are "$FOR." and
"$ WHILE", corresponding to the incremented vari­
able and]ogioal iterations, respectively.

Grammar 3. A Programmer~Defined Syntax of Iterative Statements

Syntactic Rule

(a) (expr) ~ WHILE (expr)l DO (expr)2
(b) (expr) ~ FOR (var) FROM (expr)l UNTIL (expr)2 BY (expr)3 DO

(expr)4

Rule of Translation

(a) .$ (expr)1 $.. $ (expr)2 $.$V ARBL $WHILE $IN
(b) (var) (expr)l (expr)2 (expr)3 .$ (expr)4 $.$VARBL $FOR $IN

Note that the controlled statement in the syntax
above is translated with procedure definition brackets
".$." and "$.". In this way whenever the corresponding
formal parameter in the "$FOR" OR "$WHILE"
procedure definition is executed, the entire controlled
statement is executed as a procedure. The procedure
definitions of "$FOR" and "$WHILE" that follows
are the "semantics" of Grammar 3:

$FOR = .$FORMAL V AR, EXPl, EXP2,
EXP3, STAT.,

BEGIN LABEL TEST, CYCLE.,

VAR = EXPl.,GOTOTEST."
CYCLE .. VAR = VAR+ EXP2.,
TEST .. IF(VAR-EXP3) *SIGN(EXP2)GT 0

THEN UNDEFINE D
ELSE BEGIN STAT., GO TOOYOLE:
END $.

$WHILE = .$FORMALLOGEXP, STAT.
BEGIN LABEL OYOLE.,
OYOLE .. IF LOGEXP 'THEN BEGINE~T A1',

GO TO OYOLE END
ELSE UNDEFINED END $.

Syntactic Methods for Specifying Extendible Programming Languages 151

(pro cde t)

Out code (Sj)

j.j+l

).

Outcode(Sj)

jaj+l

1-1-1

(alternative)

Outcode(N1)

1.1-1

1111+1

N1",Sj

j=j+l

THEN

(consequence)

Outcode(N1)

1a1-1

Sj ill ?

TO INITIAL POINT FOR < BLOCIV

Figure 2-A portion of the EULER tr.a.nslator

H ow a section of the translator was designed-an example

It is assumed that readers of this section will have
some familiarity with the translator example in the
previous paper9 on this subject. In order to simplify
the programming of the translator, it was decided to
have the reserved words of the language perform as
many functions as possible in the translation. Thus,
the reserved words actually appear in translations as
commands for the interpretive system where appro­
priate, and are stored on the pushdown store of the
translator in place of the "nonterminal symbols" of
the normal-form version of the grammar. For example,
in the normal-form grammar for EULER, the rule
for a conditional expression is

<expr> ~ Xl <alternative>

Xl ~ X2 < consequence>

X2 ~ < condition>

By letting Xl be THEN and X2 be IF in the translator,
the coding is greatly simplified, and no ambiguities
are introduced, since the X; can be treated as "new
and distinct" symbols of the normal-form grammar.

The flowchart of Fjgure 2, showing the transitions to
and from the box corresponding to < expr <, illustrates
hO\v the EULER translator was programmed.

REFERENCES

1 R W FLOYD
A descriptive language for symbol manipulation
JACM Vol 8 1961 579-584

2 E T IRONS
A syntax dire::ted compiler for ALGOL 60
CACM Vol 4 1961 51-55

3 P M LEWIS R E STEARNS
Syntax-directed transduction
JACM Vol 15 1968465-488

4 D L MILLS
The syntactic 8truciure oj MADlt
DDC Rpt No AD-671-68:-3 1968

5 P NAUR editor
Revised report on the algorithmic langua(,'c ALGOL 60
CACM Vol 6 1963 1-17

6 V 13 SCHNEIDER
The design of processors for context-free languages
NSF Memo Northwe",tern Univ Hl65

7 V B SCHNEIDER
Pushdown-store processors of context-free languages
Dept of Industrial Engineering Northwe-"tern Univ 1966
Evam;ton III

8 V B SCHNEIDER
Syntax-checking and parS'ing of conte;rt-free languages by
pushdown-store auto mata
Proc SJCC 196771-75

9 V B SCHNEIDER
A system for deS'igning fast programming language translators
Proc SJ CC 1969 777-792

10 V B SCHNEIDER
A translator system for the EULER programmng language
Tech Rpt 68-76 Computer Science Center Univ of Md
College Park 1969

11 A VAN WIJNGAARDEN editor
Report on the algorithmic language ALGOL 69
Mathematisch Centrum 49 2e Boerhaavestraat Am",terdam
The Netherlands 1969

12 J WEIZENBAUM
A symmetric list processor
CACM Vol 6 1963524

13 N WIRTH
A generalization of ALGOL
CACM Vol 6 1963 547-554

14 N WIRTH H WEBER
A generalization of ALGOL and its formal definition: Parts
I and II
CACM Vol 9 1966 13-25 89-99

Appendix I

Features of the E U LE R language

EULER is a nested block-structure language,
similar to ALGOL. Thus, every block, consisting of a
sequence of statements surrounded by BEGIN and

152 Fall Joint Computer Conference, 1969

END parentheses, can be treated as a single statement
in ALGOL fashion. An EULER program consists of
an EULER block preceded by .ENTR Y and followed
by.EXIT ..

X and Y will store data, and Z will be a label pre­
ceding some statement.

Assigning a data type to a declared variable is
accomplished by writing an assignment statement with
data of the appropriate type on the right-hand side
of the assignment. Thus, typing of variables in EULER
is dynamic, since any assignment statement can change
the data type stored in a variable. And, data typing
is implicit, since there are no declarations like rea.!,
integer, etc., as appear in ALGOL. The followi.ng is a
list of the right EULER data types:

In EULER., there are three declarations. One decla­
ration is for data variables, one for program labels,
and one for formal parameters of procedures. In the
program

".ENTRYBEGIN NEW X, Y.,

LABELZ., ...

Z .. X + YEND .EXIT."

I. Number --In the EULER system, all numbers are assumed to be floating
point numbers. The assignment statement

"V = E.,"

with E a numerical expression or number, causes variable V
to become a numerical variable.

II. Symbol -In this EULER implementation, an assignment statement
such as

"V = . *ALPHAN.,"

causes the six characters "ALPHAN" to be stored in the
location named by variable V.

III. Logical -The logical constants are TRUE and FALSE, standing
respectively for logical truth and falsehood. The assignment
statement,

IV. Label

"V = L.,"

with L a logical constant or logical expression, causes variable
V to become a logical variable.

--EULER programs use two declarations. "NEW" is used to
declare a data variable, and "LABEL" is used to declare the
presence of a label in some block of a program. Interestingly,
if V is a variable in some EULER block, and V is not in a
block global to the block of label L, then the assignment
statement

"V = L.,"

causes V henceforth to be of type label, and to be inter­
changeab1e with L in GO TO statements.

V. Reference-In EULER, if VI is a variable not in a block global to the
block of variable V2, then the assignment statement

"VI = AT V2.,"

Syntactic Methods for Specifying Extendible Programming Languages 153

makes VI a pointer to the data stored in V2. After VI is
turned into such a pointer, the two statements

"V2 = V2 + 1.,"
and "VI IN = VI IN + 1.,"

will have exactly the same effect of manipulating whatever
data is stored in V2.

VI. Procedure--An assignment statement of the form

VII. List

"VI = .$ (expr) $.. ,"

causes VI to become the name. of a parameterless procedure
call with body given by (expr). As a programming example,
we might consider the following EULER block: "BEGIN
NEW X, Y., X = 2.,

Y = .$FORlVIAL Z., X = X + Z$.. ,
OUT Y~(5). END"

When Y.(5). is operated on by the "OUT" operator, the
value 7.0000 will be -written out.

-In EULER, lists can be constructed in three distinct ways:
(a) On command: "VI = LIST 300.,"
This statement creates a list of 300 undefined cells and makes
VI their name.
(b) By explicit notation: "V2 = .(1,.(2, 3)., 4) .. ,"
This statement creates a list consisting of two numbers and a
sublist and makes V2 the name of that list.
(c) By concatenation: "VI = VI CON CAT V2.," Using the
CONCATenation operator, small lists can be joined into
larger ones.

In addition, lists can be subscripted in the same way as
ALGOL arrays, each element of a list can be any EULER
data type, including label, reference, and procedure. The
following EULER block is a small example of the genera1ity
of the list notation: "BEGIN NEW X, Y., LABEL Z.,

Y = .(2, .$ BEGIN X = X+ 1., Y(X) END $.,
.$ OUTX$., Z) .. ,

X = Y(l)., Y(X)., GOTO Y(4).,
Z .. OUT .*FINISH END"

With this program segment, first 3.0000, then FINISH will
be written out by the executed program.

VIII. Undefined-Every variable declared by "NEW" in an EULER program
is initially of type "UNDEFINED." In addition, "UN­
DEFINED" is used as a data constant occasionally and as an
empty option in conditional statements such as:

"V = IF LI THEN .(1, 5). ELSE UNDEFINED.,"

For more details on EULER programming, the reader is referred to the Wirth and
Weber EULER paper.14

154 Fall Joint Computer Conference, 1969

Appendix 2

11 new translation grammar for EULER

Syntactic Rule Rule of Translation

1: (program) ~ .ENTRY (block) .EXIT. (block)
2: (block) ~ (blockhead) (body) END (blockhead) (body) $END
3: (blockhead) ~ BEG IN $BEGIN

1 (blockhead) (labeldec)., (blockhead) (label dec)
1 (blockhead) (vardec)., (blockhead) (vardec)

4: (vardec) ~ NEW (name) $NEW name
1 (vardec), (name) (vardec) $NEW (name)

5: (labeldec) ~ LABEL (name) $LABEL (name)
I (labeldec), (name) (labeldec) $LABEL (name)

6: (body) ~ (body)., (stat) I
1 (stat) I

7: (stat) ~ (labdef) (stat) I
1 (expr) I

8: (labdef) ~ (name) .. $LBDF (name)
9: (expr) GO TO (expr) (expr) $GOTO

lOUT (expr) (expr) $OUT
1 (var) = (expr) (var) (expr) =
I (disj) I
1 (condition) (consequence) (alternative) I

10: (condition) ~ IF (expr) (expr) $IF
11: (consequence) ~ THEN (expr) (expr) $THEN
12: (alternative) ~ ELSE (expr) (expr) $ELSE
13: (disj) ~ (conj) I

1 (disj) OR (conj) (disj) $IF _ $TR UE $THEN_
(conj) $ELSE

14: (conj) ~ (neg) I
1 (conj) AND (neg) (conj) $IF_ (neg) $THEN_

$FALSE $ELSE
15: (neg) ~ (relation) I

INOT (relation) (relation) $NOT
16: (relation) ~ (sum) I

1 (sum)1 (relop) (sum)2 {sum)1 (sum)2 (relop)
17: (relop) ~ EQINEQIGEQ EQINEQI$GEQ

ILEQIGTILT I$LEQI$GTI$LT
18: (sum) ~ (term) I

1+ (term) (term)
1- (term) (term) $NEG
1 (sum) { +I-} (term) (sum)(term) {+I-}

19: (term) ~ (factor) I
1 (term) { *1/1·/· (term) (factor) {*I/I./.I

IMODULO} (factor) $MODUL}
20: (factor) ~ (catena) I

1 (factor)** (catena) (factor) (catena)**
21: (catena) ~ (prim) I

1 (catena) CONCAT (prim) (catena) (prim) $CONCA
22: (prim) ~ UNDEFINED $UNDEF

Syntactic Methods for Specifying Extendible Programming Languages 155

Syntactic Rule Rule of Translation

I (val') (var) $IN
I (label) (label) $IN
I((expr») (expr)
I (block) I
I (procdef) I
I (reference prim) I
I (Iistprim) I
I (numberprim) I
1 (logicalprim) I
ITAIL (prim) (prim) $TAIL
I (val') . ((expr-seq uence)) . (expr-sequence) (val') $IN
I {symbol prim) I

23: (label) -~ (name) $V ARBL (name)
24: (val') ~ (name) $VARBL (name)

I (val') IN (val') $IN
1 (val') (sum-sequence») (val') (sum-sequence»)

25: (expr-sequence) ~ (expr) I
I (expr-sequence), (expr) (expr-sequence) (expr)

26: (sum-sequence) ~ (sum) I
I (sum-sequence), (sum) (sum-sequence») (sum)

27: (referenceprim) ~ AT (val') (val')
28: (list prim) ~ (list) I

ILIST (sum) (sum) $LIST
29: (list) ~ .(). I

I (listhead> (expr)). I
30: (listhead) ~ .(I
31: (numberprim) ~ (number) $NUMBR (number)

IREAL (disj) (disj) $REAL
ILENGTH (catena) (catena) $LENGT
IABSOL UTE (sum) (sum) $ABSOL
IINTEGER (sum) (sum) $INTEG

32: (logical prim) ~ TRUE $TRUE
1 FALSE $FALSE
ILOGICAL (sum) (sum) $LOGIC
1 (sypeinquiry) (val') (val') (typeinquiry)

33: (typeinquiry) ~ ISNU $ISNU I $ISLO I $ISLA
IISLOIISLAIISLI I $ISLI I $ISPR I $ISRE
IISPR IISREIISSY IISUN I$ISSYI$ISUN

34: (symbolprim) ~ . * (6-symbol string) I
35: (procdef) ~ . (prochead) (expr) $. I
36: (prochead) .$.$--

I (prochead) (formaldec)., (prochead) (formaldec)
37: (formaldec) ~ FORMAL (name) $FORMA (name)

(formaldec), (name) $FORl\1A (name) (formal dec)
38: (6-symbolstring) I

{ (letter)1 (digit) (blank)
I,I·I$I*I?I = 1+1-
i>1<}6

(i.e., a string of 6 characters.)
39: (name) ~ (letter) I

156 Fall Joint Computer Conference, 1969

----------------------~---,-- --
Syntactic Rule Rule oj Translation

I (name> (letter> I
I (name> (digit> I

(For the IBlYI 7094 and the UNIVAC 1108, only the first six characters of a
(name> are translated.)

40: (number) ---'? (integer> Converted to octal.
I (integer). (integer) Converted to octal floating point.

41: (integer> ---'? (digit>
I (integer> (digit>

42: (digit> ---'? 0111 ... 19 I
43. (letter) ---'? AI ... IZ I

SYMPLE-A general syntax directed
~acro preprocessor

by JAMES E. VANDER MEY

The Pennsylvania State University
University Park, Pennsylvania

ROBERT C. VARNEY

The Pennsylvania State University
McKeesport, Pennsylvania

and

ROBERT E. PATCHEN

IBM Corporation
Boston, Massachusetts

INTRODUCTION

The subject of this paper is a general syntax directed
macro preprocessor system. One of the suggested po­
tential uses of this system is that of evaluating new or
extended programming languages by the technique of
syntax directed macros. This led to the association of
the acronym SYl\1PLE (SYntax Macro Preprocessor
for Language Evaluations) with this system.

A preprocessor is a processor intended to be used prior
to another processing stage. In our case, it is assumed
that the SYlVIPLE preprocessor system will generally
be used in processing higher level language texts (ones
which are user oriented), producing output text in the
same or a similar higher level language.

The term "macro" is used in a very general sense in
this paper. As in other macro systems, the macro mecha­
nism consists of the recognition of a macro "reference"
in the source text being processed, and a macro "defi­
nition" defining a translation proceduFe invoked by
some corresponding macro reference.

A SY1\:lPLE macro definition consists of two parts:

the "macro semantic portion" or "macro body"; and
the "macro templates."

157

The macro semantic portion is the translation pro­
cedure and consists of the instructions to be exe­
cuted when the macro is "invoked". A macro is
invoked when a pattern described in one of its
macro templates is recognized by the parser in
the source input text. This macro reference pattern
may have identifiable parts which are then consid­
ered as arguments for the semantic portion.

A macro template defines a possible macro ref­
erence pattern for this macro and consists of two
distinct parts: A specification of a general syn­
tactic substructure of the source input text in which
a given macro reference may occur (i.e., context);
and any necessary further syntactic qualifications
within that general syntactic substructure (e.g., a
specific pattern). The actual pattern matching
technique for macro reference is thus a two level
syntax directed matching procedure. This syntax

158 Fall Joint Computer Conference, 1969

directed macro reference technique is the method
by which SYl\1PLE achieves both simplicity and
generality.

The SYl\1PLE system as a macro system is not tied
to any particular programming language. The base
(source input) language and the object (output) lan­
guage of the macro facility could in fact be entirely
different languages.

The syntax of the languages to be processed and/
or extended must be adequately described through the
syntax description metalanguage of the S Yl\1PLE
system. This syntactic description is used for determin­
ing "context" for macro references and thus the require­
ments for a minimally "adequate" syntactic description
of a language are proportional to the degree of context
required to isolate macro references.

As a very simple example, assume all macro references
must occur in only a single specific syntactic unit (syn­
tactic substructure) of the base language (e.g., only
labels of Fortran statements). Then to facilitate the
recognition. of macro references in the source language,
the syntax of the base language need only be described
via the metalanguage to the extent that it can isolate
this syntactic unit type (i.e., Fortran labels.) vVhen
recognized, this syntactic unit will then be considered
as a candidate for containing a macro reference.

After a candidate syntactic unit is isolated in the
source input a check can be made for the existence of
specific macro references by testing for further quali­
fying patterns within that syntactic unit. For instance,
a Fortran label of "three blanks followed by t"yO num­
bers" might be a specific macro reference. A check would
thus he made for this reference according; to the syn-'
tactic pattern defining "three blanks followed by two
numbers" whenever a Fortran label is recognized. This
process of local syntax investigation is called "template
matching" for a macro reference.

It is also through the template matching facility
that translation parameters in the source language
(e.g., arguments, conditions, etc.) are recognized and
passed to the actual macro facility. These translation
parameters, which we shall call argument strings, can
be manipulated by the instructions contained in the
body of the macro (semantic portion).

Since the primary function of the SYl\1PLE system
is that of a preprocessor, the translation process is main­
ly that of a manipulation of argument strings and the
insertion of modified and/or created strings back into
the source input. Hence, the actual semantic portion
of the macro is implemented in a language oriented to
the manipulation of character strings. Thus translation
due to macro references and related translation param-

SYW'LE PREPROCESSOR S'I'STEM FI..CNI

Figure I-A general flow of the SYMPLE macro
preprocessor system

eters generally results in the insertion of the transla­
tion code in the base language into the body of the
code being processed. It will be shown that this "in
place" translation in the SYMPLE system does not
necessarily imply expansion in exactly the same place
(i.e., at the lexicographical location of the maero
reference).

An attempt will now be made to summariize and
interrelate the functions of the SYMPLE system by
outlining the system functional flow via a system flow
diagram (Figure 1) and the following brief description.

The preprocessor operates as follows:

1. The first items processed contain control infor­
mation which includes such items as the device(s)
from which subsequent information is to be read,
the device(s) designed for system output, the
names of special edit macros, specifie listing
options, etc. Control information ma,y oceur
in the input stream at other logical stages of
processing.

2. A description of the base language syntactic
structure is read as input and proeessed to
build a data base for the recognition portion.
This data base will be used later by a parser.

3. Macros (templates and associated semantic
translation routines) are read in, stored, and
used to create necessary data bases for later
processing.

4. A source deck is read in and parsing; of the
source input begins. (Probable entry point for
most users.)

a. As a syntactic unit is recognized, a check
is made to see if any macros have templates
to be matched in this syntactic unit.

Ternplates of edit macros, if any, are tested
last. When there are no templates left to
be checked and if the end of the total
parse has not been encountered, the parse
is continued.

b. If a macro template match is successful,
the argument strings are passed to its
associated macro semantic portion. There
may be any number of macro templates
associated with a given macro semantic
portion, and ident.ical template patterns
can be associated with different macro
semantic portions.

c. The instructions in the current macro
semantic portion are executed (actually
interpreted) and the results of their opera­
tions are effected (e.g., storage manipu­
lation, insertion of translation into input
source, dynamic creation of new macro
templates or semantics for this or other
macros). Upon completion of execution
control is returned to 4a above.

5. When the source deck has been completely
parsed and thus source time translations, in­
cluding any necessary editing, have been com­
pleted, the file is then ready for output in a
manner specified by the control information.

6. Processing is now completed, but by appro­
priate control information another cycle may
be initiated on (a) new information or (b) on
a previous preprocessor output file. Thus, in the
latter case, we have the possibility of a multi­
pass preprocessor, if desired.

The remainder of this paper will be devoted in the
main to the details of what the SYMPLE system can
do and in general how one goes about using the SYM­
PLE system. The syntax description metalanguage is
introduced first followed by an introduction to the
macro translation (semantic) and insertion capabilities
ofSYMPLE.

Syntax description metalanguage

The syntax description metalanguage is used to de­
scribe a parsing "grammar" of the base language in
which macro references are to be embedded and thereby
outline the manner in. which the source input is to be
parsed. For example, suppose a label field is one syn­
tactic structure to be parsed. The parser should then be
told that a label field consists of, say, five characters
which are either all digits, all blanks, or a string of
blanks followed by a string of digits.

SYMPLE 159

The grammatical metalanguage used to direct
SYMPLE',s parser is similar to the Backus-Naur
Form4 (BNF) metalanguage. For example, similar
grammatical productions are used to define syntactic
structures; the nonterminals and terminals of BNF are
also used being renamed syntactic units and literal
strings, respectively. There, are, however, several fea­
tures in SYMPLE's metalanguage which were incor­
porated to extend the power and simplicity of gram­
matical description over that of standard BNF.

Actual productions in SYMPLE's metalanguage to
define the parsing desired in the preceding example are

(LABEL-FIELD) :5&5(0$' 'O$(DIGIT»

(DIGIT) :'0' 1'1' 1'2' 1'3' 1'4' 1'5' 1'6' 1'7' 1'8' 1'9'

The first production above is interpreted as: a label
field is defined as not less than five nor more than five
characters of a string of zero or more blanks 'immedi­
ately followed by zero or more digits.

Productions

The syntactic units of the base language are defined
by productions in the metalanguage. These produc­
tions are of the form:

(LHS): right side

where (LHS) represents the syntactic unit being de­
fined on the left side and the right side contains meta­
linguistic descriptions of other syntactic unites) and/or
literal string(s) in the left to right order in which they
comprise the structure of (LHS). The colon (:) sepa­
rates the defined syntactic unit on the left side from
the defining information on the right side.

The first production of the base language grammar
must be the definition of the syntactic unit representing
the total syntactic structure of the base language (i.e.,
the initial or distinguished symbol of BNF). Other
productions may be in any order.

(Named) Syntalctic units

The metalinguistic representation of a syntactic unit
in a production is a string of arbitrary length enclosed
in parantheses. The string (called the name of the
syntactic unit) may be composed of any characters
with the exception of those used as special delimiters
in the syntax description metalanguage (i.e., illegal
characters are 0: ;'1 $&).

160 Fall Joint Computer Conference, 1969

Literal strings

A literal string is represented in the metalanguage
by the desired string of characters enclosed in single
quotation marks ('). Any character may be used within
a literal string, except that a single quotation mark is
represented by two adjacent single quotes for each
occurrence in the literal string in order to differentiate
it from the ending delimiter of the literal string.

Alternatives

If a syntactic unit in the base language may h~ve
alternative representations, these alternatives may be
represented in the metalanguage as a single production
with the alternatives of the syntactic unit each appear­
ing on the right side and separated from each other by
the conventional OR symbol (I).

Example: (DIGlf):'1'1'2'1'3'I(OTHER)

Complex substructures (Unnamed syntactic
units)

If one does not wish to break down and label a syn­
tax substructure in detail, but simply label an entire
complex substructure as a syntactic unit, pairs of pa­
rentheses may be used as grouping in::licators. Consider
the following equivalent examples of a definition of
the syntactic unit (NUM4).

Example: (NUM) :'2'1'3'1'4'
(NUM2) :'3'1'4'1'5'
(NUM3):'5'1 '6'1'7'
(NUM4) :'1' (NUM) (NUM2) 1'1'

(NUM3)
Example: (NUM4): '1' «'2'1'3'1'4')('3'1'4'1'5')1

('5'1 '6'1 '7'))

Grouping may occur to any depth desired and each
quantity within the grouping parentheses must have
the form of any legal right side of;a production.

Quantity repetition and bounds

Often in the syntax of a base language a (named or
unnamed) syntactic umt or literal string may be re­
quired to occur several times. Or it may be desirable
to specify that a syntactic structure b3 a function of
the length of an input string in addition to other quali­
fications (e.g., a label field of exactly five characters
and consisting of . ..).

To indicate either the repetition of a string (Le., the
input string defined by a syntactic structure) or the
length bound on the number of characters in some

string, an operator group must precede the respective
quantity in the syntax. The operator group ils of the
form n$m or n&m for the string and character counters
respectively, where n is an integer representing the
lower bound and m, an in 'jeger representing the upper
bound.

Consider the following example.

(A): 3$3 (SUB-STRUCTURE)
(B): 3$3 (SUB-STRUCTURE)
(C): 'C'
(SUB-STRUCTURE): O~~5 (0)

1$3'AB'

The first production defines (A) as exactly three strings
of (O$5(C)1$3'AB'). Thus, acceptable strings for (A)
might be ABABAB or ABCABCC.CCABAB or CCA­
BABCABAB, etc. However, (B) is defined as exaetly
three characters which are otherwise defined as in (A).
Thus, (B) can be only CAB; no other combinations
will yield exactly three characters. Notice that the
string counter differs from the character counter in that
it is distributed over all inner strings whereas the char­
acter counter represents an absolute bound over a given
substructure.

When productions include quantities with :repetition
counts, the parser which utilizes these produc:tions will
attempt to find the largest number of those quantities
in the input source consistent with the upper bound of
repetitions. If the input contains more than 1Ghe upper
bound of these quantities, the input string correspond­
ing to the upper bound count of quantities will be reeog­
nized and succeeding repetitions will be analyzed ac­
cording to the syntax following. A lower bound count
of zero is allowable and simply indicates the optional
omission of the quantity.

The absence of an explicit lower bound implies a
lower bound of one. The absence of an explilcit upper
bound implies an upper bound which is the maximum
bound allowable in the system. In the present im.ple­
mentation it is 32767. It should be noted that

1$1 (SYUN) and (SYUN) are equivalent as are

$(SYUN) and 1$32767 (SYUN)

Complement look-ahead

The symbol -, preceding a literal string, syntactic unit
or grouping indic?tes that at that point in the syntax
the quantity indicated lll:ust not occur: This :ls called a
complement look-ahead for the indicated quantity at

parse time. If the quantity is found, the parse being
attempted has failed. (Any syntactic units found on the
look-ahead will not result in macro template match
attempts.) If the quantity is not found, the parse con­
tinues as before the complement look-ahead.

Example: (LETTER):'A'I'B'I'C'\'D'I'E'

(SPLTRSTRG) :$(--, '0' (LETTER»

The strings recognized as (SPLTRSTRG) will be any
string which consists of one or more of A, B, D or E,
butnotC.

Scan positioning

The production defining a syntactic unit can be made
to include, without investigation as to structure, an
arbitrary lengh of input, or it. may require that a
particular syntactic unit in the input conform to more
than one syntactic structure. This is done by explicitly
positioning the location at which the parser is "looking."
This location, called the scan position, can be adjusted
either relative to its present position or to the beginning
reference points in the syntax of the parsed input.

a-X(Space) positioning

The occurrence of the symbol X immediately followed
by an unsigned integer number and delimited by brack­
eting commas at any point in the right side of a pro­
duction will cause the scan position to be adjusted
rightward from its present location the integer number
of positions specified. The symbol X and following
number must be bracketed on both sides by commas
except in the following cases: X is the first (last)
symbol of a grouping level or the first (last) symbol of
the right side of a production, in which case the left
(right) comma is not required.

Example: Define an (END-CARD) to be an
80 character string. The first six characters must be
blanks, the next 66 characters must have the word
END somewhere with the rest blanks, and the last
eight characters may be anything.

(END - CARD): 6 & 6' '66 & 66 (0$" ('END')
0$' ') , X8

b-T (Tab) positioning

The format is similar to that of X positioning, except
a T is used instead of an X.

The T scan positioning results in the scan position

SYMPLE 161

being moved the specificed number of places to the
right of the beginning location at which the parse began
at (1) this grouping level, if the T positioning appears
within a grouping parenthesis pair, or (2) th~ right side
of the production otherwise.

Example: A syntactic unit (El\1PLOYEE-NO.)
is defined to be an 80 character string with'i1 syntactic
unit (LAST-NAME) beginning in position one, fol­
lowed by a single blank and then the syntactic unit
(FIRST-NAIVIE). Exactly 15 spaces after the begin­
ning of (FIRST-NAl\/[E) is to appear the syntactic
unit (CODE). Finally (NUMBER) will be 75 spaces
from the beginning of (ElVIPLOYEE-NO.).

(El\tfPLOYEE-NO.): (LAST-NAME) "
((FIRST-NAl\tfE) , TI5, (CODE)), T75,
(NUNIBER)

Recursive grammars in the metalanguage

Recursive grammars (i.e., productions with the
syritactic unit of the left side occurring as well on the
right side, or being in the derivation of a syntactic
unit of the right side) are allowed in the metalanguage
subject to certain conditions.

For instance, left recursive productions are not al­
lowable, but other recursive productions are allowable.

Further, the character (&) bound counts are cumula­
tive . from the initial (top) occurrence in a recursive
parse while the repetition bounds ($) are effective at
each leVf~1 of recursion.

N on-specific grammars in the metalanguage

Let a non-specific grammar be one in which the
particular alternatives of structure for a syntactic unit
may have structurally the same headings (i.e., leading
components which are structurally the same). The meta­
language allows the specification of such grammars
and at recognition time the parser always picks the
first specified (or left most) alternative as its initial
guess. Subsequent guesses continue with the next
specified alternatives.

The user must be aware of the possible consequences
if the apparent ambiguity in a non-specific grammar
causes the recognition of syntactic units to be rejected
later as a result of an unsuccessful parse. Though the
back-up to the next alternative is handled automatical­
ly by the parser, the syntactic units recognized may
result in macro invocations; the results of which will
not automatically be negated .. Relevant user aids in
this area are provided by the system.

The following example illustrates' a parsing grammar

162 Fall Joint Computer Conference, 1969

for a language which is context sensitive and not con­
text free and which utilizes recursive productions.

L = (Onl nOn:n ~ 1)

(LANG) : (LSTR) -; '1', Tl, $'0' (RSTR)

(LSTR) :'O'(LSTR)'I'1 '01'

(RSTR) :'I'(RSTR)'O'j '10'

The parser first determines that the input string
belongs to the context-free language On 1 nx; checks to
make sure x does not begin with a 1; repositions to the
beginning of the parsed substring of l's and then de­
termines that the remaining substring of the input
string belongs to the context-free language 1 nOn. If
the above conditions are true, then the input string
belongs to the context-sensitive language Onl nOn.

The SYMPLE macro facility

The macro facility of SYl\IPLE provides the actual
translation mechanisms. The macros themselves are
read in to the system following the base language
grammar and prior to the user's source deck. The in­
dividual macro definitions are described in this section.

MACRO FORMAT

The overall format of an individual macro definitions
is as follows:

< macro name> (< syntactic
unit» = < template body> / (< syntactic
unit» = <template body> ;
macro semantic statements

END;

The exact format and meaning of the various parts
are described in the balance of this section.

Mac:r:o name

The first item to appear in the macro is the name of
the macro. The name may be any string of characters,
excluding those special characters previously men­
tioned as excluded from a syntactic unit name. The
macro name is used exclusively as a "handle" for the
user's organization and SYMPLE's internal system
and macro referencing. The macro name should not
be confused with a macro reference in the source text.
A source reference to the macro is comp!etely inde~
pendent of its name.

'Templates

Following the macro name are a series of macro

templates which are descriptions of possible macro
references that will cause the invocation of the macll'o.
A single macro template is of the form:

«syntactic unit» = <template body>

where the syntactic unit is any syntactic unit that may
occur in the base language, and the template body, if
presentJ consists of a description of a specifi~ structure
to be found within that syntactic unit. The syntax and
semantics of template body are identical wjlth those
of the metalanguage of SYMPLE except for an exten­
sion to make it possible to identify and name argument
strings for the macro.

The extension added to facilitate the identification
and naming of argument strings was simply to allow
the enclosing of the desired argument location in the
syntactic structure of the template within bracketing
parentheses and preceding the left enclosing p2~renthesis
with a name (with the same character restrictions as a
macro name) to be associated with the enclosed argu­
ment string. These enclosed argument strings may
occur anywhere within the template, and in fact may
even enclose other argument strings. The namesassociat­
ed with the argument strings must be unique within a
single macro template.

A macro template may cause a macro invocation in
the following manner. When the syntactic unit desig­
nated on the left of the equal sign in a macro template
is recognized by the parser, the actual structure of the
syntactic unit found is compared with the specific
syntax specified in the template body. A successful
comparison results in the invocation of the macro and
the passing to the macro of identified argument strings
in the macro reference, if any. If no template body is
specified, then the macro is immediately invoked with
no arguments passed.

The syntax structure defined in a template body
need not be structurally consistent 'with that of the
object syntactic unit in which it will be compared.
However, if the template body contains syntactic units,
these units must have been in the productions submitted
with the description of the base language. These pro­
ductions though can be stand-alone productions (not
logically in the normal base language structure) in­
cluded solely for use within templates. The use of these
stand-alone syntactic units, literal strings, and alterna­
tive arrangements and selection of syntactic units in
the base language can result in template structures
quite different from those recognized in the process of
finding the object syntactic unit. Thus the template
comparison is actually an attempted reparsing within

the physical bounds of the object syntactic unit accord­
ing to the template syntax description.

Any number of macro templates may follow the
macro name, with a slash (/) separating each, except
that the last template is followed by a semicolon (;).

E'{ample: NO! (LABEL) = Al (' , A2
«NUM»)/(8TMT) = 'e' A3 (X79);

macro semantic statments
END;

lVlacro NO! will be invoked when either

1. A (LABEL) s found consist'ng of four blanks
followed by a (NUM») or else

2. A (STMT) is found beginning with the letter e.
In case 1 two argument strings will be available for
manipulation and testing by the macro semantic
statements; that associated with the string name Al
will be four blanks and the found (NUM); that as­
sociated with the string name A2 will be just the found
(NUl\l). In case 2, the argument string associated with
string name A3 will be the 79 characters following the
initiallettor e.

Argument string names which are not in a matched
template or which are associated with null argument
strings in the matched template are associated with
the null string (i.e., have a length attribute of zero),

Macro semantics

a-General

The macro semantics facility in S Yl\IPLE . is based
on a string oriented language which drives an inter­
pretive mechanism. This language closely parallels
SNOBOL and has a simple syntax. The basic form of
most semantic statements is

< action verb>, < string name> < string ref-
erence> , <string reference> ... ;

where the action verb is a key word describing some
action to be performed on the referenced strings (literal
strings, string names, etc.) with the resultant string
generally being associated \\~ith the given string name.
The details of the ~emantic language faGility are
described in another paper.13 The use of relatively
simple semantic statements in later examples should be
intuitively understandable. .

This semantic language provides the ability to:

1. manipulate strings of characters
2. reference strings literally, directly, indirectly

SYl\1PLE 163

3. reference strings with concise notations
4. communicate between macros
5. execute subroutine-like macros
6. manipulate strings of values
7. alter sequential execution (branch)
8. insert strings back into the ground language code
9. loop repetitively

10. perform string comparisons
11. display string-string name associations
12. terminate interpretive action

to which needs to be added for our discussion one
capability not explicitly mentioned: the ability to
dvnamically alter entire macros (templates and se­
mantics).

This last c;pability mentioned and number 8 listed
above are the means by which the macros effect
their results in the translation process.

b--Output string insertion

Strings which are produced in the macro semantic
portion of a macro may be inserted into the source code
in any of several ways. The semantic language state­
ment which directs the insertion of a string is of the
form.:

INSERT, <directive> = <string name(s) > ;

The directive is a code rather than a string name which
specifies the type of insertion to be perforx.n~d. The
directive codes are I, lA, IB, A, B, A, <dIgIt>, B,
<digit>, PI, PIA, PIB, PA, PB, PA, <digit>, PB
<digit> and MADD,

They are explained below.

I-The string name(s) is an argument
string name(s). The associated
string is to replace the argument
string occurrence in the macro
reference.

lA-The string name(s) is an argument
string name(s), The associated
string is to be inserted immediately
after the referenced argument
string in the macro reference. In
this and for all remaining inser-,
tion directives, the macro reference
itself remains unchanged.

IB--Same as IA except read "before"
instead of "after" ,

164 Fall Joint Computer C<;mference, 1969

--------------------------~--
A-The string(s) associated with the

string name(s) is to be ins~rted
immediately after the syntactic
unit in which the current macro
reference occurred.

B-Same as A except read "before'
instead of "after."

A, <digit>-The string(s) associated with the
string name(s) is to be inserted
after a particular syntactic unit
or grouping level of the parsed
tree, called ithe referenced syn­
tactic unit (RFSYUN). The RFS­
YUN is the first syntactic unit
(at the same or higher level) to
the immediate left of the syntactic
unit or grouping level on the
parsed. tree, wlo:e derivation in­
cludes, and is;the value of <digit>
levels above, the present macro
reference. Ifa RFSYUN does
not exist by the above definition
then the directive A, <digit>
references the beginning of t~le

input stream.

B, <digit>-Same as A, dig'.t except read "before"
instead of "after" .

P prefix directives-(e.g., PI, PIA, etc.) Each P
prefix directive results in the
same type of insertion as the non­
prefixed directives. However, the
strin'1; inserted is transparent to
all future attempts at parsing or
template matching (i.e., "protect­
ed") . The only exception to
this is that: a P prefix inserted
string will be visible to the tem­
plate matching of a specially
designated macro, called the "editH
mr,ero, whose name is specifiied
at submission time via the proc­
essor control language. All P
prefix inserted strings, if unal­
tered by the edit macro, will ap­
pear in their inserted locations
in the final output.

c-Dynamic macro modification

In addition to inserting strings m the source sub-

mission, strings may be treated as new/changed macro s
. via the following directive.

lVIADD-The string associated with the string
name is a macro and includes macro templates
and/ or macro semantics. If the macro is new (no
other macro with the same name) it will be added to
the present library of macros for this submission.
If the macro name is that of a current m~cro, macro
templates, if present will be added to those presently
associated with the macro and macro semantics, if
present, will replace those of the present macro.

CONCLUSION

The purpose of the SYl\IPLE system is to provide a
general language-independent macro preprocessor. The
syntax directed approach was used to allow both general
and flexible macro referencing techniques.

The SYl\;fPLE syntax description metalanguH,ge
was designed from the premise that the metalanguage
should be a practical tool for real programming lan­
guages with their many syntactic idiosyncracies (e.g.,
imbedded blanks, fields of specified length, continua­
tion columns, etc.). As far as possible and practical
these real problems should be easily describable in
the SYNfPLE Hyntax description metalanguage. In a
standard BNF metalanguage, such problems are at
best very a"wkward to describe. This led to such con­
cepts as length and repetition binding, andl explicit
scan positioning.

Explicit scan positioning added the abiilty to per­
form successive analyses, even within a local template
match, by repositioning the analyzer for rescan of
already parsed information. This rescanned information
may of course, contr,in different information 2.S the
result of insertions from macro invocations.

The insertion of information in the "protected" mode
(P-prefix directive insertions) further extends the
power of the SCH,n and rescan mechanism of the syntax
analyzer. It allows the user the option to insert code
which either may possibly affect the future syntax
analysis (normal mode), or be completely "transparent"
and thus not possibly affect subsequent syntactic
analyses.

Systems such as T~lG,lO COGENT14 and similar
syntax directed compilers or compiler-compilers have
their semantic actions hooked to the parsed syntactic
units of a source submission, much the way SYlV[PLE
would do without the local syntax parsing of a ma,cro
template. In the context of macro processors, however,
the application of global syntactic analysis followed
by local syntax analysis for the macro references ap-

pears to be a new application. The obvious advantage
of this technique is that it provides a means of specify­
ing a contextual dependence for macro references.
Patterns in the source input which would qualify as
macro references on a local syntax basis will qualify
only if they are in the correct global context.

Several previous macro systems [notably XPOP,7
ML/I,2 LIMp19] use some sort of a generalized ma~ro
reference technique. IVlost used a template matchIng
technique based on pseduo-syntax methods (e.g.,
noise word structuring of XPOP, specific literal tem­
plate structures of LIMP). In each case, however, the
scope of applicability of these macro references was
not controlled on a global syntactic basis. lVIL/I, for
instance, depends on the occurrence of a name of a
macro in a statement for the recognition of a macro
reference. XPOP looks for a macro reference in each
statement based on word structures, with non-"noise"
words in these structures being the arguments. lVlacro
references in LIMP are perhaps the most general of
the above mentioned systems. However, the templates
of LIl\,IP are (1) literal templates (i.e., character
strings-not defined syntax structures) with "holes"
in them the "holes" being filled by the required argu-, -

men ts; and (2) each template is eligible in any given
"line" of input. Thus there is no discrimination in re­
gard to the applicability of a template on a global
basis in any of the above mentioned systems; nor is
there structuring of the templates themselves on a
general syntactic basis; nor can the arguments be
identified in a really general manner. It would take
little to show that, at least from a macro reference
point of view, these systems would be relatively simple
special instances in SYMPLE.

The general applicability of the SYl\/fPLE system
has been alluded to, and a few mostly simple examples
are illustrated in the appendix. These examples illus­
trate the use of SYl\IPLE as a language extension
facility, in handling "sift" problems, and text editing.
There are certain to be many other areas of appli­
cability not mentioned.

APPENDIX I

SYMPLE processing examples

Example 1

The first example of this appendix is designed to
take OS/360 Fortran IV input and condense all non­
comment statements into single condensed strings by
eliminating unnecessary blanks, sequence number
fields, and continuation fields. Each condensed state­
ment will be separated by a record mark (!). Processor

SYMPLE 165

control information is included for completeness.

SYNTAX;
(PRO G) :$(STlVIT) (END-CARD)
(STMT) : (LABEL-FIELD) ('0' I' ')

(UNLAB-STMT) I (COMMENT)
(COMMENT): 'C', T81,'!'
(LABEL,FIELD): 5 & 5«BLKSTRG) (NUM»
(UNLAB-STMT) : -. (END-BODY) (BLKSCN)

(SEQFIELD) 0$19 «CONT-FIELD)
(BLKSON) (SEQFIELD»

(END-CARD): 6$6 " (END-:BODY) (SEQ-
FIELD)

(END-BODY) : 66 & 66 (0$1 (BLKSTRG)
'END' 0$1 (BLKSTRG»

(BLKSCN) : 66 & 66 (0$1 (BLKSTRG) $
(NONBLK»

(BLKSTRG) : $' ,
(NONBLK):--\"-j"", X11""$ (--\"", Xl)""
(NUM): '0'1'1'\'2'\'3'1'4'\'5'1'6'\'7'1'8'\'9'
(SEQFIELD):X7, 'I'
(CONT-FIELD):--\ 'C', T6, -i ('0'\' '), Xl
SYNEND;
MACROS;
CONDENSE (BLKSTRG) = Al «BLKSTRG»/

(SEQFIELD) = Al «SEQFIELD» /
(CO NT-FIELD) = Al «CONT-FIELD»;

REPLACE, Al = ;
INSERT, I = AI; STOP; END;
END-STMT (UNLAB-STMT) =; INSERT,

A='!';STOP;END;
MACEND;

SOURCE, RECMK;

INTEEER * 2 AA (4) 11 ABC Dl/4 1
1 BLK/I 1 1 , VAL (1 0 0) 1 1 00*01 2

DO 10 K=l ,100 3
VAL (K) = VAL (K) + 4
195 * K 5

A - AA (4) 6
1 0 AA (KilO 0) BLL 7

1 000 0 STOP 8
END 9

Output from SYMPLE after processing above inp~t
INTEGER*2AA(4)/'AB C D'/, BLK/' 'I, VAL

(100)/100*0/!D010K= 1,100!
VAL(K) = VAL(K) + 95* K-AA (4)!10
AA(K/100) = BLK! 1000 STOP! END!

Notes on example:

1. The grammar of Fortran IV is detailed here

166 Fall Joint Computer Conference, 1969

only to a level which will distinguish major
substructures. If one wished to further detail
the syntax structure, the syntax of Fortran
statements in the condensed form would be
relatively simply since all extraneous clutter
has been removed. The P-prefix insert capability
could be used to ignore clutter for possible
reparsing without actually removing it from the
input (and thus output).

2. The grammar is non-specific with at least one
point of apparent ambiguity. The beginning
characters of an (END-CARD) will qualify
as the beginning charatters of a (ST1\lT) (i.e.,
6$6"= (LABEL-FIELD)' '). Thus upon en­
countering an (END-CARD) there ,vill be a
back-up, since an attempt is first made to parse
it as a (STMT). In this case, of course, the
back-up will not have any bearing on the total
processing result.

3. (LABEL-FIE.LD) will accept a label, say
bblb5 and the compressed result would be 15.
The structure of this particular (LABEL­
FIELD) would be

bb 1 ''0 5
(BLKSTRG) (NUM) (BLKSTRG) (NUM).

4. Note how (NONBLK) includes all non-blank
characters and literal strings (including blanks.)

5. The ,macro template (UNLAB-STIVIT) =; in
the second macro results in the macro END­
STMT being invoked with no arguments.

6. The use of the processor control RECMK par­
ameter results in a ! being added to the end 0 f
each logical record on input. The syntax gram­
mar used assumes this, though an equivalent
grammar without the RECMK could easily
be used in this case.

I!xarnple 2

This example is designed to remove all redundant
parentheses in a language which uses pairs of left and
right parentheses for grouping. A redundant paren­
theses pair is any pair of parentheses which enclos s
a string which is also totally endo'sed in parentheses.

SYNTAX;
(FLANG) :$(PAREN)
(PAREN) :'(,(INARDS)O$l(INTOO)
(INARI~S) :(PAREN)I (INTOO)
(INTOO) :0$(-, ')'"""1 ')"Xl)O$l(PAREN)
SYNEND;
MACROS;

REDUN(PAREN) =' ('AA((INARDS))')';
SEPART,AA='(', AA, ')'/F, Ll; INSERT, I

AA; Ll :STOP; END;
MACEND;
SOURCE, LIST;
(((A(B)))C)((((XY~((Cl))(A))F)))

/*

Output from SYMPLE after processing

((A(B))C) ((XY~(Cl) (A))F)

Note: In a recursive parse, inner-most (lowest)
recursive syntactic units [e.g., (PAREN)] are
recognized first and subject to macro expansion
first.

Example 3

A final example shows a simple extension of OS /
360 Fortran IV obtained by adding a different state­
ment type to the grammar. ,This different st:::~tement
type will contain a macro reference. The format of,
and argument location in, the macro referen,~eR will
be strictly dependent on the local syntax specified i.n
the templates of the macros.

A different statement type could be designated
simply as starting with a non-numeric non-blank
character after column 1 and before column 6.
Tl'le grammar defining this basic extension could ap­
pear in a submission as follows.

SYNTAX,PUT;
(PROG) :$(STMT) (END-CARD)
(STMT) :(NEW-STMT)I (END-CARD),T80
(NEW-STMT) :5&5($' '$(NONNUM-BLK),T80
(END-CARD) : 6&6' , 66&66 (0$' , CEND')

0$' '),X8
(NUM):' 0'1' 1'1' 2'1' 3'1' 4'1' 5'1' 6'1 '7'1 '8'1'9'
(NONNUM-BLK):-j (NUM) -;' ',Xl
SYNEND;

At this point the syntax description differentiatin g
this new statement type is defined and any user could
take advantage of the description which via the proc­
essor control PUT parameter has been saved. Using the
appropriate processor control and job control state­
ments to retrieve the above syntactic specification, a
user could make submissions similar to the follOWIng.

SYNTAX,GET;
(NOISE) : $' 'I'STORE'I'IN'I'To'I'INTO'I'THE'1

'PUT'I 'oF'1 'AND'

(NON-NOISE): $ (-j (NOISE),XI)
SYNEND;
MACROS;
SUM (NEW-STMT) = Al ($ (NOISE) (' ADD'I

'SUM')$(NOISE)A2((NON-NOISE» $
(NOISE) A3 ((NON-NOISE» $ (NOISE)
A4 ((NON-NOISE», T80);

CONCAT, Al =' " A4, '=', A2, '+', A3;
INSERT,I=AI;

STOP; END
MACEND;
SOURCE;
C THIS IS A FORTRAN COMMENT

ADD A TO B AND STORE IN C

/*

SUM A AND B AND PUT INTO C
STORE THE SUM OF A AND B IN C

END

Output of SYMPLE after processing

C THIS IS A FORTRAN COlVIMENT

C=A+B
C=A+B
C=A+B

END

The macro used above is a simple macro using a key­
word and non-noise positional parameters. The il­
lustrated new type of statement if imbedded in any
Fortran source deck, would, when processed, be con­
verted to the Fortran type statements listed, and re-
place the new sta temen ts. .

REFERENCES

M J BAILEY M P BARNETT P B BURLESON
Symbol manipulation in Fortran - SASP I subroutines
CACM Vol 7 No 6 June 1964339-346

2 P J BROWN
The ML/I macro preprocessor
CACM Vol 10 No 10 Oct 1967618-623

3 J A FELDMAN
A formal semantics for computer languages and its
application in a compiler-compiler

CACM Vol 9 No 1 Jan 19663-9
4 J A FELDMAN D GRIES

Translator writing systems
CACM Vol 11 No 2 Feb 196877-113

5 D E FERGUSON

SYMPLE 167

Bvolution of the meta-assembly program
CACM Vol 9 No 3 March 1966 190-196

6 M L GRAHAM P Z INGERMAN
A universal assembly mapping language
Proc ACM Aug 1965 409-421

7 M I HALPERN
XPOP: A metalanguage without metaphysics
Proc FJCC Vol 26 196457-68

8 M I HALPERN
Toward a general processor for programming languages
CACM Vol 11 No 1 Jan 1968 15-26

9 B M LEAVENWORTH
Syntax macros and extended translation
CACM Vol 9 No 11 Nov 1966 790-793

10 It M McCLURE
TMG-A syntax directed compiler
Proc ACM Aug 1965 262-274

11 M D McILROY
Macro instruction ext.ensions of compiler languages
CACM Vol 3 No 4 April 1960 214-220

12 C N MOOERS L P DEUTSCH
TRAC-A text handling language
Proc ACM Aug 1965229-246

13 R E PATCHEN
String oriented macro language and interpreter
Pen~ State Univ Dec 1968 Thesis in
Computer Science

14 J E REYNOLDS
An introduction to the COGBNT programming system
Proc ACM Aug 1965 422-437

15 S ROSEN
A compiler bu.ilding system developed by Brooker and Morris
CACM Vol 7 No 7 July 1964403-414

16 E F STORM
CHAMP - Character manipulation procedures
CACM Volll No 8 Aug 1968561-566

17 J E VANDER MEY
A general syntax diretced macro preprocessor .
Penn State Univ March 1969 Thesis in Computer SCIence

18 R C VARNEY
The central portion of the SYMPLE system-Tree
construction and parsing .
Penn State Univ June 1969 Thesis in Computer SClence

19 W M WAITE
A language independenf m "'~r~ -n"I)~~·'1·'lf)r

CACM Vol 10 No 7 July 1967 433-441

An algebraic extension to LISP

by PRENTISS HADLEY KNOWLTON

Harvard University
Cambridge, Massachusetts

INTRODUCTION

An algebraic facility for LISP is quite desirable.
Such a capability is motivated by the desire to uti­
lize the primitive LISP arithmetic functions at the
algebraic expressio~ level. The requirement for a
mp,ans of evaluating expressions might very well arise
from applications in algebraic manipulation. Thus,
the user, having performed some sort of transforma
tion on an algebraic expression, might wish to have
the resulting expression evaluated for a specific set
of values. This facility, in response to this require­
ment, has the acronym "LEAF" (LISP Extended
Algebraic Facility).

Design considerations and FORTRAN language
facilities provided by LEAF include:

1. a list structured organization compatible with
existing LIB.P ;

2. an arithmetic assignment statement;
3. a DO statement;
4. a logical IF statement;
5. an unconditional GO TO statement; and
6. an INPUT and OUTPUT statement.

Since LEAF is designed in the "spirit" of LISP,
built in functions in a given LISP system which pro­
vide for such conveniences as "pretty printing" of
functions and editing facilities may also be applied to
LEAF programs.

The list structured organization of LEAF

In order to attain compatibility with the existing
LISP language, LEAF is essentially a dialect of
FORTRAN in list structure. B,:ence, a program is a
list whose elements are statements. A simple LEAF
program to accept two numbers from the teletype,
determine their sum, and type out the result might be
written as follows:

((INPUT A B)
(C = A + B)
(OUTPUT C»

In similar manner, a statement is a list whose ele­
ments are the components of that statement. In order
to execute a statement, the LEAF interpreter typically
looks a't the keyword (e.g., INPUT), the first element
of the statement, to determine how the statement
should be processed. This is analogous to the LISP
interpreter, in which the first element of a LISP
command is a function, and the remaining elements
of that command constitute the arguments of the
function.

In the "assignment" function, unlike the other
LEAF commands, the keyword or "=" is the second
element of the list. If the item on the left hand side
of the equal sign is an array reference, the sUbscripting
can be thought of as a single list element, a sublist
whose elements constitute the subscripts. In SDS 940
LISP a,s well as in other/LISP implementations, com-
mas are perfectly acceptable list element delimiters.
Thus, the user is free to use commas for readability

Although the initial motivation in developing LEAF in. subscript lists if he desires, fmd. he is not constrained
was to extend the LISP language, a number of other to always delimit list elements with blanks. It is im-
motivating properties of the LEAF concept make portant to note in the case of a subscripted variable
themselves apparent as one uses the LEAF facility. on the left hand side of the equal sign in the assign-

169

170 Fall Joint Computer Conference, 1969

ment statement that the" =" is in fact the third ele­
ment of the list. Nevertheless, recognition and proc­
essing of the assignment statement is still a relatively
straightforward procedure.

In addition to the properties LISP and LEAF share,
it is interesting to note that the conveniences which
exist for displaying and modifying LISP functions are
also applicable to the display and modification of
LEAF programs. The nesting of DO loops is readily
apparent from the indented listing one obtains from
the LISP' 'pretty printing" facility:

((DO I = t TO to
(A(l) = B(l))
(DOJ = t TOto

(.)
(.)
(.))

(.)
(.)
()))

In like manner, one may utilize the editing facilities
available on a given LISP system to modify a LEAF
program with equivalent flexibility as modifying a
LISP function.

Justifications for a list structure

It is worthwhile noting that the list structured ap­
proach to the design of an algebraic language lends
itself well to the concepts of program block structure,
program editing, adaptability to a time sharing en­
vironment, and, most important of all, language and
data structure compatibility.

Program block structure of the LEAF system is
best illustrated by the DO statement, in which a list
whose elements are statements: constitute the range
of the DO specification. This program block structure
lends itself well to editing operations, since, armed
with an indented listing of his program, one is able to
quickly and accurately access and work with his pro­
gram at any level. An example of program modification
using the editing facility of SDS 940 BBN LISP is
given in Appendix C.

Like the LISP language, LEAF lends itself well to
a time sharing environment, in that LEAF programs
are easily interpreted at the source language level.
List structured organization of LEAF programs per­
mit several users to work independently with the same
reentrant interpreter, even when two separate pro­
grams are "intertwined" in the same storage region.

A particularly significant observation one might

make of the LEAF language is that it possesses the
same basic structure as its data. Hence, there is no
reason why one might not wish to devise a program
which performs operations upon itself, such as the
changing of a "+" to an "*,, in an arithmetic expression.
In this sense, within the framework of the LEAF
language, a statement might be thought of as an al­
phanumeric vector whose elements are keywords,
operators, and operands.

Fortran language facilities provided by LEAF

1. The Assignment Statement

The assignment statement of LEAF is identieal
to that of FORTRAN IV with the additional
flexibility of mixed mode arithmetic. Thus,
one may work interchangeably with both in­
teger and real data in arithmetic expressions
without worrying about problems of mode
conversion, since the existing LISP floating
point functions are designed to handle such
situations automatically.

2. The DO Statement

The .DO specification of LEAF is similar to
that of PL/I. The remainder of the statement
consists of a list whose elements as st:ELtements
constitute the range of the DO. Any level of
nesting is permissible, and the LISP "pretty
printing" facility shows the nesting quite
clearly as illustrated earlier.

3. The Logical IF Statement

Like PLII, the logical IF statement consists
of an "IF" part followed by a "THEN" p:~rt.
The "IF" part consists of two aJrithmetic
expressions separated by a relational operator
(without periods). The true or false value of
the relation determines the execution or non­
execution of the "THEN" part. In either event,
the next statement in sequence is reached.

4. The Unconditional GO TO Statement

The GO TO statement of LEAF, like that of
PLII, specifies destination by means of a name
rather than by means of a statement number
as is the case with FORTRAN IV.

5. The INPUT Statement

The INPUT statement consists of the key
word "INPUT" followed by the variables to
be defined. The "RATOM" (read atom) func-

tion of SDS 940 BBN LISP permits relative
free formatting of input data.

6. The OUTPUT Statement

Similarly, the OUTPUT statement consists
of the keyword "OUTPUT" followed by the
variables to be printed. The "PRINT" function
of SDS 940 BBN LISP is utilized in this con­
text.

CONCLUSIONS

The LEAF approach seems to be an answer to certain
problems facing users who are dissatisfied with present
day LISP and present day FORTRAN. Feasibly, pro~
grams already written in FORTRAN IV might be cori~
verted to LEAF. The advantages of indented display
of program nesting as well as the facilities of the
LISP editor would certainly warrant this activity.

Working with an algebraic language at the source
language level has many distinct advantages. Among
these advantages, this writer suggests that the COM­
MENT statement should be treated as an executable
statement, whose text could be made to be listed by
user request during program execution.

The author sincerely hopes that the philosophy of
the LEAF system is given some consideration by the
implementers of future algebraic compilers.

APPENDIX A

Syntax description of the LEAF system

I. Fundamental Language Components:

An Algebraic Extension to LISP 171

ACKNOWLEDGMENTS

The author wishes to extend special thanks to Dr.
Daniel G. Bobrow of Harvard University's Applied
Mathematics Department, under whom this work was
done as independent study. Dr. Bobrow is also re­
sponsible for many of the facilities present in SDS
940 BBN LISP.1 Special thanks are also due to Aiken
Computation Laboratory of Harvard University who
graciously provided SDS 940 computer time for the
carrying out of this work.

Mr. Cornelius Peterson, manager of the Boston
Office of Computer Usage Company, provided the
necessary facilities for the writing of this paper. Fi­
nally, Mr. Burton Bloom, Senior Staff Analyst of the
CUC Boston Office, provided many helpful sug­
gestions during the technical revision of this work.

Finally, the author extends appreciation to Jet
Propulsion Laboratory, Pasadena.t CaliforniaJ. for
the use of their facilities in preparing visual aids in
the presentation of this paper.

REFERENCE

1 D G BOBROW et al
The BBN 940 LISP system
Bolt Beranek and Newman Inc Cambridge Mass April 1968

(letter) :: = AIBICIDIEIFIGIHIIIJIKILIMINIOIPIQIRISITIUIVIWIXIYIZ
(digit) :: = 0111213141516171819
(identifier) :: = (letter) { (letter) 1 (digit)};
(variable) :: = (identifier)
(unsigned~integer-constant) :: = (digit) { (digit)};
(sign) :: =+ 1 -

(integer-constant) :: = [(sign)] (unsigned-integer-constant)
(real-constant) :: = [(sign)] (unsigned-integer-constant).
I [(unsigned-integer-constant)] [(exponent-part)] 1

[(sign)] [(unsigned-integer-constant) J.
(unsigned-integer-constant) [(exponent-part)] /
[(sign)] (unsigned-integer-constant) (exponent-part)

(exponent-part) :: = [(sign>] { (digit)} ~

II. Basic Language Elements
(program) :: = ({ (statement)} i)
(statement) :: = (comment-statement» / ((optional-statement-label) (statement-body»
(comment-s~atement) :: = COMMENT (commentary)/*(commentary)*

172 Fall Joint Computer Conference, 1969

(optional-statement-label) :: :::::: [(identifier)]
(statement-body) :::::::: (do-statement) I (input-statement) I

(output-statement) I (assignment-statement) I
(go-to,-statement) I (if-statement) I (stop-statement)

(do-statement) :: :::::: D'O (index) :::::: (initial-value) T'O (final-value)
((do-block»

(do-block) :::::::: {(statement)} i
(input-statement) :: ~ INPUT (argument-list)
(argument-list) :::::::: {(variable>} i
(output-statement) :: :::::: '0 U T PUT (argument-list>
(assignment-statement> :::::::: (variable> :::::: (arithmetic-expression>
(arithmetic-expression> :::::::: (term> (plus-or-minus> (arithmetic-expression> I (term)
(plus-or-minus> :: :::::: + I -
(term> :::::::: (factor) (star-or-slash> (term> I (factor>
(star-or-slash) :::::::: * I /
(factor> :::::::: (variable> I (constant> I «arithmetic-expression»
(constant> :::::::: (integer-constant) I (real-constant>
(go-to-statement > :::::::: G'O T'O (identifier>
(if-statement) :: = IF (arithmetic-expression> (relational-operator>

(arithmetic-expression) THEN «statement»
(relational-operator) :::::::: GTIGE'ILTILEIEQINE
(stop-statement> :::::::: ST'OP

APPENDIX B

Some representative functions of the LEAF interpreter

(STATEMENT
(LAMBDA (C'OMMAND)

(C'OND
«COMMENT-STATEMENT C'OMMAND)

NIL)
«D'O-STATEMENT C'OMMAND)

NIL)
«INPUT·STATEMENT C'OMMAND)

NIL)
«'OUTPUT-STATEMENT C'OMMAND)

NIL)
«ASSIGNMENT-STATEMENT C'OMMAND)

NIL)
«G'O-T'O-STATEMENT C'OMMAND)

NIL)
(T (IF-STATEMENT C'OMMAND»»)

(C'OMMENT-STATEMENT
(LAMBDA (C'OMMAND)

(EQ (CAR C'OMMAND)
(QU'OTE C'OMMENT»»

(D'O-ST ATEMENT
(LAMBDA (C'OMMAND)

(PROG (INDEX FROM TO)
(COND

((NEQ (CAR COMMAND)
(QUOTE DO»

(RETURN NIL»)
(SETQ INDEX (CADR COMMAND»
(SETQ FROM (CADDDR COMMAND»
(SETQ INDEX FROM)
(SETQ TO (CADDDDDR COMMAND»

LOOP (COND

»)

((OREATERP INDEX TO)
(RETURN T»)

(LEAF (CADDDDDDR COMMAND»
(ADDl INDEX)
(GO LOOP)

(INPUT-STATEMENT
(LAMBDA (COMMAND)

(PROG (ARGUMENT-LIST)
(COND

((NEQ (CAR COMMAND)
(QUOTE INPUT»

(RETURN NIL»)
(SETQ ARGUMENT-LIST (CDR COMMAND»

LOOP (COND
((NULL (CAR ARGUMENT-LIST»

(RETURN T»)
(SET (CAR ARGUMENT-LIST)

(RATOM NIL»

An Algebraic Extension to LISP 173

(SETQ ARGUMENT-LIST (CDR ARGUMENT·LIST»
(GO LOOP)

»)

(OUTPUT-STATEMENT
(LAMBDA (COMMAND)

(PROG (ARGUMENT-LIST)
(COND

((NEQ (CAR COMMAND)
(QUOTE ,OUTPUT»

(RETURN NIL»)
(SETQ ARGUMENT-LIST (CDR COMMAND»

LOOP (COND

»)

((NULL (CAR ARGUMENT-LIST»
RETURN T»)

(PRINT (CAAR ARGUMENT-LIST»
(SETQ ARGUMENT-LIST (CDR ARGUMENT··LIST»
(GO LOOP)

(ASSIFNMENT-STATEMENT
(LAMBDA (COMMAND)

174 Fall Joint Computer Conference, 1969

(PROG NIL
(COND

»))

«NEQ (CADR COMMAND)
(QUOTE =»

(RETURN NIL)))
(SET (CAR COMMAND)

(ARITHMETIC-EXPRESSION (CDDR COMMAND)))
(RETURN T)

(ARITHMETIC-EXPRESSION
(LAMBDA (LIST)

(PROG (VALUE)
(SETQ POINTER LIST)
(SETQ VALUE (TERM NIL))

LOOP (COND

)))

(TERM

«NULL (CAR POINTER»
(RETURN VALUE»)

«EQ (CAR POINTER)
(QUOTE +)

(SETQ POINTER (CDR POINTER))
(SETQ VALUE (FPLUS VALUE (TERM NIL)))
(GO LOOP))

«EQ (CAR POINTER)
(QUOTE -)

(SETQ POIN"TER (CDR POINTER»)
(SETQ VALUE (FDIFFERENCE VALUE (TERM NIL»)

(GO LOOP»)
(T (RETURN VALUE))

(LAMBDA NIL
(PROG (VALUE)

(SETQ VALUE (FACTOR NIL)
LOOP (COND

)))

(FACTOR

«NULL (CAR POINTER))
(RETURN VALUE»)

«EQ (CAR POINTER)
(QUOTE *)

(SETQ POINTER (CDR POINTER)
(SETQ VALUE (FTIMES VALUE (FACTOR NIL)))

(GO LOOP))
(CEQ (CAR POINTER)

(QUOTE I))
(SETQ POINTER (CDR POINTER))
(SETQ V ALU E (FQUOTIENT V ALUE (FACTOR NIL)))

(GO LOOP))
(T (RETURN VALUE)))

(LAMBDA NIL
(PROG (VALUE POINTER-SA VE)

COND
((NUMBERP (CAR POINTER»

(SETQ VALUE (CAR POINTER»
(SETQ POINTER (CDR POINTER»
(RETURN VALUE)

((ATOM (CAR POINTER»
(SETQ VALUE (CAAR POINTER»
(SETQ POINTER (CDR POINTER»
(RETURN VALUE)

(T (SETQ POINTER-SAVE POINTER)

An Algebraic Extension to LISP 175

(SETQ VALUE (ARITHMETIC-EXPRESSION (CAR POINTER»))
(SETQ POINTER POINTER-SA VE)
(SEQ POINTER (CDR POINTER»
(RETURN VALUE»)

))

(FDIFFERENCE
(LAMBDA (A B)

(FPLUS A (FMINUS B»»
(LEAF

(LAMBDA (PROGRAM)
(PROG (LOCATION LABEL

(SETQ LOCATION PROGRAM)
LOOP (COND

»)

((NULL (CAAR LOCATION»
NIL)

((STOP-STATEMENT (CAR LOCATION»
(RETURN (QUOTE STOP»»

(STATEMENT (CAR LOCATION»
(SETQ LOCATION (CDR LOCATION)
GO LOOP)

(STOP-STATEMENT
(LAMBDA (COMMAND)

(EQ (CAR COMMAND)
(QUOTE STOP»»

APPENDIX C

Representative applications of the LEAF system
Examples of i'YI:put statements, output statements, the assignment statement, and arithmetic expressions

~ INPUT-STATEMENT ((INPUT ABC D E F G»
1.0 2.0 3.0 4.0 5.0 6.0 7.0
Tt

t The "T" indicates that the invoked function succeeded.

176 Fall Joint Computer Conference, 1969

~ OU.TPUT-STATEMENT ((OUTPUT ABC D E F G»
1.000000000
2.000000000
3.000000000
4.000000000
5.000000000
6.000000000
7.000000000
T
~ ASSIGNMENT-STATEMENT ((H = A + B + C + D + E + F + G»
T
~ OUTPUT-STATEMENT ((OUTPUT H»
28.00000000
T
~ ARITHMETIC-EXPRESSION ((A * B * C * D * E * F * Q»
5040.000000
~ ARITHMETIC-EXPRESSION ((A + B * C»
7.000000000
~ ARITHMETIC-EXPRESSION ((A * B + C»
5.000000000
ARITHMETIC-EXPRESSION ((((((((((((A»»»»» - ((B»/(C + D)
*(E + F]t
-2.142857143
~ ARITHMETIC-EXPRESSION(((A + B) * (C + D - F) »
3 .000000000
~ ARITHMETIC-EXPRESSION((A - B + C) / (D + F * (((0») »
4.347826087E-02
~ ARITHMETIC-EXPRESSION((A / B - C / D + F * G')
41.75000000

A program using input, output, and assignment statements
~ E(SETQQ PROGRAM ((lNPiJT A B) (C = A + B) (D = A - B) (E = A * B)

(F = A / Bj (OUTPUT ABC D E F) (STOP»)t
~ E(LEAF PROGRAM)§
2.0 3.0
2.000000000
3.000000000
5.000000000
-1.000000000
6.000000000
6.666666667 E-01

t The "]" causes a sufficient number of right parentheses to be
generated.

t At this point, the atom "PROGRAM" is bound with the LEAF
program as shown. The top-level function "E" merely means
"execute the given function (first elements) on its arguments
without prior evaluation of those argumef,tts."

§ The LEAF interpreter is now applied to the designated pro­
gram. The user satisfies the INPUT statement by typing "2.0
3.0 (CR)," and the LEAF system responds with the desired
output, followed by "STOP" as generated by the STOP state­
ment.

STOP

A program using the DO statement
~ PRETTYPRINT(SUMMATION) tj

((SUM = 0.000000000)
(COUNT =0.000000000)
(DO I = 1 TO 10 ((COUNT = COUNT + 1.000000000)

(SUM = SUM + COUNT)
(OUTPUT SUM)))

(STOP))

~ E(LEAF SUMMATION)
1.000000000
3.000000000
6.000000000
10.00000000
15.00000000
21.00000000
28.00000000
36.00000000
45.00000000
55.00000000
STOP

Modification of a program using the editing facility
~ EDITV(SUMMATION)t
EDIT
*(1 (SUM = 1.0))
*3
*7
*2
*p
(SUM = SUM + COUNT)
*(4 *)

*1'
*PP

!l In this instance, we assume that the "SUMMATION" program
has already been defined; hence, we need only print it out using
the "PRETTYPRINT" of SDS 940 BBN LISP. Note how trans­
parent program block structure becomes via this facility.

t At this point we wish to edit our sample SUMMATION ex­
ample to no longer produce successive sums, but to produce
successive products or factorials. The "*,, tells us we are talking
to the editor. The command "*(1 .(SUM = 1.0»" updates the
first statement of our original summation program (1.0 is the
identity element for multiplication.). "*3" focuses our attention
on the DO statement, "*7" focuses our attention on the range
of the DO, and "*2" focuses our attention on the second state­
ment of the range of the DO. "*P" causes that statement to be
printed out, the operation "(4 *)" causes the "+" of that state­
ment to be changed to an "*", "i" returns our attention to the top
level, "*PP" "pretty prints" the edited function, and "OK" tells
the editor we are all done.

An Algebraic Extension to LISP 177

178 Fall Joint Computer Conference, 1969

((SUM = 1.000000000)
(COUNT = 0.000000000)
(DO I = 1 TO 10 ((COUNT = COUNT + 1.000000000)

(SUM = SUM * COUNT)
(OUTPUT SUM»)

(STOP»
*OK
SUMMATION

+- E(LEAF SUMMATION)
1.000000000
2.000000000
6.000000000
24.00000000
120.0000000
720.0000000
5040.000000
40320.00000
362880.0000
3628799.999
STOP

An on-line machine language debugger

for OS/360

by WILLIAM H. JOSEPHS

The Rand Corporation
Santa Monica, California

INTRODUCTION

The environment provided by the multiprogrammed
options of Operating System 360 is not the most
suitable for debugging. It is primarily a batch system
with a programmer's card deck disappearing into th~
card reader and reappearing at some future time on a
printer. What happens in between is often impossible
to discern; any attempt to monitor a program's exe­
cution (e.g., the satting of an address stop) is so compli­
cated that it is nearly impossible. In this environment
debugging is diffi~ult-at the conclusion of a program:
the programmer eIther has successful execution or some
indication of program error. If he planned ahead
~an~ w~s lucky), his output will include not only an
mdlCatlOn of the actual error, if O.le occurred but
trace information (either through OS TESTRAN
facilities or his own ptintouts) to help hjm determine
the problem. However, he is usually presented with a
dump, containing a numerical reference to the com­
pletion-codes manual. More importantly, the dump
represents the state of the system when OS decided
it could not continue the program's execution' the
user must disc~>ver why it went wrong by edu~ated
guesse.s and by "playing computer" with his program.
!he dIfficulty an~ sheer wastefulness of this procedure
IS extr~melY eVIdent. For this purpose, an on-line
symbolIc debugger can be invaluable .
. One traditional environmental requirement for on­

hne debugging is an on-line system with remote job­
entry. capabilities and file-management functions or
a dedlca~ed machine and its operator console. DYDE
(Dynanuc Debugger) , the system described herein ,

was developed in and for the former environment
using the RAND Simultaneous Graphics' System.
However, the debugger can be used in a normal OS
batch environment using any available 2260 graphic­
display terminal or even the on-line operator's type­
writer.

The text that follows includes an external description
including invocation procedures and command f.:>rmats' ,
followed by a brief explanation of the internal operation
of the debugger (including the "pingpong" SVC).

DYDE

Invocation of DYDE

DYDE is executed as an OS job using a standard
set of Job Control Statements (see Figure 1). The3e
de~ne the library in which DYDE resides (JOBLIB),
a lIbrary containing the program or programs to be
debugged (SYSLIB), and a scratch file for organizing
the symbol table (SYSUrl). In addition, any JCL
s ~atements defining data sets that are used by the
pr Jgram to be debugged must be included (in this
context, DYDE contains a facility for overriding
both the SYSLIB and the SYSUT1 ddnames if the
program being debugged needs them). Figure 2 illus­
trates a procedure for assemblying, link editing, and
debugging. In any of these procedures, as soon as
DYDE receives control, it writes out a message indi­
cating its readiness for user commands.

Device dependencies

DYDE can interact with the user through either

179

180 Fall Joint Computer Conference, 1969

II JOB

-I I JOBLIB DD library definition

IISl EXEC PGM=DYDE

IISYSLIB DD library definition

IISYSUTl DD UNIT=SYSDA,SPACE=(TRK,(S,l»

IISCOPE DD UNIT=040

Figure 1-8ample JCL for invocation of DYDE using
the 2260 version

II JOB

IIJOBLIB DD library definition

IISTEPl EXEC ASMFCL,PARM.ASM='TEST',PARM.LKED='TEST'

IIASM.SYSIN DD *

source deck

1*

//STEP3 EXEC PGM"DYDE

IISYSLIB DD DSNAME-*.STEPl.LKED.SYStMOD,DISP-(OLD,DELETE)

IISAMPLEDD DD data set description

I/SYSUT2 DD UNIT=SYSDA,SPACE=(TRK,(S,l»

IISCOPE DD UNIT=040

Figure 2-8ample assemble, lirik (jldit, and debug JCL
Note: The SYSLIB card points ~o the output of the
Link Edit step, and the user will override (using the

*DDNAME command) the SYSUTI default
name with SYSUT2

an IBM 2260 display station or the IBM 1052 operator's
console. For this purpose, two versions of DYDE
exist; one for the 2260 interaction, the other for the
1052 (described in Appendix A). 13ecause these devices
are extremely different, the mechanics of the interaction
differ significantly. However, the basic operations are
the same.

The more natural mode of operation and the one
for which DYDE was originally desig~ed, uses the
IBM 2260 graphics-display station. This is an alpha­
numeric d~vice with a CRT capable of displaying up
to twelve lines of text; each line c~n contain a maximum
of 80 characters .. The control urut for the 2260 the
IBM 2848, buffers typed mesSages, displays ;yped
characters, and handles displ~y regeneration and
cursor advancement. The main CPU is presented with
an attention interrupt only when the enter key is
depressed. The OS Graphics Access Method (GAM)
schedules an asynchronous routine of DYDE that ,

in turn, activates the main routine in DYDE. The
message is then read and acted upon.

The twelve-line screen face is divided into two
logical sections:

1. The first three lines-O, 1, and 2-are for DYDE­
user communication;

2. The remaining nine lines-3 through 11---'f~re

for data display.

Data is written in the second area in a wrap-:-.around
fashion-the first data item is displayed starting on
line 3, the next on line 4, and so on until the screen
is full. At this point, new data is displayed starting
again on line 3 (erasing automatically the previously
displayed data); and line 4 is erased, providing a
visual delimiter between old data and the most recent
display. Each new line of data display is handled in
this manner, with the data overwriting the oldest
data on the screen, and the next numbered line blanked
as a delimiter.

The three remaining lines-O, 1, and 2-are used
for command processing. The user enters his commands
on line 2 beginning with a start symbol (displayed as
~ and usually written automatically by DYDE)
followed by the command; this is followed by the
attention or the enter key (displayed as •) that
interrupts the CPU. DYDE reads the meSSage and
immediately echos (Le., rewrites) it on line O. This
provides not only positive verification of the trans­
mission but also, as the user prepares to type the next
message, a useful indicator of the last operation per­
formed. Any data display requested is displayed on
the first free line of the data area, and the line following
is blanked. Finally, DYDE writes a confirmation
message on line 1 and prepares line 2 for the next
command by erasing it, writing the start symbol, and
positioning the cursor at the first free space. Should
the command be syntactically incorrect, an err or
message is written on line I-the echo message on
line 0 provides the user with ready reference for dis­
covering his error-and the data region of the display
is not disturbed.

The discussion that follows is concerned primarily
with the 2260 version of DYDE rather than the 1052.
Significant differences will be noted; however, all
command and message formats, as well as operational
details, are described for the graphic station version
rather than for the typewriter version.

Typical debugging session

A typical debugging session begins when DYDE
gains control and writes its READY message. At this

On Line Machine Language Debugger for 08/360 181

point, the user can identify the program to be debugged,
perhaps overridding one or more of the ddnames that
DYDE normally uses. After the program has been
successfully LOADed, the full spectrum of DYDE
commands is available to the user. He may indicate
to DYDE that he wishes execution of his program to
be temporarily suspended when control reaches speci­
fied locations; this is done by inserting breakpoints
at these locations. Commands exist for modifying
parts of his code or his data. He can then request
DYDE to begin execution of his program. At this
point, four events can suspend program execution
and transfer control to DYDE:

1. Control reaching a previously defined break­
point;

2. Executing the pingpong supervisor call as an
assembled instruction in the user's program
(e.g., useful when debugging an overlay program
when a particUlar load is not originally in
core) ;

3. An asynchronous interrupt from the user at
his 2260 (not available for 1052 users);

4. The program program checks (e~g., it specifies
an invalid address or operation code).

For release 17 of the operating system, a fifth event
can suspend program execution:

5. Whenever the user's program is terminated
abnormally by the operating system. *

At any of the above halting points, the user may,
for example: (1) display data in his program, (2)
modify data, instructions, or register contents, (3)
create hardcopy of specified areas within his program,
(4) insert new breakpoints, or (5) delete old break­
points. He may resume execution of his program
~rom the point at which it last halted (the "current"
breakpoint) in either the instruction step mode (exe­
cute one instruction at a time) or in the uncontrolled
mode, in which _case only one of the above events
can suspend program execution again. In this manner,
the user can watch his program's execution to catch
an error as it is occurring as well as test his program
with sample data or temporary patches.

DYDE commands

The available commands that the user may issue
fall into two general categories: (1) those that create
the proper environment for debugging the program,

* Items two through five are considered by DYDE to be implicit
breakpoints.

and (2) those that cause actual data display from the
program.

All "environmental" commands begin with an
asterisk, followed by the command keyword. If param­
eters are necessary, the keyword is followed by an
equal sign; then the parameters are entered and
delimited by one of several special characters (the
selection of the special characters is made by the user).
These special characters include the following symbols:
, " '-', ':', ';', 'I', '.', '$', and '@'. In the commands
descriptions that follow, the 'I' is used.
Most of the commands allow different forms of the
parameters; however, each legal form is stated ex­
plicitly, and no other form may be used. Within the
parameter descriptions, the user substitutes the indi­
cated quantity for lower-case items and supplies the
operand exactly as shown for upper-case items. Several
commands contain a quantity called "loc" as a param­
eter. In general, this refers to a location within the
user's program; its actual use is described at the end
of this section.

The commands (with the preceding start symbol
and the trailing, end-of-message symbol omitted)
ollow.

1. *N4-ME = pgmname

defines the linkage-editor-assigned member name of
the program to be debugged. This program is LOADed
from the data set defined by the SYSLIB DD card
(or any overrides-see*DDNAMES command below).
While LOADing the program, the debugger organizes
the symbol table, if present, and write~ it out on the
data set defined by the SYSUTI DD card (also over­
ridable-see the *DDNAMES command). The com­
mand may be issued at any time; if a previous program
is in core, it is deleted, and the debugger reinitializes
itself before LOADing the new program.

2. *FINISH

terminates the debugger.

3. *p ARM = parameter information

sets up pointers so that the information. following the
equal sign is passed to the program according to normal
OS standards. *

* If the parameters are coded P ARM = 'XYZ' on the EXEC
card, the command should be *p ARM = XYZ.

182 Fall Joint Computer Conference, 1969

4. *DDNAME=sysHb/sysutl/sysprint

causes the debugger to override, in its DCBs, the
default name for the library data set, the symbol-table,
the utility-work data set, and the data set to contain
hardcopy output. The normal names are SYSLIB,
SYSUTl, and SYSPRINT. However, as indicated
previously, the user may need these names for his
program's execution. In this case, he may, using this
command, override one, all, or any combination of
these three names; e.g., if the user included a DD
card name PRIVLIB instead of the SYSLIB card,
he would issue *DDNAME =PRIVLIB. If he needed
the name SYSUT1 and SYSPRINT for his program's
execution, he could include DD cards named A and B
and issue the command *DDNAME=/A/B. To be
effective, this command must be issued before the
associated data set is needed; to issue a *NAME
command followed by the *DDNAME would be
meaningless unless the user wished to debug two
programs from two different libraries.

5. (1) *SETMODE=NEXT=ON

(2) *SETMODE=NEXT=OFF

causes the debugger to change its global mode setting.
NEXT = ON tells the debugger to recognize the
next *GO (or a null command) as a command to exe­
cute the next instruction; in this way, the background
program can be run one instruction at a time. NEXT =
OFF resets this.

6. *TRACE

causes DYDE to print the current contents of the
screen face into the SYSPRINT data set and, there­
after, tQ print each displayed liile. If DYDE is tracing
currently, *TRACE turns off tracing.

7. *PRINT

requests the debugger to copy everything displayed
currently on the 2260 screen face into the SYSPRINT
data set (this same is overridable-see the *DDNAME
command). In this way, the user may keep a history
of his debugging sessions and also develop a hardcopy
trail of errors for later analysis. This command does not
exist in the 1052 version.

(1) *BREAK=name
(2) *BREAK=name/DEL

8. (3) *BREAK=/DEL
(4) *BREAK = name/loc
(5) *BREAK = name/loc /verify string

instructs the debugger to insert a breakpoint (eases
1, 4, and 5) or delete a breakpoint (cases 2 and 3). In
the former case, a breakpoint, with the given name, is
inserted at a specified location. In case 1, it is inserted
at the last displayed position: in case 4, at the named
location; and in case 5, at the named location-after
DYDE has verified that the supplied string (in hex)
matches the information that is actually in core at
that location. If the two strings do not match:, the
location is displayed, but no breakpoint is inserted
nor is any other change made. Case 2 tells the debugger
to dehte the named breakpoint; and case 3 tells the
debugger to delete the current breakpoint (if one
exists).

9. *GO

instructs the debugger to execute (or resume) the
current program. If this is the first *GO issued after
an *NAME, the program begins at the link-editor­
assigned entry point. If the program is halted currently
at a breakpoint, control is resumed at the breakpoint's
location unless an *RESUME has modified this ad­
dress. If the program has program checked (a specific
type of 360 interrupt such as an invalid address speci­
fication), the only way to resume it without relo~l,ding
a fresh copy is thro 19h the *RESUME.

10. *RESUME = loc

specifies that when program execution is restarted, the
debugger should resume execution at the specified
address rather than starting at the current breakpoint.
This is the only way to resume a program thati has
program checked., Note that great care must be exer­
cised when using this command to guarantee that
registers and program cells are properly set so that
another program check does not cocur.

11. *DUMP

tells the debugger to dump itself and the program
as if an ABEND (an abnormal termination iSVe with
the code of 100) were located at the current break­
point rather than the machine instruction. actually
there.

On JAne Machine Language Debugger for OS/360 183

(1) *MODIJ;fY = 'COND' /value
(2) *MODIFY = loc/value

12. (3) *MODIFY = reg no/value
(4) *MODIFY = value
(5) *MODIFY =loc/rep value/verify

value

instructs the debugger to modify the program being
debugged. In cases 1 and 3, the debugger modifies
either the condition code set when the program resumes
or the value of the specified register. For the condition
code, the user supplies the mask as if he were testing
it-*MODIFY = 'COND' /8 wOllld cause the instruc­
tion BC 8 to branch, whereas BC 7 would not. For
the regIster, the hex digits supplied replace the same
number of digits in the register-if register 3 contains
ABCD1234 and if the command *MODIFY =
#3/0000 were issued, the new value would be 00001234.
In case 2, the specified location is modified by the
supplied value; in case 5, the specified locl.tion is
modified by the rep value, after comparing it with
the verify value; and in case 4, the last dis~layed
location is· modified. All hex digits supplied are modiied
in all cases; i.e., if location 1000 contained 47FO,1234
and if the command *MODIFY =47AF were issued,
the new value would be 47 AF,1234. Note that in
cases 2 and 4 the value supplied may contain imbedded
commas.

13. (1) *CSECT = loc
(2) *CSECT

defines a new context for the evaluation of expressions
used for the loc parameters. In case 1, the location
specified is used as the new base. Case 2 resets the
program's base to the first byte of the load module.

Several previous commands contain a location
specification as a parameter (signified by loc in the
command's syntax). Wherever this is required, the
user may code the sum or difference of any combination
of the following elements:

1. ?hex value-hex displacement from the current
base point (see *CSECT) ;

2. &hex value-absolute displacement from the
first addressable byte in the machine;

3. decimal value-decimal displacement from the
current base point (see *CSECT) ;

4. *-location of the current breakpoint;
5. # followed by a register (i.e., # 3);
6. character string-absolute location of the

specified symbol;
7. any sum 0: difference of the above enclosed in

parentheses (no limit on the depth)-meaning
the contents of the expression within the
parentheses.

Cases 1, 2, and 7 require further explanation. When
the program is loaded initially, all displacements are
evaluated with reference to the first byte of the load
module. This is independent of the linkage -editor­
assigned entry point. Thus, ?44 refers to 68 (decimal)
bytes after the first byte of the load module. The
*CSEC r command may be used to modify this; i.e.,
if an *CSEC r = ? 44 is issued, the reference to ? 44
refers to a location 136 (decimal) from the entry point.
In this way, the user may move from one control
section to another without having t:> comput~ dis­
placement plus linkage -editor-assigned control se~tion
address. This feature may be used when, for example,
one program dynamically loads another. The user
may plant a breakpoint just before the actual transfer
of control, discover the location of the entry point of
the LOADed program (it should be in a register))
and plant a breakpoint there (perhaps using the
*BREAK=/(#15) command). When the second
breakpoint is reached, the user may issue a *CSECT
= * command to set the context to the LOADed
program. *

Examples of valid loc parameters follow:

1. «(&10))+4) would locate the current TCB
(location x'10' in the machine contains the
address of the communications vector table;
the first word points to a double word in core,
and the second word contains the address of
the current TCB).

2. If register 3 contained the value x'10',
« « # 3))) +4) would accomplish the same thing.
If cell CV'TLOC in the user's program contained
the value x'10', ««CVTLOC)))+4) would also
locate the current TCB.

3. SAVE+4 should specify a location 4 bytes
after the symbol # SAVE.

4. (# 15) would specify the location pointed to
by register 15.

The other general category of comm'l.nds requests
displays of items or status about· the program being
debugged. These do not begin with an asterisk followed
by a keyword, but are merely commands that specify
what is to be displayed. These commands follow:

* In this case, the symbol table is unavailable for the LOADed
program.

184 Fall Joint Computer Conference, 1969

--~-------------,-----

1. (1) 'R'
(2) # followed by register number

requests the debugger to display either the contents of
alI registers (case 1) or only the specified register
(case 2). For the 2260 version of DYDE, either one
line is written for a single register display or four lines,
each .containing the contents of four registers, are
written. For the 1052 version, case 1 calls for writing
three messages to the operator' (without reply) for
registers 0 through 11 and one WTOR (which forms
the basis for the next command) for the remaining
four registers. In either case and for either version, the
registers are displayed as they were at the last break­
point, including any subsequent: manual modification
(or all zero if the program has notiyet begun execution).

2. 'COND'

requests a display of the curren':' tcondition code as a
decimal value between 0 and 8;; i.e., if the condition
code is displayed as 8, a BC 8 will· branch but a BC 7
will not.

3. 'BREAK'

requests a display of the current breakpoint infor­
matio,n. All data regarding currently active breakpoints
are displayed as well as identification of the current
breakpoint.

(1) loc
4. (2) loc/length

(3) loci /modifier
(4) loc/length/modifier

causes the display of a particular locati)u (see the loc
parameter discussion above), and defines a 'current'
location to be used if the next *MODIFYor *BREAK
does not specify an explicit one. If no length or modifier
information is supplied and the loc specification con­
tains no symbol, a 4-byte hexadecimal value is dis­
played. If a symbol is present, its length and type
attributes are used. A length, which must be a decimal
less than 32, determines how many digits will form
the final display. The modifier may be C, B, or R or
it may be omitted. If C is coded, the value will be
displayed as characters; B requests the display as a
bit string of ones and zeros; and R requests a display
relative to the current base point. However, if R is
qualified by some value in parentheses (e.g., loci /R

(BASE2)), the displayed value is relative to the value
ofBASE2.

One other command to DYDE exists: the asynchron­
ous interrupt to the user's executing program. After
a user has indicated his desire to resume execution of
his program, DYDE does not receive control again
until another breakpoint is encountered. However, if
the user provides an asynchronous interrupt (by
simultaneously depressing the enter and shift keys on
the 2260), DYDE is given control by OS, interrupting
the program being debugged (which is currently
executing). DYDE plants a breakpoint where th.e
program will resume and then terminates interrupt
processing. When OS resumes the program, this break­
point is executed, and DYDE is entered. In this manner,
the user, after requesting resumption of his program,
may interrupt it from the console and use all of DYDE~'s
facilities.

Symbol table

To allow the user to make symbolic references to
his program, DYDE uses the OS TESTRAN facility
to provide a symbol table. The a:ssembl~r's test option
tells it to provide the symbol table as part of it:? output
object module. Similarly, the linkage-editair's test
option tells it to write a composite symbol table (a
concatenation of each symbol table present in the
input load or object modules) along with the load
module. Under normal processing this symbol table
is ignored; i.e., when a load module is brought into
core, the symbol table is stripped off. However, before
loading a program in response to an *N AME command,
DYDE checks the disk data set containing the program
for a symbol table. If the load module on the disk
does not contain symbol table entries, it i8 simply
loaded into core, and the user is informed that symbols
are not available.

However, if symbol table entries are present, they
are read into core; an index is built through a hash
technique; and they are written into the SYSUTI
data set. Each symhol used is present along with its
attributes of type and length and its displa.cement ..
The composite external symbol dictionary (CESD)
of control sections, produced by the linkage-ed~tor,
is used to build a map of the program so that each
symbol may be assigned an address relativ(~ to the
load point rather than a displacement from its control­
section origin. As each symbol is retrieved, the first
four characters are multiplied by the last four, and
the middle seven bits of the resulting 64-bit product

On Line Machine Language Debugger for OS/360 185

are used to index a 128-entry hash table. Each table
entry contains an index to a block of data on external
storage and a displacement within that block. All
symbols with the same hash entry are chained together,
each pointing to the block and displacement of the
next symbol. Each block contains enough space for
200 symbols; the most recently referenced block is
kept in core to minimize disk accesses. This method
seems to work efficiently for the on-line user expecting
rapid response.

User BVe

One major deficiency of the 3600 hardware, which
any debugging system must overcome, is the require­
ment that any transfer of control be accompanied by
the setting (and the destruction) of one of the sixteen
general-purpose registers. Thus, the transfer of control
from the debugged program at breakpoints cannot be
accomplished merely by a branch, but must be per­
formed by an instruction that is independent of register
settings. The most likely candidate is a supervisor
call (SVe) and its associated supervisor call routine,
which can arrange for saving all sixteen registers and
the transfer of control. However, the modification of
the user's program when such an sve is inserted to
represent a breakpoint requires that destroyed in­
structions be executed interpretively out of line, if
the breakpoint is to be used in the future. This is
quite expensi've since approximately 120 instructions
are in the 360 repertoire, and each one's interpretation
must be coded separately. Using the EXECUTE
instruction to execute the one modified instruction
out of line is another possibility. However, this requires
that all sixteen registers be properly set before the
EXECUTE instruction is issued, and that control be
transferred to the next instruction in the program
without destroyin~ any register contents.

To solve this problem, DYDE employs a type III
user-written supervisor call that allows both DYDE
and the program to be debugged to reside as "co­
routines" in the same job. This sve can be viewed
from the outside as having a pingpong effect on the
control flow. Each time the sve is issued, after an
initial call, control is passed to the other co-routine;
i.e., the first call passes to the sve routine an address
within DYDE for register and program-status~word
(PSW) save areas, one for itself and one for the program
being debugged. Thereafter, each issuance'saves the
registers and PSW of the issuing co-routine in its
area and restores the registers and PSW of the other
member of the pair. Thus, each breakpoint inserted
in the program being debugged calls for DYDE to

SVC Work Al'es

Pgm resume
PSV

DYDE's
resume PSW

Program
reghter Save

Area

DYDE regt.ter
Save Arel!.

Entry from p1ngpong SVC
Entry when debugged

program is to be restarted

Branch to
Spec 1a 1 Area

Format of Special Area

SPECIAL SVC PIIIGPONG
LIFT DC 3X' 0700'

SVC PINGPONG

The lift instruction is moved
to LIFT and control pa.,ed to
SPECIAL. IF the inatruction
branches, DYDE is done. If it
drops through, the sve is i •• ued
again, and control pal.ed to
l'GMENTRY.

Figure 3-User program-DYDE interfaces

lift and save the current instruction at that location
and to plant the two-byte sve. When the sve is
executed, control passes to DYDE at an entry point
specified by it; a note is made of the location where
the sve was issued. When the user indicates he wants
his program resumed, the lifted instruction is moved
into a special area in DYDE; the program's resume
address is updated to point to this location; and DYDE
issues the sve. This causes the program's registers
to be rest'ored and control to be passed to the lifted
instruction. If it is a branch, control passes directly
back to the program. However, if it is not a branch,
control will pass to the next instruction in this special
area, which happens to be another pingpong sve call.
Since it was issued while the program was in ex~cution,
control is passed to DYDE, which notes that the sve
was issued from within its own address space and
that the lifted instruction dropped through. DYDE
then calculates the address of the instruction following
the lifted instruction, places it in the program's resume­
program-status word, and reissues the sve. This
causes control to return to the program, which remains
in control until another breakpoint is reached (see
Figure 3). The only instructions that cannot be executed
when moved are the Branch and Link and the Branch
and Link Register, which are location dependent-they
load a specific register with the current contents of the
location counter and then branch to another location.
DYDE interprets both instructions.

APPENDIX A

1052 Operation

The 1052 is the normal OS operator's console. DYDE
uses the Write to Operator (WTO) and the Write
to Operator with Reply (WTOR) facilities to com-

186 Fall Joint Computer Conference, 1969

municate with the user. The~e macros allow any
program to type a message on the typewriter, or to
type a message and wait fora reply. This facility
provides a very rudimentary fQrm of interaction; not
only is the typewriter slow, but: the form of user com­
mands is, of necessity, burdensome. More impor­
tantly, the console is used by 6s for communications
with the operator. As such, it types out not only
declarative but informative messages and expects
some replies. Thus, a user wishing to use DYDE on
a 1052 must tolerate other console activity; separate
those' meSSages sent to him by DYDE from other
operator messages, usually by noting the message
content; and tag his commands with the number of
the message to which he is replying.

The mechanism for these replies is bothersome. The
user first depresses the REQUEST key, then, when
the system responds with the proceed light, he must
type the character R (short for REPLY), leave a
space, and then type the follo~ing: (1) the number of
the outstanding message to wHich he is replying, (2)
a quote, (3) the message body, (4) a terminal quote,
and (5) the end of block. Assuming the user has re­
ceived a proceed light, and is replying to message 3,
he must type:

R03, 'THIS ISAN EXAMPLE.'

followed by an end of block.
Using this operation, DYDE initially types out a

READY message and waits for a reply. The user

responds to this message using the reply mec:hanism­
by issuing a legal command, and being careful to note
the number (or tag) associated with the READY
message. DYDE responds to each request with a
message. If the request requires more than one line,
at least one WTO is issued, with no wait for reply;
it is followed by a WTOR and a wait for reply. In
this manner, DYDE can debug a program that resides
as one of many jobs in a multiprogrammed. environ­
ment, and still keep the interference with normal
system operations at a minimum.

APPENDIXB

Command abbreviations

The following command abbreviations are available:

Abbreviation

*NA
*M
*BR
*FI
*DD
*CS
*RE
*TR
*S

null command
(i.e., just the
enter symbol)

Full Form

*NAME
*MODIFY
*BREAK
*FINISH
*DDNAMES
*CSECr
*RESUME
*TRACE
*SETMODE
if mode is next, then
*NEXT if mode is
not next, then *GO

The multics PL jl compiler

by R. A. FREIBURGHOUSE

General Electric Company
Cambridge, Massachusetts

INTRODUCTION

The IVlultics PL/1 compiler is in many respects a
"second generation" PL/1 compiler. It was built at a
time when the language was considerably more stable
and well defined than it had been when the first
compilers were built.1 ,2 I t has benefited from the
experience of the first .compilers and avoids some of the
difficulties which they encountered. The Multics com­
piler is the only PL/1 compiler written in PL/1 Emd. is
believed to be the first PL/1 compiler to produce high
speed object code.

The langua.ge

The Multics PL/I language is the language defined
by the IBM "PL/1 Language Specifications" dated
March, 1968.1 At the time this paper was written most
language features were implemented by the compiler
but the run time library did not include support for
input and output, as well as several lesser features.
Since the multi-tasking primitives provided bv the
Multics operating system were not well suited to 'PL/l
tasking, PL/l tasking was not implemented. Inter­
process communica tion (M ultics tasking) may be
performed through calls to operating system facilities.

The system environment

The compiler and its object programs operate within
the Multics operating system.3 ,4,6 The environment
provided by this system includes a virtual two dimen­
sional . address space consisting of a large number of
segments. Each segment is a linear address space whose
addresses range from 0 to 64K. The entire virtual store
is supported by a paging mechanism. which is invisible

to the program. Each program operating in this
environment consists of two segments: a text segment
containing a pure re-entrant procedure, and a linkage
segment containing out-references (links), definitions
(entry names), and static storage local to the program.
The text segment of each program is sharable by all
other users on the system. Linking to a called prog:ram is
normally done dynamically during program execution.

Implementation techniques

The entire compiler and the lVJultics operating system
were written in EPL, a large subset of PL/l containing
most of the complex features of the language. The EFL
compiler was built by a team headed by lVI. D. l\TcIlroy
and R. lVlorris of Bell Telephone Laboratories. Several
members of the l\1ultics PIJ/I projeGt modified the
original EPL compiler to improve its object code
performance, and utilized the knovdedge acquired from
this experience in the desig;n of the Multics PL/l
compiler. EPL and lV1.ultics PL/I are sufficiently
compatible to allow the IHultics PL/l compiler to
compile itself and the operating system.

The l\.fultics PL/1 compiler was built and de-bugged
by four experienced system programmers in 18 months.
All program preparation was done on-line using the
CTSS time-sharing system at lVIIT. l\ITost de-bugging
was done in a batch mode on the GE645, but final
de-bugging was done on-line using l\1.ultics ..

The extremely short development time of 18 months
was made possib!e by these powerful tools. The same
design programmed in a macro-assembly langua.ge using
card input and batched runS would have required twice
as much time, and the result would have been extremely
unmanageable.

187

188 Fall Joint Computer Conference, 1969

Design objectives

The project's design decisions and choice of techniques
were influenced by the following objectives:

1. A correct implementation of a reasonably
complete PL/llanguage.

2. A compiler which produced relatively fast object
code for all language constructs. For similar
language constructs, the object code was ex­
pected to equal ~r exceed that produced by most
Fortran or COBOL compilers.

3. Object program compatibility with EPL object
programs and other IV[ultics languages.

4. An extensive compile time diagnostic facility.
5. A machine independent compiler capable of

bootstrapping itself onto other hardware.

The compiler's size and speed were considered less
important than the above mentioned objectives. Each
phase of the original compiler occupies approximately
32K, but after the compiler has compiled itself that
figure will be about 24K. The. original compiler was
about twice as slow as the IVlultics Fortran compiler.
The bootstrapped version of the PL/1 compiler is
expected to be considerably faster than the original
version but it will probably not equal the speed of
Fortran.

A n overview of the compiler

The Multics PL/I compiler is designed along
traditional lines. It is not an in.teractive compiler nor
does it perform partial compilations. The compiler
translates PL/I external procedures into relocatable
binary machine code which may be executed directly or
which may be bound together· with other procedures
compiled by any l\llultics language processor.

The notion of a phase is particularly useful when
discussing the organization of the l\dultics PL/I
compiler. A phase is a set of procedures which performs
a major logical function of compilation, such as syntac­
tic analysis. A phase is not necessarily a memory load or
a pass over some data base although it may, in some
cases, be either or both of these things.

The dynamic linking and paging facilities of the
Multics environment have the effect of making avail­
able in virtual storage only those specific pages of those
particular procedures which are referenced during an
execution of the compiler. A phase of the l\1ultics PL/I
compiler is therefore only a logical grouping of pro­
cedures which may call each other. The PL/I compiler
is organized into five phases: Syntactic Translntion,
Declaration Processing, Semantic Translation, Optimi­
zation, and Code Generation.

The internal representation

The internal representation of the program being
compiled serves as the interface between phases of the
compiler. The internal representation is organized into
a modified tree structure (the program tree) eonsisting
of nodes which represent the component parts of the
program, such as blocks, groups, statements, operators,
operands, and declarations. Each node may be logically
connected to any number of other nodes by the use of
pointers.

Each source program block is represented in the
program tree by a block node which has two lists
connected to it: a statement list and a declaration list.
The elements of the declaration list are symbol table
nodes representing declarations of identifiers ·within that
block. The elements of the statement list are nodes
representing the source statements of that block. Each
statement node contains the root of a computation tree
which represents the operations to be performed by that
statement. This computation tree consists of operator
nodes and operand nodes.

The operators of the internal representation are
n-operand operators whose meaning closely parallels
that of the PL/I source operators. The form of an
operand is changed by certain phases, but operands
generally refer to a declaration of some variable or
constant. Each operand also serves as the root of a
computation tree which describes the computations
necessary to locate the item at run time.

This internal representation is machine independent
in that it does not reflect the instruction set, the
addressing properties, or the register arrangement of
the GE645. The first four phases of the compiler are also
machine independent since they deal only with this
machine independent internal representation. Figure 1
shows the internal representation of a simple program.

Syntactic translation

Syntactic analysis of PL/I programs is slightly more
difficult than syntactic analysis of other languages such
as Fortran. PL/I is a larger language containing more
syntactic constructs, but it does not present any
significantly new problems. The syntactic translator
consists of two modules called the lexical analyzer and
the parse.

Lexical analysis

The lexical analyzer organizes the input text into
groups of tokens which represent a statement. It also
creates the source listing file and builds a token table
which contains the source representation of all tokens in

FACT:

F:

6~~Ci FIXED,PRINT ENTRY, F ENTRY RETURNS(FIXED) INT;
DO I = 1 TO 10;
CAll PRINT("Factorlol Is'! F(I)h
END;
PROC (N) FIXED~
DCl N FIXED;
IF N • 0 THEN RETURN(1)~
RETURN (N*F(N-l»;

symbol table
~for I

symbo I to bl e END F;
END FACTi ~for PRINT

symbol table

" .".....- fo r F symbol to ble
.............. for N block node

FACT~-----

-bi~ nod. /
statement node ,., or
statement node ,., TLL
statement node ,., or on'
statement node
for FACT end

statement node
for IF c lau .. -,
statement node

- jump,ne.

(/ t "0
for THEN clouse -......... 1

I
t'statement DOde __ ..

... fo r RETURN ./ "
, Neall

statement node F/ "_

for Fend / "

N 1

Figure I-The internal repre£erta,tion of e. progmm.
The example is greatly simplified. Only the state­

ments of procedure F are shown in detail.

the source program. A token is an identifier, a constant,
an operator or a delimiter. The lexieal analyzer is called
by the parse each time the parse wants a new statement.

The lexical analyzer is an approximation to a finite
state machine. Since the lexical analyzer must produce
output as well as recognize tokens, action codes are
attached to the state transitions of the finite state
machine. These action codes result in the eoncatenation
of individual characters from the output until a
recognized token is formed. Constants are not converted
to their internal format by the lexical analyzer. They are
converted by the semantic translator to a format which
depends on the context in which the constant appears.

The token table produced by the lexical analyzer
contains a single entry for each unique token in the
source program. Searching of the token table is done
utilizing a hash coded scheme which provides quick
access to the table. Each token table entry contains a
pointer which may eventually point to a declaration of
the token. For each statement, the lexical analyzer
builds 3 vector of pointers to the tokens which were
found in the statement. This vector serves as the input
to the parse. Figure 2 shows a simple example of lexical
amtlysis.

PRINT:

The Multics PL/l Compiler lR9

PROC(MESSAGE, VALUE);
DCl MESSAGECHAR(*), VALUE FIXED;
CAll DISPlAY(MESSAGE II VALUE);
END;

The token table produced by
the lexical analyzer for
this proorom is:

PRINT

PROC

MESSAGE

VALUE

DCl

CHAR

*
FIXED

CAll

DISPLAY

II

END

This vector of pointers is the
representation of the co II
statement. it is created by
the lexical analyzer and serves
as input to the parse.

Figure 2-The output of the lexical analyzer.

The parse

The parse consists of a set of possibly recursi~e
procedures each of which corresponds to a syntactIC
unit of the'language. These procedures are organized to
perform a top down analysis of the source pr?gran~. ~s
each component of the program is recognIzed, I~ IS
transformed into an appropriate internal representatIOn.
The complete~ internal representation is a program tree
which reflects the relationships between all of the
cJmponents of the original source program. Figure 3
shows the results of the parse of a simple program.

Syntactic contexts which yield declarative inf~rm~­
tion are recognized by the parse, and this informatlO~ IS

passed to a module called the context recorder w~ICh
constructs a data base containing this informatlOn.
Dedare statements are parsed into partial symbol table
nodes which represent declarations.

The problem of backup

The top dmvn method of syntactic analysis is used
because of its simplicity and flexibility. The use of a
simple statement recognition algorithm made it possible

190 Fall Joint Computer Conference, 1969

SUM: PROC(X,N) FLOAT;

DCl (S INITIAl(O),X(1000)) FLOAT;
DCl (I,N) FIXED:
DOl ,,' TON~
S • S+X(I);
END;
RETURN.(S);
END SUM;

symbol table /or N

table

The token table

Figure 3-The output of the parse

to eliminate all backup. The statement recognizer
identifies the type of each staterhent before the parse of
that statement is attempted. The l;lJgorithm used by
this procedure first attempts to recognize assignment
statements using a left to right scan which looks for
token patterns which are roughly analogous to X = or
X () =. If a statement is not recognized as an
assignment, its leading token is matched again8t a
keyword list to determine the statement type. This
algorithm is very efficient and is able to positively
identify all legal statements without requiring keywords
to be reserved.

Declarat~'on procf'ssinq

PL/1 declara.tion processing is complicated by the
great variety of data attributes and by the context
sensitive manner in which they are derived. Two
modules, the context processor and. the declaration
processor, process declarative information gathered by
the parse.

The context processor

The context processor scans the data base containing
contextually derived attributes produced during the
parse by the context recorder. ;It either augments the
partial symbol table created from declare statements or

creates new declarationR hrwing the same format as
those derived from dec}gre statements. This activity
creates contextual and implicit declarations.

The declaration processor

The declaration processor developR sufficient informa­
tion about the varial13s of the program so 1jhat they
may be allocated storage, initialized and accessed by the
program's operators. It is organized to perform three
major functions: the preparation of accessing code, the
computation of each variable's Rtorage requirements,
and the creation of initialization code.

The declaration processor is relatively machine
independent. All mac\ine dependent characteristics,
such as the number of bits per word and the a.lignment
requirements of data types, arc contained in a table.
All computations or statements produced by the
declaration processor have the same internal representa­
tion as source language expressions or statements. Later
phases of the compiler do not distinguish between them.

The use of based references by the declaration
pro ·e~sor

The concept of a based reference is useful to the
understanding of PL/1 data accessing and the imple­
mentation of a number of language featureE .. A based
declare,tion of the form DeL A BASED is referenced
by a based reference of the form P --? A, where P is a
pointer to the storage occupied by a value whose
description is given by the declaration of A. l\1ultiple
instances of data having the characteristics of A can be
referenced through the use of unique pointers, i.e.,
Q --? A, R --? A, etc.

The declaration processor implements a number of
language features by transforming them int.o suitable
based declarations. Automatic data whose size IS

variable is transformed into a based declaration.

For example the declaration:

DCL A(N) AUTO;

becomes

DCL A(N) BASED (P) ;

where: P is a compiler produced pointer which is set
upon entry to the declaring block.

Based declarations are also used to implement
parameters. For example.

X: PROC (C); DCL C;

beeomes

X: PROC (P); DCL C BASED (P) ;

where: P is a pointer which points to the argument
corresponding to the parameter C.

Data accessing

The address of an item of PL/1 data consists of three
basic parts: a pointer to some storage location, a word
offset from that location and a bit offset from the word
offset. Either or both offsets may be zero. The term
"word" is understood to refer to the addressable unit
of a computer's storage.

Example 1

DCL A AUTO;

The address of A consists of a pointer to the declaring
block's automatic storage, a word offset within that
automatic storage and a zero bit offset

Example 2

DCL 1 S BASED(P),
2 A BIT(5),
2 B BIT(N)

When referenced by P ~ B, the address of B is a
pointer P, a zero word offset and a bit offset of 5. The
word offset may include the distance from the origin of
the item's storage class, as was the case with the first
example, or it may be 'only the distance from the
level-one containing structure, as it was in the last
example. The term "level-one" refers to all variables
which are not contained within structures. Subscripted
array element references, A(K, J), or sub-string
references, SUBSTR(X, K, J), may also be expressed
as offsets.

Offset expressions

The declaration processor constructs offset expres­
sions which represent the distance between an element
of a structure and the data origin of its level-one
containing structure. If an offset expression contains
only constant terms, it is evaluated by the declaration
processor and results in a constant addressing offset. If
the offset expression contains variable terms, the
expression results in the generation of accessing
instructions in the object program. The discussion which
follows describes the efficient creation of these offset
expressions.

The Multics PL/l Compiler 191

Given a declaration of the form:

DeL 1 S,
2 A BIT(M),
2 B BIT(5),
2 C FLOAT;

The offset of A is zero, the offset of B is M bits, and the
offset of C is M + 5 bits rounded upward to the
nearest word boundary.

In general, the offset of the nth item in a structure is:

bn(Cn-l(Sn-l) + bn- 1(cn-2(sn-2) + bn- 2

(... b 3(c2(s2)) + b2(Cl(Sl)))'")))

where: b k is a rounding function which expresses the
boundary requirement of the kth item.

Sk is the size of the kth item.
Ck is the conversion factor necessary to convert
Sk to some common units such as bits.

The declaration processor suppresses the creation of
unnecessary conversion functions (Ck) and boundary
functions (b k) by keeping track of the current units and
boundary as it builds the expression. As a result the
offset expressions of the previous example do not contain
conversion functions and boundary functions for A
andB.

During the construction of the offset expression, the
declaration processor separates the constant and varia­
ble terms so that the addition of constant terms is done
by the compiler rather than by accessing code in the
object program. The following example demonstrates
the improvement gained by this technique.

DCL 1 S,
2 A BIT(5),
2 B BIT(K),
2 C BIT(6),
2 D BIT(10);

The offset of Dis K+ll instead of 5'+K+6.

The word offset and the bit offset are developed
separately. Within each offset, the constant and varia­
ble parts are separated. These separations result in the
minimization of additions and unit conversions. If the
declaration contains only constant sizes, the resulting
offsets are constant. If the declaration contains expres­
sions, then the offsets are expressions containing the
minimum number of terms and conversion factors.

The development of size and offset expressions at

192 Fall Joint Computer Qonference, 1969

compile time enables the object program to access data
without the use of data descriptors or "dope vectors."6
Most existing PL/1 implementfl,tions make extensive
use of such descriptors t.o acc~ss data whose size or
offsets are variable. Unless these descriptors --.8re
implemented by hardware, theit use results in rat.her
inefficient object code. The l\IJultics PL/1 strategy of
developing offset expressions from the declarations
results in accessing. code similar to that produced for
subs ;ri1ted array references. rhis code is generally
more dficient than code which uses descriptors.

In general, the offset expressions constructed by the
declarat io:.l proce3sor remain unchanged until code
generation. Two cases are ex¢eptions to this rule:
subscri pted array references, A (K ,J), and sub-string
references, SUB S T R (X, K, J)i. Each subscripted
reference or sub-string referen6e is a reference to a
unique sub-datum within the i declared datum and,
therefore, requires a unique !offset. The semantic
translator constructs these un~que offsets using the
subscripts from the reference anq the offset prepared by
the declaration processor.

Allocation

The declaration processor do¢s not allocate storage
for most classes of data, but it does determine the
amount of storage needed by e~ch variable. Variables
are allocated within some segmeD!t of storage by the code
generator. Storage allocation is delayed because, during
semantic translation and optimization, additional dec­
L,.rations of constants and compiler created variables
are made.

Initialization

The declaration processor creates statements in the
prologue of the declaring block which will initialize
automatic data. It generates! DO statements, IF
statements and assignment statements to accomplish
the required initialization. I

The expansion of the initial ~ttribute for based and
controlled data is identical to that for automatic data
except that the required stateniwnts are inserted into
the program at the point of allocation rather than in the
prologue. '

Since array bounds and string'sizes of static data are
required by the language to be ,constant, and since all
values of the initial attribute Qf static data must be
constant, the compiler is able to iP.itialize the static data
at compile time. The initializatibn is done by the code
generator at the time it allocate$ the static data.

Semantic translation

The semantic translator transforms the internal
representation so that it reflects the attributes (seman­
tics) of the declared variables without reflecting the
properties of the object machine. It makes a single scan
over the internal representation of the program. A com­
piler, which had no equivalent of the optimizer phase
and which did not separate the machine dependencies
into a separate phase, could conceivably produce object
code during this scan.

Organization of the semantic translator

The semantic translator consists of a set of recursive
procedures which walk through the program tree. The
actions taken by these procedures are described by the
general terms: operator transformation and operand
processing. Operator transformation includes the crea­
tion of an explicit representation of each operator's
result and the generation of conversion operators for
those operands which require conversion. Operand
processing determines the attributes, size and offsets of
each operator's operands.

Operator transformation

The meaning of an operator is determined by the
attributes of its operands. This meaning specifies which
conversions must be performed on the operands, and it
decides the attributes of the operator's result.

An operator's result is represented in the program
tree by a temporary node. Temporary nodes are a
further qualification of the original operator. For
example, an add operator whose result is fixed-point is a
distinct operation from an add operator whose result is
floating-noint. There is no storage associated with
temporaries~they are allocated either core or register
stora~e by the code generator. A temporary's size is a
function of the operator's meaning and the sizes of the
operator's operands. A temporary, representing the
intermediate result of a string operation, requires an
expression to represent its length if any of the string
operator's operands have variable lengths.

Operand processing

Operands consist of sub-expressions, references to
variables, constants, and references to procedure names
or built-in functions. Sub-expression operands are
processed by recursive use of operator transformation
and operand processing. Operand processing converts
constants to a binary format which depends on the

context in which the constant was used. References to
variables or procedure names are associated with their
appropriate declaration by the search function. After
the search function has found the appropriate declara­
tion, the reference may be further processed by the
subscriptor or function processor.

The Search function

During the parse, it is not possible for references to
source program variables to know the declared attributes
of the variable because the PL/l language allows
declarations to follow their use. Therefore, references to
source program variables are parsed into a form which
contains a pointer to a token table entry rather than to
a declaration of the variable. Figure 3 shows the output
of the parse. The search function finds the proper
declaration for each reference to a source· program
variable. The effectiveness of the search depends heavily
on the structure of the token ~able and the symbol table.
After declaration processing, the token table entry
representing an identifier contains a list of all the
declarations of that identifier. See Fig-ure 4.

The search function first tries to find a declaration
belonging to the block in which the reference occurred.
If it fails to find one, it looks for a deolaration in the next
containing block. This process is repeated until a

TOP: PROC~

DCl B POI NTER ~

BEGIN;

DCl B FLOAT;

BEGIN;

END;
END;

END;

DCl B FIXED ~

\
symbol tabl e for

,..............B as a pointer
block node for ~

TOP ~

'" symbol table for
" B as floating-point
block node for "'-

Token Table

first BEGIN '\

'" symbol table for
" ~ B as f I xed-poi nt
b lock node· for ~
second BEGIN

Figure 4-The relationship between the token table and
the symbol ta.ble

The MuJtics PL/l Compiler 193

OEM, PROC~

DCl I S,
2 A(N) FLOAT,
2 B(M) FIXED;

S.B(I) • 0;

END;

\ symbol
block node ____ for B
for OEM

---- ---
table

\reference
node for B \ ,

\ ,
'. } t he word offset

express Ion bUi It
by the declaration
processor.

sta tement node
for assignment ~

\ ,-
... / '-.....0

reference
node for B

/
/+,

/+\ -I

N I
] the word offset

express ion bu i It
by t he semantiC
translator.

Figure 5-A simplified diagram showing the effects of
subscripting

declaration is found. Since the number of declarations
on the list is usually one, the search is quite fast. In its
attempt to find the appropriate declaration, the search
function obeys the language rules regarding structure
qualification. It also collects any subscripts used in the
reference and places them into a subscript list. Depend­
ing on the attributes of the referenced item, the
subscript list serves as input to the function processor' or
subscriptor.

The declaration processor creates offset expressions
and size expressions for all variables. These expressions,
known as accessing expressions, are rooted in a reference
node which is attached to a symbol table node. The
reference node contains all information necessary to
access the data at run time. The search function
translates a source reference into a pointer to this
reference node. See Figure 5.

Subscripting

Since each subscripted reference is unique, its offset
expression is unique. To reflect this in the internal
representation, the subscriptor creates a unique refer­
ence node for each subscripted reference. See Figure 6.
The following discussion shows the relationship between
the declared array bounds, the element size, the array
offset and subscripts.

194 Fall Joint Computer yonference, 1969

Let us consider the case of an a*ay declared:

u.(h :Ul, b :U2, ... " In :un)

Its element size is s and its offset is b.

The multipliers for the array are defined as:

mn = s
mn-l = (Un -In + ~)s
mn-2 = (Un-l -In-I! + 1) mn-l

!

ml = (U2 -b + 1)m2

The offset of a reference a(h, i2 , .! • " in) is computed as:

n

V + L ij~lj
i=1

where: v is the virtual origin. The virtual. origin is the
offset obtained by setting the s~bscripts eqnal to zero.
I t serves as a convenient base from which to compute
the offset of any array element. i

During the construction of: all expressions, the
constant terms are separated fr~m the variable terms
and all constant operations are performed by the

FIGS PROC~

DCL (x. Y, Z) FLOAT;

x • y+ z ~

END;

\

symbol tabl;
for l(\

~

symbol
for Y

,.,..,.~~~

symbol table

, ,.....,for Z \

tdble reference
~ node for Z

reference
node for Y

block node reference

F\ '(0" fo, X : To ... Tab"

, Each entry point. .tat~ment node no a .ymbol tabl~}
fo, a".,m .. ' V·-V+ Y~B

' , '.i...--- Y
, \ !

....... : ----4.---- X
i
i

Figure 6-The internal representation of a statement
before and after the execution ofithe search function.

The broken lines show th~ statement's
operands before the isearch

compiler. Since the virtual origin and the multipliers are
common to all references, they are constructed by the
declaration processor and are repeatedly used by the
subscriptor.

Arrays of PL/1 structures which contain arrays may
result in a set of multipliers whose units differ. The
declaration:

DCL 1 S(10),
2 A PTR,
2 B(10) BIT(2);

yields two multipliers of different units. The first
multiplier is the size of an element of S in wo:rds, while
the second multiplier is the size of an element of B
in bits.

Array parameters which may correspond. to an array
cross section argument must receive their multipliers
from an argument descriptor. Since the arr:il.ngement
of the cross section elements in storage is not known to
the called program, it cannot construct its own multi­
pliers and must use multipliers prepared by the calling
program. Note that the current definition of PL/1
allows any array parameter to receive a crOl3S section
argument.

The function processor

An operand which is a reference to a procedure is
expanded by the function processor into a call operator
and possible conversion operators. Built-in function
references result in new operators or are transl.ated. into
expressions consisting of operators and operands.

Generic procedure references

A generic entry name represents a family of pro­
cedures whose members require different types of
arguments.

DCL ALPHA GENERIC (BETA
ENTRY (FIXED)),
GA1VIlVlA
ENTRY(FLOAT)) ;

A reference to ALPHA (X) will result ina call to
BETA or CAMMA depending on the attributes of X.

The declaration processor chains together all members
of a generic family and the function processor selects the
appropriate member of the family by matching the
n.rguments used in the reference with the declared
argument requirements of each member. "'Then the
appropriate member is found, the original reference is
replaced. by a reference to the selected. mem.ber.

Argument processing

The function processor matches arguments to user­
declared procedures against the argument types required
for the procedure. It inserts conversion operators into
the program tree where appropriate, and it issues
diagnostics when it detects illegal cases.

The return value of a function is processed as if it
were the n + 1 th argument to the procedure, eliminating
the distinction between subroutines and functions.

The function processor determines which arguments
may possibly correspond to a parameter whose size or
array bounds are not specified in the called procedure.
In this case, the argument list is augmented to include
the missing size information. A more detailed description
of this issue is given later in the discussion of object
code strategies.

The built-in function processor

The built-in function processor is basically a table
driven device. The driving table describes the number
and kind of arguments required by each function and is
used to force the necessary conversions and diagnostics
for each argument. Most functions require processing
which is unique to that function, but the table driven
device minimizes the amount of this processing.

The SU BSTR built-in function is of particular
importance since it is a basic PL/1 string operator. It is
a three argument function which allows a reference to
be made to a portion of a string variable, i.e.,
SUBSTR (X, I, J) is a reference to the ith through
i + j - lth character (or bit) in the string X.

This function is similar to an array element reference
in the sense that they both determine th~ offsets of the
reference. The processing of the SUBSTR function
involves adjusting the offset and length expressions
contained in the reference node of X. As is the case in
all compiler operations on the offset expressions, the
constant and variable terms are separated to minimize
the object code necessary to access the data.

The optimizer

The compiler is designed to produce relatively fast
object code without the aid of an optimizing phase.
Normal execution of the compiler will by-pass the
optimizer, but if extensively optimized object code is
desired, the user may set a compiler command option
which will execute the optimizer. The optimizer consists
of a set of procedures which perform two major optimi­
zations: common sub-expression removal and removal
of computations from loops. The data bases necessary

The Multics PL/l Compiler 195

for these optimizations are constructed by the parse
and the semantic translator. These data bases consist of
a cross-reference structure of statement labels and a
tree structure representing the DO groups of each
block. Both optimizations are done on a block basis
using these two data bases.

Although the optimizer phase was not implemented
at the time this paper was written, all data bases
required by the optimizer are constructed by previous
phases of the compiler and the abnormality of all
variables is properly determined.

o'ptimiza,tion of PL/I programs

The on-condition mechanism of the PL/1 language
makes the optimization of PL/I programs considerably
more difficult than the optimization of Fortran pro­
grams. Assuming that an optimized version of a
program should yield results identical to those produced
by the un-optimized version, then if anyon-conditions
are enabled in a given region of the program, the
compiler cannot remove or reorder the computations
performed in that region. (Consider the case of a divide
by zero on unit which counts the number of times that
the condition occurs.)

Since some on-co~ditions are enabled by default,
most PL/1 programs cannot be optimized. Because of
the difficulty of determining the abnormality of a
program's variables, the optimization of those programs
which may be optimized requires a rather intelligent
compiler. A variable is abnormal in some block if its
value can be altered without an explicit indication of
that fact present in that block. An optimizing PL/I
compiler must consider all based variables, all arguments
to the ADDR function, all defined variables, and all
base items of defined variables to be abnormal. If the
compiler expects values of variables to be retained
throughout the execution of a call, it must also consider
all parameters, all external variables, and all arguments
of irreducible functions to be abnormal.

Because of the difficulty of optimizing programs
written in the current PL/11anguagel compilers should
probably not attempt to perform general optimizations
but should concentrate on special case optimizations
which are unique to each implementation. Future
revisions to the language definition may help solve the
optimization problem.

The code generator

The code generator is the machine dependent portion
of the compiler. It performs two major functions: it
allocates data into Multics segments and it generates

196 Fall Joint Computer Conference, 1969

645 machine instructions from the internal repre­
sentation.

Storage allocation

A module of the code generator called the storage
allocator scans the symbol table allocating stack
storage for constant size automatic data, and linkage
segment storage for internal static data. For each
external name the storage allocator creates a link (an
out-reference) or a definition (an entry point) in the
linkage segment. All internal static data is initialized as
its storage is allocated.

Due to the dynamic linking; and loadin.g characteris­
tics of the .:.\lultics environment, the allocation and
initialization of external static storage is rather unusual.
The compiler creates a special type of link which causes
the linker module of the operating; system to create and
initialize the external data upon first reference. There­
fore, if two programs contain references to the same
item of external data, the first one to reference that data
will allocate and initialize it.

Code generation

The code generator scans the internal representation
transforming it into 645 machino instructions which it
outputs into the text segment. During this scan the
code generator allocates storage for temporariefl, and
maintains a history of the contents of index regiflters to
prevent excessive loading and storing; of index values.

Code generation consists of three distinct activities:
address computation, operator' selection and macro
expansion. Address computation is the process of
transforming the offset expressions of a reference node
into a machine address or an instruction sequence which
leads to a machine address. Operator selection is the
translation of operators into n-qperand mncros which
reflect the properties of the 645 funchine.

A one-to-one relationship often exists between the
macros and 645 instructions but many operations (load
long string, etc.) have no machine counterpart. All
macros are expanded in actual 6(15 code by the macro
expander which uses a code pattern table (macro
skeletons) to select the specific instruction sequences
for each macro.

Object code strategies

The object code design

The design of the object code is ,a compromise between
the speed obtainable by straight in-line code and the

necessity to minimize tr..e number of page faults caused
by large object prOf]~ms.

The length of the object program is minimized by t,he
extensive use of out-of-line code sequences. These
out-of-line code sequences represent invariant code
which is common to alll\Iultics PL/1 object programs.
Although the compiled code makes heavy use of out-of­
line code sequences, the compiled code is n.ot in any
respect interpretive. The object code produce for each
operator is very highly tailored to the specific attributes
of that operator.

All out-of-line sequences are contained in a single
"operator" segment which is shared by all users. The
in-line code reaches on out-of-line sequence through
transfer instructions, rather than through the standard
subroutine mechanism. ",7 e believe that the time
overhead associated with the transfers is more than
redeemed by the reduction in the number of page faults
caused by shorter object programs. System performance
is improved by insuring that the pages of the oper~'tor
segment are always retained in storage.

The stack

~fultics PL/l object programs utilize a stack segment
for the allocation of all automatic data, temporaries,
and data associated with on-conditions. Each task
(l\lultics process) has its own stack which is extended
(pushed) upon entry to block and is reverted (popped)
upon return from a block. Prior to the execution of each
statement it is extended to create sufficient space for
any variable length string temporaries used in that
statement. Constant size temporaries are allocated at
compile time and do not cause the stack to be extended
for each statement.

Prologue and epilogue

The term prologue describes the computations which
are performed after block entry and prior to the
execution of the first source statement. These actions
include the establishment of the condition prefix, the
computation of the size of variable size autom:atic data"
extension of the stack to allocate automatic data, and
the initialization of automatic data. Epilogues are not
needed because all actions which must be undone upon
exit from the block are accomplished by popping the
stack. The stack is popped for each return or non-local
go to statement.

Accessing of data

IVIultics PL/l object code addresses all dat:a, includ-

ing members of variable sized structures and arrays
directly through the use of in-line code. If the address
of the data is constant, it is computed at compile time.
If it is a mixture of constant and variable terms, the
constant terms are combined at compile time. Descrip­
tors are never used to address or allocate data.

String operations

All string operations are done by in-line code or by
"transfer" type subroutinized code. No descriptors or
calls are produced for string operations. The SU BST R
built-in function is implemented as a part of the normal
addressing code and is therefore as efficient as a
subscripted array reference.

String temporaries

A string temporary or dummy is designed in such a
way that it appears to be both a varying and non-vary­
ing string. This means that the programmer does not
need to be concerned with whether a string expression is
varying or non-varying when he uses such an expression.
as an argument.

Varying strings

The]Vlultics PL/l implement[\tion of v~.ryiD.g strings
uses a data format which cor.sists of an. integer followed
by a non-varYlng string 'whose length is the declr.re
maximum of the varying string. 1'1'.e ilteger is used to
hold the current size of the string in bits or chr.rr.cters.
Using this data format, operations on vr.rying strinf;s
are just as efficient as opert'.tions on non-vr.rying strings.

On -conditions

The design of the condition machinery minimizes the
overhead associated with enabling and reverting on­
units and transfers most of the cost to the signf:\l
statement. All data associated with on-conditions,
including the condition prefix, is allocated in the stack.
The normal popping of the stack reverts all enabled
on-units and restores the proper condition prefix. Stack
storage associated with each block is threaded backward
to the previous block. The signal statement uses this
thread to search back through the stack looking for the
first enabled unit for the condition being signalled.
Figure 7 shows the organization of enabled on-units in
the stack.

Argument passing

The PL/l language permits parameters to be

The Multics P.L/l Compiler 197

]

stock storage
for A.

J On-unit control
data for X.

]

;~~c~. storaoe

~'-'""'1.) . on-unit control
data for X and
Y.

}

stock storage
for C.

Procedure A enabled on
on-unit for condition X
and called procedure B.

Procedure B enob led a
new on-unit for condition
X and on on-unit for
condition Y. It then
called procedure C.

Procedure C did not
enable anyon-units.

Figure 7 -Stack storage and the signal mechanism
A f:.ignal for condition X causes the signal mechanism to search
rack through the stack until it findo; the first enabled' on-unit
for condition X.
An on-unit is compiled 8'3 an internal procedure. The execution
of an ON..,f;tp,tement creates p, block of on-unit control data. This
control datr, comi<;:·ts of the name of the condition for which the
unit wes enr,bled r,nd a procedure variable. The Fignal mechanism
uses the proeedure variable to invoke the on-unit. All data
associated with the enr,bled on-unit is stored in the stack storage
of the procedure which ene,bled it. Normal popping of the stack
reverts the on-units en8bled during the execution of the
procedure.

declared with unknown array bounds or string lengths.
In these cases, the missing size information is assumed
to be supplied by the argument which corresponds to the
parameter. This missing size information is not explicitly
supplied by the programmer as is the case in Fortran,
rather it must be supplied by the compiler as indicated
in the following example:

SUB: PROC(A); ~!JAIN: PROC;

DCL A CHAR(*); DCL SUB ENTRY;

DCL B CHAR (10) ;

CALL SUB (B) ;

Since parameter A assumes the length of the argu­
ment B, the compiler must include the length of B in the
argument list of the call to SUB.

198 Fall Joint Computer Conference, 1969

~---
The declaration of an entry name mayor may not

include a description of the arguments required by that
entry. If such a description is not supplied, then the
c·alling program must assume that argument descriptors
are needed, and must include them in a11 calls to the
entry. If a complete argument description is contained
in the calling program, the compiler can determine if
descriptors are needed for calls to the entry.

In the previous example the entry SUB was not fully
declared and the compiler was forced to assume that an
argument descriptor for B was required. If the entry
had been declared SUB ENTRY (CHAR(*» the
compiler could have known that the descriptor of B was
actually required by the procedure SUB. Since descrip­
tors a.re often created by the calling procedure but not
used by the called procedure, it is desirable to separate
them from the argument information which is always
used by the called procedure.

Communication between procedures written in PL/1
and other languages is facilitated if the other languages
do not need to concern themselves with PL/1 argument
descriptors. The l\1ultics PL/1 implementation of the
argument list is shown in Fig,re 8. Note that the
argument pointers point directly to the data (facilitating
communication between languages) and that the
descriptors are optional, also note that PL/1 pointers

TAG: PROC;

OCL ACtO) BITCN),B CHAR (1) , C AREA(1024);

CALL XCA,B,C)~

END;

11Ie argument II at
prepared for the
call to X.

polntera to the actual
valuu o:f A, Band C.

duer Iptor of A

deaer Iptor of B

deacrlptor of C

Figure 8-An argument list showing the relationship
between arguments and their de:criptors. The

broken lines indicate that; descriptors
are optional.

must be capable of bit addressing in order to implement
unaligned strings. Since descriptors contain no address­
ing information, they are quite often constant and can
be prepared at compile time.

SUl\1l\.f AR Y

Our experiences both as users and implementors of
PL/1 have led us to form a number of opinions and
insights which may be of general interest. .

1. It is feasible, but difficult, to produce efficient
object code for the PL/1 language as it is cur­
rently defined. Unless a considerable Hmount of
work is invested in a PL/1 compiler, the object
code it generates will generally be much worse
than that produced by most Fortran or COBOL
compilers.

2. The difficulty of building a compiler for the
current language has been seriously under­
estimated by most implementors. Unless the
language is markedly improved and simplified
this problem will continue to restrict the avail­
ability and acceptance of the language and will
lead to the implementation of incompatible
dialects and subsets.7

3. Simplification of the existing language will make
it more suitable to users and implementors. We
believe that the language can be simplified and
still retain its "universal" character :and
capabilities.

4. The experience of writing the compiler in PL/1
convinced us that a subset of the·]angmllge is "ve11
suited to system programming. This conviction
is supported by Professor Corbato in his report on
the use of PL/1 as an implementation language
for the M ultics syst.em.s Many PL/1 concepts
and constructs are valuable, but PL/1 structures
and list processing seem to be the principal
improvement over alternative languages.9

ACKNOWLEDGlVIENTS

The author wishes to express recognition to members
of the General Electric l\1ultics PL/1 Project for their
contributions to the design and implementation of the
compiler. J. D. Mills was responsible for the design and
implementation of the syntactic analyzer and the
l\1ultics system interface, B. L. Wolman desig;ned and
built the code generator and operator segment, and
G. D. Chang implemented the semantic tr::tllslator.
Valuable advice and ideas were provided by A. H.
K vilekval. The earlier work of l\t1. D. McIlroy and
R. lViorris of Bell Telephone Laboratories and numerous

persons at MIT's Project MAC provided a useful guide
and foundation for our efforts.

REFERENCES

1 P L I 1 language specifications
Form Y33-6003-0 IBM Corp March 1968

2 The formal definition of PL/I as specified by technical
reports TR25.081, TR25.082, TR25.083, TR25.084,
TR25.085, TR25.086 and TR25.087, IBM Corp
Vienna Austria June 1968

3 F J CORBATO V A VYSSOTSKY
Introduction and overview of the multics system
Proc FJCC 1965

4 V A VYSSOTSKY F J CORBATO R M GRAHAM

The Multjcs PL/l Compiler 199

Structure of the multics supervis01
Proc F JCC 1965

5 R C DALEY J B DENNIS
Virtual memory, processes, awi sharing in multic8
CACM Vol 11 No 5 May 1968

6 PLI1 (F) programmer's guide
Form C28-6594-3 IBM Corp Oct 1967

7 R F ROSIN
PLlt Implementation survey
ACM SIGPLAN Notices Feb 1969

8 F J CORBATO
PLlt as a tool for system programming
Datamation May 1969

9 H W LAWSON JR
P L /.t list prooo8sing
CACM Vol 10 No 6 June 1967

A design for a fast computer for

scientific calculations

by P. M. MELLIAR-SMITH

The General Electric and English
Electric Companies Limited

Borehamwood, Hertfordshire, U. K.

Recently developed techniques, such as the associative
fast store and Tomasulo's algorithm, will enable
typical large scare computers to achieve 15 to 20
million instructions per second. The hardware of such
machines has a very much greater potential power,
but it is inefficiently used, being limited to decoding a
single instruction per logic cycle.: This paper proposes
a technique whereby the programmer is provided with
complex instructions capable of controlling the oper­
ation of the whole machine during one logic cycle.
The use of such instructions for the inner loops of
programs yields substantial performance improve­
ments without significantly increased costs.

Recent efforts to develop very fast computers have
generated two elegant techniques for increasing the
speed of computers.

The first is the associative fast store, first used for
the Titan computer at the University of Cambridge,
England (a 32 word 'slave' store), and more recently
for the IBM 360/85 (a 16 K byte 'buffer' store or
'cache'). The associative fast store seeks to overcome
the major problem in the design of very fast computers,
the disparity between the access time of suitable main
stores and the potential operation time of the arithmet­
ic units, by providing a small quantity of very fast
integrated circuit store. This can be made as fast as
the arithmetic units but it cannot contain more than
a fraction of the information used by typical programs.
However it has been found experimentally that, in
any short period of time, programs do not access the

whole of their storage and that a fast store, which
retains a few hundred of the words most recently
used by the program, is able to provide without delay
almost all the information needed by the processor.

A possible method of implementation is shown in
Figure 1. The fast store holds a number of words of
code and data, together with their addresses. When
the processor requires a particular item, the address
is first sent to the fast store where it is compared
simultaneously with the addresses of all the words
in the fast store. Should the required item be pre~ent
in the fast store, then its address will match that sent
by the processor and the data can be returned to the
processor with minimal delay. If none of the addresses
match, then the required item must be fetched from
the main store and the processor may be held up.
But when the data word has been fetched, in addition
to being sent to the processor, it can also be inserted
into the fast store, displacing some other item, so
that should it be needed again it will be immediately
available.

The succes~ of this technique is entirely dependent
on the proportion of data items needed by the pro­
cessor which have to be fetched from the main store,
and this proportion, the failure rate, is the primary
criterion of the effectiveness of the fast store. The
speed of the compu ter is determined by:.

Effeetive Access time = Fast Store Access Time

(
Main Store

+ Access Delay
* Failure)

Rate

201

202 Fall Joint Computer Conference, 1969

FAST
STORE

CENTRAL PROCESSOR
,

_1

address .rb
:~

I'

I ,
I ,.

- I,

I
"'T ----.

MAIN STORE

dat a
I

'I'

Figure I-The use of an associativeifast store to reduce
the access time of the main store

If the Main Store Access Delay, 'which must include
organisational overheads as well, as the Main Store
Access Time but which may be partially overlapped,
is equivalent to ten fast store accesses then a failure
rate of 3 percent must be attained to achieve 75 per­
cent of the potential processor spe~d.

Experimental simulations with fl!ctual programs have
shown that the three characteris~ics of the fast store
which most affect the failure rates! are its organisation,
its size, and the size of the unit Qf information trans­
ferred from the main store to the fast store. The
organisation of the fast store need not concern us
here, except to remark that the type of organisation
described above is to be preferred to alternative
methods which avoid the associajtive access to large
numbers of addresses. !

The experimental simulations show that the primary
method of obtaining an adequatply low failure rate
is to make the fast store large ;enough. If the fast
store is smaller than several hundred words then
programs refer to many items not held in the fast
store and the full performance of the machine is not
obtained. However the fast store must not be made
too large, even without cost considerations. As the
size of the fast store is increased so its access time is
also inevitably increased, and eve~tually this increase
in the physical access time of the f~st store overwhelms
any further reduction in the n~mber of references
to the main store. Figure 2 shows the result of simu­
lations to obtain the etfective access time of a particu­
lar integrated circuit fast store operating with a thin
film main store, for seven sample programs. It can

fast
store
access
time

357.

307.

each curve reprMl8I1ts
the effective access time
for one sample program

L-~~~~=---
---=~~c::::::::::. ---

~--~~~~~~~ ---
257. - .- - -

- - - physical access time

~
1536 512 768 1024 1280

fast store size (words)

Figure 2-The physic9,l assess time of 3, fast store (broken line)
and the effective access times (continuous lines) for sa'llple pro­
grams. Access time is a percentage of main store aace-r;; time,

storage size is in words, and line size is 4 words

be seen that for many of the programs the optimum
size of the fast store is about 1000 words.

The description of a fast store given above assumed
that the unit of information held in the fast store
was a single word, and that information is transferred
from main store in single words. The experimental
simulations have shown that a more efficient unit
would be a block of a small number of consecutive

404
fast
store
access
time

each curve represents
the effective access time
for one sample program

.~~~-~.....-i'~ -- ---:~:-~--.c::~ __
physical access time ~ -- __ ~ -

2~1.,~ ____ -p ____ ~ ______ ~ ____ ~ ____ ~·,_-__ -=~,-,-

124 8 • n M
line size for fast store (words)

Figure 3-The physical access time of a fast store (broken line)
and the effective access time..'> (contnuollslines) for several sample
proglams. Acce'>!' time is a percentage 01 main store access time

line size is in words, and store size is 1024 words

Design for Fast Computer for Scientific Calculations 203

words accessed simultaneously from the main store.
Such a block is very similar to, though much smaller
than, a, page in a paging system and will be called a
line. Figure 3 shows how the effective access time of
an integrated circuit fast store varied with line size
during the simulation of seven sample programs. It
ca.n be seen that, when the line size is small, increasing
it not only improves the physical access time of the
fast' store but also reduces the failure rate, resulting
in an impressive performance improvement. But for
larger line sizes any further improvement in the access
time from the increased line size is offset by increasing
failure rates and overall performance deteriorates. It
appears that a line size of between four words and
sixteen words is suitable, providing that the line size
is not allowed to exceed the totaJ widt.h of the main
store.

The associative fast store technique provides very
hast effective access times and overcomes this problem
in the design of very fast computers. Thus the onus
is placed back onto the processor to make full use of
the speed of the fast store, both by the provision of
fast arithmetic units and by the execution of lengthy
ariiihmetic operations in parallel. A beautiful technique
for overlapping arithmetic operations has been de­
veloped by R. M. Tomasulo for the IBM 360/91
and is known as Tomasulo's algorithm.

Consider] for instance, the typical tight loop con­
taining floating point load, multiply, add, and store
instructions operating on the same register. As shown
in Figure 4a the conventional machine places the
result of each operation in the register before extracting
it again to perform the next operation. The register
has no substantial function in this loop which would
be more efficiently performed as shown in Figure 4b.
Here the partial result is passed directly from one

A

without
forwarding

B

with,
forwarding

Figures 4a and 4b-The use of forwarding to speed
arithmetic calculations

arithmetic unit to the next without first being placed
in the register, a technique known as forwarding. Not
only is this faster, but it also frees the register from
interlocks, which would prevent its concurrent use
for subsequent calculations. Thus for the example
loop, it might be possible to launch the second iteration
of the loop before the first iteration has been completed.

The basic structure of a flpating point arithmetic
unit using Tomasulo's algorithm is shown, slightly
simplified, in Figure 5. Separate arithmetic units are
provided for addition and multiplication, and there
are also units to hold the floating point registers and
to buffer operands to be written to store. The arithmet­
ic units are pipelines so that several independent
operations, in different stages of completion, can be
processed simultaneously within each arithmetic unit.
Thus, for instance, the addition unit can start a further
addition operation each logic cycle even though the
individ.ual addition operation takes three to four cycles
to complete.

In front of each arithmetic unit there is a block of
registers in pairs, the reservation stations. These serve
to gather the operands required for the arithmetic
operations as and when they become available, As
soon as a reservation station has collected both the
required operands, the relevant arithmetic operation
can be started at this, the earliest possible, moment.
Operands are made available to the reservation stations
as early as possible by the cross bar switch which
connects the outputs of all the arithmetic units, the
registers and the store buffers to the inputs of all the
reservation stations, so that any operand can be routed
directly to any reservation station where it is required.

Tomasulo's algorithm applies only to operations
between registers. Consequently arithmetic operations
that derive one of their operands from store are per-

Figure 5-Typical floating point unit for use with
Tomasulo's algorithm

204 Fall Joint Computer Conference, 1969

formed in two stages, the first of which loads the
operand from store into one of the store buffer registers
while the second is a register . to register operation
between that buffer regist3r and the specified floating
point register.

Under Tomasulo's algorithm: instructions are still
decoded sequentially but their 'execution proceeds as
and when the required operands become available.
Arithmetic operations between registers are per­
formed in four stages:

select a suitable vacant reseryation station,
obtain both operands and place them in the

reservation station,
execute the arithmetic operation,
transmit the result directly to all registers and

reservation stations waiting for it.

The identity of the destination register must not be
held with the operation as it is being processed, for
arithmetic operations can be performed out of sequence
and the result of some subse'quent operation may
already have been placed in that register. The essence
of Tomasulo's algorithm is that a record is keptJ for
each register, of the origin of the result for which it is
waiting, the result most recently assigned to it. Previous
results, directed by the program to pass through the
register, will be forwarded directly to the relevant
arithmetic units and can be' ignored by the register.
The same technique is used for reservation stations,
recording for each which operand or result it is waiting
for.

As an example of the requir~d effect., consider the
short loop referred to above. The first instruction loads
an operand from store to a floating point register.
Obtaining the operand from store will take a small
interval of time1 even with an jntegrated circuit fast
store, and so a store buffer is allocated, the register
is set t<? wait for an operand originating at this store
buffer, and the next instruction is considered.

This calls for a multiplication, and a reservation
station in front of the multiplication arithmetic unit
is allocated. One of the operands of the multiplication
is being fetched from store, and one half of the reser­
vation station waits for an onerand from the store
buffer allocated to this operatiqn. The other operand
is that to be loaded into the re~ister as a result of the
previous inst'ruction, but this ioperand has not yet
ar'rived at the register. Thus the other half of the
reservation station is set to await this operand directly
from the store buffer allocated to the first instruction,
bypassing the register and making the operand avail­
able to the arithmetic unit ail the earliest possible

moment. The result of. the multiplication instruction
is to be placed in the register, which is set to wait for
it. That the register will now ignore the operand from
store is of no significance, for that operand will be
routed directly to the multiplication unit, the only
place where it is required.

The third instruction is an addi tion iru3tructionl

and an addition unit reservation station is ,allocated.
Here too, one of the required operands comes from
store and the other from a register which has not yet
received the required result. In this case the register
awaits a result from the multiplication unit and so
the reservation is set to wait for an operand from a
third store buffer and for the result of the multipli­
,cation. The register now awaits the result of the ad­
dition. The last instruction stores the contents of the
register, causing one of the reservation stHtions for
buffering operands to be stored to wait for the result
for which the register waits, the result of the addition
operation.

Meanwhile the two initial operands being fetched
from store have probably arrived and been recognised
by the multiplication unit reservation station. This
has enabled the multiplication operation to Eltart. 'The
third operand fetched from store will be collected by
the addition unit reservation station which will have
to wait for the end of the multiplication for its other
operand. In due course the result of the addition will
be routed directly to the storage unit reservation
station and also to the floating point register unless,
as is likely, that register is already involved in sub­
sequent operations.

The success of this scheme is entirely dependent on
the registers and reservation stations .beinl~ able to
recognize the operands they require. Tag fields, shown
in Figure 5 attached to each register and reservation
station, are used for this purpose, containing a four
or five bit tag identifying the origin of the required
result or operand. Every operand presented to the
cross bar switch is accompanied by an identification
of its origin and each reservation station compares
this with the origin of the operand for which it waits,
so that the required operand can be recognised and
acquired.

The origin will be one of the floating point registers,
one of the store buffers or an arithmetic unit. For this
purpose the arithmetic unit identification requires
further elaboration since several arithmetic operations
may be pending. Thus the origin defines the partiCUlar
reservation station of the arithmetic unit rather than
just the arithmetic unit.

The tag fields of floating point registers are readily

Design for Fast Computer for Scientific Calculations 205

set, for the register has been explicitly defined as the
destination by an instruction which has already se­
lected a store buffer or a reservation station. Thus the
origin of the required operand is known. The re6ister
may have had its tag field set, indicating that it was
still waiting for the result of some previous instruction.
This tag field may now be overwritten with the new .
identification since that result will be routed directly
to any reservation station needing it and there is no
further need of it in this register.

Similarly if the operand required for a reservation
station is to be obtained from a store buffel' or is already
held by its floating point register, then the identity
of the origin of the operand can readily be inserted into
the tag field of the reservation station.

But in many cases the required operand will not
yet have reached the floating point register. In this
case the identity of the register cannot be placed in
the tag field of the reservation station, for the current
contents of the register are irrelevant and out-of­
sequence instruction execution may cause some sub­
sequent result to have been already placed in the
register before the required operand becomes available.
However the tag field associated with the register
indicates the origin of the operand for which it waits
and which is required by the reservation station. Thus
if the tag field of the reservation station is set to this
value, then the required operand can be acquired by
the reservation station directly it is presented to the
cross bar switch and without ever passing through the
register at all.

Tomasulo's algorithm is very effective and enables
us to discount the time taken to perform floating
point addition and multiplication, within limits. A
machine equipped with a fast store and Tomasulo's
algorithm is potentially capable of instruction rates
approaching one per logic cycle. However the speed
of the machine is reduced by the need to move data
between the fast store and slower stores, conditional
branches, interlocks on indices, and occasional very
slow arithmetic operations such as division. In practice
the machine can execute most programs at about one
instruction per two logic cycles. Using current state
of the art logic elements and high density intercon­
nection techniques, logic cycles of 25 to 35 nanoseconds
can be achieved, yielding an effective machine speed
of 15 to 20 million instructions per second.

Both the associative fast store and Tomasulo's
algorithm are standard well understood techniques and
the machine described above is typical of large scale
general purpose computers currently being developed
for delivery in the next few years. A clear requirement

exists for a small number of very much more powerful
machines. These are required to perform lengthy
repetitive "number crunching" in scientific appli­
cations such as weather forecasting and nuclear physics.
There appears to be almost no limit to the useful
speed of such machines, but the applications need a
performance at least an order of magnitude greater
than can be readily obtained with the techniques
described above.

At first sight the attainment of a major improvement
in performance is difficult to envisage. The fast store
is already the fastest possible storage medium; we
have used the maximum possible amount of logic in
the arithmetic units, obtaining speed by brute force;
the subtlety and complication of the control logic
already approaches the limits beyond which it is no
longer possible to detect and correct design faults
and component failures; while the speeds of the logic
elements and the sheer quantities used are such that
the most important influence on the clock rate is
probably the finite velocity of light.

However, detailed examination of the way in which
the machine actually operated reveals that much of
this potential power is squandered. The fast store,
at least 128 bits wide and possibly 256, is capable of
producing several operands every logic cycle; on
average it is required to produce one operand every
two logic cycles. Behind the fast store is the main
store, a thin film store with a cycle time of perhaps
200 nanoseconds. Though its access time is long, this
store will be well mUltiplexed and is probably capable
of producing operands at the same rate as the fast
store; it is rarely used. The floating point arithmetic
units are capable of executing perhaps three instruc­
tions every logic cycle; they are normally required
to execute one instruction about every three logic
cycles.

All this power is wasted because the control logic
is not able to decode instructions faster than one per
logic cycle. Attempts have been made to design control
logic capable of decoding several separate instructions
simultaneously, but such control units are very large
and hideously complicated, indeed so large and com­
plicated that the speed of the machine may actually
be reduced. The difficulty in the design of such units
is the nominally sequential nature, and therefore the
possible interaction, of the instructions being decoded
in parallel. If these instructions were designed to be
executed in parallel and were thus known not to inter­
act, the problems of the control logic would be greatly
simplified. Even better would be to forego the use of
instructions designed to meet a general purpose se-

206 Fall Joint Computer Conference, 1969

associative
fast store

i.p.u.

r
r

I
I

i
i multiplexed

i
main store

I-

addre~s J ---
data --- ----[5[

f.p.a.u. a.c.u. I.a.u. !

Figure 6-Typical hardware for! a future large scale
computer:

l-
~

quential programming concept,! and to use instead
instructions functionally orient~d around the actual
hardware present in the machine. '

Figure 6 shows the hardware: that might typically
be present in a large scale geperal purpose central
processor of the near future. 1'he machine contains
four main functional subunits: '

an instruction prefetch unit, .
an address calculation unit,
an integer arithmetic unit,
a ~oating point arithmetic u~it.

There are two storage subsystetns, a very fast inte­
grated circuit store, with associ~tive addressing, and
a main store of longer access time but multiplexed to
achieve a similar data rate. Th,e stores are assumed
to be 128 bits wide which, in vil:~w of the simulations
referred to above, is the narrow~st width likely to be
chosen for a conventional machine and is also the
narrowest width for which these proposals are feasible.

The Direct Functional Control scheme provides
instructions to explicitly contro~ this hardware so as
to extract maximum performance for scientific calcu­
lations. This must be achieved with the minimum of
extra hardware, less because of cost than because
substantial extra hardware woul~ be likely to lengthen
the logic cycle and reduce the speed of the machine.
Each of these instructions, which will have to be at
least 128 bits long, provide contrpl over all four major
functional units for one logic cycle and one cycle
only. But during that one cycle the programmer can
control directly the arithmetic 9perations performed
by each unit and the gating on their data buses.

The nature of such instruct~ons is most readily
understood by reference to the floating point unit
which is shown in Figure 7. Comparing this with

,
from
etor.

101,1

r] r T I
r I r -.- I
r 1

L:1
J -.

ii •• IT r +.-] r X 1
store j,

Figure 7-Detail of the floating point arithmetie unit

Figure 4, it can be seen that the hardware is sub­
stantially the same as for a conventional hLrge scale
computer employing Tomasulo's algorithm. Data is
accessed from and returned to the store over double
word highways so as to utilise fully the available width
of the stores, the number of floating point registers
has been increased to eight, and the gating: between
the reservation stations and the arithmetic units has
been changed to enable any data item to he used as
either operand of an arithmetic operation.

Figure 8 shows how the floating point unit is con­
trolled by a part of the 128 bit wide instruction. This
instruction contains fields to control the routing of
data through the cross bar switch, the gatin~~ of oper­
ands between the reservation stations and the .arithmet­
ic units and the arithmetic operations performed.
The in;truction controls all the operations of the
machine during one logic cycle and one cycle only. Thus
when an instruction selects the registers to be gated
into the addition and multiplication units, units which

Figure 8-Control for the floating point arithmetie unit

Design for Fast Computer for Scientific Calculations 207

take several cycles to perform their function, the re­
sults of these operations are of no interest to the
instruction that initiated them. Instead the results
of other addition, multiplication and store access
operations, initiated by previous instructions, will be
presented to the cross bar switch during this logic
cycle. The instruction controls the switch to route
these operands to their destination registers, and any
result not routed to a register is lost.

Because of the very high speed of the design and
because of its emphasis on the processing of large
arrays of data, it is not advantageous to place array
operands in the fast store. The high processing speed
reduces the interval between delays due to accessing
slower stores, and the large arrays force other useful
information out of the fast store without themselves
gaining any benefit. Consequently array operands
must be fetched directly from the main store. Because
of the multiplexing there is no reduction in the availa­
ble data rate, but the long access time of this store
forces the programmer to introduce foresight into his
program, foresight that is readily available for array
processin~ The programmer is also expected to make
use of the 128 bit width of the store to obtain his
operands from the store in pairs.

By not using the fast store for operand access and by
separating its store bus from that to the main store,
it is possible to use this store for instruction fetchs
and it can now produce one instruction 128 bits wide,
every logic cycle. The address of this instruction is
generated by the instruction prefetch unit, and may
sequentially follow the address of the previous in­
struction, pr may be a branch to another part of the
program. A conventional machine would queue in­
structions in the prefetch unit until it was ready to
decode them one at a time. In the proposed design
the instructions, all 128 bits of them, are immediately
decoded and executed without (in most cases) regard
for queuing or interlocks.

. The address generation unit forms the addresses of
the operands needed from main store. The conventional
machine would first search the fast store for these
operands before accessing the main store. Now the
fast store is fully occupied with supplying instructions
and the operand addresses are despatched directly to
the main store. The access time of the main store
must be known to the programmer who must base
his program on the generation of an operand address
this predetermined number of instructions ahead of
his requirement for the operand. He must also make
allowances for the multiplexed nature of the main
store so as to a void clashing.

The integer arithmetic unit is principally required

to increment the indices used for array accesses and
to count round loops.

Control of the integer arithmetic unit) the address
generation unit, and the instruction prefetch unit
requires about 12 bits for each unit, out of the 128
available in the instruction. A 12 bit displacement
field must also be provided for address generation.
Frequently no branch is taken, and· in such cases the
12 bits controlling the instruction pre fetch unit are
redundant. The addition of a single bit to indicate
this enables these 12 bits to be used as a constant by
the integer arithmetic unit or as an extention of the
displacement field to 24 bits. Thus control of the
'integer half' of the machine can be obtained for 49
bits. In practice 16 integer registers may be found
unduly restricting, and increasing the number of
registers to 32 together with the provision of an ad­
ditional loop counting facility, independent of the
integer arithmetic unit, would require another 11 bits
making a total of 60.

Control of the foating point unit consists of two
parts: control of the individual arithmetic units and
control of the cross bar switch. Control of the arithmet­
ic units requires 20 bits to select the registers to be
gated into the arithmetic units and to select the
function for units that can perform several (for in­
stance, addition and subtraction). The cross bar switch
as illustrated contains 110 cross points, too large a
number for direct control to be provided by a 128 bit
instruction. However by restricting operations of
limited usefulness, for instance gating two operands
simultaneously into the same register, and by then
adopting a simple coding system without loss of gener­
ality, it is possible to reduce the number of bits required
to control the cross bar to 48.
, The quantity of extra hardware required to provide
direct functional control over the machine is quite
small. Thus it should be possible to adapt a conven­
tional design to operate in this mode without destroying
its capability as a strict sequential processor using
Tomasulo's algorithm and a fast store.

The principle implementation problem of the design
is that the whole machine appears completely synchro­
nous to the programm~r. This causes difficulty when
the machine has to be stopped, as the whole of a rather
large quantity of logic has to be stopped at the same
moment in time. The need to stop might occur because
of an external interrupt, the absence of an instruction
from the fast store or of a data item from the main
store, interference in the main store due to peripheral
transfers, or because of branching.

For most branching operations there is no need to
stop the machine during the short interval of time

208 Fall Joint Computer Conference, 1969

before the new instructions beco~e available. In many
cases, for instance the end of the row of a matrix, it
is possible to anticipate the br~nch and to continue
to issue a controlled number of; instructions from the
previous instruction stream pending the arrival of the
new instruction stream from the ; fast store. But events
such as the detection of an exceptional case of an oper­
and may necessitate stopping; the processor while
further instructions are fetched, to avoid erroneous
further processing or the destr~ction of the operand.

The ability of the proposed des~gn to issue a complex
instruction every logic cycle and to make intensive
use of the available hardware rlesources, re3ults in a
very powerful computing machihe, a machine that is
particularly attractive because iits hardware cost is
only marginally greater thj1n (or an ordinary large
scale computer. This performarj.ce must be paid for
chiefly in programming difficu~ty. Indeed if direct
fun~tioJ.al control was the only imode of operation of
the machine, it would have to :be abandoned as un­
programmable. However the $achine can still be
programmed with conventiona~ sequential orders in
exactly the same way as any 6ther machine, direct
functional control being used only for inner loops. The
success of the design depends o~ the bulk of the code
of a program being executed comIiaratively infrequently
and on the inner loops in which! the bulk of the pro­
cessing is performed being comparatively small. It is
then possible to make a reasonable decision as to the
extent to which direct functiortal control should be
use::l in any given problem. :

The only other technique curt,ently available which
can yield computers of comparable power is the. pro­
cessor array concept developed ~y D. L. Slotnick and

currently being implemented as ILLIAC IV. The
direct function control scheme proposed here is sub­
stantially cheaper up to the limits of its performance,
can tackle a wider range of problems, and because of
its single instruction stream, single data set Btructure,
is hopefully easier to program. Programming a 11 appli­
cation for the ILLIAC IV requires understanding of
the problem so that it can be reformulated to fit the
processor array, while direct functional control re­
quires only local rearrangement of the code. But
direct functional control can provide only a limited
performance from a single processor, and a processor
array can ultimately achieve a very much greater
processing capability.

REFERENCES

1 M J FLYNN
Very high-speed computing systems
Proc IEEE Vol 54 No 13 Dec 1966

2 C J CONTI D H GIBSON S H PITKOWSKY
Structural aspects of the system/360 model 8lJ geneml
organisation
IBM Systems Journal Vol 7 No 1 1968

3 J S LIPTAY
Structural aspects of the System/360 model 85, the cache
IBM Systems Journal Vol 7 No 1 1968

4 R M TOMASULO
A n efficient algorithm for the automatic exploitation of
multiple execution units
IBM Journal of Research and Development VolU No 1
Jan 1967

5 G H BARNES et al
Th3 llliac I V computer
IEEE Trans on Computers C-17 No 8 Aug 1968

6 D J KUCK
llliac IV software and application programming
IEEE Trans on Computers C-17 No 8 Aug 1968

A display processor design

byR. W. WATSON

Shell Development Company
Emeryville, California

T.H.MYER

Bolt Beranek and Newman, Incorporated
Cambridge, Massachusetts

I. E. SUTHERLAND

Evans and Sutherland Computer Corporation *
Salt Lake City, Utah

and

M. K. VOSBURY

Sanders Associates, Incorporated
Nashua, New Hampshire

INTRODUCTION

This paper describes the results of a collaborative
d~sign effort aimed at development of a general purpose
dIsplay system for the SDS-940 time-shared com­
puter·t The important features of the system evolved
gradually from a number of separate design goals. We
wanted a display system that would:

1. Contain an extensive but straightforward set
of display generating commands.

2. Be able to generate pictures from highly complex
data structures.

3. Allow easy access to display files from user
programs in the main computer:

* Formerly consultant to Bolt, Beranek a.nd Newman, Inc.

t The system to be described was implemented by Sanders
Associates, Inc. for Shell Development Company. An identical
system was originally planned for delivery to Bolt Beranek and
Newman Inc., but BBN's decision to replace their SDS-940 with
a larger machine altered these plans.

209

4. Provide some immediate feedback and inter­
active processing service to the display user,
and be able to call upon the main computer
for more extensive service.

5. Permit attachment of special purpose display
generation and interactive hardware, as well as
multiple di~play consoles.

6. Be capable of time-sharing its central resources
among separate console-users.

These goals and their influence on the system design
provide a framework for the detailed discussion that
follows in the body of this paper. Before proceeding,
however, we would like to give some orientation by
presenting an overview of the system design without
dwelling on our motives.

Figure 1 is a block diagram of the system. As indi­
cated, its main components are a display processor
(including computer interface) that controls the system
and channels digital information among the other
components, a display generator that produces ap-

210 Fan Joint Computer COnference, 1969

Optional Peripheral Equipment

I
I
I

Dfrtc:t M,mory AccI"
Dhplay I

Proces;sor I

I ~d~!~~ !-"";I!.L!IO!....!L;!!.I n~ .. ~-r---'"----,

Ohphy
Glnerltor

BUle Dhplay Syst ••

•
Int,rrupt Unl'

I
I
I
I
I
I
I
I
I SDS-940 COMputor
I
I

Figure 1-System configuration

Figure 2-F rocesso r

propriate analog drive signals,: and a collection of
display consoles and other peripheral devices Note
that the display shares the memory of the central
computer.

The display generator contains high speed vector,
character and beam positioning generators. Display
generators are discussed in references 1, 5, and 8, and
the characteristics of the displ~y generator for this
system are discussed in reference 10. This paper is
primarily concerned with the design of the display
processor, and with certain aspects of the overall
system design.

Figure 2 shows the display processor in more detail.
One can view it as a collection. of registers, each of
which is connected to two main information paths­
the Main Input and Main Output Busses. Other
information paths provide connection to the display
generator, peripheral devices, arid computer interface.

Figures 3a - d describe the command set for the
display processor. All commands are "immediate" in
the sense that each contains its 'operand(s) in what is
usually the address field (referred to in this paper, as
the "operand field"). The Display Commands (Figure

3a) supply information to the display generator via
the X, Y, and character registers. The Address, Data
and l\1iscellaneous Commands (Figures 3b - ad) affect
the contents of the various display processor registers,
and may also cause information to be stored in 940
memory. IVIost of these commands contain separate
fields to specify the operation and the register to be
operated on. Because the various registers serve dis­
tinct functions, the effect of a given command will
vary depending on the register specified. For example,
a Load of' the Program Counter is equivalent to a
conventional jump; a Loading of the I/O register will
have an entirely different effect. The I/O commands
(Figure 3d) transfer digital data and control infor­
mation to and from the peripheral devices, either
directly, or via the I/O register.

As shown in Figure 1, the Display Processor and
Generator, taken together, control and supply infor­
mation to the peripheral devices via the Analog and
Digital I/O Busses. Three paths allow the 940 com­
puter, in turn, to control and inform the Display
Processor. These are a direct connection between the

0 1 2 12 13 23

1'1 ul 6X 6Y I I.ong R.l_II •• V.etew
0 2 3 9 10 16 17 23

10 0 '1 I I C I Ch.rActer

0 2 3 10 17 23

10 1 'lul 6X 6Y lu I 6X I 6Y Iu I t:.X 6Y I Shewt R.I_th,. V.etew
0 2 3 4 13 14 23

10 1 olul x Y I I'biolut. Pooition
0 4 S 6 13 14 23

1
0 0 0 1 o IU I AX I Y I 11.I.tiv. X, Absolut. Y

0 4 5 6 13 14 23

10 0 0 I 'IU I AY X I nel_tive Y, Absolute X

U = Unblank

Figure 3a-Display commands

o 3 4 7 8 9 10 23

~lo=o=:o=o:lo=:o:O=':IO~p=·:I=======:~=t.=======J

o I Push ~t.

I
0 0 No-Op.

Special Add"tlS
Commands

r-0~~3r4~~T78~9~'O~ __ ~~~~ ____ 23
~IO_O~,_O_O~IR_.g~._No_·~I~Op_·I~ _____ A~ __ "s_~_--______ ~

I
00 Load

Pr m Count" 0 0 1 0 0 1 Load/Puoh
Stock PoInte, 0 0 1 I 1 0 Add

1 ,. Push

Figure 3b-Address commands

o 3<4 7 8 11 12 23

I 0 0 0 0 I Reg. No. lop, I Number/Parameters/Mask

U
1 0 0 0 0 0 0 Load
1 0 1 0 1 0 0 Load/Push

Spare 1 1 0 1 0 0 0 Add
1 1 1 1 1 0 0 Push

X Register 0 0 0 0 0 0 1 Clear Masked Bits

Y Register 0 0 1 0 1 0 Toggle

Display Parameters 0 1 0 1 0 0 And

System Para.meters 0 1 1 1 1 0 Set

0 0 0 0 1 0 Skip on Any 0

Spare 0 1 0 1 I 0 Skip on Any 1
1 0 1 0 1 0 { ~ Ski p on Any 1 and Clear W

Input/Output 1 1 1 1 1 1 0 Three Way Skip per RN vs Numberl

I RN< No., Don't,Skip

RN = No., Skip One

RN> No., Skip Two

0
1
0
1

1

1
1

Spare
1
1

F'igure 3c-Data commands

o 3 .. 7 8 11 12

I 0 0 0 0 I 0 0 0 0 lop. I Data

Halt 0 0 0 0

Pop 0 0 0
1 0 0 12 15 16

Pop, But Skip if Jump
1 1 0 0 RN I OP2 Genera I Register

0 0 0 1 RN Register Exchange

{ : 0 1

Spare 0 1
1 0 1

12 16 17

1920

I RQ

RQ

W

Data Out (From R 15) 0 0 1 0

I ,R~gister Number
Data In (To R,sl 0 1 0 Device
Direct Output 1 0 0 or Command

Test and Skip 1 1 0

{1
0
1

Spare 0
1

Figure 3d-Miscellaneous and 1/0 commands

23

23

J

J

23

I

Display Processor and 940 Core Memory, and two
connections, the I/O and interrupt lines, between the
Display and the 940 Processor.

Display commands

One of our goals was to design a rich but "clean"
series of display commands. In particular, we wanted
to avoid a difficulty we encountered in several other
display systems-the fact that word length restrictions
force reliance on two word instructions or on dual
operating modes in which the machine will treat all
words either as display data or instructions, depending
on its mode. The 24 bit word length of the 940 pro­
vided enough space (just barely) to allow all instructions

A Display Processor Design 211

to carry OPCODE and X-Y or character data in a
single word.

Figure 3-a shows the six Display Commands. The
display generator 'can produce lines and characters.
Lines are drawn in 2 + 3L microseconds, where L is
the length of the line in inches. The beam can be
randomly positioned anywhere on the screen in 7
microseconds maximum. Characters are drawn in from
4 to 12 microseconds, depending on size and number of
strokes required. One command plots three characters
in "typewriter" format *; the remaining commands
specify the endpoints of displayed lines. * * The end ~
point of a line can be specified, in two's complement,
as an absolute location on the 1024 by 1024 coordi­
nate grid of the display screen or as a relative displace­
ment from the current beam location. One pair of
commands allows endpoints to be specified in relative
or absolute terms. Another pair allows mixed specifi­
cations-one coordinate absolute, the other relative.
The remaining command allows three endpoints to be
specified as short, relative displacements. Each X or
Y component of a short displacement specification
(Figure 3a) is represented, in two's complement, by
one sign bit and two magnitude bits. The two magnitude
bits are treated by the hardware as the two high order
bits of a three bit magnitude representation. The low
order bit is assumed to be O. This allows displacements
of about 0.1 inch in X and Y to be specified. Each
line specification carries an unblank bit CU). If set,
the line will appear, otherwise it will produce an in­
visible beam movement.

The appearance of displayed elements is controlled
by the three fields of the display parameter registe
(RIO), (Figure 4). Eight intensity levels and four
character sizes are available. A line can be drawn solid,
in a variety of dotted and dashed formats, or as a single
dot at its terminal point (point plotting). To allow
independent control of the three parameters, a masking
mechanism is included. t To change parameters one
uses a Load Command (Figure 3c) with bits 12-14
specifying which parameters are to be affected.

* A null code can be placed in the unused character position when
it is desired to plot one or two characters. In addition, the ch9.l·ac­
ter generator has an unusually rich complement of control char­
acters, including space and half space up, down, backwards, and,
forwards. Full details are covered in reference 10.

** The strting point for a. line or group of characters is the,
current beam position. The X and Y registers always contain this
"alue; their contents are appropriately updated as each Display
Command is executed.

t A similar scheme was used in the Digital Equipment Corpora­
tion (DEC) 340 and 338.

212 Fall Joint Computer Conference, 1969

12 14 15 17 18 2021 23

Intensity Char. Size

Figure 4-0perand field tor displruy parameter command

The pushdown stack

One of our key goals was to achieve a displu,y system
that would allow us to represent pictures by means of
complex data structures. Behind this goal was a desire
to eliminate or minimize the separation that is neces­
sary in many systems between a "master represen­
tation" and a "display file". Looking at this rather
general goal in more detail, we ,wanted the ability to:

1. Execute nested picture subroutines to arbitrary
depth.

2. Create "transparent" subroutines-save and
restore selected display registers such as the X
and Y beam position and display parameters
on entering and leaving a subroutine.

3. Pass parameters to subroutines.
4. Easily identify objects selected by light pen

or stylus in terms of the picture structure.
5. Perform certain forms of general list processing.

Nested subroutines can be handled by a variety of
subroutine mechanisms. The need for easy light pen
selection led us to use a pushdown stack. When pro­
cessing a light pen or stylus "hit" one must trace one's
path back through the subroutine hierarchy in order to
relate the object selected to the drawing structure.
Without a pushdown stack this requires search through
the subroutine structure. With a stack system, however,
the required trace is maintained compactly and auto­
matically by the return addresses stored in the stack.

The use of a pushdown stack ~s not in itself new with
this design. The DEC 338 displ~y, for example, made
very successful use of a stack system. What is unique
in this display is the way in whidh the stack was imple­
mented. The need to save anp' restore information
other than return addresses meant that it had to be
possible to push any register into the stack. In order
to get the information back into the right register,
data in the stack had to be marked in some way. After
considering several marking schemes, we hit on the
idea of placing instructions rather than data in the
stack. When a display register is "pushed" into the
stack, what actually appears in memory is an in­
struction to reload the register in question with its
original contents.

The notion of putting instructions in the stack, of

course, changes one's conception of the whole stack
mechanism. Tqe POP instruction (counterpart to
PUSH), for example, becomes a special variety of
"execute", and the stack pointer a kind of auxiliary
program counter. In recognition of this, we reversed
the direction in which stacks usually build. As infor­
mation is pushed into the stack, the stack pointer is
decremented. This means that instructions in the stack
are "popped" (executed) in the usual low-to-high
address order.

Treating the stack pointer as an auxiliary program
counter suggested that we make it accessible, as is
the program counter, to certain processor instructions.
By doing so, we freed the stack from a fixed location
in core. Because one can load the stack pointer, one is
free to start the stack where one pleases. lv1oreover,
as ,ve shall see below, one can even achieve a stiack
that occupies disjoint areas of memory by saving the
old stack pointer at the beginning of each new section
of stack.

With this background, we can now look at some
details of the stack system. The Pu~h, Load/Push,
and Push Data commands (Figures 3b and 3c) place
information in the stack, Pop and Pop but Skip if
Jump (Figure 3d) get it back out. As mentioned above,
the Push commands assemble instructions in memory;
the Pop commands execute these instructions. The
Push operation may seem complex, but is in fact quite
simple. To see this, let us examine a Push command
in detail.

1. Assume "push the X Register" has been fetched
into the Instruction Register (R1).

2. The register field (bits 4-7) of R1 selects the
X register (R8). The contents of R8 are copied
to bits 12-23 of Rl.

3. Bits 8 and 9 of R1 are cleared to 0. The re­
mainder of R1 is left unchanged.

4. IU is copied back into the memory at the
location selected by the Stack Pointer (R3).

5. The Stack Pointer is decremented.
6. The net result in memory is a "Load the X

Register" command * with the current X value
in its operand field.

The main use for Push is to save register contents
for later restoration at the end of a subroutine. As
indicated in Figures 3a and 3b, Push can be brought

. to bear on any register accessible to the pro!?;rammer.
Because the stack is marked, a single instruction re­
stores the information regardless of where it came
from.

* A variant of Push will place an Add Command in the stac:k.

In dealing with display structures, it is convenient
to supply names or tags for the objects being presented.
These may, for example, be pointers to other areas of
memory that describe non-graphic properties of the
objects. The No-Op command (Figure 3b) allows
names to be included in a display file. It causes no
action, but its operand field may cont,ain tag infor­
mation. Push Data allows names to be pushed into
the stack, a further convenience when tracing back
through a subroutine hierarchy. This command writes
its own operand field into the stack in the form of
aN o-Op command.

The third Push variant-Load/Push-exchanges its
operand field with the selected register before writing
the original register contents into the stack. Load/Push
the Program Counter provides a standard subroutine
call. The current program location is stored in the
stack (as a Jump instruction) while the Program
Counter is simultaneously reset to the subroutine
entry point specified by the Load/Push command.
Load/Push can be used in a similar way to save and
simultaneously reset any other register.

Load/Push the Stack Pointer deserves special at­
tention. Because the Stack Pointer is loaded with the
new value before its original contents are pushed, the
old value will be pushed into the new stack Thus,
the first word put into the new stack is a pointer that
links it to the old stack. It is this feature that allows
one to create disjoint stacks; the saved stack pointers
provide an automatic address chain back to the original
stack. We have chosen to call these stored links "Stack
Jumps."

Pop, the counterpart to Push, causes the display
processor to execute instructions in the stack. When
the processor encounters a Pop, it increments the
Stack pointer, fetches the instruction selected by the
new pointer value, executes that instruction, and then
returns to normal instruction execution under control
of the Program Counter. Typically, the instructions
executed by Pop will be Load or N o-Op commands
created by one of the Push instructions. However,
any instruction can be executed through Pop.

With the Pop instruction in hand, we can now ex­
amine a typical subroutine linkage. Having entered
the subroutine through a Load/Push Program Counter,
one can use Push or Load/Push commands to save
any other registers. The net result is a series of Load
Commands in the stack with a Load Program Counter
occupying the last (highest numbered) address. Two
commands: Pop followed by a Jump to the previous
instruction will restore the saved registers and provide
a subroutine return. The processor loops on these two
commands, reloading the saved registers, until the

A Display Processor Design 213

stored Load Program Counter removes it from the
loop and returns control to the main program.

The Pop but Skip on Jump command allows one
to restore saved registers without returning from a
subroutine. This command behaves exactly like Pop
except upon encountering a Load 'Program Counter
in the stack. In this event the stacked instruction is
ignored, the Stack Pointer decremented and the
Program Counter incremented an extra time. The net
result is that the processor breaks out of a loop such
as the one suggested above, just before executing the
return Jump.

The above discussion has suggested some conven­
tional uses for the stack instructions. However, such
features as the ability to manipulate the Stack Pointer
in various ways permits the user to devise more so­
phisticated uses for the stack mechanism. We have
made heavy use of this flexibility in the software
support package. One example application is the han­
dling of rubber band lines and other simple constraints
within the display processor. We accomplish these
functions by performing list processing in the display
file using the stack feature.n

Experience in working with the system has shown
that the heavy use of multiple stacks could be more
efficient if another stack pointer were available or if
a 14 bit address length general purpose register were
available for temporary storage of the Stack Pointer.
The Shell system is being modified to add two such
14 bit general registers. The ability to execute in­
structions in the stack has given generality and power
to the display processor at modest cost.

M emory sharing

A consequence of our desire to achieve close coupling
between pictorial and other information was the need
to allow easy access to display files from programs in
the 940. As well as permitting advanced graphics
applications, we felt that close access would simplify
the general software support for the display.

To realize this goal we attached the display pro­
cessor directly to the core memory of the central
computer rather than relying on a separate buffer
memory. * The display processor addresses the 1.75
microsecond 940 memory through its program counter
and stack pointer. In operation, the display processor
refreshes the display consoles by executing display
commands stored in 940 memory and passing the data
they contain to the display generator.

Given this close interconnection between display

* This connection utilizes the 940'8 second memory port.4

214 Fall Joint CO!llPy.ter Conference, 1969

and main computer, considerable care was necessary
to ensure a display system that could operate effectively
without degrading or endangering the supporting time­
shared computer system. One: potential danger­
competition between display and central processors
for memory access-was reduced to an -acceptable
level by use of dual access. priorities on the second
path to memory.**4

A second and more serious danger-inadvertent
alteration of 940 memory by a display program-was
eliminated by including memory mapping and pro­
tection hardware in the display processor. This
equipment is identical in function to equivalent hard­
ware in the 940.4 By means of this mapping, the 16K
word "virtual" memory that can be accessed by the
display (and 940) instru(~tions is mapped into 2K
word physical pages that may be scattered through
the 64K words of 940 core memory. At anyone time
only a few of these pages may be assigned to the
display, and those pages that ~re assigned may be
made accessible for reading only or for reading and
writing.

Registers in the mapping hardware indicate, for
each of the eight pages that the display might address,
whether or not a physical page is assigned, and if
assigned its status (read only or read/write). Only
the 940 monitor can change the : contents of the map
registers. As shown in Figure 5, memory addresses
transmitted by the display processor, are processed
through the mapping hardware :before accessing 940
memory. Any attempt to address an unassigned page
or to write into a read-only page stops the display
processor and sends an interrupt signal to the 940.

One consequence of mapping is that undebugged
display programs are of no danger to the system or
to other users. Mapping has the additional benefit
of allowing users and system software designers to
treat display programs in exact1y the same way as
940 user programs. In fact, beqause mapping for a
user's 940 program can be made identical to the map­
ping for his display file, the two: can share the same

"The 940 CPU accesses memory through the first path to mem­
ory. The display accesses memory through a second path. Devices
on the second path can request access with either higher or lower
priority than the first path. The display processor overlaps the
drawing of a vector or character with the fetch of the next com­
mand. Memory accesses at this time are with low priority.
When the display opera lion is completed, access is made with
high priority, if not prev!ously succes$ful. Non-overlapped ac­
cesses are made with high priority. Using the above mechanism,
reasonable assumptions on command mix and the fact that the
940 memory has 4 independent interleaved modules, it has been
estimated that the 940 CPU will be blocked from immediate
memory access less than 2 percent of the time.10

O.ut.!:::PUt~Bu=-S(~24)~ __________ --.t ____ Me"ory Output (:14)

P.rityError (1) Error I --'---------;.-----'-''-1 Parity T .. t

Input Bus (24)
~ --.I--__ : Me"ory Input (24)

\--______ Me"oryAddr ... (16)

'---__ -,....-------Comput.r Output (24)

T;.,..out (I)

-'--'-~----'------t I-_____ Int."upt Int.rruptAfert ~
Ge.I,.

L-------------_Compu ... lnput (24)

_________ -\ EOWPOT/PiN ..,.----EO/MPOT/PIN Control I I
• Control ~

Figure 5-Interface structure

address space and thus, be merged in any way the
user pleases. Thus, the user can, if he wishes, create a
common data structure that represents pictorial and
other properties of the objects to be viewed .. In 3,d­
dition, he can achieve an unprecedented richness of
interaction between operations performed at a display
console and the underlying processing in the main
computer.

Processing tasks-Display vs. 940

The issue of how much power to include in the display
processor is a complicated one. This issue is discussed
more fully in an earlier paper that was inspired by the
difficulties we encountered on his project. W-e chose
to include enough computing power to handle the
immediate response to interactive events such as
light pen "hits" or the depression of push]buttons.
Less than this would yield sluggish interaction; tasks
requiring more power could, we felt, be rele~~ated to
the 940 processor.

With these ideas in mind, we equipped the display
processor w:th a set of commands aimed specifically
at interactive situations. As shown in Figure gc, these
include bit manipulating and skip commands and :~n
arithmetic compare operation. The bit manipulating
and skip instructions include Clear, Toggle (Comple­
ment), And, Set, Skip on 0, Skip on 1, Skip on 1 and
Clear, all handled under the mask in the operand field
of the instruction. These commands are used to test
or change status, control interrupt masking and so
forth. There is also a three way arithmetic compare of
a selected register with the operand giving a skip of
0, 1, or 2, depending on the result. This command
allows one to branch on the X or Y location of the
display beam or of a coordinate input device. Taken
together with the Add, Register Exchange and General

Register Commands; t and the stack mechanism, these
interactive commands have allowed us to do such
things as handle light buttons, produce point rasters,
and perform the work involved in light pen tracking,
all without intervention from the 940. Control of the
dIsplay prOCp.RRor is implemented with microcoding and
a read-only menory. The time required per microstep
is 400 nanoseconds. Command fetch, decoding, and
program counter update require 6 microsteps plus a
memory read time. The number of micro steps required
per command execution is variable, Load requires 1,
Push 3 and Pop 9, for example. The Pop and General
Register Commands have the longest execution time.
The read-only memory can be easily modified or in­
expensively replaced. This feature will be used to
modify or add commands thought to be useful from
the software experience.ll

In spite of its power, the display processor must
call on the 940 for assistance in tasks beyond its capa­
bilities. In addition, the 940 must, of course, have
ultimate co~trol over the display. We satisfied both
needs by connecting the display processor to the I/O
and interrupt systems of the 940. Through these con­
nections the display processor can transmit service
requests to the 940. The 940 processor can in turn
interrogate and set the registers of the display. To­
gether with the shared memory mechanism, these two
connections yield a closeness of coupling that con­
tributes importantly to the ability of the two machines
to share their processing resources.

Through its I/O lines the 940 processor can directly
access all registers of the display. Any display register
can be brought into the 940 processor by a 940 Parallel
Input (PIN) instruction. Conversely, the 940 processor
can set any display register through a Parallel Output
(POT) instruction. This feature aids the 940 in ini­
tializing the display and in processing interrupt
requests. If the 940 sets the display's Instruction
Register (through a POT instruction), the display will
treat the information as a command, exe~ute it, and
then halt. Unless directly altered by a command
executed in this way, the display's Program Counter
is not changed. The net result is that the 940 can, in
effect, "execute" any display instruction. As well as
access to the display registers, the direct I/O con-

tThough not directed at any particular interacti ve function, our
implementation of the processor design allowed us' to include
these commands at little cost. They have proven more than worth
the price. The Add (Figures 3b, 3c) and Register Exchange
(Figure 3d) generates a new processor instruction in which OP2
operates on RN using the contents of R Q as operand. This allows
one. for example, to add or compare two rep,isters.

A Display Processor Design 215

nection allows the 940 to stop and start the display
set the display's memory map and the "device map"
described in the next section.

The interrupt system gives the display a means for
requesting help from the 940. Some events in the
display (irrecoverable errors, for example) can only be
dealt with by the 940. Either .the 940 or the display
processor can cope with other situations (light pen
hits, scope edge violations). In recognition of this, we
grouped all interrupt as well as other control and status
information into one register-the System Parameter
Register (Rll), shown in detail in Table I. The bottom
twelve bits of this register are accessible both to the
bit manipulation commands of the display and, via
the POT/PIN instructions, to the 940. The top seven
bits are accessible only to the POT/PIN instructions
because only the 940 can deal with the information
they contain.

TABLE I-System parameter register*

Bit Function

(Bits Accessible to 940 Only)

5 {Thes~ ~wo bits assist the 940 in interpreting
6 certaIn Interrupt events.
7 Parity Error Flag.
8 Memory Map Violation Flag.
9 Time-Out Flag (the display has a built-in down­

counting c]ock).
10 Halt Mask.
11 Halt Flag.

(Bits Accessible to 940 or Display)

12 Unused.
13 X Edge Overflow Flag.
14 Y Edge Overflow Flag.
15 Edge Overflow Mask.
16 Synchronous Hit Flag (e.g., light pen).
17 Synchronous Hit Mask.
18 Asynchronous Hit Flag (e.g., pushbutton or

keyboard).
19 Asynchronous Hit Mask.
20 Blink (toggles continuously at blink rate).
21 Blink Control.
22 Slow Mode Control (for storage tube consoles).
23 Master U nblank (if 0 unconditionally blanks the

display).

* Nineteen of the possible 24 bits in this register were
implemented.

216 Fall Joint Computer Conference, 1969

The lower bits in RII handle several kinds of events,
for each of which there is a flag :bit and a mask bit.
The flag bit is set whenever the event occurs; the
setting of the mask bit determin~s whether or not an
interrupt signal is sent to the 94p. This arrangement
allows the programmer to cope wi~h events through the
bit oriented instructions of the ~isplay processor, or
ignoring them in his display program, to pass them on
as interrupt signals to the 940. Ih addition, a display
program can request service from the 940 by executing
a Halt and Interrupt instruction (Figure 3d).

Because the 940 must assist the display processor
in certain situations, it was necessary to allow display
users to write real-time 940 programs. The problem
of preventing real-time program~ from degrading the
time sharing performance of the, 940 was handled by
setting limits on a display user's CPU usage during
each refresh cycle of the display.

Consoles and other I/O devices

So far, we have considered the display processor
and its relationship to the paren~ computer. We were
also concerned with display co~soles and other pe­
ripheral devices, and their relationship, in turn, to the
display processor and generator. Our main goal in this
area was flexibility. We wanted ithe ability to attach
a variety of display consoles, differing in some cases
in their equipment complements,: as well as other non­
display devices including graph~c input tablets, and
specialized analog equipment, s~ch as circle or raster
generators. We met this need 'by dissociating from
the display processor design any consideration of
individual consoles or other devices. Instead, we elected
to treat these as I/O devices, and to handle their
control and the transmission of information to and
from them by means of a very g~neral I/O bus system.

The digital portion of this bu~ system is similar in
nature to the bussing schemes used on several general
purpose computers. -Devices ar~ selected by an ad­
dress field in the I/O instructions; all devices are
treated homogeneously as collections of registers; and
a given register may contain control or status in­
formation, input or output data,: or a mixture of these.

Figure 3d shows the Input/O~tput commands. Two
of these permit the user to trahsmit information be­
tween the I/O register (RI5) and the registers of
external devices. Incoming da~a and status infor­
mation can then be examined by the Display Processor,
through the test and skip instructions described in the
last section, or dealt with by, the 940 through the
POT/PIN commands. The rem~ining two commands
permit somewhat faster direct output of key commands

and direct testing of key device status bits. As men­
tioned in the last section, another component in the
digital I/O bus system is the channeling, through OR
gates, of synchronous and asynchronous events in the
peripheral devices into the HI and H2 bits of the Sys­
tem Parameter Register.

Corresponding to this treatment of digital infor­
mation, the transmission of analog signals within the
system was also handled through a bussing scheme,
which allows input of analog signals to summing points
within the display generator as well as output of dis­
play drive signals. * Because of this treatment of pe­
ripheral devices, one can view the display processor
and generator taken together as a specialized hybrid
computer whose main job is to handle a series of I/O
devices through a combined analog/digital bus system.

Just as the 940 processor is time-shared, we wanted
the ability to time-share the display processor and
generator among a number of user consoles without
danger of interference between them. This was
achieved by giving the 940 processor the ability to
control and thus schedule, usage of the display pro­
cessor, and by allowing for device protection hardware
in the display's I/O bus design. This hardware utilizes
a mapping scheme similar to the memory mapping
and protection hardware in the 940 and has the ad­
ditional advantage of allowing a user to refer to pe­
ripheral devices through "virtual" addresses that can
remain constant even though he may be assigned a
different console at different times.

CONCLUSION

The stack mechanism in this design is the most sig­
nificant departure from previous machine design
practice. The features of a marked stack, and the
ability to create disjoint stacks (through the "stack­
jump" linkage) are both easy to implement and useful.
As is by now wen known, the stack feature in a. display
processor is essential for orderly treatment of "hits"
detected by the light pen or other stylus devices.

Close coupling between display information and ~)40
programs has been achieved by the mechanism of
shared memory. Other general purpose display systems
seem to be relying more and more on small local com­
puters for interactive service and to shield the main
computer from the display. By contrast, we deliberately
set out to achieve a rich interaction between display
and parent computer, and the extremely close coupling

* Whether a device generates or responds to analog signals de­
pends upon bit settings in its control register.

of the two machines reflects this goal. Our experience
so far indicates that this coupling can be achieved
without serious degradation of the 940 time-sharing
system.

Until now most displays have been treated strictly
as I/O equipment. As displays have grown in com­
plexity over the years, however, we have come to
recognize that display processors have many of the
attributes of general purpose computers. In recog­
nition of this, we deliberately approached the design
problem with a processor-oriented rather than I/O
device-oriented approach. This thinking is reflected
in the display's extensive instruction set, in the use
of memory and device mapping, in the uniform treat­
ment of consoles as peripheral devices, and finally, in
the microcoding and uniform bussing scheme that
dominate the display processor design.

ACKNOWLEDGMENT

The authors would like to acknowledge the contri­
butions of their co-workers at Shell Development,
Bolt Beranek and Newman, and Sanders Associates,
during the various design and implementation phases
of this project. The Bolt Beranek and Newman effort
was supported by the Advanced Research Projects
Agency of the Defense Department under contract
F 19628-68-C-0125.

REFERENCES

1 L C HOBBS

A Display Processor Design 217

Display applicfllion and technology
Proc IEEE 59 12 1870-1884 1966

2 N A BALL H Q FOSTER W H LONG
I E SUTHERLAND R L WIGINGTON
A shared memory computer display system
IEEE Trans on Electronic Computers EC-15 5 750-756
1966

3 K H. KONKLE
An analog comparator as a pseudo-light pen for computer
displays
IEEE Trans on Computers C-17 1 54-55 1968

4 W W LICHTENBERGER M W PIRTLE
A facility for experimentation in man-machine interaction
AFIPS Proc 27 589-598 1965

5 C MACHOVER
Graphic CRT terminals-characteristics of commercially
avaUable equipment
AFIPS Prot 31 149-160 1967

6 T H MYER I E SUTHERLAND
On the design of display processors
Com ACM 11 6410-414 1968

7 M W PIRTLE
Intercommunication of processors and memory
AFIPS Proc 31 621-634 1967

8 H H POOLE
Fundamentals of display systems
Spartan Books Washington D C 1966

9 C SgITZ G F PFISTER
A display processor for a small computer
AFIPS Proc This issue 1969

10 R W WATSON
The design of a general purpose graphic terminal jor a time­
sharing system
Shell Development Co TechnIcal Progress Report 138-68
July 1968

11 R W WATSON et al
Paper in preparation describing the design philosophy of
the software for use with the display system reported here.

The system logic and usage recorder

by R. W. MURPHY

Inf.ernation:al Busine88 M achine8 Corporation
Poughkeepsie, New York

INTRODuc'rION

A fundamental problem in monitoring 'the performance
of a system with a hardware device, is too much data.
Inside the System/360 Model 40, for example, seven­
teen address bits and sixteen data bits may be processed
every 2.5 microseconds; this rate is equivalent in
bulk to about three novels per second but not generally
equivalent in interest or information. The design ob­
jective for any hardware monitor, therefore, is to
reduce the data it sees as soon as possible.

The associative memory (AM) is an excellent means
for not recording data beyond significance. The memory
can be instructed to record data only if they are new;
if the data have already been seen and stored, no more
space need be squandered upon them. This philosophy
of monitoring and measurement has been expanded
into the System Logic and Usage Recorder, an experi­
mental device under test in IBM Poughkeepsie's
SDn Advanced Technology group.

In the Recorder, the basic associative processes of
interrogation and storage are extended, by means of a
system of data routing and field control, into a capa­
bility for performing advanced data reduction and
data processing algorithms. The algorithms are pro­
grammed and retained in a control storage where they
may be added to or modified by the user.

Data to be analyzed in the Recorder are collected
at the host computer through a special moirltor inter­
face which detects and transmits such signals as in­
struction and data addresses, operation codes, and the
statuses of channels and internal computer conditions.
The monitor interface, which consists of 48 lines, is
one-way, and does not affect the operation of the host

computer. In addition to the monitor interface, there
is a standard input/output interface which is used to
pre-load the associative memory when this is required
by an algorithm, and over. which the collected and
reduced data are transmitted as the Recorder's output.

In this p..A.per, some simple data-gathering procedures
are discussed first in order to introduce the design
concepts of the Recorder. This is followed by de­
scriptions of the organization and programming of the
system, and finally some specific data reduction algo­
rithms are given.

-Simple data ga~'ng and basic operation

A question asked in performance measurement is,
"How much time is spent in executing programs out of
various areas of storage?" To determine these times, a
counter must be assigned to each of the active areas;
when an instruction is fetched from an area, clock
pulses begin incrementing the corresponding counter,·
and continue until an instruction is brought from some
different area.

In the Recorder, the counters are assigned to storage
areas automatically, through associative memory. Ini­
tially the memory is blank and the counters stand at
zero; but when the first instruction address is received
in the Recorder from the computer being monitored, it
is stored in an associative memory word cell as shown
in Figure 1.

This word cell then becomes responsible for monitor­
ing the storage area 00100 through OOlFF, which the
word cell does by comparing its contents with each
new instruction address brought into the AM input
register. As long as there is equality in the high-order

219

220 Fall Joint Computer Conference, 1969

----~--
COMPUTER'S
STORAGE
ADDR.
REGISTER
MONITOR
INTERFACE

AM INPUT
REGISTER
MASK REG

AM WORD
CELLS

001281
INSTRUCTION
SIGNAL

If

00128

11100000 MATCH
INDICtTION

COUNTER
001 ~ X f---- 0001

~

Figure I-Assignment of counter to initial execution
area

S

bits of the address (the low-order bits are ignored by
means of a mask), a match will be indicated, and the
match indicator for that cell will continue the selection
of the corresponding counter, allowing it to accumulate
time intervals.

This process of interrogation, is repeated until an
inequality between the value stored in the cell and an
instruction address produced a, mismatch, signalling
that program execution has moved to a different area
of monitored storage. The mismatch will deselect the
counter, and will cause the controlling program to
branch into a write cycle in order to record a new
active area as shown in Figure 2.

The process diagrammed in the figure will assign
counters as they are needed, and record their assign­
ment in the associative word cells. Since interrogation
of the associative memory is a single operation, it does
not matter how many of the cells contain meaningful
data, and the fineness of the measurements can be

AM INPUT
REGISTER
MASK

AM WORD
CELLS AFTER
INTERROGATION

AM WORD
CELLS AFTER
WRITING

Figure 2-Assignment of next counter to next
execution area

COUNTERS

0123

MONITOR
INTERFACE

INPUT REG.
MASK REG.

AM WORD
CELLS

COUNITERS

00123
011526
001654
001567

Figure 3-Correlation of executed area. with
channel activity

adjusted by means of masking to take advantage of
the available memory space. If execution in the host
computer should revert to an area already identified
by the Recorder, such as 001 in the example, 1~he
original cell's contents will again match the address
and reactivate the counter for additional accumulations.

The two-branched monitoring procedure iEI a ba.sic
one and can be made to yield many kinds of inf'or­
ma~ion. For example, if channel activity is also moni­
tored and presented at the interface as a field of bits,
this field can be juxtaposed with the instruction B.d­
dress field as in Figure 3.

With this process, which has the same flow chart, as
in Figure 2, a correlation will be made autom.aticnlly
between storage usage and channel activity. It is" of
course immaterial what kind of data is being; brought
to the' interface; the user can perform the correlat.ion
on any combinations of events which are represented
by digital signals brought over the monitor interfnc?

Another form of correlation is of interest because It
yields information about the sequence of even.ts taking
place in the monitored system. This procedure c~nsists
of relating each event to its predecessor by formIng: an
ordered pair at the AM input register as in Figure 4.

Two kinds of events are recorded in t.his. prOC1e8s:
the occupancy of a particular area, and the transition
from one area to another. The procedure is essentially
the same as that given by the flow chart of Figure 2,
except that an additional data routing is pro~~amn~.
Each address is first placed into the left-hand fileld
(the current field) and the interrogation .is p'~rforn:~ed.
Following the action consequent on the lntel'rogat~on,
the address is then put into the right-hand field (the
previous field) and is retained there until the next ad­
dress arrives and the cycle is repeated.

This procedure develops a graph of the systE~m's

COMPUTER'S
STORAGE AOOR. '--'T"F-'-'

REGISTER

INPUT REG.
MASK REG.

AM WORD
CELLS 001 004

004 004
004 001

MATCH
INDICATION

COUNTERS
00123
00008
00678
00007

Figure 4-Recording occupancy and transitions
of execution areas

operation in associative memory, and could be used to
study the operation of paging algorithms. If the full
instruction address were applied to the memory by
modifying the mask, all the linkages of a program
would be recorded and could be used to draw the
program's block diagram as it was actually executed.
The application would be very wasteful of space, how­
ever, and impractical except for very small programs.
There is a more complex procedure, to be discussed
later, which eliminates much of the redundant infor­
mation and makes block diagramming feasible with
associative memories that will be available in the near
future.

Emphasis so far has been placed upon the associative
operations and what might be called the logic recording
capability. The usage recording functions take place
in the counters, which are actually cells in a supple­
mentary storage addressed by the associative memory
as a result of interrogation operations. These cells may
be set up in various ways to record counts, times, or
the presence of computer conditions, according to the
measurements required.

General design concepts

The examples of data gathering just discussed show
that a variety of performance measurements can be
made, simply by changing the nature and the position­
ing of data applied to the associative memory. This
variety is enhanced greatly by means of a stored
program control system which gives the user full con­
trol over the functions available in the Recorder. In
general, each step of a data reduction procedure will
specify the following elements:

Routing. The source, length, and terminus of a
field of data to be processed.

System Logic and Usage Recorder 221'

M'asking. The suppression of part or all of a field
at a particular step in the procedure.

Operation. Interrogate, store, or read for associ­
ative memory.

Branching. Choice of the next step, based upon
results of previous steps.

The specification of these elements applies pri­
marily to associative memory as it processes the data
received from the monitor interface, and is incorporated
in the AM format instruction:

Routing 2 Mask

The operation code for the AM format instruction
will specify one of the following:

INTERROGATE-compare contents of input
register with all stored words and turn on
match indicators for cells with equal contents.

INTERROGATE NEXT-same as above, except
that the match indicator for the next cell is
turned on.

WRITE-store the contents of the input register
into all cells whose match indicators are on.

WRITE NEW-store the contents of the input
register in the first vacant word cell.

WRITE ONE-store the contents of the input
register in the first cell whose match iUdi­
catoris on.

WRITE ALL-store the contents of the input
register in all cells regardless of the match
indicators.

R:EAD-put the contents of the first cell whose
match indicator is on into the output re~i3ter.

Two fields of data may be moved simultaneously by
means of the two routing specifications. These fields
may be one, two, or three bytes in length, or, alterna­
tively, a literal constant of one byte may be substituted
for one of the routing specifications. The routing of
data will be discussed in more detail in the section on
Data Paths and Routing Control in conjunction with
the data paths of the Recorder.

In general, the fields of data processed are of variable

222 Fall Joint Computer Conference, 1969

--
length, on a byte basis. The associative memory is
eight bytes in width, and its masking is also generally
controlled on a byte basis. However, many algorithms
require status bits which must be masked or unmasked
by bit. The mask specification in the instruction, there­
fore, consists of fifteen bits, of which the first seven
apply to the first seven bytes of the associative memory,
and the remaining eight to the individual bits of the
eighth byte. In addition, it is also possible to apply a
literal mask to any byte by placing it in a routing
specification along with an identifying code. This literal
mask has precedence over the normal mask, and re­
mains until removed by another literal. This mask is
not normally used in data reduction, but is necessary
for such algorithms as simultaneous addition into
associative memory or ordered retrieval from it.

The next two instruction specifications of each in­
struction provide conditional branching to the program,
based upon the collective condition of the match indi­
cators. The choice of the next instruction depends on
the following:

INTERROGATE -if single or multiple
match Instr. 1
if no match

WRITE or READ -if one or more
MI's are on
if no MI's are on

Data paths and routing control

Instr.2

Instr. 1
Instr.2

Figure 5 is a schematic diagram of the data registers
and paths of the system. Each line represents a path
for one byte of data, and a dot where two lines cross
indicates a programmable connection. One group of
six paths (48 bits) carries monitored data from the
interface with the host computer to the input of the
associative memory. The various registers and the
crossbar switch provide buffering and field control over
these data. Another path, one byte wide, connects
memory outputs to memory inputs through an adder
to allow internal processing functions.

The word logic circuits link the supplementary
storage with the associative memory and provide an
addressing function for the two memories. This ad­
dressing function is initiated by interrogating the
associative memory with data in its input register; if
the data in any associative word cell compare equally
with the interrogating data, either that word cell, or
a word cell in supplementary storage in one-to-one
correspondence with it, or both may be selected for
the entry or recovery of data. Explicit addresses for
these word cells do not appear in the instructional

g
i
8
A
R
S
W
I
T
C
H

!:~ !!l! ~~ =2
I AM INPUT J
L MASK

roo--

A M r- I
i o~

I :.~J'
, K~
~ '--~

8~B
I "'WIlT J

ITO II 10
ACf INT£II

i i i
~-~

1 11111
ASSOCIATIVE r- WOItO ~ ~

MEMOIIY t- LOGIC ~ I'I'OItMI

r- ~ ------'. -'. --.I.
AM OUTPUT • OUTPUT

--.I.

Figure 5-Recorder data paths

control system. The word logic circuits also provide
other functions, including tie-breaking in the case of
multiple matches and a match/no-match signal for
conditional branching in the program.

Control over the data routing is accomplished within
the instruction by means of routing specifications. The
standard instruction format contains two routing
specifications, each controlling one field of data;; a
special instruction format is used for supplementary
storage operations which are to be overlapped with
the associative operations. The routing specification in
the standard format contains 16 bits, iden.tified as
follows:

Change Code (one bit). A zero indicates that the
A Register is to be left unchanged; a one
causes the specified field to be entered into
the A Register before being routed further.

Literal Code (one bit). A one causes a one byte
constant from the instruction to bo entered
into the A Register before bein~~ routed
further. This constant replaces the field lenl~th
and source address specification.

Length Pield (three bits). Specifies the number of
bytes of the field being routed. The maximum
field length from the monitor register is three
bytes, and from other sources, seven. A
length of zero causes no transfer of da,ta.

Source Address (six bits). Specifies the location at
which the lowest-order byte of the field to
be routed is to be found. Successive bytes
the same field are moved in accordance with
the length specification.

Terminus Address (five bits). Specifies the location
to which the lowest-order byte of the field
is to be routed. Addresses are tabulated below.

Sources Termini

Supp. Store Supp. Store
Output DO-OF Input Oo-OF

Assoc. Mem. Assoc. Mem.
Output 10-17 Input 10-17

Void IA Void IA
I/O Input to I/O Output from

Recorder IB Recorder IB
Clock IC-IF
Monitor Interface 20-25
COJ).stant 26

Notes: Addresses are given in hexadecimal.
The address for the constant is not

used when the constant is specified as a literal,
but if the value of the constant is unchanged
the constant may be routed either alone as a
one-byte field, or as part of a two- or three-byte
field at addresses 25 or 24.

If a void is specified as a source, the
corresponding terminus is reset to zeros.

If a void is specified as a terminus,
positions of the A Register corresponding to
the source are reset to their new values.

The two routing specifications per instruction permit
two fields to be moved simultaneously and in parallel
from the monitor interface to the associative memory
input register via the A register and the crossbar
switch. Transfers of data from sources other than the
monitor register take place over a bus which is one
byte wide, and are therefore serial by byte. As a result,
only one such transfer can be called for in each in­
struction, using the first routing specification. The
second routing specification can be used, ho\vever, for
a simultaneous transfer through the crossbar. A literal
can be specified only with the second specification.

Supplementary storage

Supplementary storage (SS) is used to retain times,
counts, and condition codes for which associative pro­
cessing is not required. However, each word cell of
supplementary storage corresponds to a unique cell of
associative memory and may be selected wheneevr an
interrogation of associative memory turns on the match
indicator for the corresponding AM cell. The general I

concept is that the AM cell retains data describing the
state of the monitored machine, while the SS cell
collects the statistics relative to that state.

The character of the monitoring algorithms is that
there is a series of operations involving associative
memory only, establishing or identifying a record for

System Logic and Usage Recorder 223

the monitored machine's state. This process will usually
be completed only when the computer has assumed a
new state, but a match indicator will be on, pointing
to the record of the previous state. If the algorithm
provides an SS instruction at this time, the SS cell
will be selected and updated according to the SS in­
struction. Once the selection has been made, it is not
affected by any alteration of the match indicators
until the SS instruction is completed and another one
issued.

It may be seen from Figure 5 that the updating is
accomplished through the adder and the SS input and
output registers, and that it is possible for AM and
SS operations to proceed independently once the se­
lection of an SS cell has been made. This overlap will
take place automatically for all AM instructions except
those which call for the transfer of data between associ­
ative memory and supplementary storage or over the
I/O channel. The overlapped processing may be
represented as follows:

New Monitored Data

AM Proc. G f I f rRe,cog. of New State
t--t t-t--i ~ - - -

state i ! state i+l

SS Proc.

state i-I state i

The time at which the monitored computer assumes
a new state is taken to be the time of receipt of new
monitored data, as indicated by the appropriate strobe
signal from the computer. Since there is generally a
lag of one cycle before the new state is recognized, the
clock is buffered so that it may be reset to record a new
time period starting from the strobe while the old time
period is retained pending use in the SS instruction.
If no new state has occurred, the old and new time
periods are combined.

The updating of a word in supplementary storage
is controlled by a single instruction containing specifi­
cations for performing different operations on four fields
of the ·word. These fields may be from one to seven
bytes in length individually, the combined length not
exceeding the sixteen bytes of the SS word. The SS
instruction occupies control storage as part of the
programmed algorithm, but it differs in format from
the AM instruction:

Notes: RC = reset controls
LF = length of field
OF = operation on field

~:24 Fall Joint Computer Conference, 1969

The starting location specifies ,the low-order byte of
field 1, which is updated according to its length and
operation specification. The remaining fields are con­
tiguous in the SS word, and are processed in succession.
If the entire sixteen bytes of the: word are not utilized
in an application, the starting lpcation may be other
than zero, and the time of completion of the SS in­
struction \vill be lessened.

In addition to length, the field! specification may cal1
for one of the following operations:

1. Increment field
2. Add clock to field
3. Put the lesser of the clock reading and the old

field value in field.
4. Put the greater of the clock reading and the

old field value in field
5. OR the interface byte to the field
6. No operation

Application examples

In the application examples to:follow, the algorithms
are given as block diagrams, in \vhich each block repre­
sents one instruction, including data routing, the
operation, and the masking for Al\l operations. Data
are routed by fields, which are· constant within each
application and are designated by capital letters
generally mnemonic with their meaning. The location
of a field is indicated by a suqscript. identifying the
register involved in the routing 'or the memory itself.
These subscripts are:

b-monitor :nterface buffer
a-crossbar entry register
i-associative memory input:register
s-storage ceJIs of associativ~ memory
o-output register from associative memory
p-input/output registers of supplementary storage

The various fields used in an algorithm form an
ordered set at the input to ass;ociative memory and
after being written into a particular word cell. The
notation for such an ordered set isi:

< SsP 8C S > for a particular stored word

If interrogation is to be performed, it is generally
on a set of such words. This set is not ordered and is
written as follows:

{<SsP8-> }
In this example, Sand P identify the fields active

in the interrogation, and the dash indicates that the
field occupying that relative location in the word is

masked.

Application 1 : Combinations of events and states

Problem

To find out what system states occur over a period of
operation of a host system, how many times e~Lch

state occurs, and how much time is spent in each sta,te.
For this application, a system state is defined to be
one combination within the following classes of moni­
tored signals:

Stopped/ operating 2/possibilities 1 bit
HunnOng/waiting 2 " 1 bit
Supervisor/problem 2 " 1 b~t
Channels busy 8 " 3 bits
Page of instruction 256 8 bits·

The monitor interface is set up to provide all of the
above signals except page of instruction on an on·-off
basis. The page of instruction is the high-order 8-bit
group of the instruction address, whose presence at
the interface is signaled by means of the instruction
strobe. An evaluation of the system state is to take
place at each instruction strobe, or, if instructions are
not being executed, at each change in the remaining
conditions.

Procedure

Each system state is represented by a particular bit
pattern in the above array of 14 bits, and is recorded
in one word of associative memory. The time interval
and usage of each state is totaled in the correBpondilng
word of supplementary storage. If instructions are being
executed (operating and running program states), the
entire bit pattern is used, otherwise only program and
channel statuses are stored.

Whenever a change of state occurs, the appropriate
bit pattern is compared simultaneously against all those
previously stored. If no match if found, indicating a
new state, the bit pattern is stored in the next vacant
word, and the statistical fields in supplementary storage
are initialized. If a match is found, indicating: a repe­
tition, the statistics are updated.

Interrogations of associative memory may occur as
a result of instruction strobes without a change from
the state of the previous interrogation. To detect
changes, a control bit is added to the array of 14 bits
and is set to one in the word representing the current
state of the system.

Results

At the end of the evaluation, there will be one word
of data for each different system state which has
actually occurred. These can then be printed out using
the ordered retrieval procedure to present the non­
executing states first, then the states in page order.

Algorithm for combination of events and states

CHANGE
OF

STATE
1- STROBE

S - Field combining program status and
busy channels bits (6 bits total)

P - Page of instruction (8 bits)

C - Last state indicator

<time + usage) supp}

When an instruction strobe initiates a cycle, the
monitored bits are routed through the A register to
the liE register for interrogation of associative memo­
ry. A match indicates no change of system state and
completes the cycle.

If instructions are not being executed, the change
of program or channel status starts the cycle, in which
only S bits are taken from the Monitor buffer and
zeros are put into the P field of the liE register.

Before the new state is recorded, the time in the
last state must be added to the total for that state
and the usage incremented. This is accomplished by
interrogating with the last state indicator in order to
select the corresponding word in supplementary storage.
Routing of this data through the adder is not detailed.

Mter resetting the last state indicator, an interro­
gation is made with the P and S fields still in the liE
register to determine if the current system state is
one which has been previously recorded. If it has,

System Logic and Usage Recorder 22,t)

only the last state indicator is stored in preparation
for the next cyole; otherwise, the entire contents of
the liE register are written into the next vacant
word to record the new state.

Application 2: distributions of events

Problem

The path length between branches taken m'1y be
defined as the number of sequential instructions executed
before a branch to a nonsequential address. It is im­
portant in determining how far a computer ought to
look ahead in its instruction fetches. This application
determines what path lengths actually occur in.
programs and how frequently each occurs. The distri­
butions are to be found for paths preceding each type
of branch instruction.

The signals which the monitor interface supplies
are the operation code, a bit indicating whether the
branch was taken, and an instruction strobe. If the
bit for 'branch taken' were not available, then the
address and length of instruction could be used to
make an arithmetic check for nonsequential instruc­
tions.

Procedure

The associative memory is preloaded with the set of
operation codes of the branch instructions, one word
for each code. These words also contain a one in a
single-bit field to indicate "branch taken," and a path
length field containing zero. In addition, a specially
marked word is set aside for the running count which
is initially zero.

As each operation code and "branch taken" bit is
brought in at the monitor interface, the combination of
these two fields is compared against the preloaded set
of codes. If no match is found, the running count
field is incremented by one. If a match is found, the
running count field is routed to the path length field,
unmasked, and a second interrogation made. If this
also results in a match, the frequency field of the
matched word is incremented; otherwise, the new path
length is stored in a vacant word with an initial fre­
quency of one. The running count field is reset to
zero.

Results

At the end of the run, there will be one word stored
for each path length and operation code. These might
then be printed out using the range retrieval pro­
cedure to condense the different path lengths into
groups.

226 Fall Joint Computer Conference, 1969

--------------------~--,------
Algorithm for finding distributions of events

I-STROBE ° - Op~ration code and "branch taken" bit
(preloaded set of branch code. with
L = 0)

L - Le?-gth of path

C - Co~e for running count word

R - Ruiming count

F - Frequency

Fields in Storage - (O.L.Cs> a •• oc.

< R.F.> BUpp)

Each instruction strobe initiates a test to find if a
branch was taken for one of th~ prespecified operation
codes. These need not be the i entire set of the host
computer.

If no actual branch is foun<;i, the running count is
incremented by selecting the ~ord where it is stored
with an interrogation for its code. The field is read
out of supplementary storag¢, routed through the
incrementer, and restored in the, same word.

If the branch has taken pla¢e, the running count is
routed into the I/E register w~ere it becomes the path
length. The combination of operation code and path
length then is either stored, or if already ill storage,
causes an increment to be made to its frequency field.

Application 3: Short sequences and mixes

Problem

Knowledge of instruction mixes can be an important
factor in the planning of new systems. There are a
number of ways in which th~ collection of mix data
can be specified, all involving: some form of sequence
following or finding. In this eX$.mple, the problem is to
find what operation codes itimediately precede the
conditional branch types of in~truction, up to a maxi­
mum of six including the branch.

Procedure

One word of associative meplOry is to be used fos
each mix, with the operation bodes distributed acrosr
the word in six fields of one fuyte each. As operation

codes arrive at the monitor interface they :ue routed
to successive fields in the Interrogate/Entry register
and also to a field set aside for comparison against the
set of conditional branch codes which occupy a special
set of preloaded words. When one of these codes is
found, the array of six fields in the I/~ register is
used to interrogate the rest of associative: memory
which holds the arrays already found, and the appro­
priate entry or updating of usage is performed. The
I/E register is reset to zeros, and the next opera.tion
code starts a new sequence.

The sequence may go beyond five code8 before a
conditional branch is found. In that case, the seventh
code takes the place of the first, and so on until a
conditional branch is found.

Results

Each word contains one mix of six or f€~wer oper­
ation codes. The terminating conditional branch (code
may occupy any of the six fields, but if there is at
least one zero after it, the entire sequence: is as re­
corded; if not, the preceding five codes are read in
"end-around" fashion.

Algorithm for finding short sequences\

I STROBE ° - Operation code received at monitor
interface

B - Pre- stored branch operation codes

Fields in storage:

((B s 0 0 0 0 0 0 0 0 0 0 0 > } set of branch
codes

(00 O!O:O!B!O 0 000 O>} mix of.four
c;odes ln se-
,!uence of four

(000l1012013014015B1607d!09010)}
SSSSSSS'lSS

rni.x of ten codes
in sequence of
at least sixteen

Successive operationc()4es',~r~ placed in successive
o fields across the, liE regist~r, by means of a string
of ,macroinstructionsdiffeting:onIY in the routing

microinstruction. When a branch operation code is
received a common routine is followed to add the new , ..
mix to storage or increment the usage field of an eXIstIng
In1X.

Application 4-; Long sequences

Problem

One way of determining the performance of a system
is to see how often prespecified sequences of events
occur. In this example an operating system is to be
tested with a known load to determine if predicted
sequences of supervisor calls, interrupts, and object
programs are being followed. The sequences may be
very long, may overlap or include each other, and
may start or end with any arbitrary element.

The change to a new current PSW represents a step
in the sequence, and can be detected by the fact that
there is an interruption in the host system or that a
LOAD PSW instruction is executed. The address of
the PSW identifies the sequence element and is ob­
tained from the monitor interface whenever a change
occurs.

Procedure

Associative memory is preloaded with the sequences
to be followed, the elements of each sequence being
placed in successive memory words. In the word the
code for each element occupies one field, in this case
24 bits of address. The word also contains two single­
bit fields, one of which contains a one for the start
and the other a one to indicate the end element.

This procedure makes use of a special interrogation
operation for associative memory in which, when a
word is matched, the next succeeding word in physical
order is selected for the entry of data. In this case, a
status bit is entered after this form of interrogation
in order to keep track of progress through the sequence,
and the crucial interrogation is made simultaneously
on the address and status bit. If the interrogation is
successful after the next element has been received,
the status bit is moved to the next word.

In addition to recording successes in traversing
complete sequences, statistics can be compiled on
partial traverses in the words of supple~entary storage
corresponding to intermediate sequence elements.

Results

At the end of the test, associative memory will
contain the sequences tested for, and supplementary
storage the record of how well these sequences were
followed. The sequences could then be printed as a

System Logic and Usage Recorder 227

complete test record in a format permitting an item
by item comparison with results of tests of variations
of load or system.

Algorithm for followinJ! long sequences

NEXT CODE

UPDATE
STATISTICS +
RESET M.I,'S

INTERROGATE
NEXT

{<C5- - ,55>}

SET rZl IN

{<- -- -55>}

I-Bj
INTERROGATE
{<- B..- - »

I IS IN Sj
ENTER

{<-- -55»

C - Code for sequence element

B, E - Start and end

S - Status bit

Initially, and at the end of each cycle, the status
bits are set to one for all first elements.

When the next code is received from the monitor
interface, an interrogation is first made to find out if
that code matches any expected last elements of se­
quences so far successfully followed. If so, the sta­
tistics are updated and that element is reset to zero
status (without affecting other elements in that se­
quence).

The same code then is used to interrogate the set
of all elements whose status bit is one. This operation
uses the INTER NEXT operation to prepare for the
eventual entry of a one in the status bit of the next
word. Figure 6 shows the match indicators turned on
for the word actually matched.

Zeros are then set into all status bits, regardless of
the match indicators, and without resetting them. This
step clears any elements which may not have been
matched with this last code.

Finally, all first elements are selected for entry by
the use. of a normal interrogate operation. This se-

228 Fall Joint Computer Conference, 1969

--------------------~~---,------

Figure 6-8t.eps in following the sequence
GHAAAABCDE

lection is OR'd with the selection obtained by the
INTER NEXT operation above"so that ones can now
be entered into the union of the two sets.

Application 5: Block diagramming

Problem

In debugging or in evaluating ,the performance of a
program it is important to know whether program
segments are executed in the prdper order, how much
time is spent in each segment,: how well they were
overlapped with channel activity, and if execution
was forced to wait. Although one or a few segments
might be singled out for exaniination by methods
similar to those of the preceding: applications, there is
difficulty in predicting where and what to look for,
and a chance of missing something significant.

If every instruction address)Vere paired with its
successor in the instruction stream and the combination
applied to associative memory, eV'entually the memory
would contain all the links between instructions for
that program. However, most instructions have unique
successors, and the technique would waste memory
space or redundant information. i The essential infor­
mation is contained in just those linkages from or to
instructions which have several successors or prede-

cessors. These linkages can be identified from Hddresses
and operation codes in the instruction stream.

Procedure

Each word of associative memory contains three
address fields, the "entry," "exit," and "destination."
The entry and exit addresses are the first and last of a
block of sequential instructions, and the destination
is the entry of a succeeding block, so that each stored
word represents one linkage in the logical structure of
the program.

Certain addresses are identified as exits when they
occur in the instruction stream accompanied by a
branch operation code. The first address after an exit is
automatically an entry to a current block, which will
occupy one of four possible relationships to blocks
already found. As the entry and succeeding addresses
appear in the instruction stream, they are compared
with previously stored entries and exits to resolve
whether the current block is new or one being retraced,
or whether either the current block or an old block is
to be partitioned.

As execution of the program proceeds, wi1~h repe­
titions of its segments, most of the linkages will be
followed one or more times, and the corresponding
division of the address stream into blocks will be
established. When these elements are found or repeated,
their time and usage is noted, and channel and w[~it
statuses are correlated with them, using supplementary
storage for this additional data.

Results

It can be shown that each conditional branch in­
struction will result in at least two, and no more than
four linkages, and that the number of blocks esta,bli ~hed
by the branch is always one less than the number of
linkages. Since one word of storage is required :for each
linkage, approx;mately 2700 blocks can be recorded in
a 4096~word memory. Depending upon the complexity
of the program's structure, the memory can cope with
programs of between 6,000 and 16,000 ingtructions.

At the conclusion ofa block diagramming evaluation,
associative memory will contain the structural com­
position of the program a~cording to it" actual exe­
cution, and supp ementarYi storage wi 1 contain the'
statistics correlated with each structural element. The
standard presentation of this information wou.ld be a
listing of the blocks with their exit linkages governing
their order.

Once the information has been collected, other out­
put procedures can be used to meet specialrequire~
ments. For documentation of the program, it may be

desirable to present the block diagram in pictorial
form, using the host computer to compute and print
the dicl.gram. When the program is being optimized by
trial, it will not always be necessary to print out the
,entire listing, but only the more time-consuming
elements.

Detailed description of procedure

If an instruction is a conditiona' branch, the first
tim~ its operation code is found in the instruction
sti'eal1l, it is recognized to have he potential for a
different successor in some future execution and there­
fore it is recorded as the "exit" of a block. Its successor
of the moment i3 one "destination" and also an "entry"
to another, or possibly the same, block. The basic
record thus consists of three addresses, identifying the
entry, exit, and one destination of the block.

When a conditional branch identifies the next ad­
dlJSS as an entry to a block, this block may intersect
some block already derived from the instruction stream.
There are four possible relationships of a current block
to blocks already traced out, as shown in this diagram

Np Xp
--t !

1

previously stored block

Nc Xc
I
I

l. I------t I I
current block possibilities Nc Xc: I

I

Z. I J I
I

Nc Xc
3. I I

Nc Xc
4. 1----1

In the first possibility, none of the addresses from
the currant entry, N c through the current exit, Xc,
will be found to match any previously stored entries
or exits, N p or Xp; the block is therefore new and can
be added to the store.

A current entry may not be recognized, but may be
followed eventually by an address which does match
some previously stored entry. The address Just previous
to that matching N p becomes the current exit of a
bloek, as shown in 2. above, and the block is recorded
with Np as destination. The progr[l.m will continue
by repeating < N p Xp> , because Xc is not a branch.

The destinatiop of a block may be to an entry already
recorded, as shown in case 3. Assuming that no change
of operation code has taken place the same exit must
follow, and the block need n'ot be recorded again unless
the destination is different. Eventually, in the program's
execution only case 3 will be found.

If a branch, conditional or unconditional, haa led to
a new entry within a block, as shown in case 4, this
fact will not be known immediately. However, sooner
or later an address will match the exit, N p, to signal
the condition. The current block can be added to the
store, but the previous block is intersected by it.

Sys,tem Logic and Usage. Recovder 229

In order to partition the intersected blo'ck discovered
in this case, iF is necessary to determine the addr~s
one location less than the current entry. This exit is
not computable exactly when variable-length in­
structions are being executed, but it might occur again
in the instruction stream and be recognized because its
successor matches the entry' in question. To cause this
to occur, a flag is added to the intersected block, re­
moving it from use by the algorithm, so that if the
block should be repeated from its original entry, the
situation will resolve itself into case 2.

The flagged block might include an initializing routine
which is never repeated, and the block will contain
time and status data which cannot be distributed to its
partitions. Therefore, the flagged block is retained for
the ultimate readout and presentation of results

Special operations in the program, such as multiway
branches, cause no difficulties to the operation of the
algorithm when they are based on recognized operation
codes. If the program changes an operation code to a
branch, as mentioned in case 3 above, the algorithm
must be altered to take into account so~e cases in
addition to the four cases described. An algorithm
which makes use of addresses only, and is thus un­
affected by a changed operation code, has been worked
out by the author but is not included here.

ACKNOWLEDGMENTS

The author expresses his appreciation to Mr. R. R.
Seeber for his advice and encouragement on this
project.

The associative memory for the system logic and
Usage Recorder was designed by Mr. A. W. Bidwell,
and system design construction and debugging were
performed by Messrs. F. E. Jordan, H. L. Wetzel, and
G. T. ManelskL

Block Diagramming Algorithm

N ~ Entry address

X - Exit address

D - Destination address

o - Operation code

S - StatuI! bit: I for new block

F - FIllg bit: 1 for intersected block (case 4)

(IitatisticlI)snpp}

Implementation of the NASA modular

computer with LSI functional characters

byJ. J. PARISER

Hughes Aircraft Company
Fullerton, California

and

H.E.MAURER

NASA Electronics Research Center
Cambridge, Massachusetts

INTRODUCTION

The NASA Electronics Research Center (ERC) in
Cambridge, Massachusetts, has undertaken a broad
program to satisfy flight computer system requirements
for future missions, including versatility and long term
reliability. Specific attention to these requirement.s is
necessary because flight qualified aerospace computers
and even some still under development, have been
designed for increased' computational speed and
arithmetic capability, but not for the long life reliability
.and application flexibility that will be required for
future spac.e missions,l,2 For example, the mean time
between faIlure (l\lTBF) of available aerospace com­
puters lies in the range of 2,000 to 5,000 hours, whereas
long space missions will require an MTBF of 106 hours.

Sseveral computer organizations have been described
in the literature which include redundancy for in­
creasing mission reliability, but still negl~ct appli­
cations versatility.3,4 Some non-spaceborne computers
of the array or multiprocessor type are currently being
developed.6 ,s. These systems, although potentially capa­
?le .of meetmg ERC's versatility and reliability ob­
JectIves, lack design features for space applications
(component reliability, weight, volume, radiation
hardness, etc.).

This paper describes the architecture of a modular
computer which can be configured to operate as a

number of parallel processors, with each segment or
column solving an independent problem that may be
different or identical. Each column in turn contains a
number of blocks called modules, which may be con­
figured so as to form patched columns, using modules
from different physical locations; for example, a diag­
onal (see Figure 1). This structure meets the high
speed computational requirements for attitude control
associated with strap down systems, and also achieves
the reliability required for long time mission success.

The modular computer requirements have been de­
rived through simulations which yielded speed, word
length, and memory requirements.

A breadboard model consisting of two columns has
been built and is currently in the terminal stage of
system checkout. Software is being developed con­
currently with hardware. This l\fodular Computer
Breadboard (lVICB) will be used for experimenting with
different structures in order to enhance the NASA
ERC modular computer objective. The body of this
paper describes the LSI implementations of the modular
computer, with requirements and organization given
in the following sections.

The NASA modular computer requirements7 *
The functional design requirements can be character-

* A summary is included here for easy reference.

231

232 Fall Joint Computer Conference, 1969

COLUMN COLUMN COLUMN

MODULE
1,1

MODULE
1,2 ••••••• MODULE

l,n

MODULE MODULE MODULE
2,1 2,2 ••••••• 2,n

:

• • •
• • •
• • •
• • •
• • •

MODULE
n,l

MODULE
n,2 ••••••• MODULE

n,n

Figute 1-NASA modular computer showing columns and modules

ized by high probability of success over a short period
for high speed computations apd survival for long
periods at low computation rates.

The l\1odular Computer, as a potential component
of a guidance and navigation subsystem of severa]
potential space booster configur::itions, must be appli­
cable to at least four distinct missions: the synchronous
satellite, lunar orbiter, Mars orbiter, and Jupiter fly-by
solar probe. Computer memory size, word length, and
speed requirements for each phase of these four missions
have been estimated by means of computer simulations.
The object computer was assu:med to have single­
address and sequential operation ..

Figure 2 shows the computational requirements as a
function of injection velocity ac~uracy. Next to relia­
bility, computational speed is the most critical param­
eter. Only one set of curves is shown for all missions
since it has been assumed that the guidance computa-

tional requirements up to and including injeetion are
the same for all missions. The speed (instructions per
second) axis represents equivalent additions per second
at a rate of 1 multiply equals 6 adds. The memory
requirements include approximately 1,400 words for
executive and 10 operations, for a total of 12,800 words.

In terms of physical parameters, it is estimated. that
radiation, temperature, and computer operability
requirements represent the most cirtical environmental
conditions which the modular computer must meet.
The proposed trajectories could subject the s:pacecraft
to 3 to 48 hours of I-MeV electron flux of 109 e/em2

sec and 80-l\,leV proton flux of 107 p/cm 2see. Repre­
sentative calculations of anticipated ambient thermal
environments clearly indicate that an environmental
control system is needed. The mission time requirement
for navigation varies from six hours for the synchronous
satellite to 436 days for the Jupiter fly-by. These times
pose stringent reliability requirements.

Implementation of the NASA Modular Computer 233

8

30 15

WORD LENGTH

-
~

\

" "" ~
" ---r---..

MEMORY SIZE

6
VI
0
a::
0 VI

~ I- .;-
('t) ill 20 ~ 10
0 I x

" " """

VI I
I- U 0 (!l w a:: z VI

0 4
W I-

~ ..J VI

> 0 z

"" ~
~ ~PEED

...-...,

a:: a:: 6 0 0 W
~ ~ W
W a.
~ VI

10 5

2

2 3 4 5 6 7 8 9 10

INJECTION VELOCITY ACCURACY -fps

Figure 2 --Computational requirements for injection into parking orbit

The modular computer architecture

Design philosophy8

The most severe requirements in terms of speed and
accuracy occur during boost.7 Post injection computa­
tional requirements are low and the accuracy of compu­
tations is far less critical. Therefore, to satisfy the
composite requirements a Modular Computer (lvrC)
organization as shown in Figure 3 has been structured.
Each column of the l\1C can satisfy the 1.5 X 106 in­
structions/ sec requirement.

During boost, three columns of the modular computer
operate concurrently in a triple modular redundant
(Tl\lR) mode, with majQrity voting at the outputs.
After orbit injection, the Tl\:lR mode is terminated
and the ensemble of modules is configured so that only
one computer remains operating; the others are turned
off to conserve power and improve reliability. * System

* The failure rate of non-operating circuits is assumed to be
lower than that for operating ones.

interlocks are provided which insure that the on­
computer performs correctly (\vithin bounds). If this
is not the case, the Configuration Assignment Unit
(CA U) is triggered. 1 t is the task of this unit to assemble
at least one computer out of all the available modules.

The availability of good modules is determined by
means of hardware-software tests with interlocks. As
may be seen from Figure 3, each of the computers has
been separated into four functional modules: a lV1 emory
Unit, Control Unit, Arithmetic Unit, and an 10 Unit.
The Configuration Assignment Unit (CAU) in con­
junction with the CU, together with the Configuration
Control S\vitches (CCS), can automatically reconfigure
the ensemble so as to form an operating computer.
Such a computer may consist of any combination of
lVIU-i, CU- i, AU-i, 10-i.

The breadboard version of the modular computer
contains two columns. This is sufficient for the intended
experiments:

1. Determination of mission algorithms within

234 Fall Joint Computer Conference, 1969

--~--

specified accuracy limitations and consistent
with the intended applicatiQn.

2. The use of parallel processing to achieve higher
effective computational speed.

3. Automatic detection and isolation of the occur­
rence of a computer modu;le failure, and auto­
matic reconfiguration to ellminate the effects of
the faulty element.

Computer structure

Although Figure 3 shows a tri-column configuration,
the actual flight computer may require additional
columns and some configuration 'adjustment in order
to meet the mission time requirements.9

In general terms, the modular ~omputer consists of:

k-Configuration Assignment Units (CAU)
one set of Configuration Control Switches (CCS)
m-:Control Units (CU)
n-Arithmetic Units (AU)
p-Input Output Units (IOU)
q-Memory Units (MU)
r-Power Supply Systems

The values of k through r are determined from
reliability requirements and configuration alternatives.
In the preliminary design, k = r = 1 and m = n = p
= q = 3. This configuration will be adjusted as re­
quired.

The configuration assignment unit (CAU)

The Configuration Assignment Unit controls the
switches which interconnect the, various modules to
produce the necessary computer or computers. The
CAU monitors CU requests for changes in the com­
puter's configuration and, based on a predefined test,
may accept or reject these requests. It determines if
no operating "computer" exists" and then establishes
new configurations until a wonking "computer" is
assembled. The CA U contains registers which permit
communication between control units. CU interrupts
are generated in the CAU by means of Status and
Mask registers. The system clock is also located in
the CA U. The primary tasks of the CA U are:

1. To validate requests for change from a CU by
monitoring the elapsed time and the result of a
diagnostic, and then accepting and imple­
menting the request.

2. To connect all possible configurations one at a
time until one operating; computer is found,
based on diagnostics.

3. To initiate an interrupt in a newly configured
computer to ~tart a diagnostic.

4. To provide and monitor a counted delay of
about 30 seconds which, if not reset iln time,
will be interpreted as the absence of a working
computer, which will initiate two above.

5. To maintain configuration and status infor­
mation during a shut-down if power is main­
tained to the CAU. When power is restored,
the two previously stored configurations will be
exercised first to locate an operating computer.
If these fail, 2 above is initiated.

6. To accept from the executive CU requests for
changes in 10 configuration.

Configuration control switches (CCS)

As seen from Figure 3, the CCS's provide a pg,th
between any module in a row with any module in rows
immediately above and below. In addition, the switches
provide for traffic between the CU and IOU modules.
All paths are under the control of the CAU.

Control unit (CU) and Arithmetic unit (AU)

The Control Unit determines the sequence of oper­
ations within the computer, which consists of one or
more MU's, one AU, and any applicable IOU; i.e., all
computer memory, arithmetic, and input/output oper­
ations are under the control of the CU. As is seen from
Figure 3, the traditional ACP (Arithmetic and Control
Processor) has been split into separate functions of
CU and AU. This is done to enhance processing speed
and long term reliability. Each unit has a set of 16
temporary registers much like the multi-usage reg­
isters of third generation computers, except that there
are three index registers which are separate and distinct
in addition to the temporary registers. The AU and
CU operate concurrently. The AU accepts data a,nd
instructions from the coupled CU and execu1ies these
instructions under internal control, making the results
available to the same CU. Two's complement arithme­
tic, both floating and fixed point, are included.

The input output units (IOU)

The Input Output Units (IOU) are of the direct
memory access type, which provide cycle-stea.ling a.c­
cess for 10 transfers. Each IOU provides two input and
two output channels. The IOU contains two registers
which can be loaded by the CU. These registers hold
the priority and normal operation control words. When

Implementation of'the NASA Modular Computer 235

AU-l AU-2 AU-3

• • t
I SWITCH-CCS
I I

t t
CAU CU-l CU-2 CU-3

r--e--

It t t 1 1
-~ SWITCH-CCS I , • • MU-l MU-2 MU-3

POWE R SYSTEM I t ,
STANDBY PRIMARY J SWITCH-CCS

. I I

TO ALL
IOU-l IOU-2 IOU-3

MODULES , t t
I SWITCH-CCS I I

1
-CU 2

Figure 3-Modular computer organization

data for the priority channel is absent, the normal
transaction is served.

The memory unit (MU)

The Memory Unit (MU) receives, parity checks, and
stores incoming data in the assigned address. The ad­
dress is also checked for parity. At present, each memo­
ry unit can store 4,096 words of 36 bits each. A read­
restore cycle is completed in 1 microsecond. Each
memory is addressable by any CU, as permitted by
the CAU. Two CU's are not allowed to be associated
with one MU. The CA U may permit a CU access to
more than one memory. Memory access is through a
combination of sequential and priority control. First
access is assigned to data from the IOU, while second
priority is assigned to the CU.

LSI implementation of the modular computer

Overview

Size, power, and reliability constraints demand that
the modular computer be implemented with LSI
circuits, but the question of how to achieve an LSI
implementation remains. To date, several approaches
to logic partitioning for LSI have been reported, ranging
from the conventional approach, where partitioning is

. done after the logical equations have been written, to
the "cellular" type approach, where a group of logical
gates are structured to be programmed on the cell to
form specific functions.9 ,10 ,11 ,12

The conventional approach includes both manual
and automatic partitioning. This approach appears
undesirable for the . modular computer implementation
because the design process tends so be lengthened18 and

236 Fall Joint Computer Conference, 1969

--
the number of LSI chip types tends to increase, par­
ticularly as applications are broa~ened outside of the
computer proper. A small number of LSI chip types
is an important factor towards achieving the very
tight quality and process controls required for the
realization of very low component failure rates. The
latter is a must for long time mission reliability.

In the cellular approach, the cell design is such that
all combinations of n variables must be implementable
in order for the cell to be of univQrsal use. Proofs have
been: developed showing that such a. cell can indeed
form all functions of n variables. The cell, although a
universal device, still requires the process of writing
logic and determining which paths in the cell structure
should be connected or cut (physically or logically)
in order for the universal cell to assume the unique
logic posture specified by the logic designer.

A functionally organized set of building blocks with
predetermined* logic interconnects has been chosen
for the modular computer implementation. This set,
called functional characters, tends to satisfy the re­
quirements of a small number of LSI types.

The set of characters, 10 in all, :was selected through
a pragmatic approach to logic partitioning. As for the
cellular technique, the characters have predetermined
logic interconnects but do not require restructuring of
interconnections in order to achieve the logical design
objective. The design process with, functional characters
is analogous to programming using a compiler. The
characters are analogous to compiler statements. The
designer specifies inputs, outputs" and control for each
character's micro-operation. 1\1icro-programming is
used as the control structure. Three of the 10 characters
comprise the micro-program store. Perhaps designing
with pre-specified large functioris without the utili­
zation of Boolean equations marks the greatest de­
parture and contribution of the functional characters.

No attempt is made to demonstrate that a character
or the set can implement all combinations of n variables.
All combinations are not required in order to build
effective computing machines. The design philosophY
permits the introduction of new characters if the
existing ones are shown to be ineff~ctive.

The ten functional characters exist as logical blocks
containing approximately 350 gates per block. Thef:e
blocks can be sub partitioned into smaller blocks with
fewer gates per block or chip, whereby several smaller
blocks would compose a functional character (see Table
V). A reduced-width set of functional characters has
been breadboarded using conventional IC circuits.
This demonstrated the modularity and versatility of
the characters.

The characters can be implemented with LSI circuits,
using cellular or threshold logic, or any other appropri­
ate technique. An overview of the characters is pre­
sented here. ** Statistics are given comparing the func­
tional character design of the :Ylodular Computer
Breadboard with the implementation utilizing custom
log;ic design and partitioning, as found in the imple­
mented ~Iodula.r Computer Breadboard (}[CB). Ue­
grettably, there iR no meanR for 11 one-to-one comparison
using identical Rtages of ~JCB implementation. To
the extent practical, the cOmpar!HOIlH addreRs the Ra.me
syRtem parameters. The comparisons assume that all
cards of ~ICB containing IC's have been converted to
equivalent LSI chipH.

Description of the functional characters

The functional character Het is a group of lo~~ic

arrays forming a self-sufficient family of buildinJ~ blocks
that reduce computer design to a determination of
character types and number, followed by micro­
programming of the set. Ten character types have been
shown to be sufficient for the building of both special
purpose and stored program general purpose digital
equipments. These characters are:

G 1 Register storage
PI Scratch pad memory
LI General logic
I;2 Ari thmetic logic
L3 IllPUt/OUtput
lVIl .i\Iicromemory sequencer }
1.\12 ::\'licro-instruction Register l\Iicropro~r.am

l\{i\tI l\Iicromemory array memory
P2 Up/Dmvll counter
P3 Switch

Tab'e I shows the gates, pins, and gates/pin ratios for
these fUIlctions.

Characters of the same letter are logically grouped
into a common u[iit, as illustrated in Figure 4. This
arrangement extends the register count and word
length. The complexity of logical operation -can also
be extended by the cascading of characters. Several
microprogram strings can be executed simultaneously.
The micromemory function was divided into three

* The logic of t~e block i'3 de·~igned prior to the cO'llputer de­
sign

** More detailed di<;cussion on the subject is found in paper
by F. D. Erwin and J. F. McKevitt. of thi!' Proceedings.

Implementation of the NASA. Modular Computer 237

Figure 4-Typical functional chamcter configumtion

characters in order to provide for greater versatility.
The array can be adapted to different size programs.
The instruction register may be cascaded using two or
more M2 characters, and still operate under a single
sequencer control.

TABLE I-Composition of the ten character types
sufficient for building special purpose and stored

program GP digital equipments

Gates Pins G/P

G 1 General Register 224 62 3 .4
PI Scratch Pad Depends on system architecture

Ll Boolean
L2 Arithmetic
L3 I/O
Ml Sequencer
M2 Instruction
MM Array

(8 X 16) bits/block
274 145
250 77
377 149
348 91
323 131
Depends on size of program
2048 bits/block

P2 Up/Down Counter 147 81
P3 Switch 210 118

1.8
3.3
2.5
3.8
2.5

1.8
1.8

Functional character implementation of the
. modular 'computer breadboard (MCB)

The functional character appears to have a broad
range of applications. This was demonstrated in the
study by implementing an A to D, DDA, and the
modular computer.16 For the purpose of evaluation,
the breadboard version (MCB) was implemented using
the functional characters. The MCB is a two column
configuration of the modular computer. The functional
and operational aspects of the MCB have been pre­
served in the functional character implementation.
However, the implementation detail was tailored to
the functional character set. This includes the grouping

of registers into memory arrays and complete micro­
programming, which are not part of the MCB.

Figure 5 shows the block diagram of the existing
MCB. This diagram has been overlaid with the
character implementation as shown in Figure 6. Note
the P3 blocks of Figure 6 are equivalent to the switches
(CCS) of Figure 5. In the block diagram form, the
MCB implementation using functional characters is
depicted as an assemblage of characters each under
microprogram control. The microprogram resides in
the micromemory, which consists of the MM, Ml, and
M2 characters. The word length is determined by the
number of juxtapositjoned characters of the same type.
In general, the characters are 8 bits wide. The PI
character is 16 bits wide. The number of Gl or PI
rows identifies the number of registers of the P or G
type. The G type operates directly under micro­
program control, whereas the P type operates indirectly
under microprogram control. The G 1 character con­
tains four registers for a 4 X 8-bit array. The PI charac­
ter contains 16 registers for a 16 X 16-bit array.

Figure 6 also shows the character content of each
module adjacent to name of the module. The number
to the left of the slash (j) is the total number of charac­
ters used per module, regardless of type. These numbers
represent the first microprogram pass referred to in
Table III. The number to the right of the. slash is the
number of character types used in each module regard­
less of the number of modules. Note that the number
of characters is additive, whereas the number of charac­
ter types is not; the sum of the character types is 10.

Evaluation of the functional character design

Table II shows the comparison data of the functional
character implementation versus the existing MCB
implementation. As may be seen, in all aspects, except
gates committed**, the functional character imple­
mentation results in a significant improvement over the
existing MCB design. The number of gates committed
is 35 percent higher for the functional character ap­
proach. In the LST area, the tradeoff will no doubt
recognize the functional character approach as signifi­
oantly superior. An increase of 35 percent in the number
of gates committed is a small. price to pay for the
reduction in the number of chip types and pins.

As will be shown later for reliability purposes, a
small number of pins in the system is far more im-

* * "Commi tted" mther than "used" is the proper descrip1lbr since
Borne gates on the chip or conventional card are unused but yet
theya.re committed by virtue of being part of the chip or ca.rd.

238 Fall Joint Computer Cdnference 1969
i '

i

i
i
i

AU-l
AU-2 .

f 1 ,

I ccs

~
!

• CONTROL

i
PANEL

• POWER SUPPLY

CAU CU-l

~ CU-2

f f i I I
f ccs I i 1

MU-l MU-2

r ccs 1 1

IOU-l IOU-2

I

I

I t ;

I ccs I

I
i

Figure 5-Block dmgram of existin& modular computer breadboard overlayed with the character
. implementat,ion shown in Figure 6.

portant than a smallriumber of gates, all other factors
being equal. As seen in Table I~, the number of pins
required for the MOB implemen~ation is 2.6 times the
number required for the functional character imple-
mentation. i

I

As the column heading show$, the comparison in
Table II is made between two LSI implementations:

one representing the functional character teohnique
the other representing the conventional approach
where every MOB card containing X number of Ie's
has been converted to an equivalent 10 with the number
of card terminals becoming the equivalent LSI package
pins.

The implementation with the functional characters

Implementation of the NASA Modular Computer 239

AU-12517

L1 L1 L1 L1

L3lL3
AU-225/7

L2 L2 L2 L2

G1 G1 G1 G1 DUPLICATE
G1 G1 G1 G1 MM
G1 G1 G1 G1 M1M2

I
CCS 2/1 P3,P3 I 1 2/1

CAU 3917 CU-138/9

L1 L Ll L1 L3 L3 L3 MM MM PI PI L3 L3

P2 P2 P2 P2 G1 31 :::n MM MM PI PI G1 G1

P2 P2 P2 P2 G1 G1 G1 M2 M2 PI PI G1 G1

P2 P2 P2 P2 G1 G1 G1 M1 PI PI G1 G1
CU-238/9

P2 P2 P2 P2 G1 31 G1 --... L2 Ll PI PI

G1 M1
DUPLICATE

L3 L3 PI PI L1 L1
MM

M2 P2 P2 P2 L2 L2

t •

I CCS 2/1 P3, P3 I -,

MU-111/6 MU-211/6

L1 L1 L1 Ll
I I

~
G1 M1 MAIN DUPLICATE
~ MM MEMORY

~L3 L3 M2 MODULE

J
CCS 2/1 P3,P3 J 1

IOU-117/6 IOU-217/6
Ll L1 L1 L1

G1 G1 G1 G1 DUPLICATE
[<31 G1 M1

MM
L3 L3 L3 L3 M2

t
• I

I CCS 2/1 P3, P3 2/1 I

Figure 6-Functional charaeter implementation of MCB

resulted in a 35 percent greater throughput. This is
because the functional character assumed a 32 percent
faster gate. For equal gate delays the two implemen­
tations would yield approximately equal throughput.

The most significB,nt point from a quality control
point of view is that the entire computer was imple­
mented with ten character types-three of these belong
to the "micromemory" domain used for micropro-

gramming of the computer modules. The micro memo­
ry array (MM) is the storage element which contains
the control information. If permanent memory is used,
it may be necessary to generate the desired information
content on a number of different chips. However,
effort is being expended in industry towards producing
electronically alterable, read only memory arrays.17
Progress to date shows that there is l?romise of being

240 Fall Joint Computer Conference, 1969

TABLE II-Comparison of functional character
implementation and existing MCB

. implementation]6

Implemen- Func- MCB ; Percent
tation tional AssumingJmprove-

Charac- Each ment
ter Im- Card Is i Over
plemen- An LSI: MCB High/
tation Chip i Imple- Low

Item (Units) menta- Ratio
tion

Types 10 23 +56 2.30
Cards (LSI

Chips) 206 554 +63 2.70
Pins Committed 18,200 47,600 +62 2.62
Gates

Committed 47,200 35,000 -35 1.35
Gates/Pin 2.6 0.75 +250 3.47

able to use only one array with id,entical metalization
patterns. This array will be encoded with the proper
information content at the time of use.

It is reasonable to project that ten characters and
ten masks are sufficient to implement the MCB and
the majority of digital equipments. Other types of
equipment were implemented, including A to D and
D to A conversion logic and a DDA. All designs
utilized the same characters bllt different micro­
programs. The efficiency of gate u~age was best in the
MCB implementation and worst in the DDA.15 It is
premature to conclude that a di~erent character is
required for a more efficient im~lementation of the
DAA. The MCB design was optimized through remicro­
programming, but this was not done with the DDA
and A to D equipments. ,

Design with functional character~ saves time. During
a six month period, the entire MCB was designed,
microprogrammed, and remicroprogrammed several
times. This illustrates the ease andlspeed of the design
process. The improvements gained through micro­
programming are demonstrated in Tables III and IV.

Table III shows the improvements in terms of the
number of characters and characte:f types required for
the two microprogram passes. The ¢haracters remained
unchanged. In this comparison, the configuration of
the MCB was identical with the presently imple-
mented IC version.

Further improvements were ga~ned, as shown in
Table IV, by restructuring the MCB with the appro-

TABLE III-Effects of microprogram improvement
on the functional character implementation

of the IVICB

No. of Characters No. of Character
Used Types UseD

lVIICRO- MICRO-
PROGRAM PASS PROGRAIVI PASS

Unit First Subsequent First Subsequent

MU 11 7 6 5
CAU 39 38 7 7
CU 38 35 9 9
AU 25 21 7 7
Switches 8 8 1 1
I/O 17 17 6 6
Computer
Total System 229 206 10 10

TABLE IV-Effects of combining the
AU and CU of MCB

Functional Same Exeept
Character AU and CU Were

Implementation Combined
of the Existing

Parameter Configuration

No. of Characters 229 182
No. of Character

Types 10 10
Fixed Point

Direct Add 9.9 us 4.2 us
Fixed Point Add 11. 6 us 6.4 UlS

Fixed Point
Subtract 11.6 us 6.4 us

Inclusive or 11.5 us 6.2 us
Exclusive or 11.5 us 6.4 us
Logical and 11. 5 us 6.2 us

priate remicroprogramming. The AU and CU were
combined into one unit, eliminating some logic and the
switch between them. This reimplementation was
feasible with the functional character set due to the
more general nature of the characters as contrasted
with the custom implementation of the existing Jv.ICB.

Implementation of the NASA Modular Computer 241

Combining the AU and CU into one unit may affect
the long term reliability. This and curiosity about the
relative merits of multiprocessor structures, such as
the Hughes H4400 (currently being built), vs. modular
computers, such as the MCB, led Hughes to study
factors affecting long term reliability. In this study,
modules of equal complexity, with the exception of
the switches, were assumed. The results are presented
in Reference 9.

Several interesting points are worth mentioning here:

1. Multiprocessors have an improved short term
reliability, but the long term reliability is de­
graded somewhat.

b. Different configurations, or organizations, signifi­
cantly affect long term reliability.

c. Component reliabilities (failure rate of the
characters) mar medly affect the mission relia­
bility.

d. The failure rates quoted for existing IC's. of
10-8 failures per gate-hour will have to be sig­
nificantly reduced in order for either the multi­
processing or the modular computer organization
to reach the desired long time mission reliability
objectives.

Circuit realization of the functional characters

This section presents circuit considerations for the
LSI realization of the functional characters. The circuits
must not only reflect the correct logical functions but
also, because of the potential space applications,
satisfy the electrical, thermal, and mechanical con­
straints.

The circuit solutions are to be designed to reflect a
set of NASA design guidelines that are intended to
insure a high probability of mission success. These
guidelines are:

Gates per chip

Circuit yield

-About 100, no more than 150

-100% without. yield enhance-
ment

Conductor spacing -0.1 mil minimum

Conductor width -Current density not to exceed
106 amps/cm2

Metalization layers-No more than 2

Circuit type -Bipolar TTL

The 100 gate per chip function size limit reflects

the 100 percent yield and TTL technology constraints.
I t is expected that LSI and TTL circuits containing
about 100 gates will be producible with 100 percent
yield. Other circuit technologies such as MOS may
accommodate a larger number of gates per chip.

As may be recalled from Table I, some functional
characters require about 350 gates per function. The
natural tendency would be to implement one character
per chip. However, this is not an acceptable solution
for TTL circuits in view of the above constraints.
Therefore, the functional characters were subpar­
titioned as shown in Table V.

The intent of the table is not to select the optimal
subpartition, but to enumerate some logical choices.
The optimal choice will depend on assigned wejghtings
for gates and pins per chip, as well as the other design
'constraints mentioned earlier. The table thus shows
each character and the characters' composition, using
one or more custom or commercially available LSI/MSI
chips. More than one subpartitioned chip is required
to implement the functional character. The number of
chips and chip types required is given in the second
column as a descriptor and also in the sixth and seventh
columns under "composite." The columns under the
"composite" heading state the total number of items
required to implement one functional character. The
columns under the. first and second chip heading con­
tain similar information on a per chip basis.

A comparison of Tables I and V shows the following
changes:

1. The number of chip types is at least 20%
greater than the number of characters; thus,
.paying a small penalty in terms of part number
problems.

2. The number of gates per chip dropped (approxi­
mately by a factor of 0.5) and the number of
pins remained about equal, resulting in an in­
creased number of pins in the system by a
factor of about 2.

3. The total number of gates per function increased
an insignificant amount.

As is shown below, these changes tend in the wrong
direction for obtaining improved MTBF's of the modu­
lar computer. As is seen from the above and Table V,
the subpartitioned characters would require a greater
number of bonds (pins) and will therefore operate at
higher temperatures than the non-sub partitioned set.
The temperature rise is due to the increased number
of gates required and the higher current required due

242 Fall Joint Computer COJ1ference 1969 ; ,

~--------~--r-----------~------~---------_
TABLE V-Alternate schemes for sub-partitioning

Composite

Character G/p Chips/
Name Composition pat¢s Pins Ratio Character

G1-Register 2 custom chips, 224 62 3.6 2
single type

L1-Logic 2 custom chips, 274 145 1.9 2
single type

L2-Adder 2 Identical 258 77 3.4 2
custom chips

1 custom and
1 commercial chip 22~ 77 3.0 2

L3-Input/Output 4 identical chips 454 150 3.1 4

2 identical chips 41() 149 2.8 3
with optional parity

Alternate Scheme 398 149 2.8 3
2 chips + optional
parity chip

Optimal 3-chip 377 149 2.5 3
configuration

Ml-Micromemory 3 chips-2 types 358 91 3.9 3
Sequencer 3 chips-2 types 348 91 3.8 2

150 gates if I. C.

P2-Counter 1 custom chip 14$ 81 1.8 1

1 custom and 2 16$ 81 2.0 3
commercial chips

P3-Switch 2 identical chips 210 118 1.8 2

M2-Micro 3 chips":2 types 323 131 2.5 3
Instruction
Register

*Commercially available chip

to a larger number of external gates. * More pins require
more external gates to drive the capacitance of the
external pins. Both f~ctors, increased pins and higher
temperature, increase the failur~ rate of the device
and thus lower the probability' of mission success.

Reliability considerations requite a minimum number
of bonds (pins) and a lowest junction temperature
practicable. IS Several other factors affect reliability.
These are either less influential on the operational
failure rate, or on a relative basis do not affect the
tradeoff. For example, the quality of the package's
hermetic seal may be an importaht factor in develop­
ment and acceptance testing. BtJt once a good seal
has been estabHshed, it will remain good. Furthermore,
the difficulty of making a good sea] is proportionate
to the lengths of seal interface. The latter in turn ;.s
a function of the number of pin~ per package, which
for the cases in question is about the same.

* LSI circuits are generally built· with; tailored lower power in
ternal gates for driving low capacitance and limited fanout within
the chip's boundaries and higher power gates at the chip output
in orde,r to overcome the input output ¢apacitance and chip fan­
out ..

1st Chip 2nd Chip

Chip Gates/ Pins/ Ratio No. Gate/Pin Ne
Types Chip Chip Gate/Pin Used Gates Pins Ratio USI

1 112 52 2.2 2

1 137 138 1.0 2

1 129 60 2.2 2

2 117 88 1.3 1 111* 43* 2.6* 1

1 114 72 1.6 4

2 150 87 1.7 2 110 68 1.8 1

2 150 95 1.6 2 98 66 1.5 1

2 129 85 1.5 2 119 86 1.4
--I--'

1

2 150 92 1.6 1 104 85 1.2 2

2 142 73 1.9 1 206 73 2.8 1

1 147 81 1.8 1

2 40* * * 2* 83 82 0.9 1

--'---.
1 105 75 1.4 2

2 100 51 2.0 2 123 89 1.4 1

Temperature is a very important consideration since
the failure rate of the device increases about 1.8 times
per 25°C temperature rise. IS

Within specific cooling capacity, circuits, and pack­
aging technology, two factors affect the device's temper­
ature:

a. The number of gates per system.
b. The number of 10 package pins per system.

For example, in the natural and subpartitioned
functional characters (Tables I and V) the number of
gates per system remains approximately eonstant.
However, the number of pins nearly doubled for the sub­
partitioned case. Typically, in TTL circuits the power
dissipation of the subpartitioned implemen1jation is
expected. to increase. Specifically, the dissipation is
increased by a factor of 1.08. Using the data from Table
II, the total number of functional character gates in
the MCB is 47,200 and the number of pins is 18,200.

Assuming a power dissipation p and 2p or more for
internal and external gates, respectively, th,e power
dissipation for the MCB is:

Implementation of the NASA Modlllar Computer 243

where

M = total number of gates

and

N = total number of pins

P for the subpartitioned implementation is 57,700
= p (47,200 + 10,500). .

Using the same formula, the power dissipation for
the functional character implementation (Table II)
versus conventional MCB implementation is 53,300 p
versus 50,900 p, resp,ectively.

Even though the number of gates is 35 percent
greater for the functional character implementation,
the power dissipation is about 5 percent greater than
that of the MCB's, were it'implemented with LSI's
representing present MCB cards. This 5 percent differ­
ence will disappear ·in practice. The octual power
difference relative to the present IC implementation
would be in favor of the functional implementation.

In addition to the number of pins causing increased
power dissipation, which may be equated with in­
creased failure rates, there are other reliability and
cost penalties associated with an increased number of
pins. These all result from bonding. Each pin requires
two internal bonds (one to the metalization, the other
to the pin). Each pin must in turn be fastened to some
external holder (card, connector, wire, etc.).

Everyone of these junctions is a potential failure
and a fabricati.on cost factor. Thus, the number of
pins as a contributor to increased system failure rate
manifests itself in several ways. Every effort must be
made to keep the pin count low.

The "ideal" LSI chip, assuming it could be built
would contain the largest number of gates and use
the lowest speed power product circuit. Figure 7 shows
the various circuits currently available and the speed­
power-product lines (PL) 19 . Note that the "ideal"
circuit for space applications would be located in the
lower left corner of the figure. The ion implanted and
complementary MOS circuits come closest to the
"ideal" circuit. The shaded area shows the speed-

** Each pin must require at least one external gate, and each
external gate dis!dpates at least p more units of power. Typically,
U of the pins are used for output; the others are used for inputs,
power, and ground.

power coverage of the P channel ion implanted MOS
(1M OS) . The area for the N channel 1M OS is forecast
to be below that shown for the P-IMOS. At the speed
considered the complementary MOS would straddle the
P and N areas. The complementary circuit is attractive
as a compromise speed-power option. However, it
requires about twice as many devices per circuit over
single channel. Thus, a single chip would be unable to
support a complete function, resulting in increased pins
per system. This is undesirable, as pointed out earlier. *

From this, we conclude that the ion implanted MOS
type circuit (single channel, high speed, low power)
is optimal for the functional character implementation
of the MCB, barring producibility problems. It provides
the desired density at 100 percent yield, lower power
dissipation, and desired circuit producibility.19 ,20.21

There are not sufficient practical data to make a judg­
ment. If the "ideal" circuit is not available, a meaning­
ful system can be built using TTL circuitry for the
functional character implementation. The penalty is
increased power and pins required at a very significant
gain of availability of proven circuit technology.

CONCLUSIONS

It has been demonstrated that digital equipments can
be designed using pre-specified logical building blocks
called functional characters. Onc~ the logical design of
the functional character has been accomplished, the
system designer no longer needs to employ Boolean
equations to specify the system. He needs only to
specify the inputs and outputs' of the characters and
microprogram the sequence of their operations. The
set of functional characters can be considered as
standard and "universal" LSI chips that are sufficient
to implement most digital equipments. Two desirable
features of the characters are that the number of chip
types and pins in the system are significantly reduced.

I t may be inferred that standard design automation
programs which have as inputs Boolean statements or
their equivalent will not be applicable as functional
character design aids. Routing programs have the
greatest potential of being useful. Simulation programs
will have to operate at a macro level. A microprogram
assembler is a desirable program.

In order to obtain the required 106 hours between
system failures, it will be necessary to improve the
system configuration of the modular computer and to
improve the basic circuit or module reliability. The

* The ratio of power dissipation for internal and external gates
is much greater for MOS at the desired speed.

244 Fall Joint Computer Conference, 1969

20

15

5

4

3

2.5

2

1.5

1 2

PROJECTED
N-I~OS

LEGEND:

* THE IMOS AREA IS A FUNCTION OF FAN-IN/
FAN OUT

16-n5 DELAY = A OCCU RS AT 3/4,6/3,9/2 12/1
8-n5 DELAY = B OCCURS AT (1-2)/2, 4/1

"
L DEPENDS ON THE GATE
CAPACITANCE

e SIG NE400A

" " e SYV SUHL I

'" eSIG"SE8000J

"'

10 20

POWER DISSIPATION IN MW/GATE

Figure 7--8peed-power products of some bioplar and MOS circuits

functional character implementation of the modular
computer will readily allow configuration changes. The
module content and overall system configuration can
be readily changed. The characters improve the
module's MTBF because of the significant reduction
in the number of pins.

The reduced number of chip types facilitates quality
control, thereby potentially improving the module's
MTBF.

Any circuit or chip wiring technique can be used to
implement the characters. Currently, the modular
computer is planned to be implemented with TTL, 100
percent yield LSI technology. Other circuits and
technologies are being evaluated.

ACKNOWLEDGIVlENT

The research reported in this paper was sponsored in
part by the Electronics Research Center under Con­
tract NAB 12-665.

The authors express their appreciation to Mr. W. L.

Martin of Hughes Aircraft Company for his many
suggestions for improving this report.

REFERENCES

1 D 0 BAECHLER
Trends in aerospace di(!ital computer design
Computer Group News Vol 2 No 7 Jan 1966 18-32

2 A study of Jupiter fly-by-missions
General Dynamics Rpt FZM-4625 May 171966 3--159 to
3-202

3 A A VIZIENIS
Design of fault-tolerant computers
Proc FJCC Vo1311937

4 M M DICKINSON J B JACKSON G C RANDA
Saturn V launch vehicle digital computer and data ada]Jter
Proc FJCC Vol 26 1964501-516

5 G H BARNES R M BROWN M KATO
D J KUCK D L SLOTNICK R A STOKES
The I LLI A C IV computer
IEEE Trans on C Vol 17 No 8 Aug 1983

6 E J DIETERICH L C KAYE
A compatible airborne multiprocessor
In this Proc

Implementation, of the NASA Modular Computer 245

7 H E MAURER R C RICCI
Horizons in guidance computer component technology
IEEE Trans on C Vol 17 No 7 July 1968

8 E H BERSOFF E HOPE F TUNG
IEEE transactions on aerospace and electronic systems
To be published

9 F DERWIN E H BERSOFF
Modular computer architecture strategies for long term missions
In this Proc

10 R C JENNINGS
Design and fabrication of a general purpose airborne computer
using LSI arrays
IEEE Computer Group Conf Digest June 1968

11 H R BEELITZ· S Y LEVY R J LINHARDT
H S MILLER
System architecture for large-scale integration
Proc FJCC Vol311967

12 R C MINNICK
Cutpohlt cellular logic
IEEE Trans on EC Dec 1964

13 R C MINNICK
A survey oj microcellular research
Journal of the Association for Computing Machinery
Vol 14 No 2 April 1967

14 J J PARISER
Connection considerations with a view toward batch fabrication
Proc Nat Symposium of the Impact of Batch Fabrication
on Future Computers April 1965

15 J J PARISER F DERWIN J F McKEVITT
J A BURKE C P DISPARTE

Research in the effective implementation of guidance computers
with large scale arrays
First Interim .Rpt Submitted to NASA ERC Oct 1968

16 J J PA,RISER F DERWIN J F McKEVITT
C P DISPARTE J A BURKE
Research in the effective implementation of guidance computerb
w1:th large scale arrays
Second Interim Rpt Submitted to NASA ERC 1969

17 H G DILL R W BOWER K G AUBCHON
T N TOOMBS
Anomalous behavior in stacked-gate MGS tetrodes
International Solid State Circuit Confetence, Phila
19-21 February 1969

18 G R VAN HOODE
Evaluation of experience with micro-electronic integrated
circuits
TRW No 9990-6183-ROOO May 1967

19 J SEGAL
Speed/power chart for digital IC's
T4e Electronic Engineer June 1968

20 R W BOWER H G DILL K G AUBUCHON
SA TOMPS
Characterization of MOS FETs formed by gate masked ion
implantation
Given at the Internat Electron Devices Meeting Wal3h
Oct 1967

21 H G DILL
Offset gate field effect transistors with high drain breakown
potential and low miller feedback capacitance
IEEE Trans on Electron Devices Oct 1968

Project DARE: Differential Analyzer
REplacement by on-line digital
simulation

by GRANINO A. KORN

University of Arizona
Tuscon, Arizona

INTRODUCTION

While batch-processed applications of convenient,
highly developed digital continuous-system simulation
languages are now commonplace,1 ,2 such systems do
not provide the intimate man-machine intercourse
cherished in analog/hybrid simulation. The DES-I
system,2 which combined .a special simulation console
and a digital plotter with an SDS 9300 (medium­
sized) computer was, then, a pioneering effort, unfor­
tunately abandoned by its manufacturer. The only
commercially available interactive system appears
to be the IBM CSMP 1130 system which, like its
predecessor PACTOLUS,2 can be programmed from·
a simple typewriter terminal. This is an interpreter
system implemented on a small computer and thus
yields relatively quite slow execution.

The writer has felt quite strongly for some timeS that
digital on-line simulation is ready to go-we do have
simple simUlation-language programming, plus very
reasonably priced, fast digital computers, plus new
graphic displays. All that would seem to be needed was
a system design which would combine these items
(Table I), with a good deal of human-factors engineering
to make the operator happy as well as efficient. Project
DARE (Differential Analyzer REplacement), spon­
sored by the National Science Foundation at the
University of Arizona, is a continuing attempt to
develop a series of such systems.

Project DARE demonstrates all-digital on-line
simulation of dynamical systems. Each DARE system

adds a very convenient but still relatively inexpen­
sive simulation console to a small or large digital
computer and can replace conventional analog com­
puters in many applications. System equations or
block-statements and input data are entered and
conveniently edited on a cathode-ray-tube typewriter.
Solutions or phase-plane plots appear on a second
cathode-ray-tube display; system parameters and
initial conditions are readily changed for successive
runs; displayed data can be stored for comparisons;
programs and results may be printed and plotted for
hard-copy report preparation; and automatic iterative
operation is possible. With a reasonably fast digital
computer, man-machine interaction at the console
is rather -more comfortable than with even a modern
analog/hybrid computer.

DARE I is a flexible CSSL-type floating-point
system permitting relatively slow computation with
the PDP-9 computer. DARE II is a block-diagram­
based system which trades fixed-point operation for
relatively very high speed on the small PDP-9, per­
mitting, for instance, real-time flight simulation.
DARE III and DARE IV are only in the planning
stage and will implement economical and fast floating­
point simulation on a time-shared CDC 6400.

A critical study of future possibilities indicates
that DARE-type systems could permit flight simula­
tions including 40 Hz frequencies by 1975, but that
modern analog computers are still a hundred times
faster. Actual present-day practical applications, how-

247

248 Fall Joint Computer Conference, 1969

ever, employ really fast (and therefore relatively in­
accurate) analog computation $0 rarely that much
analog simulation could well give way to the more
accurate, convenient, and often more economical
digital methods demonstrated by Project DARE.

DARE I: An on-line CSSL-type system

DARE I software, written for the PDP-9 by J.
Goltz as a Ph.D. dissertation,5 produces a complete
floating-point simulation system, including the basic
monitor, editor, and loader used also by DARE II.
DARE I source language is essentially similar to the
SCI-sponsored CSSL.l Though basically equation­
oriented, DARE I will also implement user-created
analog or hybrid blocks as FOR fRAN functions.

TABLE I-A list of requirements
for an on-line digital simulation system

A useful on-line continuous system simulation
system must provide for:

1. Entry of system differential equations (in
equation and/or block; statement form).

2. Entry of data (system parameters, initial
conditions, function tables, etc.).

3. Entry of simulation parameters (frame
time, communication interval or display
sampling interval, maximum computation
time, integration routiI;W used, maximum
tolerable error in variable-increment inte­
gration routines, choice of variables for
display).

4. Editing, modification, and correction of
the above entries.

5. Display of state variables vs. the inde­
pendent variable (usually the time) and
against each other (ph~se-plane plots).

6. Preparation of hard cop~ for reports in the
form of printed tables, xy recorder plots,
or strip-chart records.

In addition, a sophisticated simulation system
must permit "simulation studies," viz.:

7. Computations based on results from multiple
differential-equation-solving runs (statis­
tics, cross-plots).

8. Iterative computation, i.e., repeated runs
with system parameters and/or initial
conditions recomputed on the basis of
preceding runs for optimization, bound­
ary-value problems).

DARE I employs the FORTRAN compiler supplied
with the digital computer and will be described in
detail in a separate paper.!>

DARE I accepts system differential equationg in first­
order (state-equation) form. These equations :are
simply typed in FORTRAN' notation on the screen
of a CRr typewriter at the right of the DARE con­
sole (Figure 1). An interactive CRr typewriter pro-

Figure I-DARE simulation console for use with a PDP-9 or
PDP-I5 computer. Programs and data are entered, edited, a,nd
modified on the CRT typewriter at right. Up to four solution
curves, or a phase-plane plot, are produced on-line on the output
graphic CRT display at left. A simulation control panel under­
neath the output display controls simulation and display, with
special push-buttons producing hard copy of programs, data, and
solutions when desired. The teletypewriter and plotter used for

this purpose are not shown.

Console switches (lower left) are sampled by the computer to
provide control inputs:

Method Switch: A rotary switch used to select the inte­
gration routine.

DT, TMAX, EMAX: 4-decade thumbwheel switches in an
adapted FORTRAN format.

The third decade reads from -5 through 0 to +5, and with
the fourth decade indicates a power of 10.

Elapsed Time: A strip of 12 lamps to indicate the progress
of computation, and to reassure the user that the eomputer
is actually operating when computation exceeds a few
seconds.

Sense Switches: 2 position switches for various functions,
determined by program.

Trace Finder: Pushbuttons to identify one of 5 trace8 on
scope display-probably by momentarily blanking it out.

Command Push-buttons (lower two rows):
Lighted pushbuttons, for purposes marked on buttons.
"Type eqns," "type data," and "select display," are indi··
cators only, offering suggestions to the user from the ,computer.
Such suggestions can also appear on the alphanumeric CRT
display.

gram proceeds to ask for problem data and simulation
parameters. Of the latter, the frame time DT, the
maximum computing time TMAX, and also the error
EMAX for variable-increment integration, can be
entered either with the CRT keyboard or by console
digiswitches, whichever the operator prefers. Console
buttons can recall selected program or data pages
to the CRT screen for editing, or cause them to be
printed out for report preparation.

As the differential-equation solution proceeds, all
state-variable values are read onto DECtape once
per "communication interval"! (typically every 10
to 50 DT). Thus any selected state variable can be
brought back for single or multiple displays and
printout; it is possible to compare a current solution
with a selected earlier solution display. Permanent
graphic records are obtained with an xy recorder and
a four-channel stripchart recorder connected to the
display.

The choice of integration routines for differential­
equation solution has been discussed and rediscussed
in many survey papers.2 ,4 All DARE systems (like
the better batch-processing systems2) offer a choice of
integration formulas. With the on-line systems, con­
sole selection of integration routine and frame time
(time increment DT) permits very convenient compari­
son of different integration methods in terms of stored
solution displays.

The flexible and convenient DARE CRT Editor
program5

•6 permits overwriting and correction, inser­
tion of text, and automatic search for lines containing
selected strings.

A SOR T jEDIT program (precompiler) sorts the
symbol string constituting the program and creates
a FORTRAN differential-equation-solving program,
which is then compiled and executed. After the first
run, data such as system parameters and initial con­
ditions may be changed on the CRT screen, and suc­
cessive differential-equation solving-runs are obtained
without recompilation. Iterative and statistical simu­
lation studies can be programmed with FORTRAN
statements.5

A new homemade graphic display7 associated with
our DARE console displays up to four variables against
time, or selected phase-plane plots. The display uses
one dual 9-bit (I8-bit) word per display point to save
memory and refresh time, can generate line segments
for curve interpolation, and shares the processor
memory through a standard PDP-9 data channel.
This permits fast display refreshing with a minimum
of time-wasting instructions.

Project DARE 249

DARE II: A fast block-macro system with
an efficient precompiler

The DARE I system demonstrates the convenience
and power of a scale-factor-free, floating-point, equa­
tion-oriented, on-line simulation at relatively low
computing speed. But we also wanted to demonstrate a
much faster on-line simulation system, which would
permit true real-time flight simulation, still using the
same small and inexpensive digital computer. With
the PDP~9, this meant giving up floating-point opera­
tion. DARE II machine equations must be scaled
(much like those in analog computers) between -1 and
1 machine unit; with the PDP-9, ones-complement
coding is employed. Overloads are detected and dis­
played by a special subroutine.

To provide high execution speed, DARE II uses
the PDP-9 macro-assembler to create macros corre­
sponding to analog computing blocks, an approach
first used by Gaskill and McKnight in their batch­
processed DAS system on the IBM 7090.2 Our system
permits especially convenient block programming,
with each block named by type and by the actual
output-variable name. The example of Figure 2 is
represented by

SUM

COS

MULT

FI, SIDOT, S2DOT

COSA,A

SIDOT, COSA, RDOT

(1)

where the first argument of each block-macro represents
the block output. Note the convenient mnemonics used.

DARE II block-statements and data are entered
on the dual-CRT console used also with DARE I and
can be edited, modified, and printed out with the aid
of the 'same string-processing editor.6 DARE II
simulations of many small systems (second to sixth
order) are, however, so fast that repetitive simulation
and display at two to 20 computer runs per second is
possible. Keyboard entry of parameters is then too

52 DOT
FI

ROOT

Figure 2-A block diagram

250 Fall Joint Computer Conference, 1969

--
slow for CR T demonstration, of parameter-change
effects,. and a "diddle knob" or joystick permitting
rapid changes of a keyboard-addressed parameter will
be added. The knob or joystick will control incremen­
tation of an up-down counter holding the parameter
value.

DARE II software incorporates substantial improve­
ments over the DAS system. Block-macros may be
typed in any order. An optimJizing precompiler sorts
statements like those in our example (1) before as­
sembly, so that each block of the sorted program can
operate on already computed quantities:

COS COSA, A

MULT

SUM

SIDOT, COSA"RDOT

Fl, SIDOT, S2DOT

(2)

This will then permit, say, integration of the out­
put Fl. DARE I I next employs conditional assemblylo
to completely eliminate the assembly of code for redundant
storeJetch pairs corresponding to outputs and inputs of
interconnected blocks. Thus, the first macro COS COSA,
A in (2) would ordinarily end with

STORE COSA (3)

while the second macro MULT SIDOT, COSA, RDOT
would start with

FETCH COSA (4)

DARE II automatically cancels the redundant
pair of instructions (3), (4), although (3) would be
kept if it were needed elsewhere in the program. The
pair

STORE SIDOT, FETCH SIDOT

will be similarly cancelled, unless SIDOT is needed
elsewhere. The DARE I I precompiler program is specif­
ically designed to permit elimination of as many track­
store pairs as reasonably possible. In addition, condi­
tional assembly also eliminates code for unused multi­
input-summer inputs and similar unused options.
As a result, DARE II produce8 code which i8 E1s8entially
a8 efficient a8 well-written PDP-9 machine-language
code and permit8 relatively very fast execution (Table II).
If core storage is scarce, DARE II block macros can
be subroutine calls to save core at the expense of some
computing time.

Although the basic PDP-9 instruction set is quite
limited (no byte manipUlation, spare registers, or add-

TABLE II-Estimated computation times for a typical aerospace-vehicle simulation
(TIMES are in /.lsec except as noted)

OPERATION NUMBER
REQUIRED

x + y + Z 100
XY 8'0
AX 60
F(X) 8
SINX or COS X 10

TOTAL-ONE
DERIVATIVE
EVALUATION
Two Derivative
Evaluations ~

RK2 Integration 12

Total Frame ~
Time DT
Max. Frequency
at 25
Frames/cycle

DARE I DARE II DARE III/IV 197X
PDP-9/FORTRAN PDP-9/Macro-assembler CDC 6400 System

(Floating-point) (Fixed-point) (Floating-point) (Floatin~~-point)

XI000 = 100,000 X5 = 500 X3.4 = 340 XO.2 = 20
X700 = 56,000 X24 = 1920 X7 = 280 Xl.2 = 961
X700 = 42,000 X21 = 1260 X7 = 420 X1.2 := 72

X4000 = 32,000 X52 = 416 X80 = 640 XI0 := 80
X600 = 60,000 X60 = 6002 XI00 = 1000 X15 := 150

290 msec 4.7 msec 2.7 msec 0.46 msec

580 msec 9.4 msec 5.4 msec 0.9 msec
X3000 = 36,000 X120 r 1440 X25 = 300 X4 = 48

616 msec 11 msec 5.7 msec 1.4 msec

0.07 Hz 4 Hz 7Hz 30 Hz

into-memory), many analog-computer blocks can be
emulated quite nicely. As an example, a single-variable
function with 256 uniformly spaced breakpoints can
be formed by table lookup and interpolation in 50
p'sec, and a two-variable function with 16 X 16
breakpoints can be formed in 120 p.sec.9 It is also readily
possible to add to the DARE II macro-block reper­
toire; one can, for instance, create blocks which pre­
cisely correspond to the computing elements of any
given analog computer.

Like DARE I, DARE II offers a choice of integra­
tion routines. Because PDP-9 lacks true index registers,
the second-order Runge-Kutta routine4

k+1X = kX + Y2(K1 + K2)

Kl = DT F(kX, k DT)

K2 = DT F[kX + K17 (k + 1) DT]

(5)

is probably the most useful, although it requires two
evaluations of the derivative F(X, T) at each inte­
gration step. To implement Eq. (5), our program does
not first evaluate all n K1's and then proceed to add
half of each to its kX, as might be done with a real
index register. The program instead computes each
kX + Y2 Kl and kX + Kl before the next Kl is evalu­
ated. When this is finished for all X, the program sets a
tally switch to mark the second part of the Runge-Kutta
routine, increments the independent variable, and
uses the kX + Kl to produce the K2 and the k+1X
as each derivative is computed. All integrand accumu­
lation is. done in double precision to reduce roundoff­
error effects.

With suitable interrupts from a real-time clock, a
DARE II simulation could be readily linked to a
hybrid-computer setup and/or to real system hardware
(autopilot, operator positions). Note, in this connec­
tion, that the macro-assembler system would cir­
cumvent the reentrancy problems usually encountered
in attempts to service multiple system interrupts with
FORTRAN programs.3

A look into the future: DARE III and DARE IV

The DARE I and DARE II systems are expected
to be completed in 1969. A useful and readily feasible
next step could employ a modern 24 to 36 bit machine
somewhat larger than our PDP-9 (e.g., SEL 840B,
SDS Sigma 5, DEC PDP-10) to speed DARE I exe­
cutIon, or to add floating-point capability to DARE II.
Such a system would cost between $120,000 and
$20.0,000, which still matches the cost of a comparable
analog-hybrid computer. Far more interesting from

Project DARE 251

the point of view of economy as well as computing
speed, however, is the possibility of time-sharing a
substantially larger central digital computer, such as
a CDC 6400. In fact, economical operation of even
a medium-si~ed digital machine mainly intended for
simulation should provide for time sharing with a
"background" batch-processing program.

Our proposals for follow-on projects, then, envisage
implementation of DARE I-and DARE I I-like simu-.
lation systems with the University's CDC 6400, using
the eX'isting PDP -9 / console combination as a remote
user's station. 6400 activity would be restricted to
very fast and efficient compiling and execution of
differential-equation-solving programs, while the string­
processing CRT editor, data entry and display, and
also some iterative and statistics routines in slow
simulations, would be performed by the small proces­
sor associated with the user's console. It is interesting
to note that the simulation programs and data sent
to the central computer involve only character strings
transmitted at type-in rates. Alphanumerical data
from the central computer do not require much higher
rates' extensive numerical tables could be line-printed ,
at the central installation. Each DARE CRT display,
which is refreshed by the console processor, involves
at most 2400 9-bit data samples. For typical 10 sec
flight simulations, this would require transmission of
21,600 bits every 10 sec, or less than 2500 bits/second,
so that a telephone line would do. Such operation is thus
ideally suitable for remote time-sharing, provided
that the 10-second-plus-overhead computer runs can
be made available without excessive delays.

Based on initial DARE II experience, smaller simu­
lation problems would be solved much more rapidly,
say in 0.1 sec of central-processor time. Repetitive
console displays demonstrating parameter-change ef­
fects would not be possible with reasonable data-trans­
mission rates (nor would many such demonstrations
be economically feasible)! Our proposed time-sharing
scheme is, however, ideally suited to fast iterative
simulation or statistics-taking by the central processor
In this type of operation, only successive criterion­
function values, accumulated statistics, or similar
numbers, need to be transmitted and displayed during
the iteration runs, and low transmission rates would
again suffice.

In a console simulation system specifically designed
for remote time sharing, our PDP-9 is really unneces­
sarily elaborate and could very effectively be replaced
by the less costly 8K PDP-15, with DECtape but
without extended arithmetic. Such a system, including
very reasonable display facilities, would cost well

252 Fall Joint Computer Conference, 1969

under $50,000. An even less e~pensive system could
be readily based on an even smaller 12- to 16-bit com­
puter. This would save another $10,000; but the 18-
bit word length of the PDP-15: is especially efficient
for display-refreshing purposes and adds to the stand­
alone capabilities of the console. Note, in this con­
nection, that our own PDP-9-based console could
employ DARE I for complete problem debugging
before ever using CDC 6400 time ..

With the large central computer and its relatively
efficient compiler available, the proposed DARE III
and DARE IV systems corresponding the the FOR­
TRAN -based DARE I and the assembler-based DARE
II, may well merge into each other. The multiple
indexing needed for efficient implementation of inte­
gration routines may well be done best by the CDC
6400 FORTRAN compiler, while derivative computa­
tions would probably still be executed more efficiently
by an assembler-based system employing conditional
assembly, as in the DARE II scheme.

Digital vs~ analog/hybrid simulation: Computing-speed
considerations

Table II lists detailed estimat~s for various digital
computation times required in a typical medium­
sized aerospace simulation. Our example involves 12
state-variable-derivative integrations, 100 three­
term additions, 140 products, and 18 functions of one
variable. The DARE I and DARE II systems are
implemented on a Digital Equipment Corporation
PDP-9 (one J,Lsec cycle time). This machine was chosen
because it has an 18-bit rather than a 16-bit word
length, although some of the n¢wer 16-bit machines
have much better instruction sets. The PDP-9 FOR-

Figure ~-·DA HE console in oppration with the PDP-9

TItAN compiler appears to be designed mainly to
save core storage a:ld produces relatively very slow
execution. At a reasonably conservative 2Ei frames
(time increments DT) per period, the resulting 616-
msec frame time for our aerospace simulation would
permit the DARE I system to produce sinusoidal
oscillations at 0.07 Hz. Speedwise, \ve see that the only
differential analyzer our DARE I system replaees
is an old-fashioned Bush or General Electric mechanical
differential analyzer!

A notable and inexpensive improvement in this
situation is afforded by the fact that several PDP-9-
sized digital computers are already available with
hard\vare floating-point arithmetic. No such option
is available with the PDP-9, but \ve ourselves have
designed a current-mode logic, floating-point arith­
metic unit for the PDP-9 which, if and when installed,
would yield a speed improvement by a factor of at
least 15 for the DARE I system, so that our simulated
aerospace vehicle could wiggle at about 1 Hz, floating­
point.

Our block-oriented DARE II system, also running
on the PDP-9, was specifically designed to demonstrate
relatively high-speed, real-time flight simulation on
the inexpensive computer. The price paid fot· this is
fixed-point operation, but DARE II's ejllicient execu­
tion and 11 -msec frame time permits about .4 Hz in the
aerospace-simulation example.

An ,improved 18- to 24-bit stand-alone computer
of the future could probably produce comparable
floating-point simulation at 4 Hz. As we have noted,
though, the DARE III/IV systems will implement
the economically much more important goal of time­
shared operation ·with a large central digital computer,
in this case the CDC 6400. As we have seen, very
efficient and still relatively machine-independent exe­
cution will be obtained by FORTRAN integration
and macro-assembler implementation of derivative
computations, although many operators may prefer
an entirely equation-oriented approach. In either
case, Table I indicates estimated frame times of the order
of .5.7 msec, thus permitNng about 7 Hz operation at
,fi.5 frames per cycle. Note that th'l:s system would provide
floating-point aerospace-vehicle simulation in real time.

The last column of Table II extrapolates the DARE
III/IV system to a hypothetical 1970X digital com­
puter permitting an approximately fivefold increase
in computing speed through faster hard\vare and/or
multiprocessing, instruction look-ahead, or hard-wired
subroutines. Thi8 is in no sense a way-out extrapolation,
since digital-computer projects now on the drawing
boards already plan for a fifty-fold speed increase. Proba-

bly the most time to be gained in simulation calcu­
lations would be through the availability of fast scratch­
pad memories or multiple registers, which would per­
mit derivative computations with as few core-memory
references as possible; this will already be approximated
in the assembler version of our CDC-6400 simulation
program. Additional computing bandwidth would
rea<#ly be obtained with computer systems employing
parallel multiple processors, which would fit nicely
into differential-equation solving schemes. Note, how­
ever, that no manufacturer of large digital computers
would even consider a special design for continuous
system simulation, so that all improvements must
make, as it were, incidental usage of developments
in large-scale scientific and business computers.

Let us now consider the computing-speed situation
on the analog/hybrid computer side. One or two ana­
log computers available for sale in 1970 will offer not
only 0.02 percent of half-scale static accuracy, but
also 0.1 percent of half-scale error in linear compu­
tations at frequencies up to 1 KHz; multiplication
and function generation are somewhat less accurate.
In applications where such component accuracies
suffice, even existing analog computers are thus seen
to have a 20:1 speed advantage over the fastest
digital-simulation systems. This bandwidth advantage
is moreover, not likely to decrease within the next ten
years; since 1965, improved ± 10-V hybrid computers
developed in our laboratory have operated with errors
below 0.2 percent for linear and one percent for non­
linear operations up to 10 KHz, at perfectly reasonable
cost.l1,12

Digital versus analog/hybrid: Economics

Our DARE system is implemented on about $90,000
worth of PDP-9 and simulation console; another
$25,000 could be very advantageously spent on a
disk to speed compilation. When implementing the
fixed-point DARE II language, our stand-alone system
is roughly comparable to a modest 150-amplifier hy­
brid computer of 1960 vintage, say, an Electronic
Associates 231-R together with a small digital com­
puter used for potentiometer setup, static checking,
and some function generation.

At a more or less comparable price, the on-line
digital system is incomparably more convenient to
program, check out, and operate (this is, of course,
doubly true of the floating-point system). We also
have, of course, all the possibilities of the 16K PDP-9
with dual display and can produce floating-point check
solutions with DARE 1.

Our PDP-9 installation is, however, mainly intended

Project DARE 253

as a demonstration. A more useful stand-alone instat
lation, based perhaps on the SDS Sigma 5, would
roughly double our cost, but would permit real-time
floating-point flight simulation,plus some foreground­
background time sharing. Although such a system
would be economically competitive with a 1970 ana­
log/liybrid computer in many applications, the full
economic potential of on-line digital simulation will be
realized only in a time-sharing system. The tremendous
advantage of the time-sharing system is, simply,
that the central processor is free for other business
while the simulation user looks at his console-refreshed
display, or simply scratches himself. We have already
seen that the communication requirements for time­
shared simulation are quite small.

I believe that the foregoing considerations clearly
indicate the area of future analog/hybrid vs. digital
simulation competition. In applications where analog /
hybrid and digital simulation systems compete at equal
computing speeds, i.e., in most real-time or "slow"
simulation, the new digital systems will win overwhelming­
ly both on economic and on human-engineering grounds.
Since, on the other hand, reasonably complex nonlinear
digital simulations will not be able to run at frequencies
much in excess of 100 Hz, faster simulation will still
belong on analog/hybrid computers.

A crucial question confronting the simulation com­
munity (and specifically the analog-computer industry)
is, then, this: where, and how large, are the application
areas of really fast analog/hybrid computation? The
most immediately important would seem to be:

1. Parameter and functional optimization, including
trajectory optimization.

2. Random-process simulation, including optimi­
zation of statistics, communication-system sim­
ulation, and parameter-tolerance studies.

3. Solution of partial differential equations, in­
cluding ,techniques requiring multiplexing of
analog computing elements.

It is in precisely these applications that the very
large number of computer runs needed may give the
analog/hybrid computer a measure of economic ad­
vantage even over digital batch processing. Even
here, only important and frequent applications could
tilt the balance away from time-shared digital simu­
lation, which saves much analog-computer scaling,
setup, checkout, and "head-scratching" time, not to
speak of computer amortization. Cost estimates for
different simulation methods sometimes omit these
"hidden" costs.

I wonder, finally, how much practical high-speed

254 Fall Joint Computer Conference, 1969

analog/hybrid computation is really done in the aero­
space, chemical and nuclear-energy industries, which
are, at this time, the principal consumers of continuous­
system simulation. Our own laboratory's work on the
design and applications of very fast analog/hybrid
computers,I1,12 for instance, has always elicited much
polite interest, but very little imitation. By contrast,
much current aerospace work involves "slow" or real­
time hybrid simulation of aerospace systems, with the
digital computer doing housekeeping functions such
as static checking, plus function generation and, per­
haps, some accurate trajectory integration. The re­
sulting accuracy and software problems combine all
the worst features of both anal0g and digital compu­
tation; the main reason for employing hybrid simula­
tion at all is either the existence of actual hardware
in the loop or some 20- to 50-Hz components due to
hydraulic servos and/or aeroelasticity. This type of
hybrid simulation can be swalloiWed by future on-line
digital systems like Jonah by the whale. For the 1970s,
the simulation community would be well advised to
include on-time digital simulation in its planning,
together with some careful reconsideration of faster
analog/hybrid techniques.

ACKNOWLEDGMENTS

The writer is grateful to the National Science Founda­
tion for supporting Project DARE under NSF Grant
GK 1860, and to Dr. R. Mattson, Head, Electrical
Engineering Department, The V niversity of Arizona
for contributing University facilities. Project DARE
software and hardware are being, developed by a group
of graduate students in the Electrical Engineering De­
partment, including H. M. Aus, D. Chinnock, J. Goltz,
T. Liebert, J. PuIs, and A. Trevor. Professor J. V.
Wait is co-principal investigator.

REFERENCES

1 SCI SOFTWARE COMMITTEE
The SCi continuous-system simulation language
Simulation Dec 1967

2 R D BRENNAN R N LINEBARGER
A survey of digital simulation
Simulation Dec 1964

3 B JOHNSON
Real-time digital simulation
Proc IBM Symposium on Digital Simulation 196,1

4 P R BENYON
Review of numerical methods for digital simulation
Simulation Nov 1968

5 J GOLTZ
The DARE Ion-line continuous-system simulation system
ACL Memo 169 Electrical Engineering Dept
The U niv of Ariz 1969

6 A PDP-9/Cathode-ray-typewriter editor
ACL Memo 164 Electrical Engineering Dept The Univ of
Ariz 1968

7 G A KORN et al
A new graphic display/plotter jor small digital computers
Proc SJCC 1969

8 A TREVOR J V WAIT
D IFF E: Anon-line differential-equation solving routine w:ith
automatically scaled display
ACL MEMO 153 Electrical Engineering Dept the Univ of
Ariz 1968

9 H M AUS G A KORN
Table-lookup /interpolation function generation for jixed-point
digital computations
IEEETEC August 1969

10 M D McILROY
Macro-instruction extensions of compiler languages
CACM April '1960

11 G A KORN
Progress of analog/hybrid computation
Proc IEEE Dec 1966'

12 B K CONANT
A new solia-state iterative differential analyzer making maxi­
mum·use of intergrated circuits, Proc. FJCC 1968.

MOBSSL-UAF -An augmented block

structured continuous system silDulation

language for digital and hybrid

computers

by M. J. MERRITT and D. S. MILLER

USC School of Engineering
Los Angeles, California

INTRODUCTION

The motivation for the development of digital simu­
lation languages may be seen by tracing the thoughts
of two widely different people preparing to analyze a
continuous dynamic system. Both are experienced
engineers and mathematicians, but the first is a novice
programmer with little or no FORTRAN experience.
Both have access to one or more digital computers.
The novice's thoughts might be as follmvs: iiI do not
know FORTRAN and I'm not really interested in
learning it just to solve t.his problem. I have heard
that digital continuous simulation languages are simple
and easy to use. I'll try one". The experienced program­
mer, on the other hand, might think, iiI only need a
few quick solutions, why bother with a FORTRAN
program. I'll use a simulation language for conven­
ience."

Clancy and Fineberg,l in 1965, compiled a compre­
hensive list of some 31 simulation languages. One of
these would fit the needs as well as the computer of
both individuals. The novice is l(,okir~g for a simple
easy to use language. The experienced programmer is
looking for one that compiles and runs efficiently while
providing as much flexibility and convenience as
possible. Since none of the presently available languages
achieve the same running efficiency as a FORTRAN
program written specifically to solve the same problem

its conveniences must weigh heavily in the program­
mer's mind.

If a language is to satisfy the needs of these, as well
as a broad spectrum of users in between, then it must
possess the following characteristics: _

1. It must be easy to learn.
2. Its language statements must be simple and

easy to interpret.
3. It should not require any knowledge of FOR­

TRAN.
4. It should allow on-line interaction during both

problem preparation and problem execution.
5. The language should contain sufficient compu­

tational control, and input/output elements so
that only exceptionally complex tasks require
FORTRAN or other non-simulation language
statements.

Of the \videly distributed languages, PACTOLUS2
and IBM 1130 CSl\'ipa come the closest to meeting
these requirements. Unfortunately, they lack many
necessary computational and control functions. The
popular l\IIDAS4 language is not interactive, while
~\1Il\/nC, DSL 90 and 360 CSl\/fps are difficult to learn
and very FORTRAN oriented.

All of these requirements may be met by combining
two things: a computer graphics terminal, and an

255

256 Fall Joint Computer Conference, 1969

augmented block structured simulation language. The
graphics terminal for its interactive communication
abilities and the block structured simulation language
because of its simple language statements. Further,
the graphics terminals ability to display large quantities
of instructional and reference information quickly,
allows it to guide the new programmer through each
st.ep of the problem preparation.

A block structured language may be visualized as
a collection of input-output boxes (see Table 1), each
of which carries out a basic mathematical operation.
The user's inputs, the language statements, describe
the way in which these pre-defined functional blocks
are to be inter-connected. A typical language statement
might be: 54, M, 1,7 which might mean: the output of
the block element designated as # 54 is the product of
the outputs of the block elements designated # 1 and
7. The advantage of block structured language
(MIDAS PACTOLUS, 1130 CSMP) lie in the simplicit
of their language statements .Their major disadvantage
is their rigidity, i.e., the u~r is restricted to those oper­
ations which may be mechanized with the available
mathematical and control operations. This disad­
vantage may be overcome by constructing process
oriented block elements which cause higher order
mathematical operations to be carried out. The Gra­
dient Processor and Disk Input/Output block elements,
described below, are two such elements.

.The MOBSSL language

MOBSSL-UAF, which stands for Merritt and
Miller's Own Block Structured Stimulation Language­
Unpronounceable Acronym For, is a descendent of
MIDAS through PACTOLUS and IBM 1130 CSMP
I t differs from its antecedents in the following ways:

1. Continuous and iterative gradient modeling
and optimization procedures are performed by a
Gradient Processor block element.

2. Analog to Digital and Digital to Analog con­
version block elements facilitate closed loop
hybrid computation, On-line interaction and
control of analog plotting devices: x-y plotters,
strip chart recorders, memoscopes and oscillo­
scopes.

3. A Disk output block element allows up to 10
block outputs to be written in a pre-defined
disk data set. A Disk Input block element reads
up to 10 inputs from a pre-defined data set.
Utiljty subroutines allow these data sets to be
referenced by FORTRAN programs.

4. Iterative and parametric computatjons are
facilitated by allowing control cards to specify a
SIlVlULATION MODE. When a solution is
completed, the SIMULATION l\10DE deter­
mines which of the following is to occur:

STOP-terminates the job.

PCHG--read data cards and modify pat'am­
eters and initial conditions ac­
cordingly. The last data cf~rd

specifies the SIMULATION
1\10DE for the next solution
which is begun immediately.

RUN-begin a new solution immediately.
Successive solutions may be
modified by on-line control or the
gradient and iterative block ele­
ments. This mode con1iains no
exit and must be terminated by
operator intervention or by forcing
an error exit, i.e., take the square
root of a negative number.

Process oriented block elements, like the Gradient
Processor and the Disk Input/Output blocks, make it
possible for unsophisticated programmers to study
complex dynamic systems, modeling and optimization
problems, and exercise on-line control without first
learning the FORTRAN language.

The communication and interactive features of
MOBSSL, the Hybrid block elements and the SIMU­
LATION MODE, were dictated by the computational
facilities of the System Simulation Laboratory at the
University of Southern California. In this laboratory,
each user receives ten minutes of computer time on a
first come, first served programmer present baBis. This
period is too short to encourage the use of the console
typewriter for communication purposes. Instead, the
user may read pre-planned parameter chang.es from
punched cards, or operate control switches and po­
tentiometers connected to the Hybrid block el.ements.
The effects of these changes are observed in the line
printer listings or on analog displays operated by the
Hybrid elements.

The gradient processor

Optimization and modeling of synamic dystems mn.y
be re-formulated as a search for the extrema of a
scalar functional of a vector with free parf~meters.

MOBSSL-UAF 257

TABLE I-Definition of MOBSSL elements

MOBSSL BLOCK DIAGRAM
ELEMENT TYPE TYPE SYMBOL DESCRIPTION 8 COMMENTS

CODE

BANG-BANG B

DEAD SPACE D

EXPONENT E

* ~~ F
GtNERATOR

GAIN G

HALF POWER

* INTEGRATOR

* JITTER

CONSTANT

H

J

K

e,
e2

e
3

Eb..--- +1

el~ -el
-1-----

eo: - I - 00 < e I < 0

e : 0 e: 0 o I

~ e, D n

P
p. E

eo
n

P3

el~
. ~

el~

I
eo

V I
1

I I

Ip
2

Ip
I

e,

e : +1 o

eo:el-~
e : 0
0

eo: e, -P,

p.~O

e : e (~ el + P2 e2 + P3 e3)
0

eo: F(e,)

0< e<+oo
I

-00< el ~ P2

P2 < el < ~

~ ~ e,<+oo
P2 ~ 0

TSLOPE=~
- el eo: PI el

e > 0
1

~_eo Random Number Generator
~ Generates random number between ±.I

-1~e~+1 o

258 Fall Joint Computer Conference, 1969

------------------------------------.~----------------
TABLE I-Definition of MOBSSL elements

r---------..-M-O-B-S-SL----r--------r--------------'--]

ELEMENT TYPE TYPE BLOCK DIAGRAM DESCRIPTION 8 COMMENTS
SYMBOL

~========~~C=O=D=E==~============~===========================
LIMITER

MAGNITUDE

NEGATIVE
CLIPPER

OFFSET

POSITIVE
CLIPPER

QUIT

RELAY

* STORAGE

L

M

N

o

p

Q

R

S

Ion 0 e~ PI

e3

~ e
2

el

I

e
l liEtttl~ ez St~~r e3 T 1

P2 P3

eo = P2 -00 < el <P2

eo = el P2 ~ e I < ~

eO=P
1

~~el<+a:)

PI~ P2

-00 <: el~O

0< e <+00
I

eo = e I - 00 < el < 0

eo = 0 0 5; e I 0(+ co

e2~l el > e2 ===:> QUIT

¥-~' QUIT el el~ e
2
=#> QUIT

!ifc':.~-~ (TERMINATE
~~~-= RUN) 

Quit element terminates the run at 1the 
end of the DT step in progress 

e
3 ~eo 

eo= e
3 

-00 <: e<O 
I 

e2 eO=e2 O~ e
l 
< +00 

el--, SPDT 
Unilateral Relay 

(01 
Ena bles block outputs from end (TF) of a 
given run (determined by P2 ) to be 

stored, that is, continually available for 
the succeeding P3 runs 
eo(run I) =~ 

eo~un (n+l)] = el[run(n)] + e
2
[run( n)] + 

TF TF 
eJun(nU TF j,f (n-P2 ) MO DR =0 3 

eo~un(n+I)J= eo~un(n)]TF if (n -P2 ) MOD P3 >O 



MOBSSL-UAF 259 

TABLE I-Definition of MOBSSL elements 

MOBSSL BLOCK DIAGRAM 
ELEMENT TYPE TYPE SYMBOL DESCRIPTION 8 COMMENTS 

CODE 

* TIME PULSE 
GENERATOR 

* UNIT DELAY 

* VACUOUS 

WEIGHTED 
SUMMER 

MULTIPLIER 

* WYE 

* ZERO-ORDER 
HOLD 

SUMMER 

T 

U 

V 

w 

x 

Y 

Z 

+ 

~~---4----~----~·t 

f4- PI ---- PI ...... f4- PI--
Generates Impulse train of unit amplitude 
and period P, which starts when e,~O 

(to delay start of pulse train keep e, 
negative ). 

eo(t) = PI t =0 Max. no. of unit 
~ delays =75 
el~() eo(t) = eo(t- 6t) t>O 

Used as a delay element and in conjunc­
tion with Z element for sampled data 
systems and difference equation 
computa t ions 

e =P t=O 
~Ol 
~ Used in conjunction with WYE element 

for implicit funct·ion generation 

~---~ 
Logical branch element used in implicit 
function generation 

eo= PI if t =0 and e2 ~O 

eo=e l e2 >O 

eo unchanged e2 ~ 0 

eo= ±el ±e2 ±e 3 

This is the only element that accepts 
negative block numbers. 



260 Fall Joint Computer Conference, 1969 

TABLE I-Definition of MOBSSL elements 

l===========~M=O=B=S=S=L~B=L=O=C=K==D=IA=G=R=A=M=*========================= ] 
ELEMENT TYPE TYPE SYMBOL DESCRIPTION B COMMENTS 

CODE 

e, 
DIVIDER 

INVERTER 

POWER 

SINE 
( DEGREES) 

SINE 
(RADIANS) 

COSINE 
(DEGREES) 

COSINE 
(RADIANS) 

TANGENT 
(DEGREES) 

** 

SO 

SR 

CD 

CR 

TO 

eo = -e e2 ~ 0 
2 

If e
2 

= 0, program interrupt occurs ond 
360 supervisor generates message 
indicati ng exponent overflow except ion 

eo 

e e =(e) 2 o , e>O , 
e, ~ If e,~ 0, problem processing is terminated 
ez~ and 360 supervisor generates error 

message indicating an attempt to t()ke 
10 arithm of a number S 0 has occurred 

Inputs in degrees 

eo = SIN (Pie, +P2e 2 +P3e3 ) 

Inputs in radia ns 

eo = COS ( Pte, +PZe2 + P3eJ 

Inputs in degrees 

eo = COS (P,e, +PZe2 +P3e3) 

Inputs in radians 

eo = TAN (P,e, +PZe2 +P3e3 ) 

Inputs in degrees 



MOBSSL-UAF 261 

TABLE I-Definition of MOBSSL elements 

MOBSSL BLOCK DIAGRAM 
ELEMENT TYPE TYPE DESCRIPT10N S COMMENTS 

CODE SYMBOL 

TANGENT 
(RADIANS) 

COMMON 
LOGARITHM 

NATURAL 
LOGARITHM 

ARCSINE 
(DEGREES) 

ARCSINE 
(RADIANS) 

ARCCOSINE 
(DEGREES) 

ARCCOSINE 
( RADIANS) 

ARCTANGENT 
lDEGREES) 

ARCTANGENT 
.( RADIANS) 

TR 

LG 

LN 

AS 

IS 

AC 

IC 

AT 

IT 

I nputs in radio ns 

Bose 10 

eo = LOGE ( Pie I + P2e2 +P3e3) 

Base E 

Output in degrees 

Output in radians 

Output in degrees 

-, 
eo = COS (P,e, +P2e2 +P3e3 ) 

Output in radians 



262 Fall Joint Computer Conference, 1969 

TABLE I-Definition of MOBSSL elements 

MOBSSL ] 
ELEMENT TYPE TYPE BLOCK DIAGRAM DESCRIPTION 8 COMMENTS 

CODE SYMBOL 
?=======t=====:=*==~=====:= 

ANALOG 
to DIGITAL 
CONVERTER 

DIGITAL 
to ANALOG 
CONVERTER 

MALE 

AD 

DA 

el 

~2 

e
3 

~ A-D n eo 

~ el D-A n 

~ 

eo 
P2 n 

P3 

eo = eAD~p 
1 

eAoc'II'p < 100.0V' 
I 

e
l 
< 100.0 

--
~~~ Used in conjunction with P block to 
~ produce osculations.

For additional details see page 74310

e. ~ Accepts only cJ block as input.
10

Produces more blocks.
FEMALE [)

~------------~--------~---------------4--------------------------------------,--------.
*

PI Cf~
:~~ 1-5 ~

SPECIAL I
ELEMENTS 2

3
4
5

e3

Consider the modeling problem shown in Figure 1.
The task is to select those values of the parameter
vector, a ,which result in minimizing the output of the
Criterion Function Evaluator. The integral squared
difference between the model outPB.t and the output of
the unknown system is often selected as the scalar
criterion function. The Gradient Processor, GP, block
element controls the systematic variation of the param­
eter vector, a, so as to locate the desired minima.

Let the criterion function or cost function which is

User suppl ied Fort ran subroutines not
restricted to 3 inputs, 3 parameters and I
output. Inputs and outputs of all blocks
+ all MOBSSL variables (T,~T, nOT,
TSAMP, etc.) are available. Approximately
1100 words of core available for this
purpose.

to be extremized be denoted as 4>(O!1, •• • ,an) or just
4> (a) . If 4> is a non-linear function of the para.meter
vector, (x, as it usually is, then iterative search pro­
cedures must be employed to find the extrema. Of the
procedures described by Bekey and Karplus,6 the most
often used is the method of steepest ascent. The Gra­
dient Processor, GP, block element mechani~~es an
iterative form of the method of steepest ascent de­
scribed below.

The gradient of the criterion function on the jth

al +1

CRITERION
FUNCTION
EVALUATOR

Iuser suppliedl
• information.

GP

GRADIENT PROCESSOR

Figure 1-Application of the gradient processor element
to parameter identification

iteration £lcf>i, in the cf>XO'lX, •• • ,xan space may be esti­
mated by perturbing each parameter aj by an amount
£la+ i and £la-I:

'Vc/J' =
c/J(Olli, 0/2 i , ... " a"i + AOI,,+) - c/J(al i , a2i , • ", a"i - Aa,,-)

This computation requires 2n solutions of the
equations which determine cf>, with appropriate cyclic
control of the parameter vector a. At the conclusion
of the 2n solutions, the gradient vector, Vcf>, is computed.

Let the ith 'estimate of the parameter vector be
denoted by a i • Let 0° be any arbitrarily selected set
of parameters, then the successive estimates of the a

are computed from

where M i is an n by n diagonal matrix of the form

MOBSSL-UAF 263

The m; are positive if a maximum of cf> is sought
(steepest ascent) and they are negative if a minimum is
sought (steepest descent). The magnitudes of the m;
may bo used to restrict the size of each parameter step
as follows:

Let I\£la i l\u, the unnormalized parameter step, be
defined as

Let MSL be a pre-defined constant, equal to the
largest parameter step, £la, desired.
If

then

otherwise

where the k; are constants supplied as inputs to the
GPblocks.

As with all iterative procedures, it is difficult to
determine when to stop the iteration. The Gradient
Processor block element offers three separate stopping
options, all controlled by input parameters:

1. if the number of iterative cycles exceeds a
specified number the simulation is terminated.

2. if cf> is being maximized and exceeds a given
value, or cf> is being minimized and is less than a
given value then the simulation is terminated.

3. If \ cf> (a i+1)_cf> (a i) \ is less than a given constant,
the simulation is terminated.

At the conclusion of each iterative cycle, a total of
2n + 1 runs, the values of the new parameter vector,
a i+1 the old criterion function, cf> (a i) and the new
criterion function cf>(aiH) and the magnitude of the
stopping criteria being used are printed. Additional
listings of the gradient vector, and individual parameter
changes both before and after normalization are
optional.

MOBSSL will accept up to 11 GP blocks. They
must all be assigned sequential block numbers. The

264 Fall Joint Computer Conference, 1969

--

Figure 2-MOBSSL block diagram for second-order
system damping ratio example

first GP block is not associated with a parameter, but
accepts inputs and constants used to control the se­
quencing of the remaining GP blocks. The outputs of
the last n GP blocks are the values of the n parameters
aI, ... , an where n::; 10. A bingle parameter modeling
problem is shown in Figure 2.

The functions of the GP blocks inputs and param­
eters are given in Table II.

Parameter identifi.cation using the GP element

The damping ratio, t, of a linear, second order
system is not known. The response of this second order
system to a step input is available. A model equation is

The actual damping ratio, r, of the system was set to
0.7.

The MOBSSL program to carry out the iterative
steepest descent minimization of the integral of the
absolute value of the difference between the two step
responses is shown in Figures 2 and 3. The initial value
of the parameter al is selected as 0.4. The MOBSSL
results for the first iteration are shown in Figure 4.
The first column of tabular data shown is time, the
second is the output of the 2nd GP block, aI, the 3rd
column is the output of the Criterion Function Evalu­
ator, which is ¢(a) at the end of a solution, the 4th
column is the step response of the system containing
the unknown parameter, and the :last column and plot
show the step response of the model containing par­
ameteral.

As can be seen from these results, aI, started at 0.4
and after one iteration had reached 0.6455, heading
towards 0.7.

TABLE II-Gradient processor inputs and parameters

FIRST GP BLOCK
INPUT 1
INPUT 2

INPUT 3
P ARAl\1ETER 1

PARAMETER 2

PARAMETER 3

The Criterion Function, ¢.
A stopping criteria: Maximum or
Minimum value of ¢ desired;; usually
supplied by a constant block.
Not u~ed.
A Stopping Criteria: if I¢(;l!i+l)
¢(ai)1 ::; PAR 1, stop.
H zero, using another criterion
If positive, maximize ¢.
If negative, minimize ¢.
Magnitude is largest allowable p:~r­
ameter step II.la II.
A stopping criteria: number of
al~owable iterations. If positive,
print optional information. If nega­
tive, suppress it.

ALL OTHER BLOCKS
INPUT 1 Steepest ascent gain consta,nt k j -

usually supplied by constant block
element.

INPUT 2}
Not used.

INPUT 3
PARAMETER 1 Initial estimate of parameter value,

Ci.jo.

PARAMETER 2 Posjtive parameter perturbation,
.laj+

PARAMETER 3 Negative parameter perturbation,
.lar·

I terative computational elements

Iterative computational processes are facili1iated by
two MOBSSL elements: the STORAGE element and
the VARIABLE CONSTANT element, designated S
and VK respectively. These elements allow the results
obtained in previous solutions to modify future solutions.
When MOBSSL ends a solution, it examines the SIM U­
LATION MODE established" by the programmer's
control cards. If the RUN mode is in effect, and the
Gradient Processer, GP, element is not in use, the
STORAG E and VARIABLE CONSTANT elements
are processed to determine their new outputs. All other
elements are reset to their initial" conditions a.nd the
independent variable is reset to zero. The solution
counter, N, which begins at 1, is incremented by 1.
When all of the bookkeeping is completed, N[OBSSL
begins the new solution.

MOBSSL-UAF 265

M()I3SSL.IJAF-- Mf:lH(ITT'S UWN KlIlCK STfl.UCTURI:IJ SIMIILATIUN LANGUA(;l:. UNtJRUN()UNCl:II~LE IICfl.UNYM I'OR ••• MK II MOl) 2 JAN 011969

CIII'Jl'lr;URflTIUN S~l:CIHCATIIIN5

IIlIT~'1T NIIME HlileK NUMtll:R Kl/fCK TytJl: INf.'UT) INPUT 2 INtJUT 3
r,p HI' AI)I: R 1 (;~ 9 l? 0
(;~ tJIII(AM 1 <' (;1' II 0 0
~1f."Jf:L IIF THING :; 4 0 0
f'/,(IUI'L OF THG ()UT 4 10 3 ~

PARIIM MULTIPLIER ~ 4 2' 0
t: RIHlR (:, 30 3 0
FR ROR ':,,!, 2 7 (, h I)

SORT(ERRUR**2) H 7 0 0
CRIT!:RIUN FCN 9 I fl () 0
IN~UT II) K 0 (I I)

r,R AIJ I t'NT (;111 NIl K 0 () 0
GIlIN FlIR MINIMAX 12 K 0 0 0
HIIN(; :;0 I 40 0 ()

T f-' I N(; nOT '.0 I II) :Hl 40

INITIAL CI)ImlTlflNS III~Ll PIIRAMI:TI:RS

ICIPAR NAMF HUJeK lCltJlIRl I'IIK 7 f.'lIln
O.u0300 -0.3()(lOO -311.00()OO
O.40()O() O.?O(l()O 0.21)()()()

10 I.O()OO(l 0.0 0.0
11 -0 .()~>fll)n 0.0 n.n
12 0.0 0.1l 0.0

4 (J.O -1.00000 -2.0()OOO
4() 0.0 -1.oO()()() -I.'.(JOO(J

PIHiC;RIIM /011111)(= ST(JP
IIHEGRAT ION INTtRVIlL ISO .04000
TUTIIL Tlt~f IS 10.()o()on
~HINT INTERVAL IS O.4U(lOO
1I1IICKS TO HI: PR INTl:U IIR!: 2 9 30

BL(JCK HI 131' PLOTTED IS 3 KANr,E Of' PLuTT!:\) VARIAflLl: IS 0.0 2.00000

Figure 3-MOBSSL listing of configuration, parameter and timing data for damping ratio example

The VARIABLE CONSTANT element

The VARIABLE CONSTANT, VK, element is
programmed in the same manner as the CONSTANT,
K, element. In both cases, the element's output remains
constant during a solution. The constant stored by the
VK element is recomputed between successive so­
lution.~. Consequently, the VK element utilizes only the
termin\'l values of its possibly time varying inputs. If
information available interior to a solution is neeqed to
modify the next solution, it must be stored in a sample
and hold element until the end of the solution, at which
time it may be used by a VK element.

The VK element presents a constant output for an
entire solution, equal to its output on the previous run
plus the sum of its first input, P2 times its second input,
and P3 times its third input aH at the end of the previous
bolution. The constants PI, P2 and P3 are the block
element's three parameters. Its output is set equal to
PI during the first solution. The VK element is similar
to a mechanical ratchet or to an accumulator.

The VK element is equivalent to an analog computer
iterative accumulator. It allows solution to solution
parameter varia tions These may be systematic changes,
random changes or solution dependent changes. For
example a frequency lesponse can be implemented as
shown in Figure 5. The VK block causes the radial

frequency w to be incremented by k at the end of
each solution.

Consider the following parameter identification
problems. Let

YD + a YD = 1

be a first order system containing an unknown param­
eter a. Let

Y + alY = 1

be a model containing an adjustable parameter al.
Further, define an error measure

e(t) = YD(t) - yet)

and a criterion function

The derivative of the criterion function with respect to
the parameter a1 may be computed continuously during
the solution.

266 Fall Joint Computer Conference, 1969

COMPUTES

cp (a~

COMPUTES

cp (a.+ Aa7)

COMPUTES

cp (a.-4a~)
FOLLOWED BY
STEEPEST
ASCENT
PARAMETER

STEP a i + I

COMPUTES

cp(a i + I)

SUMMARY
OF PREVIOUS
2N+1 SOLUTIONS

""f

N."~ .
0.0
n •• ooo
O.M(1nO

•• zono
1.f,Onn
1.01)00
1."noO
1.1111100

).2H"'0
J.',OUO
".(11)00
.... 001') ,,""
'.1000
..... nnn

~.nooo

..... oon
".,UlOO

'. ~ono
'.ltnon
R.t"H)f)"

1II.~·f)""
iii. "non
•• 1000
",."noo

lo.nonn
In.n .. ttn

.... ,.. .
n.o
0.011/10
".lIInno
I.lonn
1.",,,00
l.non"
, ... non
1.IIIMn
,.,nnn
,,00
•• nnn"
..... nnn
411 .IUllln

~.lnf'l'"

'\.""""
", ... nnn
A.,.,."n
f.l'H'I"
,."onn
lII.ttn""
"."M"
lII.fI"nn
"l o lnun
•• ",nnrt

IIl.nnon
In.,,,,,'''''

........
n.n
".40"""
n."nOfl
1.1"""
1 •• ·IIuO

I.''''''''
1."f,flO

1.""°')
l.lnnn

'."'Inn
".o!)nll
... ",)fln
..... "nrt
\.1')"'0
~.,..nnf'}

It.n"on
" ... nnn
A •• tI'hll

'.II1"f,
'.",OflU

".OOftO
"."nno
".III'lflO
'J.lf1nn
q.~nnn

III.nnnll
In.n .. (\o

.... .,. ..
n.n
o ... onn
o.flnno
I. ;tnnn
1."llnn
1.lIono
l.ltnnn
1 ... onn
1.1non
].',OOIl

".00110

".Hnon
~. 2MIO
~."ooo
".nnnn
h.·OI"O
It. nonn
'.lunn
.,.",nlln
".oono
R.ItIlOO
..... non

q.)nno
f:I.",ono

In.nnnn
In.nlooo

I'"'' J 1',," .2
O.6I.~~

PARA)j[TU! 1

Blor."

O."OOfJO
O."'OOOU
f'J."'OIl(If}
O."f')ono
O.ltf.H1UO

n. "ooou
(t.,"onoo
0.4110000
O."O(IOU
o."oono
0.40000
0.41100(,1)
n ... onoo
O."O'I'JIJ
O."OIiIlO

o ... noou
o ... \wOO

"."(II}OU
f).4iI(tnou
O."U(10f)

n ... ouno
0."""00

O.'·nool}
n ... noon

o P.,jIJAA •

0.0
O.OOllH
O.')07!)]

O.Ol,J
0.0' j~ I
0.1 /./,. ..
l).ill'''1
o. ~3'ij~
(1.411)"" ..
O. ~3b'1
O.bl n~
n. &771)7
0.71 J70
0.11" J1
0.1 JJ lit

O.l~Ul'
O.71bH

O.MO"'"
fI."HI1
o •• ~, I '"
0.1I7l111

n. ""J"" n • filM ,,"

n.II"""~
o .1t~'lhn
n. ""',,"'.

I "t" ••
O.ftt"OflU 0.0
O. ftnuno O. ('Ino t ,
(J.~('ItHHJ O.llnlll

0.0""""
"."nullU (l.""nu
n (lnnO O.n"I""
1).,,''1100 0.0""'1
fI ... nnou

n.",lIluu 0.1 '''' 'I

n.h,lUIiU n. t ''14,..

".f,lh"H' O. I OJ''''

n .'-""''''0 n .1n '1Io(l
"."nll(111 0.' ,"ft"
1).,,'\11"0 f'I./I"v"

".f,nnn.,
n."fI'"HI

n.",lIfU",
n.,.nnl"(J

" nnlln
n.",."'fI!)

".If,,,''U
O./flflfJU

1J.I"flnu
n.I'If)II(1

n. ,flnUIl

(I.I"fl"lJ
"./nnf,1t
ft./llltI.U
".lOt.oU
n./lu"",
(I.IOIIII!)

n./"nfll)
O./HOllO

o. 'fJlIfJU
O./OIIIIU

o./nnnu
O.I"'lOU
O./or)on
o.lnIlIH)

11."/"'1

".""''''' 0.1,'
n./ H I)

It., "','4
fI.;1Io1)1
n ••••• ~""
n.? .. ,."
".1'. ,,,1

n.n
".'1(11'''1
0.·11/

n. 'I"'~ 1l1li
fI.lt/'t n., 1"1

0."f,1')0

n.'l""''''1
I.f)""'"
, .,"110')

1 • , ... ~IJ I

1."11"'" 1."'1,.,
I ... H·· .. I
1."11) .. 1

I."''''''''''' I. It"H""
1.'mJ'"
l.qll1 :\
}."fI")t ..

,. f) I L!I

l.n'.IH 1
'.flAUU
l.I 't1

1.1"" I
] ./n ''''

1 I'IIPAA •

0.6"'.,,,U n.o
O.""'''''U 0 .. ,,',"':10
O.ft"""u
0.&','1"'0

n. ""I:J"u n".".,., ..
O.h',""O
O."".,.,u
O."",,,,",U
O ... ',u
0."""'''0
O.h'."'''''"
(l.",,·')"1U
0.',,,,
n. """~n
0.1""""0
O.'I'·"',U
n.b'o'J"10 n." .. .,,,o
0.6 "' U
0.,.. .. "'>0

n.I)""~U

0."'''''''0
('."""'1\)
0.1)10""'0

o.onno'l
o.nnllt}
O.f1n'" ..
o.nll11
0.0'1111
n.ov,...,]
n. n't1)4q
0.(1'.")".
n.nnun')

n.IO,.,o
O.Ir1·''''A
0.1141.,
0.117'12
o. IlM ,,,

U .11 A77
0.11'1"''1
0.17147
O. Ii' JWI

0.1]""'''
n. l;o'l '~,.
0.11hQQ

0.17111
n.1 i'H' A

IJ. I }H"'"
0.11''''',)

1ItiNCI

&LClCk 30

0.(1
O.OM09
1I.1I ~ I~
O.)~,~q
0.HJ~~
OollSll
0.111""'1
o.on""
o. qqnQ2
1.0lSO"
1.0' I ~M
t .O"!t'/6
l.n'1?1
I.OH?l
1.01'''''

I .f!lq~.
1.1I17~1

l.no'fI'
1.00 '0'
t ."OIJJIt
0."')111111
0.""II1II11 ,
o.q·'UUII

0.""'''(1(,
n. ""'fIt;,~
1).""/1171

".""'l1li'"

II.n
n.o,.",u.
0.21 "'~ 0.1"'."
('1 ... 7'
n."" 71
n ,'
n." "f,,,
n. """"".
I.",'-.n'l
I.nltl""

1."'''''''''' 1.1'·,,'11
I.IIJ.,. p
I.n; ,,..,..
I.nl ~.,It

t.,'1''''
I.nn 'n"
, .nfll""
I.nflll h.

".1')',l1li ..)
(t. """1'1

f'.'J", .. "
".'l"Jnn.'

n."",,"'"
n. 'J'l'" ~

fl."
I)."".",)"
n.ll ,., ..
n. 1" ' ... ,
fl , l~M
0.7,1IHI

0.11","1"
O.I),}?f,

0.'1'11"'1
1.0/''''''
1.0'" .. "
1.0 ·',.
1."'11'11

'.0 J"'"
1.0111 ...
l.fll"I)',
1.1117')1
1. 11010'>
•• on 1n ..
1.001' tit
fJ.q'lIHl}
O.',fl"n'
O."'11A"
o. ')'~nOl
fl. q.,AJ'.
C).1)""7)
o.qq,.,~

0.0
O.OM,fIQ
n.2I ",')

n • • '''''l.I
O.Hl~"
n.ll~ It
n. ""."111
O."J7'1~
n. Q'lI1'l7
, .'I",.,n·,
I. Old .. "

1 .O""·'b
1.0"'7",
I .n1c,')7
I.ni' 'hi,
1.01')"111

I.nl '~1
l.n010'"
1.0010"
1 .Oonl~
n. u""A7
O.~9RO ,
O.QQ7J1H

0.'1'11401

O. q"JA~"
u. '1'In7) n.q·,,,,,,,

PAR, l'A11 4 I'AK 5

IltaVIIXIS CRl TIJU(lIf l'JNcn(llf
0.m~9

CUI<IUJjT CRI rut}Lfj '''Henll"
O.I'fU.)

l[)N:lOF lIilllO

'lOC~

0.0
0.0111 1
fJ.21.tftl'J
0.·'8~b
O.lIbl"
0."2708
1.0QO(ll

I .I·"'~
I.l'b")
I.nun
1.1I."~
•• 1 h&" a
•• 10 .. '"
1.1)"""
n.""".qq

0.Yb.l12
0.Q',I)2
I).'H~.
tI.'1jqo ..

0.Y''''2
0.""""
('t.·"1.1~6

fl. tJ" J
l.no .. ,,,
I.olaqn
I.nl ~hl
I .1I1~1I1

11.0
O.OhHI
O.lH~1

(I.It'IH'
n.hl~IO
n. ,,,,,,'tq
n.", .. n'1
I .no"O)III
1.""'."0.
•• uM'lOI

1.1)'1"'.
l.th'h(l.,
I.O'On)
l.n"I.· ,
l.tHt)1
I .nl Iqq

l.flU,,'1)

0."""'0
0."""""
".'1"1'1 t
n.'1''lln
11.""/n"
o. 'l"J".
O.r)',~""

n.')1'7 I)
II.""H'"

n. Q·I.~"

o.n
0.(11",),1
n.l11,n
n ."J"'~Oh

o. """",
1.117""
I • _\,.~ ,,,

t ,"1:11 to
I.H',~~

1."loIlt1"
I.J 'II
1.1 J"'14
1.IlH)?]
O.Qj4QQ

O. HI""'-
0.1",13(
n.lln}
o. '4)11
0."',.. .. "
O.H 12J"
O. q~':t,,~
I.OHIO
1.0?477
1.1'7"
1.1""''''
I .Ilhnh
I. I Jjq~

n.o
0.f1hhQ1
U.lll,}q

0."10"'1
o. ~Y~~6
o. 7~~"0
O. HM 1 It 1
11.'11111
1.(I/H12
1.0'JJtA'j
I.Ut,'l1Q

1.0"" 1.0.," 11
I .04~7)
1.0]1 lIlJ
I.IIIOOq
t .010"01
I.OIIH7
o.qq""O
o."'lt,lQ
O.qtl~lq

0."'1.,17
O.I'J·'~"A

0.'),,,,1).,
O.q~l .. q
O."'UI]1
n.ql.Jn".,

0.0

· 1-'
1-----+ 1-----------• 1------.. _---------+ 1-------- --------------. 1------'.- --- .. ------- -------+
1--------------------------•• -.
1- - --- ---------- ----- •• -----••• +
1-- - ---,.---. --.-•• - •••• -.-- •• -- +
1- - -- - ------- ---•••• ---- •• --.-+
1-- ----- --------------------- • 1--------- ---------- -------+
1------ .. --------------- ---+
1- - -- - ---- ------ -.---.---+
1----.-----. ---.--------+
1- --- - ------ - --.-.--.--.
1--- --- -----.--.-----.-+
1- - --- ---- •• - --------- •• 1-----······_····_--·--+
1- - -- - -- ------------- ••• + 1------------------... --.
1- --- - - -- ------- - ••• -.-••• 1------ -.-----•• -.--.-•• -.
1- .. - .. - ------- --- ---------+
1-- -------- ------. -------.
1- -- - - - -- - --- -.-.--------.

· I' 1",---. 1---------.
1- --- - .. _ .. --- - -- +
1 ----------_ _--.
1- ... -"- ----- .. - -- .. -------+
I- ----- - --- ---- --- -------.
1- -- - - - - - - ------ --- - .-.-.-+
1- -- - -- - ------- ---------.
1- - -- - -- -- -----.--------.-••
1 - -- ---- -_ •• - •• -- •• ---- --.-.
1- --- -- ... - .. ------ .. -- --------.
I - -- ----- ----------.
1- - - - - ---- - - - --- -------- - ••
1-- ----- -. - .-.-.------•• - + , .. --_ -.. -_ .. --- ----~-- ... -.
1- - - --- --- .. - ------ .. _ .. - ---.
1- .. --- --- - -_ ----- ---+
I -- .. - --_ ... - ... -------- ----.
1- - - .. - - - -- - ------------.
1------- -- - .. ------ - ------.
I ... - -- - -- - ------ - ___ at

1- -- - -- -- -- - - - - - -- ----- --.
1- - --- ---- ---- ... ---- ---.
• -- - .. -- -- .. _- ... - .. _-- --_ + t .. ___ - .. - __ .. ______________ •

1-' 1------.
f .. -- .. ----- .. --+
1- - ----- -- --- -----._-.
1- -- - --- --- -- - -- •• --- ---- ---.
f ~ ---- - ... - - ----- ------ ----.
1-- - - - - - -- - - - -- - -.- -- -------- •••• ----.
1- - -- - --- - -- - --- - --- ---- -.- -----------+
1 - - - - -- - --- - -- ---- -- ---- -- --- -- ------.
1- - .. -- - ----- ... - _ .. - ---- -- - .. -- .. -_ .. +
, ... -_ .. -- - _.- - .. _----------------- +
1- - - - - -- - - - -- --- ----.------.
1--- -- - ---- - --- ... -----.
1- - -- - - -- - ----- .. - ---+
1-- - -- --------- ---.
I .. - - -- ---- - --_ .. -+ ,--- -- .. --- .. -------.
1- --- - ---- ----------+ .-_ -.. ---- -- --- --.
1- - --- -- -- ------ ---- ---••
1-- - --- - --------- - --- -- ---.
1- - -- - -- - - --- - -- ---- •• -- ---.
1--- --- - ---------- ------- ---.
1- ---- --- - - ----- ---- - •• --.--. 1------_ .. _------------------.
1- - - -- ---- --- ---------- .. -- --+

I' 1----· .---------+ 1------_ _---. 1----------.... ----- .. +
1- "" --- ------- --- .. _-- --+
1-- ... - -- -----------------+
1-- --- --- .. ------ ---- -----.
1-- -- -- ----- ---------- ----+
,- - -- - -_ -_ .. ----- ------ +
1- ... - --- - ---- - .. - - ----- - ----+
1- ---- -- -- -- - - ... -----------+
1---------- ------- ----- ---.
1- -- -- ---- --- ----------- - ••
1- ---------- --.-------- -- +
1- -- - -- - --- ------- -----+
,--_ .. --- --------- .. ---- - -- +
1- '"' --- --- - --- ------------+
1--- --- ---------- ----- --- +
1- -- - - --- - ---------- -----.
1- -- - ---- --- --- - -- ------- •
1- - --- - -- ... ---------------.

1- - .. ---- ------ .. -------- --.
I ... - - _ _- --_ ... --- ------- .. -+
1-------- .. -- ... ----- -------.
1- ... - - - --- - --- --- - --- -----.

2.0000

!'AlI 6 PAIl 7 rAIl 8 PAIl 9 PAIl 10

STbf'I'lNO CRl rutH"
0.(0)

Figure 4-MOBSSL solutioll'3 for first iteration of damping ratio example

SYSTEM

BEING

SIMULATED

Figure 5-Frequency response" implementation through
use of the VK element to increment '"

8l1> = 2e(t) 8y(t)
8al 80:1

where

is the solution of an associated differential equation
described by Meissinger:7

d
_ (8y(t)) + al (oy(t)) = -yet)
dt OCXl OCXl

The parameter adjustment algorithm is

and

1 = 1,2, ...

This process is easily mecha.nized by the VK element.
The incremental changes in the parameter al are
accumulated from solution to solution. The MOBSSL
program is seen in Figure 6. The computational results
of this program, for an a of 1.0 are seen in Figure 7.
The four columns of tabular data are: time, YD(t),
yet), oy{t)/OO:I, respectively. The last column and the
plot show the growth of the criterion function during
the solution. The initial value of the adjustable param~
eter, aI, is 0.1. It becomes -0.5342, -0.5928, and
- 0:6365 in three successive solutions, converging
towards -1.0. As can be seen from the plot, the error
decreases considerably from solution to solution.

THING

MODEL
OF

THING

"MASTER"

"SLAVE"

Influence
Coefficient
Producer

MOBSSL-UAF 267

Figure 6-MOBSSL block diagram demonstrating use of
VK block as iterative element in parameter search
by discrete sensitivity difference equation technic

The STORAGE element

The STORAGE element is very similar to the VK
element, except that its output remains constant for
one or more solutions depending on the block's param­
eters. During the first solution, the output of the
STORAGE blocks ares et equal to their first param~
eter's values. Thereafter they are set equal to the
sum of their input..'!. The change in output takes place
every P3 solutions, when

[(N-P2) MODULO P3] = 0

For example, if P2 = 0 and P3 = 3, then the output of
the storage block will be PI during solutions one, two
and three and will be reset to the sum of its inputs
between solutions three and four. It will hold this
output during solutions four, five and six, recomputing
its output between solutions six and seven, etc. Notice
that the STORAGE element does not accumulate in
computing its new output. If P2 = 0 and P3 = 1 the
STORAGE element is a non-accumulating VK ele­
ment. In Figure 8, the S element is used to pass the
output of integration element 1 from one solution to
the next. During the first solution the output of the
S element is 3.0. A more complex application. is shown"
in Figure 9 where the output of the S element is used
to modify the structure of the simulation from solution
to solution. In odd numbered solutions, N = 1,3,5,
etc., the output of the S elemtmt will be + 1 and the
output of RELAY element 4 will be -1. As with all

268 Fall Joint Computer Conference, 1969

MOIISs...UAf-- ME'"'ITl'S UWII !\lOCI(51RlICTUREI) 511'ULAIION LANGUAr.~, UNI'RONLJIJNCt:ABLE ACRUN'fl'l FUR ... MK " MOO 2 JAN 01 1969

tOHFIGUUTlOIi 5P~t I~ ICAT 10"15

OUTPUT NAME "lUCI(t.jUM~FII RlO(.1(T VPE H,pI'T I I ~,PtJT 1 INPUT 3

, .. IIIf, I I 13 I 0

MOOEl OF '",ING I \3 3
2 12 0

IIiFLUEIiCE CUEfF. I) 1 ~

I Z 4 0

E'U~OA I -2 0

EAIIIlII SQUAllED ° till TEM ION ~UIlC Til 8 ° 9 .. 0

GAlli 10 0 0

DEl TA AL p .. A II 10 0

VARIAIILE C!)NS,TNT 12 VK II 0

IlipUT n 0

INJTIA~ t"'>OIT 1'111\ ANO DAIIAME HII')

It/l'AII IIAME ALIt(; I(Ir./,·AIII PM\l l'AII3

AlP,",A 0.0 -1.0(01)0 0.0
0.0 I.O"OOU 0.0 .. 0.0 -I.nonoo l.noOOO

10 -0.010;00 0.0 0.0
17 -1).1<101)0 0.0 0.0
, 3 , .onono 0.1) n.O

""I.I(;IIAM MUI.JI: II UN

INTEGIIAT IllN INffllVAL 15 n.lllnOO

WTAl T IMf 15 ". ;>1)000
"It lilT INTfltVAL 15 0.3OO0n
!!lOCKS TO AE "AIIiHU AR~ I

IIlOCA TO lie "LOllEO 15 II IIA"If.E OF PLOTTED VAR I Allll:- IS 0.0 10.00000

TIlING ~00E1. Of "llJIO INFWgjCE OOEfT CRlTERlctl ~'CII

TIME BLOCK "lOCK ALOCK IILOCK 0.0 10.000

0.0 0.0 0.0 0.0 0.0

0.3000 0.25918 0.29'>54 -0.0"411 0.000011

n.6nno 0.4'>119 0.'>81.35 -0.117'16 0.110221

0.'1000 0.~·n4j 0./1606" -1).3"150 0.01425

1.2000 0.109RFI(} 1.13U111 -0.hI,490 0.05119

1.5000 0.771»11 1.392111 -1.(JlAS6 0.13400
I.A(\OO 0.11"·10 1.64122 -1.431105 0.2H11>1 1+

7.1000 0.1l11'>4 I. tl9406 -1.'11919 o .~3936 1-+

2.4000 0.9092" 2.IH'>'1 -2.451'11 0.91"'11 1---+

2.7000 0.9H79 2.36605 -3.05n57 1.44168 1------+

3.00nO 0.9'>021 2.59164 -3.69333 2.15188 1----------+

3.3000 0.%311 :Z.8105" -4.387. 76 3.01207 1--------------+

3.6000 0.977.67) .07 jill -5.11556 4.2121l7 1--------------------+

3.9000 0.91'175 3.22918 -5.8HII'>~ 5 .1000R 1 1---------------------------+

4.2000 0.'11!~00 3.42926 -6.69fl72 1.2'>4101 1----- ---------- ------------------.--+

4.2100 0.911'>1").43'>A3 -1>.72"33 1.314~2 1----------- -- ---- ---- --- ----------- +

THE VALUE OF vAil JA"Lf CUNS1AN~ WITH IILOCK NO. 12 15 -0.53'02 AT EN!) OF RUN

liON HRMINAlfD AT llM~ lQUAL to TOl AL TIME
0.0 0.0 0.0 0.0 0.0
0.3000 0.25'1111 0.27119 -0.04041 0.00002
0.(,(0(10 0.45119 0.51334 -0.14579 0.00051
0.9000 O. '>9)43 0.114'>2 -0.295Al 0.00307

1.2000 0.6?IIRO 0.1I8!>91 -0.47514 0.111027

1.5000 0.11681 1.03192 -0.611 101 0.02,05

1.8000 0.83410 1 .1 ~!J21l -0.1111041 0.0!>1I14
... 1000 0.tl71'>4 1.26124 -1.0117101 0.01l772 +
2.4000 0.909211 1.3'>2'>0 -1.211534 0.13'132 +
2.1000 0.1,13279 1.4293'1 -1.4AIII 0.20516 1+

J.OGOO 0.9!>021 1.49490 -1.6"156 0.28727 1+

3.3000 0.96311 1.55071 -1.84313 0.31l:i"2 1-+

3.6000 0.912/.1 ,1.5'11:121> -2.006'18 0.4'14111 1-+

3.9000 O. '11<,11'> 1.103H11o -1.I'>A1I 0.61 All 1--+

4.2000 O.I,IA~OIl 1.6H21 -2.7""32 0.754,,0 1---+

4.2100 0.'11151'> 1.61437. -7..307.17 0.15915 1---+

THe VALUf. OF VAl! IAnl f CUNSTANt WITH IILOCK NO. 17. 1 S -0.'>918 " ~NIJ OF RIiN

RUN TE:IIMINAHO '" TIME Hll)Al til lIlT Al TIME
1).0 0.0 0.0 (l.0 0.0

0.3000 0.2'>'1\ tI 0.214114 -0.04000 O.(lI)OOl
0 000 0 ... 5119 0.504'10 -0.147~1 0.OOO3!!
0.9000 O. '>'1343 O. ,,'114H -0.lH/,09 0.01)17.1<
1.2000 0.6?II IHl o .H5H(''1 -fl. 4"/t~4 (l.00751

1.5000 0.71('117 0.99363 -O./,V.?I o .(l11l7'1

1.8000 O.!! 34 ·/0 1.106'>1 -(l. f1~70'l (l.(U631

2.1000 0.1177'>4 1.2011 I -1.OOf,04 O.0(d03
2.4000 0.'10'l21l 1.7.H024 -I.IIIH'> 0.0'1'134
7..7000 O. '13219 1.34104" -1.3'>731 (l.1','>1>5
3.0000 0.9'>021 1.40193 -1."101'> n. 201 ')6 1+
3.3000 0.91>311 1.441135 -I ./,'>/,1·/ 0.261')3 1+
3.6000 0.'177.61 : 1.4A121 -1.79004 0.34302 1+

3.9000 0.1,11'11'> 1.51913 -I. '11111/ 0.42653 1-+
4.2000 O.'1Il~OO 1.5 i ,696 -7.02202 0.':>111(l 1-+
4.2100 O. '1H51., I. '>411'1 -2.0254'1 0.5l0R" 1-+

THF. VALUE (IF VARIARLE CUNSTANT WIT .. flLOCK Nil. 12 IS -(J.63"'> AT EN!) OF II UN

RUN TERM !NIlTEfJ AT TIME t:IJIJIIL to TOTAL TIME
0.0 0.0 0.0 0.0 0.0
0.3000 O. 2~9111 0.27309 -0.03'1(,6 0.00001
0.,,"00 0.45119 0.4'11112 -0.14011 0.()O030
0.9000 0.~,)343 O. /,R':> 17 -0.7790"i 0.001111

Figure 7-MOBSSL data and computational results from first three iterations of parameter search by sensiti~ity equation method

W

Figure 8-Use of storage element to store and transfer
integrator output between simulations during

iterative operation

Figure 9-Storage element used to modify structure
of simulation from one solution to next

block structured languages, the sorting algorithms
experience difficulty with purely algebraic loops. The
STORAGE-RELA Y element loop is rendered sortable
by the inclusion of the UNIT DELAY element. The
UNIT DELAY has no effect on the computations,
and the output of RELAY element 3 will be flex).
During even numbered solutions the output of the
STORAGE element will be -1 and the output of RE­
LA Y element 3 will be f2(x).

Hybrid computational elements

MOBSSL, UAF has been developed for use in the
USC System Simulation Laboratory. The System
Simulation Laboratory's computer complement is
shown in Figure 10. The software and hardware link-

MOBSSL-UAF 269

AGT - 10 ~AGE
GRAPHICS

TERMINAL

I
I
I . •

ADAGE

HIGH SPEED

D-A a A-D

CONVERTERS

lli
ECKMAN

2132

ANALOG

COMPUTER

------,

•
IBM
DISCRETE IBM 360-44
DATA DIGITAL

INTERFACE COMPUTER

Figure lO-USC system simulation laboratory computer
complement

age between the computer graphics terminal and the
IBM 360 is not yet installed. The analog computer
is equipped with a multi-channel strip chart recorder,
one and two pen x-y recorders as well as oscilloscopes
and memoscopes. Software presently exists to allow
the digital computer to carry out the following inter­
face operations:

a. digital to analog conversions
b. analog to digital conversions
c. read discrete data lines
d. set discrete output lines
e. control the mode of the analog computer
f. operate the analog computer's select system
g. process external interrupt signals
h. set potentiometers in the analog computer

As yet, only the first two functions analog to digital
and digital to analog conversions, with element desig­
nations of AD and DA respectively, are available
within MOBSSL. MOBSSL programs may contain up
to 10 DA elements and up to 32 AD elements, limited
only by the available hardware The hybrid elements
may be used separately as I/O elements or together
as part of a closed loop hybrid operation.

The DA element is often used as an output element
in MOBSSL simula.tions. Ap. shown in Table I, the
DA element causes a voltage, equal to its first input, to
appear at the output of the digital to analog converter
selected by its first parameter. If the input exceeds

270 Fall Joint Computer Conference, 1969

±100.0, the output volt~ge will not be correcL DA
elements may be used to drive recording devices in
order to obtain graphical presentations of MOBSSL
results. Because of large variations in computation
times and input-output times, unless special timing
routines are used, the amount of realtime between
successive outputs win not be constant during a solu­
tion. There are several ways of getting around this.

1. Use the graphical results qualitatively and obtain
quantita,tive results from the printer listing.

2. If a multichannel strip chart recorder is used,
place a known function of time on one channel
and derive timing information from it. The in­
dependent variable, sine waves, output of
timing elements, etc., are convenient signals.

3. If an x-y plotter is used place the independent
variable, the output of block 201, on one axis.

4. Two dependent variables are being plotted
against each other and no timing information
is required.

Methods 3 and 4 are used in the example described
below.

The AD element type is useful for changing param­
eters and initial conditions. As shown in Table I, the
input to an AD block is supplied by an ADC located
on the analog computer patchboard. Parameter 1 of
the AD block determines the ADC number. The AD
block output is a floating point number between
±100.0. If the input exceeds ±IOO.O volts, the output
of the AD block will be incorrect. On line parameter
changes can be achieved by connecting the outputs of
manually operated potentiometers to the input of an
A-D converter as shown in Figure IIa. Figure lIb
demonstrates the use of the AD block to permit on­
line adjustment of constants and coefficients appearing
in MOBSSL block diagrams. Figure IIc demonstrates
the use of the AD block to allow on-line changes in
integrator initial conditions. This is valid since the
output of an integrator is:

t

eo(t) eo(O) + f ei1) (t) dt
o

and eo(O) can be any number summed with the output
of an integrator having zero as its "initial condition."

When MOBSSL is being used in an iterative mode,
on-line adjustments are needed only at the beginning
of a solution. Parameter variations during the solution
are undesirable. This may be achieved by using the

V -100 ~ Y~ +100
+100

~
manually operated
three terminal pot

Y

(a) Analog patchboard
hookup

-100 GY Variable

(b) MOBSSL configuration for variable constant anel variable gain

(c) MOBSSL configuration for integrator Ie

Figure ll-Use of AD element for on-line parameter
changes

fStores AD input present
(1?t last DT pri()r to t:: 1.0

eo(1.0-)

wJ>

Figure 12-AD block used to modify a parameter at the
beginning of a run

zero order hold as a sample and store element. When
input number 2 to the ZOH element is less than or
equal to zero it holds its previous output. When it is
positive it samples, stores and holds present input. In
the example shown in Figure 12, the ADC is effective
only during the first second of the solution, after which
it may be pre-set in preparation for the next solution.

An AD element can be used as the input to a QUIT
block to terminate a run from the analog console.

Other applications of the AD element include sam­
pling and processing of analog data where synchronous
samplirLg is not required. The output of the gaussian

noise generator, both direct and filtered, located in
the Beckman Analog Computer, may be sampled and
used in place of the output of the uniform distribution
Random Number Generator block type.

Attempts to use the hybrid block elements in real
time applications have brought to light the need for a
whole series of timing and interrupt processing ele­
ments. These elements will expand the real time capa­
bility of MOBSSL considerably.

The following example often referred to as the Host­
Parasite problem, demonstrates the use of the· DA
block to drive an X-Y plotter. It is a set of differential
equations which represents the popUlation of hosts and
parasites as a function of time. The physical situation
from which the differential equations are abstracted
comes about when there is a host (Le., food for a
parasite) which would reproduce at a known rate if
there were no parasites. The parasites die off at a known
rate if there are no hosts. Finally, a decrease in the
number of hosts and an increase in the number of
parasites is a function of the number "encounters"
between hosts and parasites. Whenever a host is un­
lucky enough to encounter a parasite, the parasite
eats him up. The equations implemented are:

.
H = KIH - K4HP .
P = K2H + KsHP

H ~ host population as a function of time

P ~ parasite populatjon as a function of time

Kl ~ overall growth rate of hosts per hour
assumir g no parasites

K2 ~ overall decay rate of parasites per hour
assuming no hosts

Ks, K4 ~ number of host-parasite encounters per
hour

where

t ~ time in hours

Kl ~ 0.05 /hour

K2 ~ 0.10/hour

2 X lO-4/host-hour ~

2 X lO-4/parasite-hour l

(+5% per hour)

(-10% per hour)

oneen counter
per 5000 hours

for every host­
parasite pair

MOBSSL-UAF 271

Figure 13-MOBSSL block diagram for the host-parasite
problem

Initial Conditions:

Run I Run II Run III Run IV

H(O) 100
P(O) 200

1200
1200

600
500

500
250

The lVIOBSSL diagram is shown in Figure 13, a listing
of the MOBSSL configuration specifications, param­
eters and other simulation data are shown in Figure
14. Figure 15 is a graph of hosts vs. time and parasites
vs. time obtained using the PCHG mode and inter­
changing parameter 1 of blocks 6 and 8 on the second
run. Time is obtained from DA block 9 appropriately
scaled by gain block 4 from block 201 which provides
the independent variable. Figure 16 is a phase plane
plot of hosts vs. parasites for four sets of IC's. DA 6
provides the input for the plotter's X axis and DA 8
drives the plotter's Y axis. Note that the existence of
closed orbits for all physically realizable IC's is clearly
demonstrated, as well as the existence of a stationary
point at (H,P) = (500,250).

Disk input and disk output elements

Through the use of the Disk Input, DI and Disk
Output, DO, blocks vector functions of the inde­
pendent variable may be respectively read out of and
written into previously alloc !ted data sets on disk
storage during a simulation. The DI block is used when

272 Fall Joint Computer Conference, 1969

IIIIIIJ!,!,l,IJIII'-- .'~"RITTtS uwill IIl"CK STIIUCTlJIIEU 51MlJlATIUN lANC,UAGI:o UNPRUNOUNCI:AbLI: ACI(UNYM FOI(••• MK 11 MOU:2 JAN 01 19b9

(.UNF I GUR AT I liN SPt:(II' I C II I IIIN<,

OlllPIJT NA,..tc IIl0(.K NIJMlltli IIVICK TYI'E INPuT 1 INPUT 2

I-lULT I "lIl-R I 2~ 27

HlI!>T5 l~ 0 I
PAIIIISITES .. 1 0 I

HOS' SCALING tb 2'5 0
PIIIIASIH SCALING 28 27 0
HU~T OAe b I)A 2/) 0

PARASITE DAC OA 2A 0
TIME SCALING .. G 3(11 0
TIME OAe 9 UA 4 0

1 .. 11 I AL CIlMJI T IONS AIoIl) PAIIA"t'HIiS

ICIPAR NA"E tlLULK
PA~ASI Tf IC
HOST IC
HO'>T SCAL I Nr.
PA~"SJTIc SCALI"'!;
H(,~T nAC I>lUMIIER
PAIIASITE \lAC NO.
TI"f- IlAC NUMIIER
TlMI- SCALING

INTEr.IIA TI ON INTERVAL
TUTAl TIME IS
PR II>lT INTI'IIYAl IS
ALoeKS TO 81: PR INau

IC /I'AIII PAil ..
27 201) .onono 0.1100;>0
2'> lIlO.OOOOO -0.nOO20
1b 0.0.,000 0.0
111 0.0'>000 0.0

2.00000 0.0
1.00001) 0.0
".00000 0.0
0.100011 0.0

.. I<UGRAI4 MIIUI: STUI'

I!. 0.10000
31 'I.OOIlOO

".00000
AI<t ..

PAil 3
-0.10000
0.05000
0.0
0.0
0.0
0.0
0.0
0.0

27

8LUCK TO IIf PLOTTEIJ IS 2~ MANGE OF PLUTTtO YARIAlIlt: IS

TIME
0.0
b.OOOO

12.0000
LR.OOOO
24.0000
30.0000
3b.0000
42.0000
4R.0000
54.0000
bO.OOOO
/)/).000(1
77..0000
7".0000
/14.0000
90.001'0
9/).0000

102.0000
108.0000
114.0000
17.0.0000
12".0000
131.9999
n7.,)9qq
143.9'199
149.9'19'1
1~').lJq99

161.99'19
1,,7.9<)<)9
173.<)<)9'1
179. '19'1"
185.<)'1'19
191.<)'1qQ
1'17.9""9
203."'199
209.9999
l15.9'1q9
221.9<)99
227.99.,'1
;>H.9.,99
239.9'19'1
2"5.99<)9
251.99'1')
257.99911
2b3."9'18
269.'1<).,8
275.9998
281."'1')11
287.9.,911
293.9998
299.9,)qR
305.'1998
311.Q<)98
317.99'18
3111.0.,9'1

RUN TERM I NATEO
STOP 0

"LOCIC.
0.0
1.2000U
2'''000U
3.0000U
4. 110 0 IIlJ
b.UOOOO
7.'WOoo
R ... OOOO
9.!>lJ'I'I9

LO.799','I
11.'1'19'1"
13.1 '1<)')'1
14. JI)l.Jr,'l

1!>.!>'1"'1"
Ib.7'1"""

~ .. n"ulR
I1lUlK

20000. mlOou
131<1I2.""I,,,?
10,),>7. 3Rb 17
1I/1'>'I.~1IJJI

7h4~. ""0'14
1H'I.Ohl'>U
77Y'.9'.'12l
'11f, 1.1,"'12'

I ~o .. .,. 33,>', ..
17',1,., ."1,>/,2
,>07 .. ".'>lI/O:i

I" !>'> ."A 1~O
4/)~17\).11I7,)0

7'1I,I,)j.37')00
"2hIl7').~I~"U

17.'14'1'111 15'}'I7I,.117')(}U
1".1'1"'111 b711". <)",,'11
;'0.)'1'1'1" ~71·'1.'111111.

21. !>9""tI I q 11111. "'10/,2
77.1q",,'1 I 3777 ... ~7.,tl
2:,.lJ'/II'ItI H'''''''. 7('/0,'
25. L 99'1" fI",'j."'I4,)j
2/). j9Qqll 71./1 •• '>1114
21.')"9'111 7,1'I.IIU'>9
28.1'1'197 71 .. 7.f,7')111
;>9.'1qq<)h Q~Z".941"1

'H.I'I·/'H. I H 1'9. 3011')9
~i!,"lq411 27""1.IZ,,"1
33. ')I}"'III ')1 ·'. ,>,> .. /)9
3't.7,)<)91 1'>0711."3/'>0
3'>.'1""91 "7',2(1h. ,\7'>00
~7.14·/"'H 7'1'ojll/.j7',(}O
311. j"'I'/1l 41h '41 • .,oc:,)(l
39. ')'1'191> 14 7I'IIl."OOIlf)
40.7'1"'17
"I. '1'1""7
4~. 1,,<;<)1

"10"1. I ')' j'.
31101,. HIlI<','I
1<1,),,7. '> 'lUj I

200.0UooO
"'4.411114

7'1.0",,"2 J
., I. 1''' 171<
~".712Hq

2".l',!>Il.,
71.17"51
1'I.7')?''}
III. '>!> b
;>?IHIi?"
4h./.f)I;> 7

10'1. ?OlJ4"
""~.IH3')9
80 ... 100,)'1

10fll ... nl"
7"11.0l710
., I I • ;>('''3'>
H'I.h .. "q7
11)7.'>900:'
1/3.117 ~q'/

111. I HO.,,,
') I • .lb'I/.'
_1') .4.'40b

lh. II 'lhb

71.0<)?00
14.7"l/j
20.fd194
21. j')77!>
4"/,"23'1"

Ill. 01'1 "!>
3~~", j'>"j 'I
A I'>. ~R" 1 ..
Qq cl.117:\7j
7o l l. rtf,C}H 1

')0'>.40710
3\'>.HI9kl
1"".171'>.1

4 /,.j'l'l"H I if·I>".7f)~1;> ld,""7~/)

4,)."""'1H 10/d:I.I"bU<) 17,"'7?q.,
"".1'1'/<)7 11.,111' • ':>"'d 1 '>0. fj"7"~
47.'1'/'/'1/ "1>10.1'>",,> 1~.llICl'>
"lJ.I <)ql17 7j\I}.II.,jI') ""."4104
o;(),'9"411 771<0.0\'>1>2 n.007,!j
~1 • .,q'l'l" "~H7.1.I .. nh 1<I.,'377R
52.7<)'1<1" 1 'n .11>. O",,/)'I 70.7/",1,11
'>3.9<1'1')4 ;o3,,"-17,""H\7 /1.hj"f'.11
55.IQ9·'" 'J7hAI. '/"112 ',H.71,"21
~b.3'1q'lj l')'.t-'1'I.OI",>O 114.M.'IH/)
!>7.)9Qq,) "H71,)4.1"''>0 143.70')011
511.79Q<)" 7'111lJ3.Z'oonO 1127. %30"
5q.lJ9<)q" 40l>039.(1f.250 '-1'11>.4'>'172
61.19'19" 14:i'>H".Oh'.,O 7b2.747HO
&2.Ylq9"j "9H'I201:\4"/6& "9'1./)II7.to2
1>3.'>'1'1'1') 3121>7.7H'>lb 317.0~1>1>4

&3.bl"'1b]0'181.00000 30q.~70AO
AT T I"~ tUUAL TO WIIIL TIME:

It END OF JOII

HOSTS
II LOC I<. 25
IOO.lIuooO
II I. ,)2b08
133."401 b
l"b.tn<l11
;>l) .'10'>4'1
2111.3.132')
3"0; .l724b
4AI. j "1')7)
Id4.67IH"
H~3. 1728')

III III .7.b,,3b
13\'>.'>')'1')7
142 ... 10"'0'1

'-140. II to 711
1.2". '169', j

I"".? JI, 'ib
171.nb7h

'lfJO.tJIJ",'.e:.
l 00. I'> II H
III. "4'-17 j
I 'j4.' jl • .,o
11;,7.117971.
n'h,<);4;?
,,1\CI.Zl7'.1)
)1.1. HII700
""4.7~7",)
td?OllIlAI
11'\ ~. 1",> 17

lnu4.H9fi /.4
1341. lO,Hlh
141\ 41H

<I 7 .~. ',Itt) 14
't) I,. , l7~4
I ') I. IIJHH 1
1/0.117 .. 0

I 00. :~q'>l"
100 • .10'14'1
117 • .lI"/O"j

\3". '/jOlll
I h'I.IJHj)<)

lIh.hHH.I
IfJ7. 101111
370.I.:Ulh
41\'1.1071 II
,,'.j .'t9r,h 1

h'.4.41772
10','1 .~O'>fJo
I J',h. 7;'>fl3
1 .. 17 ... 71~4
9~".('llIno
',07 ... H 11>9
I Afl."4.,R!>
11'1. tlloIl'1
100.I'I'IOH
100.07127

INPUI
0

2)
27

0
0
\)

0
0
0

0.0
1--+ 1--+
1---+
1----+

0.0

1-----+ 1-------+
1----------+ 1-------------+ 1------------------+

lb40.00000

1------------------------+

1--------------------------------+
1------------------- --------------------+

1640.0

1--+
1- ---------------------- ------+
1------------+
1-----+
1--+

1--+ 1--· 1--+
1---+
1----+

1-----+ 1-------· 1----------+ 1--------------+ 1------------------+ 1------------------------+ 1--------------------------------+
1--+

1--+ 1----------------------------. 1-----------+
1,-----+

1--+ 1--+
1--"
1--+
1---+
1----+
1 -----+
1-------+
1----------+

1--------------+ 1------------------+
1------------------------+

1--------------------------------+ 1--+
1 -- - - --------------------------------------+
1----- -----------------------+
1-----------+
1----+
1--+
1--+

1--+

l~igure 14-MOBSSL printer listing for the host-parasite problem

1600'..-----r-----.-----.-----.----,--..-----.------.-----.---,

z

TIME. HOURS

Figure 15-X-Y plotter graph of hosts and parasites vs
time

1600..---..----r-----.--...,.....~--.---,--r---,r--,--------,
Ie I Po= 200, Ho= 100

Ie 2 Po=1200, Ho=1200

~ 1200
......

Ie :3 Po = 500, Ho= 600

Ie 4 Po= 250, Ho = 500
<t
...J
::::l
a..
lr 800

w
......
(/)

<t 400
a:
<t
a..

400 800 1200 1600 2000
HOST POPULATION

Figure 16-Phase plane plot of hosts vs parasites for
four sets of initial conditions

a data set stored on a disk serves as an input to the
MOBSSL simulation. These data could be stored at
any prior time including the immediately preceding
simulation during the present job if l\10BSSL is in an
interative simulation mode. The DO block is used
when it is desired to write block outputs into a data
set stored on a disk. The user therefore has the neces­
sary tools to

1. Provide complex previously obtained vector
valued inputs to a MOBSSL simulation.

2. Store vector valued MOBSSL time histories for
future use.

3. Perform various functional optimization tech­
niques such as quasilinearization in which the
previous time history serves as data for the
present solution.

Up to 10 DI blocks connected as shown in Figure
17a are permitted. DI block numbers must be sequential
and ordered to correspond to stored rusk data sequence,
i.e., the lowest block number corresponds to the first

MOBSSL-UAF 273

a)

up to

10 Dl

blocks

1=7+(n-l)

b)

up to

DO 10 DO

blocks

I = 39 + (n-I)

Figure 17-Disk input and disk output block configurations

block output stored in a record, next to lowest block
number to the second block output stored in a record,
etc.

Similarly, up to 10 DO blocks connected as shown in
Figure 17b are permitted. DO block numbers must be
sequential and ordered to correspond to desired disk
data sequence i.e., the output of the DO with the
lowest block number corresponds to the first variable
stored in each disk data set record, etc.

Disk read and write time intervals are independently
determined by two user supplied entries on a Sample
Time card which also includes lIne printer time interval.
DI block outputs remain the same until the number of
MOBSSL complete integration cycles since the most
recent disk read multiplied by the integration inerval
equals the disk read time. Similarly, writing 01.to the
disk oce-urs only when the accumulated :l\10BSSL time
interval since the most recent disk write is equal to
the disk write time.

274 Fall Joint Computer Conference, 1969

Graphic MOBSSL

The man-simulation language interface can be
improved considerably through the application of
computer graphics terminals.· These devices allow
block diagrams and equations to be manipulated on
the screen of a cathode ray tube using light pens,
tablets and alpha-numeric keyboards. When the
problem definition is completed, the simulation
language is called to generate the desired solutions.
As the solutions are computed, they are displayed by
the computer graphics terminal.

Two graphics programs are presently under develop­
ment at USC. The first, a graphic block diagram editing
program, allows the user to construct MOBSSL dia­
grams on the screen of the graphics terminal. The
second, a differential equation editing program, allows
systems of equations to be drawn on the screen. Prior
to execution of MOBSSL, the equations are translated
into a MOBSSL block diagram. The user may view
the resultant diagram or immediately enter the
MOBSSL program. Subsequent editing operations
may be carried out on either the equations or the
corresponding block diagram.

These two problem preparation programs provide
users with an extremely flexible communication inter­
face. The speed with which large amounts of instruc­
tional and reference material may be displayed makes
it possible to operate these programs with almost no
prior instruction.

Future plans for' MOBSSL

Future developments of MOBSSL will be directed
toward improved man-computer communications.

These will take the form of additional process oriented
block elements; additional parameter and functional
optimization and identification procedures, timing and
interrupt processing elements, and expanded graphics
facilities.

ACKNOWLEDGMENT

The research described in this paper was ca.rried out
under NSF Grant No. GK 2716 and NASA Grant No.
NGR-05-018-022. The authors wish to acknowledge
the assistance provided to them by the Sta,ff of the
System Simulation Laboratory: M. Asa G. Hammer­
wold, A. Lew, C. Hartman and J. lVlaloney.

REFERENCES

J J CLANCY M S FINEBERG
Digital simulation languages: A critique and a guide
Proc SJCC Vol 27 Part 1 23-36

2 R D BRENN AN H SANO
PACTOLUS
Proc F J CC 1964 Vol 26 Spartan Books Inc

3 1130 continuous system modeling program (1130-CX-13X)
program reference manual
H20-02820 IBM Corp

4 R T HARNETT F J SANSOM
MIDAS programmiTtg guide
Rpt No SEG-TDR-64-1 Wright Pa.tterson AFB Ol\io 1'964

5 System 360 continuous system modeling program (360A­
CX-16X) User's manual
H20-0367 -2 IBM Corp

6 G A BEKEY W J KARPLUS
Hybrid computation
John Wiley and Sons 1968

7 H F MEISSINGER
The use of parameter influence coeffic·ients in computer analy­
sis of dynamic systems
Proc Western Joint Computer Conf Vol 17 1960 181-19~~

A hybird computer programming

system

by M. A. FRANKLIN and J. C. STRAUSS

Carnegie-Mellon University
Pittsburgh, Pennsylvania

INTRODUCTION

In order to analyze and subsequently synthesize
complex systems, engineers have increasingly turned to
computer simulation techniques. Until recently, simu­
lation techniques could generally be divided either
on the basis of the type of computer to be used, or
the type of system to be simulated.

Of the two types of computers available,· the analog
computer was usually restricted to simulation of con­
tinuous systems (i.e., systems described by sets of
differential equations), while the digital computer was
used primarily in simulation of discrete event prob­
abilistic systems. As numerical integration techniques
improved and digital computer speed increased, how­
ever, it became clear that it was possible to solve sets
of differential equations and thus simulate continuous
systems on the digital computer. IVlany digital com­
puter programming systems have been designed for
use in such simulations.

Associated with digital computer simulation there
thus arose two types of simulation languages; one for
describing discrete event probabilistic systems,1,2 and
one for describing continuous systems.3 ,4 The main
concern of this paper is with continuous systems
simulation.

With two types of computers available for simulating
continuous systems the question of which type is
"best" presents itself. The answer is often unclear
and is certainly dependent on the system to be simu­
lated and the definition of the word "best".5 In general
the digital computer has the advantages of high accu­
racy combined with low problem setup costs and the
availability of extensive digital computer logic and

automatic programming facilities. It has the disad­
vantages of limited problem solution speed (dynamic
response) and limited man/machine interaction capa­
bility. The analog computer, on the other hand, has
the advantages of high dynamic response and good
man/machine interaction with the disadvantages of
limited accuracy and negligible automatic problem
setup and programming facilities.

More recently with the advent of the hybrid com­
puter, an attempt has been made to combine in one
computer system the advantages of both the analog
and digital computers. Unfortunately, in addition to
the advantages, some of the disadvantages have been
combined and some entirely new problems have arisen.
At this point, however, it appears that with the added
facilities available in a hybrid computer system these
problems can be overcome, and an overall improve­
ment in continuous system simulation capabilities
achieved.

One of the main problems encountered with hybrid
computers is that of effective system utilization. The
process of effecting hybrid simulation studies can be
described in the four phases presented in Table I.
I t has been found, from experience, that often the man
hours spent in off line problem preparation and on
line problem setup and debugging, exceed the man
hours spent in determining solution methods and
actually performing the simulation. In addition, it is
often the case that more computer time is spent during
the setup and debugging process than is spep.t during
problem execution. These disadvantages derive mainly
from the analog computer part of the programming
and have, in general, carried over to the hybrid en-

275

276 Fall Joint Computer Conference, 1969

TABLE I-Phases in preparing a problem for
hybrid computer solution

1. Defining the Problem and Determining the
Solution Method
a. Equations which govern the system
b. Parameters to be varied in the simulation

study
c. General solution procedure

2. Off Line Problem Preparation
a. Allocating the problem to analog or digital

parts of hybrid
b. Scaling the equations
c. Determining the static check values
d. Allocating components to the analog patch­

board
e. Allocating interface linkages
f. Developing the necessary digital programs

3. On Line Preparation and Debugging of Problem
a. Wiring the patchboard
b. Loading the digital computer programs
c. Static checking of analog and interface

components
d. Dynamic checking of analog and interface

components
4. Performing the Simulation Study

a. Run time interaction; changing parameters,
termination problem, etc.

b. Run time diagnostics
c. Run time documentation

vironment. In part the reason for this is that, unlike
the all digital computer system, the hybrid computer
system lacks a coherent overall programming frame­
work in which to operate.

Several programming systems have been developed
in the past to help automate the tasks of problem
preparation, setup and debugging. The most promi­
nent among these are theAPACHE7.8.9 andHYTRANlo
systems. Both of these systems have had their draw­
backs. The APACHE system has had limited opera­
tional success in this countryll.12 due to a combination
of poor documentation and a lack of clearly defined
program modularity. Mor~.fundamental criticisms of
APACHE relate to its inability to handle either the
extensive parallel logic capabilities available on many
current analog computers or the variety of interface
elements available on hybrid computers. In addition,
the lack of a macro-programming capability, the
difficulties in extending APACHE for use on machines
other than the IBM 7090 and PACE 231-R, and the
general lack of a suitable overall hybrid programming

framework appear to make modification of 'the
AP ACHE system for current hybrid computers an
uneconomical, if not impossible, venture. The BY­
TRAN system, which performs a subset of those tasks
handled by APACHE, has also had limited success.
In this case the reason appears to be that, for most
users, the time required to prepare the large quantity
of input information demanded by the system did not
justify the system's return.

In this paper a hybrid programming system is
proposed which attempts to avoid the drawbacks of
the APACHE and HYTRAN systems while creating
an overall programming framework in which to view
hybrid computer operations. The system is presented
in terms of four distinct language levels and the pro­
cessing between these levels. The language levels range
from a highest level machine independent "source
language" for general problem representation, to a
"machine language" which represents the actual hy­
brid computer implementation. The processing between
the language levels represents clearly defined tasks
which can be modularly implemented in successive
stages. At present, the two lowest levels, the "assembly
language" and the "machine language" have been
completely specified and the processing between them
has been implemented for an EAI 6806 Analog/Logic
Computer. Some of the specification details are pre­
sented and a programming example involving the simu­
lation of an automobile suspension system is provided.

Characteristics and concepts of hybrid
programming systems

This section considers characteristics which an effec­
tive hybrid programming system should possess and
some concepts which aid in effecting such a system.

1. Language Levels: One of the keys to the slllccessful
development of effective all digital computer systems
has been the familiar concept of language levels.
Typically the lowest level, a machine lang;uage, is
present for describing the most basic operations which
can be performed on the computer in terms of the
actual performing computer hardware. The next higher
level language, an assembly language, deals with these
basic operations, using mnemonics and symbolic no­
tation. At a still higher level a source language consists
of symbolic operations which represent combinations
of basic operations. In the few existing analog oriented
systems this approach has been avoided and there
has been an emphasis on higher level language develop­
ment. This has been done without developing clear
machine and assembly languages for the representation
of analog operations.

Part of the reason for this is that machine language
representations of digital problems have direct oper­
ational meaning in terms of sequencing and logical
decoding of digital instructions, while such represen­
tations for an analog computer, at least at present,
have only symbolic significance. Symbolic represen­
tational ability is, however, important both from a
conceptual and practical point of view. In particular
one of the principal criticisms of APACHE was its
inability to respond to the analog programmers ability
to thirik up new and sometimes strange circuit patching.

A language level approach to a hybrid programming
system which provides the ability on the lowest level
to represent all legal analog computer patching thus
seems desirable.

2. Language Level M i~'dng: Provision should be made
for intermixing language levels. While writing in the
source language it should be possible to mix in assembly
or machine language. statements, thus enabling the
specification of particular circuit patching for special
situations.

3. Macro Capability: At each language level, except
the lowest, a macro generation capability should be
present. At the source language level this capability
would provide for defining new operators and algebraic
or logical subroutines. At the assembly language level
this capability could be used to define often used
instruction sequences in the usual digital computer
programming manner, or often used component
groupings on the analog computer. Thus for example
the assembly language instructions which correspond
to an amplifier, resistance network, pot and reference

Hybrid Computer Programming System 277

voltage might be combined in a macro to define an
Integrate operator.

4. Interactive Mode: In order to maintain and enhance
the interactive features naturally available on the
analog part of the hybrid a run-time interactive mode
should be present. Table II lists some of the functions
which this mode should possess. Ideally run-time
interaction should be permitted at each of the language
levels. Although the interactive mode is not detailed
in this paper, it appears to be a natural extension of
the proposed programming system.

5. Multiprogramming Capabilities: At this time, no
attempt is made to specify a general multiprogramming
capability. A limited ability to assign problems to
nonoverlapping sections of the analog patchboard is,
however, desirable given the cost of such boards and
the time required for patching. Allocation of com­
ponents in this manner allows several small problems
to remain wired on the patchboard at the same time
while running only one of them in the hybrid con­
figuration.

6. Diagnostics: One of the most useful features of
digital programming systems has been the availability
of extensiv~ programmed diagnostics. These diagnos­
tics aid the programmer in both compile time and run
time program debugging. Similar capabilities must be
present in hybrid programming systems if an effective
system is to be developed.

In hybrid systems it is convenient to divide diagnos­
tic functions into four types: syntax, structure, set up
and dynamic. The first two types correspond to com­
pile time diagnostics and the last two types correspond

TABLE II-Interactive mode functions

ANALOG

1. Change parameter values
a. pot settings
b. switch settings

2. Scale problem
3. Obtain static check values
4. Perform static check
5. Control computer status

a. mode
b. time scale

6. Change program structure
a. patching change

7. Read out analog computer state
a. Amplifier outputs
b. Pot Settings

DIGITAL

1. Change parameter values related to
utility routines
a. integration step size
b. function generation parameters

2. Change program defined parameters
3. Change program structure
4. Initiate and terminate run
5. Read out digital computer status

278 Fall Joint Computer Conference, 1969

to run time diagnostics. Table HI indicates some of
the diagnostic capabilities associated with each type.
The table is meant to be exemplitive rather than all
inclusive and primarily defines a framework for di­
agnostic functions in hybrid systems.

It may be noted that there; is nothing directly
comparable to setup diagnostics in all-digital program­
ming systems. This results from the assumption in
all-digital systems that once the problem is represented
correctly at any language level; a correct machine
implementation will result. This assumption would also
be correct for analog computers if1 an automatic patch­
ing device were available.13

7. Documentation: As in digit3JI systems, documen­
tation in hybrid systems can be divided into program
and execution documentation. Program documentation
includes general program listings, and for the analog
part, wiring lists, pot settings, etc. Execution docu­
mentation is associated primarily with the interactive
mode of the system. Thus, changing pot settings, run
modes and the like are automatically documented when
the change is requested. Structure changes such as
adding an amplifier onto the patched problem should

also be documented. These changes, however, will
require separate entries into the digital computer
representation of the analog problem in addition to
performing the changes on the analog patchboard.
This is necessary if a current picture of the analog
patched problem is to be maintained in the digital
computer. In addition, general run-time documen­
tation of the digital programs currently being used, of
amplifier outputs and pot settings, and general analog
computer structure lists, should also be present.

8. Special Analog Computer Reguirements: Certain
special compiler processing is required by the presence
of the analog computer. Most of these special require­
ments were implemented on the APACHE system.
They are listed briefly below:

a. Automatic Scaling: Automation of mngnitude
and time scaling is desirable. In addition, hybrid
procedures for dynamic rescaling of hybrid problems
to insure maximum accuracy should be provided.

b. Component Allocation: Components should be
allocated automatically to the analog patchboard. The
facility for assigning particular components or :re-

TABLE III-Hybrid diagnostics

ANALOG

Syntax
1. Syntax Checking

Structure
1. Connection symbol defined as in­

put without being defined as
output

2. Not enough components are avail­
able to implement program

3. An illegal configuration is
encountered
a. Logical signal feeding analog

component
b. An output connected to an

output
c. Reference voltage feeding

function relay
d. Pot feeding function generator

Set up
1. Static Checking

Dynamic
1. Overloaded amplifier

DIGITAL

1. Syntax Checking

1. Program branches to nonexistent
statement number

2. Program accesses nonexistent memory
or subroutine

1. Register overflow

stricting the assignment of components to a particular
part of the board, should be available.

c. Static Checking: An automatic static check
procedure (setup diagnostic) is necessary which gener­
ates static check values and subsequently performs- an
on line consistency check between these values and
those obtained from the patched problem.

d. Digital Simulation: Facility must be provided
for digitally simulating parts of the problem which
may eventually be implemented on the analog part of
the hybrid. This is useful both in determining variable
ranges for scaling purposes and in deciding which part
of a problem is better implemented on the analog or
digital subsection of the hybrid.

9. Special Hybrid Requirements:

a. Computer Allocation: Except for special cases,
digital computer programming at the source language
level does not usually involve the problem of computer
resource allocation. For the analog computer pro­
grammer the allocation problem is confined to com­
ponent allocation on the analog patchboard and is
usually performed after the method of solution has
been determined. For the hybrid computer program­
mer the question of allocation of computer resources
can be viewed as one of the first questions to be
answered. Very early in the problem formulation it must
be determined which part of the problem is to be imple­
mented on the analog subsection and which part on
the digital subsection. This decision affects both the
speed and accuracy of problem solution.

Assuming for the moment that criteria can be
developed for determining the analogi digital imple­
mentation division of a problem, it is useful to consider
two types of source languages. The first is for general
problem representation independent of implementation,
and the second indicates the implementation division
between the analog and digital subsections.

Formulation of general computer allocation pro­
cedures are extremely difficult. It appears that in many
instances the mathematical formulation of the problem
contains certain prejudgments concerning the allo­
cation problem. The area requires a good deal more
study and is not considered further in this paper.

10. System Implementation: Experience with APA­
CHE and other systems suggests that it is often
desirable to sacrifice somet.hing in run-time program
efficiency for the clarity gained by' programming in a
higher level language. The resulting program usually
is more easily understood, and thus adaptable, by
persons not intimately acquainted with the system. For

Hybrid Computer Programming System 279

the same reason system implementation should empha­
size a high degree of program modularity.

The programming system

This section briefly discusses the language levels of
a proposed _ hybrid programming system and the pro­
cessing required between the levels. Figure 1 indicates
the overall structure of the programming system. The
programmer can enter the system by writing at the
language level best suited to his needs. The language
levels follow closely those defined for digital computer
programming systems. The processing required between
levels is outlined in Table IV.

1. Hybrid Source Language (H SL) :

In the Hybrid Source Language, the simulation problem
is represented in a "natural" form, hopefully inde­
pendent of its specific implementation. Such a language
must have the ability to describe continuous systems
and also have the general capabilities associated with
higher level languages such as FORTRAN. CSSL
(Continuous System Simulation Language14), a language
developed by Simulation Councils Inc., has both of
these capabilities. In addition, its macro and program­
mable structure features give it the great flexibility
needed in a general simulation programming language.
With some relatively small modifications, particularly
in the control statement area, CSSL is taken here as
the Hybrid Source Language.

In addition to syntax checking, the main processing
at this level relates to the computer allocation problem
discussed earlier.

USER

ENTRY

INTO

SYSTEM
1----1

IIATCH

PROCESSING

::-:-:==-:-:-:-:=;-:-~:':::::-Io---I MODE)

USER RUN TIME
INTERACTION
WITH SYSTEM

Figure 1-A hybrid computer programming system

280 Fall Joint Computer Conference, 1969

TABLE IV-Processing between language levels

Language
Level to Level

1 (HSL)
to

2 (ASL)

2 (ASL)
to

3 (HAL)

3 (HAL)
to

4 (HML)

2. Allocated Source Language (ASL):

PROCESSING OPERATIONS

1. Syntax Checking
2. Allocation to analog and digital subsections of hybrid
3. Documentation

1. Syntax Checking
2. Designation of variables as being generated on

analog or digital subsections of hybrid
3. Allocation of interface channels
4. Establishment of necessary interface routines
5. Compilation of digital part of program
6. Compilation of analog part of program

a. production of analog assembly statements
7. Simulation of analog part, if requested
8. Execution of digital parts to obtain timing informa­

tion, if requested
9. Documentation

1. Syntax Checking
2. Macro Processing and Listbuilding
3. Scaling Problem
4. Allocation of Analog Components
5. Production of Static Check Values
6. Documentation

The Allocated Source Language is effectively the same
as HSL except that groups of instructions have been
tagged to identify their implementation target. A
modified form of CSSL may be used at this level. The
main modification is in the addition of control state­
ments ANALOG and DIGITAL which indicate the
implementation of the block to follow. These state­
ments may be combined with the CSSL block structure
statements such as DYNAMIC and PROCEDURAL
to form statements such as ADYNAMIC and DPROD­
CEDURAL which indicate that the statements in the
dynamic and procedural blocks which follow are to be
implemented on the analog and digital parts of the
hybrid respectively.

follow. A special control statement, TIME, is also
necessary at this level to request timing information
on digitally implemented blocks.

The main processing at this level involves the
recognition of variables as being generated on the
analog or digital part of the hybrid, the compilation
of the separate analog and digital routines to produee
assembly language versions of the separate parts and
the establishment of interface routines to access and
transmit those variables crossing the interface. It
should be noted that compilation of the digital part
of the program follows usual digital computer com­
pilation procedures, the primary difference oecurring
when an analog generated variable value is needed.
At this point either an interface utility routine is
called to obtain the variable, or a table containing
periodically updated variable values is acessed. Additional control statements are necessary to insure

effective programming of the hybrid. Among these are
statements specifying the analog output devices re­
~uired, requests for a digital simulation of an analog
Implemented part of the program and statements indi­
cating that lower level language instructions are to

3. Hybrid Assembly Language (HAL):

The analog oriented part of the Hybrid A8sembly .
Language represents the analog part of the proble:m
in terms of the .. physical components on the analog

patchboard without being concerned with specific
component allocation or component patching; e.g., the
connection between an amplifier and a potentiometer
is specified without indicating the specific amplifier
and potentiometer on the patchboard. The digital
part of HAL is just the assembly language associated
with the digital subsections; it is not discussed further
here.

Unlike the previous language levels, this language
refers entirely to specific hardware components and as
such is machine dependent. Currently such a language
has been designed for use on the EAI 680 analog/logic
computer. A translator for this language has been
implemented in Fortran IV. The details of both
language and translation are presented in the following
section. The processing at this level is outlined in
Table IV.

4. Hybrid Machine Language (HML): The analog
oriented part of the Hybrid Machine Language is the
same as the analog part of HAL except that each
instruction now contains a specific number attached
to it indicating the particular component on the analog
patchboard on .which this instruction will be imple­
mented.

A user entering the programming system at this
level can request all the processing associated with the
previous level with the exception of component allo­
cation which has already been performed.

The hybrid assembly lang uage

This section discusses the details of the Hybrid
Assembly Language. The section is divided into two
parts. The first section describes Basic HAL, a symbolic
analog interconnection language, and the second
section describes J\1arco HAL, a macro language
extension to Basic HAL.

1. Basic HAL: Basic HAL consists of a set of in­
struction types which enables the representation of
analog components and their interconnections. The
components are identified by mnemonic analog opera­
tion codes referred to as micro operators. Thus, for
example, POTU designates an ungrounded potentio­
meter, while AJ\1PL designates the amplifiers associated
with the limit summer. A distinct micro operator is
present for each analog and logic component available
on the analog patchboard.

Connections between components are specified
through the use of common connection symbols simi··
lar to a FORTRAN variable name. By using common
symbols to represent the inputs and outputs of different
components, connections between components are
d~fined.

Hybrid Computer Programming System 281

The general format· for a Basic HAL instruction is:

((output list») = (analog micro operator)((input list»)

The output list is a list of connection symbols (termed
output symbols) which associate names to the various
outputs of the component designated by the analog
micro operation. A list is necessary since certain
components such as multipliers and relays have several
outputs. The input list may contain connection
symbols, parameter identifiers or numeric parameter
values. The following example illustrates the use of
four Basic HAL instructions in representing an inte­
grator. The two inputs to the integrator are represented
by Xl and X2, and the output by Y 4.

(1) Yl=REFP

(2) Y2= POT(Yl,.tj)

(3) (, Y3) = RCNC(Xl",X2",)

(4) Y4=ANIPC(,Y3,Y2,Y4",,,,)

The first instruction specifies a positive reference
voltage which has the output symbol YI. The second
instruction is a grounded potentiometer set to .5, and
fed by YI. The output Y2 provides the initial condition
for the combination amplifier specified in instruction
(4). Instruction (3) specifies a resistance network
associated with a combination amplifier. At the Basic
HAL level this network must be specified since it is a
component which can be used separately. The inputs
to be integrated, Xl and X2, are fed into this network.
The output of the network· is fed into a combination
amplifier using the common connection symbol Y3.
Proper capacitive feedback is specified for the combi­
nation amplifier in instruction (4) ·by having the output
symbol Y 4 in the proper position of the input list. A
dollar sign or blank is used to indicate that no input
is present into these component positions.

Because of the large number of available com­
ponents and their highly flexible interconnection,
instructions at the Basic HAL level are often quite
complicated. This complexity is, however, necessary
at this level, if complete patchboard representation
ability is to be achieved. The combination amplifier
instruction is a good example of this complexity.
Table V defines all the inputs to the combination
amplifier in the notation employed in Reference 6.

In addition to the Basic HAL instructions several
control statements are available. Among them are the
PVALUE control statement which defines parameter
identifiers and assigns numeric values to them, the

282 Fall Joint Computer Conference, 1969

TABLE V-Combination amplifier instruction

Y = AIVIPC (Xl, X2, X3, X4, X5, X6, X7, X8, X9, Xl,
Xl: AJ (Amplifier Junction) Input
X2: OJ (Operate Junction) Input
X3: IC (Initial Condition) Input
X4: F (Integration Feedback) Input
X5; X6: IVlode Control Inputs
X7; X8: Feedback Capacitor Selection Inputs
X9: IJ (Initial Condition Summing Junction) Input
XIO: C (Feedback Capacitor Disconnect) Input

HALEND control statement which terminates the
HAL program and the ALOCA TE control statement
which is described below.

The programmer can specify the use of particular
components on the patchboard by appending the
analog micro operator with [l, component number.
Thus writing

Y2=POT 02 (YI,.5)

will direct the compiler to allocate potentiometer 02
when implementing this instruction. Instructions in
which particular components are specified are effec­
tively analog machine language; instructions. Due to
this a separate discussion of the analog machine
language is not necessary. The capability is also pro­
vided for restricting component allocation to certain
parts of the analog patchboard. This is done through
use of the control statement ALOCATE. ALOCATE
is followed by number pairs which designate sequences
of trays from which components are to be selected for
problem implementation. On the EAI 680 trays are
basic modules into which the board is divided; one
tray may contain one or more components. Thus the
statement ALOCATE (000,029) would restrict problem
implementation to the first thirty trays of the EAI 680
patchboard. Naturally if it is not possible to find the
appropriate components or number of components in
the trays specified a diagnostic message is printed out.

2. Macro HAL: The Macro-HAL language consists

of Basic-HAL with additional procedures for generating
macros. In addition, a standard set of system imple­
mented macro instructions is provided for certain
commonly used instruction groups. A macro instruction
is generated by supplying the assembler with a ma,cro
definition. The ~1acro ,HAL instruction format is the
same as the Basic HAL format except that in addition
to the analog micro operator there is an analog macro
operator.

(< output list» < analog macro operator>
(< input list>)

This analog macro operator is defined in the macro
definition and is any identifier not already used as a
micro or macro operator. To call a macro, one simply
writes the Macro HAL instruction with the appropriate
macro operator, connection symbols and parameters in
their places.

Table VI indicates the format required in a macro
definition. A header, AMACRO, and a trailer,
AMEND, define . the beginning and end of the macro
definition. The prototype statement is the l\1acro HAL
instruction in the format given above. This defines
the macro operator and the number and position of
the inputs and output symbols to be expected. The
next statements required are declaration staJtements.
These macro Gontrol statements indicate which
identifiers are to be considered as connection symbols
and which as parameter identifiers. The body of the

TABLE VI-Macro definition format

AMACRO
"Prototype Statement"
"Declaration Statements"
"Body"

AlVIEND

1. Macro HAL Instructions
2. Macro Assembly Instructions

program consists of Macro HAL instructions described
earlier, and Macro Assembly instructions. The Macro
Assembly instructions provide for symbol operations
such as substitution, arithmetic operations on param­
eter values and identifiers, and conditional operations
for expansion time component and parameter changes.
With these facilities, very flexible macros can be
written which conditionally adapt the implementation
structure to the requirements of the problem.

Most of the major operators such as integrate,
sum, etc., associated with digital simulation languages
a'nd requiring several components for analog imple­
mentation are provided as system macros. These
assembly language system macros also represent a
target language into which the differential equation
based notation of the Allocated Source Language is
to be translated. IS

Processing the hybrid assembly language

The processing required for HAL is indicated in
Table IV. The first tasks of syntax ~hecking, macro
expansion and list building result in the production
of a linked list and several associated tables. Together
they represent an easily accessed and processed internal
digital representation of the analog problem.

Scaling the problem and producing static check
values, though not yet implemented, also occur at this
level. These tasks may be performed at higher language
levels, however, this level has been chosen to facilitate
rapid on-line programmer interaction. Thus once
changes have been made in the structure of the analog
problem on the patchboard, the equivalent changes
can be made in the internal digital computer represen­
tation of the problem and new scaling and static check
information can be requested.

Allocation of components to the analog patchboard
is automatically done at this level. When performed
manually, the allocation involves matching components
to blocks in a block diagram problem solution. The
criteria for such assignments are often qualitative and
include such notions as compactness of patchboard
wiring and neatness or symmetry in wiring appearance,
both of which aid in problem debugging. The assign­
ment itself, though sometimes tedious, is easily effected
using these visual qualitative criteria.

When mechanizing the component allo ation task
on the digital computer, two main approaches are
available. The first attempts to give meaning to
qualitative criteria such as compactness and neatness
through the development and subsequent optimization
of appropriate objective functions. Objective functions
such as wire length, wire crossovers, and area covered

Hybrid Computer Programming System 283

on the board are often used in digital computer back­
board wiring and, to some degree, do reflect the concept
of compactness. The general problem of allocating
objects (components) to locations on a board, subject
to restrictions on object placement, with the goal of
minimizing some objective function is often referred to
in the literature as the "assignment" or "placement"
problem.16 Algorithms for the solution of such optimi­
zation problems can take several hours of computing
time16 when several hundred objects and locations are
present. This is due largely to the astronomical number
of ways one can allocate a given problem and the slow
and not easily predicted convergence properties of
available algorithms. The large computing time re­
quirements make this approach unsuitable for a short
compile time or on line programming system. In ad­
dition, it is not clear that these objective functions
meaningfully quantify the qualitative allocation cri­
teria generally employed by programmers.

The second approach to the component allocation
task is to develop a set of heuristic algorithms which
try to embody concepts such as compactness and neat­
ness while at the same time keeping computing costs
at a minimum. As with most heuristic algorithms, the
one currently implemented in this system has worked
well on most, but not all of the problems it has en-,
countered. In every problem it does, however, find
a legal allocation if it is possible, The basic assumptions
of the heuristic are given below.

a. CompOilents used as integrators and summers
are generally the key elements in determining the way
a programmer patches a board, or draws a flow diagram.
These components should therefore be allocated to
preserve, as much as possible, the visual signal flow
patterns between them.

b. Patching situations such as initial condition
pots and pots tied to the inputs or output of amplifiers
should be considered as special cases. In many of these
and other cases, the patchboard of the EAI 680 has
been designed for neatness and compactness by pro­
viding special patchplugs which may be used instead
of wires. Since plug patching is both neat and repre:"
sents a minimum wire length it should be utilized
where possible.

c. A certain amount of patching compactness is
desirable. The remainder of the components should
therefore be allocated in the basis of their closeness
to already allocated components.

These assumptions form the basis of a three phase
allocation algorithm with each phase corresponding
to one of the assumptions above. The details are not
discussed in this paper. The example provided in the

284 Fall Joi.nt Computer Conference, 1969

next section, however, demonstrates the results of the
algorithm.

An example

Figure 2 contains the scaled block diagram of an
automobile suspension simulation.16 Table VII is an
input listing of the problem as represented in the Basic
HAL language. The same problem represented with
the use of the system macros integrate (INTG), sum­
mation (SUM), and invert (INVT) is given in Table
VIII. There is approximately a three to one reduction
in code lines required when the problem is represented
using the macro facility and this representation is
reasonably clear and compact. The resulting allocation
of the problem to the EAI 680 patchboard is given
in Figure 3 and indicates that much of the problem's
visual signal flow patterns have b~en preserved.

The programming system which to date includes
the syntax checking, and the macro, listbuilding and
allocation processing described· previously has been
implemented in FORTRAN IV. For the example
above, this processing took approximately four seconds
when executed on a Univac II()8 computer. A more
complex problem, the Cable Arrestor Problem,17 con­
taining roughly twice as many components took nine
seconds.

CONCLUSIONS

This paper proposes a hybrid programming system
in terms of four language levels and the processing
required between them. Some of the details of the
lowest language levels which have been implemented
are presented and an example demonstrating the use
of the system is given.

Currently the authors are engaged in completely
specifying the modifications necessary for transforming
CSSL into a desirable allocated source language. A
continuing study is also being made of the interface

Figure 2-Simulation of an automobile suspension
system

TABLE VII-Basic HAL input for automobile
suspension problem

PVALUE (KI = .16, K2 = .5, K3 = .8)
P9 = POT(S3, KI)
PIO = POT(XI, .5)
PII = POT(C2, K2)
PI2 = POT (J4, .4)
PI3 = POT(XI, .1)
PI4 = POT (X2, .5)
PI5 = POT(J4, .5)
PI6 = POT (NREF, .5)
PI7 = POT(NX2, .15)
PI8 = POT(X2, .5)
PI9 = POT(88, K3)
P20 = POT(83, .2)
(,RI) = RCNC(" ,P9, PI2,,)
(,R2) = RCNC(PIO"",)
(,R6) = RCNC(" ,PI5, P20, PI9,)
(,R7) = RCNC(, "PI7,,,)
R3= RCNS(Pll ,PI4"" ,83)
R8 = RCN8(PI6,PI8"" ,88)
R5 = RCN8(PI3,NX2"" ,85)
J4 = AMPJ(85,,)
Xl = AMPC(,RI, ,Xl"", ,)
C2 = AMPC(,R2, ,C2"",,)
NX2 = AMPC(,R6, ,NX2,."",)
X2 = AMPC(,R7, ,X2"",,)
83 = AMPS(R3"",)
88 = AMPS(R8"" ,)
85 = AMP8(R5"" ,)
NREF = REFN
HALEND

requirements between the analog and digital program
subsections. In addition implementation continues on
the lower level processing tasks, the initial goal being
a subsystem which handles the analog subsection of

TABLE VIII-Macro HAL input for automobile
suspension problem

PVALUE (KI = .16, K2 = .5, K3 = .8)
Xl = INTG(K1,S3, .4,J4)
C2 = INTG(., 5XI)
NX2 = INTG(.5, J4, .2, S3, K3, S8)
X2 = INTG(.5,NX2)
85 = SUM(.I,Xl, 1, NX2)
83 = SUM(K2, C2, .5, X2)
S8 = SUM(.5, X2, 5, NREF)
J4 = GAIN (S5 , 1)
NREF = REFN
HALEND

Figure 3-Automobile suspension problem allocated
to EAI 680 patchboard

a program at the Macro HAL level, and contains a
limited interactive mode (Figure 1) capable of online
scaling anq. static checking in response to patchboard
configuration changes.

Programming costs for hybrid computers have mush­
roomed to the point where the economic justification
of hybrid simulation projects is being questioned. It
is hoped that this proposal will both stimulate dis­
cussion in this area and fill a current and growing need
for an effective hybrid programming system.

REFERENCES
G GORDAN
GPSS-A general purpose systems simulation program
IBM Systems Journal Vol 1 1962 18-32

2 H M MARKOWITZ B HAUSNER H W KARR
SIMSCRIPT: A simulation programming language
Prentice-Hall Inc N J 1963

3 J J CLANCY M S FINEBERG
Digital simulation languages: A critique and a guide
Proc FJCC Vol 27 1965 23-36

4 J C STRAUSS
Digital simulation of continouus systems: A n overview
Proc F JCC Vol 33 1968 339-343

5 T D TRUITT
Hybrid computation . .. What is it? Who needs it?
IEEE Spectrum Vol 1 No 6 1964 132-146

Hybrid Computer Programming System 285

6 EAI iI6 680 Reference Handbook
Electronic Associates Inc N J 1967

7 C GREEN H D'HOOP A DEBH.OUX
APACHE-A breakthrough in analog computing
IRE Trans on E C Vol 11 1962699-706

8 APACHE: Analog programming and checkinQ programmers
manual
Euratom Doc EUR 2437 e 1966

9 APACHE: Analog programming and checking system
programmers guide
Euratom Doc EUn 3052 e 1966

10 W OCKER STEGER
HYTRAN-A software system to aid the analog programmer
Proe FJCC Vol 26 1964291-298

11 W MIESSNER
APACHE Subcommittee report
SCI Simulation Software Committee 1965

12 J KOVACS J C STRAUSS
An approach to a hybrid programming language
SCI Third Annual Simulation . Software Meeting 1967

13 T J GRACON J C STRAUSS
:1 decision procedure for selecting among proposed analog
computer patching systems
Simulation Vol 13 No 2 1969

14 J C STRAUSS editor
CSSL-The SCI continuous system s1:mulation language
Simulation Vol 9 No 6 1967

15 M BREUER
Design aldomation of digital computers
Proe IEEE Vol 15 1966 1700-1720

16 EA! handbook of analog computation
Electronic Associates Inc N J 1967 Chapt 3 119

17 A E ROGERS T W CONNOLLY
Analog computation in engineering design
McGraw-Hill Co Inc 1960379

18 M STEIN
A utomatic digital programming of analog computers
IEEE Trans on E C Vol 12 1963 100-111

19 H PAYNTER J SUEZ
A utomatic digital set-up and scaling of analog computers
ISA Trans Vol 3 1964 55-64

Hybrid executive-User's approach

by W. L. GRAVES andR. A. MAcDONALD

TRW Systems Group
Redondo Beach, California

INTRODUCTION

Hybrid executive programs have long been prevalent
in the hybrid computer simulation industry, however,
what should be the essential features of a hybrid execu­
tive is ~till a controversial subject. For the most part,
the desIgn of hybrid executives has been undertaken
by.the manufacturers of hybrid systems and in many
deSIgns the complexity in the operation of these
progra~s. has resulted in their usage only on large
cla~s dIgItal systems. Consequently, hybrid facilities
whlCh employ a small to medium class digital computer
sys~em are faced with the task of developing an exe­
cutlVe program compatible with the facility environ­
ment. However, in many of these small to medium
hybrid facilities, the segregated program development
effort for a hybrid executive is not undertaken until
considerable time after the installation of the hybrid
sy~tem. The normal reasons are inadequate program­
mmg funds or a higher priority assignment of available
personnel to satisfy programming and development
needs of existing hybrid simulations.

For hybrid computation, specifications for the ex­
ecutive design must include sufficient flexibility to enable
the user to easily alter the mode of the executive
execution at run time as well as at compilation time
to meet the requirements of the particular engineering
problem being simulated. In hybrid executives existing
today,. such flexibility does not generally exist. These
executlVes usually consist of a conglomeration of many
programs that perform specific functions and are
linked together only to the extent that the order of
their execution is controlled by a simple monitor.
However, the nature of these functions is such that
the provision of linkage between control and problem

rl:ata could considerably reduce the complexity of their
implementation while increasing flexibility.

In this paper, the philosophy for a hybrid executive
design, which has evolved from extensive user experi­
ence, is described. Since it is a user philosophy it is
relatively unique in the hybrid simulation industry
wherein most designs are specified by "software ex­
perts", which usually have attained their expertise
via an all digital environment. A definition of the term
"user" is in order. A user is defined as a person in the
role of either an applications programmer or engineer­
ing analyst as opposed to a E\ystem software program­
mer or analyst. The hybrid executive (hereafter re­
ferred to as the TRW executive) discussed in this
paper was primarily developed to satisfy the simu­
lation requirements for a large aerospace engineering
problem. However, the authors feei that the extended
usage of this executive to other applications, whatever
the size, is reasonable, The general requirements for
this problem and the rationale used in the design of
the executive programs are discussed.

Typical executive requirements for hybrid simulation

In early 1967, the TRW Analog/Hybrid Facility
had been requested to develop a large multi-us~
hybrid simulation capability in support of ,the Apollo
program. For this study, which involved several inde­
pendent simulations, each basically simulating two
vehicles in 6 DOF and employing as many as two
control systems for each vehicle, it became very ap­
parent that total executive control for each of these
simulations would be required for the following reasons:

• The size and complexity of the simulations would

287

288 Fall Joint Computer Conference, 1969

require an extensive daily checkout to assure
simulation readiness. To accomplish this task by
manual means on the analog; would be impractical,
and therefore, potentiometer setup and static
checkout using digital control would be required.
Also, since it was expected that the definitions of
the simulation state would change frequently,
either due to changes in parameters or to different
selections of program options, the pot setup and
static checkout programs should have sufficient
flexibility to assure analog; or system readiness
for the current simulation definition.

• Complete flexibility in the data input and output
formats, such that either the simulation staff or
the various engineering; analysts assigned to this
project could communicate with the simulations
in a familial', user oriented, language and without
burdened details of specific data formats.

• A large simulation staff of programmers of varying
experience and backgrounds would be assigned to
the program, therefore, generalized software to
handle control such as interrupts, analog/digital
interface, sampling, etc., need be developed such
that program interfacing would not be a difficult
task.

• Because of the size and complexity of the simu­
lation and because of an additional requirement
to be able to use the simulations for a multiple of
studies, scaling of both amplitude and time would
be difficult to specify prior to execution. Therefore,
the capability to rescale at run time would be
necessary to reduce considerably the recompila­
tions required if this information is fixed within
the program.

• A requirement to display the dynamic status of
up to ·several hundred variables either digitally
and/or via the analog would be necessary. Because
digital display using a line printer during problem
execution would be time prohibitive, a dynamic
dump capability to external bulk storage (disc
drives or magnetic tapes) for later recovery or
further processing would be required.

• Because of the potential multiple of uses for the
simulation programs, data I/O requirements from
study to study would be expected to vary con­
siderably. Since it would be highly inefficient to
recompile the programs for each new I/O con­
figuration, the executive capability must include
a means for defining the I/O processes at exe­
cution time rather than at compilation time.

• Since the total digital program storage require­
ments were expected to exceed available memory,
the executive program structure must provide
capability for program overlay and data inter­
facing in a manner not overburdening to either
the user or the respective programmers.

In satisfying the requirements for executive control
of the Apollo simulations, two important constraints
\vere applied. First, development and design effort of
the executive must be done within the budget and
schedule allotted by the Apollo simulation task, and
second, sufficient generalization and compatibility must
be maintained in the design for adaptation to other digi­
tal software systems, if necessary, during the simulation
effort. This latter constraint implies that the design
and implementation should not require modification
of software provided by the computer manufacturer,
(loader, compiler, I/O, etc.) for operation.

Evolution of the executive design and development

In the Hybrid Computation Facility at TRW
Systems Group, which currently employs a medium
class digital computer (CDC-310(~) linked to four
analog computers (two Beckman 2132's and two Com­
cor CI-5000's), a generalized hybrid executive program
was not available for nearly three years from the time
of installation in 1964. A reasonable software develop­
ment activity within TRW could not be inith~ted with
the available personnel because of committments to
simulation development for several large programs.
Prior to late 1967, executive control for hybrid simu­
lations was tailored specifically to fulfill the require­
ments for the particular study and was generally not
applicable from study to study. However, valuable
experience had been gained in realizing, from a usage
point of view, the total requirements and capabilities
for a generalized hybrid executive program.

Upon the initiation of the Apollo simulations in
1966, two approaches for developing a hybrid executive
were considered. One approach was to develop a com­
plete executive separate from the problem imple­
mentation and later integrate the two programs for
final checkout. A second approach was to develop the
executive in parallel with the problem implementation
and integrate and check out the combined modules of
the simulation as they were developed. From the
stringent A\pollo simulation schedule, it was apparent
that the latter approach would be more feasible. Conse­
quently, the design evolution of the executive was
dictated by satisfying the particular simulation re­
quirements at the time of implementation. As a result,

many of the capabilities presently existing in the TRW
executive have resulted from second or third generation
design changes as user flexibility and program efficiency
so required.

Program description

Several basic philosophies were adhered to during
the executive design and development:

1. Any information required in defining the simu­
lation which may change frequently is entered
as data at run time. This class of information
includes items such as scale factors, linkage
assignments, analog component or console
assignments, required program sequencing con­
trol flags and all problem parameters.

2. Any information that is changed only if the
engineering system being studied is redefined is
compiled into the system ._. This would include
items such as problem equations, etc.

3. All control or problem executions which are
non-time critical, that is, not required for the
dynamic execution of the problem, need not
reside in memory during the time critical exe­
cution. Functions such -as pre-data and post­
data processing, initialization, pot value de­
termination and setting, static check determi­
nation and interrogation are non-time critical
and are usually executed once per run sequence
and therefore may be program overlayed, thus
optimizing or reserving resident core for the
time critical or "Real Time" program.

4. All data values required to transfer information
or problem status between major program
functions must reside in core using a "COMMON"
reserved data area. It is this importa~t con­
straint on implementation that permits the
usage of program overlaying and aides significant­
ly in the executive design.

Five or six separate computer functions or programs
can be defined, which satisfy the total simulation
requirements: data I/O processing, initialization, pot
evaluation and setting, real time execution, static
check evaluation and interrogation, and possibly, post
data processing. Figure 1 depicts the general organi­
zation of these functions. It should be noted, that the
order of execution of these functions is completely
determined by the user at run time from data input,
and that any single function can be executed sepa­
rately or by an automatic sequencer.

Since overlaying processing is used, each function

Hybrid Executive-User's Approach 289

DATA

USER INPUTS [I/O ACT ION REOUEST
PROGRAM

FUNCTION REQUEST

'-----r--I

Figure I-Hybrid executive program structure

or program comprises, but not necessarily so-, a separate
computer overlay with each in turn further overlayed
(with the exception of the real time program) as in­
creased core requirements are experienced. Each of
these programs is executed by a simple driver or
monitor upon command by the user utilizing the
resident COMMON for data transfer. In the following
sections, the design for each of the five major programs
and the control of their execution is briefly discussed.

Data I/O processing

Because the most frequent interaction between the
user and the system occurs through the I/O portion of
the executive, special attention is warranted to make
the interaction as painless as possible. Since the external
characteristics of entering both data and action requests
are identical for the TRW executive, the following
comments generally apply to both classes of infor­
mation.

The essential task performed by I/O software is
the conversion between data representations required
externally to the computer. Each time an item of
information is processed for I/O, a description of the
item sufficient to allow conversion must be available.
The TRW executive requires inclusion of descriptors
that specify the following. Names entered must be
defined as data identifiers or action requests identifiers.
The internal classification of the data, REAL, INTE­
GER, OCTAL, etc., must be specified. Differentiation
must be made between data that is part of an array
and data that is not. Conversion from one set of engi­
neering units to another is also allowed and must be
specified.

Clearly, any I/O format that requires specification

290 Fall Joint Computer Conference, 1969

--
of all of these descriptors every time an item is refer­
enced is untenable. In the TRW executive, the approach
used to reduce the problem requires the user to provide
a list of all names that are to be accepted and the
required descriptors of each. Specification of the
required descriptors is done using FORTRAN oriented
names such as REAL, INTG, etc. This list is compiled
to allow ease of linkage with appropriate I/O handling
routines. Once the list is defined, entry of data requires
only a name and a numeric value. Since all conversion
is pre-specified, no artificial indicators, such as a
decimal point to specify a floating point number, are
required. Since it is reasonable to expect the descriptors
defined for each data value will not change unless the
problem definition changes, no appreciable loss in
fiexibility for I/O processing is realized when the de­
scriptor list is compiled.

The internal definit~on of conversion requirements
also permits extremely simple definitions of display
requirements. In this case, the. data value already
exists within the computer and only the name of a
variable is necessary to complete the information
needed within the computer to define output require­
ments. Indirectly, this has allowed requesting all
display functions by simply entering a list of names.
The implications contained here are best illustrated
in the case of specifying "Dynamic Dump" require­
ments. This is an output function that should be time
optimized. Unfortunately, optimization of a routine
to output floating point data requires different in­
structions than those needed for output of fixed point
variables. In view of this, a prob~em arises when it is
desired to intermix floating and fixed point numbers
in a single general request list. The TRW executive,
since it has access to all pertinent descriptive infor­
mation, can handle this problem internally without
the user even being aware that it is happening. The
allowance of such mixed mode lists is provided for
printing and dynamic dumps.

Another problem often encountered in trying to
enter data into a computer is caused by the presence
of rigid format structures such as: requiring that items
be aligned to specific card columns. Where users are
often required to hurriedly keypunch or type in their
own data for performance of runs, such rigidity becomes
too restrictive. Thus, one design criterion for the I/O
package was the elimination of this problem. A solution
was achieved through use of an input string scanning
routine which searches an entire input record for
appropriate data fields.

In the case of action requests two forms exist and
are distinquished only by their manner of use. The

first form, which is the larger class, is referred to as
an I/O action request and the functions performed
are restricted to various manipUlations of data. Re­
quests for saving program status on a disk or trans­
ferring data from cards to tape are examples. B2,sic
to this class is the requirement that the subroutine
used "to process the request returns control to the
executive input output controller. The second class of
action request, referred to as program execution
requests, is used to initiate execution of hybrid functions
not related to I/O. In this case the routine used to
satisfy the request passes control to the executive
execution sequence controller rather than the I/O
controller. In both cases, the specification of the
request to the executive program is the same and the
user implies through his own subroutine the class to
which the request belongs. Figure 2 shows the cont:rol
used for I/O processing in conjunction with how this
control interfaces with the executive control of those
functional blocks as indicated in Figure 1.

Potentiometer evaluation and setting

As part of performing each and every computer run,
potentiometers must be set to the proper values. In
most small and medium sized hybrid labs the ability
to do this from the digital is provided with one of
two levels of sophistication. The first requires specifyin g
the address of the potentiometer to be set and the
value to which it must be set. The second requires
specification of the potentiometer address, parameter
values and a FORTRAN like expression used in com­
puting the setting, The latter then both computes the

Figure 2-Executive and I/O processing control

setting and automatically sets the potentiometer using
an interpretive compiler. Both of the methods require
that the user select those potentiometers whose settings
will change. This selection is based on the engineer's
knowledge of parameter value changes, and in himped
parameter definitions or where the same parameter
is used repeatedly -throughout the problem, this can
be very cumbersome.

The TRW executive automatically includes the
necessary setting changes in the digital program and
thus relieves the user of an unnecessary burden. Since
the actual setting is the only number associated with a
potentiometer that reflects parameter variations, it is
used to initiate resetting of potentiometers. The method
used is as follows: a list containing all setting values
is retained on bulk storage; as part of each run, all
potentiometer settings are computed and compared to
the list; a difference between the two values automati­
cally results in a resetting of the poten~iometer and
the list being changed to reflect the new value.

Although the concept used is very simple, there are
implications that markedly affect program imple­
mentation. The most pertinent of these is the require­
ment that all current parameter values be available
to the program which computes the potentiometer
settings. To easily make these values available and to
still retain the speed necessary to make computation
of all settings feasible, requires compilation of the
setting evaluation routine instead of using an interpre­
tive routine as do many of the hybrid computer manu­
facturers. Clearly, interpretive methods offer con­
siderable flexibility in specifying potentiometer values,
but the authors believe that this degree of flexibility
is not necessary

Before clarifying this point of view, a definition is
in order.

Let P s = As, . D p

where P s = Potentiometer setting·

D p = Pot definition

As, = Analog scale factor

Assuming the reader is familiar with the meaning of
"potentiometer setting" and "analog scale factor" the
given equation will suffice to define" Pot Definition".
The important characteristics of a pot definition are
its dependency only on physical parameter values and
its corresponding independence of potentiometer ad­
dress or analog scale factor.

HybridE~ecutive-User's Approach 291

Dependency only on. physical parameters implies
that a" pot definition" changes only when the problem
being solved is redefined in a manner such that
equations are changed, which in most simulations is
relatively infrequent. Thus, i'f the "potentiometer
se~ting" program requires recompilation only when
"pot definitions" are changed, no significant loss of
flexibility is encountered.

As a result of these considerations, the routine was
formulated such that analog scale factors and poten­
tiometer addresses were entered as data and "pot defi­
nitions" were coded into a FORTRAN subroutine
Use of this method utilizes the full capability of
COMMON while retaining the flexibility at run time
in specifying values (scale factor, component address)
most likely to vary.

Since the program (Figure 3) necessary to compute
the actual setting (Le., form the product of the "pot
definition" and the scale factor), compare old and new
values and handle bulk storage files is the same for
any problem, it is formulated as part of the executive.
Definition of the pot setting requirements for a given
problem consists of coding the FORTRAN list of
"pot definitions" and preparing the list of pot addresses
and scale factors. The analog data associated with a
pot is stored in a serial file on a disk. This data consists
of the pot address, analog console number, analog
scale factor, present value of pot setting, and an index

Figure 3-Potentiometer setting control

292 Fall Joint Computer Conference, 1969

(I) which defines where in an array (D p) the value of
the pot definition is stored by the FORTRAN routine
used to evaluate the pot definitions.

Initialization or finalization

In engineering simulations, the analyst prefers to
have the mechanization in a form which is either
familiar to him or closely related to the physical system
being simulated. In digital simulation, the analyst is
usually far removed from the program, and if his
results are of a suitable form, the. actual formulation
of the equations is of little interest and can therefore
be optimized for computer efficiency and stability.

To the contrary, in analog or hybrid simulation
where a close rapport with the program is desirable,
mechanization in either an optimum or in a less com­
puter sensitive manner is often traded off against a
more realizable formulation. As an examrle, an analyst
might have access only to data determined in a refer­
ence frame that differs from the reference frame best
suited for use within the computer {e.g., gimbal angles
vs direction cosines). In such cases, reformulation of
values for computer initialization may require extensive
computation. In hybrid computer simulations the
digital computer can be used to determine such values
regardless of the complexity. 'Vith this capability, the
total simulation can be formulated for optimum exe­
cution, and often better computer stability, and the
results transformed to the users preference without
decreasing the flexibility to the user or analyst.

To accomplish the reformulation transfer from the
user desired input form to the program execution form
to the user desired output form, non-time critical
digital calculations, which may be considerable, need
be performed. Examples would be coordinate trans­
formations, root extraction, curve fitting, data analysis,
etc. Since these types of calculations are executed only
once each run cycle, they can be programmed using
FORTRAN, extended precision, and non-optimal
programming techniques with a negligible increase in
the system execution or throughput. It is this purpose
that the preinitialization and/or finalization rrograms
serve. Since these programs are entirely derendent on
the problem being simulated, the only executive
function is the call to these programs and the pro­
vision for data linkage through the use of COMMON.

Real time program

The spccification of software that would appreciably
aid in getting the real time program operational was
based on a generalization of the kind of problem that

would be solved using the system. It was assumed
that the physical system being studied could eonsist
of several interacting subsystems each having a unique
frequency content. For example, in the AroIlo studies
the kinematics and dynamics are frequency septrable.
This kind of system implied a computer program
consisting of several loosely interacting subrrograms
each having its own timing and sampling requirements.
Two primary questions to be answered were "'What
can an executive do that will provide assistance in
programming each subprogram?" and "V\-hat aid may
be provided in correlating the suhprograms to represent
a complete system?"

Two facts immediately suggested general answers to
the questions above. Because each simulation repre··
sents a different system, the equations solved in the
real time program are essentially unique for each new
problem, and can be considered only by the user. At
the same time, certain functions such as mode eontrol
and inter-ecmruter data transfer are common to all
simulations and characteristically derend only upon
the computer system being used. Experience has shown
tha t the user normally displays considerable ability
to solve problems associated to his equations, but that
his performance deteriorates markedly when dealing
with computer system dependent functions. Clearly,
a general executive can only address itself to aid in
handling the computer system derendent problems
present in the real time program. It is also clear,
however, that these are the areas where the user most
needs aid.

The TRW executive includes three major activities
within the real time part. It provides generalized soft,·
ware to handle ADC /DAC specification control of the
"dynamic dump" (time histories), and mode eontrol
and interrupt processing. Relating these activities to
the questions above, it is found that generalization of
these fuootions provides assistance to the user both in
programming individual sub-programs and in overall
system correlation. Justification of this last statement
requires a more detailed description of each of the
functions considered and their interaction with the
user~

Although extensive details pertaining to the methods
used in implementing the TRW executive are not
appropriate, some indication of the gross approach used
is appropriate. The available interrupt structure allows
execution of up to eight concurrent real time sub­
programs (this limit of eight is caused by the maxi­
mum number of programmable interrupts available in
the TRW hybrid system). A subprogram naming con­
vention has been adopted to allow flexibility in choosin!~

the interval at which variables are stored on bulk
storage or at which variables are transferred for display
purposes. The subprograms are arbitrarily named
LOOP!, LOOP2, etc., up to the maximum number
allowed by the interrupts available. The number
associated with the loop is then used as a key to initiate
certain action. In the case of dynamically dumping
variables, the following scheme is used: each sub­
program includes a call to the routine which performs
the dump operation; the parameter passed with the
call is the loop number; this number is compared to a
number entered as data which specifies the subprogram,
and thus, the time interval at which the dump is to be
made; if the numbers compare, a dump occurs. A
similar system is used for selecting inter-computer
display tran~fers.

Associated with each subprogram are the following
parameters which may be entered as data:

Present problem time
Time interval at which the subprogram is executed
Address of the first AD C channel used
Number of ADC channels used
Address of the first DAC channel used
Number of DAC channels used
Interrupt priority level

This data is stored as blocks in a predefined order
known to each executive subroutine used in the real
time program. Such a block structure permits usage
of the same calling sequence to execute all executive
subroutines, thereby reducing the chance of program­
mer error to a minimum.

ADC/DAC specifications

The handling of ADC/DAC specifications within a
program would seem to present little difficulty since
even the most sophisticated DAC or ADC routine
should require no more than three or four parameters.
However, in many systems, specification of these
parameters requires compilation. Such a requirement
not only removes flexibility by requiring recompilation
to incorporate changes, but also forces the assignment
of specific equipment in a relatively early stage of
program development. At the time a particular sub­
program is written, it is usually not convenient to
assign specific ADC's or DAC's since requirements
for all subprograms must be considered in determining
the best distribution. Similarly, conversion scale factors
may change at any time. Another capability con­
venient for the user is flexibility in specifying inter­
computer data transfer for purposes of display. This

Hybrid Executive-User's Approach 293

requires specification of specific DAC's or ADC's, the
variables to be transferred, the scale factors to be used,
and the time interval at which the transfer occurs. In
view of these considerations, it seems reasona ble to
require software that allows assignment of all param­
eters associated with ADC's and DAC's at run time.

The actual assignments are made by entering two
lists of data; the first containing the names of the
variables to be transferred, and the second containing
the conversion scale factor. The lists are entered in an
order corresponding to the ADC or DAC line that is
being used. In the I/O processor, the list of names is
replaced by a list of the addresses of those names and
this along with the scale factor list, is passed to the real
time program for tailoring of the specific transfer
routines for a run. Because intermixing of floating
and fixed point computations within the same program
is rarely encountered, DAC and ADC lists have been
restricted to include either floating point variables or
fixed point variables, but not both. This enables per­
formance of ADC /DAC functions in simple indexed
loops which are easily ta nored.

Dynamic dump

The capability for dynamically dumping variable
values onto bulk storage during a run and processing
them later when time becomes less restrictive, is a
desirable feature in any hybrid system. In addition to
providing information for analysis purposes, it is very
useful for dynamic debugging. Two essentially distinct
functions are associated with a dynamic dump capa­
bility. The first involves the specification of those
variables which are to be dumped and the actual
performance of the dump during execution. The second
involves the capability to display either the same
variables that are dumped or a set of variables which
are derived from the original variables by a user written
processing' program. Three user requirements affect the
specification of the dump function. First, he must
have freedom to specify those variables which he wishes
to dump and the frequency at which they are to be
saved. Second, for ease in interpreting the r~:mlt3,
the values dumped should be coherent in time. That
is, all values saved from a given interrupt level should
represent functions of the same time, otherwise, a
time skew in interpretation of the results will occur.
Third, if post run processing of data is present, the
user must be allowed to easily specify the form of
process and a display list that is different from
the list of variables dumped.

294 Fall Joint Computer Conference, 1969

Mode control and interrupt processing

In considering the most suitable form for mode
control and interrupt handling routines, the situation
is somewhat different from that of inter-console data
transfer. Usually the programs necessary to handle
these functions are very hardware dependent and
generally so complex that only a highly experienced
programmer can adequately cope with the problem
involved. Here the obvious approach to specifying
executive requirements is to remove flexibility, and
therefore, the need for user intervention from the
system. Some user control is necessary, however, and
the amount of flexibility allowed by the executive
should be sufficient to satisfy his reasonable needs.
Certainly the user must be permitted to specify what
subprogram he wants executed when the computer is
in a given mode or when a particular interrupt occurs.
He must also be able to specify the priority of each
interrupt. It is also reasonable that an executive should
expect the user to specify the frequency and perhaps
the source of an interrupt. Beyond these few items, it
should not be necessary and, in fact, it is not desirable
for the user to intervene in the operation of mode or
interrupt control software. The other user consideration
that should be included is a "no penalty clause". Thus,
if a user requires only three interrupt levels, he should
not be required to inform the system that the other
available levels are not required. In general, the user
should only be required to specify those items which
he needs for solving his problem.

The procedure required to specify the specific inter­
rupt structure for a given problem is as follows. The
address of a list is passed as a parameter to a standard
executive routine which tailors a general interrupt
structure to meet the users requirements. The list
includes the names of the subprograms included in
the real time program and the names of their associated
data blocks. A similar list method is used to specify
routines that are to be executed when the computer
is placed in a given mode.

The standard executive routine is written such that
it completely handles all normal mode control and
interrupt servicing. Dummy subroutine calls are
included to allow user definition of special mode or
interrupt routines. During initialization the executive
extracts information from the lists described above
and modifies the dummy calls with appropriate user
supplied routine addresses. Similar dummy instructions
are used to permit generalization of other functions.
Since all dummy entries initially consist of "NOP"
instructions, failure to specify all modes or interrupt
levels will not affect execution.

It was claimed earlier that the structures described
serve to simplify the preparation of individual sub·,
programs and the correlation of these in to a unified
system. A review of the necessary steps will illustrate
this. While writing a subprogram, the user must only
be aware of the name assigned to the subprogram, the
name of the data block associated with it, and the
names of the executive sub-routines he wishes to call.
The total number of names needed in the TRWexec­
utive is six.

Integration of the subprograms demands very little
more from the user. Before final compilation of the
real time program, lists defining the mode control
and interrupt structure must be prepared. Since this
is done very late in the development of the program,
all information is readily obtainable. Preparation of
lists describing the details of interrupt priorities, exe­
cution intervals, etc., may be left until computer runs
are planned. Since the entire problem should be well
defined at this time, little difficulty is encountered in
selecting specific values for these parameters.

Static check

A major task which must be performed in any
simulation is static verification of both the hardware
used and the program being executed. An effective
digital program can greatly aid in carrying out many
parts of this task. The items that can be provided by
the digital computer system for static checking are:

• Initialization of the system using parameter values
chosen for the check.

• Comparison of computer values determine from
the physical equations in the digital with that
those values sampled from the analog.

• Information useful in verifying the validity of
the equation values computed by the digital,
is, debugging aids.

At TRW, the first requirement is met by the normal
executive system used for analysis runs. When a static
check is requested, normal run setup procedure is
followed to the end of the initialization phase of the
real time program (Figure 2). At this point, the static
test request is recognized and execution of the static
check program begins. Using this method of establish­
ing the check case provides the advantages of con­
venience and flexibility in three ways. First, it allows
rapid switching to the check mode using actual run
values if a problem arises during analysis. Seeond,
after the check is made and the problem corrected,
the return to normal running conditions requires

absolutely no action. Third, the system allows rapid
definition and execution of several different check
cases. All that is necessary to perform a static check
is the entry of desired parameter values, using exactly
the same methods as any other analysis run, and a
request for execution of a static check. Since defining
a single check case that effectively verifies an entire
analog program is virtually impossible, the ability to
perform a series of checks is very important. Pro­
ceeding through the initialization phase of the real
time program has the advantage that the ADC and
DAC values which are sampled and presented during
initialization represent realistic problem values. This
is sufficient to complete the set of values needed to
base the entire static check on direct evaluation of
the physical equations.

The static check overlay consists of two programs.
The first is a FORTRAN subroutine in which the user
codes his equations for use as the check reference.
Because the system is dependent upon having access
to normal run parameters which are stored in the
computer COMMON area, the use of FORTRAN was
a natural choice. Also, the use of FORTRAN rather
than an interpreter program does not constrain the
user in coding the analog equations, as encountered
in some executive approaches.

The second program comprises the executive part
of the overlay (Figure -4). It compares the equation
values computed in the user FORTRAN program with
the output of an analog component and generates
appropriate error messages. The address of the analog
component, the analog scale factor, and two indices
which are used to correlate the component and the
appropriate equation value are entered as a data
record. Since only physical equations are coded in the
FORTRAN program, recompilation is necessary only
if these equations are redefined.

The correlation of an equation to an analog com­
ponent and scale factor is achieved by using two indices
specified in the FORTRAN routine as follows. The
terms or factors of an equation that appear at a par­
ticular analog output are coded individually and stored
in a one dimensional array. The section of coding
for each equation is identified by a statement number
or index. The statement number and array index are
then included on a data card with the component
address and scale factor to provide the necessary
correlation. Since the computation of the terms of an
equation is done only after a complete set of data
cards for a given equation is read, the array used need
only be large enough to store all of the values computed
for the largest equation.

Hybrid Executive-User's Approach 295

PRINT INPUT
DATA AND

THE EXPECTED
ANALOG VOLTAGE

Figure 4-Static check control

NO

The executive also provides user options that· allow
extensive verification of the user program and the
data files without requiring the presence of an analog
computer. This option is usually not available in in­
terpreter programs. The first option is a data card
editing function that detects obvious format and key­
punching errors. The second performs the normal
static check procedure but replaces the interrogation
of the analog computer with a printout of both the
actual and scaled equation values. This data may
then be used to do off-line debugging of the static
check routine. Use of this feature can assure that only
analog program debugging will be necessary when the
analog computer is finally checked.

Other options are available to provide flexibility.
One allows a choice between checking all analog com­
ponents or just components that represent the total
value of an equation. In the latter case, an error in the
final equation value will direct the program to check
all of the terms of that equation. A second option
permits skipping a check of selected parts of the
program.

296 Fall Joint Computer Corrlerence, 1969

Operating procedures

Operationally the TRW executive has proven very
effective. The entire procedure for executing a com­
puter run consists of entering desired parameter values
and a single command "RUN". From that point, all
setup, operating, and display functions are performed
automatically in a manner predefined by simple list
inputs. The provision that analog setup routines have
access to normal data parameters is of course the key
to making such a simple run procedure possible.

Future hybrid executive development

As it was indicated earlier, the TRW executive was
developed through a process of evolution under the
pressure of developing concurrently a large simulation.
Although the operational characteristics which have
resulted from this evolution are generally very good,
many of the systems software aspects leave room for
development. With a recent expansion in the number
of systems software personnel at TRW, it is now possi­
ble to reimplement the executive on a sounder systems
basis and integrate it into a more comprehensive soft­
ware system. As proposed, the new system will provide
a multi-user capability, simplified file processing, a
more powerful I/O structure, accounting control and
extensive debugging aids.

ACKNOWLEDGMENT

The authors wish to express a special appreciation to
Charles E. Vaughnn for his contributions in the design
and especially in the implementation. It was by his
outstanding efforts and his expertise on the CDC 3100

digital computer that the details of the design. were
worked out to assure compatibility throughout the
executive and with the system software.

BIBLIOGRAPHY
1 G A BEKEY

Hybrid computation
John Wiley & Sons Inc N Y 1968 7 177

2 D R MILLER G N GRADO B R BAKER
The philosophy and the result: Comcor's CI-5000 hybrid
computing system
Simulation July 1965 39-46

3 T D TRUITT
A discussion of the EAI approazh to hybrid computat1:on
Simulation Oct 1965248-257

4 B R WILSON
The Boeing integrated hybrid operating system
Simulation Nov 1967209-223

5 R B McGHEE A Y LEW
Software for hybrid computers
Simulation Dec 1965367-373

6 C K BEDIENT L L DIKE
The Lockheed hybrid system - A giant step
Proc FJCC Vol 33 Part 11968

7 G N SOMA J D CRUMKLETON
A priority interrupt oriented hybrid executive
Proc F JCC Vol 33 Part 1 1968

8 M D THOMPSON
Growing pains in the evolution of hybrid executives
Proc FJCC Vol 33 Part 11968

9 D A WILLARD
The Boeing / Vertol hybrid executive system
Proc FJCC Vol 33 Part 11968

10 E A JACOBY J S RABY D E ROBINSON
Family I: Software for NASA-Ames simulation system
Proc F JCC Vol :33 Part I 1968

11 W GILOI D BECKERT H C LIEBIG
A flexible standard programming system jor hybrid
computation
Proc SJCC Vol 34 1969

A system for clinical data managem,ent

by R. A. GREENES, A. N. PAPPALARDO, C. W. MARBLE,
andG.O.BARNETT

Massachusetts General H ospita,l
Boston, Massachusetts

INTRODUCTION

The application of computers to the delivery of patient
care is more a problem of "data management" than of
"data processing." Although calculations and interpre­
tation of data are often required, of much greater
concern are the problems involved in the collection,
communication, coord.ination, and presentation of
information. As the process of delivery of medical care
becomes increasingly complex, and involves increasing
numbers of professional and nonprofessional personnel,
responsibility for achieving the continuity and compre­
hensiveness that is essential to medical care seems to
rest heavily on the development of appropriate com­
puter-based data management systems. Such systems
may further provide the primary feasible means by
which quality control, auditing of the medical care
process, and research into the diagnosis and treatment
of disease can be achieved.

These functions now are dependent on the use of
the patient medical record, although they are fulfilled
only to a minimal extent by it. Despite changing
functions and increased demands on it, the medical
record has changed little in 'form over the past century.
Medical records possess no organization by diagnostic
or therapeutic problem; notes relevant to a particular
aspect of a patient's health may be accessed only by
leafing through an entire volume. Terminology is not
standard, data is not organized in well-defined formats,
and notes are often illegible. As a consequence, the
objective of using the computer for clinical data
management is gaining considerable impetus.

This paper will describe a number of criteria which
the authors have found to be important in the design

of systems for clinical data management, and a novel
. system which has been implemented to meet these
requirements. The system to be described has been in
operation for over a year. The extent to which it has
proved useful has led the authors to believe that the
criteria defined have general applicability for clinical
data management. In the discussion to follow, the term
"clinical data management system" refers to a time­
shared computer system which supports on-line input,
inquiry, and retrieval of clinical information from a
central data base.

Design and implementation

The internal design of an information system dictates
constraints on the external attributes of such a system.
The characteristics that must be resolved include the
number, priority, and level of responsiveness of the
users, both active and inactive; the ratios among CPU
time, connect time, and input/output time; the struc­
ture, m.agnitud.e, and timeliness of file information;
the profile of application programs in regard to size,
type, and interactiveness; user requirements for de­
velopment and service modes of operation; and finally,
the overall economic justification for the system.

297

High level programming language

One of the most time-consuming aspects of the
development of information system programs involves
the optimal interfacing of the system with its users in
a particular application area. This requires much
attention to human engineering, and repeated modifi­
cation 3,nd revision of programs. The implementation of

298 Fall Joint Computer Conference, 1969

--~----------------------'-----

clinical data management applications has generally
begun on relatively small computers. This has, in many
cases, been necessary because development was a
gradual process and started with limited objectives.'
Since high level languages have not typically -been
available on small machines, most programming has
been done in machine language.

The expense and inefficiency of writing, debugging,
and modifying such programs have been serious ob­
stacles to active research and development. A few
clinical data management systems have used large
general purpose computers which could provide much
increased flexibility. However, the overhead of a large
operating system on a major computer has often
seemed' excessive, because of the rather small amount
of processing involved in many 0f these applications.
Futhermore, because of the reliability requirements of
a clinical data management system, modularity and
duplication of hardware is desirable and often essential.
Because of the expense entailed by hardware redun­
dancy, this is typically feasible only with inexpensive,
minimal equipment configurations:.

The MGH Utility Multi-Programming System­
(MUMPS) is a compact time-sharing system on a
medium scale computer, dedicated to clinical data
. management applications. It is currently implemented
on a PDP-9 (Digital Equipment Corporation) with
24,000 words of 18 bit memory and a Burroughs fixed
head disk with three million characters of storage
capacity. A set of terminal scanners is used to inter­
face to remote devices: teletypes, buffered display
scopes, line printers, card readers,; and A/D converters.
Both memory size and peripheral storage capacity can
be expanded in the system. In th,e current version, 16
users may run simultaneously.

All application programs in this system are written
in a high-level interpretive language, a distant ancestor
of which is JOSS,l developed at the Ran9. Corporation
in 1964. It has also been influenced by related languages
such as STRINGCOMP (developed by Bolt, Beranek
and Newman, Inc.), and FILECOMP (specified by
Medinet Division of General Electric Corp.). The
MUMPS language allows the programmer to write a'
program, debug it, edit it, run it, and modify it con­
currently during an interactive session at a console.
The interpreter itself is a part of the executive system
and is re-entrant. The total spape taken up by the
time-sharing monitor, the I/O monitor, buffers, and
re-entrant interpreter is currently about 8,000 words
of memory. The time-sharing and I/O monitors have
been specifically tailored to work efficiently with the
interpreter. No attempt has been made to accommodate'

~ U~FR PAR~~!,ON

USER PARTITION

U!OER PMTITION
----_ .. _--------1

USFR PARTITION

usrn·· PARTITION

USER PARTITION

USER PARTITION

USER PARTITION

USER PARTITION

RE-ENTRANT INTERPRETER

INPUT/OUTPUT MONITOR

& BUFFERS

TIME-SHARING MONITOR

____ L_O~A~ _ ~~T~ ____ L
(DYNAMIC STORAGE SPACE)

- - - - - ~C-T;V; - - - - -l -,
APPLICATION PROG:~AM

SYSTEM

&

INACTIVE PROGRAM FILES J ---
Figure I-A schematic diagram of the core memory

allocation of the MUMPS system and user partitions. A sin~~le
partition is expunded to show its internal dtructure. The use of
secondary storage (disk) for global data and inactive programs
is represented.

machine language user programs. All active users are
assigned partitions of core memory. Activa.ting a
program consists of finding an available partition and
bringing the program into it from disk; as long as it
remains active, it occupies its partition. Core B,nd disk
storage allocation are depicted in Figure 1.

The basic orientation of the language is proeedural,
much as FORTRAN and ALGOL. The largest unit
of a program is a group of statements called a "part"
indicated by an integer part number. A single line or
statement of the program is a "step"; it is identified
by a step number consisting of a decimal fraction
appended to the part number. Multiple comma,nds ma,y
be entered in a single step and executed one after
another. A conditional statement which when evaluated

has a false value will, however, cause the rest of the
commands in that step to be ignored. Commands may
be stated in a long mnemonic form, or for the experi­
enced user, in a much more compact form in which
only the first letter of the command is used. A state­
ment preceded by a step number is considered to be
in "indirect" or "program" mode, and is stored to be
executed as part of a program. A statement without a
step number is in "direct" mode, which indicates that
it is to be executed immediately after it is entered
from the user terminal.

Interface flexibility

Clinical information about a patient derives from a
variety of sources-the patient, the attending physician,
consultants, the radiologists, the clinical laboratory,
etc. Problems of using the computer to obtain infor­
mation from each of these sources have begun to re­
ceive attention. Perhaps the most widespread activity
of this type has been the development of systems for
clinical laboratory information processing.2 •3 •4 •5

With the exception of laboratory data, which is
either numeric or simple text, much of the clinical
information in the medical record is generally recorded
in narrative or free text form. Most investigators are
convinced that natural language is not in general
suitable for computer record keeping applications,
except perhaps in certain circumscribed areas with
limited vocabulary and syntax.6 •7 As a result, there is a
significant amount of work currently being devoted to
the development of methods for structuring this
narrative data.8 •9 •1o It is generally recognized that this
may be best achieved by introduction of new ways of
capturing such information, e.g., entry of data by use
of check lists, forms, or direct user-computer dialogue.
Interactive dialogues for the capture of narrative data
may be based on hierarchical organization and presen­
tation to the user of the subject material. Any particular
topic may then be pursued to an arbitrary depth, by
means of a succession of increasingly discriminating
selections by the user from the options presented. A
variety of programs for interactive acquisition of clini­
cal data have been developed, and have generated
needs for special terminals, display formats, and conver­
sational languages. Conversational programs have, for
example, been devised for the on-line acquisition of a
patient's medical history.11 •12 Other systems aimed
primarily at the physician have been designed for the
purpose of entry of physical examination notes,I3 the
recording of progress notes, or the generation of X-ray
reports by the radiologist. 14 .15 In the development of
such applications, the emphasis is placed primarily on

System for Clinical Data. Management 299

the interface (hardware, software, and environmental)
of the system with the individuals who have to use it.

As the potential of clinical data management systems
is recognized, they will be called upon to fulfill a diver­
sity of output functions, e.g., the display of reports or
summaries, organized chronologically or topically, the
production of tables or graphs. Information obtained
by dialogue must often be translated into more precise
medical terminology, or compacted into coded repre­
sentations. Flexibility in output and presentation of
information, as well as in its acquisition, is essential.

The philosophy of MUMPS has emphasized the need
for ease in interfacing and adapting programs to the
requirements of the application. Programs written in
the interpretive language do not require any compiling
or assembling. Error comments during execution are
typed out at the user's console, and allow quick re­
covery, modification of the program, and reexecution
of it. All debugging and modification is done in the
same language in which the program is written and
can be done entirely from the user terminal. This
makes modification especially convenient, parti~ularly
in a service environment where the trouble shooting
necessary to interface a program with an application
area is a time consuming process. The MUMPS environ­
ment allows a programming session to take the form of
a conversational dialogue between the programmer and
the terminal device, thus minimizing the userls time in
programming a problem, the computer)s time needed
in checking it out, and most important, the elapsed
time required to obtain a final running application
program.

Text handling capabilities

The complexity and variety of data that must be
handled in a clinical information system impose a
number of requirements on the system. A considerable
amount of information that is input is in the form of
text .strings of variable length. The processing of input
often requires syntax checking or limit checking. String
comparisons, extractions, and concatenations need to
be performed. When special driver languages or moni­
tor subsystems are employed to control dialogues
between the user and the computer, string processing
capabilities are mandatory. Most existhlg higher level
languages do not provide the needed combination of
algebraic and boolean expression hap.dling capabilities
with the ability to handle string information.

The MUMPS language has been designed to meet
this need. In addition to algebraic and boolean pro­
cessing, a MUMPS program can perform string ex­
traction, locations, comparisons, and checking of

300 Fall Joint Computer Conference, 1969

.. WRI TE 1

1.10 READ !,"UNIT NO. ",X
loiS IF" 'X:3N"-"2N"-"2N TYPE ,., ILLEGAL" GOTO 1

"00 1

UNIT NO.
UNI T NO.
UNI T NO.
UNIT NO.

123-45-67R
12-345-67
1 ~3- 456-78
123-45-67

ILLEGAL
ILL EGAL

ILLEGAL

Figure 2-A portion of a MUMPS program to input
a seven digit unit number from the teletype (accomplished by
step1.10. The value entered is stored as the vttriable named X;
a check is made that X has the correct form, i.e., 3 digit.,;, followed
by a hyphen, 2 digits, a hyphen, and 2 more digits (step 1.15).
Improper values cause an error message, and reque.3t of a new
value. The WRITE command lists the statements. The DO
command causes execution, which is illustrated. (In this and
other figures, user input is underlined to distinguish it from the
response of the computer.)

syntax and form of information. These features are
illustrated in Figures 2 and 3. Figure 2 shows a portion
of a program written in MUMJi>S to read a hospital
unit number from a Teletype (i.e., entered by a user),
to check its syntax, and to reject any improperly
formatted responses. Figure 3 shows statements in a
program for the clinical chemistry laboratory, which
permit entry of a test name and' its result. Checks are
made on the legality of the test name and the reason­
ableness of the result. Some of the interactive editing
capabilities are shown in the figure.

Terminal device flexibility

An important feature of the language is its input/
output scheme, which permits programs to be written
independently of the particular device for which one is
programming. One may use any device for which the
hardware system has been appropriately interfaced by
merely assigning a device number to a system variable
indicating the device to be utilized. This makes it
possible to generate a report on a display scope, for
example, and then to use the same program to type
out the report on a typewriter, merely by changing,
during execution, the value of the device number
assigned to the input/output variable. Formatting and
control of position on a page are made very simple by
utilization of special format characters and variables
indicating current position and line spacing.

Multi-user a,ocess to a central data, base

A major requirement of a clinical data management
system is that the information stored be accessible to a
variety of users concurrently. Access may be from a

~w,H TF: ",'I

~. (115 SET OCT= "CA, P, F"'iS, C>WL, TP, ,~A, O{, CL, CJ~, SGOT, L flY, VI:'>!, >!u~, r.: ~I':"
~.I(1I READ !,"TEST: ",TES
~.~(11 FOR 1=1:1:14 IF" C:PIECE(DCT,I)=TI':S nUIT GOTd ~.:1
:>.:>5 TYPI': .. ???. GOTO ~. 1
~. 3(11 'lSi{ !, "RF.SUL T= .. , RF.S GOTO 1+3
~.'I(1I REAl)" P~OR. ERRO~ ... Oo{? ",X IF" 'X("Y" GuTO ~03

2.5G1 DO l(1IfA TYPE! GOTO ~·I

9.10 IF" RES>16(O\!'i"S<I~(1I GJTO ~."
9.,,(;\ GOTO :? 5

TF.ST: ''111 ???
TEST: NA
RESlJL T-;;-I 25

TEST:
? 2.IGlI0INT

~9.1 IF" RI':S> 151;l!RI':S< 11(11 GOTO ~. 'I

~no ~

TEST: Nil
RI':SUL T-;;-~ PROR. F.RROR ••• OO{? !..

TEST:

Figure 3-A section of a MUMPS progra.m that might
be used in a clinical chemistry laboratory information syst1em.
Step 2.05 sets the variable DCT to the list of test determinations
that are valid for this particular labora.tory. Step 2.10 then accepts
a test name from a technician. The $PIECE function in step
2.20 then extracts substrings (between commas) from DCT and
compares them to the variable TES whose value is the test name
entered. It does this repeatedly for values of I = 1, .. , , 14 until
a match is found; at this point the iteration is terminated :and
execution continues at step 2.30. If no match is founeL, an error
comment is printed (step 2.25) and step 2.10 is repeated. Step
2.30 accepts a test result, and goes to a part in the program
dependent on the plt"rticular value of I for which the match was
found.
Part 9 illustrates a specific check for results entered for the test
name, N A (in which case I = 6). The result is compared to
prescribed limits, in step 9.10, and if it exceeds either limit, eon­
trol goes to step 2.40. Here the user is asked to verify the value.
The user's response is inspected to see if it contains a "Y", in
which case a YES response is implied. Otherwise, a new result
is requested, in step 2.30. If either the user verifies it, or the
result is within limits set by step 9.10, control goes to step 2.50.
Step 2.50 calls part 100 to file the value and then returns to ~Itep
2.10.
The DO command causes execution, which illustrates operation
of the program. Note that the user has interrupted the program
from his teletype (indicated by the I'? 2.10 IOINT" lerror com­
ment, showing where the interrupt occurred). In this caso, a
programmer has decided to edit the program to make the limits
for a sodium determination more stringent, by retyping 8tep
9.10. The program is then re-executed.

variety of terminals, by a variety of programs in the
system, at varying frequencies. Among the possible
purposes for accessing a file might be to report a
laboratory result, to enter an X-ray impression, to
record a progress note, or to enter a specific: inquiry.
Although many of these activities occur independently,
they must share a common data base. Nevertheless,
manipulation of the data base must occur without
time sharing conflict, such as might occur if two mlers
were to update a portion of the data base simulta-

neously. Without special provision, this migh tresult in
loss of information.

Efforts to develop specialized clinical data manage­
ment applications are still relatively primitive. There
have been very few concerted efforts devoted to the
general problem of management of medical record data
the development of integrated patient data files and
the implementation of systems for long term st~rage
and retrieval of this data.16 •17 Among the difficulties
faced by the few developmental efforts that have been
undertaken have been the lack of generality in their
approaches, and the reliance on highly specific program­
ming languages, file structures, and file handling
routines.

MUMPS provides application programs with the
ability to create and utilize their own "local" data
as well as to manipulate "global" data, shared· b;
other programs in the system. Local data utilized by
~ program is referenced symbolically, and space for
It IS allocated as needed. Local data is that set of vari­
ables established within the domain of a particular
program, and available and defined only within that
program. The data actually resides within the user
partition, and functions as scratch or transient data.
L?cal ~rrays are assumed to be sparse or of varying
dImenSIOns, and only subscripts for which data are
defined are allocated space. A symbolic variable used
in a program may be given either a numerical value or
a variable-length string value. When it has a string
value, only that space required by the string is actually
allocated. Thus for both strings and sparse arrays, the
overhead of a compiler system does not exist in which
typically maximum sizes of arrays and ~aximum
lengths for string variables must be alJocated.

This philosophy is extended to the management of
data on the random access disk. Elements stored in
data files are referenced entirely symbolically; the
file name is similar to that of a local variable name in
a program. Fields in the data file are treated as array
elements and referenced by means of SUbscripts; sub­
fields are referenced by appending additional sub­
scripts. Data files on the disk thus comprise an external
system of arrays, which provide a common data base
av.ailable to all programs. The. arrays which make up
thIS external system are called global variables and
are identified by global array names. A global ~ame
(or file name) consists of the character up-arrow (t)
followed by at least one alphabetic character. The
form of the subscript portion of an array reference
consists of an arbitrary number of numeric expressions
separated by commas and enclosed by parentheses.

To avoid time-sharing conflicts, a program may

System for Clinical Data Management 301

prevent other programs from having access to one or
more global arrays "\yhich it is in the process of altering
in some way, by the use of the command OPEN. The
argument of OPEN may be one array name or a list
of array names. OPEN prevents any other program
from altering data in any of the specified arrays. The
effect of OPEN is cancelled when the program ends or
at the occurrence of the command CLOSE, which does
not require any arguments, and releases all opened
arrays to other users in the system.

Hierarchical data base organization

A most important requirement for clinical data
management is the ability to handle the several levels
of structure of a medical record data base, and to
support the rather complex updating and retrieval
ne'eds of such a system. An example of a typical patient
data file, such as exists in the information system under
development at the lV[assachusetts General Hospital,
is illustrated in Figure 4. This indicates the typically
hierarchical (tree-like) structure of the data base, which
has both a topical and a chronological organization.
1\Ilost computer systems currently available do not have
the ability to utilize hierarchical file organizations
conveniently.

The global array facility in MUl\rfPS has been de­
signed to meet this need. The structure of global
arrays is hierarchical, and any node within the array
tree may possess a numeric or string data value and/or
a pointer to a lower level in the tree. Data may be
stored at any level, and there are no constraints to
the dimension or the size of the array. In addition
the quantity and magnitude of subscripts for an array
are dynamic, so that not only may the content of an
array change during usage, but also its structure may
vary.

Since modification of content and structure of a
global array may be caused by a variety of programs
in the system, a particular program must sometimeE
examine the current configuration of an array before
attempting to ,access or update it. MUMPS provides a
set of global array functions to determine the type
and structure of a global array. These functions permit
the programmer to locate the nodes where information
is stored within an array, and nodes within the array
which are empty and thus available for data storage.

The storage of data into an array is accomplished
solely by the assignment command, SET. Consider
the fonowing statement:

SET tAPR(UN,NAME) = "JOHN DOE",
l' APR(UN,AGE) = 34

302 Fall Joint Computer Conference, 1969

Figure 4-A tree-structured patient data file, indicating: (1) the use of certain levels in the tree to group information in
specific topics, e.g., basic identifying and administrative data, review of systems, phy.5ical examination, and (2) other leve1.3 to

group information into .3ets which differ by date or by some other sequencing field.

Assume the global array name l' APR is reserved for
the active patient record file. Each patient in the file is
accessed through his hospital unit number, in this
case, a local variable UN. Both NAME and AGE are
also local variables whose values indicate particular
categories represented by subscripts at the second level
of the array. This statement then assigns the string
value "JOHN DOE" and the numeric value 34 to the
specific second level categories, name and age respec­
tively. Subsequently, a statement such as:

SET tAPR(UN,CHEM,N):;:::DATE.",".TEST

might define the Nth laboratory test in the chemistry
lab with the double field entry of the date concatenated
(by means of the dot operator) with a comma and the
test name.

Retrieving data from global arrays is no different
from retrieving data from local arrays. Both consist
of ascertaining the value of a subscripted variable by
using it within a numeric or string valued expression.
The statement:

TYPE" THE AGE OF", tAPR(UN,NAME),
"IS ", tAPR(UN,AGE)

will effect the printout:

THE AGE OF JOHN DOE IS 34

To print out a list of a patient;s laboratory tests

(assuming l' APR(UN,CHEM) is the total number
of tests defined) the following statement milght be
used:

FOR I:;:::1:1:tAPR(UN,CHEM) TYPE
l' APR (UN ,CHEM,I)

The KILL command when applied to a specific
node in a global array, prunes the array tree at th:l1t
node. Any data value and/or array pointers to lower
level nodes are removed, and that node reverts back
to an undefined status. The statement KILLt APR
(UN) would delete all information for the patient
defined by the local variable UN.

Included in the global array syntax is the "'naked"
global variable. The form of the naked variable con­
sists of the up-arrow followed by a subscript enclosed
in parentheses. This notation is equivalent to the last
previously used global array reference except that the
value of the last subscript is replaced with the value
of the SUbscript in the n9.ked variable. For example,
the statement:

TYPE" THE AGE OF ",1' APR(UN,NANIE) ,

" IS '" l' (AGE)

is equivalent to the example cited earlier.
MUMPS requires that reference to all file infor­

mation be done symbolically, in the syntax of hierarchi­
cal global arrays. This replaces the classical manner
of sequentially accessing record files on seeondary

memory devices. Instead, an attempt is made to logi­
c ally map the content and structure of the tree-like
data arrays into the physical storage medium of the
system. The general technique is to map logical infor­
mation at a specific level of an array into fixed size
blocks chained together linearly to contain all the data
values stored at that level, and all the pointer words
which link it to the chains of the next lower level. The
implementation of this design requires a careful con­
sideration of the timing and size constraints of the
physical device in relation to the overall system. The
actual memory device used in the system is a large
fixed head disk. The organization of this type of disk
is two dimensional, wherein any physical block has a
track and a segment coordinate. Initially a set of free
lists are formed which chain all blocks possessing the
same segment address together. Whenever a continua­
tion block at the same level or a header block at a
new level is required, the appropriate block in the free
list whose segment address is a few segments away is
utilized. This method makes it possible to trace down
the many levels of a tree structure required to access
a datum during a fraction of a disk revolution, in
addition to the average access time of the disk unit
required to reach the first level of the tree. As a conse­
quence, the time required to retrieve a particular
datum is virtually independent of the depth of sub­
scripting required to specify the datum. Space is
conserved by utilizing small sized physical blocks such
that at any subscript level an average of one continu­
ation block is required. When data is updated, care is
given to repack and sometimes reorganize the individual
data elements within a chain to insure maximum
utilization of space for variable length data. Whenever
a part of the global structure is deleted, it is passed
to the garbage collector routines to be disassembled
from tree-like chains back into linear chains and ap­
pended to the appropriate free lists. This is done during
periods of low CPU activity so as to avoid competition
with the active programs.

Once a block of data accommodating a single level
of subscripting is referenced, it is maintained in core
memory until a reference is given to a different block
by the program. Use of the naked variable then permits
other data at the same level to be referenced merely
by specifying a terminal subscript, so that once a level
is reached, often no further disk access need be made
to manipulate associated information. If any data in
a block is altered, it is only written back on the disk
when a reference is made to a block other than the
one that is in core memory, or when a CLOSE command
is given.

System for Clinical Data Management 303

Large stor.ageca.pacity

The conversational environment in which a clinica 1
data management system is designed to operate de­
mands little computer processing power. When data is
entered, a program need only check on its legality,
decide where to file it, and select an appropriate re­
sponse to the user. Generation of reports may involve
manipulation of information from peripheral storage
to assemble the data needed, but only a small amount
of processing to actually format or produce the report.
Large volumes of data need to be available for low
level, low frequency usage. Thus one does not need
computing power as much as the availability of pe­
ripheral storage of large capacity. J\Iuch of the data
may be potentially accessed at any time, and therefore
need to be stored on a random access device. Because
of the large quantities of data that may be anticipated
in such systems, it is necessary to provide hierarchies
of peripheral storage, in which the access time of the
storage device used is commensurate with the fre­
quency or urgency of the need for retrieval.

In :l\1U~VJPS the fixed head disk provide~ fast random
access storage, ,vhereas slower access requirements are
currently met by three Dectape units. A large movable
head disk unit is being installed to permit intermediate
access times for other data.

Efficient Time Sharing

In a conversational data management system,
programs spend much of their time in an input/output
hung status, i.e., doing disk activity or completing a
transaction at a terminal. As a result, there is again
not a large demand by a program for the central
processor. In contrast to most numerical applications
where central processing power is the limiting factor,
in a conversational environment the time necessary to
complete a task is often determined by the speed of
the input/output equipment or the human response
time at a terminal. As a consequence of the small
demand for the central processor by an individual
program, one can theoretically time share a large
number of programs. Efficiency of the use of the central
processor is in this situation determined by how rapidly
the time-sharing monitor can change from one user
to another. This swapping overhead is the delay before
a particular user program can run after a previous
user has quit the run state, due to an input/output
hang, expiration of time slice, or termination of its
task. When the central processor is not being fully
utilized, swapping overhead tends to determine re­
sponse time of the system.

304 Fall Joint Computer Conference, 1969

TABLE I-A comparison of execution times for various numeric processing
examples in MUMPS and FORTRAN

CPU Time (Microseconds)

StatemeI:u MUMPS FORTRAN MUMPS/FORTRAN
RATIO

FOR/DO 250 12* 20.8
(Iteration, per cycle)

1 + 2 800 7* 114.3
2*3 850 44 19.3
1 + 2*3 1050 48 21.9
1 + 2 - -3*4/5 1550 120 12.9

* These are the only operations compiled by the PDP-9 FORTRAN Compiler as in-line code. All other operations
beside integer addition (in DO loops and arithmetic expressions) are compiled as subroutine calls.

In the MUNIPS system, the use of a partitioned
memory has been dictated by the oven.vhelming con­
cern for response time. As a result of partitioning, the
time sharing monitor can switch between users in
minimum time without having to resort to swapping
of programs in from a drum or disk. In addition, the
monitor automatically overlays external program
segments invoked by an active program. Proper link­
ages are set up to return automatically to the invoking
program when execution of a segment terminates.

Execution speed of an interpretive program doing
pure numneric processing may be slower by a factor of
about 20 to 1 over corresponding code generated in a
compiler or assembly language system.

Table I illustrates some timing comparisons between
a single user v.ersion of the MUMPS interpreter and
the manufacturer-supplied FOR TRAN compiler for
this computer, for statements involving pure numeric
processing activity of varying complexity. As has been
indicated above, however, few programs do pure nu­
meric processing in a clinical data management environ­
ment. Input/output conversion in FORTRAN and
most other compiler systems is handled in a purely
interpretive fashion, and thus, for this activity, very
little difference in the performan¢e bet,veen the two
kinds of systems may be expected. Furthermore, a
significant part of the processing done by programs in
clinical data management systems involves file manipu­
lation, or text string processing activities; in all as­
sembly or compiler language systems these functions
are usually handled by the use of. subroutines. There­
fore, the employment of an interpreter as a means of
generating calls to these subroutines rather than com­
piling the calls themselves requires only a small amount
of processing overhead.

The foregoing observations refer to comparisons
between execution speeds of NIUMPS interpretive
language statements and compiler-generated objeet
code on a single-user computer, with no other pro­
cesses competing for the processor. More significantly,
in a data management environment, are-entrant
interpreter such as MUMPS may provide the most
economical means of achieving a highly responsive
time-shared information system. In the IVJ[UMPS
system with sixteen typical users active, response
times (a most sensitive measure of efficiency in a time­
sharing system) are always less than a second and
usually appear instantaneous.

There are several reasons that account for this, all
of which are related to very efficient use of core storage.
First, a typical program written in the interpretive
language takes up 10 percent to 20 percent of the
space taken up by the object code generated for a
similar program written in a compiler language. Also,
dynamic allocation of data and efficient storage of
variable length strings and of sparse arrays are st.andard
features of the interpreter. Thus data also take up
considerably less space in this kind of environment.
In addition, since the interpreter is re-entr~:mt, a,ll
programs may share the same utility routines and
operating system capabilities. This contrasts rather
sharply with conventional compiler language operating
systems, in which each running program must have
its own copy of the necessary system routines that it
will utilize.

The significant advantage that results from.the above
features is that programs take up much less space;
therefore, a partitioned memory system on a medium
or small scale computer becomes feasible. Active
programs are typically highly interactive, and aria

therefore doing only small amounts of processing
between input/output requests. Therefore the time­
sharing monitor is invoked frequently to pass control
from one user to another, in order to utilize the central
processor as much as possible. In a partitioned system,
swapping of the users is very rapid. In systems that
use various schemes for submerging disk or drum
swapping, users that are running in a conversational
mode often do not stay in the run state long enough
to submerge the concurrent swapping process. There­
fore potential CPU time is unavailable; this unused
time may be on the order of 20 to 50 percent of the
total amount available. The speed that results from
not using disk or drum swapping appears, in our
experience, to more than offset the overhead of interpre­
tation, with greatly increased efficiency in the utili­
zation of space.

CONCLUSION

The convenience occasioned by the utilization of a
high level language with symbolic referencing capa­
bility for data stored in complex tree structures on
peripheral storage has greatly simplified the develop­
ment of application programs for clinical data manage­
ment. This is the only system that we know of, on a
computer of medium or small scale, which supports
such extensive file manipulation, string handling, and
input/output flexibility. It is the only system we have
encountered on any computer which allows all these
manipulations to occur entirely in a high level language.
This system has been used at the MGH for all of our
programming research and development activities.
Equally important, because of its compactness and
efficiency in this environment, we use it for the imple­
mentation of our service programs, including a chemis­
try laboratory reporting system,18 a patient history
taking system, and a number of programs for physician
entry of narrative record information.

An advantage of this approach to clinical data
management over the use of a large commercially
available general purpose time-sharing computer­
with its complex operating system has been the in­
creased flexibility that is possible with a specially
designed system. This increased flexibility results
because the system has been built to meet specific
objectives, in contrast to having been implemented
within the often arbitrary and inefficient constraints
of a general-purpose time-sharing facility. In addition,
with a special purpose system, it is possible to achieve
the efficiency required for service operation with a

System for Clinical Data Management 305

computer whose size and cost are well matched to the
requirements of the problem area.

BIBLIOGRAPHY

1 J C SHAW
JOSS: A designer's view of an experimental on-line
computin.g system
Pl'OC FJCC Vol 26 1964455-464

2 D A LINDBERG
Collection, evaluation, and transmission of hospital laboratory
data
Meth Inform Med JUly 1967 Vol 6 97-107

3 H C PRIBOR W R KIRKHAM R S HOYT
Small computer does a big job in this hospital laboratory
Mod Hosp Vol 110 April 1968 104-107

4 G 0 BARNETT P B HOFMANN
Computer tech'f!:..ology and patient care: Experiences of a
hospital research effort
Inquiry V 1968 51-t'7

5 G P HICKS M M GIESCHEN W V SLACK et al
Routine use of a small digital computer in the clinical
laboratory
JAMA Vol 196 June 13 1966973-978

6 H JACOBS
A natural language injormation retrieval system
Meth Inform Med Vol 7 Jan 19688-16

7 A W PRATT L B THOMAS
An information processing system for pathology data
Pathology Annual Vol 1 Century Appleton N Y 1966

8 G 0 BARNETT R A GREENES
Interface aspects of a hospital information system
Ann N.Y. Acad Sci (in press)

9 R D YODER
P1'eparing medical record data for computer processing
Hospitals Vol 40 Aug 16 19661.'')-76

10 L J.J WEED
Medical records that guide and teach
New Eng J Med Vol 278 1968 652-657

11 W V SLACK G P HICKS C E REED et al
A computer-based medical history system
New Eng J Moo Vol 274 Jan 27 1966194-198

12 J G MAYNE W WEKSEL P N SHOLTZ
Toward automating the medical history
Mayo Clin Proc Vol 43 Jan 1968 1-25

13 J .M KIELY J L JUERGENS B L HISEY
P E WILLIAMS
A computer-based medical record
JAMA Vol 205 1968571-576

14 A W TEMPLETON P L REICHERTZ E PAQUET
J L LEHR G W LODWICK F I SCOTT
RADIATE-Updated and redesigned for multiple cathode-ray
tube terminals
Radiol Vol 92 1969 30-36

15 H P PENDERGRASS R A GREENES
G 0 BARNETT J W POITRAS C W MARBLE
A N PAPPALARDO
An on-line computer facility for systematized input of
radiology reports
Radiol Vol 92 1969 709-713

16 P HALL C MELLNER T DANIELSSON

Medical education-A challenge for

natural language analysis, artificial

intelligence, and interactive graphics

by J. C. WEBER and W. D. HAGAMEN

Cornell University Medical College
New York, New York

INTRODUCTION

In a functional sense, Computer Assisted Instruction
(CAL) has not advanced from the primary grades, yet
its implications for higher education cannot be ignored.
Most of the work that has been done in CAL falls into
the category of drill and practice or straight tutorial
presentation. Logically, both the hardware and soft­
ware that have been developed or modified to support
CAL have been tailored with these goals in mind. In
medical education, multiple choice questions would
neither hold the interest of the average student nor
challenge his intellectual abilities. Since we can formally
present only a small fraction of the problems our
students may some day have to deal with, we are con­
cerned not only with presenting factual information,
but even more with developing their power to reason
and handle new problems.1Vredical students have widely
divergent backgrounds and needs, as well as differing
interests. For these and other reasons, we need a truly
two-way, free-format discussion where each student is
treated as an individual. Anatomy, the field in which
we teach, is very much a visual science. Consequently,
graphic capabilities are important. Here also the student
needs to interact and be treated as an individual.

It should be pointed out that we are computer naive
people who have been working without professional
help. We have been using a system and a language
which nicely meet the requirements for which they
were designed, but in approaching the needs of higher
education, programming becomes laborious and cir-

cuitous. Weare well aware that others working with
more sophisticated systems have produced more so­
phisticated results. Indeed, to many our methods may
seem primitive. However, our challenge has been to
implement natural language analysis, self-adaptive
programming, and interactive graphics within a frame­
work of restricted costs. It is important that people in
the computer field be made aware of the systems and
language requirements of people in various areas of
education. For CAL ever to become a reality, it must
first become an interdisciplinary endeavor.

The system and language

Our work has been centered around the IBlVI L500
Instructional System and its associated language-­
COURSEWRITER II. The 1500 is supported on 1130
(32 K) hardware. Peripheral equip'ment consists of 32
terminals, each with a cathode ray tube (CRT), a 128
character keyboard input and a light pen, a typewriter
unit, and a 16 mm random access image projector.

COURSEWRITER II is an interpretive, non­
computational language. Both COURSEWRITER II
and the 1500 Instructional System are described in
detail in IBl\1 publications.

N aturallanguage analysis

Our basic format is schematically illustrated in
Figure 1. There are two different types of discussions.
The large circle represents an anatomical discussion

307

308 Fall Joint Computer Conference, 1969

G
8

Anatomical

Figure I-A schematic representation of the modular
unit. The huge circle represents an anp,tomical

discussion, the smaller satellites represent
clinical problems. A large number of these

modular units are interconnected to
form a course segment or topic of

discussion

and the smaller satellites clustered around it represent
what we call clinical problems. The cluster of clinical
problems surrounding each anatomical unit is directly
related to that block of anatomical material. We try
to have a ratio of at least ten clinical problems to each
anatomical discussion. Thus the organization is modular
and any number of these modules may be linked to­
gether to form a course segment or topic of discussion.
At the present time we try to keep these course segments
small enough that the average student can complete
th~m in 30--60 minutes.

To facilitate the description we shall consider a
discussion of the extrinsic muscles of the eye and their
nerve supply. There are seven such muscles and they
are supplied by three nerves. This course segment
consists of 13 modules, i.e., 13 anatomic[l.l discussions
and their associated clinical problems.

A student signs on a terminal for a particular course
segment, i.e., he chooses the general topic he wants to
discuss. He is then presented with a choice:

DO YOUW ANT TO BEGIN BY ASKING
QUESTIONS? (SQ)

OR

DO YOU WANT l\1:E TO INITIATE THE
DISCUSSION? (CP)

If he indicates that he wants to ask a question, he is
branched to a subroutine which handles the analysi s
of student questions (SQ). If he indicates he wants the
computer to initiate the discussion, he is branched to
one of the clinical problems (CP) in one of the dusters.

Clinical problems

On the initial branch, i.e., if the student elects to
have the computer initiate the discussion, both the
cluster a,nd the specific clinical problem in the cluster
a,re randomly selected. Each clinic[l.l problem is a rela­
tively brief linear presentation, i.e., three or four state­
ments, each illustrated by a picture (with the film
strip projector), followed by one key anatomieal
question. For example, after describing and illustrating
a patient's signs, symptoms, and history, the student
might be asked:

WHICH NrUSCLJ1~ IS INVOLVED?

If he answered this question correctly, he would branch
to another clinical problem in another cluster or module:
The student is taken from cluster to duster in a pre·
scribed sequence. However, the specific clinical problem
in each cluster is randomly, but non-repetitively
selected. As long as he continues to respond 2~ppropri­
ately, he branches from one clinical problem to. another
without ever entering into the underlying anatomical
discussions. Each time he successfully completes a
clinical problem, a scoring counter is incremented by
one. If he were to progress through six of these clinical
problems, he would have been examined on three of
the seven muscles, and three of the seven bra,nches of
the three nerves supplying them. Since the general
principles of function and methods of testin gone
muscle or nerve are similar to those underlyi ng the
others, it is our judgment that a student who. success­
fully completes six successive clinical problems correctly,
in this predetermined sequence, has demonstrated
masterv of this block of subject matter, and he is told
so. He may then either sign off this course segment or
continue in it as long as he desires. It is possible for
someCllle to sign on, complete six successive clinical
problems, and be finished in as little as two minutes.
(The value that we require in this scoring counter to
demonstrate mastery is dependent on the len~~th,
complexity, and nature of thp material discussed.)

However, if he misses the one key question in any
clinical discussion, his scoring counter is set to zero
and he is branched to the corresponding anatomical
discussion.

Anatomical discussions

The anatomical discussions differ from the clinical
problems in several important respects:

(1). They are highly branched. For some questions
there are as many as 35 anticipated answers with up
to ten different branches, depending on which anwser
is given:. It does not require many such nodal points
to produce a highly complex network. It is possible
for a student to stay in a single anatomical discussion
for 30-40 minutes without retracing his steps. How­
ever, it is unlikely for him to have to do so, since
hopefully he is learning at every decision point.

(2). For each anatomical discussion there usually is
only one starting point, and one logical exit point.
Despite the. complexity implied above, the entrance
and exit points may be adjacent to each other, i.e.,
it is possible to come in, answer two questions, and
be out. In practice this seldom happens, since some
subset of the question that permits him to get out
is included in the clinical problem which sent him
into the anatomical discussion. We simply are fol­
lowing the well known pedagogical axiom that one
can only hope to get across one or two major points
in a discussion. Some individuals can appreciate these
general principles in their barest form, while others
need elaboration.

Let us illustrate this with one example. The student
misses a clinical problem and enters an anatomical
discussion. The first question he is asked may be:

WHAT IS THE ACTION OF THE RIGHT
SUPERIOR RECTUS MUSCLE?

The correct answer, assuming the patient 1S looking
straight ahead to start with is:

IT MOVES THE EYE SUPERIORLY, MEDI­
ALLY, AND ROTATES IT IN A CLOCKWISE
DIRECTION AS YOU FACE THE PATIENT.

This may sound like a fairly difficult question and
certainly we obtain a variety of answers. However, the
student is shown how to reason out the answer by a
series of leading questions and explanatory pictures.

The question that follows the correct answer to the

Medical Education 309

first question, and the one he has to answer to get out
of this part of the discussion in essence is: "What would
you do with this knowledge?" More specifically he is
asked:

vVHATWOULD YOU ASK A PATIENT TO DO
"THA T WOULD TEST THE ACTION OF THE
RIGHT SUPERIOR RECTUS AND ONLY
THIS MUSCLE?

Here iB where our challenge lies-to teach the student
to question the validity and significance of facts--to
train him to reason. What good is it that a physician
know the action of a muscle if he cannot utilize this
knowledge by testing the muscle in his patient?

(3). If the student entered the anatomical discussion
via a clinical problem and reaches this normal exit
point, i.e., has answered the above question correctly,
he will branch to the next clinical problem and once
again try to answer six in a row correctly.

(4). At any point in an anatomical discussion, but at
no point in a clinical problem, the student may ask
any question he wants. He is then branched to a sub­
routine which analyzes student questions.

Student questions

At any point in an anatomical discussion when he is
asked H, question he may choose not to anSWEr it, but
rather to ask a question of his own. His motivation may
be that he thinks his own question will lead him to the
answer he is lacking, or he may in effect be saying:
"Okay, I've had enough of this particular line of con­
versation, let's proceed to something I don't already
understand." Whenever he asks a question three
things are permanently recorded: his name, his
question, and where in the program he asked the
question. The address of the question he avoided
answering is stored so he may be returned to this
point.

His question is first prescanned (key letter analysis)
in order to determine whether it is germane. If not,
he is told so and returned immediately to the question
he avoided answering. However, if his question is
germane, it is further analyzed and he is branched to
some other point in that anatomical discussion or into
another module, where he is shown how to reason out
the answer to his question. We prefer this to giving
direct answers to his questions. If he is branched to a
place where his question is answered immediately, the
reasoning behind this answer and a probing analysis
follow.

310 Fall Joint Computer Conference, 1969

--
Once the student is in the question asking routine,

and after his question has been answered, he has several
options open to him. (1) He may continue to ask as
many questions as he likes, thus branching from point
to point within a given anatomical module or, more
commonly, branching from one anatomical discussion
to another. (2) He may signal the computer at any
time that he is ready to return to the point where he
asked his initial question. (3) He may, without knowing
it, reach the normal exit point of an anatomical di~­
cussion. However, since he is in the question asking
mode, he is treated differently than if he had entered
via, a clinical problem. Instead. of being branched to
another clinical problem, he is returned to the point
where he asked his initial question. Thus there is no
way he can avoid the question he originally chose not
toanswer~

Remember that when he firs~ signed on the course
segment he was given an option a~ to whether he wanted
to ask a 'question or whether hei wanted the computer
to initiate the discussion. If he c~ose to ask a question
at that time, he would have en~ered exactly the same
subroutine. He w()uld have been handled in the same
manner with the following mihor exceptions. If he
reached the normal exit point of an anatomical dis­
cussion, he would be branched back to his starting
point and given the option again. If he signalled the
computer that he had tired of asking questions, 'he
would in essence be saying that he wanted the computer
to take the initiative and would:then be branched to a
randomly selected clinical problem.

There are several distinct advantages to the experi­
mental format currently being used by our students.

(1). Authoring is greatly facilitated by the use of
modular units for course construction. It is one thing
to sit down and write a lecture or linear presentation,
but quite another to outline a highly branched, open­
ended discussion. The smaller the modu~es, the easier
this is to perform.

(2). Relevance and interest are maintained through
the "clinical problem" approach to human anatomy.
The clinical problems, however, are just one type of
application question which is common to many disci­
plines. They provide a certain' amount of interest or
spice to the learning of what dtherwise might appear
to be a series of facts or skills which often seem irrele­
vant. The question of "relevance" is even more im­
portant than providing interest. There is more to
learn than we have time to teach and sometimes we,
as teachers, tend to get carried away by details that
happen to have special interest for us. Thus the appli-

cation questions help to keep us "honest" and relevant.
If a piece of anatomical knowledge cannot be accessed
via a clinical discussion, perhaps w~ should question
its significance to the student.

(3). The ability of the student to ask free format
questions and be shown how to reason out the answers,
gives him the feeling of being treated as an individual.
He can literally chart his own path through a dis­
cussion until he is ready to be evaluated, i.e., to enter
the clinical problems. Teaching the ability to ask
questions and to reason out the answers is one of the
most difficult tasks we face as teachers.

(4). The high ratio of clinical problems to anatomical
,discussions, the redundancy and highly branched nature
of the anatomical discussions themselves, and the
ability of the student to ask free format questions, all
contribute in permitting students taking the same
course segment to have relatively unique experiences.
Not only do they get different clinical problems, but
they may not even be taken to the same anatomical
discussions. We find that this variety of experience
inside the classroom stimulates discussion outside the
classroom.

(5). It is the combination of the features discussed
above that permits one student to be told he has
mastered the material in one course segment in as
little as two minutes, while another student may spend
several hours to attain t:p.e same degree of mastery.
This raises the interesting implication of informing a
student when he has attained sufficient mastery of
the entire subject matter, rather than giving him a
course grade. Some students, either because of ability
or previous experience, might achieve this level of
mastery in a month, while another student might
require the present six months. The faster students
would have a lot of free time which could be spent on
other courses, independent study, electives, or re­
search. Thus it is conceivable that once a curriculum
were implemented on the computer, the student's
medical college transcript might more meaningfully
consist of a record of how many things he accomplished
during his training, rather than a series of numerical
grades.

A rtificial intelligence

This may be a rather grandiose term for the rather
primitive examples we have, but we want to discuss
two general topics, i.e., improving the methods by
which we handle the student questions, and developing
self-adaptive programs.

Student questions

As a result of experience with students on the initial
course segments, we found that a large percentage of
the questions they asked either were not answered or
were not handled appropriately. This does not have to
happen very often to discourage a student from asking
any further questions. However, we recorded every
question a student asked, so we were able to review
them. We found there were three main reasons for
mismatches on the questions: (1) the question was not
related to the subject matter being discussed, (2) the
student did not provide enough information, and (3)
he provided too much information.

(1). If the question is not pertinent to the subject
being discussed, we have no need to answer it. This
was determined by prescanning for keywords. We
found, however, that we could not always tell whether
the question was not pertinent, or whether it "vas just
not specific enough. Basically we solved this by equating
certain synonymous terms and by adding to the number
of keywords in the prescan. We also added two other
levels of scanning. The first is for such things as leg,
arm, thorax, etc., which are parts of the body far
removed from the eye. If these are detected, the student
is told, for example:

WE ARE NOT DISCUSSING THE LEG AT
THIS TIME. PLEASE LIMIT YOUR QUES­
TIONS TO THE SUBJECT UNDER DIS­
CUSSION.

We have a second level which includes keywords re­
lated to the region, but not to the subject. Thus if
his question referred to the maxillary nerve, part of
which does run through the orbit, he would be told:

THE MAXILLARY NERVE IS RELATED TO
THE ORBIT, BUT DOES NOT INNERVATE
ANY OCULAR l\1USCLES.

If he did not match on any of these three levels of
prescanning, he would simply be told:

YOUR QUESTION DOES NOT APPEAR TO
BE WITHIN THE SCOPE OF OUR DIS­
CUSSION. DO YOU WANT TO REPHRASE
IT?

If he does not choose to rephrase it, he is branched
back to where he asked the question. Differentiating
whether his question is not germane or whether it is

Medical Education 311

not specific enough is almost essential. Trying to de­
termine in what way it is not related simply makes
the dialogue a little more personal and gives the
student the feeling he is being treated as an individual.

. (2). The most common difficulty was that the student
did not supply us with enough keywords, i.e., his
question was not specific enough. Thus we have de­
veloped a little subroutine which helps him make his
question more specific. For example, if the only key­
word we detect is MUSCLE, we ask him:

WHICH MUSCLE OF THE EYE AND WHAT
DO YOU WANT TO KNOW ABOUT IT?

He then is given the chance to rephrase his question.
Thus with relatively little programming we can inter­
act with the student in a conversational manner until
his question is understood. On the basis of previous
experience we feel we will be able to handle most of
the questions asked.

(3). The third area where we sometimes had difficulty
was when the student provided us with too many
keywords. It is a surprising fact that the number of
keywords required in a given course segment to provide
us with enough information to answer a question is
remarkably constant. In the program on the muscles
of the eye it was three. When there were too many
keywords, analysis showed he was usually asking more
than one question, or at least what he thought was
a single question could be broken down into two
smaller ones. Less frequently he was simply being too
verbose. Formerly he would branch on the basis of
the first three words that matched, but this was not
always appropriate. Now we count and store the
number of keywords in his question. If this exceeds
our magic number, in this case three, the words we
have detected can be displayed for him on the screen.
He then is asked to rephrase his question using no
more than three of these words, or to ask only one
question at a time.

Self-adaptive programming

We would like the program to modify itself on the
basis of experience, much as a teacher learns from his
experience with students. As a result of our own re­
search in neurophysiology, we feel that two basic
aspects of learning are: (A) an increase in seeking or
exploratory behavior following cessation of a rewarding
stimulus,l·2 and (B) habituation or the dropping out
of unrewarded components of a response.3 A teacher,

312 Fall Joint Computer Conference, 1969

at least a good teacher, when challenged is ready to
increase the variety of his respbnse. This is an example
of exploratory behavior. He may do this by retrying
responses that were previously part of his repertoire,
but had been temporarily discarded, i.e., had undergone
habituation. He may also increase his repertoire of
response by incorporating responses acquired from
experience with students. At the present time we have
only begun to incorporate these learning concepts into
instructional programs.

The following are examples of capabilities we consider
necessary for the computer if it is to approach the
versatility required in tutorial discussions. The first
two exist only as isolated demonstrations at selected
points, because COURSEWRITER II does not permit
us the computational ability to do this on a large
scale. The third example, which we consider of utmost
importance, has not actually been implemented as yet,
but we foresee no major obstacles; except for the limited
computational capacity of the system.

(1). If a certain percentage of the students (currently
20 percent) all ask the same question at the same point
in the progra~, subsequent students are branched as
though they had asked the same question. They are
treated as though they were in the question asking
mode, e.g., when they reach the normal exit point of
an anatomical discussion, they. are returned to the
point where they came from. Thi~ branching is dynamic
and reversible in the sense that the need for asking the
question is constantly evaluated. Thus if two students
in any series of ten ask the sam~ question at the same
point, every odd-numbered st~dent that follows is
branched as though he had asked the question. Even­
numbered students are not branched. If nine of the
next ten even-numbered students fail to ask the ques­
tion, the branch is deleted. However, if two or more of
them do, then the branch is reinforced, i.e., three out of
every foul' successive students will be branched.
Certainly if a significant number of students did

_ ask the same question at the same point in a dis­
cussion, we as teachers would probably modify our
approach. How often this will occur and whether the
percentage should be greater or less than 20 percent
are questions we cannot answer until we can test it on
a larger scale.

(2). There often are several places in a program to
which we could branch a student in response to his
question. At present we make this choice for the
students. We plan to give them some degree of control
by forming a hierarchy of possible branch points.
Originally these will be evaluated by us as first, second,

third, or fourth choices. Hmvever, each time a student
is branched and reaches the point where we think his
question should have been answered, he will in effect
be asked: "Okay?" or "Does that answer your ques­
tion?" If he says yes, the likelihood of that branch
will be augmented. If he says no, he will be branched
to another point and the likelihood of the original
branch will be decremented.. Thus what we thought
was the lea.st plausible response to a given question
may be shown to be the most desirable on the basis of
experience with students, and it will achieve the status
of the initial branch without any manual interference
by the author.

(3). One of the most significant ways a teacher learns
from experience with his students concerns the unan­
ticipated but appropriate answer. Right now we record
all unanticipated answers and review them periodically.
Occasionally an unanticipated answer proves to be
more perceptive than the anticipated answers the
author programmed. At present such a student is
treated as though he were wrong.

When a student gives an unanticipated answer and
feels he is treated in an inappropriate manner, why not
permit him the option of repeating his answer and
treating it much as we would a question'? EssentiaJly
he would be entering a "debate mode" . We feel that
our question answering routine is sufficiently flexible
now that he would eventually be taken to a point
where he could decide whether his original amnver was
valid or not. If it proved invalid, he would be branched
back and his pathway erased. However, if he felt he
had won his point, then his route could be preserved.
This would then become an anticipated answer for
subsequent students. In interpersonal discussions our
students often challenge us and not infrequently they
win their point. However, even if this occurred only
once in a thousand times, these are the type of re­
sponses we would least like to discourage. How can we
profess to encourage our students to question and
reason and then give an inflexible response? This is a
level where computers are not presently competitive
with a human tutor.

Since we have not yet implemented this, and do not
want to be considered idle dreamers, we shall elaborate
on how we intend to program this type of ability.
First it should be made clear that we are not talking
about situations where the student's response involves
evidence not available in the program. We are talking
about situations \vhere he reasons from one logical
statement to another. Let us cite a specific example.
In our original version of the discussion of the eye, we

programmed many anticipated answers to the question:

WHAT IS THE ACTION OF THE SUPERIOR
RECTUS?

One answer we did not program was:

THAT DEPENDS ON THE STARTING
POSITION OF THE EYE.

We subsequently modified the program to include this
as an anticipated answer. However, the inherent logic
was already present for the student to have won his
point. If he had asked-in debate mode:

WHAT IS ITS ACTION IF THE PATIENT
STAR'fS BY LOOKING IVLEDIALL Y'?

he would have been given one answer. If he then asked:

WHAT WOULD ITS ACTION BE IF THE
PATIENT STARTS BY LOOKING LATERAL­
LY?

he would have been given a very different answer.
Clearly this would prove that the action depends on
the starting position of the eye.

The computer has no such ability to reason, but the
student does. Thus we are permitting him to make
value judgment. He could signal the computer that
these two answers made his point and subsequent
students would then branch. there, rather than along
the path previously followed. Since we are permitting
the student to make a value judgment that affects the
subsequent course of his fellows, the process must be
reversible. Thus the next ten students who gave the
same answer would be asked by the program whether
they understood the line of reasoning that followed. If
the consensus were yes, then the branch would remain;
if it were no, then the branch would be deleted.

Interactive graphic8

Gross anatomy is very largely a visual science.
Knowing the three dimensional relationship of one
structure to another is a fundamental basis for clinical
diagnosis. The best way to organize this information
is with pictures, so our students are encouraged to
spend a lot of their time sketching. In our linear (non­
computer) programmed teaching they can actually sit
and copy pictures that are projected. The question
then arises, does the computer offer interactive graphic

Medical Education 313

capacities that are competitive? In order to explain
what we have done and our problems in this area, it
will be necessary to go into some of the details of the
system with which we work, since it is quite different
from what most people think of when they speak of
CRT graphics.

The 1510, which is the CRT, light pen and keyboard
unit, was designed primarily for the rapid display of
text, and its designers assumed that its graphic appli­
cations would be limited. The usable area on the face
of the CRT is 4% >< 8 inches. It may be thought of as
a grid consisting of 32 rows and 40 columns (Figure 2).
A standard alphanumeric character would occupy t,~o
of these boxes, i.e., two rows by one column. Each box
on this grid, i.e., each one row by one column unit,
may be thought of as a matrix of 48 potential dots of
light, six dots high and eight dots wide (Figure 3).
Thus the entire screen consists of a maximum of 61,440
dots (192 vertical X 320 horizontal). Actually these are
more accurately described as horizontal slashes; the
dots are wider than they are high as may be seen in
Figure 4. This is a significant factor which must be
considered in preparing the drawings, to prevent dis­
tortion.

The system provides a standard character dictionary
and the user may define additional graphic sets. These
graphic characters, as defined by the system, occupy
such a large part of the screen that the likelihood of
being able to use the same graphic character to con-

" .'1
.'
."

11M 1510 lutractkmal Dillplay Planning Guida

Column

Pet •• M-¥Ot-O (U/MOBI
Prl III U.5.A.

o 1 1 J .(~ • • ! ~ 10 11 II 13 14 I~ 16 11 18 19 20 21 22 23 24 25 26 21 28 29 30 31 12 33 J4 35 36 31]8 39

Figure 2-This shows the organization of the screen into 32 rows
and 40 columns forming 1280 addressable units. The standard
alphameric characters occupy two of these boxes, i.e., two rows

by one column

314 Fall Joint Computer Conference, 1969

----------------------~--

iX IX X X X X X IX
X IX X X X X X IX
X X X IX IX X)(IX
~ X IX ~ X IX X X
~ X IX X IX ~ X X
~ X IX X IX IX X X

Figure 3-The 48 dot matrix defined by the intersection
of one row and one column

Figure 4-A CRT display of the skull and mandible
from the side

struct more than one picture is almost nil. It is anal­
ogous to taking a printed page,· dividing it into four
quadrants and saying you can use these quadrant units
to write anything else you desire, as long as you don't

change any of the letters or words. It quickly became
obvious that ''Ie did not want graphic characters of
the type just defined, but rather we needed a graphic
alphabet. Just as in the case of the English language,
given the 26 letters of the alphabet, one can write any­
thing he likes, so given the means to directly access
each of the 48 dots in each box, we could draw any
pictures we desired.

That is basically what we did; we defined a character
dictionary with each character being a single dot
(Figure b). Thus with \vhat amounts to little more than
1/3 of one character dictionary area we can draw as
many pictures as we desire. The backspace function
permits superimposition of characters. Thus if our
display instruction were to contain the following charac­
ters, as defined in our graphic alphabet, i.e., BCDE]?­
JNRVbfjklmn, and there were a backspace command
between each of them except the "m" and the "n,"
we would get the dot pattern shown in Figure 6., X otice
that omission of the backspace instruction caused the
"n" dot to appear in the six by eight box one column
to the right.

We always limit our display instructions to one row
at a time and we put as many instructions on each row
as possible, i.e., we try to break our pictures up into
the smallest units we can. This permits us greater
freedom with the input buffer (250 character limit),
facilitates debugging, allows us to modify pictures with
a maximum of ease, provides animation capac!tty, ann
is especially useful when we give the student the ca­
pacity to draw his own pictures. However, there is at
present one very serious limitation to putting multiple

A B C 0 E F G H
I J K L M N lO P
IQ R is T U V iW X
a b c d e f g h
i i k I m n 0 0

io r s t u v w x

Figure 5-The characters used to define our graphic
e.lph9,bet.. The character plus its case determines

the position of the dot within the matrix

x X X X X
X IX
X X
X X

X X X X

X

Figure 6-The pattern produced by the following coding
<B%C%D%E%F%J%N%R%V>%B%F%J%K%L%MN

The" <" defines subseqnent eh2,rr,cters as upper
case. The" >" defines subsequent chamcters

as lower case. The "%" is the code for
the backspace function

display instructions on a single row. No erasure occur~
between adjacent rows, i.e., the upper and lower limitp
of each box are inviolate. However, erasure does occur
between adjacent columns. Let us aSRume that we ha0
two adjacent boxes on the same row filled completely
with dots [Figure 7 (A)]. If subsequently any pattern
were displayed on the same row in the column just to
the left of this, e.g., a vertical line in the extreme left
of the box, we would get the pattern shown in Figure
7 (B). A subsequent display instruction on the same
row but in the column just to the right of our original
display, e.g., three dots vertically arranged in the ex­
treme right of the box, we would get the pattern shown
in Figure 7 (C). Thus a display insert command erases
five dot columns to the right of the insert and three
dot columns to the left on the f arne row. We have been
told that this can be improved on a hardware level so

Medical Education 315

xx xx xx xx xx xx xxx
xx XX xx IXX xX xx xx x)c

A xx Ixx xx xx xx xx xx x><
xx IXX xx xx xx xx xxx
xx IXIX xx xx xx xx xx xx
xx XIX X xx xxx

x xx Xl.>< xiX xx xxx
t>< xx xx xx xx xxx

B X xx IXX xx xx xxx ---
x xx xx xx xx xxx
x xx xx Xx xx xxx - --- -
x xx xx xx ----xx Ixx

r--- --

X xx Xix xx Ixx x
x xx xx xx xx x c x xx xx xx xx x
x xx xx xx xx
x xx xx xx xx f-- -- -
~I xxx xxx

Figure 7-Thi" shows the problem of en"ure with milltiple di..,;­
play inserts on the same row _ The insert.ion of the single dot
column in (B) causes erasure of [) dot columns from the original
pattern in CAy. Insertion of the 1/2 dot column in (C) causes

erasme of 3 dot column from the original pattern

no erasure will occur. This would be of utmost im­
portance to anyone who wants to exploit the graphic
capacities, eRpecialiy in having the student draw on
the CRT.

The resolution of the light pen is limited to one box
as defined by one row, one column. Light detected from
one box can be differentiated from light in any other
such box. Two lighted dots are required to produce a
detect and these two dots must be separated by one
dot row. Thus the pattern:'3 shown in Figure 8 (A) would
all permit detection; those in Figure 8 (B) would not.

We use the light pen aR a pointer. We have not been
able to devise any means of using it as a stylus, although
we do have various ways in which we can have the
student draw on the CRT. Some of the ways we use
CRT graphics are enumerated and briefly described.

Identifi,cation

In the CRT display shown in Figure 9, we have the
student use the light pen to identify the structures
labeled in Figure 10. We feel that since we are dealing
with a picture approximatefy four inches in height,
this is pretty good resolution. As with verbal questions,
we branch selectively not only according to whether
he is right or wrong, but also on the basis of what the
nature of his error is. Thus his thinking is analyzed

316 Fall Joint Computer Conference, 1969

----------~----------------------------

A [X Ix X
x

x x x

!

i

B I

X

~ xx xx IXX xX
Ix IX X 1)(1)(xx IX XI)(

Figure 8- (A) shows three dot patterns which permit light pen
detection; (B) shows three dot patterns which would not be de­

tected by the light pen

and he is led by discussion or :,lemonstration to the
correct answer. Since the face of the CRT is hehind a
glass cover, we have a parallax problem. The boxes
that he is trying to define measure only 1/6 X 1/5
inches. We cannot vary the intensity of the beam by
tracking the pen. We can require a double detect, i.e.,

Figure 9-A CRT display of the base of the skull

Foramen laceru

Foramen ovale

Anterior palatine foramen

Spinous process

Petrotympanic-----4-=P"
fissure

Hypoglossal canal

Carotid canal

Figure lO-This shows some of the structures thHt we
require the student to identify using the light pen

on the graphic display shown in Figure 9

on the first detect temporarily erase the adjacent boxes
and ask in effect: "Is this what you want to point to?"
However, in practice we do not find this necessary.
After a little experience the students make very few
parallax errors.

Animation

We use a few examples of animation in the usual
sense such as moving the eyes, swallowing, etc., which
can be done in the insert mode. This is quite effective
as long as only part of the picture has to be regenerated.
More commonly we employ animation in the sense of
drawing something slowly for purposes of emphasis.
For example, when we ask a student to point to where
a nerve originates, after he does so correctly, we may
respond by having the nerve "grow'.' out along its
course.

Enlargement

The 1510 has no vector or scaling capacities. How­
ever, we do present a small scale view of a structure
.such as the skull and then enlarge certain parts of it
in 2X steps until we get the desired resolution for
llght pen interaction or to show greater detail.

"Drawing" on the CRT

The quotation marks are to emphasize that the light
pen cannot be used as a stylus. This would be desirable,
of course. However, this is not as great a limitation
as it might seem, since we are trying to get the students
to appreciate spatial relationships and proportions,
ra ther than training them as artists. There are several
means· by which we permit students to generate their
own pictures and have them evaluated. In each of
these instances, the erase feature is a distinct limitation,
and we are actually delaying much of our development
in graphic until a hardware modification comes through.

(1). Woe present the student with our dot matrix and
have him input from the keyboard, evaluating his
picture segment by segment. This may sound artificial
but it works quite well. However, from the keyboard
there is a 100 character input buffer, so here, more than
anywhere elISe, we feel the limitation of the erase
feature.

(2). 'Ve put a lighted square in each box. The student
has three modes of operation from which to choose. If
he is in the insert mode, touching a lighted box causes
the square to be replaced by an asterisk like symbol.
The replace mode causes the square to replace the
asterisk, e.g., if he changes his mind. When he is finished
he enters the erase mode in which every square he
touches disappears and he is left to view his finished
drawing '[Figure 11 (A)]. The drawing is then evaluated
by the computer, and those parts of his drawing that
are judged to be accurate are regenerated using our
graphic alphabet. Thus his drawing, represented in
Figure 11 (A), would be presented back to him as in
Figure 11 (B). However, any parts of his drawing not
judged accurate would be left alone and he would have
to try again. A photograph of this view of the skull is
shown in Figure 12.

(3). We have every bone in the body drawn on
coordinate paper. On the CRT a graph paper grid
provides the lighted matrix for the light pen detect.
In essence we have him point to a series of points and
if he is correct, we generate the line of appropriate
contour between successive points. With soft tissues,
e.g., organs, muscles, etc., \ve are concerned with their
relation to bones. The bony skeleton then becomes the
lighted matrix upon which he draws. For example, it
is of vital importance that the student know the normal
projections of the heart arid its various subdivisions
onto the thoracic cage from ev~ry angle. Thus we
present him with a graphic of the bony rib cage and
ask him to point to where each chamber or struct.ure

Medical Education 317

11J4 IBM 1510 Inatructional DlaplJy Planning Guida J6OI...O(.."..,.a)
............ u.s.A.

~.

• _ .•• III,. *
. '. .. '.: ,.

- It -,

· · · · .. .,
· . " · .
• ••••• /I

• ••••• II

.......
A

Column

· · ' '

. ·

: I

B

Figure 11-(A) shows a crude form of light pen drawing by the
student; (B) represents the computer evaluation of the drawing

using our graphic alpha.bet.

Figure 12-A CRT display of the skull from the front

crosses the bones, and generate the pictures as he
progresses.

SU1\1lVIAR Y

We have tried to describe some of the natural language
ana.1vsi~. Relf -adapt.ive programming. and interactive

318 Fall Joint Computer Conference, 1969

graphic capabilities we feel are. required for medical
education. Although the system .and language we have
becn using 'were designed for CAl, they were not de­
signed for the furt.her capacities toward which we have
tried to force them. We would like to have a system
and a language that were tailored to meet the needs of
higher education.

CAl is expensive, but so is; medical education in
its present form. Any tool that would significantly
improve the quality of medical. education can hardly
be denied on the basis of cost. The real question is
whether CAl can justify itself on a performance basis.
Perhaps in two, five, or ten years the comput.er in­
dustry ,,'{ill feel the state of the ari. justifies a real com­
mitment to this field. However, will what they produce
truly meet the needs of the medical educator unless a
really interdisciplinary phase of research and develop­
ment is undertaken now'?

ACKNo",rLEDGl\lENTS

The authors gratefully acknowledge the help and en-

couragement of the many people at The IBM. Systems
Hesearch Institute.

This investigation was supported by General Re­
search Support Grant FR-0539G from the Genera 1
Research Support Brandl, Bureau of Health Pro­
fessions and 1\1anpower Training, K ational Institutes
of Health and by Grant #50/68 from the National
Fund for l\ledical Education.

HEFERENCES

1 W D HAGAMEN
Respon8es of cats to tactile and noxious sUmuli: Temporal
summation, facilitation, internal inhibition, and ea:iernal
inhibition as examples of interactions between stimuli on a
beham'orallevel
Areh Neurol Vol 1 1959 203-215

2 N F O'DONOHUE W D HAGAMEN
A map of the cat brain for regions producing self-slim1ilation
and unilateral inattention
Brain Research Vol 5 1967 289-305

a S L JAFFE P F BOURLIER W D HAGAMEN
Adaptation of evoked auditory potentials: A. midbrain through
frontal lobe map in ihe unanesthetized cat
Brain Heseareh Vol 14 1969 111-127

Design principles for processor maintainability

in real-time systems

by H. Y. CHANG and J. M. SCANLON

Bell Telephone Laboratories
Naperville, Illinois

INTRODUCTION

With the arrival of large real-time, time-shared
systems, the requirement of system reliability has be­
come even more demanding. The result of even a
momentary system misbehavior could be catastrophic,
since any disruption of service is experienced by all
the users on-line at that time. Thus for real-time
systems such as telephone switching systems, airline
reservation systems, on-line teaching machine, etc.,
where numerous users are served, and critical real-time
systems such as command and control, a high degree
of system dependability and maintainability must be
realized.

Since many of the real-time systems employ the
concept of centralization of logic, the overall system
reliability objective in large part depends on how well
the central processor itself meets the dependability
and maintainability objectives. For a processor, the
dependability objective often calls for the use of reliable
components, conservative circuit design techniques and
various redundancy methods. The maintainability
objective, on the other hand, demands a processor
architecture that is best suited for automatic trouble
detection, recovery from faults and fault isolation, so
as to insure operational survivability in an environment
which is not free of faults.

The purpose of this paper is to describe several
design principles which may be used in planning pro­
cessor organization, designing logic circuits, and fault
detection and diagnostic tests in order to facilitate
the design of a highly maintainable processor for
real-time systems. Our scope will be limited to present-

ing a unified account of some design guidelines, most
of which reflect material assembled from a combination
of analytical study and practical experience on a real­
time time-shared system.! The problem of achieving
high dependability by the use of various error detection
and correction codes or redundancy techniques has
received adequate treatment in the literature,2-4 and
will not be included here. In the second section we de­
scribe the various observed trouble symptoms and their
manifestation in the system. A maintenance sequence
for preserving the system's integrity upon occurrence
of faults is then suggested. Guidelines for planning a
processor organization to achieve high maintainability
are diseussed in the third section. Several principles
for designing logic circuits and fault detection and
diagnostic tests are described in the fourth section.

System malfunctions and recovery procedures

An important first step in establishing a fault re­
covery and detection philosophy for a particular
system is to establish the possible failure modes of
both system and device components. On a system
level, trouble symptoms usually manifest themselves
in some form of mutilated data. They can be caused
by errors in transmission or reception of data among
the various units; e.g., a bit erroneously set on a memory
aCcess. Or, they can result from errors in internal
data manipulation, e.g., attempting to reach an ad­
dress which has been incorrectly computed.

On a device level, the trouble symptoms with dis­
crete logic implementation usually correspond to
single, hard faults (by cornman assumption). A perma-

319

320 Fall Joint Computer Conference, 1969

nently open diode and a transistor output stuck-at-1
(s-a-1), are some examples of this class of faults.
However, these troubles usually manifest themselves
in some observable system malfunction. With the
advent of integrated circuit techp.ology, more complex
and varied device failure modes may be expected.

As one of the principal requirements in a real-time
facility is to provide continuous service, the system
must remain operational even in a fault environment.
This dictates that trouble syrriptoms be recognized
and the associated fault be isolated and repaired, with
little or no interference from the user's standpoint.
This objective can be implement~d by devising a fault
recovery procedure. A fault recovery procedure usually
consists of the following steps: fault detection, fault
recognition, system recovery, and :fault diagnosis.

Fault detection is usually a function entirely per­
formed by a variety of hardware implementing error
detection codes such as parity; checks, one-out-of-N
codes, etc., and analogue sig*al. margin checkers.
Systems incorporating some level of redundancy may
also use matching between duplicated modules as a
means of fault detection. In all cases the checker itself
should routinely be examined by programs to insure
its validity.

The objective of fault recognition is to resolve a
failure to a particular subsystem (e.g., a memory
module, an input/output chatmel controller etc.).
This is done by first establishing the type of error
which has occurred such as a par.ty failure on a mem­
ory read, and determining from that information,
through some analysis procedhre, what subsystem
contains the fault. The analysis procedure may include
a sequence of instruction retrys in order to distinguish
the hard faults from the transietits, and then to resolve
the failure to the subsystem level by alternately exer­
cising various suspected candicI;ates. It may also ex­
amine subsystem error indicators, over some period
of time, to accumulate clues pointing to the source
of malfunction.

Once the failure is resolved to a subsystem, choosing
the next step in the fault recovery procedure depends
upon whether 01' not a spare subsystem is available.

If a spare is not available, diagnostic action must
be initiated to determine the identity and location of
the fault. The normal system; operation, which had
momentarily been interrupted : at the time of fault
detection, must now be suspenp.ed through diagnosis
and repair. The system must then be recovered to a
hardware state and program point where normal pro­
cessing can be resumed. This sequence of events is
depicted by Figure 1.

FAULT DETECTION

(MI LLISECONDS) -+-fIHi'I
(MICROSECONDS)

[

DIAGNOSIS a
REPAIR

. .SYSTE'" RECOVERY

--=----r-''""''''

(MILl_I SECONDS)

~MNJTES OR

Figure I-Fault recovery sequence (without splHe)

However, if a spare is available, a different strategy
could be taken. The system is first reconfigured by
interchanging the faulty subsystem with its correspond­
ing spare, using some method of program controlled
switching.1 The recovery procedure is then initiated to
restore the system to a normal processing state, in
order to reduce the period of interrupted service. 'rhe
task of diagnosis and repair can be postponed and
offered to the system as a relatively low priority job
since it is the most time consuming step of the recovery
procedure. This sequence of events is depicted in
Figure 2.

A comparison of Figures 1 and 2 illustrates some of
the maintenance advantages of hardware redundancy.
First the diagnostic task, which generally consumes
more time than all the other recovery steps combined,
can be deferred and interleaved with normal system
processing on a time-shared basis after the system is
restored to sanity. Secondly, the availability of a
spare permits a "good" vs. "bad" comparison type of
diagnostic testing where the "good" machine inter-

SYSTEM RECOVERY 1
FAULT RECOGNITION 1

ori~~~ToN ,.....~~r---'--y-L-, _. ·PRm'~b.G--l

(MILUSEC;CWnS)]J
: MICROSECONDS) ---1_.L--+---'--L-+--~-t--" ._. '_" _"

I. • TIME-~ I 41-
I I I I I SWITCH IN SPARE

I I I I I
I I I I I
I I I I I

D'_DSIS8 M~'R - t1 tl H H 11
TIME -__.

Figure 2-Fault recovery sequence (with spare)

Design Principles for Processor Maintainability 321

rogates the faulty machine. This type of testing is
readily programmed because of the availability of a
spare and hence can be automatic. Without some level
of redundancy, an approach must be used whereby
the operator acts as the interrogator. This implies
manually forcing the machine through recovery steps
as illustrated in Figure 1. However. in practice it is
often advisable to provide some subsystems with
spares, and some without, to arrive at a balance of
cost versus reliability.

In most applications, the central processor, whether
under program control or some combination of manual
arld program control, acts as the executor of any
system recovery scheme. Thus it is of paramount
importance that the central processor itself be highly
maintainable. With this in mind then, the remainder
of this paper will concentrate on outlining maintenance
design principles for the central processor, regardless
of the system environment in which it must perform.

Structural considerations for processor maintainability

Past experience has indicated that the effectiveness
of programmed testing depends not merely on the
techniques used in deriving tests and test results, but
also on the inherent structural maintainability of the
central processor unit. The central processor main­
tainability is generally constrained by such factors as
the modularity of the logic organization, the availa­
bility of accessible tests points, etc. It is, therefore,
appropriate to list some of the desirable guidelines to
be included for consideration in order to achieve overall
processor maintainability.

Mod ularization

In planning a processor organization for main­
tainability, modularization is of utmost importance.
The processor should be composed of well defined
functional modules, with a minimum number of inter­
modular feedbacks. * This is desirable to confine the
effects of malfunctions as well as to facilitate pro­
grammed testing. Specifically: (a) the function of each
module should be definable as a register, decoder,
sequencer, etc. Irregularities such as scattered special
flip-flops imbedded into a well-defined decoder or
sequencer, or circuits with a mixed mode of synchronous
and asynchronous operations should be avoided. The
symmetry and the regularity exhibited by the
structure of these modules often imply uniformity in

* An intermodular feedback is a control and/or data path that
traverses a ring of functional modules.

the trouble symptoms caused by faults in these modules.
As a result, a considerable amount of effort in designing
tests and deriving test results can be saved. For ex­
ample, an attempt should be made to keep general
purpose registers logically equivalent so that a single
set of diagnostic tests will be applicable to all registers;
(b) the interface between modules should be "con­
trolla hIe" and be as simple as possible. This implies
that the number of intermodular feedbacks be mini­
mized and that a uniform and consistent method of
controlling information flow between modules be
established. A common practice in designing tests for
a large processor is to treat each functional module
individually. As a result it is usually difficult to foresee
global problems created by interaction among modules.
Many of these interactions can lead to inconsistent
test results, i.e., test results that may change from
diagnosis to diagnosis.s For example, a fault in module
A may prevent the initialization of some circuits in
module B. If the testes) for detecting this fault, due
to the presence of global feedbacks, also depend on
the proper initialization of these circuits in module B,
the test results become inconsistent. In a large pro­
cessor with many functional modules, the testing
problems created by these interactions can be extremely
complicated. Thus, a "clean" interface between mod­
ules is very desirable. This means that in the test
mode, every module should be, either directly or in­
directly, controllable and monitorable.

Accessibility and observability

The result of segmentation of a processor into
functional modules permits the strategic placement of
test points for purposes of controlling and/or monitor­
ing the state of the machine during programmed
testing. A method for test point placem~nt has been
considered by Ramamoorthy, with the use of graph
theory.6 The functional modules of a processor can be
considered to correspond to nodes of a directed graph,
and signal paths to edges. The nodes of a graph are
partially ordered, from primary inputs to primary
outputs. Feedback loops between nodes can be
"broken" under the constraint that all nodes rem~in
reachable from primary inputs. Additional control
points are then inserted at places where feedbacks
have been broken. Test points for monitoring purposes
should also be added to modules whose outputs are
not observable, either directly or indirectly, at primary
outputs. The resultant processor organization is
therefore, one in which every module is controllable
and monitorable for programmed testing. Consequently,

322 Fall Joint Computer Conference, 1969

the accessibility and observability are greatly improved.
Our experience indicates that such a facility can often
simplify the design of tests and may well improve the
resolvability of faults.

As an example, consider the orO'anization shown in
• 0

FIgure 3 (a). Each box represents a functional module.
Global feedback loops (BEFB), (CEDe) and (CDC)
are broken at edges FB and DC. Every module is
still accessible from its primary input (through module
A). Control points are added at FB and DC to enable
modules Band C. An additional test point is also
required at output of module F for monitoring purposes.
The resultant organization, with modules partially
ordered, . is show~ in Figure 3 (b). Note that every
module IS accessIble from its primary input and/or
added c~ntrol points and the outputs of every module
are momtorable at its primary output and/or added
test point(s).
~s 'vil~ be seen in a later section, a modular organi­

zatIOn WIth adequate test points will greatly simplify
the design of tests. Thus far only the design guidelines
for the structure of a processor have been touched
upon. Some principles for the behavior aspect are in
order.

PRIMARY
INPUT PRIMARY

OUTPUT

Figure 3a-Functional modules of a processor an
example

ADDED CONTROL--.a

PRIMARY
INPUT

ADDED CONTROL:--"

ADDED
TEST

POINT

Figure 3b--Partially ordered functional modules of
a processor

Interrupt and rollback mechanisms

As was mentioned earlier, a prime maintainability
objective of real-time, time-shared systems is to
preserve the system integrity in the presence of faults.
The use of error detection and correction circuits may
detect and mask out the misbehavior caused by some
faults. For example, a system employing a Hamming
code can effectively mask out single errors and recog­
nize double errors. However, in real-time operations
the tasks of recovery from a fault occurrence usually
requires a combination of program and hardware
mechanisms. Special interrupt circuitry must be pro­
vided which is triggered by fault detection circuits to
initiate the recovery process. Protected storage must
also be provided to preserve the state of the machine
in order to restart the program after the system has
been recovered from a hardware failure.

The use of interrupt and rollback mechanisms can
be illustrated by the following example (Figure ,1).
Suppose the normal sequence of operation is Si, S2
. ", Sn where S1 denotes a steady-state point, or a
point to which the program can be rolled back. A
fault is detected while the transition from S2 to S3 is
being executed. To prevent mutilation of data, this
transition should be interrupted and all pertinent infor­
mation on the state of the machine stored away. The
system will then enter a maintenance mode to isolate
and repair the fault. Once the trouble is cleared;, normal

NORMAL OPERATION INTERRUPT OPERATION MAIIITENANCE OPERA liON

~ STORE STATE RECOVERY
OF MACHINE S. --+ DIAGNOSI~; AND

REPAIR

Figure 4-The use of interrupt and rollback mechanisms

Design Principles for Processor Maintainability 323

operation can then resume by rolling back to steady
state 81,

Interrupt and rollback mechanisms have proven to
be extremely valuable in real-time operations, es­
pecially when there are excessive intermittent troubles
in the system.7 The maintenance of this addit~onal
hardware should be made periodically to insure that
it is in proper working condition.

Interface with external devices

In many systems the central processor and its
external devices such as memories are interconnected
via common buses. To test the circuits of the central
processor that are associated with buses, it is often
necessary to send data and/or addresses to these
external devices. This mode of testing is often in­
efficient as it requires extensive initialization of devices
in the external communities. Furthermore, the test
results may be inconsistent since the data is highly
dependent on the states of these devices at the time
the central processor is to be tested. In a large system
a central processor may communicate with numerous
devices, and interfacing with these units for testing
presents a serious problem. To avoid this situation, a
separate return path should be provided (see Figures
5(a) and 5(b» so that the testing of interface circuits
can be simplified. The return path concept establishes
a testing environment in which the state of the pro­
cessor during testing need not be dependent upon the
states of other external subsystems or devices. In some
cases a saving of twenty to thirty percent of time and
program space for testing central processor interface
circuits can be achieved.

Circuit and test design

Processor maintainability can be greatly facilitated
if appropriate design principles are followed in circuit

CENTRAL
PROCESSOR

EXTERNAL DEVICES r-----------,
I
I
I
I
I
I
I
I L ____________ --1

Figure 5a-Processor interface with external system
(operational mode) ,

EXTERNAL DEVICES r-----------:,

CENTRAL
PROCESSOR

I
CONTROL I

I
I
I
I

I
I
I
I
I
I
I
I L __________J

Figure 5b-Processor interface with external system
(maintenance mode)

design and in developing diagnostic tests and programs.
In this section, we recommend several such techniques,
most of which are suggested by our experience and
by the results of other workers in the diagnosis field.

Circuit design

Circuit Redundancy-A fundamental assumption
shared by all diagnostic methods is the single-fault
assumption, i.e., one and only one fault may occur
since last diagnosis. The presence of an undetected
fault may invalidate this assumption. Consequently,
the effectiveness of the diagnostic can be weakened.
Thus the requirement of deriving a complete test set,
one which is capable of detecting all faults under
consideration, is necessary in order to reduce the set
of undetected faults that can occur in the field. The
presence of redundant circuits greatly complicates the
design of detection and diagnostic tests and generally
weakens system maintainability. Although faults in
redundant circuits may not affect system operation,
they could invalida,te certain tests designed for other
faults under the single-fault assumption.8 For example,
the fault a stuck-at-1 (s-a-1) of a redundant circuit
shown in Figure 6 is not detectable. The presence or
the absence of fault a s-a-1 has no effect on circuit
operations. However, suppose a s-a-1 exists and an­
other fault {3 stuck-at-O (s-a-O) occurs. The test
vector (x= 0, y= 1) which was originally designed for
detecting {3 s-a-O, is no longer valid, as the path
y~{3~z has been "desensitized" .9-11

As verifying the validity of all tests under all com­
binations of undetectable or redundant faults is im­
practicable, circuit redundancy should be eliminated
whenever possible.

Failure M'odes-Many manufacturers have indi­
cated that the use of integrated circuits yields a highly
reliable design at low cost. However, to the best of
our knmvledge the failure ~odes of integrated circuits

324 Fall Joint Computer Conference, 1969

x

y

z

Figure 6--Example of a redundant circuit

and their effect on the test desi~n methods have not
been fully explored. From samples that. have been
studied, the dominant failure modes are still the same
as that of discrete components,. i.e., stuck-at-l and
stuck-at-O types. However, thero are also manv other
ne,\.- modes of failure that may require spe~ial at­
tention. 12 Since the integrated circuit configuration can
introduce a number of parasitic components (such as
diodes and capacitances) betweerl connections, inputs
(of NAND gates, for example) can. be grounded due to
a parasitic diode short. Other modes of failures that
are characteristics of physical design include inputs
crossing, inputs simultaneouslys-a-l (due to a me­
chanical bond lifting), collector to emitter short, etc.
Until a better understanding of this subject is obtained,
one must be cautious in adopting a given integrated
circuit for production. A careful study of the feasi­
bility of designing tests for detecting f~ults exhibiting
possible abnormal trouble symp~oms should be made.

Circuit Behavior-It is gener~lly known that one
of the most difficult maintenanbe tasks is to handle
faults, which may be intermittent or marginal, yielding
inconsistent failure symptoms. 1\/[any of these faults
are caused by gradual compon~nt deterioration due
to aging, manufacturing defects) etc., which are un­
avoidable. There are others that' are caused by overly
critical timing, or unrealistically tight tolerances, and
can probably be avoided by careful design. Examples
of these cases include (a) a hard fault in one circuit
which causes marginal operation in another circuit
(e.g., hard fault in a voltage regulator), (b) a hard
fault in one circuit which prevents the initialization
of another circuit (e.g., a fault :in a clock gate), (c)
faults which cause circuit operat~on that is dependent
upon equipment options employed in the unit being
diagnosed, and nlany others. The test results obtained
under these circumstances are usually unpredictable.
To avoid diagnostic inconsistencies, the test designers
are required to perform the time consuming, arduous

task of reviewing the entire unit to uncover these
deficiencies, and organizing test sequences by the use
of early terminations or selected test skipping tech­
niques. The scope of this task can be minimized if
circuit designers are encouraged to design circuits
which are well-behaved even under failure. However,
since it is unrealistic to assume that diagnostic and
circuit designers will be completely successful in pre­
venting marginal or intermittent faults, some tools
should be provided to aid maintenance personnel in
resolving abnormal fault conditions.

Connectivity and Packaging-With the use of large
scale integration and the increase in logic density, the
relative cost of factory testing and field maintenance
is rapidly escalating. lVIinimizing the number of global
feedbacks between modules makes the system less
sequential (more combinational); the task of testing,
as well as that of generating field maintenance tests
and a fault dictionary or catalog, is thus simplified.
However, the situation could be further improved if
the circuit designer would reduce, wherever possible,
the number of fan-ins and fan-outs, and especially,
the number of reconvergent fan-outs. * The problem
created by reconvergent fan-outs in deriving tests has
been noted by many workers.9 ,10 It greatly complicates
the test generation process and can also affect the
fault resolvability, as in many cases faults in fan-out
regions are not distinguishable from those in fan,·in
regions. 'Thus, reconvergent fan-outs should be a.voided,
wherever possible.

A common practice in circuit packaging has been
to assemble each type of plug-in package to contain
several of the same type of logic elements such as
fiip-fiops, p-input N ANDS, etc. However, this practice
is not necessarily an optimal one from the viewpoint
of attaining maximum fault resolvability. As diagnos­
tics are generally associated with "actions" rather than
with circuits,t3 serial packaging (i.e., organizing logic
elements along paths from inputs to outputs) would
yield a far better diagnostic resolvability than parallel
packaging. Admittedly; serial packaging will result in
more types of plug-in packages. Since in Medium
Scale Integration or Large Scale Integration a system
may only be composed of several of these packages, the
requirement that faults be isolated· to one s,nd only
one suspected package is quite necessary in order to
reduce repair time and/or possible additional un·
necessary package replacement. This implies that the

* Suppose g2,te B is ree,chable through gate A along some path(s).
Reconvergent fan-outs of gate A are those fan-out paths that
reconverge at gate B. .

Design Principles for Processor Maintainability 325

use of a serial packaging technique to improve reso­
lution should be carefully considered in the design
stage, along with other attributes such as cost of spares,
size, quantity, complexity and production yields, etc.,
to achieve an economic balance.

Design of maintenance tests

'I'he design objectives of maintenance procedures
to enhance processor maintainability are basically two­
fold: (1) to design a set of tests capable of detecting
and isolating all single, solid faults to a replaceable
package level, (2) to insure that test results will be
consistent for all faults from diagnosis to diagnosis.
The aforementioned design principles for processor
architecture and circuit design were aimed at facili­
tating the design and the application of maintenance
tests. In this section, vve present our recommendations
on methods of deriving tests and generating test
results, on techniques of structuring fault detection
and diagnostic programs, and diagnostic data
interpretation.

Tests Derivation-l\lethods of deriving tests for
logic circuits have been extensively explored.9 ,10 ,14 ,15

The objective is to generate a set of tests capable of
detecting each member of a prescribed fault set. The
most significant result that is applicable to circuits of
practical size is the path sensitizing concept or the
D-algorithm technique.9- n The idea is to assign a
certain input test vector to a circuit so that faults
along some path from input to output will cause the
circuit output vector to be different from that obtained
under the fault-free condition. For combinational logic,
programs for deriving sensitized paths are fairly simple
to implement. The running speed is also moderate
for circuits with very few reconvergent fanouts. For
sequential logic, there is no known technique that can
efficiently handle circuits with even a moderate number
of feedback paths. A practical approach, therefore,
would be to design the processor organization with a
minimum number of controllable feedback paths, as
was suggested in an earlier section making the logic
purely combinational for the purpose of testing. The path
sensitizing techniques can then be used to derive a
complete test set.

Generation of Test Results-The pros and cons of
developing a digital fault simulator for generating
test results as opposed to other alternatives (e.g., the
manual method and the physical simulation approach)
have been discussed by Manning and Chang.16 It was
concluded that the digital method is extremely useful
in the early design stage to provide immediate feedback

. on the adequacy of hardware design and processor
maintainability. The physical method seems to have
an edge in computer time required to generate all the
test results. However, it is not clear how the physical
method can be used for a circuit realized with inte­
grated circuit technology.

At present, for circuits with 100 logic gates a typical
estimate of required computer time to generate test
results is about one hour.17 With improved techniques
for fault simulation, the running can be substantially
redueed so as to make the digital approach even more
attractive.16 Those readers who are interested in the
detailed description of the development of a digital
fault simulator can refer to several articles by Seshu.
See References 19-21.

Test Ordering and Minimization-The test set and
the test results generated through the simulation­
process usually contain redundancy. In some real-time
systems in which both program space and time are
at a premium, it is desirable to select a minimum or
near minimum set of tests that isolate faults only to
the circuit package level. To accomplish this, the
tests should first be arranged in "logical" order in the
same manner as modules of the· processor are ordered
(see Figure 3(b)). This in effect constitutes a paral­
lelism between the organization of the processor and
the structure of testing procedure, which is considered
to be a useful aid in isolating marginal and/or inter­
mittent faults that produce inconsistent test results
from diagnosis to diagnosis. Then, the test set for
each module can be reduced by using one of the known
methods for selecting an optimum set of diagnostic
tests.22- 24

Program Structure -The final phase in the design
of a diagnostic testing procedure is to incorporate the
tests and test results (obtained through the simu­
lation process) into a diagnostic program. In order to
minimize the overall program development effort (e.g.,
programming, debugging, integration and documen­
tation) and to reduce the program maintenance effort
(e.g., updating changes, etc.), the program structure
should be modular, uniform and consistent. To ac­
complish these objectives, the use of the "data table"
approach is recommended.

Basically, the program is composed of two parts:
the control section and the data table section. The
data table section consists of a sequence of standard
entries, each of which specifies the operation of a
particular test or test sequence for certain modules.
Typically, each entry specifies (a) the input test vec­
tor(s) to be applied, (b) the prescribed length of time

326 Fall Joint Computer Conference, 1969

or number of central processor cycles the circuit is
forced or allowed to operate, (c) the expected circuit
resp.onse or output (s), (d) the inf9rmation ~ecess~r?,
to Interpret the results, and (e): the reqUIred InI­

tialization information, if any. The inform9Jtion con­
tained in the data table can be deriyed with the aid of
a digital simulator. The control seGtion, on the other
hand, is a program designed to int~rpret these entries
and perform functions such as initialization, segmen­
tation of testsJ interfacing with other programs, ma­
nipulation of test outputs} etc. Figure 7 illustrates the
layout of a typical diagnostic progra~ structure.

Experience on using this particular design approach
reveals several advantages: (a) the design process
becomes standardized, which in turb results in a large
saving . in program development ; (b) programs are
more easily modified, e.g., if the circuit changes, the
majority of program alterations will be restricted to
the data table section; (c) test results are easier to
interpret, and (d) the control section can be written
and debugged independently of the data table section.
Also, the data table lends itself well ~o the participation
of many· designers, e.g., the register! designers develop
the data table for the registers, thei decoder designers
develop the data table for the decoders, etc. However,
in systems where a large number of memory fetches
can be penalized in time, it may suffer a slight draw­
back in that an increase in execution time of the
program over the conventional apprbach may be real­
ized. However, this problem is not s~rious as the diag­
nostic program is not a frequently executed program.

Data I nterpretation-In large real Jtime systems, the

CONTROL SECTION

INITIALIZE' CIRCUIT (I)

EXECUTE TEST TI -----...... TEST 1i I
ANALYZE AND STORE

RESULTS IN M(I) ~

itMTIALIZE CIRCUIT(I +1)

• EXECUTE TEST lj+. II' TEST TI+

ANALYZE AND STORE ~
RESULTS IN M(I+I) ~

DATA TABLE SECTION

I~PUT TEST VECTOR(S)

OPERATION

EXPECTED OUTPUTS

ANALYSIS

I~PUT TEST VECTOR(S)
! OPERATION

! EXPECTED OUTPUTS

!
ANALYSIS

Figure 7-Layout of a diagnostic prpgram structure

diagnostic output usually corresponds to an enormous
amount of data (e.g., for a processor of 104 gates, a
test vector might. be represented by about 5,000 bits,
where each bit designates the pass or fail of a test).
In addition.! the observed fact that test results of some
faults are inconsistent from diagnosis to diagnosis
demands a flexible data interpretation procedure.

Several techniques for resolving diagnostic data
into faulty components or circuit packages have been
described in the literature.5 These techniques employ
the concept of some form of fault dictionary in which
each entry of the dictionary points to the set of faulty
components or circuit packages producing the par­
ticular failure pattern(s). These patterns can be derived
by simulation.l1,20 ,26

The simplest form of dictionary is a listing of test
results ~here a "0" indicates a test passed and "I"
indicates a test failed. Faults are located by finding a
match between the observed failure pattern and the
entry listed in the dictionary. This technique is ade­
quate to analyze failure patterns consisting of a rela­
tively small number of failing tests. For fault conditions
producing a large number of failing tests, a data
compression technique to represent the pattern in
some compact form (e.g., a fixed length number) is
desirable in order to minimize the system repair time.
The tradeoff between the isolation accuracy of the
dictionary and the resolution provided by each of·
these techniques is discussed in Reference 26. The final
choice of methods for interpreting diagnostic data for
fault isolat·.on depends on the allowable system down­
time and the availability of skilled maintenance
personnel.

CONCLUSION

In this article we have given a unified account of design
principles for processor maintainability in real··time
systems. The processor should be functionally well
modularized with a minimum number of intermodular
feedbacks. This is necessary to confine the effects of
malfunctions as well as to facilitate programmed
testing. To insure the validity of diagnostic dat~t the
amount of hardcore should be minimized, and ample
test points must be provided to control the state of
the machine, even under faulty conditions. Adequate
system recovery mechanisms must also be incorporated
to insure system sanity in a fault environment. Further­
more the processor should have a clean interface with
the e~ternal devices such as memory units and peripher­
al systems to enable the rapid identification of trouble
symptoms to a subsystem level.

Design ,Principles for Processor Maintainability 327

The design of processor logic circuits should be
preceded by a thorough understanding of the failure
modes of the circuit technology chosen for implemen­
tation. The elimination of circuit redundancy and the
incorporation of a packaging scheme which provides
good diagnostic resolvability are some other desirable
prerequisites for a good maintenance scheme. Finally
individual circuits should be examined to determine
whether an all hardware, hardware-software, or all
software maintenance facility should be provided.

The diagnostic program should be structured to
efficiently implement the selected testing procedure
(combinational or sequential). It should also provide
a flexible operator interface to aid in isolating inter­
mittent faults. Computerized fault simulation methods,
which enable one to generate and evaluate the diag­
nostics, should be used throughout the design stages
to provide adequate feedbacks on the effectiveness of
system's diagnosability.

It is recommended that designers consider these
guidelines in planning a new machine organization,
designing logic circuits and maintena,nce tests so that
an optimum mix of software and hardware for pro­
cessor maintainability can be achieved. Because of the
increased complexities of present and next generation
computing systems, and because of the rapidly changing
technologies, new maintenance techniques will have to
evolve at an accelerated rate. We have only documented
a few thoughts on guidelines for processor maintaina­
bility in real-time systems. Our opinions are obviously
influenced by our training and experience. Since there
are only a limited number of published documents
on this subject, we encourage other workers in this
field to present similar result$.

REFERENCES

W KEISTER et al
No. 1 electronic switching system
Bell System Tech Journal Vol 43 No 5 parts 1 and 2
Sept 1964

2 R H WILCOX W C MANN editors
Redundancy techniques for computing systems
Spartan Books 1962

3 W H PIERCE
Failure-tolerant computer design
Academic Press 1965

4 R E BARLOW F- PROSCHAN
Mathematical theory of reliability
John Wiley and Sons Inc 1965

5 H Y CHANG W THOMIS
Methods of interpreting diagnostic data for locating faults in
digital machines
Bell System Tech Journal Vol 46 No 2 Feb 1967289-317

6 C V RAMAMOORTHY

A structural theory of machine diagnosis
Proc SJCC Vol 30 April 1967 743-756

7 R E STAEHLER
No.1 EBB service experiences-Hardware
lEE Conf on Switching Techniques for Telecommunication
Networks April 1969 463-466

8 A. D FRIEDMAN
Fault detection in redundant circuits
IEEE Trans on Electronic Computerl'l Vol 16 No 1 Feb
196799-100

9 D B ARMSTRONG
On finding a nearly minimal set of fault detection tests for
combinational logic nets
IEEE Trans on Electronic Computers Vol 15 No 1 Feb
1!}6666-73

10 J P ROTH
Diagnosis of automata failures: A calculuc and a method
IBM Journal of Research and Development Vol 10 1966
2'18-291

11 J P ROTH W G BOURICIUS P R SCHNEIDER
Programmed algorithms to compute tests to detect and
distinguish between failures in logic circuits
IEEE Trans on Electronic Computers Vol 16 No .) 1967
567-579

12 W WORKMAN
Failure modes of integrated d1'cuits and their relationship to
reliability
Microelectronics and Reliability Vol 7 1968 257-264

13 J B KRUSKAL R E HART
A geometric interpretation of diagnostic data from a digital
machine
Bell SYbtem Tech Journal Vol 45 Oct 1966 1299-1338
Based on a Study of the Morris, III Electronic Central
Office

14 R D ELDRED
Test routines based on sy'mbolic logic statements
Journal of ACM Vol 6 No 11969 33-36

15 J F POAGE
Derivation of optimal tests to detect faults in combinational
circuits
Math Theory of Automata Polytechnic Press 1963
Brooklyn N Y 483-528

16 E G MANNING H Y CHANG
A comparison of fault simulation methods for digital systems
Digest of the First Annual IEEE Computer Conf 1967
10-13

17 E R JONES C H MAYS
A utomatic test generation methods for large scale integrated
logic
IEEE Journal of Solid State Circuits Vol 2 Dec 1967 221

18 E G MANNING H Y CHANG
Functional techniques for efficient digital fault simulation
Digest of IEEE Interna.t Conv March 1968 194

19 S SESHU D N FREEMAN
The diagnosis of asynchronous sequential switching systems
IRE Tra.ns on EC Vol 11 No 4 Aug 1962 459-465

20 S SESHU
On an improved diagnosis program
IEEE Trans on EC Vol 14 No 1 196576-79

21 S SESHU
The logic organizer and diagnosis programs
Rpt R-226 Coordinated Science Lab Univ of 1111964
(AD605627) .

328 Fall Joint Computer C~nference, 1969

22 R A JOHNSON
An information theory approach to diagnosis
Proc 6th Nat Symposium on Reliability and Qualit}
Control 1960 102-109

23 H Y CHANG
An algorithm for selecting an optium: set of diagnostic tests
IEEE Trans on EC Vol 14 No 5 1965706-711

24 H Y CHANG
A distinguishability criterion for selecting efficient diagnostic

tests
Proc SJCC Vol 32 1968529-534

25 F J HACKL R \V SHIRK
A n integrated approach to automated computer maint.enance
Conf Record on Switching Theory and Logical Design
1965 289-302

26 H Y CHANG
Figures of merit fOT the diagnostics of a digital system
IEEE Trans on Reliability Vol 17 .No 3 Sept 1968 147-15a

Effects and detection of intermittent

failures in digital systelns

by M. BALL and F. HARDIE

IBM Corporation
Owego, New York

INTRODUCTION

A great deal has been written during the past few years
on the subject of diagnostic test procedures for digital
systems. Almost without exception, however, the in­
vestigators have limited their interest to the detection
and location of solid faults, and their test procedures are
usually based on the assumption that either the fault
exists for the running time of the test procedure or the
time interval between the fault occurrence is less than
the required time to run the test.

In practice, experience has shown that field failures in
digital systems used for aerospace application (e.g.,
Titan and Saturn vehicle guidance computers) tend to
be intermittent in nature. The authors believe that this
experience is testimony to the efficiency of the current
diagnostic test procedures in screening solid faults
from digital systems before delivery for field use, not
that failures which develop in the field tend to be
intermittent. That is, diagnostic testing of aerospace
digital systems using the advanced test procedures
available today generally detects all solid faults but
only a small portion of the intermittent faults that
exist in any digital system prior to delivery to the field.
The residue of intermittents in the system which
escaped detection eventually make their presence known
during field operation.

The reason for the emphasis on diagnosis of solid
faults is the relative complexity involved in the diag­
nosis of intermittent faults. This is the natural course of
evolution in system design as well as in biology-adaption
to basic environmental requirements with later complex
specifl,liza tion.

In an attempt to direct the evolution of diagnostic
techniques along the channels leading to efficient
detection and location of intermittent failures in digita 1
systems, the authors conducted a series of experi­
ments on the effects and detection of intermittent
failures. Over 500 hours of IBM 7090 time were accumu­
lated using a sophisticated logic simulator to evaluate
the Saturn V Launch Vehicle aerospace computer opera ..
tion in both normal and failure modes. The purpose of
these experiments was to determine the effects of inter­
mittent failures on computer operation rather than to
investigate the mechanisms of failure, and to evaluate
the detectability of classes of failure rather than to
develop specific techniques for failure detection.

In this study solid faults were treated as a special
case of the general class of intermittents. That is, a
solid fault was treated as an intermittent whose dur­
a tion exceeds the running time of the test program.
The simulated intermittents were made to vary in
duration from 500 nanoseconds upwards (one clock
time of the simulated computer), and were specified
in the computer logic at randomly chosen points of
combinational and sequential circuits. A total of
792,884 intermittent failures were simulated to give a
realistic statistical sample. These intermittent points
were chosen to occur in the program control and
arithmetic sections of the simulated computer.

For each intermittent a record was kept of the time
of error occurrence, time of error detection and the
number of failures which caused a difference in oper­
ation from a "good" machine. From these records the
prpbability of detection was calculated assuming a

329

330 Fall Joint Computer Conference, 1969

TABLE I-Intermittent detection capabilities

Failures
Total Failure Causing %

Unit Failures Duration Incorrect Affected Failures Distected
Operation Logic Detected %

Adder/
Subtractor 267,894 500 nanosec 22,276 8.4 1,113 5

Multi/
Divide 269,590 500 nanosec 22,376 8.3 1,122 5

to
Program 5 millisec
Control 255,400 500 nanosec 44,704 17 252 0.5

to
5 millisec

"perfect" error detector. The results showed that many
intermittent failures exert on1y a weak influence on the
correct operation of synchronous logic circuits. As
shown in Table I, approximately eight percent of the
simulated failures caused the arithmetic element to
perform incorrectly, with a comparable (five percent)
probability of detection by the i "perfect" error de­
tector.

The system simulator

One of the most serious problems confronting the
designers of digital systems is the task of verifying
proposed design features. Both manual analysis and
simulation techniques are used to aid in this task.
During the design and development phase of the
Saturn V Launch Vehicle Digital Computer, a Fault
System Simulator was developed* by IBM to provide
the means of (1) verifying the logical integrity of the
digital equipment, (2) evaluate design changes before
commitment to hardware, and (3) evaluating test
programs. During the course of its use, however,
emphasis gradually shifted toa special simulator
application jwhich generate information on the charac­
teristics of machjne operation to aid the engineer in
diagnosing malfunction symptoms. One of the most
significant series of simulator e~periments was con­
cerned with evaluating the sensitivity of the digital
logic to intermittents.

The system simulator consisted :of a compiler, failure
injector, logic simulator, and e~aluation programs.

• Design and Use of Fault Simulatio~ for Saturn Computer
Design, by F. Hardie & R. J. Suhocki-IEEE Trans. on Elec­
tronic Computers Vol EC-16, No.4 August 1967 p. 412-29.

These programs operated on the IBM 7090 computer
as shown in Figure 1. The compiler program produced
7090 instructions for the logic portion of the simulator
program. The failure injection program allowed the
introduction of selected faults into the logic portion of
the simulator program on the component level-tha,t
is, open or shorted diodes and transistor outputs

Figure I-Simulator flow diagram

stuck to a logical zero or a logical one. The simulator
program operates on a 7090 description of the digital
equipment (a logic master tape) to simulate the logical
behavior of the equipment in normal operation and in
various failure environments.

The simulator program executed special test pro­
grams and displayed, by means of print-outs, the state
of selected logic nodes or register contents at every
clock tjme of an instruction cycle. In inViestigating
the behavior of equipment containing logic failures,
simultaneous failure environments were provided by
using parallel simulation techniques, and the system
states for each environment were determined simul­
taneously. Of the 36-bit 7090 word, 3 bits were used
to represent the normal system state and each of the
remaining 33 bits were used to represent a failed state
Multiple faults were simulated by injecting 2 to 25
failures into a single bit position.

Up to 100 logic test nodes were available for print­
out in each normal or failure environment. Special
pseudo operation codes allowed additional nodes to be
retrieved as required. Another pseudo operation code
caused the contents of selected registers to be placed
on the simulator output tape for use by the evaluator
program.

The evaluator programs identified fault symptoms
and correlated these symptoms with the injected
failures. The output of the evaluator was a report of
detected errors, undetected errors, accuracy of diag­
nosis, and general behavior of the digital equipment.

Simulator applications

The primary applications of the system simulator
can be grouped into four general categories: design
evaluatiQn, failure evaluation, data generation, and
data analysis. 'The obvious use of the simulator was to
provide early and rapid verification of the logical
integrity of the basic hardw8,re designs of digital
equipment. In addition to checking the basic logic, the
simulator was used to determine whether certain design
ground rules were satisfied by the circuit designs, and
even whether the ground rules themselves were ade­
quate. For example, individual circuits were checked
against fan-in and fan-out constraints. In addition,
the constraints themselves were checked against drive
and load requirements by applying random and worst
case parameter values to the drives, driven circuits, and
circuit loads.

Delay simulation, incorporating logical element delay
characteristics in the logic simulator, was used to
analyze the nature of digital signal propagation in the
computer designs. Several race conditions were de-

Intermittent Failures in Digital Systems 331

tected by the delay simulations which were corrected
by modifying equipment initialization procedures or
by design changes.

Operational and test programs were evaluated on
the system simulator. Although functional program
simulators provide nearly error-free programs from
the standpoint of information flow, an appreciable
amount of program debugging is usually required
when the program is first used with the hardware.
Logic simulator evaluation of programs reduced this
final debugging phase to a minimum.

The applications discussed so far pertain to properly
operating equipments. The logic simulator should be
regarded in such applications as a tool to aid in design
analysis and not as a replacement of manual analysis
and engineering judgment. In the area of failure mode
analysis, however, the simulator as a tool becomes
even more important because of the inherent difficulty
in determining the behavior of failed machines, and
especially ,in identifying the fault from the failure
symptoms.

The failure injection program and diagnostic evalu­
ation programs provide a failure evaluation capability
for the system simulator. Test programs for equipments
were evaluated for their failure detection and fault
isolation capabilities. Built-in test circuitry and test
point configurations were evaluated in the same manner.
Optimum placement of detection circuits and test
points was determined by successive simulations.

Although the evaluation applications represent per­
haps the most important use of the system simulator,
the simulator also possesses a capability of generating
data which is useful not only in design and test of the
system but also in increasing the capability of the
simulator itself. For example, a diagnostic catalog can
be generated as a by-product of a test program evalu­
ation which relates each injected fault to the resulting
failure symptoms. The catalog is then available for use
in evaluating diagnostic programs or procedures in
further simulations.

One of the applications of the logic simulator which
is generally very difficult to perform manually is to
trace the propagation of an error caused by a com­
ponent failure, especially when the failure produces a
loss of program control. Such traces can be generated
by logic simulation, however, and have important diag­
nostic value in identifying system faults. The status of
the failed equipment at every clock time can be de­
termined by monitoring over a hundred nodes or test
points internal to the equipment logic, as well as the
equipment interface. A summary of simulator appli­
cations is ,shown in Figure 2.

332 Fall Joint Computer Co~erence, 1969

Design Evaluation

Hardware

Software

Design Changes

Failure Evaluation

Test Programs

i

Basic Logic
De~ign Ground Rules
Delay Simulation

Op~rational Programs
Test Programs

Error Detection
Efficiency
Diagnostic Capa­
bilities

Circuit SenSitivity:
Error Propagation
F~ilure Effects

Data Generation

Data Analysis

Node Data
Error Traces
Diagnostic Catalo~

Laboratory Support
Field Failure Analrsis

Figure 2-Simulator appFcations

Simulation of intermittent failure8

The application of the simulator! which is the primary
concern of this paper was a seri~s of experiments to
determine the sensitivity of logic to intermittent
failures. Intermittents simulated! by the failure in­
jection program were made to vary from one clock
time to the cycle time of the test program (representing
a solid failure). These faults were injected at randomly
chosen points in the equipment ~ogic and at random
points in the test program.: .

For each intermittent a record Mras kept of the time
of occurrence, time of detection,; and the number of
failures which caused a differen~e from the "good"
machine. The results of the simuJation indicated that
many intermittent logic failures had very little eff'ect
on the operation of the digital equipment-less than
ten percent of the total failures injected into the simu­
lator program caused the logic td perform incorrectly.
Analysis of the simulation resul~s disclosed that this

masking of failures by the logic was due primarily to

• the extensive use of combinational logic

• the clocking of the AND gates which feed and/or
gate the logic levels from the sequential circuits.

• the duration and frequency of the intermittent
failure.

These simulation results and conclusions were based
on a relatively small statistical sample-a few hundred
simulated failures. In order to obtain a realistic sta­
tistical sample, the failure injection program was
modified to execute the following procedure:

1. The logic failure was initiated at the first clock
time of the test program.

2. The test program was executed until a state
difference was detected by the simulator program
between the logic under ·examination and .a
"good logic" reference.

3. Upon failure detection, the time of detection
and failure symptoms were recorded, the logic
under examination reset to the same state a,s
the reference logic, and the test progrnm ad­
vanced to the next clock time.

4. The procedure was repeated for one fun cycle
of the test program.

The immediate data from· this simulation provided
a measure of the sensitivity of the logic to intermittent
failures of one clock time duration. That iS1 the portions
of the test program during which the injected faults
cause a deviation from normal operation were identified.
The same data was used to provide a measure of the
sensitivity of the logic to intermittent faiiures of longer
durations than one clock time by manipulatilng the
data with simple editing programs rather than by
further simulation, making it feasible to accumulate
information on an equivalent of over a half million
simulated failures.

To assure the validity of the above techniques, the
quantitative results concerning the sensitivity of the
logic to intermittents obtained by the first method of
actually simulating failure durations of one clock period
and then manipulating the data with special edit
programs, were compared and found to be closely
correlated. The combined data from both simulation
experiments was then used to derive a series of curves
representing the sensitivity of the logic to intermittents
of various durations, two of which are shown in Figures
3 and 4. The ordinate in each figure is the probabili1GY
that the intermittent will cause a malfunction in log:ic

1.

0.9

0.8

0.7

u
'0,
.s 0.6
'0
c

.2
i:i
c 0.5

.2

~
'0 c

0.4 .~
~
4)
a.

0
'0 0.3
.£
:.0
-B
2

a.. 0.2

0.1

0
1 10 100 1000 10000

Duration of Intermittant Failure (C lock Times)

Figure 3-Sensitivity of arithmetic logic

operation, while the abscissa is the duration of the
intermittent.

The sensitivity of the logic was found to vary ap·
preciably not only with the class of logic (combinational
or sequential) but with the operational function of the
logic circuitry as well. This condition necessitated the
plotting of sensitivity versus fault duration individually
for different areas in order to obtain meaningful re­
lationships.

A summary of these results is given below:

• There is a smaller probability of detecting inter­
mittent failures in combinational (AND-OR)
circuits than in sequential (LATCH) circuits.

• There is a very low probability of detecting a
single occurrence intermittent failure on a logic
page (average population of 120 AND, OR, invert
type circuits). This condition exists because many
intermittents do not make the "failed" logic act
different from the "good" logic and the detection
of intermittents requires that the logic must be

Intermittent Failures in Digital Systems 333

1.0

0.9-

0.7-

u

j 0.6-
....
o
c

~
g 0.5

.2

~
'0
.§ 0.4

2
8-
o
'0 0.3

~
:.0
-B e 0.2
a..

0.1

O~------~~~~~~------~--------T--
1 10 100 1000 10000

Duration of Intermittant Failure (Clock Times)

Figure 4-Sensitivity of multiply/divide logic

exercised by appropriate data for the failure to be
detected.

• For these injected intermittents, a fault existing
for one clock time was virtually undetectable; one
existing for ten computer word times was about
50 percent detectable; and one existing for 50
computer word times was almost 100 percent
likely to be detected.

• There is a wide variation of error detection sensi­
tivities between computer modules.

Test program efficiency

An analysis of simulation results was performed to
determine the quantity and type of information which
should be generated by a test program to assure a
reasonable probability of error detection and fault
location in the digital equipments. Figure 5 shows the
efficiency of the test program versus the size of the
test program for various types of failures. Qurve a
represents a solid failure. Curves band c represent an
intermittent failur~ of 100 clock time duration in typical

334 Fall Joint Computer Conference, 1969

1.0

0.9

0.8

0.7
~
~
·0
u..
u

.0, 0.6

b. IntermittQnt in
Sequential
Logic
(100 cloc:k
time durQtion)

..3
0
Ol i

~
u

0.5
.2!
CI)

0
0

t 0.4

:.0
..8
2

Q..
0.3

0.2

0.1

0
0 100 200 400 500

Number of Instructions in Test Program

Figure 5-Efficiency of test prograp! VB. program size

sequential and combinational logic, respectively. Note
that, although a reasonably high efficiency of detecting
a solid failure was achieved with a relatively short
test program (90 percent with 200 instructions), the
probability of detecting the intetmittent was almost
linear with program size. '

Many diBerent types of error symptoms were pro­
duced as a by-product of the simulation experiments.
Each symptom was analyzed. to determine its individual
and combined value in identifying • logic failures. Figure
6 is a summary of the results of this analysis for solid
faults. The relative diagnostic values of the error
symptoms in identifying intermittent failures are about
the same except that the percentages will be less ac­
cording to the duration of the interWttent.

Due partly to unavoidable repundancy in a test
program (by which a logic elem~nt is exercised more
than once) and due to error propagation in digital
systems, an error in logic operation resulting from a
failure of a logic element can occur several times during
the execution of the test progr8!m. The first line. of
Figure 6 indicates the program instruction during

which an error was first detected. The second line
indicates the phase, bit and clock time that the error
was first detected. The third line indic ates the first
three program instructions during wh ich an error was
detected. The remaining lines indicate various COIn­

binations of the above test parameters.

FQ~ilure8 Observed Failure Symptom
or Parameter Identified

First Program Step of Detected Error
Time of First Detected Error
First Three Program Steps of Detected Error
First Program Step of Detected Error and

Time of First Detected Error
First Three Program Steps of Detected

Errors and Time of First Detected Error
First Three Program Steps of Detected

Errors and Time of Each Detected
Error

Figure 6-Symptomiailure correlation

CONCLUSIONS

10.5%
28.1
6:J.2

71.8

8:3.2

9~r.5

The series of simulation experiments described above
strengthened the authors' opinion that the prevalence
of intermittent failures of digital equipments in the
field is due to the relatively low efficiency of current
test techniques in screening such failures before de­
livery of the equipment to the field. That is, althouigh
~urrent test techniques cause most of the solid faults
which are "built into" the equipment during fabrication
to be discovered before release to the field, a large
residue of intermittents slip through the tes1G screen
and cause operational errors during field use:

The simulation experiments described above did very
little in the way of deriving a solution to the problem
of intermittent failures. No attempt was made to
determine the mechanisms or characteristics ()if actua.l
intermittent faults in existing digital equipment. 'Ilhe
experiments were designed only to examine the sensi­
tivity of digital logic to intermittent faults in general,
without regard to mechanisms of failure.'

The simulation results indicated to the authors that
current test techniques, slanted toward deteciiion and
location of solid faults in -digital equipment, :are ade­
quate for solving the problem of intermittents. The
experiments showed a rather surprising insensitivity to
intermittents of short duration. Although this insensi­
tivity may seem to be a fortunate characteristic for
actual operation, it makes the problem of testing
infinitely more difficult.

Two general approaches to the test problem are ob~
vious:

• develop better test techniques for detecting and
locating intermittent faults, and

• develop techniques for making the intermittents
appear solid.

The second approach has found widespread ac­
ceptance, as indicated by the common use of vibrational
and thermal stimuli to force intermittent faults to
expose themselves during factory checkout. In this
way many intermittent faults are detected that may
otherwise have slipped through the factory test screen.
The prevalence of intermittent failures during field
operation, however, testifies to the inadequacy of this
approach by itself.

A third approach is, of course, to design the equip­
ment to be absolutely insensitive to intermittent logic
failures. Instruction retry, check point rollback and
redundancy are being advanced as possible solutions.
Redundancy, especially triplicated logic with voting, *
has proven very effective in this area, but not without
cost in hardware and power. Eventually, when logic
hardware becomes sufficiently inexpensive, redundancy

"may very well be the way of life and the intermittent
problem will have been solved. ** Meantime, there
remains urgent need for developing better test tech­
niques for detecting and locating intermittent faults
in digital equipment.

The greater part of test and maintenance cost of
computer systems today is spent on detecting and
isolating intermittent failures. Intermittents have com­
prised over thirty percent of pre-delivery failures
and almost ninety percent of field failures in several
computer systems known to the authors, and this
seems to be the trend in present computer technology.
Unfortunately, most of the current research in diag­
nostic techniques is concerned with the "detection and
location of solid failures.

Logic simulation has provided a powerful tool for

* IBM Proposes Triple~Redundant Computer, by M. Bv.ll and
F. Hardie, Computer Design Vol. 6, pages 34-36, Nov. 1967.
** Self-Repair in a TMR Computer by M. Ball and F. Hardie.
Computer Design Vol. 8, No.4, pages 54-57, April 1969.

Intermittent Failures ili Digital Systems 335

o
U

I
I

Failures

I Field Delivery
I
I
I
I
I
I
I

Total Test and
Mo i nte nonce
Costs

Calendar Time of Computer Life

Cost of Solid Foilur('~

Figure 7-Co-;:;t of failureg

f Ild o· l;f~, I
I
I
I
I
I
I
I

studying the effects of intermittents in specific com­
puter organizations, but in itself is not a solution to the
cost problem. Even when these effects have been
identified, the techniques for designing a computer to
be int~rmittent-resistant or for testing a computer to
locate intermittent failures are not yet state-of-art.

Figure 7 shows a typical curve of the relationship
of the costs of testing and maintaining a computer
system from its initial assembly to the end of its useful
life. The following conclusions may be evident from
the figure:

• Intermittent failures are far more costly in test
and maintenance than solid failures.

• The cost ratio of intermittent to solid failures
increases with system usage, especially following
delivery to the field. The reason for this trend is
probably the better screening of solid failures by
current test techniques.

• The cost of field maintenance remains high with
usage, and most of the cost is due to intermittent
failures. This large residue of intermittent faults
is probably due to inefficient test screening rather
than to new faults.

• The costs of a computer system tend to be mono­
tonically decreasing with use. End-of-life is
f()rced by obsolescence rather than by wear-out.

Modular computer architecture strategy

for long term missions

by F. D. ERWIN

Hughes Aircraft Company
Fullerton, California

and

E. BERSOFF
N ABA Ekctronics Research Center
Cambridge, Massachusetts

INTR.ODUCTION

Long term mission reliability of a modular computer
has been studied at Hughes Aircraft Company as a
consequence of a study with NASA ERC.l,2 Par­
ticular interest Uty in the attainme!lt of long term
reliability with modular computer organization aId the
effects on reliability of variations in modular organi­
zation. The results of this investigation are presented
in this paper.

In the past, the designers of aerospace computerfl
have concentrated on increasing computational speed
and arithmetic capability within stringent wdght and
power limitations. There seems to be little doubt that
a.erospace computers will soon be. extremely fast,
versatile and compact. A requirement for long term
system reliability has been developing and may drasti­
cally change the nature of the on-board oC>,~put~F'
Ext.remely long missions are being pIallnedwhich
require a computer to operate for one to five or more
years afteI launch. Current on-boprd ~o~p'Ut;;M~ystelns
are not adeq~~t~r-thiS1&sK-:-'---'-----"-""""-'---'" "

One promising approach for 8,chieving reliability
and flexibility is through mQ.<Jlli!:!K .. ,g¢gn, where inde­
pendent physical modules; funct.ionally organized (e.g,
memory, arith~trol, Input/Output) can be
added or deleted to adapt to the required perfor~!1ce

and processing needs in terms of speed and reliability.
Improvement in reliability through the use of ad­
ditional hardware has been receiving growing attention
in the aerospace computer community.3

Specifically in this paper, a technique will be de­
scribed which when properly applied ,,111 determine a
computer configuration which can satisfy a required
probability of mission success for som~ stated mission
duration. It is assumed that some basic computer
system exists which can perform the required compu­
tations; what remains is to determine which additional
computers or sub-computers should be added to pro­
vide the necessary system reliability.

A modulJar camputer design

337

Several techniqufs exist which are designed to in­
crease the reliability of any given computer system.
The approach taken here is to have a single computer
perform all mission computations while a number of
other computers remain in a dormant mode until the
working computer fails. At that time, the failed com­
puter is turned off and one of the dormant computers
is turned on to resum.e the com.putations. The size,
weight, and power restrictiop.s will typically limit the
number of spare computers that are available. An
additional refinement to this concept is to segment

338 Fall Joint Computer Conference, 1969

/'" /1
I

CONTROL PANEL 1 I I

/ / / // ./ //1
CAU I M-l I PiS

M-2 PIS
M-l M-2

I

~ t +
/ t t cJ I- CONFIG. CONTROL SW-A "1:

J. J.

r I y t/ /t /

l J
I

CU-l CU-2-

/

./ t t:::? I: CONFIG. CONTROL SW-B ~l!

i t I

Y +(l / +1
I ~ AU-l AU-2

I'

I
v· t t t:::? .1
I 1-0 SWITCH

I I
/' /' /t t/ /t t/l
I I I · •

POWER

~
I

TO ALL i 10-1 10-2 V I LOGIC !

;~ ~ ~ t

Figure I-Modular computer breadboard

each computer into functional modules. One possible
method is to isolate the memory, ~entral processor, and
I/O. functions as in the Hugh~s H4400 computer.
Another is to partition the computer into discrete
memory, control, arithmetic, and I/O units, as in the
NASA modular computer. This second approach wiII
increase the total system parts count, but the increased
modularity may ultimate1y enha~ce system reliability.

A mathematical model was coilstructed which per­
mits the evaluation of comput~r reliability for the
various configurations. i

The two configurations medtioned above were
normalized in terms of logic com~lexity to the NASA
modular computer and the mission reliability was
evaluated. Analysis showed that short term reliability

using voting techniques as would be done during boost
phase, favors the H4400 modularity concepts whereas
the long term reliability tends to favor the NASA
modular computer partitionin~. In either ca,se, the
long term reliability is very sensitive to the logic
distribution within the modules and to the basic
reliability of the components.

A breadb.oard modular cvmputer of the MCB wi'~h
two modules of each type (a two column system) is
being constructed. These modules are of sufficient
complexity to prove many of the points under con­
sideration. First, the system may be configured in a
one active, one standby fashion so that the techniques
of error detection a,nd reconfiguration may be explored.
Figure 1 ib a block diagram of the N ABA computor

breadbo9.rd. The CAU (Confif,uration Assignment
Unit) is the module that provides for continuation of
system functioning under module or E,witch failure.
It controls the activation -and connection of standby
modules into the operating system and failed modulefl
out of it. The sy~tem can be configured so that one
active string (memory, control, arithmetic, I/O)
performs computt'Jtions while the other unused modules
remain in a standby state. If a failure occurs in any
module, the module can be turned off and a standby
module switched in. With the breadboard, if more than
one of any distinct modul~ fail~, the system faHs.

In order to compute the reliability of the modular
computer, it is necessalY to know the numbel of com­
ponents in ea-ch module and their failure rates. Since
it is also interesting to examine the cs,se of the three
modules (memory, centlal processOl, I/O) configu­
ration, Table I presents a breakdown of components
for each case. As is shown in the figure, the basic
component can be either the gate or the integrated
circuit.

Enough experience with the NASA breadboard has
been accumulated to instill a high level of confidence
that the modular computer concept is sound and indeed
workable. The system may be arranged in a TMR
fashion dming the boost phase of a mission when
calculations ale procf eding too rapidly to allow re­
configuration. After boost, two of the thlee computers
would be turned off a,nd the system would enter t.he
one-active two standby mode. A block diagram of the
ploposed syptem appears in Figure 2. With the ex­
ception of the CAU which would be more complex due
to the additional modules it must service, the com­
ponent counts for each of other modules should be
approximately the Eoame as listed in Table I for the two
column system. It will be shown that under some con­
ditions even dual redundancy for the working- modules
would not provide adequate reliabHity for a five year
mission. Severel things can be done to eliminate this
defidency. First, and most fundamentally, the com­
ponents (gates, IC's, or LSI's), can be made more
reliablE:. Second, different configurations can be struc­
tured such as 4 column and others so as to enhance
the mission reliability. Certainly, the nature of the
mission and weight constraints will impo8e a limit on
hardware launrhed. The control unit (or alternativfly
the central processor) is clearly the largest single
module of the system. If only an addition9.l control
unit were carried, total reliability would be increased.
It will be showD, however, for ~ five year mission,
considerable reliability enhancement must be made to
the CAU as well as improvements to the other modules.

Modular Computer Architecture Strategy 339

N L

CAU's 1 1

AU's 3 1

CU's 3 1

MU's 3 1

I/O's 3 1

Figure 2-Three column modular computer

Several techniques designed to improve the CA U are
required if the computer is to function for several years.
One is to build the CA U with as few components as
is possible; assuming equal component reliability the
fewer components it has, the longer it will last. A
further increase in reliability can be obtained by tripli­
cating the CAU andusing TMR voting On its output.
Although a TMR corifiguration ultimately becomes less
reliable than a single unit, this does not occur until
about \7; times the mean life of -the individual unit.
Since the voter unit has relatively few components, its.
mean life is very long and therefore TMR is to ad­
vantage here. The type of system discussed and il­
lustrated in the figures is known as a closed system in
that at the beginning all equipment is present with no
additions or repairs possible thereafter.

In analyz~ng system reliability, - two important
points for consideration are the rate of degradation of
standby units and the switch reliability.

Kletsky 5 shows that the mean life of a closed modular
set cannot be increased significantly when active and
standby failure rates are assum.ed equal. Therefore, it
is necessary to obtain a value for this ratio. Little
direct data, however, is available for ('d", the ratio
of standby failure rate to active failure rate. However,
data reported by N erbe:r6 indicate that d is consider­
ably less than unity. N erber analyzed field d~ta for

340 Fall Joint Computer Conference, 1969

over 100 transistorized guidance computers. From this
~ta a maximum value of d ~an be inferred to be about
0.33. A more recent analysis of Minuteman II computer
failures by Watson7 shows that ~he expected value of d
for integrated circuits is 0.55. A lower bound for this
ratio appears to be 0.12. Extrapolation indicates that
the ratio will decrease as more: data is gathered. For
future missions, it seems conse~vative to assume that
the ratio will lie below 0.5 with 0.1 reasonably at­
tainable. Though this ratio ~y further decrease as
more is learned, the greatest significance for the closed
module set reliability is effected with a d of the order
ofO.I.

The reliability model must ailso consider the effect
of the switches. Though the s~itch size is held at a
mjnimum (typically 8 data bits! + 5 control) its effect
upon long term reliability if p.o~ properly treated can
be great. For instance, the reliability of a single cross­
point (with a normalized failur~ rate, As = 2 X 10-7)

is .991, for a 3 X 3 switch .925, and the probability
that 3 crosspoints out of the 3 X 3 switch will be oper­
ational is 1-10-10 • Thus, for long term system relia­
bility of the order of .99 proper treatment of the switch
reliability is imperative.

The following paragraphs describe the mathematical
model developed to accommo<4l,te the above factors

Reliability model

The block diagram of Figure 2 will serve as a frame­
work for the mathematical model. The mathematical
model is somewhat more general than Figure 2 in that
there may be more than four levels (a level consists of
all modules of one type) of modUles with the j-th level
having N J modules out of which L j are require4 oper­
ational with N rLJ being in standby at the beginning.
The computer system is operational as long as L j

modules are operational at the j-th level for all j's
with unfailed switch capability for interconnection of
the L/s from level to level for all levels and the CAU
is operational.

The switch between each level allows conneCtion
of any module at one level to any module at the other
level. Further, the switch is designed so that inde­
pendent failures may occur in; the switch such that
certain switching conn"ections: are disabled without
affecting other connections (all other type switch
failures can be associated with ~a module). Thus, one
failure in a switch may make connection of module 1
of one level to module 2 of arlother level impossible
without affecting the connectahility of module 1 to

module 1, module 2 to module 2, or module 2 to
module 1. Figure 3 illustrates a typical switch.

It is desired to find the reliability of the total modular
computer system at any instance of time. L modules
must operate at each level as well as the switcheB to
interconnect them. The problem is approached by first
finding the reliability at each level then iterating from
level to level includi~g at each step the switch reliability.

If s\\1.tchjn,g redundancy is applied to a module IJBvel "
with L replicas operating and N -L in standby the
reliability according to Kletsky (Reference 6) can be
given as an inverse La place transform.

j
l N-L (L + Kd)A I

RR = 1 - £-1 - II (1)
8 K=R-L 8 + (L + Kd)A

where R is the number of modules opert'l4tional (unfailed)
for L :::; R :::; N and A is the active failure ra,te of the
module while d is the ratio of standby to active failure
rates.

The Reliability can be reduced to:

N-L j (N-L LI d + h) 1 .L: E-(L+Kd)A t II --- "(2)
K=R-L h=R-L h - K

h-,6K

Since failure is oharacterized by independent random
variables the probability (PR(t)) of exactly N-R+ 1
failures (R operational) is equal to:

taking the difference and combining terms leads to:

N-L (Lid + h)
c(L+Kd)At II --:- (3)

h-R-L+l h - K
h-,6K

To model the effect of the switches a recursive]pro­
cedure is used beginning at Level 1, then Level 2 and
onto the highest level.

Let PW~(t) designate the probability that at time t
exactly R modules are operational at the jj-th stage
and exactly S (8:::; R) of them may be reached f]~om L'~vel
1 through a path of operational modules and Elub­
switches at the lower levels (Reference 8). Since R N
the states of the process that yield at least one com-

puter's worth of capability (for the higher level)
correspond to:

(R, S) = (1, 1), .(2, 1), (2, 2), (3, 1), (3,2), (3, 3), .. "

(N, 1), (N, 2), (N, 3), "', (N, N)

with reference to the switch of Figure 3, the equation
governing transition between the v~rious levels is
given by:

whereW~slf is the probability that exactly S modules
at level j are connectable through the switch from V
modules at level j - 1. For exponential failure:

(5)

where ~'(i-l) is the cross point failure rate of the switch
at the j-lst 'level.

Substituting Equations (3) and (5) into Equation (4)
yields the expression for the probability

Nj-Lj 1 LU)/d + p---
p~1(t) = 2:
p = K = R - L(i) R - Lu) - P

P ¢ R - L(j)

LU-I) .::; V .::; D .::; NU-I)

(1 _e-"'A'(i-l)')V 1
. (R-S) j

where the number of modules N (j), those required
operation simultaneously, L (j), and a module failure
rate r (j) are variable from level to level.

Thus, the P(1) (t) vectors are obtained recursively
starting first from P(I) (t) which i8 given component­
wise by:

Modular Computer Architecture Strategy 341

lttl LEVEL SWITCH

J - th LEVEL MODULES

Figure 3-Module-switch-module relationships

=0

NI-LI

e-(Ll+Kd)"'Al t II
h_R-Ll+1

h~K

h-K
if S = R

(7)

if S ~ (R

The total system reliability then including modules,
switiches, and 'CAD is given by:

R(t) = RCAU II P~(t)
(8)

where m is the highest module level and the relia­
bility of the CAD is given by RCAu,

R(t) then gives the probability that at time, t, at
least one string of modules (Li at each level) is con­
nectable and operational and further that the CAU
can switch modules in and out of the operating string
when needed.

Two assumptions implicit in this derivation should
be noted. First that in assuming a strict exponential
failure distribution for the modules wherein a module
was assumed to fail at a rate ~ if in the active state
and Ad if in the passive state, no allowance was mad~
for failures which might occur by change of state
transitions. No algorithm exists for switching modules
on or off to form an operational string which guarantees
full utiliZation of the remaining system without re­
quiring 'that some modules be placed in successive
modes of active and standby states. It is ther~fore
assumed that module failure is not influenced by its
history of active and standby state transition. To
solve the proble\~ otherwise become~ extremely dif­
ficuIt'~

342 Fall Joint Computer Conference, 1969

Th.e second assumption is that all crosspoints of a
sWitch are assumed to be in the active. state whether
or not the corresponcijng modUles are presently con­
nected, and therefore the failure rate of crosspoint~
fail oniy at the;act.ive rate (no sta~dby rate).

The numerical calculation may be facilitated by re­
writing Equation (3) as:

Then axpanding and collecting fa~tors

where

An = (N - R) for 0 < II < N - R - 1 (10)
n --

Equation (8) requires computer solution. In order to
achieve a better intuitive grasp for the components of
reliability of a modular system and to help in the initial
selection of architectural organi~tion with potentially
high reliability over lengthy mis~ions, a first estimation
of the reliability of a· system may be .made with the
aid. of the graphs of Figure 4. :The figure shows the
rE:!liability of modules with varibus degrees of reiun­
dancy against a normaliz:ed time scale. Notice th(J
change of scale. In the first estimation of the reliability
the effect of the switches can be neglected so that
reliability of the system: .

m

R, = R CAU II R j

i=O

(11)

where R i is the reliability of the modules at the. j-th
level for all j's. The R/ 8 may be: found on the ordinate
axis of the graph of Figure 4 when the normalized t.ime
has been computed.

• Use generalized factoriaifunction i.e. (n! = r (n + 1)

To find the reliability of a particular closedmC!d.ule
set first compute its equivalent units of normalized
time which are equal to the prod~ct of number of
gates, reliability of a gate, and time; then read the
corresponding reliability from the graphs. Use
EqwLtion (11) for approximate system reliability. This
procedure not only allows one to work out a roasona.bJ.e
configuration but also indicat~s what the basic gate
reliability must be to attain the required reliability
with a feasible organization.

To illustrate the proce<4Ire by way of e.xample,
consider the configuration of Figure 2. Each levell~an
be characterized by three parameters: N the number of
modules, L those operating simultaneously and T
normalized time. The system then can be summari:zoo
as:

CAU AU CU MU I/O

N 1 3 3 3 3
L 1 1 1 1 1
T 2 . 1 1 .49 3 .54 . 85 .88

To compute normalized, gate. count is obtained
from Table I, the failure rate is assumed to be A = 10-8

failures per hour per gate, normalized time is c:omputed
for five years and standby failure rate is 1/10 of act,ive
failure rate (d = .1). Module set reliabilities are read
from the appropriate curves of Figure 4 as follows:

CAU AU CU l\fU I/O

T 2.1 1.49 3.54
R .12 .76 .24

Then system reliability is:

.85

.92
.88
.91

Rs = (.12) (.76) (.24) (.92) (.93) = .018

Changes must obviously be made for a r€la,sonable
reliability. In Figure 5 a step toward higher r.aliability
is demonstrated through seyeral types of changes. The
AU and CU are each divided into interchan9;eable
halves and the AU provided with four spare halves
while the CU has five. One unit each is addEld to the
I/O and MU units. The CAU has been triplic9.ted BInd
at the same time reduced to one half its former size
The system summary is:

a:
-;
I-
:::i
en
c:::(

J
W
a:
I-
W
If)

W
.J
:>
0
0
~

0
W
If)

0
.J
U

Modular Computer Architecture Strategy 343

1.0 ~~~==:::::-iiiiiiiiii::::::::::=::::::::::===-----=-=:-::-I---------------'

0.98

0.94

0.92

0.90

.0.7

0.5

0.3

0.1

0
0

NOTES:

(1) EXCEPT AS NOTED
d = 0.1

(2) READ 2 OF 6
AS L OF N TYP.

TMR
2 OF 3
d = 1

0.5

CAU AU CU

N 3 6 7
L 1 2 2
T 1.05 1.49. 3.54

1.0 1.5 2.0 3.0 4.0 5.0

NORMALIZED TIMF-. T

N-L

R = LId (L/d+N-L) e -L T ~ (N -L) ..-l.=.!l.K e-KdT
N-L ~ K L/d+K

K=O

Figure 4-Long term reliability curves

MU I/O

4 4
1 1
.85 .88

figuration is reached one must dete:t:mine the additional
gates added to each module by virtue of the new
configuration and then calculate a corrected system
reliability. Usually one must iterate through several
configurations many times to reach the desired relia­
bility with a minimal gate count. At this point
Equation (8) may be used for a more accurate
reliabilityvalue.

Reading the graphs for module set reliability:

CAU AU CU l\IU I/O

T 1.05 1.44 3.54
R .89 .97 .8

.85 .88

.98 .98

Thus, R B = .67 - a significant gain in system relia­
bility, though 3.dditional steps must yet be made to
reach the desired reliability. When a potential con-

CONCLUSIONS

A method of estimating long term reliability of modular
computers has been presented and two sample cases
examin.ed. In the second example 240 percent ad­
ditional hardware was used to improve five year pre­
dicted reliability from .018 to .67. To this must be added
the additional switches to accommodate the increased
modules (from 13 in first example to 24 in second). To
obtain a reliability of the order of .99 for a five year
mission perhaps the additional hardware necessary

344 Fall Joint Computer Conference, 1969

N' L

CAU's 31 1

AU's Ei 2

CU's 7' 2

MU's 4 1

I/O 4 1

Figure 5-Multi-module modular comput.er

would amount to as much as four times that required
for the actual computing. Gatd failure rates used in
the examples are for present day high quality IC's. If
the basic gate reliability could b~ increased by a factor
of ten this total additional hardware could be approxi­
mately halved.

The modular approach with st:tndby modules appears
capable of servicing long missions with feasible costs.

ACKNOWLEDGMENT

The authors express their appreciation to Mr. Jack

L. Bricker of Hughes Aircraft Company for his effort
and guidance in developing the mathematic2~1 model.

REFERENCES

1 J J PARISER H E MAURER
Modular computer iniplementation with LSI
In these proceedings

2 F DERWIN J F Me KEVITT
Character8-Univer8al architecture for LSI
In these proceedings

3 R,A SHORT
The attainment of reliable digital 8Y8tems through tht~ use of

MODULE

CAU
Switches
I/O
Memory
Control
Arithmetic

TOTAL

Modular Computer Architecture Str.ategy 345

TABLE I-Two column component breakdown (approximate)
modular computer breadboard (separate arithmetic & control modules)

GATES/MODULE % IC/MODULE

4800 24 1440
180 1 55

2000 10 495
1950 10 495
8100 40 2175
3400 15 975

%

25
1
9
9

39
17

20430 100 5635 100
ALTERNATE APPROACH (COMBINED ARITHMETIC & CONT-a,OL MODULES)

CAU
Switches
I/O
Memory
Processor

4800 25 1440 27
180 1 55 1

2000 11 495 10
2000 11 495 10
9800 52 2700 52

TOTAL 18780

redundancy-A survey
Computer Group News March 1968

4 BERSOFF HOPE TUNG
Modular computer researoh
To be published

5·E J KLETSKY
Upper bounds on mean life of self-repairing systems
IRE Trans on Reliability and Quality Control Oct 1962
43-48

6 P 0 NERBER

100 5185 100

Power-off time impact on reliability estimates
IEEE Internat Cony Record Part 10 March 22-26 1965
NY 1-8

7 L K DAVIS G A WATSON T G SCHAIRER
Advanced computer dormant reliability study, Final Report
Autonetics Div of No America Rockwell Corp Oct 14 1967

8 J L BRICKER
Reliability studies of the NASA deep space computer and the
H-J,.J,.OO computer
To be published

A compatible airborne multiprocessor

by E J. DIETERICH and L. C. KAYE

RCA Aerospace SY8tem8 Divi8ion
Burlington, Massachusetts

INTRODUCTION

The control of large military forces is creating the need
for large data-processing systems located in transport
aircraft and in other situations where tight quarters
and hostile environments call for the design features
found in airborne systems. In these applications the
configuration of the computer and its peripheral equip­
ment strongly resembles what is found in a typical
commercial da.ta-processing system, with some ad­
ditional requirements for reliability. In particular, the
functional programs are complex and extensive, and
the availability of a complete package of support soft­
ware, including compilers 'and utility routines as well
as the resident executive, is likely to be of critical
importance. Because of its cost, so complete a software
package cannot reasonably be developed specifically
to answer a particular military need; it must be cap­
tured from an existing software system. The only
source of complete data-management software packages
is commercial data-processing; and thus it makes
practical sense for a large, militarized data-processing
computer to be strictly compatible with an existing
commercial product. As a bonus, the commercial
computer can then be used as a support computer
for compilation and program checkout. An example
of a program in which an airborne computer is sup­
ported by an existing ground-based commercial com­
puter is found in the Strategic Air Command's Post
Attack Command and Control System-Airborne
Data Automation.1 In this system the airborne com­
puter is the RCA/USAF Variable Instruction Com­
puter2 and the ground support computer is the IBM
7090.

The hardware compatibility required for capturing

system software is rigorous.s It is not sufficient that
the militarized computer contain a large subset of the
commercial instruction list, or that it obtain nearly
identical results when eXiecuting the same programs.
Bit for bit, the militarized computer must possess all
the instructions and non-instructional features of the
commercial machine, including input-output features,
with the possible exception of privileged instructions
usable only by the resident executive program; even
here the exceptions must be few or else an entirely
new executive will be required.

On long missions, especially when critical command
data are being handled, the military user must have
assurance that a certain minimum capability will
always be available. Even with the best modern
technology it is prohibitively costly to provide assured
availability in a single-thread system. The classical
method of coping with failure-complete duplication
of the hardware, with a stand-by unit for every unit
in active operation-is also unduly expensive. In most
applications there are peak loads which occur rela­
tively rarely, but which must be within the capacity
of the system in its normal state, and the minimum
essential capability is substantially less than the peak.
What is called for is a fail-soft approach in which
major components are duplicated but not allowed to
remain idle. All components are used simultaneously
to obtain the peak throughput, but the system can
continue operation at reduced throughput in case of
a failure. The failed component can be diagnosed and
repaired without interrupting the operation of the
surviving portions of the system and in a time short
compared to the expected time to failure of the identi­
cal surviving component. Thus the user has nearly

347

348 Fall Joint Computer Conference, 1969

complete assurance against cc;>llapse of the entire
system.4

The multiprocessor hardware

A data-processing system cap~ble of graceful degra­
dation is illustrated in Figure Ii. Clearly, many other
types of peripheral equipment could he included. All
the peripheral control units are co-channelled, so that
if one input-output section of 'the central computer
should fail, another path would r~main open.

The central computer, the Model 215 multiprocessor,
is shown in more detail in Figure 2. It consists of two
Central Processor Units (CPU), two Input-Output
Units (IOU), and from two to eight l\'fain Memory
Units, interconnected by an essentially passive SignaJ
Distribution Unit (SDU). By a conceptually simple
redesign of the SDU, requiring, however, substantially
more hardware, the system could be expanded to in­
clude four CPU's, four IOU's, and sixteen Main Memo­
ry Units. Each of the active units: is separately powered
and operates independently of other units of the same
type-for instance, any number :of memories can exe­
cute independent, overlapped cycles simultaneously.
The SDU is merely a mechanical package housing the
interconnections among the active units; as the dia­
gram suggests, such circuits as it contains (largely
line-drivers and receivers) are partitioned and powered
from the active units. The logical and electrical designs
conform to the constraint that at failure in any active
unit, or in its partition of the SDU, must not interfere
with continued operation of the remainder of the
system. Multiprocessors for grot;tnd-based application

DISPLAY
CONTROL

DISPLAYS AND
KEYBOARDS

MASS
MEMORY

CHANNELS

I/O
PROCESSOR

CENTRAL
PROCESSOR

CHANNELS

I/O
PROceSSOR

CENTRAL
PROqSSOR

MEMORY UNITS i
I

REDUNDANT CENTRAL COMPUTER

PERIPHERAL
EQUIPMENT
CONTROL

TAPES, PRINTERS,
AND OTHER
PERIPHERAL DEVICES

Figure I-Typical multiprocesspr application

CENTRAL
PROCESSOR

CENTRAL
PROCESSOR

I/o
PROCESSOR

r-----------------
I
I
I
I
I
I
I
I L ____ _

MEMORY MEMORY

Figure 2-Fail-soft computer configuration

similar in many respects to this one have been previ­
ously described.6 ,6

If one IOU and one CPU are turned off or discon­
~ected, the uniprocessing system that remains is func­
t~onally compatible with the RCA Spectra 70 se­
rIes of commercial computers.7 ,8 The entire instruction
set of the Spectra 70, including privileged instructions
is contained within the Model 215 as well as the fou;
Program States, the input-output channel control the
interrupt management scheme, and all other fea<tures
of the commercial counterpart. This paper describes
some of the added instructions and other features
which make it possible to operate both CPU's a,nd
both IOU's together, while retaining the Spectra
comp~tibility in the sense that any user program
complIed and debugged on a Spectra 70 will run
identically on the Model 215.

Either IOU can be commanded from either CPU,
the choice depending; only on the channel number desig­
nated in the input-output instruction, and either
CP~ can accept interrupts generated by any peripheral
deVIce. Except for the few microseconds when it is
actually receiving a command, an IOU operates com­
~letely inde~endentIY, transferring data between pe­
rIpheral deVIces and memory without disturbing the
CPU's.

Each memory unit contains 16,384 32-bi1i words
and performs a read-write cycle in 1.65 microseconds.
Input-output data rates are approximately 400,000
bytes per second for a multiplexor channel in the
mUltiplex mode and 800,000 bytes per second for a
selector channel. Each CPU executes short instructions
at memory speed-for instance, an indexed ,add in­
struction in 3.30 microseconds--with single-precision
multiplication in 9.0 microseconds. Except when the
programs being executed in the two CPU's happen to

share a memory bank, the total system throughput is
twice as great as for a single CPU and IOU. The
entire configuration shown in Figure 2, with eight
memory units, occupies approximately 20 cubic feet,
weighs approximately 1000 pounds, and consumes
approximately 3550 watts. It is designed to meet the
requirements of lVUL-E-5400, Class I, the basic speci­
fication for airborne electronics.

The integrated circuits and medium-scale arrays
used in the IVlodel 215 are of military quality, with
burn-in and screening. When the standard degradation
factor for airborne application (five to one) is applied,
the calculated mean time to failure of a unit (including
an associated partition of the SDU) is 2200 hours for
a lVlemory Unit, 1305 hours for a CPU, and 1820 hours
for an IOU with a maximum channel capacity. The
only single-thread element in the entire computer is
the master oscillator, which is located in the SDU and
redundantly powered by both CPU power supplies and
which has an airborne MTBF of 100,000 hours. Use
of redundant oscillators with a voting circuit was
considered, but the calculated failure rate· of the single­
thread portion of the voting circuit turned out to be
higher than that of a single oscillator.

The purpose of fail-soft features is to permit an
airborne mission to be completed successfully, even
though portions of the hardware might fail. For a
72-hour mission which can be successfully completed
with the minimum capability provided by one CPU,
one IOU, and six out of eig'ht IVlain IVIemory Units,
the probability of successful completion is greater than
99 percent, even if no repair is possible during the
mission.

Recently there has been a great deal of activity
aimed at producing concepts for software, and for the
supporting hardware, which will facilitate parallel
processing of tasks and portions of tasks.9 ,10 ,11 In one
respect, the present work is much less ambitious, as
no special hardware has been incorporated for the
purpose of forking and joining parallel processes \vithin
a user program. In other respects, however, it is more
ambitious, in that a rigorous attempt has been made
to avoid single-thread hardware of any kind, and in
the commitment to achieve the goals of multiprocessing
and graceful degradation while capturing a complete
software package designed for a family of computers
not having these features. Certain aspects of the ex­
ecutive software require speclal attention in order to
realize the benefits of multi-processing, and the hard­
ware must be designed from the outset with these
requirements in mind. In normal operation the most
significant topics are the control of the executive, the

Compatible Airborne multiprocessor 349

management of input-output interrupts, the assign­
ment of CPU's to working programs, and initial load­
ing. Problem recovery and ~clf-diagnosis are the critical
aspects of graceful degradation.

Executive control

In order to preserve the purity I of the fail-soft
features, the Model 215 hardware is completely sym­
metrical, with both CPU's and both IOU's identical.
I t is therefore desirable for the executive program to
avoid creating a master-slave relation between the
CPU's. In fact, it is convenient to regard both CPU's
as slaves, with the resident executive program as the
master. Because programs checked out on the com­
mercial support computer must run correctly on the
Model 215, the executive must present the user program
with precisely the same interface as the executive in
the support computer and must allocate resources and
manage input-output in a unified way for all programs.
Because the executive supports the user programs in
many complex ways, the multi-processing executive
should be derived with minimum possible modification
from an existing, co~mercial executive, so as to intro­
duce the least possible chance of mismatches at the
interface. The Tape-Disc Operating System12 of the
'Spectra 70 is an excellent example of a software system
which has desirable characteristics for military data­
management and which contains a multi-programming
executive readily adaptable for multi-processing.

The executive program must be protected from
having its coding executed by two CPU's at once.
Even if the coding were parallel reentrant, there are
common tables carrying the status of programs and
of input-output devices which can become garbled if
two CPU's are allowed access at the same time. The
executive can be partitioned into independent sub­
routines, so that different portions may be executed
simultaneously; nevertheless, the system must provide
means for one CPU to lock the other one out of the
subroutine it is currently executing.

An ideal mechanism for locking out a CPU is the
Test and Set instruction.13 ,14 This instruction tests a
specified byte in core memory and simultaneously sets
it to all ones. If two CPU's attempt to execute this
instruction on the same byte at the same time, the
one having higher priority for access to memory will
perform the operation first; if the tested byte was
initially not set, the higher priority CPU will detect
that fact, but the other CPU will not have access to
the test byte until after the byte has been altered.

Figure 3 is a flow chart showing how the Test and
Set instruction is used for executive lockout. The

350 Fan Joint Computer Conference, 1969

initial instruction of each independent subroutine is
a Test and Set, followed by a Br~nch to direct the CPU
in accordance with the previous setting of the test byte.
There is a unique test byte for ieach independent sub­
routine. If the test byte was hot originally set, the
coding is available for execution and the program
proceeds normaIIy. Another CPP arriving at the Test
and Set instruction immediately thereafter will find
the test byte set and will branch to the Timed Idle
instruction. The first CPU me~nwhile completes the
disputed section of coding, restores the test byte to
its original form, and then executes an instruction to
terminate the idle condition of, the other CPU. This
privileged instruction, a special: feature of the Model
215, causes a signal to be sent lout to terminate any
Timed Idle instruction then bei~g executed. The idling
CPU then returns to the Test aud Set instruction and
proceeds into the previously locke4-out subroutine.

If the active CPU fails in such a way as to go into
a loop, the idling CPU will nev;er receive a signal to
terminate the idle mode. The time-out feature is
provided in order to prevent "silent death" in this
case. The duration of the idle fpode can be adjusted
in accordance with the expected time to execute the
subroutine being protected. Thei idle mode terminates
with a unique condition code if it times out instead of
being terminated by a signal from the other CPU;
the executive can then record the suspicion of a mal­
function in the other CPU before continuing with
normal processing or going to an qrror recovery routine.

Input -output interrupts

In the Model 215 either CPU must be able to com­
mand peripheral devices through either Input-Output
Unit. A user program may be executed partly by one
CPU and partly by the other; ~et it must be able to
have access to peripheral devides on any channels,
whichever Input-Output Unit may contain those
channels. Certainly in case of CPU failure the surviving
CPU must have access to all cha"Q-nels. When an input­
output operation is completed, ~he peripheral device
generates an interrupt signal caning for CPU action.
In general the program which called for the input­
output operation may have been forced to wait for
its completion, and at the time of the termination
interrupt no CPU will be executing it; thus, there is
little reason to tie the servicing of a termination inter­
rupt to the CPU which initiated the input-output
action. Again, the requirement for continued system
operation in the face of failures demands that either
CPU be able to respond to an interrupt coming from
either Input-Output U nit.15

ENTER FROM PREVIOUS SUB ROUTINE

TESTED BYTE WAS NOT SET

EXECUTE
NON-RE-ENTRANT
CODING

TO NEXT SUBROUTINE

/

/
/

/

TESTED BYl'E
WAS SET

TiMEDiDi.E WAS
~ ______ ~ TERMINATED

RECORD POSSIBLE J
MALFUNCTION. RETUFtN
TO TEST AND SET
OR GO TO ERROR
RECOVERY ROUTINE

Figure 3-Executive lockout

The processing of an input-output interrupt re­
quires action from both a CPU and an Input-Output
Unit. The CPU must execute a portIon of the executive
which maintains tables carrying the status of pe­
ripheral devices and which updates the readiness status
of the affected program. In order to do this, the ex­
ecutive needs information on the status of' the pe­
ripheral device in question and of the channel through
which it worked. At the time the interrupt is taken
this information is obtained by the Input-Output
U nit on command from the CPU and is :,tored in
addressable registers in the Input-Output Unit. The
executive gains access to the information by a Store
Scratchpad instruction addressing the registers of the
appropriate channel. Significant deviations from this
pattern are proh'ibited by the requirements of com­
patibility.

Although either CPU must have the ability to re­
spond to any input-output interrupt, clearly both
CPU's must not respond to the same interrupt. 18'01'
one thing, duplicate updating of the executive tables
would be improper; although this could be prevented
by judicious use of the Test and Set instruction, a great
deal of time would be wasted in unnecessary house­
keeping. Moreover, in the very act of accepting the
interrupt the CPU automatically commands the Input­
Output Unit to obtain and store the device status
information, and this cannot be done twice for the

same interrupt without losing data. Flexibility of
response must be achieved without duplication of
activity.

In the Spectra 70, with which the Model 215 is
compatible, interrupt signals reported to the CPU are
stored in an Interrupt Flag Register. The Interrupt
Flag Register contains a bit for each input-output
channel, plus some additional bits for interrupts not
related to input-output. There is also an Interrupt
Mask Register, controllable by the executive program
by means of privileged instructions; the contents of
the Interrupt Mask Register designate specific inter­
rupts to be taken as soon as they are requested and
others to be held until it is convenient for the ex­
ecutive program to respond. Normally, all input-output
interrupts are taken promptly unless the executive is
already responding to an interrupt.

The Model 215 requires a software convention to
establish which interrupts will be taken by each CPU.
This convention may be arbitrary, so long as each
input-output interrupt is taken by one and only one
CPU. An example of such a convention is illustrated
in Figure 4. The executive program sets the Interrupt
Mask Register of each CPU to take the interrupts
designated for that CPU, and the hardware reports
all input-output interrupt signals to both CPU's.

When an interrupt is taken by the designated CPU,
the corresponding bit in the Interrupt Flag Registers
of both CPU's is reset. At all times both Interrupt
Flag Registers contain a record of all the pending
interrupts. In case of failure of one CPU, the executive
program, as part of the recovery process, can alter the
Interrupt Mask Register of the surviving CPU so as
to permit that CPU to take all input-output inter­
rupts.

In the simplest case the Interrupt Mask Registers
of both CPU's would be given permanent settings
'when the system is initially loaded, and these settings
would only be altered in case of a CPU failure. If
desired l however, the executive program can adjust
the Interrupt Masks of the two CPU's in accordance
with the priorities of the programs being executed, so
that high priority programs are not interrupted.

After an interrupt has been taken and the Input­
Output Unit has stored the device status information
in the appropriate channel registers, the contents of
these registers must be protected until the CPU taking
the interrupt has performed enough analysis to iden­
tify the registers to be stored and to execute the
instruction to store them. In the meantime, the other
CPU, executing a different subroutine in the executive,
may attempt to start a peripheral device on the same

Compatible Airborne multiprocessor 351

CENTRAL PROCESSOR CENTRAL PROCESSOR

t1 1 t t t
1 1 1 0 0 0 "~MASKS-Ho 0 0 1 1 1 1
I I I : I

II I I .. f--FLAG,S- H I I I I . ~. f
i J

J
J

· :
I

i I · I · · I · I . ·
INTERRUP TS t:::::::::::::: :: ::: :: :::. •• ~ c , ··i

OMMANDS

I/O I I I/o 1 PROCESSOR PROCESSOR

G- PE R I PHE RAL DEVIC ES ·n
Figure 4-Input-output ~ontrol block diagram

channel (or sub channel in the case of multiplexed de­
vices). This could destroy the information related to
the interrupt. An interlock is therefore incorporated,
preventing the other CPU from executing a Start De­
vice instruction until the channel registers have been
stored. The interlock carries a time-out feature, in
case the CPU taking the interrupt goes into a loop
before storing the channel registers; if the interlock
times out, the interlocked CPU is informed by a special
interrupt that a malfunction may have occurred. A
similar situation arises when an attempt to start a
peripheral device fails because of a malfunction or
other peculiar behavior of the device; status infor­
mation is again stored in the channel registers and
must be protected from destruction by the other CPU,
and the same interlock is invoked.

Load balancing

When the ::\tIode! 215 is operating normally, two or
more object programs, as well as the executive, are
resident in core, and each CPU is executing one of
them, independently of the other. From time to time
one of the CPU's may be diverted by an interrupt
from the processing of an object program; it will then
spend some time executing a portion of the executive.
When the interrupt processing is completed, the inter­
rupted CPU should return to processing an object
program. The executive must insure that each CPU
has productive work to do~ and that the highest pri­
ority object programs are being processed.

An analogous situation arises in a computer without
a multi-processing feature if the executive is capable
of mUlti-programming. Here again there are several
resident object programs in addition to the executive.

352 Fall Joint Computer <;jonference, 1969

At a given time, some of these programs may be forced
to wait for the completion of input-output, for loading
of additional 'program segments, or for other special
action on the part of the executive. It is the responsi­
bilityof the executive to e;nsure that the highest pri­
ority program capable of running is entered whenever
the executive itself does not requ~re the use of the CPU.

The normal flow of a multi-p!rogramming executive
is suggested by the flow chart of Figure 5. In the steady
state the CPU executes an obiect program until an
interrupt is taken. The interrup~ion may be caused by
the object program itself-typioally a Supervisor Call
to start an input-output operati~n-or by an external
agency, as in the case of a termination interrupt from
a peripheral device. In the first c~se~ the program inter­
rupted may be un~ble to continue until some action
initiated by the executive has been completed; in the
second case, the processing of the interruption may
change some other program from a waiting status to
the status of being ready to run.

The multi-programming exe~utive maintains an
Operation List, a table of vital iqformation about each
program resident in core. In tHe Operation List for
each such program there is a set of flags indicating
the reason why a particular program is not ready to
run. The flag bits are updated, as appropriate, by the
processing of interrupts which affect the readiness of
programs. If no flag is set, the: program in question
is ready, and the executive, whetl it has completed its
other prooessing, exits by givingl control of the CPU /
to the highest priority program that is ready. At that
time the executive stores the identity of this program
in the table of Current Operati,ons, to establish an
information trail in preparation for subsequent inter­
rupts.

This executive exit structure can be converted into
a form suitable for multi-processing co~trol by two
simple changes. An additional flag bit is needed in
the Operation List for each program; this bit tells the
executive exit that the program is not only ready but
is already being executed, and is updated each time a
program is activated or interrupted. In the Spectra
executive an unused bit is available for the purpose
in the format of the flag byte in the Operation List.
The other change is to carry an entry in the table of
Current Operations for each CPU in the system. When­
ever a CPU passes through the executive exit, the
appropriate entry is updated. The only special hard­
ware needed is a means for the otherwise identical
CPU's to identify themselves to the executive, so that
the proper entry in the table ot Current Operations
may be used. This means is provided by an instruction

START HIGHEST
PRIORITY
PROGRAM

VARIOUS TYPES
OF INTERRUPTS

CURRENT
OPERATIONS

:-'igure 5-Load balancing

FLAGS

which stores the CPU identity, derived from its plug­
in position at the SDU, in a specified General Register.

The multi-processing modification to the executive
exit can be extended to handle as many CPU's as
desired merely by adding to the size of the table of
Current Operations; additional flag bits in the Oper­
ation List are not needed. The instruction permitting
a CPU to identify itself must, of course, store: enough
bits to identify the number of CPU's in the system.

A different sort of refinement permits the executive
always to maintain all the CPU's at work on the highest
priority programs that are ready, even if the CPU
taking an interrupt, and therefore passing through the
executive exit, was itself executing a high-priority
program when interrupted. Suppose, for instance, that
three programs are resident. The highest priod.ty
program is waiting for the completion of an input~
output operation, and when the termination occurs,
the CPU executing the higher priority of the two re­
maining programs takes the interrupt. In the normal
course of events, the highest priority program would
be dedignated as ready, and the CPU which took the
interrupt would begin to execute it as soon as interrupt
processing was completed. The result would be that
the highest and lowest priority programs would be
running, while the one with intermediate priority would
be ready but would have to wait for a CPU to become
available.

For reasons connected with the requirement that
system processing continue in the face of failure of a
CPU, so long as one CPU survives, it is neceBsary for

the system to incorporate an instruction permitting
one CPU to gain the attention of the other. This
privileged instruction causes an interrupt in the CPU
being signaled. Using this signal, the executive can
examine the priorities of all the programs currently
being executed, and can interrupt a CPU which is
executing a program lower in priority than some
program not being executed at the time. A situation
calling for such examination can only arise as a result
of processing an interrupt; so provision for this ex­
tended priority surveillance would be a natural exten­
sion to the multi-processing modifications to the ex­
ecutive exit.

Initial program loading

Initial loading for a multi-processor differs little
from initial loading of a conventional computer having
a multi-programming executive. The operator's console
has provision for selecting the device and channel
through which the bootstrap routine will be loaded. A
selected CPU is then started at a fixed address, where
it encounters coding that initializes its General Reg­
isters, Interrupt Mask Register, etc. Next the resident
executive is loaded, followed by a number of object
progralW3 appropriate to the amount of core memory
available. For multi-processing to be effective, there
must be at least two resident object programs; and to
avoid inefficiency caused by waiting for input-output
terminations, preferably three or four. When the memo­
ry is loaded, the selected CPU initializes the program
counter of the other CPU and commands it to start.
One after another, the CPU's execute the normal coding
of a multi-programming executive to commence exe­
cution of object programs. The extra flag bits in the
operation list ensure that only one CPU will execute
a given object program.

The hardware requirements attributable to the multi­
processor configuration are the provision for selecting
one of the CPU's to execute the bootstrap coding,
means for enabling one CPU to set the program counter
of the other and command it to start, and means for
a CPU to identify itself to the executive so that the
proper Interrupt Masks may be established.

Problem recovery

In order for any system to continue in operation
after a failure in one of its units, there must be sufficient
checking built into the hardware. A failure must be
detected before it has had a chance to propagate errors
far into the problem being solved at the time of failure.
The Model 215 Main Memory Units are checked by

Compatible Airborne multiprocessor 353

the usual byte parity on the data, and by a parity
bit in the key memory which forms part of the memory
protection feature. The Input-Output Units employ
parity checking on data and on command words. In
the CPU's the scratch-pad memory and the elementary
operations stored in the read-only memory each con­
tain parity bits. The arithmetic unit is two words
wide, to speed up byte-oriented and double-precision
instructions and to simplify their control; when oper­
ating on single-precision data, the two halves of the
arithmetic unit work in parallel and the results are
compared. Whenever possible, data transmitted be­
tween units has a parity check at both ends of the
transmission path to facilitate diagnosis of faults. A
small number of special checking circuits are incorpo­
rated to check for faults not detectable by parity check­
ing or arithmetic comparison.

Another requirement for continuing operation is the
nl'~~Arvation of enough information to permit resump­
tion of the program by the surviving units. The neces­
sary information, if it has not been destroyed by the
failure itself, will be found partly in memory and
partly in various processing registers. In general, this
information cannot be made available to an operator
without the execution of some operations by the
surviving processors; in other words, purely manual
recovery is impossible. Since the hardware and soft­
ware must include the capability of retrieving and
identifying the information needed to continue pro­
cessing, it is only a short step to providing for com­
pletely automatic problem recovery in the majority
of cases.·

Failures in the Input-Output Units and the pe­
ripheral equipment present no problems unique to
mUlti-processing. Data-transfer operations may be re­
tried under program control. If the failure persists,
or if the error information stored in the Channel
Status byte indicates that the failure is in the Input­
Output Unit rather than in the peripheral equipment,
the peripheral device may be switched to a channel
on the other Input-Output Unit; in the case of co­
ch::mnelled devices the switching consists merely of
making an entry in an executive table.

When a failure occurs in a CPU, either of two modes
of operation illustrated in Figures 6 and 7 may be
followed. Normally there is a surviving CPU which
can come to the rescue. In this mode the failed CPU
stops dead as soon as the failure is detected, thus
preserving the contents of its processing registers for
problem recovery and fault diagnosis. In the act of
stopping it sends a signal to the surviving CPU; this
signal causes an interrupt into Program State P -4, the

354 Fall Joint Computer Conference, 1969

• STOP"
SIGNAL

CPU ERROR DETECTED

FAILURE
SIGNAL SIGNAL TO OTHER

---- - - - CPU: "FAILED AND
STOPPING"

RESTART
__ ~G.!::!.A.!:._

SELECT AND
EXECUTE
HIGHEST
PRIORITY
"READY," PROGRAM

RESTART

,....-""""""-... FAILURE
SIGNAL ----.

Figure 6--Central processor 'error: Failed CPU

DIAGNOSTIC ___ ...&. __ _ ---CONTROLS --.... -_

RESTART
,-- -
; SIGNAL

I
I DIAGNOSTIC
1 ___ - ..

ceNTROlS

Figure 7- Central processor error: Surviving CPU

normal state for responding to machine failure. It
also provides an indication, accessible to the program,
that the reason for the interrupt was a CPU failure
not in the CPU taking the interrupt. After decoding
the reason for the interrupt, the surviving CPU can
read out selected processing registers of the failed CPU
and determine its status. One bit available in this
way indicates whether or not the failed CPU had
written into its scratchpad or into Main Memory
before stopping. If not, all the data needed to repeat
the instruction in progress at the time of failure is
still available, and the program can be continued from
that point. If data have been destroyed, the program
must be returned to a restart point, exactly as in a
conventional computer, but with the advantage that
the restart can be initiated without human intervention
if desired.

A second mode of operation is available to deal with
a failure in the sole surviving CPU. Such failures will
be rare, since the mean time to repair is very small
compared to the mean time between failures; never­
theless, because a large proportion of errors in any
computer are normally transient, it is welJl to allow
the CPU to attempt its own recovery. In this mode,
which the executive can establish when its configuration
table reveals that a partiCUlar CPU is the sole survivor,
the failed CPU takes an interrupt to Program State
P -4 and continues processing. If the error "vas transient,
the CPU will be able to decode the interrupt and will
then determine whether the program can be resumed
or must be restarted. If, on the other hand, the failure
is solid, the CPU will commit another error. This time,
since the error indication is a failure of the CPU while
in Program State P -4, the CPU stops dead, just as it
does in the normal mode. Naturally, the problem
recovery portion of the executive must not contain
double-precision instructions whose arithmetic is not
checked.

The flow charts of Figures 6 and 7 present eondensed
pictures of this process. The shaded boxes represent
actions taken automatically by the hardware; the other
boxes represent executive program action. Special in­
structions are provided for the purposes indicated in
the unshaded boxes with heavy borders. The dotted
lines represent direct wire connections between the
two CPU's. In the normal mode, the surviving CPU
takes control of the entire process as soon as an error
is detected. It may enter a diagnostic routine aJter
logging out the registers of the failed CPU; alterna­
tively, the problem recovery routine may simply reeord
the failure, reinitialize the registers of the failed CPU

and turn it back on, in .the hope that the error was
transient. In either case, the surviving CPU . deter­
mines whether the program can be resumed or must
be restarted, sets the program entry point accordingly,
and updates the Operation List flags for that program,
so that it can be taken up by some CPU in accordance
with its priority.

In the other mode, of course, the failed CPU at­
tempts to do all this for itself. The CPU that did not
fail can observe the progress of the failed CPU by
monitoring appropriate locations in the executive
portion of memory; if these locations are not being
properly updated, the failed CPU can be stopped and
the processing used in the normal mode can be under­
taken.

Failure in a main memory unit is detected as a
parity error and is reported to the CPU or Input­
Output Unit currently viTorking with the failed memory
unit. An Input-Output Unit stores the error indi­
cation in the Channel Status Byte and treats it exactly
as a Spectra 70 docs. If the parity error occurred during
execution of an instruction, the associated CPU
treats the error as illustrated in Fig:ure 8. The ot.her
epe is noL notified, since the CPU receiving the error
indication is presumably operable.

As in the Spectra 70, the CPU takes an interrupt
to P-4. After decoding data stored automatically in
taking the interrupt, and determining that the cause
was a memory parity error, the executive locates the
instruction which caused the error. The Program
Counter and Instruction Length Counter provide the
necessary information. By means of a special in­
struction-Check Parity-the parity error is localized
to the instruction word or an operand. The Check
Parity instruction moves data by words, correcting
the parity of any error byte it encounters. The in­
struction terminates automatically if a parity error
is encountered and identifies the location of the error
byte. It also indicates by a condition code whether or
not it was completed without a parity error, 'but it
does not cause an interrupt if a parity error occurs.

Having located the parity error, the executive can
determine whether its own memory bank i:'l affected.
If the error is not in the executive bank, then problem
recovery concerns only a Ringle user program. This
program can be returned to n restart point in lnuch
the same way as in a conventional computer. The
affected memory bank may be tested by a diagnos­
tic program, and if the error does not appear to be
transient, the bank may be removed from the system.
Compatibility with existing software requires that the
available memory be organi1Jed "dth consecutive ad-

Compatible Airborne multiprocessor 355

Figure 8-Executive parity error

dresses, although obviously with a failed bank the
total amount of memor~r is reduced. The l\10del 215
has a special instruction which permits the executive
to rea.ssignmemory bank addresses. In this way, the
system can continue to process as many programs as
it can fit into surviving memory, regardless of which
bank fails.

If, on the other hand, failure occurs in the memory
bank containing the executive, special features are
required in order to prevent the collapse of the entire
sy~tem. The goal for the lVlodel 215 is to confine the
problem to the one program being serviced by the
executive at the time of the failure. When the ex­
ecutive bank has failed. it may be impossible to exe­
cute cvena single instruction after the interrupt is
taken, and so the interrupt eallnot be decoded. If this
occurs in the lVfodel 215, the hardware will automati­
cally take a branch to the contents of a fixed General
Register of Program State P -4. This branch will
normally point to a Recovery N ncleus located in a
different memory ba.nk. If still another parit~T error
should occur, it would be an indication that the failure
was really in the CPU, and appropriate action would
be taken.

The Recovery Nucleus, Figure 9, consists of copies
of critical, dynamic executive tables, plus enough
coding to load a fresh copy of the executive into a
surviving memory ba.nk. The Ilecovery Nucleus con­
tains configura,tion tables showing ·which units are still
operable. After identifying the memory bank into
which it will load the executive, the Recovery ~ ucleus
must quiet all peripheral devices in order to prevent
accidental overlaying of the He\\' executive as it is
loaded. A special instruction is provided so that pe­
ripheral devices may be quieted \vithout destroying
data or taking the termination interrupts.

356 Fall Joint Computer Conference, 1969

Figure 9-Recovery nucleus

If there is an interrupt on the device which carries
the backup executive, that Oll(~ interrupt must be
taken. The current contents of th~ memory bank which
is to accept the new executive arE! dumped, in order to
avoid losing any programs whichi use it, and the new
executive is loaded. A special feature of the Start
Device instruction allows the Channel Address Word
to be taken from any bank. The failed bank is taken off

I

line, and memory banks may ije readdressed if re-
quired. After updating the con~guration tables and
transferring information from the Recovery Nucleus
tables to the new executive tables, normal operation
can be resumed.

Self-diagnosis

On missions of long duration, the ability to locate
and repair faults during the mission is necessary in
order to give high assurance that t~e minimum essential
capability will always be available.:

The fail-soft features of the lVUodel 215 rest on the
assumption that two failures do not occur simulta­
neously-that is, that a second failure does not occur
before the first failure has been· repaired. The mean
time to repair of the lVrodel 215 will be less than thirty
minutes. To make this possible, without requiring high
skill levels, the]Vlodel 215 is packaged and powered
so that a unit may be repaired 'while the system is
operating, the logic is partitioned into functional, re­
placeable cards, and there is provision for automatic
fault diagnosis.

Ease of access and functional partitioning are matters
of straightforward engineering design. Likewise, the
software techniques for automatic diagnosis of memory
failures are well-known and require no special hard­
ware. Fault isolation in an Input-Output Unit does
require some special hardware, chiefly to isolate pe­
ripheral equipment from the fatilty unit so that it
can be u.'3ed with the surviving 1nput-Output Unit,

and a means of simulating signals from the peripheral
devices in order to exercise the unit to be diagnOEled.

The real challenge is CPU failure. Even here, with
well thought out functional partitioning, isolation of a
fault to one or two functional cards is not too difficult
if the processor can run a program. Unfortunately, the
"hard core" of equipment that must be operable in
order for a diagnostic program to run can amount to
as much as 70 percent of the CPU. DiagnoBing the
hard core requires some form of external stimulus­
and-measurement equipment. In the lVlodel 215 the
stimulus-and-measurement equipment for a failed
CPU is the other CPU.

In the normal mode of operation, as illustrated in
Figure 6, detection of an error (except for a lVra,in
Memory Parity Error) causes the offending CPU to
stop immediately, alerting the other CPU to the trouble.
The failed CPU stops as soon as the error is detected,
so tha~ the contents of its scratchpad memory and its
processing registers are undisturbed. By mea:ns of a
small number of direct-wire connections between
CPU's, the surviving CPU can gain access to the pre­
served information. It then adopts the so-called "start
small" technique of diagnosis.16 The failed CPU can
be commanded to put the contents of its memory
buffer register onto the main inter-unit bus for eX­

amination by the survivor and for storage in core.
Data can also be written into the memory buffer. By
cycling a few bit patterns through the memory buffer
the diagnostic program can localize a fault within the
memory buffer or can determine that the memory
buffer is operable. In the first case the problem is
solved; in the second case the memory buffer can be
used as a dependable tool to explore further into the
failed processor's hard core.

Other direct connections allow the contents of the
read-only control memory to be read out to eore for
checking and also permit the surviving processor to
command the failed processor to execute specific ele­
mentary operations. In this \vay the contents of the
processing registers can be examined and cheeked. In
some cases the failure can be identified at once. For
instance, if the error was in the arithmetic of a single
precision operation, it will have been caught by the
comparison check between the two halves of the
arithmetic unit. The operation can be simulated step­
by-step on the surviving CPU, while the failed CPU
is driven through the operation by individually acti­
va,ted elementary operations. When the simulation
differs from the actual operation in one or the other
half of the failed arithmetic unit, the simulation pro­
gram can identify the bit position in which the fault

originated. Since the . arithmetic unit is partitioned
into four-bit slices, with all the arithmetic registers on
the same card, the proper oard to replace is obvious at
once, and the operator can be notified.

If all the registers and transfer paths of the failed
CPU are verified by this step-by -step exercise without
locating the trouble, the hard core can be assumed to
be working, and the failed CPU can be commanded to
execute its own diagnostic programs. This will frequent­
ly occur when the failure is intermittent or data­
sensitive. Considerable field experience will be needed
in order to determine the optimum point for turning
over the fault-isolation process to the failed processor.
Putting the failed processor back on its feet, either for
executing its own diagnostic routines or following re­
pair, requires setting the Program Counter and com­
manding the processor to start executing instructions.
The presence of the first capability is implied by the
diagnostic process of loading and reading processing
registers; the second is already needed for initial pro­
gram loading.

Whether the failed processor or the survivor is doing
the work, the diagnostic programs can be entered into
the Operation List and executed as if they were user
programs. In this way, the diagnostic process can be
carried along on a time-sharing basis in parallel with
mission data processing. By adjusting the priority of
the diagnostic program, the operator or the executive
program can' react to the relative urgency of accomp­
lishing specific mission tasks as compared with restoring
full processing capacity.

SUMMARY

A mUlti-processor with independent Central Processors,
Input· Output Units, and Memories can provide grace­
ful degradation as well as sufficient compatibility with
a commercial computer to capture its entire operating
system. Computing load and the management of input­
output operations are balanced without establishing
a master-slave relationship betweon Central Processors.
Either Central Processor can diagnose the other one.
By a combination of special hardware and software
features the system is abJe to continue operation in
the presence of failures, including failures in the execu-

Compatible Airborne multiprocessor 357

tive bank of memory.

REFERENCES

1 E H MILLER E J DIETERICH P T FRAWLEY
The post attack command and control system-Airborne data
automation (PACCS-ADA), 481A
Proc Natl Aerospace Electronics Conf 1969

2 E H MILLER
Reliability aspects of the RCA/USAF variable instruction
computer
IEEE Trans on Electronic Computers Vol 16 No 5 1967
596-602

3 J A WARD
A panel discussion-Software transferability
Proc SJCC Vol 34 1969 605-612

4 R P HASSETT E H MILLER
Multithreading design of a reliable aerospace computer
IEEE Trans Aerospace Electronics Systems Vol 2 1966
147-158

5 H A MERIKALLIO F C HOLLAND
Simulation design of a multiprOCessing system
Proc FJCC Vol 33 Part 2 1968 1399-1410

6 J F KEELEY
A n application-oriented multiprocessing system
IBM Systems Journal Vol 6 No 2 1967 78-79

7 A D BEARD
RCA Spectra 70 basic design and philosophy of operation
Proc WESCON 1965

8 A T LING
The scratchpad oriented design of the RCA Spectra 70
Proc FJCC 1965

9 M E CONWAY
A multiprocessor system design
Proc FJCC Vol 24 1963 139-146

10 J B DENNIS E C VAN HORN
Programming semantics for multiprogrammed computations
Comm ACM Vol 9 1966 143-154.

11 M LEHMAN
A survey of problems and preliminary results concerning
parallel processors
Proc IEEE Vol 54 1966 1889 1900

12 RCA Information systems, Spectra 70 Tape-Disc Operating
System, Control System Reference Manual 1967 70-00-611

13 IBM-System/360 Principles of Operation S 360-01
Form A22-6821-2 1966774-75

14 RCA Spectra 70/46 Heference Manual 70-46-6011967 171
15 R J GOUT AN IS N L VISS

A method of processor selection for interrupt handling in a
multiprocessor system
Proc IEEE Vol 54 No 12 1996 1812-1819

16 J J DENT
Diagnostic engineering requirements
Proc SJCC Vol 32 1968503-507

Large-scale integration: Promises

versus accomplishments-The

dilemma of our industry

by H. G. RUDENBERG

Arthur D. Little, Inc.
Cambridge, Massachusetts

SUMMARY

This paper discusses the dilemma posed by the promises
~ade abo.ut large-scale integration, and the expecta­
tIOns derIved from the promises. Furthermore it
examines LSI's present form. In some instances ~hat
have appeared to be "broken promises" are not in fact
that at all. Some believers wanted to believe and thus
have suffered from self-delusion. Some promises cer­
~ainly ~ere unwise or premature, thus creating false
ImpreSSIOns. But others' represented a misunder­
standing between component and system engineers.

In tracing the developments of the past by means
of a few specific examples and then deriving broad
generalizations, the paper ignores past mistakes to
look at the optimum situation of realistic promises.
Even there, however, one must compare the conflict­
ing views on state of the art in components, such as
LSI, to that in systems, such as computers.

The system engineer's state of the art is a system that
has not been made before, and that may use both new
and old components-though the new components
must work in that system, should be reliable, and ought
even to be in modest production; that is, they should
have had some minimum of prior seMoning in develop­
ment, application, manufacture, and use. In contrast,
the component engineer's state of the art is a building
block never before accomplished, carrying with it the
suggestion of new functional capbailities and applica­
tions. Clearly; these two concepts of the state of the
art differ radically from each other, causing misunder­
standing even with realistic predictions. In the case of
extravagant promises, these may later be considered
misrepresentations if obstacles delay their realization
as devices and in system use.

Nevertheless, these views can be brought into har­
mony with each other. The paper explains how each
new concept, material, and component requires a
certain time for development, application, and sea­
soning before it is ready for a new system. Further-

The paper both analyzes and interprets the history of
the technical developments tha.t led from transistors
to integrated circuits to large-scale integration, describes
some of the pressures that have led· to premature
promises, and characterizes the technology leading to
LSI. Likewise, it looks at the introduction dates of
systems, as 'well as of the components that have imple­
mented such systems in the past. This review covers
such integrated circuits as gates or amplifiers to LSI­
type digital differential analyzers, which can perform
a variety of calculations and logic, or, in another ex­
am?le drawn from the memory field, from shift
regl~ters to scratch pad and· larger memories using
semIConductor arrays. Likely near-term uses of LSI
devices in new computer systems include the high­
speed buffer memory in the 360 Model 85 (IBM) 1 and
the MOS registers for some desk calculators (Auto­
netics).2 . more, any new computer system using seasoned new

359

360 Fall Joint Computer Conference, 1969

parts and components must itself be developed and
tested before introduction to the marketplace as a
reliable new computer rather than as an infant prodigy.
The question of the immediate realization of the prom­
ises of LSI -not only in prototype components but also
in practical computer systems-is therefore closely
related to the time delays of our· conventional design
sequences leading to system manuf&cture.

Some device manufacturers have made extravagant
predictions regarding LSI without realistic qualifica­
tions. Some qualifications have been eagerly ignored
or have been misinterpreted by prospective users
or system manufacturers. The a~ceptance of LSI in
computer systems depends as much on a system
designer's skill, courage, and entrepreneurial ability
as on the new inventions and developments of the
component maker. These factors can only be wedded
after a suitable "engagement and gestation" period,
which for most new computers has not yet been com­
pleted. Also costs and performance factors of competing
technologies must be compared and discrepancies re­
solved. A few examples of imminent system applica­
tions will be cited.

The paper also discusses how both LSI and computer
manufacturers share a vision of th~ future. The former
predicts a great potential for computers; the latter,
while remaining skeptical about today's LSI accom­
plishments, also shares this expectation. Readers,
then, should obtain a better understanding of the proc­
ess of assimilating new component$ into large systems.
With this knowledge, one should i be able to predict
technological progress without. constantly feeling
cheated by the amount of work required for its realiza­
tion and utilization. The challenge is how to utilize
the progress in technology that has led to LSI and
achieve the use of LSI in more capable computer sys­
tems in the future.

The promise of LSI

Large-scale integration is derived from the extremely
rapid evolution of the batch fabrication technology of
silicon planar transistors. When scientists learned t.o
fabricate 'hundreds and thousands; of transistors next
to each other on a one-inch slice or silicon-1ike minia­
ture postage stamps-the idea presented itself of adding
cross-connections and only separating them in blocks
that contain all the interacting parts of a large gate or
flipflop. As this became a reality : (integra ted circuits
are not yet ten years old) and engraving became even
finer, and functions smaller, engineers found they
could place hundreds of such b10cks of functions on one

(by now larger) slice of silicon. Again, the
thought was obvious-how many of these mig;ht one
be able to interconnect and. leave together on one chip?
Laboratory researchers continued to apply their in­
genuity to provide first multiple gates, then sever~:tl

flipfiops, then whole shift registers or adders on one
minute silicon chip; and by 1966 claimed 1000 active
elements-about 100 bits-on one MOS-intograted
circuit.8 Soon one saw 16-bit bipolar memory tCircuits
containing more than 100 active elements and tran­
sistors (Figure 1).

During the same time, electronic digital computers
became even more complex. During the 1950's, :LOOO or
more tubes, then perhaps 10,000 transistors, provided
the computing power for data processors, and operated
at microsecond speeds with magnetic core mem.ories,
containing similar numbers of cores and bits. By 1964:
however, the number of active elements in a computer
reached 100,000, and some of the largest (CDC 6600)
contained %-1 million diodes and transistors as
swi tching devices and used even more cores i11 their
core memories. The expectation was that, if economical­
ly feasible, on~ million to ten million gates and switching
elements operating at nanosecond speed would be re­
quired to provide the computing power desired for the

10,000 ,----------------._---.

Go

~
U
0::
w
Go 1,000
en
0::
o
t;
c;;
Z
<C
0::.
t:
J!! z
w
::E
w
-' w
w
:>

~
u.
o
0::
w
a:\
:IE
::I
Z

100

10

MOS REGISTERS ..-----1 ...

I

'SE ~/'" RIES 51 LABORA'mAY
/ PROGBESS

INTEGRATED CI RCUIT / /

.'LLST,PPING ~ FIRSTSILICON
SWITCH TRANSISTOR

~ MESA
TRANSISTOR,,/ TRANSISTOR
INVENTED

PLANAR
TRANSISTOR

~---~--~----~--~--~
1948 1952 1956 1960 1964 1968

Figure l-Complexity of integrated circuits versus year
of laboratory accomplishment

largest machines4 and their memories (Figure 2). 1"'here
was much discussion on how this was to be achieved
economically, practically, and without an unreasonably
large effort in component assembly.

As a result, computers were ready for integrated
cirGuits-and they are now eagerly utilizing each
generation of more complex ones, as each of these in
turn offers acceptable performance, ever higher speeds,
lower cost per device, and greater packing density.
The expectations for large-scale integration have been
derived from various pronouncements made by device
makers as early as 1964, and in the several succeeding
years. Initially, a greate r pervasiveness of integrated
electronics was proposed.5 There followed a number of
laboratory investigations of complex integrated circuits
and extrapolations of their characteristics were pub­
lished.6•7 •s These were quickly followed by analysis
of the potential advantages of LSI from the user's
standpoint,9.10 analyses of computer organization
architecture and partitioning,Il.12 as well as tempered
discussions of possible areas of utilization13 and cost.14
Computer· architecture has developed that permits
interaction and utilization of large blocks of com­
ponents-i.e., subsystems-without delineating all com­
binations of signals and their paths one by one. Thus,
computer theory is capable of dealing with large-scale

~ z
w
:E
I:L.

:::> o
w
a::
w
I:L.
en
Z
o
i=
u z
:::>
LL

~

:::>
u
a::
U

1,000,000 _-------------:::,.,-,1'"1

100,000

10,000,,-H--+--t~

1,000

100

10

TUBES INTEGRATED
TRANSISTORS CIRCUITS LSI

1950 1960 1970

Figure 2-Functional complexity of electronic computers

Large-Scale Integration 361

integrated circuits, and engineers examine all new of­
ferings of component manufacturers to assess their
suitability for one or another potential application.

On the other hand, such complex subsystems as an
LSI chip must embody far more thought and care in
design15 than a simple gate circuit. The LSI chip must
contain more than just a repetition and interconnection
of dozens of simple integrated gate circuits.Jn the past,
subsystems of discrete components also had to be tested,
modified, remeasured, and remodified many times
before they were ready for use in a large complex
computer. That represents a significant change from
early days, in which a transistor-if it had enough
sustaining and saturation voltage, gain, and switching
speed at a given cost, was considered satisfactory for
a new generation of transistorized co ;nputer.3. At that
time, it may have required one year to shake down a
transistor in a new logic circuit and three to five years
to develop the rest of a complex system-or two years
to develop the concepts of integrated circuits, with
two to four years to complete the system.I6 It might
now take three years to shake down LSI ideasJ and
another one to three years to complete the system
using them. This accounts not only for the develop­
ment times required for a given product but for the
total time required for developing the subsystem con­
cepts and configurations, and adapting these to the
newly conceived systems.

From such considerations various authors have de­
rived these expectations 5-14 for LSI circuits-

• Much more complex functions-Iogic,memory,
or other-on a single chip or a single package.

• Very low cost per elementary function or per bit.

• Far smaller size and relatively few connecting
leads than present computer circuits using inte­
grated circuits on printed circuit cards.

• Complete circuit compatibility with other semi­
conductor active devices.

• Off-the-shelf circuits or at least readily designed
custom circuits, available with the strokes of a
computer-controlled mask generator.

• A silicon device factory operated like a "Brownie"
photoprint shop: put in a negative and out conies
a ten~cent deckle-edged glossy print.

With such great expectations,it is not surprising
that many predictions and promises were made by the
device manufacturers. And many-even the more
extravagant-promises were believed. Most promises

362 Fall Joint Computer Conference, 1969

ma de by device manufacturers were based on the
concept that a further aggregation of existing standard
logic or memory circuits would be sufficient to fulfill
such promises. Little did they anticipate that much
new technology had to be developed in order to fulfill
simultaneously all or most of the above expectations
on cost, ease of design, compact packaging, and so on
.which had been individually predicted and promised.
Furthermore, computer makers have scaled up their
demands and expectations, and are attempting to
clarify the technical and interface requirements on
purchased subsystems-and a subsystem is what
LSI circuits really are.

Yet the makers of peripheral equipment, like dis­
plays or ~esk calculators, or of small memory buffers,
are close to the realization of such promises, and are
probably within a year of producing the equipment
based on the expectations for LSI circuits and the
promises of their vendors. The interaction between
vendor and user of LSI circuits is less time-consuming
for peripheral equipment systems which are much
less complex than large computers.

The accomplishments of LSI

Devices

At this point, it may prove instructive to look at
some of the accomplishments of the semiconductor in­
dustry in more detail, from the invention of the transis­
tor in 1948 to the complex circuits of the present
time. 17-22

Table I illustrates some key events in the steady
progression of innovations utilized by the computer
industry. The table shows not only the date of the
laboratory announcement, but also the time (one to
three years later) when such devices became available
for purchase. Figure 3 presents this data in graphic form,
plotting the circuit's complexity as a function of time.
Note that, in addition to a delay in moving from the
laboratory into first production, the mass production
of silicon transistors really followed only after the
planar process provided commercially useful devices
at costs competitive with germanium transistors. This
happened after 1960.

Figure 3 also shows the complexity of the integrated
circuits actually used in computers as a function of the
system's introduction date---another year or two
after, production of such circuits was in full swing and
produced reliable units at reasonable cost. The hori­
zontal spread in years between these curves is a mea­
sure of the time required-again and again, one might
add-to turn new concepts from the laboratory into

0.

%
(,)

a:
w
0.

10.000 _--------------'...-./ :

/' ::"

en 1,000
a:

/ :"...-/ 1/ ~
~
a:
!::
~ z
w
:E
w
...I
W
W
>
~
c(
u.
o
a:
w
co
:E
::::> z

100

10

/ f
II

LABORATORY PROGRESS .-..; ,/

/ :'
/ I

/ :
/ I

/ INTE~RATI:D
TRANSISTOR / CIRCUITRY USED IN
INVENTED/ COMPUTERS

/'
./

~~------------~--------~~-----
1948 1952 1956 1960 1964 .1968

Figure 3--Twenty-year growth uf complexity toward
LSI

J

1!972

producible devices, and finally into reliable devices
manufactured in large numhers at low cost.

The time span also indicates the time required :for
systems manufacturers to become acquainted wilth
the properties of such devices, utilize them in prototype
designs, buy a few, and again a few more; and finally
to purchase many more 38 their systems are sold. One
must remember that a device reaches large-sc:a.le, low­
cost manufacture only when the system for which it is
destined is also sold in large numbers.

To illustrate how many innovations must be accom­
plished in translating a concept into a finished device
and a manufactured integrated circuit, one ean look
at some of the key technical innovations23 ,24 and de­
velopments which led to the Minuteman II system in
1966 (Figure 4). This system employed integr~l.ted cir­
cuits in its guidance computer.

Systems

Let us now consider several computer systems25 that
first utilized various new semiconductor devi(~es

(Table II). The years 1951-1952, when the transistor
had already been in existence for three or four years,
saw the advent of some of the first electronic computers
using vacuum tubes. The first commercial computers
with germanium transistors were introduced in 1956,
when the silicon diffusion techniques were jruJt being
announced by Bell Laboratories. Diffused silicon

TABLE I-Dates of announcement of devices

and circuits

DEVICE
DATE OF ANNOUNCEMENT
LABORATORY FOR SALE

Transistor discovery 1948
Germanium transistor 1951 1952
Grown silicon transistor 1954
Diffused silicon transistor 1956 1957
PNPN stepping switch 1956
Planar silicon transistor 1958 1959
Integrated circuits 1958 1961
MOS registers (100 bit) 1966 1968
Bipolar memory array 1968 1969

(64 bit)

TABLE II -Computer active devices and dates
of first system shipment

YEAR FIRST
PRODUCED SYSTEM DEVICE TYPE

1951 Univac I Tube
1953 IBM 701 Tube
1956 Univac 1101 Germanium

transistor
1962 Telstar I Silicon transistor
1963 M;nuteman I S!licon transistor
1965 IBM 360 SLT hybrid

(silicon)
1966 Minuteman II Integrated circuit
1966 Univac, RCA, etc. Integrated circuit
1968 Various MSI scratch pad

memory
1969 Calculators MOS-LSI

reg'sters
1969 IBM LSI buffer

(CACHE)
1970 Various LSI memory

transistors did not find their way into computers until
about 1963 with Minuteman I, and 1965 with the IBl\1
SLT hybrids in the commercial Model 360. Monolithic
integrated circuits did not appear until 1966-1967
in military systems (Minuteman II) and commercial
computers (RCA, Honeywell, UNIVAC, Burroughs).
The first large .computers that will incorporate LSI
are still on the drawing boards, and are expected to
emerge in the early 1970's.

Large-Scale Integration 363

CONFIGURATION l

~:'TL

LEOIiND:

~RES£ARCH

mmCAL RESEARCH: ITl
PAll EXf'LOfilATOfI!Y
~ DEYELMMENT

~IIIMANIUM ,,,.., TO": OE

~AT.ZONE MEL TINO: 110. COftPS

~ICOH 'RANIISTO": Tt

~.TL

iDE MASKING: ITL

CONFIGURATION RESEARCH: eTL

~
~ONTN:.n: BTL

~A":FAlftCHILD

iO"_RCUtTl: WEST
iO"_RC~

"NUTEMANII
I I

TlIT I :"'ODI£TION
I I

1940 lM5 11&0 1910 11116

Figure 4-From transistor to Minuteman II, a twenty­
year sequence of innovations in solid-state devices

The relationship between component and
system innovations

1110

One of the reasons why systems do not immediately
adopt a revolutionary concept is that the concept must
have not only promise for the future, it must also com­
pete in cost or performance with existing technologies
in pr~ctical applications. Consequently, except for
military applications that value lightweight or other
factors of engineering performance more than cost,
the germanium transistor was used in. commercial
computers only after / it provided bot4 higher speed
and a lower cost than vacuum tubes.

The same principle holds for each later development
In fact, integrated circuits exceeded the frequency.
performance and cost less than most discrete silicon
or germanium transistors only after 1965, and thus were
not applied to commercial computers until about that
time (Figure 5).

The same applies to LSI; most types described or
available today are not yet out of the laboratory or
are only in pilot production.22- 29 These just about match
the costs of more conventional MSI or low-cost inte­
grated circuits. Vigorous competition is not yet ap­
parent, though it is anticipated.

Figure 6 traces the path of a system's components
to some of its subsystems and systems, relating the
previous data on the development dates of components
and systems. For additional perspective, we have
traced a few initial pertinent developments in materials
and basic research.

364 Fall Joint Computer Conference, 1969

--
1011r-__________________________ __

LSI ARRAVS AND
INTEGRATED CIRCUITS

1945 1955, 1965 1975

Figure 5-Swit.ching rate per dollar for computer logic
elements

1945 1960 1856 1960 11165
YEAR OF FIRST INTRODUCTION

LSI COMPUTER

r
!
!

:i :::.,,'
"

1970

li'igure 6-Tracing the development of new components
into systems

Interpretation

1975

One can examine6 ,8,l1 ,12 what must be accomplished
in order to turn an assemblage of integrated circuits
into a useful series of computer subsystems, whether
logic, memory, or other. For example:

• Improvements in LSI Manufacturing
smaller devices with finer mechanical and optical

accuracies
greater processing yields and lower costs
new package developments
multiple layer metallization and interconnections

• Improvements in Design
computer-aided logic and circuit design and

tolerancing
automatic mask generation
test sequence and operation by computer

• Improvements in Applications and Development
diagnostic routines and their auto mature
simulatiop
development of more appropriate architecture

and hierarchies for systems and memories
improved methods for. reliability assessment

I t is apparent that much of the implementation in
development of such LSI circuits borrows heavily froID
the computer field itself in terms of mechanizing the
performance of engineering design, development, test
and diagnosis at many levels of device circuit, and
subsystem engineering. This is in addition to the proc­
ess improvements required jn manufacturing the
circuits.

In the ne,v medium of the silicon crystal, one can­
not test, trouble-shoot, and correct breadboards in
the traditional way-that is, by using an oscilloscope
or meter and test probes. The circuits are too minute,
too buried under other connections and insulating
layers, for po~nt-by-point signal tracing to be effective.
Thus, both systems and device engineers must. use new
methods of diagnosis and analysis, must develop soft­
ware and simulation techniques in order to understand
what is going on within their own devices. This is
clearly an age of computers building computers. The
needs of the LSI laboratories in the semiconductor
industry regarding computer design, simulation, and
test make this very clear.

The device maker and the computer builder H,re
inevitably linked to one another. In fact, the device
maker might turn to the computer builder and say,
"We thought you already knew how to design, test,
and diagnose logic and memory circuits by use of
computers. But now we find that we have to learn this
from the beginning."

Even with more rapid and effective utiliziation of
computers in LSI design, manufacture, test, and im­
provement, time delays must be expected between the
first versions of this new concept and its beeomin!~ a
reliable low-cost product, and between this intermedi:a,te

step and the ultimate utilization in a large commercial
electronic system such as a computer. Many interfaces
must be matched, the previous, but stiL advancing,
technologies must be overtaken, economic trade-offs
performed, and investment decisions reached. Financial
decisions are generally the most important, and these
frequently require the longest to .resolve in large or­
ganizations. Confidence in the new LSI product must
pe established, its reliability examined, the credibility
of its manufacturer and his delivery and cost promises
examined, and finally any alternative approaches again
compared.

Of course this all takes time. But therein lies a dilem­
ma. A new product will not get off the ground if some­
one does not risk using it; its manufacture will not be
initiated if there are not at least prospective customers,
and establishing reliability is difficult and expensive
w:thout prototype system use and field testing. Con­
sequently, it is tempting to brush away the dilemma
by early promises and premature announcements.
Many observers believe that without forward looking
claims such new concepts and developments would
only evolve at a snail's pace. "Nothing ventured,
nothing gained" certainly applies in this case. And the
only valid realization of the promise of LSI is the de­
livery of such circuits and their successful use in an
electronic system.

In interpreting the accomplishments to date, and
the reasons why some expectations have not been
realized, one discovers the following:

• The definition and structure of an LSI computer
are not. fully understood, but are still evolving.
Yet progress toward large-scale integration ap­
pears inevitable. The semiconductor industry has
a tremendous commitment and momentum toward
further integra~ion of circuits.

• Considerable time is required for the exchange of
ideas and their assimilat:on, in order to accomplish
the experimental interaction required to turn con­
cepts into practical embodiments in systems and
to test these in the field.

• While both component and computer industries
may be learning from previous difficulties, many
of the interactions required now between system
and device designers remind one of a similar mis­
match of expectat:ons and performance requiring
further interactions30 during the early days of
simple integrated circuits.

Large-Scale Integration 365

Further expectations for LSI

Some might conclude that the next step inevitably
leads to the further integration of LSI -integration
~ubed or GSI (for Grand-Scale Integration). More
~Ikely, . however, the evolutionary process will approach
In varIOUS ways the concepts of molecular electronics
in which simple as well as extremely complex electroni~
functions are delineated and designed into the molecular
arrangements of solids, such as a small chip of a crystal
of s~licon. Furthermore, it seems that th~ concept
a~plIed over a~d over is that of batch fabrication, ap­
plIed to a medIUm particularly well suited to this con­
cept.

The computer-on-a-slice concept may not soon be
here; instead the memory-on-a-slice, the arithmetic
processor-on-a-slice, the internal communication sys­
tem-on-a-slice, or whatever, will be. The most likely
subsystems amenable to implementation in LSI will
be those suitable to repetitive batch processing, and
those requiring relatively few connections to interface
with other parts of the system. Significant in all cases
is the repetitiveness of internal structure and parti­
tioning that provides great functional capability with
relatively few external leads. When there are a million
devices inside one LSI chip, such will be called a "mega­
electronic" device. But this version is still far into the
future. Less complex circuits now provide good per­
formance at low cost, and so will continue to be used
for some time to come. But the underlying assump­
tions--that by shrinking device size further one will
gain both more devices per unit area and higher in­
ternal speed-are real and lead to the expectations of
still further increased performance at lower cost per
function.

While many practical difficulties must still be over­
come, the fundamental physicallimits3 permit at least
another order-of-magnitude improvement over the
performance-to-cost ratios of many present integrated
circuits of medium and large scale.

Near-term applications most likely for LSI circuits
are the following.31 ,32

Memory buffers

The rapid increase in speed of logic circuits has forced
modest progress in core memory speed and cost, but
has far outstripped improvements in the speed of access
of disc memories. Thus, opportunities for buffers be­
tween disc and core memories, and between core memo­
ries and fast logic circuits, exist. The LSI (MaS and

366 Fall Joint Computer Conference, 1969

bipolar) circuits are well suited to these respective ap­
plications, and are now being tried aggressively by some
designers.

Small memories and logic systems

The ease of interfacing with related integrated circuit
logic makes semiconductor LSI memories very suitable
and reasonably inexpensive for use in small systems.
Pending applications are in desk calculators and in
character generators for display; Existing medium­
scale integrated (MSI) circuits are being used in lamp
drivers and scratch pad 16-bit memory devices.

Linear circuits

Just as applications for linear: integrated circuits
lagged behind those for digital cil'cuits, so LSI linear
circuits are expected to develop more slowly than
digital ones. However, a number of quite complex cir­
cuits for TV and stereo radio have been developed by
now, all of which certainly may be classed as medium­
scale integration. Sophisticated operational amplifiers
and active filters are also worthy of consideration.

Other applications

Another widely used circuit of. the future is likely
to be a serial or parallel address encoder/decoder, which
can be set by means of external connections or preset
by the manufacturer. This class of circuit will be utilized
in remote signaling and TV tuning, intercoms, mobile
communication sets, and automobile or other command
multiplexing systems. It also resembles certain address
encoders/decoders used in computer circuits. While
most of the cited applications have not yet been devel­
oped widely, they will require c~rcuits ranging from
four to 32 bits, which would barely be considered in
the LSI class. Further applications are in digital dif­
ferential analyses and other specialized calculator or
function generator circuits.

CONCLUSION

This paper has looked at some of the promises made by
device developers about LSI and; examined their ac­
complishments so far. The inescapable conclusion is
that only medium-scale integration is here today. It
will be another year before large-scale integration will
be available, reliably manufactured, and accepted for
use in critical portions of electronic computers.

It i~ also apparent from this paper that, in order to
be applied in useful computer systems, technical in­
novations must undergo further adaptation to the

specific systems, and vice versa. This mutual improve­
ment and development requires human interaction
and communication33 during months or years of time.
Of course, one can only predict the orderly pro~~ression
of technology and its gestation with time, and progre8-
sion and gestation may be speeded by new developments
or delayed by unfortunate experiences.

One can certainly expect the future evolution of
large-scale integrated circuits and their increased
participation in electronic systems-not only in com­
puters, memories, and peripherals, but also in tele­
phone and industrial systems; and in automobile,
appliance and entertainment consumer products.
Only the time scale is unknown. These visions of LSI
are on the horizon-to predict when they will draw
within arm's reach is not the purpose of this paper. But
once the first application has been successfully intro­
duced, many more will follow rapidly.

REFERENCES

1 J K AYLING R D MOORE G K TU
A high-performance monolithic store
ISSCC Digest of Tech Papers 12 196936-37

2 A B PHILLIPS
Private communication

3 R L PETRITZ
Technological foundations and future discu.'tsions of large
scale integrated electronics
Proc FJCC Vol 29 196665-87

4 Air Force Systems Command
Integrated circuits come of age
Andrews AFB publication 1966

5 P E HAGGERTY
Integrated electronics-A. perspective
Proc IEEE Vol 52 Dec 1964 1400-1405

6 R D LOHMAN
LSI-The fabricator's viewpoint
ISSCC Digest of Tech Papers Vol 10 Feb 196730-31

7 R L PETRITZ
Current status of large scale integration. technology
Proc FJCC Vol 31 196765-86

8 J S KILBY
Device fabrication Jor large scale integration
ISSCC Digest of Tech Papers 9,30 Feb 1966

9 M G SMITH W A NOTZ
Large scal.eintegration from the user's point of view
Proc FJCC Vol 31 1967 87-94

10 G C FETH M G SMITH
Large scale integration perspectives
Computer Group News Nov 196824-32

11 H R BEELITZ S Y LEVY R J LINHARDT
H S MILLER
System architecture for large scale integration
Proc FJCC Vo] 311967 185-200

12 L C HOBBS
Effects of large arrays on machine organization and hardware!
software trade-offs
Proc F JCC Vol 29 1966 89-96

13 M E CONWAY L M SPANDORFER
A computer system des-igner'8 view of large scale integration
Proc FJCC Vol 33 1968835-845

14 R N NOYCE
A look at future C08ts of large integrated arraY8
Proc FJCC Vol 29 12966 111-114

15 N CSERHALNI 0 LOWENSCHUSS B SCHAFF
Efficient partitioning for the batch-fabrieated fourth-generation
computer
Proc FJCC Vol 33 1968857

16 E G FOUBINI
The implications of solid-8tatt3 technology on electronic systems
ISSCC Digest of Tech Papers Vo110 Feb 196729

17 J BARDEEN W H BRATTAIN
The transi8tor-A semi-conductor triode
Physical Review Vol 74 1948 230

18 W SHOCKLEY M SPARKS G K TEAL
P-N junction transistors
Physical Review Vol 83 1951 151

19 R L WALLACE JR W J PIETENPAL
Some circuit propertie8 and applications of N P N transistors
Bell System Tech Journal Vol 30 1951 530

20 C A LEE
A high-frequency diffu8ed-ba8e germanium transistor
Bell System Tech Journal Vol 35 195623

21 I M ROSS
A four-circuit silicon diffused P N P N stepper .~witch
1956 Device Research Com

22 64-bit read-write memory cell
Fairchild Semiconductor Preliminary Data Sheet No MML
9035 Sept 1968

23 Patterns and problems of technical innovation in American
industry
Arthur D. Little Inc Federal Clearinghouse V S Dept of

Large-Scale Integration 367

Commerce Rpt to Natl Science Foundation PB 181573
Sept 1963

24 Management factors affecting research and exploratory
development
Arthur D Little Inc Federal Clearinghouse U S Dept of
Commerce Rpt SD 235 to Director of Defense Research
and Engineering AD 618321 April 1965

25 Annual supplement of computer characwristics quarterly
Adams Associates Inc Bedford Mass 1968

26 A F BEER K H NICHOLAS I H LEVIN
_-1 MOST memory us-ing discretionary wiring
ISSCC Digest of Tech PaperA Vol 12 Feb 1969 142-143

27 R F HERLEIN A V THOMPSON
An integrated associative memory element
ISSCC Digest of Tech Papers VoI1Z Feb 196942-43

28 A RASHID
Iligh-8peed LSI current mode-logic arrays for LIMAC
ISSCC Digest of Tech Papera Vol 12 Feb 196968-69

29 H YAMAMOTO M SHIRAISHI T KWOSAWA
A ;"O-NS, 144-bit N-channel JfOS-IC me'mory
ISSCC Digest of Tech Papers Vol 12 196940-41

:30 J A MORTON
The Microelectronics dilemma
International Science and Technology Vol 55 July 1966
35-44

31 B AGUSTA
A 64-bit planar dou,bled-DiJfu.sed monolithic memory chip
ISSCC Digest of Technical Papers Vol 12 196938-39

32 T R FINCH
LSI-Digital electronics
ISSCC Digest of Te0h Papers Vol 10 Feb 1967 13032-33

33 J' N SHIVE
The properties, physics and design of 8emi-conductor devices
D Van Nostrand Co Inc Princeton N J 1959 471

What has happened to LSI-A supplier's view

by C. G. THORNTON

Philco-Ford Corporation
Blue Bell, Pennsylvania

INTRODUCTION

Three years ago at the Solid-State Circuits Conference
in Philadelphia, the concept of large-scale integration
was already considered to be sufficiently far advanced
as to be the main theme of the Conference, with a
large number of technical papers showing beautiful
colored slides of potential "products/' containing
several hundred transistors interconnected with two
layers of metallization on a single chip of silicon. Re­
lated papers were presented at the Fall Joint Computer
Conference that year, and semiconductor vendors had,
for some time, been indicating the benefits that would
accrue to the straightforward extension of the princi­
ples of planar integrated circuits to more complex
"subsystems" on a single piece of silicon. The concept
appeared to be clear-all that remained was its imple­
mentation; yet, as of the start of 1969, no major
systems had been constructed with LSI and predictions
of significant volume usage were still one to two years
away. One can legitimately ask whether the darling
of the industry a few short years ago has become the
"bete noir" of today's computer industry, or whether
most of the problems have been solved and we are
well on the way to practical commercial utiliza­
tion? This paper reviews some '~f the more significant
problems that have required solution during the past
four years, in order for LSI to now begin to play its
role as a major element in new system design.

The situation can best be 'discussed in terms of the
specific problem areas that have been encountered since
1964, in attempting to implement LSI. These include:

1. System design.
2. Product design.
3. Fabrication capability.
4. Testing.
5. Packaging.
6. Reliability.

It is the thesis of this paper that a number of specific
problems existed in each of the above areas which
would logically have been expected to require several
years of effort in their solution. Each of these is dis­
cussed.

System design

Since the functional density which can be practically
obtained on a single MOS chip has led that obtainable
with the bipolar approach, early LSI systems design
experience was based on the use of MOS technology.
Although individual MOS-LSI circuits were co m­
mercially available four years ago, sales for such de­
vices to be used in conjunction with conventional
components were very limited. It was quickly realized
that it was nearly as difficult to build a cost effective
computer system which partially used MOS-LSI, as
it is for a person to become partially pregnant. For
example, compatibility problems arose when systems
were redesigned to use MOS rather than bipolar shift
registers. Mixed systems were designed, oI).ly to' find
that by the time the cost of the interface circuitry and
the clock drivers were included, it was more economical
to use a larger number of smaller bipolar register

369

370 Fall Joint Computer Conference, 1969

elements. More significantly, attempts to partition
parts of existing systems into blocks containing 100
gates or more led to excessive interconnections to the
discrete IC control circuitry, and to new packages
containing up to 60 leads. Chip sizes tended to be
14,000 mils2 or larger, and it becamei a costly experience
both to user and supplier to learn that such chips were
at that time well beyond the state of the fabrication
art. For optimal utilization of LSI, the system designer
has found that he must rethink his system from scratch
in terms of the new technology, he must be able to
partition the system into tractable chip sizes with
reasonable gate-to-pin count ratios, with considerable
advanced care required at the partitioning step to
insure the ability to test the reSUlting functions. It
has also required studies, such as the LIMAC LSP
demonstration vehicle, the design of small calculators
and the appearance of a variety of standard LSI
functions to assist in shaping new design concepts.
These concepts include distributed control and memory,
with integral chip decoding and encoding, and the use
of read-only memory subroutines, among other tech­
niques~ Just as the active device count required to
perform a function went up dramatically when the
designer went from the use of discrete components to
integrated circuits, the systems designer has had to
learn to waste LSI circuitry effidiently in order to
make his system design compatible with the tech­
nology.

Given that the entire system must be redesigned
and the associated expense, it is not surprising that
most initial LSI equipments have been limited in
scope. To attack the broader pr0blem of designing
large LSI computer systems or major product lines of
peripheral systems, only a few us~r companies out of
the entire industry initially made: the total commit­
ment required (i.e., 20 to 50 engi~eers with available
in-house or vendor prototype devi~e fabrication facili­
ties). Such programs typically started three to four
years ago using MOS technology, and have just this
year" reached a level of completion: where prior system
commitments can be made.

Product design

Progress toward LSI may also have been impeded
by the proffered viewpoint that; the semiconductor
vendor would supply the necessary partitioning and
design capability. The semiconductor vendor suggested
that he would integrate his facility upward to encom­
pass subsystem design in much the same fashion as
he had previously taken over mu~h of the computer
circuit design. On the contrary, . many of the more

successful total system programs today seem to be
those where the vendor is supplying design rules relating
to his fabrication capability, and the custom chip
designs are being accomplished directly within the
systems houses. In 1969, requirements have already
existed for over 500 specialized custom chip designs
needed by approximately a dozen users to implement
prototype systems. The nu~ber of engineers required
to accomplish these designs, even with a modern
computer-aided design capability, far exceeds the
number available in vendor companies. It would be
irrational, moreover, to expect semiconductor device
manufacturers with their general purpose circuit engi ..
neers to compete with major equipment houses in
optimizing the partitioning and chip design in a variety
of special system applications. Failure on the part of
many system groups to get sufficiently involved in
the design of custom LSI has slowed the rate of usage.

The main thrust of the component vendors has
been to increase the breadth and complexity of their
"standard product" lines, since it is only through
volume production of such standard products that the
ultimate lowest costs per chip will be obtained. For
certain classes of circuits, the standard produ'ct ap··
proach is moving rapidly, with the development of
such devices as shift registers, read-only memories,
random access memories, A-to-D converters, D-to-A
converters, BDA's, parallel-to-serial and serial-to··
parallel converters, counters, etc., being made a.vaila··
ble.

Regardless of who designs the LSI componentis, the
tools were simply not available to do the job until
recently. As a minimum, the following are required:

Logic simulation techniques

Techniques are required for simulating the perfor ..
mance of the blocks obtained by a trial system par··
titioning. Such simulation should include not only login
simulation, but should ideally take into account circuit
delays. Some LSI systems designers have not been
content to rely on computer simulation, but. have
constructed simulation cells, or macro versions of the
subcircuits that they plan to work with, so tha,t they
can physically simulate the performance of the entire
LSI chip. Such simulation techniques have been in
development in a number of laboratories for several
years, and several computer programs have also now
been developed to attack this problem.

Standardized design approaches

During the past three years, the cost of obtaining a

few custom LSI chips from a vendor has remained
remarkably constant in the range of $25,000 to $50,000,
with several months to supply prototypes. Vendors
and users have both attempted to improve the situ­
ation by using computei:' aids, and in some cases by
using a standard cell or building block approach. A
typical design approach is shown in Figure 1. The
individual steps may all be performed manually or
they can be accomplished by a computer operation.
The numbers in the corners of the blocks give a rough
indication of the priorities in terms of the development
of computer techniques to replace manual methods.

It is noted that, after simulation and testing, higher
priority is given to automatic mask generation than
to the more complex problem of placement and routing.
This stems from the need to eliminate the time con­
suming and error prone operation of ruby cutting as
well as the need to obtain the required precision without
excessively large camera reduction. Most large MOS­
LSI chips to date have been accomplished with manual
placement and routing, with computer placement and
routing just becoming an effective tool.

The "standard cell" may vary in complexity all the
way from a complete gate or flip-flop configuration
to cells as small as individual transistor or line seg-

I
1
1

LOGIC
BLOCKS

I I 1- ___________ ~

(4) (6)

DIGITIZE NTERCONNECTION
ROUTING

ARTWORK
GENERATION

(3)

TESTING

CELL ASSIGNMENT
OR

(5)

CHOICE OF DESIGN RULES

(7)

TRIAL CELL PLACEMENT
OR

DEVICE LAYOUT

Figure I-LSI product design

What has Happened to LSI 371

ments.The larger cells are easier to use in computer­
aided design, and computer-aided placement and
routing programs are more successful with this ap­
proach. Although the technique does not achieve
minimum area, it has permitted major reduction in
prototype design and turn-around time. The near
practical development of all of these techniques has
taken three to four years to accomplish, with more
improvement to come.

Common design rules

Another major obstacle has resulted from the fact
that mUltiple sourcing of user design circuits requires
a certain degree of unanimity among suppliers' design
rules and processes. After four years of MOS process
evolution, it is only this year that parts can be ordered
f~om as many as three suppliers, using nearly the
same set of masks. The situation in bipolar has been
equally chaotic, with no effective second source capa­
bility" More than one major system has gotten into
serious trouble with a single source of LSI-MSI that
failed to materialize. Other users are going to be very
reluctant to move ahead with LSI, until some types
of multiple sourcing can be found.

F abrica.tion capability

The ease with which photographs of large complex
chips with multilayer metallization could be obtained
for pUblication a few years ago has proved to be grossly
misleading in terms of the magnitude of the technical
problems. As a matter of fact, a number of fundamental
technical problems initially existed which made it
economically impossible to produce LSI devices. Three
of the more significant of these are discussed here.

These are:

1. Defect density.
2. Multilayer metallization.
3. Mask making.

Defect density

Chief among problems discussed was that of defect
density, but the tendency was to greatly oversimplify
the expected solution to the problem. Many managers
felt that the defect density would be reduced largely
by "greater care in processing," or "use of clean room
facilities," rather than requiring the development and,
in some cases, the invention of totally new fabrication
techniques to successfully produce these devices.

In 1964, the defect problem was treated analytically
by Murphy,2 who showed that with the existing defect

372 Fall Joint Computer Conference, 1969

densities of several hundred/ cm, 2: economically practi­
cal arrays could be expected to c6ntain about 10 gates
per chip on the order of 30 to 60mils2 in size. Further
studies have shown that even with appreciable cluster­
ing of defects, a 98 percent yi~ld of single gates is
required to obtain a reasonable Yfeld at the 100 gate/
circuit level,3 One approach to finessing the problem
was through the discretionary wiring approach. U n­
fortunately, this technique developed its own set of
problems, which took twice as long to solve as originally
estimated. The problem of eliminating the defects was
also greatly underestimated by single chip LSI sup­
pliers, and large chip yield forecasts were made which
could not be met. The sources cjf defects were subtle
in nature, and their solution has tequired chemical and
metallurgical process changes in wafer preparation,
photoengraving, metallization, and mask making. It
has only been during the past- year that, under labora­
tory conditions and with several new process innova­
tions, the required low defect' densities (less than
10/cm2) have been attained to permit fabrication of
bipolar arrays contai~ing hundreds of components on
large chips. A good yield, circa 1969 (greater than 20
percent), is illustrated in the wafer map shown in
Figure 2 for 256-bit shift registers, each containing
2067 transistors on 100X 100 mil chips.

The defect problem was thougpt to be simpler with
MOS, in view of the smaller number of processing
steps. MOS arrays did, in fact, initially yield better
in somewhat larger chip sizes than bipolar, with con­
siderably higher yields on a per~component basis be­
cause the active devices require less area than bipolar
devices. However, the MOS limit was soon reached

Figure 2-Map of wafer of 256-hit shift registers

at less than twice the chip size of bipolar, as it was
found that each 1\-10S process step was more critieal
than its bipolar counterpart. Specific MOS problems
relate to the surface-sem~itive nature of the devices,
to the high fields which exist, and to the susceptibili.ty
of the thin gate oxide to contain specific types of defects.

l\'Iany 1964-65 MOS circuits were fabricated with
only 1000 A of oxide in the gate region. The thin oxide
was required in order to overcome the high level of
fixed charge density, QS8, in the oxide, and obtain
tractable levels of threshold voltage. Clock voltages
in the range of 25 to 30 V were used to overcome the
high threshold voltage characteristics of these devices,
and obtain reasonable speeds. Thus, fields as high as
3X 106 V /cm were impressed across the oxide, with
even higher yields at any thin spots that might be
process induced. If one examines the detailed topology
of 1\10S integrated circuits, one also finds stepped
regions in the oxide and metal edges where even higher
field concentrations exist, where defect-free devices
break down when overstressed. The maximum oxide
breakdmvn field for near perfect planar metal-Si02-

silicon structures has been determined in this and
other laboratories4 to be approximately 107 V / cm, not
allowing for thin spots in the oxide. Thus, these deviees
were extremely marginal in design. It. remained for
the industry to learn how to reduce and control the
oxide charge, permitting thicker gate oxides to be
used with greater safety margins.

In addition to the problem of leakage through the
oxide, 1\110S device performance and stability depends
on the control of a number of interface effects 9,t the
dielectric semiconductor interface, most of which have,
during the past four years, become well understood by
physicists working in research and development labo­
ratories, but whose control at the production level is
only now becoming a reality. An example of the type
of problem is that of field inversion where MOS deviees
lose their inherent isolation properties when the inter­
face state density or field charge in the field oxide :are.
allowed to vary. Specifically, in 1964, there ·were only
a few effects associated with planar oxides that were
of much concern to integrated circuit manufacturers.
These included surface recombination which affected
transistor {3 and diode leakage, and the presence or
absence of surface contaminants on the oxide which
were believed responsible for the occasional channelling
problems on life tests. The high doping density and low
voltages used in most bipolar circuitry made th.?se
devices relatively resistant to surface problems. vVlth
the advent of MOS devices, a number of additional
effects became important, and new discoveries were

X

R

SURFACE IONIC
CONTAMINANTS

x R X X

R R
X []

R
[]

STATES IN OXIDE, FAST STATES SLOW STATES
IONIZABLE BY IN SILICON IN OXIDE
RADIATION AT INTERFACE NEAR INTERFACE

N-NEUTRAL
IONIZABLE

e - IMMOBILE CHARGE

[]} DONOR STATES Q } ACCEPTOR STATES
~ [CJ

--ELECTRON

Figure 3-Distribution of charges in a MOS structure

made which have now been determined to affect the
yield of both MOS devices and the smaller geometry
bipolar devices desired for LSI. These include the
presence of fast and slow ions diffusion in the oxide,
the presence of fixed charges in the oxide whose magni­
tude is a function of processing conditions and applied
fields, and a number of different kinds of minority
carrier trapping effects in the oxide and at the inter­
face. The complexity of the problem is seen in Figure 3,
which shows the location of charges in a planar oxide
structure.

High yield production of LSI devices requires special
tests at each manufacturing step to control the im­
portant oxide charge effects. Control charts in new
areas must be maintained, and the effects of process
variability on these effects must be well understood
by production engineering. 'Vhereas such control has
been readily understood and applied in the R&D line
and at the pilot line level, many companies have been
slow to implement these procedures in production,
due to the considerable re-education process that is
required. lVIore than one company has been severely
disappointed in their attempts to place LSI in pro­
duction.

Another important limitation in increasing the
yield and reliability of LSI devices has been the fact
that these very complex structures literally defy
analysis of internal yield and reliability problems as a
function of the terminal parameters of the finished
device. Traditionally, single transistors had been in­
corporated on each chip as an aid in process control,
and for determining causes of low yield.

As the detailed nature of the many sources of device

What has Happened to LSI 373

problems has evolved, it has been necessary to devise
special test structures, each used to examine a par­
ticular effect in the absence of other effects. Two
structures which are used for this purpose are illustrated
in Figures 4(a) and 4(b). The structures shown test
for the following individual effects:

1. Transistor properties and field inversion,
2 .. Mobile and fixed charge in the oxide,
3. Fast and slow interface states,
4. Surface ion migration and surface conductivity,
5. Leakage between p regions and leakage in large

and small periphery p-n junctions under a
variety of oxide thicknesses and metal over­
layers,

6. Shorts and leakage through different thick­
nesses of oxides over different suface conductiv­
ity types and with varying topologies (small and
large oxide steps),

7. :Metal and p-region resistance and electro­
migration susceptibility under various localized
conditions,

8. :Metal continuity over steps,

Figure 4-Test vehicles
a. Surface effects test vehicle

374 Fall Joint Computer Conference, 1969

b. Oxide integrity and metalliza.tion test vehicle

9. Contact resistance,
10. Resistance of multilayer vias,
11. Leakage through multilayer dielectric,
12. First - and second-level metal resistance.

Such test vehicles must be used in the laboratory,
pilot production, and production operations to control
the process and optimize the yield, yet they took two
years to develop and apply after the basic effects
were known.

Multilayer metallization

Most of the early LSI demonstration photographs
showed multilayer metallization. In many cases, it is
possible to obtain a 2:1 reduction in chip area with the
application of an additional layer of interconnections.
In the case of the discretionary wiring approach, its
use was absolutely essential. Initially, it had been
expected that the major problem in the use of two­
layer metal would be due to $horts through the di­
electric. This did turn out to be a very significant
problem in the case of discretionary wiring, where an
entire wafer is covered with second - and third-level
insulated interconnections which must be free of shorts.

In the case where the actual shorts through the

oxide are not present, there may still be a large number
of thin or weak spots which are susceptible to pre­
mature breakdown. The evolution of a uniform hil~h­
strength dielectric for multilayer technology involved
tests such as those shown in Figures 5(a) Emd 5(b).
In this type of test, thin metal is used in the upper
layer so that when a short develops, the energy dissi­
pated will evaporate the metal away from holes­
thereby" clearing" the short, and restoring the original
condition. Thus, it is possible to impress consecutively
higher and higher voltages between the two layers,
exposing the weak spots one-by-one, until the: ultimate

Figure 5-Breakdown strength of oxides in a
multilayer test vehicle

a-t. Dielectric strength test vehicle

a-2. Enlargement showing self-healed pinhole

1000 r__-------------------,

~
~ 100

.S

;

o
VOLTAGE (VOLTS)

h. Pinhole density for silane-vapor-plated and
R-F sputtered Si02 on delineated aluminum

5,000 A and 10,000 A thick

VP/5

dielectric strength is determined. The "stair-step"
plots, shown in Figure 5(b), show the wide differences
between silicon oxide dielectric layers prepared with
differing processing conditions. It is now possible to
prepare both chemical vapor-deposited and sputtered
Si02 layers which are virtually free of shorting-type
defects within the area of a single LSI chip, and success
is . also being reported on large ·.discretionary wired
wafers with a combination of these techniques.

In the case of smaller chips, opens proved to be of
more significance than shorts, with problems developing
at the vias between upper and lower metallization
levels. In order to limit their size, such vias must be
kept small in area, and it was quickly d~termined

that the presence of thin oxide layers or other con­
taminants at these points would produce either opens
or an unacceptable amount of via resistance. Under
non-ideal conditions, a test structure such as included
in Figure 4(b), containing 18 vias in series, commonly
shows resistahces on the order of 10 to 20 ohms. In
some LSI circuits, the tend~ncy for a high resistance
to be present is increased by the occurrence of cell
potentials, which produce an anodizing effect during
via etching, and which is a function of a particular
circuit topology. Thus, the same four vias in a circuit

What has Happened to LSI 375

containing 120 vias might be found to be open without
any obvious reason. Metallization problems also de­
veloped with electrical opens occurring at the point
where the upper-level metal steps down over an abrupt
oxide cut to reach the first-level metal, and the metal
at these. points tends to become constricted. It appears
to have taken the better part of two years of effort in
various industry laboratories to develop multilayer
processes· to the point where they can be used to
achieve competitive yield and reliability levels with
single-layer metal products. Even so, rules governing
the via area znd shape of the via cut must be carefully
chosen and strictly adhered to.

The application of multilayer metallization to MOS
is less critical for via resistance, since the circuit
operate at high impedance levels. A different type of
fundamental problem arose, however, when it was
.found that the application of the second layer of di­
electric caused drastic changes in the electronic\properi­
ties of the first-level silicon-oxide interface.

Not only temperature and radiation effects (in the
case of sputtering processes) exist, but rapid diffusion
impurities can be introduced which penetrate to the
original interface and alter the charge condition. Thus,
the same level of new understanding and special process
control is required as was the case in the original de­
velopment of stable high performance MOS devices.

Mask making

In 1964 and 1965, severe problems existed in mask
making which alone would have made it impossible
to manufacture LSI. Problems existed in both image
quality and image registration.

In the case of image quality, lenses were not general­
ly available to handle the conventional lOX final step­
and-repeat reduction with a sharp field in an area
greater than a 75 X75 mil chip. Attempts to step at

, a larger size and then reduce a multiple pattern were
also limited by the lens quality and photoprocessing
techniques, so that considerable size and corner com­
ppnsation had to be built into the original artwork to
obtain something close toa usable mask.

As better lenses became available, image quality
improved, but problems remained in sizing and regis­
tration which still limit maximum practical array size.
A high yield of circuits of typical" state-of-the-art"
design generally requires the placement of successive
in),ages, one within the other, with a separation of a
tenth of a mil, and a tolerance of this of 0.05 mil. In
an LSI device, one might logically wish to obtain
such registration at opposite ends of the diagonal of
a 115 mils2 chip. In the mask-making stepping process

376 Fall Joint Computer Conference, 1969

--,---------
alone, three sources of error occur (under optimum
conditions) which affect this registration: (1) vertical
stepping error ±0.01 mil, (2) rotational stepping error
±0.01 mil, (3) size reduction error ±0.02 mil (1 part
in 4000 reduction error over a 2" stepping table travel).
Adding these tolerances leads to ±0.040--mil regis­
tration error in the mask, which means that the pro­
cessing opera tor must align her mask during device
fabrication to ±O.Ol-mil-a bare possibility. Thus,
any attempt to fabricate circuits at sizes larger than
115 mils on a ~ide with 0.010 mil registration require­
ments has automatically placed severe limitations on
the expected yield, and practical bipolar LSI design
rules have therefore been kept to larger tolerances or
smaller chip sizes. Unfortunately, optimum MOS per­
formance demands even j ighter design rule tolerance
(±0.08 mil on gate overlap).

Testing

LSI raised many new problems in testing, some of
which were initially recognized and some which only
became evident when manufacturers attempted to
move LSI testing to the production level. It is now
generally recognized that for circuits containing more
than 50 gates, one cannot practically exercise all of
the logic contained on the chip as a method of testing,
since the time required to accomplish this quickly
stretches into many hours or days per circuit; rather,
test programs must be computer-generated which rely
on the fact that only certain kinds of faults can practi­
cally exist in the device, and which merge redundant
test patterns. Some fault conditions can only be de­
tected by the introduction of specially constructed
error inputs. Even with such factors taken into ac­
count, however, an effective test sequence can only be
expected to become available when the test problem
has been taken into account at the tim3 of system
partitioning and circuit design. In some cases, it is
necessary to break feedback lines on a chip to reduce
sequential networks to combinational networks, albeit
at a sacrifice of gate-to-pin ratio.

At best, a formidable problem still presents itself.
Two of the major contributors to this problem are:
first, the inability to test the "inner stages" of the
array, resulting in an inordinate number of tests neces­
sary at the inputs to guarantee the proper outputs,
and second, the complex test sequence generally exceeds
the capability of available test equipment and might
be expected to add a disproportionate amount to the
total cost of the device. As the level of integration
increases, the number of actual chips per system will
decrease, but the cost of testing fewer (but more com-

plex) chips can become the most significant contributor
to the final cost of the unit.

The testing of sequential logic can be considerably
complicated by the necessity of first applying a se­
quence of input patterns to force the output into a
particular state. Consequently, consideration must be
given to the sequence of the input patterns to ensure a
complete functional test. As with combination net­
works, a test pattern for sequential networks can be
reduced through the use of computer-aided test mini­
mization programs. However, these programs can be
quite long, hence, expensive, since many distinguishing
sequences are necessary to check the possible failure
modes.

Although the problem of generating sufficient test
programs has in many cases been satisfactorily resolved,
the problem of how the testing is to be performed on a
manufacturing basis is still largely undecided. As of
the New York IEEE Show in March 1969, for example,
only two or three pieces of commercial equipment
were being offered for LSI testing, and in general
these equipments are either considerably limited in
capability or are very expensive, as applied to single
operator handling. Examination of these equipments
and other individual test equipments, which exist in
individual companies, would suggest that we are still
in the first generation of LSI test equipment develop­
ment. Progress in the commercial use of LSI will
continue to be impeded until this problem is resolved.

Packaging

LSI raised many new problems associated with
packaging these devices. Early attempts at LSI system
partitioning led to poor gate-to-pin ratios in an ~tt­
tempt to maintain maximum system flexibility whieh
in turn required large numbers of bonds. InitiaUy,
attempts at packa!?;ing such LSI were extensions of
the then available flat pack techniques attempting to
maintain a minimal periphery chip with a large number
of closely spaced leads. This configuration led to a
shorter se:11 length than had been determined by the
package industry to be required for freedom from
leakers. The urgent necessity for having packages
suitable for prototypes also led to the use of less thftn
optimum procedures for fabricating and sealing these
packages. Sealing techniques which worked well on
small integrated circuit packages failed ~o seal properly
when the package periphery became large, and. special
techniques had to be developed. Conventional le2Lk
test procedures cannot be applied, since the lar'ger fla,t
packages will not withstand the same test pressures
and the larger internal volume requires excessively

long pressure tests to detect small leaks. The larger
number of pins also put new requirements on the wafer
and chip bonding processes. Large chips are more
likely to have voids in the chip~to~header bond, and
a larger number of wire bonds have to be made without
a bad bond in order to obtain a finished device at high
yield. One solution to this problem has appeared to
be in the direction of beam lead or flip~chip techniques.
The applicability of such techniques to large numbers
of interconnections has relatively recently been demon­
strated, as in the case of the semiconductor memories
described by Kraynak,S Agusta6 and Alexander.7 Most
of these approaches have required additional process­
ing steps on the wafer to obtain the required bonding
materials at each interconnection site.

High speed LSI arrays have also placed new demands
on packaging from a power dissipation standpoint. For
example, an array of 100 high speed gates, each dissi­
pating 50 mW, would produce a total dissipation of
5 watts, which has been beyond the state~of~the~art
of conventional IC packaging. High speed LSI has
therefore required considerable research into methods
of obtaining high speed at lower power levels, and this
has required smaller geometry structures to minimize
capacitance-thereby making the large LSI circuits
more difficult to produce at a reasonable yield.

Reliability

One of the originally stated reasons for going to
LSI has been to increase reliability by decreasing the
total number of interconnections and packages in the
system. This may be true for a system of fixed capa­
bility, such as a desk calculator or a computer terminal.
On the other hand, in large systems, LSI is more often
viewed as a means of economically increasing the total
system complexity to perform more tasks, rather than
as a means of decreasing the package count for pre­
viously designed systems, in which case the MTBF
for the total enlarged system is of concern.

The advent of LSI brought into the picture a new
range of potential reliability problems that have to be
resolved.

Since LSI devices are more complex, they require
more metallization per chip. The larger number of
pins in LSI leads to an increased number of interfaces
between the chip and the package, and it is at these
locations-wire bonds and chip bonds-that the princi­
pal failure modes occur in silicon integrated circuits. In
fact, metallization and wire bond failures account for
approximately 60 percent of all conventional inte­
grated circuit failures. Thus, reliability may suffer on
a per package basis.

What has Happened to LSI 377

In the case of high density LSI in a conventional
type of IC package, dissipation is increased to the
point where the circuit elements are operating con­
siderably closer to the maA-imum allowable junction
temperature than would be the case for individually
packaged lower complexity Ie's. Derating to increase
reliability is not as feasible and it has become im­
portant to explore the long term degradation of de­
vices at these higher temperatures that can no longer
be considered an accelerated condition.

Failure rates on a per package basis are necessarily
increased by this effect, and the MTBF for the entire
system must be re-evaluated to make sure that the
expected benefits are in fact being obtained.

Perhaps the area of greatest difficulty in insuring
LSI reliability is in the application of the screening
techniques that have been accepted for use in inte­
grated circuits. Typically, visual, mechanical, thermal
and operational screening of the final product is re­
quired. The final in-process screens 'should be per­
formed at stress levels sufficiently stringent to remove
all devices which contain potential reliability hazards,
but the screen levels imposed must not degrade the
inherent reliability of those devices which survive the
screening sequence. Unfortunately, the screening levels
adapted for conventional integrated circuits, however,
may not be applicable in general to LSI and MS I
devices.

Because of the larger size of LSI packiages, the
centrifuge and shock tests applied to conventiona.l LSI
can cause mechanical damage and loss of hermeticity
unless special precautions are taken.

Because of the increased complexity of IC's and
MSI devices, it must be assumed that the effective ness
of a preseal visual inspection will not be as great as it
is for conventional integrated circuits. The sheer com­
plexity of these devices outstrips the ability of a human
operator working with a microscope. This is par­
ticularly true when one considers the increased number
of possibilities for scratches and open metallizations
at oxide steps, t.he possibility of shorting between upper
and lower metallization levels because of pinholes or
cracks in the inSUlating oxide, the possibility for opens
due to marginal nletallization alignments, and the
possibility of failure because of high leakage between
adjacent metallization stripes because of photolith de­
fects, resulting in poor delineation.

SUl\1MARY

The promises of LSI are still basically valld; however,
the electronics industry has had to face tremendous
problems in its efforts to make LSI a production

378 Fall Joint Computer Conference, 1969

reality. The solution to these problems has required
the development of new approaches in almost every
aspect of integrated circuit technology, and has re­
quired close cooperation between the vendor and the
user. It is, in fact, remarkable how much progress has
been made in the past four to five years. At present,
there are over 200 catalog part numbers for LSI de­
vices and several LSI systems are programmed for
some 1970 production. It now appears that 1970 will
be the year of reality for LSI.

REFERENCES

G HERZOG
The LIM AC-An LSI demonstration vehicle
IEEE International Convention Digest N Y Mar 26 1969

2 B T MURPHY

Cost optima of monolithic integrated circuits
Proc IEEE Vol 52 1964 1537-1545

3 A G F DINGWALL
High yield processing for fixed-interconnect lar~'e scale l~rrays
IEEE Trans on Electron Devices Vol 15 No 9 1968 ti31-637'

4 N KLEIN H GAFNI
The maximum dielectric strength of thin oxide films
IEEE Trans on Electron Devices Vol 13 No 12 1966281-
289

5 P KRAYNAK P FLETCHER
Wafer-chip assembly for large-scale integration
IEEE Trans on Electron Devices Vol 15 No 9 1968 {)60-663;

6 B AGUSTA
Planar double diffused monolithic memory chip
Digest of Technical Papers Solid-State Circuits Conference
Feb 19 1969 Philadelphia Pa 38-39

7 E J ALEXANDER
P-channel IOFET memories
~EEE Internat Convention Digest March 261969 N Y

------ -------

Real-time graphic display of time­

sharing system operating characteristics *

by JERROLD MARVIN GROCHOW**

Massachusetts Institute oj Technology***
Cambridge, MasEachusetts

lNTRODUCTION

The Graphic Display lVlonitoring System (GDM) is an
experimental monitoring facility for 1\,1 ultics, a general
purpose time-sharing system implemented at Project
~tfAC cooperatively with General Electric and the Bell
Telephone Laboratories.2 ,7 GDl\/l allows design, systems
programming, and operating staff to graphically view
the dynamically changing propertieE of the time­
sharing system. It was designed and implemented by
the author to provide a medium for experimentation
with the real-time observation of time-sharing system
behavior. GDl\1 has proven to be very useful both as a
measuring instrument and a debugging tool and as
such finds very general use.

'l'10nitoring the activity of a traditional computer
'System (one with only a single active process) is a fairly
simple task. Hardware and software devices can easily
be devised to keep track of almost any parameter.
Asking the question "What are you doing right now?"
to a computer system controlling multiple processes or
servicing multiple interactive users, however, proves
particularly difficult to answer meaningfully. It be­
comes necessary to "snapshot" the system (record in
some manner its state at a specific time) and interpret

* Work reported herein was supported (in part) by Project MAU,
an M. I. T. research program sponsored by the Advanced Re­
search Projects Agency, Department of Defem:e, under Office of
Naval Refearch Contract Nonr-4102(Ol)

** This paper is based on R thesis submitted in partial fulfillment
for the degree of Master of Science at the Mas~chllsetts
Initutest of Technology, Department of Electricv,l Engineering.

u. Proj~ct MAC

this information for the inquirer. Since a basic property
of a time-sharing system is that, in fact, it is "doing
something else" a few milliseconds from now, what the
inquirer really wants to ask is "What are you doing
now, and now, and now ... ?" Implicitly, he is also
asking to be shown what is happening in an easily
interpretable format. The GDM solution to his problem
is to provide the user with a real-time, graphical out­
put "eavesdropper."

Statistical studies of time-sharing systems have been
performed1 ,5,1l in an attempt to provide "after-the­
fact" monitoring (in effect answering the question
"On the average, what is happening?") and there have
been simulations in an effort to provide "predictive
monitoring."6,1l One company has even produced a
hardware device to receive system status information
over a special wired in channel and record the results
on magnetic tape.12 Other than the "SNUPER Com­
puter"6 which, however, still requires engineer­
installed hardware probes, there has been little work
directed towards providing a generalized, real-time,
time-sharing system monitoring device. It is felt that
while the hardware used for this implementation of
GDl\1 is perhaps unusual, the design principles involved
arid the monitoring methods explored are sufficiently
general to provide a framework and a guide for other
designers.

379

The basic goal in designing the GDlVI System was
to produce a time-sharing system monitoring device
for use by the staff of the Multics project. Initial
requirements implied that it would be on-line, that is,
active while 1Vlultics was in operation-not just col­
lecting data for future analysis, and would provide

380 Fall Joint Computer Conference, 1969

dynamically changing graphic output (as well as hard
copy if desired). It was to be designed such that the
act of monitoring did not cause significant interference
to the time-sharing system or. perturbations in its
behavior and such that it would not be necessary to
make more than a few minor additions to supervisory
procedures in order to incorporate the GDM System
(as opposed to monitoring don~ by inserting entire
procedures in critical points in the supervisor in order
to collect data; see Scherrll for a;n example). Since the
GDM System was to be an experimental tool, it was
also considered especially important that it be easily
expandable and adaptable to new or different monitoring
requests. Coupled with these req~irements was the need
to involve the expected user cqmmunity as early as
was possible in the project in otder to insure its con­
tinued use after initial implementation. In this regard,
acceptance by the systems progr~mming staff was very
encouraging and many currently make use of the GDl\I
facility.

The original GDIVI System ¢mbodies these goals
while making use of existing harcLware at Project MAC.
The Digital Equipment Corpora~ion 338 (see Figure 2)
was already on site for use in other experimental work.
A more extensive (and less ~xpensive) monitoring
system could perhaps be designed if it were possible to
choose both the display processor and the method of
interface to the time-shared computer. This was not,
however, viewed as a major handicap in developing a
useful system.

Succeeding sections will discuss the various com­
ponents of the GDM System and will describe in detail
initial experiments and current usage at Project MAC.
Compromises in design and special problems due to
the particular constraints of the display hardware or
software and the Multics system to which they inter-
faced are also discussed. '

What is the G DM system?

Subsystems

The GDM System consists of four major components:

A. An input-output procedure running under
Multics to transmit dat~ as requested to the
display computer.

B. A monitor system operating on the display
computer to facilitate the creation, storage, and
retrieval of display templates (see below) and
to perform various other housekeeping functions.

C. A series of display computer subroutines for
manipUlating data and generating command
sequences for the display.

D. A language for describing desired data manipu­
lation and display formats (Display Description
Language), a (planned) compiler for translating
such descriptions into display computer assembly
language programs, and a set of macro-defini­
tions for simplifying display computer progrs,m­
ming and for calling the subroutines mentioned
underC.

Figure 1 gives a functional representation of the
various GDM subsystems showing the interaction
among them, the two computers, and the user. Figure
2 shows the complete hardware configuration. Refer­
ence 8 goes into considerable detail about the GDl\1
monitor system software including system flow charts.

Modes of operation

Use of the GDM System generally falls into one of'
three classes of operation:

1. Demonstration mode: any of a number of
library displays may be viewed to get a general
picture of Multics operation at the mom€~nt.

Data used in these displays is updated periodi­
cally according to preprogrammed instructions.

2. XRAY mode (so named because of its similarity
to the X-ray System4): the user may type the

USER 'S DOL
PROGRAM

@

GDM MACRO
DEFINITIONS

@

-1 DOL COMPILER

@

~ ASSEMBLY PROGRAM WITHMAC=:J

STANDARD PDP -8 DATA MANIPULATION
ASSEMBLER PROGRAMS, DISPLJAY

TEMPLATiE

SAVED ON MAGNETIC TAPE

FOR FUTURE USE --

USER INTERACTION

GDM
MONITOR
SYSTEM

DATA I DISPLAY
SUBROUTINES

(PDP-8/338
DISPLAY
COMPUTER)

REQUEST FOR DATA

© @

MULTICS
TIME-SHARING 1- __

SYSTEM

(GE - 645
COMPUTER)

I
GE-645IPDP-8

$
I
I

Figure I-GDM subsystem interactions

Real-Time Graphic Display 381

PDP -8/338

VOICE GRADE
TELEPHONE LINE

---------,

L ______________________ J

(THIN LINES REPRESENT DATA TRANSMISSION; HEAVY LINES
REPRESENT TRANSMISSION OF STATUS INFORMATION AND
INTERRUPTS)

:Figure 2-Hardware configuration

segment number and offset of a datum (see
Reference 3 for a description of the addressing
scheme used in Multics) on the teletype of the
display computer and see displayed the octal
and ASCII character representation of its
contents, updated every second (Figure 3,
XRAY display).

3. Display creation mode: the user will go through
the process of creating his own display (as out­
lined in Figure 1) in order to gain desired flexi­
bility in data displayed, format of display, or
data sampling rate. Displays are then saved in a
special format, the "display template," for use
in later experiments or as part of the library.

All mo~es of operation employ the same type of
disl?lay template and are listed only to differentiate
between the application of the GDM System. System
programmers have been trained in five minutes to
utilize the many displays already in the library (oper­
ation under "Demonstration Mode"). Some use the
XRAY display when there are one or two locations of
interest at a particular moment, as in the current

Figure 3-XRAY display

number of available disk pages or the value of a par­
ticular time-dependent variable. Display creation
mode, the most general use of the GDM System, re­
quires the most work on the ptirt of the user. He must
decide what data items to display, how to display them,
and how often to sample them. He must then create
the data manipulation routines and the display list
comprising his particular "display template." Until
the DDL compiler is constructed, this work must be
done in an extended version of the PDP-8 Assembly
Language as seen in Table I (the 338 computer uses
the same systems software as its sister PDP-8). It is
in this mode of use that all the facilities of the GDM
System come into play and in which the most fruitful
experimental work can be performed.

Examples

Figures 4 and 5 show typical examples of G DM
diSplays. Figure 4, Core Memory Summary Display,
displays real-time information on the usage of Multics
core memory pages; Figure 5, Active Process State
Display, displays user activity information (see below).
The display templates for both figures were constructed
in about two hours apiece by an experienced user and
have provided many hours of system observation for
experienced and inexperienced alike.

The display in Figure 5 causes information about
each process in Multics to be extracted from the traffic
controller data base. The column labelled "MP" is
the "multiprogramming state," an indication of a pro­
cess' eligibility to receive CPU time. Stars to the right
of this column indicate the processes that are eligible
(state 4). The column "ST" is the "activity ~tate"­
running, ready to run (waiting to be serviced), or not
ready to run. The star is next to the process currently

382 Fall Joint Computer Conference, 1969

Figure 4-Multics core memory summary display

Figure 5-Active process state display

running, state L In a multi-processor configuration,
there would be more than one suc~ process.

The associated bar graphs also provide a descriptive
measure of overall system activity. By "eyeball inte­
gration" of the length of the bars, one can get a fairly
accurate idea of system loading. Several means of
calculating graph lengths have been used (in different
display templates all using the same basic form) :

1. Whenever a process is ready or running, the
length of the bar is increased. When the process
is not ready, the associat~d bar decreases. Each
bar changes length as an exponentially weighted
sum of ready -running and not-ready time.
(This is seen in Figure 5.) .

2. Whenever a process is ready, its bar grows in
equal time increments. When the process is
finally serviced (receives processor time), its bar
is reset to .zero length.

The display of type 1 gives a general pic:ture of
system loading but also shows something of the be­
havior of the individual process. The scale is calibrated
in percentage to indicate that the bar shows the per­
centage of time a process is requesting or receiving CPU
time--a measure of the process' activity. The type 2
display is more useful in getting an uncluttered. picture
of just how long a "ready" user must wait to run, i.e.,
how long each process is spending in the queues waiting
for service.

The display templates for these two displays differ
in about ten instructions (the computation of bar
length). The two hours of editing and assembling to get
a "first draft" of the display is even less if averag:ed
over the two displays. Herein lies a basic flexibility of
the GDM System: once the data to be displayed have
been decided upon, it need be only a matter of minutes
before it is viewed. Display formats can be easily
experimented with and a finished display template c:an
be added to the GDM library for future monitori.ng
without any costly "dedicated system" monitoring
runs.

The examples discussed above show simply two ideas.
Others have included collecting (and displaying) du,ta
on the mean lifetime of a page in the M ultics memory
(how long does it take before the page is swapped out
to secondary storage), the distribution over time of
the number of active time-sharing users (very nicely
displayed as a graph similar to Figure 6D), and the
average number of users referencing particular super­
visor segments (built up during the length of the moni­
toring session). There is a great deal of work yet to be
done before we run out of ideas or into the limitations
of the G DM system.

M ore on the display template

A display template (DT) consists of three sections:

1. A list of the time-sharing system data items to
be sampled (segment immber and data base
format are sufficient since absolute core lo­
cations are determined by GDM at monitoring
time).

2. Instructions on display type (numerical, ASCII,
bar graph, other graphics, etc.), sampling rate,
and data manipulations (averaging, sca.ling, etc.)
for each data item or group of items.

3. A display list: machine instructions for the 338
Display giving text, formatting inform2,tion, and
storage for items to be displayed.

For example, to display a single process' a1ctivity as

TITLE

S4

S3 60

S2

SI

0 2 3 4 5 6 7 8 9
TIME UNITS

TITLE

S4 I----
S3 I

6b

S2

SI

0 2 3 4 5 6 7 8 9
TIME UNITS

TITLE

4
(f)

t: 3 6c
z
::>

~
~
::>
~
<t
0

0
0 2 3 4 5 6 7 8 9

TIME UNITS

TITLE

6d

>
.. , •

u • •
z •
I.&.J • •
::> •
0 • • • I.&.J • • 0:: • • • lI.. •

I 2345 10 15 20
DATUM UNITS

Figure 6-0ther standard display types

in Figure 5, a DT would contain about twenty in­
structions (Table I) .

IThe various non-PDP-8 instructions (call, do,
dlstart, etc.) are macro calls to a set of definitions de­
signed as part of the GDM System. Various sub­
routines (nplot, ge645, sked, etc.) are also provided as
interfaces to the GDM monitor and to simplify program­
ming. These features allow the programmer without
PDP-8 experience to design a display template with a
minimal apprenticeship. (Implementation of a DDL
compiler should simplify this even further.) Of course,

Real-Time Graphic Display 383

since all the facilities of the computer are available,
data manipulations can be quite complex (although
subroutines are provided for such common operations
as scaling and masking) and displays quite unusual
(Figure 6 shows standard types for which GDM pro­
vides some macro facility). The only limit is the de­
signer's imagination and the size of the PDP-8 core
memory.

The Mu,ltics/GDM interface

The GDlVl System is designed for use in a symbiotic
relationship with a time-shared computer. The com­
puter must be capable of supporting a display processor
functioning basically independently of the time-sharing
system but occasionally interjecting requests for data
transmission.

The l\Iultics environment is particularly friendly to
this type of system as it is possible to make data re­
quests through the generalized input-()utput controller
(GIOC) of the GE-6459, without interrupting the
central processing unit (Figure 2). It is necessary, how­
ever, to dedicate two of the 2048 GIOC channel pairs
(one for transmitting and one for receiving) to the
display processor. Those problems introduced by this
relationship are discussed further below.

The Multics/GDM interface procedures are capable
of providing the following services:

1. Accept address request by segment number and
offset of data to be displayed (GDM).

2. Convert this address to an absolute memory
location for interpretation by the GIOC (GDM
to M ultics) .

3. Transmit the datum from the GE-645 memory
to the 338 (Multics).

In general, a GDM~type monitor requires only the
simplest method possible of getting data from the time­
shared computer to the display processor. On the
Project MAC system, this means sending requests to a
short I/O program running on the GE-645 GIOC. The
2400 bit per second Dataphone (201B modems) used
for this transmission limits the request rate to approxi­
mately twenty per second (a negligible disturbance on
a one-and-one-half microsecond per instruction pro­
cessor). Higher data rate transmission can be used
with corresponding increases in interference (if we in­
crease the rate to 40,000 bps, the perturbance is still
Jess than .1 percent) and special telephone lines.

All displays currently in use sample the GE-645 at
rates at or near the available maximum. Displays with
a number of data items occasionally resort to special

384 Fall Joint Compute.r Conference, 1969

TABLE I-A display template to monitor a
T -8 user's activity

*address table
tc data
540;541

*data routines
a

7777
80,0

call ge645, 1, 2
call nplot, mp, 1
call ge645, 1, 3
call nplot, st ,1
jms calc

do hplot, bar
call sked, 144, a

jmp i a

*display -list
dlstart

nl; nl
mp,O

sp2
st, 0

sp2
hbar bar
escape
top

Isegment name
Ilocations within the segment

Iname table of routines to be
lealled by the GDl\1 monitor
I end of taple
IPDP-8 subroutine format
Iget first data item
/plot "lVIP~' state number
Iget next data item
Iplot "8T'~ state number
I call to machine language
I subroutine to calculate bar
I graph length
Iplot horizontal bar graph
Ireschedule "a" to be called
Iby monitor in one second
IPDP-8 subroutine format

Imacro instruction to start dis­
I play
I"new line~' for formatting
Istorage for "MP"
Ispaces for display formatting
Istorage fQr "8T"
Iformattirig
Imacro to create bar graph display
/ display instruction macro
I display instruction macro to
I cause refreshing of display

sampling methods in order to update important items
at least once a second: about the rate at which the
human eye can follow a dynamic display with that much
information.

Advantages and disadvantages of GDM

Advantages, disadvantages, capabilities, and limi­
tations of GDl\l can be grouped into two categories:
those relating to its monitoring ability; and those
relating to its ability to report the information moni­
tored.

Monitoring ability

Several factors determine the usefulness of any type
of monitor .. These include the number and type of

events it can monitor, the rate at which it can monitor
them, and. the interference that this observation will
cause to the system being monitored.

One of the capabilities of GDl\1 is a facility to change
the point of observation easily: this is accomplished
through the use of the display template. A new display
template can be designed and operational in a short
time and, once constructed, can be added to a library
for future recall. No hardware changes need be made,
no plug boards rewired, no probes changed to monitor
a new or different event. Another display template
with a few basic instructions is all that is n43eded to
change the "probe" of GDM.

GDM,.as constructed, is a sampling monitor. Current
dataphone connections limit requests for data items to
about twenty per second as mentioned above. Faster
dataphone, direct connections or other means can be
used to influence sampling rate. The current rate is
such that "microsecond" events cannot be monitored.
Transient data items wilJ be missed if their core lo­
cation changes many times in a second. Current dis­
plays, therefore, limit themselves to observing only
"wired" data, this is, data whose core location need be
determined only once during a particular monitoring
period although the data itself may change many times.
As approximately 80 percent of the l\1ultics supervisors,
data bases fall into this category at t~e current time,
this is not particularly restrictive.

Monitoring which requires the collection of a large
number of statistics over a very short time period
similarly is hindered by the current configuration
although "long-time" statistics are collected and dis­
played by a number of display templates.

Under Multics, short-time event monitoring is per­
formed by special software embedded in the Multics
supervisor.l0 A GDM display is used to observe, in
real time, the data base of this monitor in order to see
the time build up of the statistics and to note ll.ny
abnormalities that might be missed by ob~erving
averages after an hour or more of operation. In this
way, the advantages of a real-time display are eombined
with monitoring embedded in the time-sharing system
(which causes significant interference when turned on)
to provide a very useful tool.

The area of system interference has alre:ady been
discussed but one item should be emphasized. In the
Multics· configuration, GDM· need take only GIOC
time-not CPU time. In computer systems where this
is not possible, interference will still be nel~ligible if
the GDM monitor "steals" only enough informa1Gion
to m~ke a useful display. Five hundred cycles per
second is still only .1 percent on a two-microsec:ond

cycle time computer and this is more than sufficient
for even the most complex display.

Reporting ability

Output of information is another area in which
flexibility is crucial. Displays in Figures 3, 4, and 5
show only numbers, characters, and bar graphs. Dis­
plays have also beep. constructed with the types of
graphs shown in Figure 6 and many others have been
suggested for particular applications. It has been found
that displaying the same information in different ways
often presents an entirely different picture of what is
going on. The only price to be paid for this flexibility
is programmer time and even then it is no more difficult
to display a bar graph (or any other type) than it is
to simply show a number. Several display templates
showing the same data in different formats can be
made almost as easily as a single one and the best
added to the GDM library.

For those who desire hard copy, GDM, in its current
configuration, offers only photographs of its displays
(stopped at any instant of time, saved on tape for
future reference or photographing). Plotters of various
kinds could perhaps be connected in tandem with ::It

dynamic display and requested to plot a particular
instance, even while the CRT display is still changing.
Here again, the designer is limited only by the hard­
ware available and his imagination.

CONCLUSIONS AND OBSERVATIONS

The GDM System at Project MAC has served in two
major capacities:

1. As a monitoring "control center".
2. As a debugging tool.

The very nature of a multiple-access computer
system makes it very difficult to determine at one
location exactly what is happening at all terminals.
The GDM display, conveniently located near the main
body of Multics programmers, is readily consulted to
determine the state of a rampant user program, the
availability of secondary storage space, or just the
general health of the system (a slave display might
possibly be installed near the computer itself or in the
office of the system administrator as well). Many
system programmers have, at one time or another,
brought up the GDM System on their own initiative
to find out various, otherwise unobtainable, pieces of
information (a "cookbook" instruction sheet has been
provided for just this purpose). A visit to the GDlVI

Real-Time Graphic Display 385

display is always included as part of the standard
system tour for visitors.

As a debugging aid, GDM' has been invaluable. It
is responsible for the detection of many system bugs­
often transient or time dependent-that were not
easily isolatable by previously available means.

One of the features of GDM that has made it so
useful 'is its ability to simplify the act of dynamic
display creation to the point where this is no more
difficult than writing a simple assembly language
program. This flexibility has paid many times over for
the effort of implementation.

Finally, GDM can be readily adapted for use with
other time-sharing systems: only two Multics-depen­
dent modules exist in the monitor and display templates
can be designed to suit any system.

GDM was designed as an experimental system and
as such has been very useful at Project MAC. Its use
during a period of intense debugging of the Multics
system has proven its development worthwhile.

ACKNOWLEDGIVIENTS

The author would like to express his. gratitude to
Professor F. J. Corbat6, advisor for his Master's
Thesis, for his continued support and aid during the
period of thjs work. Thanks are also due to many
members of the Multics development group at Project
MAC without whose help this work could not have
been undertaken and in particular, Thomas Skinner
N oellVIorris, and Professor J. H. Saltzer.

REFERENCES

1 E G COFFMAN L C VARIAN
Further experimental data on the behavior of programs in a
paging environment
CACM Vol 11 No 7 1968471-474

2 F J CORBAT6 VA VYSSOTSKY
Introduction and overview of the M ultics system
Proc FJCC 1965 185-196

3 R C DALEY J B DENNIS
Virtual memory, processes, and sharing in Multics
CACM Vol 11 No 5 1968306-333

4 D J EDWARDS
GE-6.1,li core memory X -ray program
Multics System Programmers' Manual Section BE.13
Cambridge Mass MIT Project MAC internal doc 1966

5 G ESTRIN L KLEINROCK
Measures, models, and measurements for time-shared com-
puter utilities
Proc ACM Nat Meeting 1967 85-95

6 G ESTRIN et al
SNUPER COMPUTER. a computer in instrumentation
automation
Proc SJCC 1967645-656

386 Fall Joint Computer Conference, 1969

7 E L GLASER J F COULEUR· G A OLIVER
System design oj a computer Jor time sharing applications
Proc FJCC 1965 185-196

8 J M GROCHbW
The graphic display as all- aid in the monitoring oj a time­
shared computer system
Project MAC Tech Rpt MAC-T&-54 Thesis Cambridge
Mass Sept 1968

9 J F OSSANA L E MIKUS S D DUNTEN
Communications and input/output 8witching in a multiplex
computing system
Proc FJCC 1965 231-240

19 J H SALTZER J W GINTELL
1'he instrumentation oj Multics
Presented at the Second ACM Symposium on Operating
System Principles Princeton N J 1969

11 A L SCHERR
An analysis oj time shared computer systems
Project MAC Tech Rpt MAC-TR-18 Thesis Cambridge
Mass June 1965

12 F D SCHULMAN
Hardware measurement device Jor IBM SysterY}/SfJO ti'"!.e
sharino evaluation
Proc ACM Nat Meeting 1967 103-109

A graph manipulator for on-line network

picture processing

by HUGO A. DI GIULIO

Stanford University
Stanford, California

and

PAUL L. TUAN

Stanford Research Institute
Menlo Park, California

INTRODUCTION

This paper describes research which involves the use
of interactive computer graphics for processing systems
analysis networks. The term "systems analysis network"
is used to include project scheduling, task-resource
simulation, computer programming flow diagrams,
decjsion tree, assembly line b8.lancing, flows in networks,
etc. These network pictures usually characterize the
precedence relations and the logical and data flow
among network component parts, and are traditionally
the planning tools for industrial engineers, operations
research analysis, and management and systems
planners. In this research, a system is developed to
provide a "drawing board," through the use of inter­
active computer graphics, to compose, transform,
decompose, partition, simplify, merge, and regenerate
network pictures for the purpose of facilitating rapid
convergence in man-computer experiments.

First, a study of the characteristics of network
pictures, in the light of graph theory, is conducted. It
provides a theoretical framework within which inter­
active graphics operations can be structured. Next,
a system of representing and processing network
pictures through boolean matrix operations is developed.
This is followed by the development of algorithms with
which to regenerate network pictures, such a picture

would be isomorphic with its original drawing, while,
at the same time, maximizing its visual effectiveness.
Finally, a system which enables the user to perform
various manipulation and transformation schemes is
described.

This research is in connection with the Biotechnology
Laboratory of the Department of Industrial Engineering
at Stanford University. An ADAGE computer system
(AGT/30) with an on-line graphics terminal is bfing
used under the sponsorship of N.I.H. project NLM
00525-2 and School of ,Engineering, Stanford University.

Characteristics of network pictures for systems analysis

In this study we sh911 limit our attention to only the
fonowing types of network:

Activity network (e.g., PERT, CPM)
Project scheduling
Job-resource simulation
Flows in networks (e.g., maximal flow, shortest route)
Decision tree
Computer program flow diagrams
Ass(mbly-line balancing

For convenience, henceforth they will be grossly called
"systems analysis networks," or "SA networks." The
logical structure of these networks gives rise to some

387

388 Fall Joint Computer Conference, 1969

common characteristics in their graphic r6presentation.
We shall descdbe some of them below:

Independence of geometric ,constraints

By independence of geometrjc constraints we mean
that an SA network picture does not require rigid
coordinate pos1tions for its picture parts as is in the
case of drawing of a physical object. An SA network is
essentialJy a d~rected line graph3 with only precedence
relations to be considered. In fact, it can be constructed
with only nodes and arcs. A nodd'generally represents
an event, a machine, an operation etc.; and an arc may
represent an activity, a flow, and at the same time,
gives a sense of precedence.

The order in which operatjons or decisions are
performed in an SA network is expressed by precedence
relations. A precedence relationship exists betweer nodes
belonging to the same path. We say node x precedes
node y to imply that y cannot occur until x has occurred.
This relation may be expressed by precedence operators
with symbols >, <. The expression x > y implies x
precedes y, or equivalently, y < x (y is preceded by x).
The precedence relationship is transitive, i.e., if x > y
and y > z, then x > z. AU nod.es in the same network
which can relate to each other in this manner belong to a
partial ordered field which we shall call a "transitivity
closure." An immediate precedence relationship between
tW() nodes is represented by ---+, or ~. x ---+ y implies x
immediately procedes y; x ~ y implies x is immediately
preceded by y. The ---+, ~ operators (link operators) do
not have transitive properties.

Therefore, an SA network picture can be defined the
same as a directed. graph which we shall denote by G.
G = (X, F) where F is a "precedence function" defined
over X. X is the set of all nodes in G. F(x) is the set of
all immediate successors of node x in G. The expression
y e F(x), or simply y e Fx, implies that node x and node y
(both belong to X) are connected. by a directed arc
(an arrow) pointing from x toward y. We denote this
arc by (x, y) where x is called the first node, and y the
second node. x and yare called "adjacent nodes."
(Henceforth, an individual node will be identified by a
lower case English alphabet, with or without subscript).

The letter A denotes the set of all arcs in G. The
expressions G = (X, F) and G = (X, A) are equivaJent.

F is not necessarily a single valued function, for
example, we may have F(x) = {ti, v, w}, i.e., there are
three arcs emanating from node x: (x, u), (x, v), and
(x, w). F-I is an inverse function (the set of all immediate
predecessors) where F-l(y) = {xly e F(x)}. Thus, if
(u, y) and (x, y) are the arcs with y as their second
nodes, then F-l(y) = {u, x}.

The functions F2, F3, ... , Fn are defined by: F2x =
F(Fx), F3X = F(F2X), ... , Fnx = F(Fn-1x). Likewise,
F-2y = {xly e F2X}, F-3y = {xly e F3x}, ... , F-n =
{xlY e Fnx}. Fnx is called the "nth generation successor
set of x," F-nx, the "nth generation predecessor set of x."

To preserve the consistency of transitivity relation­
ship (so that y cannot be both a successor and a
predecessor to x) we shall regard all SA networks as
being acyclic (i.e., there is no directed cycle in G). The
cyclic conditions may be treated as acyclic with the use
of "equivalent nodes" as will be discussed later.

"" h ~ I~' We can Fx the "successor set" of x. Fx == v ~ ~x
i=l

where FhX rf= cp and Fh+lX = cpo We call Fx the "pred-
k

ecessor set" of x. Fx = V F-i where F-kX :;t. cp and
i=l

F-(k+l)X = cpo We define the "forward tra,nsitivity,
closure" of x by {x} v Fx, the "inverse trl:msltlVlty
closure" of x._ by {x} v F~;... and tee "tra,nsitivity
closure" of x, F(x), by {x} v F(x) v F(x).

Subgraphs, partial graphs, partitions, all1d
reduced graphs

A subgraph of G = (X, F) is a graph (Z, F'z) where
Z (X, and for all nodes x in Z, Fzx = (Fx) (, Z. i.e.,
a subgraph of G is the result of taking away at least one
node, and its associatpd arcs, from G. A partial graph
of G is a graph of the form (X, F') where F'x (Fx for
all x in X, i.e., a partial graph of G has all the nodes
of G but without some (at least one) of its ares.

Xl, X2, ... , Xr constitute a partition of x: if: (1)
r

V Xi = X; (2) for every i and j, i rf= j, and i, j ::;; r,
i=l

Xi f\ X j = cpo A graph GO = (XO, A 0), where XO =
{Xl, X2, ... , X r }, and A ° is the set of arcs, is called a
reduced graph of G. (Xi, Xj) e A 0, i rf= j, if and only
if there exist a node x e Xi and a node y e X j such that
(x, y) eA.

Common basic diagrams

Basic diagrams are subgraphs which possess cert,ain
topological characteristics into which an SA graph ean
be decomposed. We consider all SA graphs as a~~gregates
of some basic diagrams. It is advantageous that these
basic diagrams be presto red in a dictionary, therefore,
it is not necessary to enumerate the topologimtl det~~ils
of a basic diagram each tim.e it occurs in a. graph.
A graph may be collapsed into a simpler form by

reducing the number of nodes and arcs in some, or all, of
the basic diagrams contained in the graph (graph
reduction is explained in the last section of this paper).
We introduce some of the most commonly used basic
diagrams below:

Closed Be'rial Path (see Fig. La): Many SA networkS
are constructed with individual paths (e.g., job-resource
simulation). Serial path is a simple and elementary path
R(x, y) having n nodes and exactly n - 1 arcs. x and y
are exterior points of R(x, y). Nodes in R(x, y) which
are successors of x and predecessors of yare interior
points of R(x, y). A closed serial path has the properties
of: (1) Fx and F-ly are singletons; (2) For each interior
points z, Fz and F-lz are singletons. A serial path which
violates the aforementioned properties is an open serial
path. The simplest form of a closed serial path is two
nodes linked by an arc. In such a case, there is no
interior point.

Simple Out-Brancb (see Fig. I.b): Branches in SA
networks often indicate decision points. An out-branch

(a) CLOSED SERIAL PATH

~------------~~--.

W) CLOSED PARALLEL PATH

(0 .&.
'" -- x y

"
w

Figure I-Basic diagrams

Graph Manipulator 389

occurs at a node x if IFxl > 1. A simple out-branch
requires that there is no path between members of Y
where Y is a subset of F(x). In our example (Fig. I.b),
Y = {a, b, c}.

Simple In-Branch (see Fig. I.c): In-branch occurs at
a node x if IF-li > 1. To be a simple in-branch there
must not exist a path between members of W where W
is a subset of F-l(x). In our example, W = {a, b, c}.

Closed Parallel Path (see Fig. I.d): A closed parallel
path PP(x, y) implies that there are more than one
closed serial path from x to y with x, y as their exterior
points.

The lconcept of weighted arcs and nodes

In an SA network an arc serves two functions: (1) To
connect two nodes and give a sense of precedence, and
(2) to carry values. For examples: cost, capacity,
distance, flow units, data string, time, speed, prob­
abilities, are values which may be associated with an
arc. We consider those arcs which serve both functions
weighted arcs. Similarly, a node may be weighted. For
example, in a, job-resource simulation a node is typically
a processing station which contains channel capacity,
mean processjng rate, probability distribution function,
queue storage, etc.

Picture composition and storage

Picture composition

To begin an interactive expedment a user must be
able to draw a diagram on the CRT similar to the kind
of diagrams he usually draws on paper. An SA network
picture may be drawn by either manual input from the
ADAGE graphics terminal, using joystick and light pen,
or by programmed statements, or a combination of both.
During the drawing phase of the experiment the console
input involves the permanent display of certain
"function keys" and "graphic primitives" on the bottom
and the right edge of the CR T screen. A graphic
primitive (one of the node symbols) is picked up and
moved to the desired position on the screen with the
movement of the tracking cross which is directed by the
console joystick. Directed arcs are created by connecting
nodes with the movement of the joystick. Alpha­
numerical labels for each node may be entered via the
console typewriter. Figure 2.a shows the free-hand
drawing of a project scheduling3 network picture on
the CRT.

Equivalently, a picture may be composed by pro-

390 Fall Joint Computer Conference, 1969

S

E

F

BP

WF

so
RW

BF
H

FI

K

C
B

R

GO
G

L

T

V

Pt

FP

EF

RP

Figure 2a-Initial drawing of a project scheduling
network'

BWSR B G F
S E F P F 0 W P F H FI K C B R 0 G LTV Pt P

I
I

I I I

I

I I I

I

I

I

I

I
I I I

I

I

I

!

I

I
I

I

I

I

I

I

Figure 2h--The connection matrix-C-matrix--of
a project scheduling network

I

R
P

I

gramming. We introduce some of the commonly used
operators, together with some examples below (with
the contention that a network picture progresses from
left to right):

The Link Operators (see Fig. 3 for examples):

x~y

x~y

x ~ [a, b, c]

[a, b, cJ ~ x

x links y and crea te are
(x, y).

x links from y and crea,te are
(y, x).

Graph G1links graph G2 • {xd
'and {y i} are lists of con-·
catenation pojnts. For each
x i there is a Y i such x i links
Yi·

G I links x VIa (c, x) where
c E G I , X ~ G1•

Out-branch from x to 2., b, c.

In-branch from a, b, c 1;0 x.

The Precedence Operators (see Fig. 4 for examples)::

x>y

x < y

EXPRESSION

x y

x +- y

x y z

x+-y+-z

a b x+-e+-d

G1 Ie) x

G, Ie) x y G2 Id)

x [a, b, c)

[a, b, e) x

x precedes y

x js preceded by y

IMAGE

Figure 3-Examples of link operators

EXPRESSION IMAGE

x > y 0 0

x < y 0 0

x > y > z 0 CD 0

0 \9 \9
C9 ~ <0

0
x > [a, b, cl 0 ®

0
0

x y > [a, b, cl 0 -0 ®
0

Figure 4-Examples of precedence operators

Retention of picture information with Boolean
matrix operations

The special topological characteristics of the SA
networks (i.e., a picture is defined by the precedence and
logical relationships among network components rather
than their geometric attributes) permits us to make a
radical departure from the conventional means of
picture storage in which the coordinates and other
geometric specjfications (e.g., radius, angles) of vectors
or primitives are to be remembered. The picture
retention scheme for the SA networks involves a
minimum amount of jnformation, yet it preserves the
isomorphism of the picture topology as w~l1 as the
"meaning" of the picture. Under this scheme, a picture
may be regenerated for the purpose of CRT display or
for the purpose of revision, decomposition, reduction
or merging with other pictures. This is done through
the Network Picture Processing Language (NPPL)
which employs boolean matrix operations for varioub
picture manipulations.

During the picture composing phase, while a picture
is being drawn on the CRT by the user, a "connection
matrix," or "C-matrix" is constructed in the working
storage of the computer. C-matrix is a boolean matrixl

with dimension n x n where n is the total· number of

Graph Manipulator 391

nodes in G. If we label the row corresponding to Xi by i,
and the column corresponding to Xi by j, then the
element. of C has the value Cii = 1 if (Xi, Xi) E A;

n

Cii := 0 if (Xi, xJ-) ti A. Xi is a source node if L: Cki = 0
k=l

and i Cik > O. Xi is a sink node if f Cki > 1 and
k=l k=l

n 71 n

L: Cik = O. Xi is an isolated point if L: Cki = L: Cik = O.
k=l k=l k=l

For example, Figure 2.b shows the C-matrix for the
project scheduling network sketch given in Figure 2.a.

In order to preserve computer memory the C-matrix
is converted into a "precedence matrix," or "P-matrix,"
before storage. A precedence matrix is a connection
matrix with its row (columns) arranged in accordance
with the precedence relations in G. The rules of arrange­
ment are as follows:

A

1. If y E Fx, then y must be placed after X (i.e., the
row (column) associated with y must have a
larger iQdex number than that of x).

2. If y E Fx, then y must be placed before x.
3. If y ti Fx, then the order between X and y 1S

irrelevant.

Figure 5 show~the P-matrix of the project scheduling
network of Figure 2.a. We notice th2.t the P-matrix is
triangular (this will always .be true if the precedence
relation are held), and it is predominantly inhabited
with zeros. Both features contributed to the economical
use of core storage.

Picture regeneration

Convention of network picture arrangement

The network pictures stored in computer file may be
retrieved in its entirety, or in part, for CRT display. It
is also desirable to redisplay a picture immediately
after it is drawn bec~us~ \nvariably the computer will
generate a "better" plCture than the one drawn by the
user. In our present effort the convention of a network
picture generated by the computer includes the
following rules:

1. All the source nodes are placed at the left end
of the screen which means that the network
pictures progress from left to right.

2. Only forward arrows are allowed, i.e., no back-
ward or vertical arrows.

3. All arcs are made of linear segments.
4. Ljne crossings are to be minimized.
5. Other visual effectiveness considerations.

392 Fall Joint Computer CoIiference, 1969

5

BP

WF

BF
RP

.RW

H

P

I

B

K

R

FP

50

GO
Pt

C

G

V

EF
T

B W B R R F 5 G E
5 E F P F F P W H P FI B K R P 0 0 Pt C G L V F T

1'\.1
1'\1

1'\,.' 1 1

1,\ 1

"""
1 1 1

r'\ I

I'\. 1
I'\,. 1 ,

1'\.1
1'\,.1 ." 1 1 1

I'\... 1

I'\... 1
I'\,. 1

I'\,. 1

1'\ 1

~ 1

" 1

~ 1

'-I
"-f'\..

--
Figure 5-The precedence matrix-P-matrix--of a

project scheduling network

1

1

1

['\1

~

As mentioned before, the special structure of the SA
networks allows us to generate a network picture with
an efficient generator which presupposes the topological
characteristics of the graph, thus, reducing drastically
the storage requirement. The graph generator of the
NPPL operates on the P-matrix (or C-matrix) and
transforms it into a graph image with all routes of
interconnections "optimized." For example, Figure 6 is
the same network picture as shown in Figure 2.9. but it is
interconnections "optimized." For example, Fig. 6 is
the same network picture as shown in Fig. 2.a, but it is
drawn with the convention and constraints set by
NPPL.

Figure 6-Regenerated picture of a project
scheduling network

Algorithms for optimum routing for
interconnections

We consider the graph area as being a rectangle grid.
The nodes of a graph are always placed at the inter­
section of the vertical and horizontal lines. We call the
vertical lines "stages" and the horizontal lines "levels."
If we can place each node of the graph at its proper stage
and level, and connect them according to F function,
then a graph is generated. Figure 7 shows the project
scheduling network with each "stage" indicated. If the
"stage" and "level" assignments are not properly made
it may result into backward arrows and frequent
occurrence of line crossings. Both features are undesir­
able from a visual effectiveness point of view. W·e shall
briefly list the procedures of assigning stages as follows
by using the example of the project scheduling network:

1. Place all source nodes in stage 0, S(O). e.g.,
S(O) = {s}.

2. Obtain S'(I) = \J F(x). e.g., S'(I) = tel.
x E S(O)

3. Obtain S'(2) = \J F(x). e.g., S'(2) = {f}.
X E S'(I)

In general, S' (n) = \J F(x).
x E S'(n-l)

4. If S'(n) f\ S'(n + k) = Y 1= ¢ (where k ~ 1)
then S'(n) would be modified by labeling mem­
bers of Y in S'(n) as "dummy nodes," and the
successors of dummy nodes would be deleted
from any subsequent stages. The dummy nodes
will be repeated at each succeeding stage until
S'(n + k). The function of the dummy node is to
be a "place marker" for an arc which erosses

I
I
I
I
I
I
I
I
I
I
I

10 11

Figure 7-H Stages" of a network picture

5(0) { 5 }

5(1) { E }

5(2) = , F}

5(3) { BP, WG, 50 }

5(4) = { RP, BF, FW, H*, B, G*}

5(5) = { H, P*, R, G*}
5(6) = { P, GO, G *}

5(7) = { Fl, G }

5(8) = { K, C, FP, L

5(9) = { Pt, V*, T*}

5(10) = { V, EF, T* }

5(11) = { T }

*Dummy Node

Figure 8-Assigning stages

several stages (this is often necessary in order to
avoid backward or vertical arrows) and to keep
it free from interference from other arcs or nodes.

5. The "scan" process will continue until stage m is
reached where SCm) = c/>, and all S'(j)'s, j = 1,
2, ... , m - 2, have been modified (i.e., the
labeling of dummy nodes and the deletion of
their successors). The modified stages are then
denoted by S (j) for all J (~ 0). Figure 8 shows
the result of the scan process as it applies to the
project scheduling network.

The next is to assign "levels." Figure 9.b shows a
graph of the project scheduling network from stage 7
through 11, using the order of node appearance in each
stage (Figure 8) as the initial "level" assignment.
Figure 9.a gives its associated P-m2~trix with stage
partitions shown. As can be seen in Figure 9.b, that the
"unoptimized" vers!on of node positioning resulted into
two line-crossings ((FP, Pt) with (C, V*), and (Pt, EF)
with (V*, V)). The crossing violations can also be
detected from the P-matrix as shown in Figure 9.b.

The P-matrix of Figure 10.a shows proper level assign­
is shown in Figure 10.b.
ment (thus, the matrix is called P*-matrix). This is done
by interchanging row (column) positions of K with C in
stage 8, and Pt with V in stage 9. The optimized graph
is shown in Fig. 10.b.

Graph Manipulator 393

FI

G

((~
FP

L

C(~
cD
v

EF

cD
T

I
I
I

7 I 8 I 9 I 10 : 11
I~ F :~ I E I

FI G IKe P L I Pt @cD l V F cD I T I

I I I

I

I

I

I

I

(8) P - MATRIX

8
I
I

I I

I

I

I

I

I

10

~----.~~~--~~
I I
I I

(b) GRAPH

Figure 9-An example of improper "level" assignment

11
I
I
I
I
I
I
I
I

The criteria of optimizing the rows and columns of
the P -matrix, in order to minimize line crossings, are:

1. Interchange rows and columns only within each
stage.

2. The non-zero elements of each row should be
consecutively located.

3. If the non-zero element of a row begins in
column j, then no non-zero element of any
previous row may begin in a column with
column index less than j.

An optimal, or near optimal condition may be
achieved by rearranging the columns and rows of
P-matrix belonging to the same stage such that the
resultant matrix meets, or most nearly meets, the above
criteria.

The dummy nodes are not displayed on the CRT .as
full· symbols, instead they are merely treated as point

394 Fall Joint Computer Conference, 1969

I F

G

C

K

F P

L
---(0

Pt

__ .9)
-
v

EF

®
T

I
I
I
I

7 I 8 I 9 I 10 111
I F I I E I

FI G I C K P L:(0 Pt ®I v F ®I T

I I I

I

I

I !

I

I

I

I I

I

I

I

I

(8) p. - MATRIX

8 10
I I
I I

I
I
I
I

0 IIi' ,+,
I

I I
I I

(b) GRAPH

Figure 10--An example of proper "level" assignment

11

I
I
I
I

I
I

vectors which often serve as pivot points for arcs. For
example, see arc (T*, T) in Figure 10.80.

The handling of circuits

A graph which contains one or more circuits (i.e.,
directed cycles) is called a cyJ1ic graph. A computer
program flow diagram is typically a cyclic graph since
program loops are the rule rather than the exception.
Certain job-resource simulation models in which
rejected product recycles back for rework at a previously
encountered work station also constitutes a cyclic
graph. While a cyclic condition· can always be handled
with connectors, thus making the resultant graph
acyclic, it is more desirable to use directed arcs to
display the actual circuits. In NPPL, the backward
arrow, which represents the feed-back portion of the
cir<mit, is treated as a forward arc during the graph

regeneration phase. Upon completion of the line, an
arrowhead fncing the opposite direction is placed at the
beginning· of 'the arc (i.e., the left end of the a.rc). The
presence 'or absence of circuits can be detected by
examining the diagonal elements of the T-matrix.
A non-zero diagonal element signifies the existence of a
circuit.

Picture manipulation

Union of graphs G1 + G2

Let GI = (Xl, AI) and G2 = (Xz, Az). GI + G2 is
feasible if (1) Xl () Xz = 4>, or (2) Xl () X2 ¢ 4P and the
set of common nodes (i.e., Xl () X2) have the S9,me order
of presence in both P-matrices P(GI) and P(G2). The
procedure of obtaining the P-matrix associated with the
graph GI + G2, provided that P(GI) and P(G2) have
been obtained, is as follows:

If Xl () Xl! = 4>:

1. "Fill" Operation for P(GI)-Expand P(GI) by
adding IA21 zero row vectors of dimension
IAII + IA21 to the bottom of P(GI), and IAzl ~~ero
column vectors to the right of P(GI), i.e., after
the last column in P(G1). Thus, we have obtained
the expanded P(Gl), pP(GI).

2. "Fill" Operation for P(G2)-Expand P(G2) by
adding IArl zero row vectors to the top, and IAII
zero column vectors to the left, of P(G2). Thus,
we have obtained pP(G2).

3. Finally, P(GI + G2) = pP(GI) -+ pP(G2). 'The
symbol + stands for element-to-element boolean
"inclusive-or" operations.

If Xl () X2 ¢ 4>:

1. "Fill" Operation for P(GI)-To obtain pP(GI) we
fill P(GI) with zero row (column) vector:3 of
dimension IAII + IA21 corresponding; to those
nodes which are in G2 but are not in Ch.

2. "Fill" Operation for P(G2)-To obtain pP(G2) we
fill P(Gz) with zero row (column) vector,s of
dimension IAII + IAzl corresponding; to those
nodes which are in GI but not in G2•

3. P(GI + G2) = pP(GI) +- pP(G2).

See Figur~ 11 for an example of Gl + G2•

Intersection of graphs G1 * Gz

Assuming GI () G2 ¢ 4> we first obtain a compressed
matrix -yP(GI) by strjking out all rows and columns
which are associated with non-common nodes. By

b

d

pP(G,)
bed

I

I I I

I

I

abc d e

P(G,) am b I I I

c I

d I

e

f b d 9 e

P(G2)fg
l

b I

d I I

9

e

pP(G2) pP(G,) + pP(G2)
. fb dgl; afbcdge

I
f I I I I
b b I I I I

I

d d I I I I

Figure II-An example of 0 1 + O2

similar method, we also obtain ,),P(G2). As in G1 + G2,

nodes in Xl f\ X2 must have the same order in both
P-matrices. P(G1 * G2) = ,),P(G1) ; ,),P(G2) where the ~
symbol'indicates an element-by-element "and" opera­
tion of two boolean matrices, i.e., A ; B = C implies
C,j = aij /\ bi;. We use G1 and G2 as illustrated in
Figures l1.a and 11. b to show the result of G1 * G2 in
Figure 12.

Deletion operations G1 - G2

Since G1 - G2 implies G1 - (01 * G2) we strike out,
from P(G1), all those rows and columns which belong to
the set of common nodes, i.e., all the common nodes of
G1 and G2, together with their associated arcs would be
deleted from G1•

The - operator is also an unary operator, e.g., the
expression -01 produces the complement of subgraph
G1, or G - G1, where G1 (G; the expression -A
produces G - A where A (G; -x means the deletion
of node x, together with its associated arcs" from G;
-(x, y) deletes the arc (x, y) from G.

Properties of +, *, and - operators

The operators described in the previous three sections

Graph Manipulator 395

b d e

,PIG,' • ""G,' :~

Figure I2-An example of 0 1 * O2
\

have the following algebraic properties:

1. Commutative: G1 + G2 = G2 + G1,

G1 * G2 = G2 * G1

2. Associ~tive: G1 + G2 + G3 = G1 +
(G2 + G3) = (G1 + G8) +
G3

(G1 * G2 * G3 = G1 *
G2 * G3) = (G1 • G2) * G8

3. Distributive: G1 * (G2 +' G3) = (G1 * G2)
+ (G1 * G3)

G1 + (G2 * G3) = (G1 +
G2) * (G1 + G8)

4. De Morgan's Law: G1 - (G2 + G3) = (G1 -

G2) * (G1 - G3)

G1 - (G2 * G8) = (G1 -

G2) + (G1 - G8)

Genera.tion of subgraphs

A standard operation in graph theoryl is to compute
Cn which gives the number of paths of length n (length
is defined as the number of arcs between two communi­
cating nodes on a particular path) between any two
nodes in G. As can be envisioned, this is a costly opera­
tion particularly if the graph is large. Instead of asking
how many paths of length n between x and y we now ask
whether there is a path from x to y of length n. We may
achieve this by using boolean matrix operations. Thus,
in raising C-matrix to a power we replace all ordinary
summation by boolean summations. If P is the product
matrix of A x B where matrices A and B have dimensions
m x rand r x n respectively, and x is the ~ymbol f~r
boolean matrix'multiply, then Pii = a i1b1i + ai2~j +
. .. , -t-airbri (where Pi}, ai}, bi; are elements of matrix
P, A, B respectively). We denote the nth power of
C-matrix resulting from boolean matrix multiply by
cn. C,: is a zero-one matrix. It is associated with a
graph which possesses an. arc (x, y) if and only if there
exists a path of length n from x to y. For example,
Figure 13 shows the C-matrix associated with agaphand
the jPowers of C. C2 shows that there. exist paths from
a tod, b to e, and c to e, of length 2. C3 shows that there
is only one path of length 3 in the entire graph, and that

396 Fall Joint Computer Conference, 1969

c3
abe d e abede abede alii b I

e I

d

e

:111 :111

e I e

d d

e e

Figure I3-Examples of C;i matrices

abc d e

a I I I I

b I I

c I I

d I

e

Figure I4-A transitivity matrix

is from a to e. C4 = 0 which implies that there is no
path of length 4 or more in the graph.

Boolean summation may also apply to the addition of
connection ~atrices. A + B = C (where A and B have
the same dimensions) implies Cij = 0 if aij = bij = 0;
c:! = 1 otherwise. Using the examples given in Figure 13
we show the result of C -+- C2 + C3 in Figure 14. The
type of boole2lu matrix in Figure 14 which we shall call
"transitivHy matrix," or "T -matrix," ind.icates whether
:there is aj>ath between any pair' of nodes. It also gives
F x and Fx for any x. For example, the column labels
associated with the non-zero elements of row vector b
constitute the set Fb (i.e., {d, eD, and the row labels
associated with the non-zero elements of column
vector b constitute the set Fb (i,e., {a}).

With the utility of the T-matrix there are a number
of standard functions under NPPL for generating
subgraphs. We shall introduce a few below:

FTRAN(G, x) Construct subgraph (X', A') of
G = (X, A) where X' = {x}
'0 Fx

ITRAN(G, x) Construct subgraph." (X', A')
where X' = {x} '0 Fx

TRAN(G, x) Construct subgraph (X', A')
where X' = Fx

FTRAN(G, x, k) Construct subgraph (X', A')

ITRAN (G, x, k)

k

where X' = {x} U ('0 Fix)
;=1

Construct subgraph (X', A')
k

where X' = {x} '0 ('0 F-ix)
i=1

For example, if we name the graph in Figure 6 (II. project
scheduling network) Go, the statement G1 = ITRAN
(Go, H) would produce a graph showing all the activities
which are prerequisite to the installation of heating
(H), including the node H. Figure 15). The graph which
represents activitjes between foundation (F) and flooring
(F1) may be obtained by the statement G6 = FTRAN
(Go, F) * ITRAN(Go, Fl). (Figure 16)

Graph reduction and expansion

Operating on the "basic diagrams" as explained
earlier, the NPPL can successively reduce a graph to
various levels of complexity as may be specified by the
user. Some of the standard reduction functions are as
follows:

RSPI(G, x, y) Reduce the interior nodes of

ALL ACTIVITIES PREREQUISITE TO HEATING
G, • ITRAN (Go. H)

S

E

F

BP
W

R

F

P
BF

ctf.
H

: I : B Wi R B :
S I ElF I P F: P F @IH I

I

I

I I

I I

I

I

I

I

RP\
BF~
/

:~ ...'

Figure I5-An example of ITRAN(G,x)

ACTIVITIES BETWEEN FOUNDATION AND FLOORING
G

5
.. FTRAN (Go. F) n ITRAN (Go. Fa)

Figure 16-Activities between foundation and flooring

RSP(G, x, y)

ROB(G, x)

RSP. RPPI

RSP. RPP. RSP. ROB. RIB

closed serial path R(x, y) in G
and the arcs between them, into
a single node.

Reduce closed serial path R(x, y)
into a single node.

Reduce out-branches of node x
in G such the set Y (defined
earlier) is a single node.

I
Figure 17-Examples of graph reduction

Graph Manipulator 397

RPPI

RSP'

RSP

Figure 17-Examples of graph reduction con't.

RIB(G, x)

RPPI(G, x, y)

RPP(G, x, y)

Reduce in-branches of node x
such the set W (defined earlier)
is a single node.

Reduce interior nodes of closed
parallel path PP(x, y) in G into
a single node.

Reduce "closed parallel path
PP(x, y) in G into a single node.

As an example of utilizing some of the functions
mentioned, Figure 17 shows a series of reduction
beginning with the full graph of the project scheduling
network G] of Figure 6.

Graph expansion is essentially the reverse of graph
reduction. The nodes to be operated on must be
compressed (macro) nodes. The expansion may be done

398 Fall Joint Computer Conference, 1969

in a single phase, or in several phases, e.g., the out­
branches are expanded first, then the in-branches, then
the serial paths, etc.

In conclusion, we would like to mention that the
network picture processing language (NPPL) is not
designed solely for the purpose of generating and
manipulating network pictures. A greater objective is to
provide an over-all control system through which
man-computer experiments can be performed. We
envision that once a pjcture is constructed (whether by
initial composition, or by merging/decomposition
operations) the user may assign (or reassjgn) input data
to any node (or arc) by selecting the desired node
(or arc) on the CUT. An input page would then appear
on the CRT with pre-designated format to guide the
user for inputing data. The matrix representation of
each graph, as previously explained, would also serve as
pointers to the storage areas of data pages. The simula­
tion phase would then follow the input phase. During
any phase of the experiment, controls may be returned
to the picture composition and processing phase in order
to maximize man-computer interaction.

REFERENCES

1 C BERGE
The theory of graphs and its applications
John Wiley and Sons N Y 1962

2 E S BUFFA

Modern production management
John Wiley and Sons NY 1965 538

3 R G BUSACKER T L SAATY
Finite graphs and networks: An introduction with applications
McGraw-Hill Book Co N Y 1965

4 H A DI GIULIO P L TUAN
A system for network picture processing with interact'ive
computer graphics
Proc ACM 1969 Nat Conf and Exposition Aug 1969

5 C FLAMENT
Application of graph theory to group structure
Prentice-Hall 1963 Englewood N J

6 L R FORD D R FULKERSON
Flows in networks
Princeton Univ Press N J 1962

7 '1' R HOFFMANN
Assembly line balancing with a precedence matrix
Management Science July 1963 551-562

8 A KAUFMANN
Graphs, dynamic programming and fi"'/.,ite games
Academic Press 1967 N Y

9 S C PARIKH W S JEWELL
Decomposition of project networks
Management Science Vol 11 No 3 1965444-459

10 A C SHAW
The formal description and parsing of pictures
Stanford Linear Accelerator Center Rpt No 84 19Ei8
Stanford Univ

11 A W STEINBERG
Some notes on the similarity of three management science
models and their analysis by connectivity matrix techniques
Management Science Jan 1963341-343

12 W M WAITE
An efficient procedure for the generation of closed sullsets
CACM Vol 10 No 3 1967 169-171

On-line recognition of halld-generated

sYlnhols*

by GEORGE 1\1. MILLER

University of California
Berkeley, California

INTRODUCTION

'Vith the growth of information processinO' svstems . . - ~ ~

Incorporatmg large data bases, many situations arise
in which the data to be entered is a human's analysis
of a problem. Often it will be undesirable to require the
user to learn to type, and this mode can be cumbersome
for random two-dimensional entry on a form or drawing.
U sing an electronic tablet coupled to a display tube
would make it convenient for the user to point to a­
correct answer or print it in a very natural way. This
paper describes a new technique for converting these
hand written symbols to code words which c~n sub­
sequently be processed by a computer.

It might be supposed that handwriting is not speed
competitive with keyboard methods. Donald Devoel

of Sylvania's Applied Research Laboratory has re­
cent.ly conducted several experiments which indif'ate
the contrary. Although handprinting of capitals and
num~rals is about five times slower than a skilled typist
copymg prose, the former compares favorably with the
ra~e for untrained typists (i.e., about 60 characters/
mInute). In a task of making geometrical measurements
on a drawing and recording this data in a table Devoe
found that handprinting required only about tw~-thirds
of the time required using a keyboard. This difference
was ~till eviden~ '\\ith his subjects after six days of
~ractICe. Hence It may be anticipated for such applica­
tIOn areas as computer-assisted instruction,2 input of

'" This research was supported by the Advanced Research Projects
Agency of the Department -of Defense under Contract" No SD-
185. --

mathematical, logical and chemical formula in canoni­
cal for~s, input and manipUlation of matrices, program
debuggmg,3 specifying and designing systems by means
of flowchart symbols, and t\vo-dimension~l game
playing, that hand printing will not only be desirable
to users, but also an efficient means of computer entry.

Research in hand-printed symbol recognition has
been evident in the te~hnical journals for more than
a decade. The reader will soon discover that most
symbol recognition literature is concerned with hard
copy or off-line input. Typically~ an optical scanner is
used to obtain a two-dimensional array of points from
a completed hand-printed character. The major effort
of many researchers has been the exploration of unique
methods of preprocessing or feature extraction to re­
duce the dimensionality of this ra.w data.4 Others have
placed greater relative emphasis on classification tech­
niques and on the selection of features from a feature
set or poo1.5 More recently several workers, including
Duda and Hart,6 have made use of context to improve
recognition performance.

The electronic tablets used to obtain on-line source
data provide a nearly exact trace of the path of the
writing instrument and the order of the composite
strokes used to inscribe a symbol. This time-sequence
information is a great boon to machine recognition,
but cannot be obtained by scanning off-line source
images. For example, many individuals make 5's
which look almost identical to their S's. However, an
on-line recognizer will have no difficulty in distinguish-

_ ing between this pair if the former is made with two
strokes while the latter with only one. Similarly a

399

400 Fall Joint Computer Conference, 1969

lower case b and a numeral 6 are readily distinguished
if their loops are inscribed in opposite directions of
rotation.

Although on-line recognition systems have the ad­
vantage of low noise input data with higher information
content, a number of challenges face the designer. He
may desire a recognizer program whirh is invariant
to size and position of the input symbol, has automatic
means for detecting when a syinbol is completed. is
relatively insensitive to minor perturbations from i(ieal
symbol shapes, has sufficient resolution to accommodate
the wide range of symbols used: in languages and the
professions, is easily trained to the writing style of an
individual, and which requires -a mini~um amount
of memory space and computation time.

The author's on-line recogni~er has been imple­
mented on hardware typical of that found in a modern
computer graphics environment. The components are
shown in Figure 1 and include a time-shared computer
a ?RT. display, and a Rand Tt;tblet.7 When the pe~
SWItch IS closed by pressing the stylUS on the tablet
surface, . the sequence of filtered pen track coordinates,
along WIth control bits to indicate the end of strokes
~re temporarily stored in a buff~r. In order to permit
Immediate display of the "ink trace," this operation is
performed in a PDP-5 peripheral processor. The
PDP-5 and the display control: use a common core
me~ory. Communication with the Berkeley Time·
~harm? SystemS (TSS) is by means of a half duplex
lInk WIth a capacity of approximately 50l(bits per
second. The TSS schedules the user's dictionary building
or recognition routines and has access to the PDP-5
memory. The user interacts with and controls these
routines using either a teletype or by pointing to light
buttons on the display. The recognition routine operates
on the track coordinate data to determine when an
input symbol has been completed and whether the

TTY

Display
Control

Tablet
Control

S-DS-940
PDP-5 Link 32K-24-bit

4K-12 bit
6115 core 1.75 fLs

r core

Figure I-Hardware used in recognition rese~rch

symbol closely matches any of those previously stored
jn the user's dictionary. The output consists of an
identification code, and data on the size and location
of the recognized symbol.

BACKGROUND

Two recognition algorithms developed by other re­
searchers will be partially described in the next few
~aragraphs. (Additional background in on-line recogni­
tIOn techniques is contained in the dissertation from
which this paper is abstracted9). The purpose of in­
cluding this material is not to make a thorough com­
parison or evaluation, but simply to point out severa'!
limitations in their methods which led to a search for
the techniques described in the body of this report.

G. F. Groner,lO of the Rand Corporation, has de­
veloped an on-line recognizer which has successfully
been applied to a larger system for creating, editing,
and executing computer code and flow charts. Strokes
are identified via a data-dependent s~quence of tests
determined by the system designer. The first four
stylus directions are used to divide the strokes into
groups. Further tests depend upon the particular sub­
set of strokes and are chosen from the following: the
number and/or relative position of corners, the rela­
tive position of starting and ending points, the number
and/or positions of relative maxima and minima in y,
and the fifth and succeeding stylus directions. The
recognition of multiple-stroke symbols is based on cor­
rectly classifying the constituent strokes and their
spatial relationships.

The Rand recognizer has several limitations. It can­
not conveniently be modified for individual printing
styles. Adding or deleting symbols is complicated be­
cause these operations frequently require cha.nges in
the tests used on resident symbols. The selection of
features and the ordering of tests are based on an
intuitive analysis of data obtained from a subset of
potential users. There does not appear to be any con­
venient way of optimizing this design procedure.

M. 1. Bernstein and T. G. Williams,l1 of the System
Development Corporation, have recently described
an on-line recognizer in which each user of the system
may build a dictionary of the symbols he desires for
his particular application. Strokes are divided into
segments if they contain corners. Segments with a
large or small aspect ratio are coded as vertical or
horizontal lines respectively. Otherwise the segment is
circumscribed with a minimum rectangle divided into
the five sub-areas shown in Figure 2. The path of the
segment is now retraced and each time a bounda,ry
is crossed, the number of the newly entered sub-are'a

On-line ,Recognition of Hand-generated Symbols 401

is added to a string to form an "area-sequence signa­
ture." In addition to the segment signature, the dic­
tionary entries specify the geometrical relationship
between the component segments and strokes of sym­
bols. The distance between the center of each successor
segment with respect to the center of the collection of
its predecessors is quantized as coincident (C), proxi­
mate (P), or far (F). If the successor segment or stroke
is proximate or far, the direction of its center with
respect to the center of the collection of predecessors
is quantized to one of eight sectors.

The SDC system requires an exact match of segment
signatures and their spatial data for recognition so that
a user's dictionary should contain all of the variations
anticipated. As an example, Figure 2 shows that the
first stroke of a numeral 4 could have three different
area-sequence signatures. For each of these the second
stroke could be in any of the four spatial positions
shown. It is very unlikely that a partiCUlar user would
produce all of the twelve possible combinations, but
half this number is likely. Mr. Bernstein has indicated
that on the average he requires three or four dictionary
entries per symbol and that certain symbols require two
or three times this number.

Although multiplicity of dictionary entries may not
be a serious limitation of the SDC recognizer, it seemed
desirable to this author to find a symbol descriptor and

P2

Area sequence signatures
possible for first stroke of 4

P3 P4 c

Spatial variations possible for second stroke

Figure 2-Multiplicity of dictionary entries

recognition technique which would permit a high
recognition rate but require fewer dictionary entries
per symbol. Two concepts are used to obtain this goal.
On the one hand it does not seem necessary or desirable
to require a rigid geometrical relationship between the
component strokes or segments of a symbol unless this
information is needed for classification. If the numeral
4 is the only symbol which is generated using a two­
stroke sequence similar to L followed by !, then there is
no need to require any particular spatial relationship
between the strokes. It follows, however,_ that some
sort of automatic procedure is needed to determine
which spatial information in a large set of symbols is
redundant. A second way to reduce the number of
dictionary entries is to devise a segment signature
scheme which lends itself to the use of bestmatch
techniques. The idea is to compute the degree of
simliarity of an input segment with a set of prototypes
and choose the closest match. With this capability it
should not be necessary to store combinations of
moderately distorted segments, but only nominal
shapes.

CV S signature and Lee metric

General description

In both of the above-mentioned recognition methods,
an input symbol is classified on the basis of a number
of discrete decisions. As a general principle it seems
preferable to retain full information at each interme­
diate stage in the symbol recognition process.12 Stated
another way, it is desirable to have a smooth trans­
formation between data spaces. A segment descriptor
can be thought of as performing a mathematical trans­
formation on the sequence of pen track coordinates.
The idea of a smooth transformation is analogous to
that of a continuous transformation in the mathe­
matical sense.

The argument for the principle of smooth transfor­
mations can be made by an example. Consider as two
segment classes the numeral! and the right angle L. As
the lower half of an ideal! is rotated counterclockwise
the generated symbol will pass through a transition
region where the probability of its being in class Lin··
creases and the probability of its being in class I de­
creases. A good segmen.t descriptor and classification
method should reflect this continuous change. In the
case of handwritten symbols, it is also desirable to have
a feature space which is invariant to symbol size and
position.

The author of this paper has conceived and tested
a segment descriptor and metric which obtains the

402 Fall Joint Computer Conference, 1969

goals mentioned in the previous: paragraph. This new
method employs what will be called the contour vector
sequ,ence (CVS) and has some sim.ilarity to an encoding
scheme described by Freeman.13 In Freeman's method
a square mesh is superimposed on the arbitrary curve
to be encoded. Mesh nodes lying closest to the inter­
sections between the curve and the mesh define a
straight-line approximation to the given curve. The
scheme is illustrated for two symbols in Figure 3. Suc­
cessive nodes can only be one of eight, so the resulting
encoding is a sequence of octal digits: The number of
elements in the chain is directly proportional to the
length of the curve. In a subsequent paper Feder and
Freeman14 use this encoding technique to fit a given
curve to a similarly-shaped section of a larger curve.
However the method is size variant and cannot be used
for measuring the degree of similarity between two
arbitrary segments.

In the author's CVS encoding scheme the contour
of a segment is subdivided into six nearly equal length
arcs which are approximated by their associated chords.
Each of the chords is quantized to a vector having one
of eight possible directions. Hence the resulting signa­
ture is a vector CVS = 81 S2 S3 84 86 S6 of six components,
where each component takes slope of values between
zero and seven. (See Figure 4.)

The degree of dissimilarity between two segments
is obtained by summing the absolute rotational dif­
ference, expressed in angular units of 1r/4 radians, be­
tween corresponding components of the associated
contour vector sequences. This distance measurement
is equivalent to the Lee metric used in coding theory.15
Specifically, if segment A has

(1)

and segment B has

(2)

then the Lee distance (will also be called the mismatch)
between the segments A and B is given by

where

G

DL(A, B) = MM A - B = L: ICil (3)
i=l

= {
8 - Ci, for 5 ~ Ci ~ 7

I cil
C i, otherwise

(4)

(5)

c

f

clearly

7 a

6 2

5 4 3

Octal encoding of
adjacent mesh points

b a

665432~~

665432100

9
Figure 3-Freeman code

(6)

As I c il cannot exceed 4 angular units, the maximum Lee
distance between two segments is 24.

Figure 4 illustrates the contour vector sequences for
an alpha and a delta, and calculates a Lee dis1tance of
ten between these two symbols. The figure also shows
a mis:m.atch of only two between somewhat different
alpha segments. The latter is an example of the smoo1ih
transformation between the pattern space and the CVS
feature space. Data obtained from an experimenta I
recognition program has shown that similar segments
are mapped into points in the feature space which are
close together in terms of the Lee metric. This clustering
of. segments which look alike to humans makes it

On-line ,Recognition .of Hand-generated Symbols 403

o

/*2
5 3

4
Quantized
directions

CVScx:= 5571.33

CVS 8 = 531702

6
n Icd = 022231

.i = I

~
3 5

7 5
3

Suppose above sym bol s are stored prototypes
and the symbol below is input.

1f)J4
~4

CVS~ = 457134

DL (Q-8) = 12

D (I"'l-CX:) - 2 ...-Lowest
L '-4 - mism atch

Figure 4-CVS encoding and mismatch calculation

possible to only store nominal segments and use the
metric to recognize non-ideal segments on a nearest
prototype basis. The property also can be used to advise
a person that certain symbol pairs which he creates are
very "close" to each other and may give trouble in
either human or machine recognition.

Choice of six component CVS

Several factors contributed to the choice of six com­
ponents in the CVS. In order to reduce storage re­
quirements for a user's dictionary, it is desirable to use
as few components as possible. On the other hand the
CVS must provide sufficient resolution to distinguish
between classes in a large set of symbols. Experiments
were conducted with a variety of symbol shapes in
order to obtain a compromise betwen these two goals.

As a minimal requirement it was felt that an on-line
recognizer should accommodate handprinting of the
teletype symbols shown in Figure 5. If strokes con­
taining cusps (such as the 3 and 9) are subdivided into
less intricate segments, this set of symbols can be
conveniently printed using the 28 segments shown in
Figure 6.. As many of these prototype segments are
symmetric about an axis, it appears desirable to have
an even number of components in the CVS. Figure 6
gives visual evidence that very little shape information

I d 3 4 5 b l 8
90ABCDEF
G H I J I(LMN
OPQ 1< STUV
WX V 21' ~ + $ I

I II J "

I J >K I I • " "

#@. / '" ;/. • •
j •

< > ? • J .
Figure 5-Hand printed t9tet!)~ ~yn')31:l

is lost if these segments are approximated with six
components. This number of components also provides
a minimum Lee distance four between any pair of seg­
ments. The symbol pairs having this lowest mismatch
are 1 _. f, c - <; S - f, and U - V.

Although a contour vector sequence having four
components probably would be sufficient for many ap­
plications involving a small number of symbols, six
components are needed to distinguish between the
symbol pair S - f of Figure 7. The figure also shows
that only four components provide a rather poor
straight line approximation of intricate curves such
as the theta or the lower case e. A final factor affecting
the choice of a six component CVS for further experi­
mental investigations was the 24 bit word length of
the co~puter, leaving six additional bits for other
kinds of segment data.

Computational algorithms

The computation of the contour vector sequence
begins with a pre-processing operation on the raw pen
data. The Rand Tablet (see Figure 1) has a resolution
of .01 inches and is sampled each seven milliseconds

404 Fall Joint Computer CQnference, 1969

------------------------~---

I
I
I
I
I
I

444444
--)

223566

222222
/

/
/ , , ,

555333

555555

~== 665322

a
~

643501

-I
"X

245723

, ,
> /

/

333555
, , , , , ,

333333

000000

i 1

I 1

~
443100

IlL]
442064

I
I
I ,--

444322

111333
I
I

I I
'./

444570
/-1

/
/
I

124554

~
1 1

I I
001344

--,
I
I
I

223444

1"- 1
1 "-I

003300

333111
I­
I
I

...J
644446

1_­
__ I

422466

-_/

1
I
I

444566

> L_
235522

Figure 6-Segments used to print teletype symbols

to obtain the location of the stylus. To reduce redun­
dancy and filter out spurious noise from the tablet, the
PDP-5 accepts· a new coordinate (Xh yj) only if the
following three conditions are satisfied:

where (Xi, y i) is the last coordinate accepted, K2 defines
an inner window, and Kl defin~s an outer window.
Kl and K2 are preset to ten and three respectively,
but may be changed from the teletype using the com­
mand SET PARAMETERS. Owing to the high
sampling rate, a new point is stored whenever the X or
y coordinate changes .03 inches; from the previously
accepted point. This amount of: resolution has been
found sufficient for subsequent computations on 1/4
inch high symbols, but K2 may be increased for larger
symbols.

644446 653356

6 Components

e

6446

~.

\)
~-:::;:::/

6446

4 Components

~
Figure 7--Four and six component CVS's

From the above mentioned filtering process the
contour of a segment is represented by a sequence of'
nearly equally spaced x-y coordinates. These points a,re.
used to obtain a six-chord approximation to the seg­
ment. The algorithm (see Figure 8) consists of dividing
the number of' coordinate points less one by six, and
taking the quotient (Q) as the nominal dista,nce be­
tween adjacent chord points (Zi' Zi+l)' If the division
produces a remainder (R) it is distributed between the
chords. If R ~ 3, an extra point is added when forming
each of the odd chords ZOZl' Z2Z3, and Z4Z5' If R is equal
to one or four the last coordinate is removed and if
R is equal to two or five the first is also neglected. These
rules are summar3zed in a table of Figure 8.

The final step in computing the CVS signature is a
quantization of the chord directions into one of eight
sectors. The first component of the CVS is computed
using the A Y and AX associated with th e ch ord Z (z]. In
the example of Figure 8 tan 22.5° ~ IAY/AXI ~ tan
67.5°, AX < 0, and AY < 0, indicating the direction 5.
A similar application of the Quantization Table to the
remaining chords results in a signature of 543175 for the
numeral 6 shown.

On-line .Recognition of Hand-generated Symbols 405

0.03"

l ~
(# coordinate

I~X- I
6Y 20 Q=3

I 6" R '2

tan 67.5° ~ I~Y/~XI ~ (jJ

tan 22.5° ~ !6Y/6XI< tan67.5°

o ~ 16Y/6XI < tan 22.5°

R

I
2
3
4
5

6X>O
~Y>O

0
I
2

points) - I

Ignore
1st point

N
Y
N
N
.Y

Add point
to

odd legs

N
N
Y
Y
Y

6Xs-O ~X>O ~X~O
~Y>O 6Ys- 0 6YS.O

0 4 4

7 3 5
6 2 2

Quantization table

Figure R-Algorithm for co:nputing CVS

If the number of coordinate points is less than seven,
the CVS is computed in a different manner. Segments
having four to six points are assumed to be straight
lines and only the two end points are used. The
quantized slope of the chord betwen these points is
assigned to each CVS component. For example a short
mid bar in the letter F would have a 222222 signature.
If the number of coordinate points is in the range one
to three, the segment is assumed to be a dot and as··
signed a CVS of 000000. Although this signature is
also that of a vertical bar drawn bottom to top, the
latter is not commonly inscribed. However, the dot
could just as well be assigned any signature having a
large Lee distance with respect to the other segments
employed. By treating short segments in the manner
described, it is possible to utilize a larger K2 (inner
window) and thereby reduce storage requirements
and computational time.

The Lee distance between two segments is obtained
by summing the absolute rotational difference I c,1
between corresponding components (ai, b i) of the asso­
ciated CVS's. As indicated by equation (5), I cil cannot
always be obtained by simply computing the absolute

a· I

0
7

6 2

5 3
4

7 0 Ci = IOi-bi l
610
521 0
43210
343 2 1 0
2 543 2 1 0
16543210
076543210

7654321 0
bi

5
C· I ... 0101

2
1
5 compli-

... 1011
ment of Ci '--y-J

I Ci I 3

Coded directions for
CVS components aj and bj

a· I

7 0 ICi l
610
5 2 1 0
43210
343 2 1 0
2 343 2 1 0
1 2 3 4 3 2 1 0
012343210

6

7 6 5 4 3'2 1 0
bi

7
... 0110 ... 0111

... 1010 ... 1001
'-v-' '-v-'

2

Figure \=I -Algorithm for computing I C'i I

algebraic difference Ci between ai and b i • For example
two components with quantized directions 7 and 2 have
Ci = 5, but IC'il = 3. Equation 5 also shows that
when c .. is 6 or 7, the respective I cil 's are 2 and 1.
However the lower table in Figure 9 demonstrates that
when 5 :::; Ci :::; 7, the correct ICil is obtained from the
least three significant bits of the 2's complement of
Ci. This simple algorithm has been implemented with
standard machine instructions.

Dissecting strokes into segments

I t is well known in mathematics that continuous
tranformations depend upon well behaved functions.
If a function is not continuous and/or analytic, it may
be necessary to apply the transformation separately
to a piecewise approximation of the function. In an
analogous way the smooth transformation property
of the CVS signature and Lee metric is related to the
geometrical properties of the two dimensional entities
on which it operates. Discontinuities in the pattern
space are easily handled because in an on-line imple-

406 Fall Joint Computer Gonference, 1969

/~ DL(3,3)= 9

::2) ~ 246246

~ ~~ DL(3,~)= 5
252466 ~
Input

253471
Prototypes

223566,345011
Prototypes

Figure lQ--Improvement obtained by .segmenting

mentation the start and end of a stroke are reliably
indicated by a micro-switch in the writing stylus. Hence
it is possible to compute a separate CVS for each com­
ponent stroke in a symbol. The manner in which the
Lee metric is applied to multi-stroke symbols is dis­
cussed in the next section.

Sharp corners or cusps in a stroke correspond to
points in which the derivative of a function is not de­
fined, and can be troublesome to the CVS transforma­
tion. A lower case z and a numeral 3 will be used as
an example. Figure 10 shows that a slightly distorted
3 may have less mismatch with the prototype z than
with the prototype 3. However, the lower half of
the figure demonstrates that the smooth trans­
formation property can be restored if each of the
symbols are separated at the cusp into two segments.
Now the upper left-cup common to both symbols has
the same prototype CVS, and classification depends
only upon the dissimilar lower parts. Experiments

-
have shown that if a large nU'1lber of symb::>ls In a w~er
set contain cusps, segmentation on cusps rEtSults in
a higher percentage of correct classifications.

Several methods were investigated for dissecting
strokes into segments. The first technique tried de­
pended upon detecting the relatively slow pen veloc­
ity in the vicinity of cusps. An inverse measurement
of pen velocity was obtained by counting the number of
tablet coordinates rejected in the pre-processing opera­
tion. Experimental data showed that the writing veloc­
ity differed between users and also for different symbols
inscribed by the same user. Relatively slow veloci.ty
was observed for smooth portions of strokes aB well as
at cusps. In general the results of segmentation on
velocity measurements were found to be unreliable.

The dissecting method used in the experimental
recognizer locates cusps using geometrical meaSUlre­
ments and is insensitive to pen velocity. The algorithm
operates on the sequence of filtered coordinatHs which
a,pproximate a stroke. Cusps are isolated when the iln­
eluded angle between three successive points is lE~ss

than a constant (normally set to 300
). Although cusps

are reliably detected, sharp corners mayor may not
cause segmentation. Hence if a user desires to employ
such one stroke symbols as a narrow V or N, he may
need to inelude alternative descriptors in his diction­
ary.

Experimental symbol recognizer

Multiple stroke symbols

A symbol may be composed of several strokes and
one symbol can be a subset of others. Consequently
an on-line recognition program must provide some
means to detect symbol completion. One possible
technique divides the writing surface into a grid and
each symbol must start in a new space. This con­
straint may be acceptable when the data to be entered
is in tabular form, but the technique is unsuitable for
randomly placed symbols of varying sizes. A second
method makes use of a tree-structured dictionary .101 ,11

After a particular stroke has been classified, the dic­
tionary is referred to for a list of permissible successor
strokes. If the next stroke does not have an aUowable
identity and/or geometrical position, it is assumed to
be assoicated with a new symbol. This technique has
the advantage of reducing dictionary search time, a
desirable feature when there are a number of entries
for each symbol type. However, a poorly inscribed or
positioned stroke may not correspond to an allowalble
successor and can abort the recognition process. In
many of these abort instances the complete sym 1)01

On-line Recognition of Hand-generated Symbols 407

contains sufficient information for correct classifica­
tion.

In the author's recognition system classification is
obtained from the best match of the complete input
symbol-with dictionary entries having the same number
of strokes and segments. No attempt is made to identify
the component segments of a multi-segment symbol.
Hence it was necessary to devise a symbol completion
algorithm which operates independently of the recog­
nition process. The basic technique is to center a
stroke or a subsymbol in a somewhat larger rectangle.
If the next stroke does not enter this rectangle it is
assumed to start a new symbol. This procedure auto­
matically adjusts to varying symbol sizes.

The precise dimensions of the enclosing rectangle
is determined by the aspect ratio of the stroke and in
some cases the predecessor stroke is also a factor. If
the height-to-width ratio R of the initial stroke is
in the range of 1/3 to 3, the stroke is bordered on
the top and bottom by m/2 and on the sides by m/4,
where m is the maximum of the stroke width or height.

A-test for
stroke 2

A-B tests
for stroke 2
r--T-'---I

! :1 i I ! I I I I
: : I ,

L __ L_L?J
R>3

B-test for
stroke 2 ,-------,
: --2: , ,
I-I , , , ,
L _____ -.J

R<l.
3

A-test for
stroke 3 ,-------,
, I

r-l-Q!e m ' , L: __ 1 3
I I , , L _______ ..J

A-test for
stroke 3 r---,

i II i I
: ., 3 ___ J

A-test for
stroke 3

'-1;-1
I_i L ____ I

A-test for
stroke 4 ,----,

lihl!
, I L ____ J

A -test for
stroke 4
r----,

!+!L
'-IV , I L ____ •

Figure ll-:-Symbol completion algorithm examples

If the second stroke enters this rectangle, the combined
strokes are enclosed with the minimum rectangle plus
the m/2 and m/4 borders, where m is now the maximum
dimension of the symbol or subsymbol. The procedure
is repeated until a new stroke fails to enter the rec­
tangle. (See example at the top of Figure 11.)

When the initial stroke is tall and narrow with R >
3, two different enclosing rectangles are employed.
Rectangle A is of the previously mentioned type and
borders the top and bottom of the stroke by m/2 and
'the sides by m/4. i.f the 2nd stroke enters this rather
narrow box, the two strokes are assumed to belong to
the same symbol or subsymbol and the A test is
repeated. Second strokes which do not enter the A­
rectangle but have an R > 3 are tested to see if they
enter the B-rectangle. The latter is actually a square
of dimension 2m. When the B test has a positive result,
the first two strokes are enclosed with an A-rectangle.
If the 3rd stroke is completely within this rectangle,
all three strokes are assumed to belong to the same
symbol or sub symbol and the A-test is continued.
However if the 3rd stroke is not enclosed by the A­
rectangle, the first stroke is assumed to be a complete
symbol and the 3rd stroke is treated as a possible sec­
ond stroke for the next symbol. As shown in the mid­
dle of Figure-II, this feature of the symbol separation
algorithm permits l's to be more closely spaced than
the vertical bars of an H. When the initial stroke is
wide and short with R < 1/3, the B-test is applied to
the second stroke. If the result is positive, the A-test
is applied to subsequent strokes. (See example at the
bottom of Figure 11.)

In addition to satisfying one of the spatial tests which
have been mentioned, a component stroke of a symbol
must be made within an interval of time (prescribed
by the user) after the previous stroke. In this manner
the program can detect the completion of an isolated
symbol or the last symbol in a string.

Segment spatial data

If two or more symbols in a user's set are formed
with the same sequence of segments (e.g., the + -T or
the n - h of Figure 12), the corresponding dictionary
entries will contain identical contour vector sequences.
To enable distinction, the program extracts and stores
spatial information on the relative location of the
center of component segments with respect to the
center of a completed symbol. As shown in Figure 12,
this relation is encoded as up (D), down (D), right (R),
left (L), or coincident (C). When the spatial data for
a particular segment in a symbol is needed for recogni­
tion, the user sets a bit in the corresponding segment

408 Fall Joint Computer Cpnference, 1969

=

=

=

Subareas used to specify
location of segnlent geo­
metric center.

c , u

c , c

L, n D

L, n c
Figure 12-Geometric position of segments

descriptor. The task of deciding which bits to set is
made rather simple by a routiIl1e called TROUBLE­
SHOOT which informs the user of all symbol pairs
having a low mismatch. As indicated by an example
set of symbols included in a later section, the segment
spatial data is seldom required. Hence the recognizer
has inherent tolerance to sloppy positioning of the
component segments of most symbols.

Dictionary building and testing

The procedure for constructiI)g a personalized dic­
tionary is simple and fast. In this mode the user in­
scribes a symbol and its contour vector sequences ap­
pear on the CRT. In the experimental recongizer the
CVS's are in numeric form, but dictionary construction
could be simplified further by displaying each CVS as
six connected vectors. The same symbol is repeated
several times to see if there are any variations. The
user then selects a representative· sample and assigns
an output code by pointing to one or two characters
displayed on the CRT. (In the present arrangement

the output code may correspond to a teletype character
or a teletype character preceded by an ampersand.)
The operation is repeated for other symbols until the
dictionary contains the desired symbol set. At this
stage in the procedure the dictionary entries are ini­
tialized not to use segment spatial data.

N ext the recognizer is placed in a TROUBLESHOOT
mode which computes the mismatch between every
pair of symbols in the dictionary having the same num­
ber of strokes and segments. Symbol pairs with a low
mismatch are displayed to the user. He may make his
dictionary more robust by prescribing spatial dif­
ferences, changing the form of symbols, or permuting
stroke order. Or he may choose to ignore symbol pairs
having low mismatch until poor recognition is actually
experienced. Unwanted symbol descriptors are removed
from the dictionary using the command D:~LErrE
followed by the corresponding output codes. The
user can also save his dictionary on standard system
files and retrieve a dictionary from these files.

Figure 13 shows the printing style used by the author

A B

I J

Q 1<

V
I

h

r
w

8

("
....

<

(D E F

K L N

5 T v v

b c

l J 1,

t

+ $

3 s

l'

[@

> / •

Figure 13-Test symbol set

(~

()

E?

rY)

Ul.

III

?

0/
/0

H

p

x

1

On-line Recognition of Hand-generated Symbols '409

4 041.-42222 05444444 H 03444444 0544<1444 01222222
A ilUHH344 01?2?222 I 01444444 04222222 42222222
D 03444444 4123 1j5S6 K 43444444 04555555 02333333
M 03444~44 01331344 R il344~444 01)223565 02333333
P 03444-~<j4 44223566 (04555~·:,i5 03444444 0233333.!.
Q 01654210 05333333) "4333333 05444444 02555555
T 01444~44 442222~2 * 41444444 01555555 01333333
X 0133333·3 015~S555 [04666666 03444444 02222222
Y 04333111 0244444·~ 1 04222222 05444444 02666666
Z 01235522 01222222 B 03'~ 444·~ Ii 04223456 12223566
&F 056~·""4t. 41222222 &Q 046542113 11444444 01222.222
&l 014t,4:!.2~! 01C\1G\)OO @ 016511210 151j44322 01654210
&J 014445G6 04O,)[;003 % 0355421~ 01555555 02654210 &K 03441.'1·~'~ Co1557333 &M 034444';4 13C01244 15JH113411
&T 054111,322 012?2222 F' 034444.',1, 04222229- 41222222
&X "12."04 /.2.2 01555555 I 01444444
+ 01441141;4 41222222 2 01245723
$ 016'13355 01 ~1;41;t.·~ 6 014420G4
G 0155-132(\ 0~22?,i:f,4 7 012234 /,1.

034tl44-1:j 05"'4-111"4 8 01643501
& "12i:55~?' " 1/;1:1;~4·~ c 01.s54432
5 III 11.2?IlG6 0/.222??'2 J 0144457~

042::>.222?' f1?222?22 L 01,11,-111322
9 "I;G5t.210 15I;I.tlLl.','\ N 01al3310 u. ~365M:1[J 15·:·~t.321 0 016511210
&8 e3llLl1l4t:Ll 12012·::'G s 010555356
tC Etl222~22 I1GG5Z,n u 014431~0
&'1) CS653 F~;j 1!11lt.1J4':'2 v 01333111
&G £;I;GSt.2W 11t.1I4011 ItI 01331311
~H 03-11;1;1;1;1; 5?'r.~; 13114 &L 0124 /;432
&!l C31;~1:1,!.1; 51;;0131;4 &0 01t.20C32
&P 034t.I;Lit.1I 51GOI?'~G &V 01431(;22
&F\ ~.',t.t.·V"j'" I1CC13122 012?'2?~?
&S l'il 1 121,5G 1n22222 , 0133M33
&U O~,t.I,Z.lc(j 15111:4.32? <C "15~53:'\3
&\1 r.341,31C ::J 154il.312iO • 013,!135~5
&"((jt.·~1l316r. 11441:566 I 01555555
&Z (J1J?234GG H~?'35711 &£ 0121>55':'2
t 0144411';4 ,./: 111333 01::0(ll,fj(l
I 131 -14 /:.':/,11 0~r,Gr,I?t:J~

f, 1~'.22:?22 I}3555333
3 04223566 12.223%6
? 01121;554 0200(1)eCl
~34~".l~~1: r.54441l4t, 04222??::- . 02222222
E (':31: I; .~ 1;1: 1\ 04222222 "12222?~ fl?22?222

Figure 14-Dictionary entries

for 85 different symbols. The set includes. the ten nu­
merals, the upper and lower case alphabetical charac­
ters, and 23 common teletype symbols. Lower case
letters which ate normally printed the same as upper
case were changed to a cursive style. This was neces­
sary because the experimental recognizer does not
make use of relative size information.

A printout of the dictionary entries created by the
author are shown in Figure 14. The output code se­
lected for lower case alphabetics consists of the cor­
responding upper case symbol preceded by an amper­
sand. Each segment is represented by eight octal digits
and the six on the right are used for the CVS. The 2nd
digit from the left contains numbers 1 through 5
to indicate the location of the geometric center of the
segment in a rectangle enclosing the complete symbol
(See Figure 12). This geometrical relationship is re­
quired during recognition if the user has set the most
significant bit of the first digit on the left. A "I" in the
least significant bit of the 1st digit indicates that the seg­
ment continues a stroke and this information is used
to partition the dictionary into subsets of. symbols
having the same number of strokes and segments.

As the middle bit is currently unused, the first digit
can be only a 0, 1,4, or 5.

The TROUBLES EIOOT parameter was set to list all
symbol pairs having a .mismatch of four or less. Figure
15 shows that the pairs C - <, L - f U-V, and V-W
each had a Lee distance of exactly four. The author de­
cided to accept this level of mismatch for single seg­
ment symbols unless subsequent tests suggested a
change of form. Figure 15 also lists ten pairs of multi­
segment symbols having a total Lee distance of four

. or less. Seven of these pairs ,were made more robust
by taking advantage of reliable differences in the rela­
tive position of component segments. Only one spatial
bit was set in each symbol, thus allowing sloppy po­
sitioning of segments not needed for distinction. For
example the second stroke of the f-T was chosen be­
cause it was felt that the horizontal bars of these two
symbols would always be coincident and up respec­
tively. However the first stroke of the f might at times
be coincident and would then provide no spatial dif­
ference with the T. The SPATIAL DATA mode is
called by typing SP and the number in the dictionary
list of the desired symbol. A routine then automatically
requests a no (N) or yes (Y) decision to set the spatial
bit for each segment of the symbol.

Although the manual setting of spatial bits is greatly
facilit~ted by the TROUBLESHOOT mode, the
procedure does require familiarity with the fundamental
principles of the recognizer. The task could be accom­
plished. automatically, but would require the user to
provide additional input samples. The F-I pair in the

n ~"44.A444

e
p 03444444

r 01444444
3

&F'''5654444

T 01444444

" + 0U41,444

&F'05654444
3

+ 014444114

&A03651l21"

" &GM654210

&H~34440144

" &tW3444i1014

&H~31\1I1j444

" &pe3011l441111

&r1034444lj4
0

&P£)34~44~1j

41n4';65
2

44223566

44222222
0

41222222

44222222

" 41222222

41222222
0

41222222

15444321

" 1144·~!i)ll

52001344
0

51COl344

52liOl344
3

51001246

51001344
3

5 HHil246

F 03444444

" 011144444

K 43444444
0

* 41444444

C "1654432
" .

c "1555333

L 01444322
4

&L"1244432

u "144310"

" V 01333111

V "1333111
4

Ii 01331311

04222222

" 04222222

0~555555
0

"1555555

Figure I5-TROUBLESHOOT list

41222222 ." 42222222

02333333
0
01.1133333

410 Fall Joint Computer Conference, 1969

~ I~
CUD LUC

Original dictionary entries

~ ~ I~
LUD RUD LUL

Spatial variations provided by user

1= • x,- x, - 0
ex -x-c F= ' ,

• x, X - L

Final dictionary entries

Figure 16-Automatic setting of spatial bits

upper part of Figure 16 will be used as an example. As­
sume that additional training samples produce the
spatial variations shown in the middle of the figure.
The spatial bit routine would determine from all five
samples that the third stroke provides reliable distinc­
tion, and that two dictionary entries are required for the
F. (X means that the spatial bit is not set.) In contrast
to other training methods, the user is required to pro­
vide samples only for symbol pairs having low mis­
match. The minimal use of spatial information results
in a recognizer which is very tolerant to inaccurate
positioning of the component strokes of most symbols.

A TEST mode allows the user to further evaluate
his dictionary. He simply draws a sequence of symbols
which are separated from each other by at least one
quarter of the maximum symbol dimension. The
symbol separation algorithm determines when a symbol
has been completed, and the recognition routine guesses
the identity of the symbol on the basis of lowest mis­
match. Mismatch calculations are made between the
input symbol and all dictionary entries having the
same number of strokes and segments. If two or more
symbols have the lowest mismatch, the first one en­
countered in the dictionary search is chosen. Dic­
tionary entries in which a spatial bit is set require a
specific location for the corresponding input segment.

T
H
E
Q
U
I
C
K
F'
0
X
J
U
M
p
S
0
v
E
R
T
H
E
L
A
1-
y
B
R
0
W
N
D
0
G

01444444 042222~.2 MIS-MATC,H: 1
03444444 05444444 01122222 MIS-MATCH: 1
03444444 04222223 01212222 02122232 MIS-MATCH: 4
01654210 e2333333 MIS-MATCHI 0
014421(10 MIS-MATCH I I
03444444 04222221 02232223 MIS-MATCHI .3
01655422 MIS-MATCH: 2
03444444 04555555 02333333 MIS-MATCH: 0
034444~0 "4222223 01222233 MIS-MATCH: 7
01654210 I'll s- ~lATCH I 0
01434333 01555555 MIS-~iATCHI 2
01lj~457fJ MIS-MATCH: 0
0144211'0 mS-f'JATCHs 1
031.44444 01311444 MIS-MATCH: .3
e34""'444 0423'.566 MIS-NATCH: 2
0164:::356 MIs-r·lf.TCH: 2
01654211 MIS-~:!'TCHI 1
013·~2111 MIS-NA'l'CH: 2
034441144 04222222 01222222 0222~?22 MIS-MATCH: e
034t.1l444 0422456G C2333332 MIS"MAiCHI 2
054~4445 04222222 MIS-~lAT(;H: 1
0344444'1 0541,-141,4 01222222 MIS-MATCHI 0
034444413 (14222222 01222223 02222222 MIS·,MATCH: 5
01444322 Mis-rlATCH: ~
01001344 01221222 IUS-MATCH: 1
0121,5522 01222222 MI!;-MATCH: 1
04332111 02444444 MIS-MinCH: 1
0341l4~34 04223556 12223566 MIS-NATCHI 2
00344444"4 ~1j2345GG 02333333 I'll S- 1·IATCH I 2
01654210 MIS~MAtCH:

'" 01321310 mS-NATCH: 2
0Hl24311 Ms-riATt:HI 3
034 ... 11444 01234565 mS-NA"ICH: 0
01654210 ms-r·jATCH: " 01554322 ~5224444 ms-r·1ATCH: 3

&T
&H
&E
&Q
&U
&1
&C
&K
&F'
&0
X
&J
&U
&M
&P
&5
&0
&V
&E
&R
&T
&H
&E
&L
&A
&Z
&y
&B
&R
&0
&\1
&tJ
&D
&0
&G

Figure 17-TEST on upper-case letters

131444432
133444444
131216532
134655321
e34421~e
el~144322
134222222
133114444"
131654444
0131(.J632
01344332
1314114566
133443100
133444444
0344441\4
01012456
01410742
131431022
0UW6532
033331\44
0144~422
133444444
131216532
1312444.32
135654211
042231155
13451,3211
133444444
133344444
011120742
03432110
1334444"4
135653100
01310642
0116~)1j21 0

01222222
12001444
MIS-MATCH:
15444444
15444222
0400e00~
11665322
131556133
01121222
MIS-MATCH:
01555555
04~00000
15444322
13001344
l1eC1356
12222222
MIS-MATCH:
MIS-MATCH:
I'll S- fvIATCH:
11000112
04222222
12011444
MIS-MATCH:
MIS-~JATCH:
155113221
11345012
11444457
15jrj~1356
I1G00122
MIS-MI\TCH:
15442100
1 HH 1444
15444432
mS··Mt"~TCH:
11445011

MIS-MATCH: 2
MIS··MATCH: 1
o
01222222
MIS-MATCH:
MIS-MATCH:
MIS-MATCH:
MIS-MATCH:
MIS-t1ATCH:
2
MIS-r'1ATCH:
MIS-NATCH:
mS-MATCH:
15011444
MIS-MATCH:
MIS-i1ATCH:
3
o
1

MIs-r'lATClHs 4
2
o
o
7
2

°3
o
3
MIS-MATCH: :3
2
1

MIS-MATCH: 4
MIS-MATCH: 1
MIS-MATCH: 2
o

" MIS-MATCH: 4
MIS-MATCH: 6
MIS-MATCH: 7
MIS-i·1ATCH: 3
MIS-t1ATCH: 1
2
MIS-MATCH: 4
MIS-Mf..TCH: 2
MIS-MATCH: 0
3
I"iIS-NfllCH:

Figure 18-TEST on lower-case letters

Figures 17 and 18 show some test results obtai.ned
on the author's symbol set. The displayed or teletype
output from the TEST mode includes the dictionary

On-line Recognition of Hand-generated Symbols 411

entry guessed, the segment descriptors for the input
symbol) and the mismatch between the former and the
latter. In this particular test the phrase "the quick
fox jumps over the lazy brown dog" was inscribed in
upper and lower case letters. Out of a total of 70 in­
scribed symbols, the only error was a lower case x which
misread as an upper case X.

CONCLUSION

The author's dictionary entries (see Figure 13) were
also used to classify the distorted one and two stroke
letters of Figure 19. Except for a T which misread as
a t, all of the characters in this figure were classified
correctly (the amount of mismatch is shown below each
symbol). Although previously developed on-line recog­
nition schemes also are capable of recognizing dis­
torted symbols, they require the user to provide a
large number of training samples. The nearest proto­
type technique described in this paper performs the
task with a single dictionary entry per symbol.

The symbol recognizer has been used by many dif­
ferent people and all have found it enjoyable to operate.
In one experiment three subjects were asked to con-

A 11 0 R
2- '3

o]) 1) D (C C C
, 0 '5' ~ ~ '3 2 2-

t Z ? 2-
s- !> ~ '3

p 'P -p N N IV f1/
7 ., 5 'Z. 2- b

~ Q Q CZ
l(4 I~ ..,

c:; t1 cJ a
3 0 '3

S <; 5 S·
'I '" "L ~

U U \J L/
2- 0 '3

y y y y
2

\.,..,J t,./ W lrJ
'2-

Figure 19-Intentionally di",torted symbols

struct personalized dictionaries consisting of the nu­
merals, the upper C9se letters, and the lower case letters
which differed from upper case. Each of these persons
adjusted to using the tablet and CRT display within
15 minutes and then took about a minute to make each
dictionary entry. As the automatic means for setting
spatial bits has not been implemented, the subjects
were given brief instructions on the manual procedure.
The operation itself took about 15 minutes.

After their dictionaries were constructed the sub­
jects were asked to write the complete alphabets and
the phrase "the quick fox jumps over the lazy brown
dog" in upper and lower case. From this test of 132
symbols a user typically had two to five misreads. With
additional experience and very slight refinements of
dictionaries, all subjects obtained recognition rates
in excess of 98 percent. An error rate of 5 percent is
generally considered acceptable in on-line systems,
because each character can be classified, displayed, and
corrected immediately by the writer if it is wrong.

The compiled program for the symbol recognizer
requires approximately 9K 24-bit words of memory.
On the average an additional 4 words are required for
each dictiJnary entry. Owing to the simplicity of the
mismatch calculations and the high speed of the SDS
940 computer, the recognizer can easily accommodate
normal writing rates of symbols from a set of lOG..

The CVS signature and Lee metric is a fundamental
technique for measuring the similarity of two arbitrary
curves? and can be applied to a wide spectrum of
pattern classification problems. The author is currently
investigating the usefulness of the method for machine
recognition of cursive writing in lower case letters.
Preliminary results from this research are contained
in Reference 9.

ACKNOWLEDGMENTS

The author wishes to express his gratitude to the many
people of Project Genie whose work has produced the
TSS used to implement this research. Chacko N eroth
and Ken Pier gave valuable assistance in early experi­
mental work on the basic algorithms, Barry Borgeson
provided software for the tablet and display, and Bo
Lewendal wrote much of the program incorporated
in the experimental recognizer.

Support for this work has come from the Advanced
Research Projects Agency of the Office of Secretary
of Defense under Contract No. SD-185.

REFERENCES

ID B DEVOE

412 Fall Joint Computer Conference, 1969

---,-------
Alternatives to handprinting in the man1lal entry of data
IEEE Trans of Human Factors in Electronics Vol 8 Nol
March 196721-32

2 T G WILLIAMS C H FRYE
A1J instruction application of computer graphic8
Educational Tech 5-10 June 15 1968

3 G D HORNBUCKLE
The computer graphics user machine interface
IEEE Trans of Human Factors i~ Electronics Vol 8 No 1
March 1967 17-20

4 J H MUNSON
Experiments in the recognition of hand-printed text: Part I
character recognition
Proc FJCC 1968 1125-1138

5 G NAGY
State of the art in pattern recognition
Proc IEEE Vol 56 No 5 May 1968 836-862

6 R 0 DUDA P E HART
Experiments in the recognition of hand-printed text: Part I 1-
context analysis
Proc FJCC 1968 1139-1149

7 M R DAVIS T 0 ELLIES
The RAND tablet: A man-machine graphical communication
device
Proc FJCC 1964325-331

8 B W LAMPSON W W LICHTENBERGER

M W PIRTLE
A user machine in a time-sharing system
Proc IEEE Vol 54 No 12 Dec 1966 1766-1774

9 G M MILLER
On-line computer recognition of handwritten symbols
Elec Engrg Dept Univ of Wis 1969 PhD Dissertation

10 G F GRONER
Real-time recognition of hand-printed text
Proc FJCC 1966591-601

11 M I BERNSTEIN T G WILLIAMS
A. two-dimensional programming system
I F I P Congress Edinburgh Scotland Aug 5-10
1968 C84-C89

12 J H MUNSON
Some views on pattern-recognition methodology
Internat Conf of Methodologies of Pattern Recognition
Univ of Hawaii Honolulu Jan 24-26 1969

13 H FREEMEN
On the encoding of arbitrary geometric configuration,s'
IEEE Trans of EC Vol 10 No 2 June 1961 260-268

14 J FEDER H FREEMEN
Digital curve matching using a contour correlation algorithm
Proc IEEE int Conf March 196669-85

15 E R BERLEKAMP
A.lgebraic cod1~ng theory
McGraw-Hill Book Co 1968 Coopt 8 204-205

· Common file organization techniques compared

by NED CHAPIN

IrifoSci Inc.
Menlo Park, California

INTRODUCTION

In order to make a comparison of file organization
techniques, concurrence is needed on terminology. To
that end, this introduction offers some definition of
terms. Unfortunately, many of these terms do not
have universally accepted definitions. A general defi­
nition of terms can be found elsewhere.6

In offering definitions of terms, this paper does not
suggest that those who give different definitions are
wrong. On the contrary, the differences in definition
that exist reflect in part imperfect communication
among people in the field, and in part. real differences
in the concerns of the people in the field. Hopefully,
papers such as this ope will help improve communi­
cation. But the differences in concern will continue
to exist) and to spawn both new differences and new
terms.

As used in this paper, the term "file organization"
is not synonymous with file structure) data structure,
data base" data organization, or data management. A
file organization is viewed as a way of putting to­
gether the components of a file.. "File structure" is
viewed as synonymous with file organization, but is not
used in order to help distinguish it from "data struc­
ture." A "data structure" is a more general term than
file organization.l. since a file is viewed as but one general
organization of data. Some people use the term data
structure to refer only to vertical relationships among
data. "Data organization" is viewed as synonymous
with data structure. A data base is viewed here as a
group of files or alternatively as a controlled aggre­
gation of data which can be regarded as organized into
files.

The term "data management" is used with a variety

of meanings in the field .. Sometimes it is narrowly used
to refer to movement and formatting of data to and
from internal storage, and the supporting software.
Sometimes in a broader sense it also refers to the
identification of data and procedures to maintain the
integrity and security of the datI\.. At other times, the
term is used also to refer to file organization. In a very
broad sense, it refers also to. the maintenance of files ~.
the handling of inquiries, and the preparation of
reports.

These definitions raise questions about the definitio n
of the vertical and horizontal organization of data.
Looking first vertically, this paper views a file as an
arbitrary but usually homogeneous but not exhaustive
aggregation of records. Records are collections of data
all of which share some attribute in common, usually
the name of a thing the data are about. For example, a
record of employee job attendance might contain data
apout number of days worked, number of days absent,
the usual work station, the parking lot location, the
home address, the home telephone, the usual days of
the week absent, and the like. When these data are
drawn together and grouped in terms of "the identifi­
cation of the employee (such as by employee identifi­
cation number), the individual groupings thus formed
are here viewed as records. The components of the
record are data items (usually fields), as diagrammed in
Figure 1.

The definition of a record implies no specific ordering
of the data items •. The definition of the file implies
no ordering of the records "within the file. By ordering
is meant the application of a collating sequence or
pattern template to data items at a uniform level in
the vertical hierarchy of data. When records are ordered,

413

4'14 Fall Joint Computer Conference, 1969

~ o

(J)
H

BASE

FILE

RECORD

ITEM

H
CJ)

Figure I-Condensed diagram of the vertical hierarchy
of data

the data items used for the ordering are referred
to here collectively as the key. For example, the records
in the attend~nce file just cited might be ordered using
an ascending numeric collating sequence with the
employee identification numbers serving as the key.

The horizontal organizations of data reflected in
this paper require definitions of table, tree! string,
and list. A "table" is a series of pairs of data itemS,
which are the argument and the function. The table by
its form permits the table user to establish by infer­
ence a relationship between a particular argument and
its associated function. A telephone book and a state­
ment of tax rates are examples of tables.

Three important tables for the comparison of file
organizations are indexes, directories, and tables of
contents. An "index"· has the arguments in a specific
order but the function which may consist of multiple
data items may be in order. By contrast, a "table of
contents" cites the functions in a specific order but
leaves the arguments in any order. "Directories" may
have the arguments or functions or both ordered in
any manner. For this reason, the term directory serves
as a general term covering in practice both indexes
and tables of content.

A "tree" can be used to represent vertical relation­
ships among data.4 A tree may also be used for horizon­
tal organization of data, as shown in Figure 2. For

OPERATIONS FILE

Figure 2-A partial representation of a tree af! a
horizontal organization for a file

example data about a firm's operations might be broken
into divisions such as production, sales, eng:ineering,
and the like. These divisions in tUrn can be broken
into subdivisions. For exampleJ, sales might be broken
into territories, and production into the product cate­
gories. Engineering might incorporate new product cnte­
gories currently not in production, as well as those: in
production. These categories can in turn be broken
still further. Thus in production they might be broken
by production equipment or in terms of a bill ofma­
terinl. In snles they might be broken down into products
or into salesmen. In summnry the term tree gets its
name from the graphic representation of the processes
of subdividing.

By contrast, a string organizntion. is viewed as a
series of things, one after the other, where: the ele­
ments composing the series are similar. EX~Lmples of
strings nre series of characters, of digits, of nnmes,
or of numbers.

A "list" is viewed as a series of records or data
items each accompanied by one or more pointers to
other' elements in the series. These pointers are here
termed "links" and are themselves data items. Some
people prefer the term "chain" to refer to a list.

Irrespective of vertical or horizontal aspeets of the
file organization, a file may exhibit a si~npl~ or a
compound organization. A "simple" orgaIll2iatlOn has

A " d" only one major structural pattern. com~oun

organization has two or more distinct and dl~erent
structural patterns which taken together comprIse the
file organization.

Classifications

The number of people in the field have proposed

Common File Organization Techniques Compared 415

classifications of file organization. A brief review of
some of these will serve as a basis for selecting one
for use in making comparison here.

A team headed by Anthony J. Dowkart has offered
an extensive basis for comparison.9 In summary, this
basis is: the data definition provided, the facilities
for file creation and maintenance, the retrieval mech­
anism, the processing procedures, the output charac­
teristics, and the operating environment. This basis of
classification is concerned not with file organization
alone, but also with data management in the broad
sense. Looking at the matter of file creation and main­
tenance, and of data definition, the classification bases
suggested are performance oriented, rather than
structure or pattern oriented.

Richard G. Canning has suggested classifying file
organization into two general classes based upon type
and upon structure.3 Within type he proposes recog­
nizing sequential, indexed, and chained files. Within
structure, he proposes recognizing linear, hierarchical,
and involute files. These classifications are more
structure and pattern oriented than those just cited,
but they lack a consistently applied, obvious basis.

lVIinker and Sable in reviewing data management
systems suggested a basis of classification as user
language, file structure, system processing capability,
and user interface.13 This again shares the same general
user basis cited previously. Looking more particularly
at the basis identified as file structure, ::\Iinkerand
Sable suggested classifying on the basis of the imple­
menting storage media (such as tape· or disk) and the
variety of field and record lengths permitted. Among
those that permit greater variety and which are disk
based, Minker and Sable suggested a classification of
indexed, tree-ordered, and linked, or chained. Th('se
suggestions share many of the features of those of
Canning as noted earlier.

David Lefkovitz has suggested a classification of
file organization based upon a combination of the hard­
ware and software components utilized to implement
the file. 12 These he viewed from a functional point of
view, particularly with regard to the retrieval process.
Thus a file organization may be classified on the basis
of which software-hardware components it utilizes and
in what way. For example, does it use a directory,
does it use a randomizing or a tree approach? If it
uses a tree approach, does it use a fixed length key or
a variable length key? And so on. Such a basis of classi­
fication results in a very large number of possible
classes. In a sense, each non-identical existing file
organization becomes a separate classification.

Ned Chapin has suggested a classification scheme

based fundamentally upon the way of indicating as­
sociation at a giV(,Yl vertical level within a file. 4 At
one extreme he placed the attributed organization
which provides explicit identification with the data
at some given level. This obviates the necessity for
providing a means of association below this level.
At another extreme, he placed the linked or list organi­
zation, where each data element at a given level in­
corporates a specific indication of association. Two
varieties of this he singled out for particular attention:
the complex ring which is a complex list that forms
closed loops, and the muble or multiple double-linked
list which provides two or more links. At another
extreme, he placed the hierarchical organization, which
provides a tree-like association on a horizontal basis.
Finally, at another extreme, he placed the positional
organization. This provides association in terms of
placement in relation to other data, at a given vertical
level. Thus, field A is always known to precede field
B, and field B is always known to precede field C,
and all three fields are always present in a record.
Hence, values from the third field position have a
known identification and association.

The Chapin classification utilizes an important
feature of the way people think about data, as its
basis for classification. As such, it avoids the mixed
base problems inherent in the other classification
schemes it reviewed, without the gaps or holes charac­
teristic of the other systems.

This classification approach lends itself to a graphic
representation, as diagrammed in Figure 3. The diagram
uses time as the left to right distance, but not in strict
scale units.7 The vertices or nodes are the identity of
data. The solid arcs or lines are the sequence of the
active (pointed to) data. Vertically, the diagram has
two parts, an upper or demand CD) part, and a lower
or supply part. A perfect match of the file organization
to the demands upon it occurs ,,,hen the data (indi­
cated by broken lines) demanded and supplied occur
at the same time.

Characteristics

Th~ point is well taken that users by and large are

D , • , T • , •)
C/ • • • II • • • • • II • • I • • • • • • • • • S .. • • • • •)

Figure 3-A graphic representation of associations
showing the ideal pattern for a file organization

416 Fall Joint Computer Conference, 1969

unconcerned with the classification of a particular file
organization technique. They are concerned with the
functional characteristics of the file organization tech­
nique in action. Some of these of course are hard­
ware and software dependent. But within those bounds,
they are determined largely by the file organization
itself. Among the common characteristics are the speed
and basis of access, the use of storage capacity, the
ease of maintenance (for insertions, alterations, and
deletions), and the extent of software support avail­
able.

The speed and basis of access is fundamentally
affected by the association provided in the file organi­
zation because access uses the association for its reali­
zation. The hardware, the software, and the associ­
ation together set the limits. The basis of access may
be by attribute, by value, or by property as has been
pointed out elsewhere.4

The use of storage capacity reflects two aspects
of file organization, each of \vhich in turn rests upon
the basis of association. One aspect is that compound
organizations commonly use more storage capacity than
do simple ones. Another is that hardware and software
factors also affect the use of storage, given the file
organization.

The procedures, the convenience, and the time re-·
quired for maintenance operations, such as insertion,
deletion, and alteration of data in a file, depend obvi­
ously upon the hardware and software used. But they
also depend importantly upon the association provided
by the file organization, since maintenance involves
access, but is more than access. Common mainte­
nance practice is not always a corollary of the features
of the file organization.

The extent of software support available is a very
significant determinant of the degree to which people
are willing to use a file organization. Even if it be
theoretically attractive, a file organization unsupported
by software is in practice ignored in favor of anything
that is supported by debugged software.

Common techniques

Techniques covered

The most common file organization techniques are
those proselytized and supported with software by the
computer vendors. These are normally part of the
operating system and are accessible to anyone who
programs in the symbolic language for a particular
computer. Some of them are available to users of
higher level languages such as COBOL and FORTRAN.

Less commonly used are the file organization tech-

niques supported by software available from the com­
puter vendors but not provided normally 2,S part of
the operating systems. These usually take the form of
"packages" capable of a variety of functions.

A third category are the file organization techniques
available in the software market from independent
suppliers of software. K one of these are as common as
those available in the first category, but some are as
common as some in the second category.

For contrast, this paper looks also at the extensions
to COBOL proposed to CODASYL in the area of file
organization techniques.

Vendor supported techniques

Historically the oldest, the most popular, and by
far the most common, is the strict sequential file
organization. The strict sequential is a positional
organized file commonly consisting of ordered records
which are themselves positionally organized.4 ,lo As such,
its use of storage is the most economical of nIl. It is a
simple, not a compound organization.

The strict sequential enjoys a rapid next-record
aceess by attribute, but a slow random acces!) by attri­
bute, as diagrammed in Figure 4. That is, as long as the
sequence in which access is demanded conforms to the
sequence in which the file was sorted, access is rapid
unless the number of records to be passed over is large.
Unfortunately, access is often desired on some other
key. This requires first a reordering of the file which
involves a time-consuming sorting operation, or an
exhaustive search of the file. Even with this sorting

CONSECUTIVE , , , , --+
: : l · . : • . . · • --.--+ • • • • •

RANDOM

T T T r---+
~==4c=:;::~~:::.~:::

Figure 4-Diag,ram of the strict sequential file
o rganiza tion

Common File Organi~~tion Techniques Compared 417

operation, access by value and by property involve
search.

Maintenance for sequential files is logically straight­
forward, but slow. It requires typically a complete
passage of the file with a complete copying of it. Each
record must be read and written in order to do mainte­
nance on the file. Because of this, insertions and dele~
tions are easily accomplished. Alterations are also sim­
ple as long as the typical fixed length restrictions on field
sizes is observed. Where variable length fields are per­
mitted alterations become a little more complex but are
still logically straightforward.

Software support for sequential organization is
extremely good. Its popularity is attested by Table I.
It is the most widely supported of all the file organi~
za tion techniques.

The indexed sequential is a compound file organiza­
tion technique, historically younger than the strict
sequentia1.4,lo This too is a positional organization.
The main file is a strict sequential file. With it is a
sequential organized index using the same key. Some­
times indexes to indexes are provided depending upon
the size of the main file and the storage space available.

Random access for the indexed sequential file is
superior in speed to the strict sequential because the
index search requires less time than a search of the
main file. From the index the location of the desired
record can be found and the record then accessed with­
out search. But for a next-record access, the same
procedure usually is required, which slows such access
(see Figure 5). Access by attribute, by value, and by
property follow the same pattern as for the sequential
organized file.
. The use of storage space for the indexed sequentia1
IS l~rger because of the additional space required for
the mdexes. An added inefficiency in the use of storage
space is the typical requirement for overflow areas to

TABLE I -Summary of the file organization techniques
supported by the eight largest computer vendors

Strict I ndexed Direct or
Sequential Sequential Random

IBM IBM IBM
RCA RCA RCA
CDC CDC UNIVAC
UNIVAC UNIVAC NCR
Burroughs NCR GE
NCR Honeywell Honeywell
GE
Honeywell

Figure 5-Diagram of the indexed sequential file
organization

permit insertions in the main files. This overflow may
amount to as much as a third to a half more space for
the main file, although typically this can be held to
about one-tenth more space.

The maintenance of the indexed sequential file
differs considerably from that for strict sequential.
Maintenance does not require rewriting the entire file;
only those specific records in the file that are altered
are rewritten back into their same places. This saving
in maintenance time can be more than offset by other
factors.

An insertion in an indexed sequential file requires
that· adjustments be made to the index and to the
main file. The inserted record typically must be written
in the main area displacing a record into the overflow
area. Links are inserted if more than one such overflow
occurs in a given area. By contrast, deletion is more
simple. The record to be deleted is simply marked for
deletion but is not physically deleted from the file nor
from the indexes. Periodically, the entire file is re­
written in order to eliminate the accumulated deletions,
to pull the insertions into the main sequence, to re­
~pportion the overflow areas, and to clean the index.
In sum, whether or not the maintenance time for an
indexed sequential file exceeds that for a strict se­
quential file depends upon the volume of insertions and
alterations. For low to moderate volume, the strict
sequential is usually slower over-all. An indexed se­
quential suffers from the same single-key limitations
as the strict sequential.

The software support for indexed sequential generally
is good The software operates more slowly per random
access than for strict sequential because of the de­
creased buffering possible.

The direct or random file organization is also a
positional organization.4 ,lo It is like strict sequential
in that it is simple, not compound. The direct or
random file organization is a variation of the strict

418 Fall Joint Computer Conference, 1969

sequential. It uses a transforma~ion of the key. What­
ever the key ',,"ould be is passed through an algorithm
to calculate a position in storage. Because of the
possible occurrence of multiple records having the same
key, or of closely spaced keys, provision is made in the
algorithm to handle some conditions. One is to place or
find a record when its transformed key is the same as
another transformed key. This can be handled by links
and overflow areas, or by shiftiI).g records to maintain
a sequence in order to restrict the search domain. An­
other is to set up the initial spacing of records in the
file to permit room for the later insertions. The amount
of storage space allocated for this purpose is usually
not less than that allowed for overflow areas in the
case of an indexed sequential file.

The random access provided by the direct or random
file organization is slightly faster than that for an
indexed sequential organized file, since no index refer­
ence is needed. But for next-record access, it is slower
because the transformed key order is not the same as
the ordinary key. Hence, every access is a random
access, as diagrammed in Figure n. The access basis is
the same as noted earlier for the positional organized
files. Also, only one key can be 'used, as noted earlier.

The use of storage space for the direct or random
file organization is about as effi~ient as that for the
indexed sequential, and is less; efficient than for the
strict sequential. This is because of the voids that
must be left in the spacing of the records to accommo­
date inserts, and the use of overflow areas. No space
is needed for an index.

The maintenance for a direct or random organized
file resembles the indexed sequential more than the
strict sequential. This may alsQ extend to alterations
and deletions. For insertions, no index need to be ad­
justed. If the record to be inserted must go into a place
that is already occupied (that is, the transformed key
is a duplicate of an already existing transformed key)
then provision must be made for moving records or for
use of overflow area and links.

• · • •
• • • • • •

• • • • •
• .
•

• • • • • • • I •
Figure 6--Diagram of the direct or random file

organization

• • • •

The software support for the direct or random file
organization is less troublesome and less burdensome
than that for the indexed sequential. Also, less sup­
porting software is needed to accomplish the job. The
user does not even need to rely upon manufacture
provided software but can make do by providing his
own algorithm for key transformations and by using a
strict sequential file organization. lVIany vendors have
been supplying this software for a longer period of
time than they have supplied indexed sequential soft­
",;are.

Another type of common file organization technique
available from the computer vendors and incorporated
as a normal part of their operating systems is the par­
titioned file organization.4 ,10 This is a hierarchical file
organization. But it is normally not accessible to the
programmer even though it is utilized routinely by the
operating system for its own functions such as program
libraries. Typically, the hierarchical file organizations
are compound because they require directories and
sometimes even hierarchies of directories to maintain
association and provide access. These directories usu­
ally include one that is of the table of contents type.

Access by attribute is the most common. The speed
of access depends mostly upon the size and number of
directories used (see Figure,7). Maintenance is usually
done by making deletions by altering only the director­
ies. Insertions are entered in the directories and the
new data placed in any available space. Alterations
are often treated as combined deletions and insertions.

The software support is usually inadequate to enable
the use of the partitioned file organization by pro­
grammers in their own programs. The organization
becomes increasing uneconomically of storaglB space as

, deletions accumulate. To eliminate them requires re­
writing the entire file and recreating the directories j

--.'--.'--,4'~~'~~'~~'~--'~ • • • • • • • : : : : : : :

...-1-. _:L----L-: --t--: ----.:----t-: ~

t.....-----I---+-~--...-_r

Figure 7-Diagram, of the partitioned file orgnnization

Common File Organization Techniques Compared 419

TABLE II-Summary of selected vendor
augmentations

Strict Indexed Direct or Other
Sequential Sequential Random Techniques

GIS GI~ GIS IDS (ring)
FORTE I UNIMS FORTE FORTE (list)
MARS FORTE

MARS
UL/I

an operation equivalent to that needed for the indexed
sequential file organization.

Vendor augmentation

Computer vendors over the years have made a,
number of augmentations and elaborations of the imple­
mentation of file organizations just compared. The
best known of these are listed in Table II.

One of these has been IBIVI's GIS (Generalized In­
formation System).2 This elaboration provides a number
of features that add greatly to the power and con­
venience available to the user. Underlying it are the
two positional organized file organizations, the strict
sequential and direct or random. The use of indexed
sequential is optional depending upon the scope of the
GIS implemented. GIS is a free-standing package, not
an extension of COBOL, but GIS can be used with
COBOL.

The access for the GIS is slower because of the
additional software. But that software yields greater
convenience of user access by reducing programming
effort to file and retrieve data. The use of storage
space is but little more extensive, ignoring the space
for the additional software. l\1aintenance follows the
usual procedures but is more convenient from the user's
point of view because he does not need to write all of
the programs for doing it. The software support is
comprehensive.

The Integrated Data Store (IDS) is available from
General Electric, l and is similar to the General l\10tors
Associative Programming Language. IDS offers a com­
plex ring file organization where the number of links
possible at the record level in the file may be made as
extensive as the user desires. In practice, it is used
most often as an extension of COBOL.

Access by attribute beyond the first access is slightly
facilitated because of the links. Access by property is
much facilitated as a practical matter because of the
links which provide quick reference to the records with
related contents. The use of storage space is greater

than for a strict sequential organization because of the
space occupied by the links. Since in practice, director­
ies are used to locate or serve as pointers to rings, a
little additional storage is also needed for them.

Although insertions, deletions, and alterations are
handled by the software, the procedures are considera­
bly more complicated for IDS than for the positional
organized file. This is because of the need to adjust
the links whenever insertions and deletions are made. If
the insertion cannot be made physically nearby, then
subsequent accesses following the links are slowed.
This maintenance problem compounds as the number
of links to be adjusted increases. The software support
available for IDS is comprehensive and has been ex­
tensively tested in use.

The UNIlVIS (Univac Information lVIanagement
System) is available from the Univac Division of
Sperry Rand. It offers a modified indexed sequential
file organization in a package of software, in a similar
manner to that noted earlier for GIS and IDS. It too
can serve as an extension to COBOL.

The access and maintenance for UNIlVIS are similar
in character to that noted earlier for indexed sequential
files. But to the user the procedures appear easier
because of the assistance provided by the software.
UNIMS uses little more storage space than the in­
dexed sequential noted earlier. The software support
is comprehensive.

The UL/I (User Language/I) from RCA offers a
more convenient language for the handling of access,
maintenance, and reports from files than the usual
programming languages. As such it has similar ob­
jectives to GIS noted earlier. UL/I uses a modified
indexed sequential file organization in a way that gives
the appearance of a hierarchical file organization. l1 The
characteristics of this software system were still fi uid
at the time of this paper.

FORTE is available from Burroughs Corporation.
It provides unordered (sequential), indexed sequential,
random,. and a combination of indexed sequential and
random. Further, it provides list file organization in
two forms, a two-cell list, and a usual double-linked
list (but not a multiple-linked list or ring structure).4.14
As such it represents an improvement over the FORGE
software which Burroughs has offered. FORTE is de­
signed for use as an extension of COBOL, not as a
free standing software package for file organization
and use.

Another relatively new entry in the field is MARS
from CDC. In giving the user the appearance of a
range of file organizations, it like UL/I relies primarily
upon the strict sequential and indexed sequential file

420 Fall Joint Computer Conference, 1969

organizations. Like GIS noted earlier, MARS is a
generalized system providing access, maintenance, and
report capabilities. It does however provide the capa­
bility of building an inverted list organization. Its
characteristics were still fluid at the time of preparing
this paper.

Non-vendor augmentation

The number of implementations of file organization
alternatives are available in the software market from
sources other than computer vendors. With IBM's
Summer 1969 announced changes in software policy,
this growth in alternatives can be expected to grow still
larger. Only a brief selection is covered here, based
primarily on age and popularity (see Table III).

Two distinct classes of offering are available in the
software market. One uses and elaborates upon the
vendor provided file organization and software support.
Another replaces the vendor provided file organization
and hence also provides its own software. A brief look
at each of the groups will round, out the comparison,
since these offerings may soon become more popular
in the market.

In the first group, some of the best known are the
MARK-IV, the FILE EX, SCORE-II, and INQUIRE.
The first two of these use the vendor-provided strjct
sequential and indexed sequential file organization tech­
niques. To these they add an important software super­
structure for report preparation, qata retrieval, and file
maintenance. As such they provide an alternative to
the user for preparing his own programs to accomplish
similar ends, and to the use of the vendor-provided
software.

The SCORE-II also uses the vendor-supported se­
quential and an indexed sequenti3j1 file organization. In
addition it also provides tree structure, not directly
but based upon a combination of the strict sequential
and indexed sequential. This adds flexibility to the
package of report preparation, retrieval, and mainte-

TABLE III--Summary of selected non-vendor
augmentations

Strict Indexed Director Other
Sequential Sequential Random

MARK-IV MARK-IV DM-5
(hierarchy)

FILE EX FILE EX SCORE-II
(tree)

SCORE-II SCORE-II INQUIRE
(list)

nance facilities.
Differing in its choice of the underlying file organi­

zation is INQUIRE. This utilizes the indexed sequen­
tial and the direct or random file organization.s. But
these are not directly accessible to the programmer.
Rather, INQUIRE combines them to form a modifi­
cation <;>f an inverted list file structure. * This gives
added power to the file maintenance, retrieval, and
report capabilities of INQUIRE. Access by attribute
and by property is facilitated by the inverted list
organization, but maintenance requires adjustment 'Of
the lists as additional operations. 4

In the second group, the oldest and most publicized
entry is the DNI-5 (Data Manager-5) which has been
described in the literature of the field.s DM-5 ,like the
others, includes the soft-ware for retrieval, maintenance,
and report preparation. DM-5 utilizes a hier,archical
file organization of a compound form. Tables are used
at several levels. Both random and next-record access
is handled by use of the tables, and are of about equal
speed for access by attribute. Since the records are
not ordered by a key, but ma,ny keys can be used in the
construction of the tables, the single key restrietion 'Of
the positional file organization is avoidod with a result
similar to that for the inverted list file organization.

In summary, the non-vendor offerings in the soft­
ware market typically combine into a single packa!~e
both file organization and convenient aids to using it.
The offerings thus far do not attempt to replace the
file organizations supported by the computer vendors.

COBOL extensions

The Data Base Task Group proposed last year to

* The inverted list was developed about 1964 under the leader­
ship of Dr. Jack Minker 803 a modification of the inverted fille.
The inverted file organization was in use in the information
retrieval field in the years 1957-1958. The inverted file is a posi­
tional file organization with an ordering determined by multiple
keys. Records in the file reoccur as many times as they may have
keys, which need not be the same from record to feicord. By
contrast, an inverted list is a list file organization of a compound
form. The main portion of the file need not be and usually is not
in a list form. The key portion of the file is organized ai3 a set of
lists consisting of pointers for each key to records in the main
file. Since as a practical matter, the links are unnecessa,ry, com­
mon practice is to elide them. The result is conceptually equiva­
lent to an inverted file with all records replaced by surrogates
(a common practice now), and with the records drawn into a
subfile of their own with no redundancy. (The inverted list cnn
also be viewed as resulting from a consolidation of the links in
one direction from a muble chain or multilist file.4

•
12

) In net
effect in their modern forms, and as a practical matter, an in­
verted liflt differs from an inverted file primarily in emphasis and
mann~r of implementation.

Common File Organization Techn'iques Compared 421

the CODASYL COBOL Committee an extension of
COBOL to incorporate provisions for the complex ring
file organization.6 Although the discussion devotes con­
siderable attention to the other file organization tech­
niques, the proposal is for the inclusion of only orre· of
them, the complex ring. In substance, this is very
similar to the IDS noted earlier. This discussion in­
cluded with the proposal indicates that ring file organ­
ization can be used to simulate or serve as other file
organizations, such as sequential, random, hierarchical
or tree, and inverted file. Although not presented in
the discussion, it can also be used as for muble chains
or a multilist file organization.

One of the major objectives of the Data Base Task
Group was to work toward keeping the description of
data stored with the data itself. This is in effect. an
attempt to delay binding time. Since delayed binding
time in general improves the flexibility and power of
the resources available to the programmer, the ob­
jective is commendable. Providing linkage among data
can be a definite step in this direction. The question
to be argued is whether or not the ring file organization
is the best choice of means for accomplishing this
objective as well as serving as a worthwhile extension
of COBOL.

From the comparisons presented, it can be argued
that replacing a ring file organization by a frankly
compound file organization sans links, would gain more
for COBOL. Examples of candidate file organizations
are the inverted list and the hierarchic~l. Access for
both is faster and more powerful; maintenance for
both is simpler.

CONCLUSION

Automatic computers during the middle and late
1950's had by present day standards, relatively slow
execution times and great restrictions upon the availa­
bility of both internal and external storage. The trend
has been toward increasing the availability of larger
and larger amounts of storage capacity, and toward
faster and faster operating speeds.

These changing computer capabilities suggest the
desirability of seriously rethinking the historic prefer­
ence for positional organized files. This was certainly an
appropriate choice of file organization technique, when
storage capacity was extremely limited and operating
speed was slow. It required the least storage space and
the least direct overhead within the program at the
time of file use. The positional organized file entails a
very heavy cost of additional operating time in order
to reorder (sort) the file. It also involves tlie time to
rewrite the file periodically as a part of the mainte-

nance of the file, depending for its extent upon the form
of the positional file organization.

N ow that computers have much more extensive ex­
ternal and internal storage capacity and operate more
rapidly, it appears appropriate to reappraise our con­
tinued reliance upon positional file organization tech­
niques. Let us consider briefly the alternatives. The
attributed file organization is still too expensive of
storage space and of machine time for serious attention
in pure form. The list file organizations in general
suffer from costly maintenance. The exception is the
inverted list. The hierarchical file organizations appear
attractive, but like the inverted list, are in practice
compound file organizations.

It is significant that these latter two file organization
techniques are generally not available to computer
users because the supporting software is not generally
available. The software exists, but the form of most
puts it beyond the reach or scope of operations for
most computer users. But this gap is narrower now
than it was. Some vendors such as CDC and Burroughs
have started to move to provide a wider range of file
organization. techniques. Independent software firms
are starting to offer a wider variety of alternatives.
But a gap still exists.

REFERENCES

C W BACHMAN
Integrated data store
DMPA Quarterly Vol 1 No 2 Jan 1965 10-30

2 J H BRYANT P SEMPLE
GIS and file management
Proc 21st Natl ACM Conf 1966 Thompson Book Co
Washington D C 97-107

3 R G CANNING
Data management: file organization
EDP Analyzer Vol 5 No 12 Dec 1967 14 pages

4 N CHAPIN
A comparison of file organization techniques
Proc 24th ACM Natl Conf 1969 ACM New York 273-283

5 N CHAPIN
Data structures
Automatic Computers N Y Van Nostrand Reinhold Co
in press

6 Data Base TBsk Group
COBOL extensions to handle data bases
SIGPLAN Notices Vol 3 No 5 April 1968 1-45

7 M E D'IMPERIO
Data structure.<{ and their representation in storage
Annual Review of Automatic Programming Vol 5 Oxford
1969 Pergamon Press 1-75

8 P J DIXON S JEROME
DM-l-a generalized data management system
Proc SJCC Vol 30 1967 185-198

9 A J DOWKART et al
A methodology for comparison of generalized data manage-

422 Fan Joint Computer Conference, 1969

ment systems
CFSTI No AD-811-682 March 1967287 page, ...

10 IBM CORP
Introduction to IBM System/360 direct acce8s storage
devices and organi..ation methods
IBM Corp 1968 White Plains N Y 70 pages

11 W I LANDAUER
The balanced tree and its utilization in information retrieval
IEEE Trans on Electronic Compu~ers Vol 12 No 6 Dec
1963 863-871

12 D LEFKOVITZ
File structures for on-time sy.~lem
Spartan Books 1969 Wa!'hington DC 215 pages

13 J MINKER J SABLE
File organization and data management
Annual Review of Information and Technology 19157
John Wiley and Sons Inc N Y 123-160

14 N S PRYWES H J GRAY
Outline for a mutilist organized system
ACM Natl Meeting 1959

An information retrieval system based

on superimposed coding *

by JOHNR. FILES and HARRY D. HUSKEY

University of California
Santa Cruz, California

The cost of storing information in machine-accessible
form has declined markedly in the last decade, and
promises are such that one can look forward to having
complete libraries available in such form. This places
increased importance on algorithms which make it
possible to search large flIes efficiently.

This paper describes an approach to this problem.
In practice, information in a large file can be more

efficiently accessed if it is indexed in some manner. The
method of indexing which will be discussed is par­
ticularly well suited for a file which:

1. Is very dynamic with both deletions and ad­
ditions frequently occurring.

2. Contains an extensive vocabulary which is to
be encoded.

Both of these characteristics are frequently found in
files that are to be coded. A file of information on re­
cently published articles about a given subject and a
card catalogue for a large library are good examples
of files which require a large amount of maintenance.
If updating the index (code file) is expensive and time­
consuming, updating is put off until it is felt that the
performance of the system has deteriorated enough to
justify the effort required to update it. Until the up­
dating takes place, information which is no longer of
use is still retrieved, and the new information, if present,

is in a secondary file. Keeping a secondary file con­
taining recent additions avoids the serious problem of
not having new material available, but it does decrease
the efficiency of the system since such a file must be
searched separately each time an inquiry is made of
the main file.

The ability to utilize an extensive vocabulary is
also very important. In the proposed system the vo­
cabulary to be used is derived directly from words
used in the original documents, thereby eliminating
the time-consuming and expensive practice of manually
abstracting and choosing indexing terms. Machine­
generated derivativesgf the original vocabulary retain
more information about the original content of the
item than does the manual system of assigning de­
scriptors. In the manual case when selected descriptors
are assigned to a document, associations of descriptors
to words and to phrases are made. Such associations
are not made in exactly the same manner by two
trained indexers, and it is likely that the associations
made by the average interrogator of an information
retrieval system will be even more diverse. -Because of
this lack of uniformity in assigning descriptors it is
desirable to allow each searcher to aeterffilne words
and phrases that he wishes to associate with the concept
on which he is doing a search. Postponing such asso­
ciations until the time of the search can be accomplished
only if the entire word content is' preserved in the
coded form. * The research reported on here was done at the University of

California at Santa Cruz with the partial support from Project
Genie at the University of California at Berkeley (Contract
SD-185 with The Advanced Research Projects Agency of the
Department of Defense).

E~ of update and freedom qLy<;>£~lary are not
enough in themselves to make a coding algorithm
worthwhile. Factors such as speed of access, ability

423

424 Fall Joint C.omputer C~:mference, 1969

t.o make searches f.or c.ombinatiOI~s .of w.ords and c.om­
pactness .of c.ode file are als.o· ini:po~tant c.onsiderati.ons.
All .of these characteristics will be discussed f.or the
c.oding scheme .outlined bel.ow.

The system

The inf.ormati.on retrieval system which was in­
vestigated can be divided int.o three c.omp.onents:
preparati.on .of the text, generati.on .of the c.ode file,
and the searching pr.ocedure. A general .outline .of the
first tw.o comp.onents can be seen in Figure 1.

Since the f.orm and f.ormat .of the text to be used
can be expected t.o vary greatly, the text is standard­
ized as it is read in. Flags are set t.o indicate b.oundaries
between rec.ords as well as at the ends .of lines t.o make
it easier t.o repr.oduce the d.ocument when it is retrieved.
Als.o, as a measure t.o reduce the bulk .of the file gener­
ated (text file) extra blanks in the input text are re­
m.oved. In the pil.ot system the text file was generated
fr.om tw.o s.ources: a bibli.ography: .of c.omputer science
and a listing .of auth.ors and titles fr.om recent issues .of
The Computer Group News of the IEEE. B.oth .of these
texts were read, pr.ocessed, and st.ored .on a disk. The
text file generated was· 1°°1°00 characters st.ored .one
character per byte. .

Once the text file is generated c.oding can pr.oceed.
The text file is examined character by character until
the end .of a string which is t.o be c.oded (w.ord) is en­
countered. The unit c.oded is a string .of at least three
alphabetic characters surr.ounded by n.on-alphabetic
symb.ols (an English w.ord). After: the w.ord is f.ound it
is c.ompared with a list .of n.on-c.ontent w.ords, (i.e, the
Delete List c.ontaining w.ords such :as: .of, the, and and).
If the w.ord is f.ound in the Delete List there is n.o further
pr.ocessing .of that w.ord, and the next w.ord is c.on­
sidered.

When a w.ord is f.ound that i$ n.ot in the Delete
List, the trimming alg.orithm is applied t.o reduce the
w.ord t.o a pseud.o-r.o.ot. C.omm.on: endings such as s,
ed, ing and c.omp.ound endings ~uch as fully· (as in
carefully) are rem.oved. By rem.oving endings, different
f.orms .of the same w.ord aremadei int.o syn.onyms. F.or
example, the w.ords 'c.omputer' and 'c.omputers' will
b.oth be reduced t.o the base 'c.o~put.' This derived
ro.ot is then passed.on t.o the c.oding pr.ocedure. (Further
discussi.on.of trimming al~.orithm iIliAppendix C.)
In the coding pr.ocedure, a c.ode word is generated f.or
each rec.ord. The c.ode w.ord can be th.ought .of as a
bit string c.ontaining N bits, all .of :which are initialized
t.o zer.o at the beginning .of the c.odi.ng .operati.on. When
a trimmed w.ord is t.o be c.oded into the c.ode w.ord, the
numeric value .of the letters in the w.ord is summed,

Mo,cltina
Rea.do.b/c

Reael ;" text
'FIG.lf Re.c.o,-eI

DOII,.J.,.ie,
Remove. b/o. .. b

~----------~----~~--------<3--

c;.. t Go 'Word
01 text'

T r;", to
l',evJo­

root

Acid bit
to code

worc/

No

yes
Stor~ Code

o.nc/ text
pointer

Figure I-Coding procedure

giving a number which is used t.o ch.oose an element
fr.om the unif.orm distri buti.on .of integers between 1
and N. Thus the resultant integer (c.ode value .of the
w.ord) is generated by an alg.orithm which giv'en the
same trimmed w.ord in the future will generB~te the
identical c.ode value f.or that w.ord. "By using :1 fixed
arithmetic pr.ocedure t.o pr.oduce the c.ode value f.or a,

w.ord, the need f.or a dicti.onary .of w.ords and assigned
c.ode values disappears-. This frees the large amount .of
st.orage which such a dicti.onary w.ould .occupy :!l.S well
as saving the time required t.o search such a file~ If

Information Retrieval System Based on Superimposed Coding 425

TRIMr,~ED NUMERIC CODE
WOR~ VALUE VALUE

INFORM(ation) 5226 15

RETRIEV(al) 42483 13

SYSTF:lf. 1,1947 3

~
BAS(ed) 95060 9

SUPERIMPOS(ed) 22151 7

COD(ing) 87008 3

CODE WORD 0001000101000101
0

Figure O-Coding "An information retrieval system
based on superimposed coding"

15

for a particular word the code value generated is K,
then the K'th bit in the code word is set to one. (Figure 0) .

The entire operation of finding a word, checking the
Delete List to see if it should not be coded, trimming
and coding is repeated until the entire record is pro­
cessed. The code word which is uniquely determined
by the words in the record is then stored in 'a file (code
file) along with a pointer to the beginning of the record
in the text file. This procedure is repeated until all
the records have been coded.

After coding, the~' file is ready for searching. The
searching program accepts any number of words, each
of which is processed in the same manner as the words
in the text file. It is looked for in the Delete List,
trimmed, and used to generate a code value. This code
value is then used to produce a query code in exactly
the same way as the code words were produced in
the code file. Upon generation of the query code the
actual search may begin. Each code word in the code
file is matched against the query code to see if the
query code is a subset of it. (Here a bit string X is
said to be a subset of another, Y, if when the I'th bit
in X is one, the I'th bit in Y is also one, i.e., 1010 is a
subset of 1011 while 0101 is not.) Each time that the
query code is a subset of the code word, the pointer to
the text file is used to gain access to the corresponding
record which can be further processed to see not only
if it contains the relevant words, but that the words
are in the correct order.

The above is a brief description of the coding sug­
gested for a file of an information scanning program.
Some details such as the exact procedure for removing
endings and the use of several independently generated
code values to produce multiple code words for 11 given
record, were not dealt with here. A more detailed
treatment of these problems can be found in the ap­
pendix.

L

Results

Occurrence
lile

Figure 2-Inverted file

Text
File

Hecord 8

From the pilot system, data was gained on the per­
formance of such a system of superimposed coding.
When possible, the performance of the superimposed
coding system will be compared with that of a threaded
list and inverted file. (Figures 2 and 3) The following
factors received major consideration:

1. Ease of update
2. Effect of a large vocabulary
3. Amount and type of storage
4. Speed of search
5. Cost

Before making any comparisons it would be best to
give a brief description of threaded lists and inverted
files. An inverted file consists of two main parts, a
vocabulary file and an occurrence file. As records are
processed, each significant word is looked up in the
vocabulary file. If the word has appeared before, it
has associated with it a pointer to an area in the oc-

426 Fall Joint Computer Conference, 1969

Vocabu.l. .. ry
File

Word 1

Word 2

Word 3

Occurrence
File

,'~--......j
I
I

9

Figure 3-Threaded list

Text
File

Record 4

Record 5

Record 6

R

Record 8

currence file; if not, then an area in the occurrence file
is set aside for the word and a pointer to the first
location in that area is entered in the vocabulary file.
After this pointer is found, an entry is made in the
first free location in the corresponding area of the
occurrence file to indicate the record in which the
word occurred.

The threaded list on the other hand, has the same
type of vocabulary file, but the occurrence file is ar­
ranged in a different manner. 'Fhe pointer in the vo­
cabulary file now indicates a location associated with
the first record containing the given word. This lo­
cation in the occurrence file, in turn, contains a pointer
to another location in the OCCUrrence file associated
with the second record which contains the word, and
the pointer in this location points ... Thus a linked
list of all the occurrences of the word is formed. 2

1. Ease of update

In the proposed system a record can be added or
deleted very easily. To delete a record a search is
performed which will retrieve the desired document.
This produces not only the pointer to the record in

the text file but the location of the record's code in
the code file. The code word and pointer are removed
from the code file, and their location is recorded as
being free to be used for a new entry to the code file.
The space that the text was occupying in the text file
is now also free to contain new text. In order to add. a
record, which is the more common situation, the text
of the new record is added to the text file in the Hrst
free location of a suitable size or at the end. It is then
processed in the same manner as all the other records
have been. The generated code word and pointer is
inserted in the first free space in the code Est. Here
no room is wasted since all of the code word and pointer
combinations are of the same length. Thus any type
of update in the code file, will affect only the code for
the record which is being changed.

The threaded list can be updated with slightly more
effort. The problem, and a minor one, is that the
records in the occurrence file are not all of the sa,me
length, making it necessary to· see if there i8 enough
room in a given free area to insert the new entry.

The inverted file on the other hand is far more diffi­
cult to update than either of the others. If a record is
to be removed all that need be done is to delete all
pointers to it in the OCCUlTence file. The addition of a
record however becomes a serious problem. If for every
word in the record there is room for an additional
pointer in the areas set aside for pointers to records
containing that word, then the update is easy. But if
there is no room, a secondary file must be set up. The
number of such files will grow until it is felt that a
thorough update should be made. Then the entire text
file must be re-inverted to produce a new vocabulary
and occurrence file. This is a very time-consuming and
expensive project.

2. Effect of a large vocabulary

With the superimposed coding there is no problem
associated with having an arbitrarily large voeabuI3~ry.
This is true because the superimposed coding does not
require a table of vocabulary words like the inverted
and threaded list files do. Since the vocabul3~ry file is
not present and does not have to be searched, increasing
the vocabulary neither lengthens the time required for
a search nor increases the amount of storage required
to contain the coded information.

3. Storage requirements

The major advantage of superimposed coding lies in
the great economy of storage. In the pilot program
which was run, a text file of 100,000 bytes was used to

Inf~rmation Retrieval System Based on Superimposed Coding 427

produce a code file requiring 3,000 bytes. This reduction
of 30 to 1 from the text to the code file is far better
than the ratio' obtained with the threaded list and
inverted files. Such reductions are largest with small
files such as the one experimented with, but substantial
reductions do exist even in larger files. For example,
assume that the text file consisted of 10,000,000 bibli­
ographic entries, each containing 12 words which will
be coded. Such an author-title entry was found to have
roughly 300 characters in it, implying that the text
file would be roughly 3X 1()9 characters. Also assume
that an average search contains at least three signifi­
cant words. Such an assumption is made on the grounds
that a search based on fewer words would tend to return
more titles than would be of interest due to the very
large size of the bibliography. From these two assump­
tions, utilizing considerations explained in Appendix B,
it is found that the code file would consist of seven
code words and one pointer for each record. Each of
the code words is produced in a manner similar to the
single code word mentioned before. Now, however,
once the trimmed form of the word is found seven
difYerent procedures are applied to produce the pseudo­
random number between 1 and N for each of the seven
code words. Each of the code words will have 24 bits
and the pointer will have 32 bits, . thus indicating that
each record will produce 25 bytes of code in the code
file. The total size of the code file would then be 2.5
X 108 bytes, which still is a reduction of better than
10 to 1.

Such a reduction is far out of reach of an. inverted
file since each record in the text would have to have
twelve 24 bit pointers pointing to it, and one 32 bit
pointer from the record to the starting position of that
record in the text file. This requires a total of 4X 108

bytes and indicates only a portion of the room taken
up by the inverted file. It does not include the vocabu- .
lary file which would be substantial, nor does it en­
compass the overhead of the occurrence file consisting
of markers for the boundary between lists of pointers
for a given word. AlSo it ignores the room which must
be set aside for a linking pointer in case a new occur­
rence is to be added.

An additional advantage of the superimposed coding
lies in the type of storage which can be used to store
the code file. Since the file will be searched serially
the storage media need not be random access. This
permits the use of a ch.eaper sequential access storage
device such as magnetic tape, which could greatly
decrease the cost of such a system.

4. Speed of search

Evaluating the speed of a search using superimposed
coding is difficult since the speed of any implemented
system depends . heavily on the characteristics of the
storage media containing the code file as well as on
the obvious consideration of the size of the text file.
The search can be performed by reading the code file
from bulk storage into addressable memory and com­
parison of the query codes with code words made by
software. If this is done then the time required to
search the code file can be cut to less than 6 X (the
memory cycle time of the machine) X (the total' number
of code words in the code file). This speed can be·
achieved due to the simplicity of the comparison which
the software must make. The program only needs to
test if X is a subt~et of Y by loading the accumulator
with Y, doing a logical AND of the accumulator with
a register which contains X, and testing to see if the
accumulator equals X. When large text files are used,
and there are several independently assigned code words
for each record, time is saved by being able to reject a
record when anyone of the query codes' fails to be a
subset of the corresponding code word. By taking
advantage of this a substantial amount of time can
be saved. In the previously mentioned large file, with
seven code words for each record and an average
search of three words, more than 90 percent of the
records would be rejected after only the first com­
parison was made. This means that there would b.e
36 memory cycle times (the time allotted for the SlX

comparisons which did not have to be made) free to
take care of the overhead in the searching program.

Even with this simple and fast searching procedure,
a search does require longer than the threaded list or
inverted file. Although the implementation of this tech­
nique in software is slower, there are several methods
that radically reduce the amount of time required to
search the code file.

Since the algorithm for searching the code file is
simple, the actual testing to see if X is a subset of Y
can be done with very simple hardware. If the I'th
bit of X is 1 and the I'th bit of Y is 0 for any of the
values of I from 0 through 7, then X i~ not a subset of
Y and the value of Z will be 1. If in no case is bit I
of Y = 0 and bit. I of X= 1, then X is a subset of Y
andZisO.

Considering the speed of present day circuitry the
time required to search a code file would be reduced
to the time required to transfer the data from bulk
storage. Since the hardware is ~o simple, it is practical
to scan data from several sources simultaneously. An

428 Fall Joint Computer Conference, 1969

Bit 4 Y
Bit 4 X

Figure 4-Hardware to test if X is a subset of Y

Z = (YoAXo) V CVIA Xl) V ... V CY7AX7 ~

alternative to having the file searched externally would
be to wire into read only memory the commands to
test for a subset. By adding instructions to use the
next code word and repeat the 'operation if the test
fails, the search will proceed through core memory at
a rapid rate making only one core access for each test.
The end of the list of code words Can be marked by a
code word containing all ones. This has any possible
query as a subset and would assure that the loop
was interrupted at that point.

A second technique which would reduce the time
required to search the file is to sort it in some manner.
One such method which generates a superimposed 8
bit code from a 24 bit code is discussed in Appendix A.
Other methods such as carefully dividing the code file
into small groups and then doing a logical OR of the
chosen code words to form rejector vectors have been
suggested. 4

In comparing the speed of the search it should be
noted that with superimposed coding and when search­
ing for several words, the search for all of the words
is carried out at once. In the threaded list and inverted
file a search for several words is made by making a
list of occurrences for each word and then finding the

intersection of the lists. Due to this parallelism of t.he
search superimposed coding can handle a multiple wOlrd
search in a more efficient manner than the other two
methods.

At first glance it appeared that searching the entire
code file would preclude the use of superimposed coding
on a large file. With more careful examination, however,
it is apparent that this type of code file can be searched
as rapidly as either the threaded list or the faster
inverted file.

Factors which lead to this conclusion include:

A. The code file search can easily be implemented
in hardware. Such hardware is simple and
very fast as well as being able to handle
several streams of data simultaneously.

B. If several sequential access devices or a
random access storage device is used 1bhen the
code file may be structured to allow large
blocks of the code file to be rejected with
only one test.

C. The superimposed coded file is much more
efficient at handling searches for records COln­
taining several desired keys.

5. Cost

The cost of implementing an information retrieval
system utilizing the type of superimposed coding sug­
gested would be substantially less than the cost of
implementing a threaded list or inverted file using the
same text file. The reasons for this stem from the
reduced requirement for computational capability of
the computer, as well as a substantial reduction in
the amount of storage required for the coded infor­
mation.

All three systems must dedicate a large amount of
storage to the actual text. This, in all of the cases,
can be either directly accessible to the computer such
as a large disk file, or may be only machine referable
such as a machine controllable microfilm displlay, like
the proposed system at the University of Ca.lifornila,
Santa Cruz or the one being used as part of Project
Intrex at 1VLI.T.6 The difference of storage cost is not
found in the storage of the text file but in the com­
parison of the cost of the storage of the code file of
the superimposed coding system with the cost of storing
the vocabulary and occurrence files of the '-threaded
list and inverted file. The code file is smaller and mm
be stored in a sequential access device rather than a
random access device. IBoth of these factors tend to
reduce the cost of the system.

If scanning of the code file is implemented iin hard­
ware then the requirements on the computer become

Information Retrieval System BasE1d on Superimposed Coding 429

very small. All that it is responsible for is processing
the words in the inquiry in order to generate the query
codes, and then, while the search is in progress, stand
by to store the pointers to the text file which the one
or, possibly several, hardware scanners pass to it.

The trial program" which processed the questions
generated the query codes and handled the searching
in software, was substantially under 16,000 bytes of
code on an IBM 1130 with no overlaying. Thus the
requirement for expensive core storage is low. The
cost of the hardware which would do the testing for
the query code being a subset of the code word and
its interfacing with the computer would be very small
compared to the cost of the necessary storage devices.

One phenomenon which is found in the superimposed
coding and not in some other forms of coding is the
presence of spurious matches. These occur because,
in a given code word the fact that the I'th bit is zero
signifies that any word assigned the code value I is
not in the record. The converse is not true. Since many
vocabulary words could cause the I'th bit to be one,
the I'th ·bit being equal to one, does not indicate that
a specific word is present. By generating several in­
dependent code words for each record the number of
times that superimposing will cause an irrelevant
record to be retrieved can be made arbitrarily small.
Take for example the case where twelve words were
coded into seven 24 bit code words. In that case the
probability that a record in which all seven of the
query codes for a question were a subset of the code
words, and none of the three words involved in the
search were in the given record, was 3 x 10 -10. (See
formula in Appendix B, bd = .35, cw = 2.8, qc = 7)

Since the number of such spurious matches can be
limited to any desired extent, although not entirely
eliminated, it is convenient to perform some final
verifying operation to assure that the words specified
in the search are actually present. This verification in
the case of the pilot program was accomplished as a
side result of the check to see that the desired words
occurrea in the specified order. Consequently there
was no penalty in making this extra check on the
records which were retrieved.

The requirement that additional checking be done
is not an unreasonable one. The fact that a document
contains the words in which one is interested does
not necessarily indicate that the document is of interest.
Therefore any key word searching procedure can only
be the first step of an information retrieval system.
The job of a key word search is to quickly reject
records that do not contain information of interest.
In this sense any of the three types of key word infor-

mation retrieval systems which have been mentioned
are more properly information screening procedures
which can rapidly eliminate a large portion of the
text file as unlikely to contain relevant information.
Such a system should be used to identify those records
which warrant further and more extensive examination.

CONCLUSION

The method of superimposed coding which has been
discussed is a simple and relatively inexpensive manner
of scanning a large text file. With a simple check for
spurious matches made after the search, such a system
can stand alone as a key word information retrieval
system. On the other hand since the actual scanning;
of the text can be easily and rapidly handled by pe­
ripheral hardware, the method is very attractive as a
first stage screening method. Although the prospect of
having to search the entire code file for every inquiry,
at first glance, appears discouraging, the simplicity of
the scanning algorithm and the ~ase with which searches
can be carried out in parallel makes such a linear
search very reasonable.

APPENDIX A

Besides implementation in hardware, measures can
be taken to eliminate the need for searching the entire
code file, thus reducing the required search time. One
manner of doing this is to use the first code word of
each record to generate a shortened code word for it.
In the case of a 24 bit code word, the first bit of the
of the second level code word is the logical OR of the
first three bits of the first level code word. Bits 4
through 6 could also be ORed and used as the second
bit of the second level code word. Continuing this
process an 8 bit second level code word is produced
based on the bits 1 through 24 of the original code
word. Since there are only 256 of these second level
codes possible, with each record's first code word being
mapped into one and only one of these classes, the file
is partitioned into 256 sets characterized by the numbers ° through 255. When it is time to search the code file,
the element of the partition that the first query code
belongs to is determined. If for example the query
code is 000100000010000001000000 it would belong to
set 84 (01010100). The only sets which would have to
be searched would be those characterized by numbers
which have 84 as a subset (i.e., 1i111111, 11111110,
11111100 would have to be searched, but 11111011
would not have to be examined further). There would
be only 32 out of the 256 sets which would have to be
searched, thus the number of code words which would

430 Fall Joint Computer Conference, 1969

h1we to be compared with the query codes would be
reduced. Using the scheme of coding 12 words into ,24
bits would cause roughly 10 percent of the code file to
be classifi~d as 255 (11111111) and just over 3 percent
to be classified by a number whose binary representation
contains 7 ones and one zero. Due to the non- uniform
distribution of the code words over the 256 sets, the
reduction in the amount of the code file to be searched
would not be the 7/8 suggested by the reduction in
the number of sets which must· be searched. The re­
duction would, however, be in the neighborhood of
30 percent (3/8 of the sets whose binary representation
has sevens one and one zero and 18/28 of those with
six ones and two zeros can be eliminated).

APPENDIXB

Since care was taken to assign the code values using
numbers from a uniform distribution, the expected
number of spurious matches can be predicted. By
varying the length and number of the code words the
frequency of spurious matches can be controlled. The
number of spurious matches is a function of the bit
density, bd (i.e., the number of ones in the code word
divided by the number of bits in the code word); the
number of code words per record, cw; the number of
ones in the query code, qc; and the number of records
which are coded into the code file N.

The expected number of spurious matches =
N x(bd) cw.q.c.

The number of bits used to code one record =
cw (the number of bits in the code word)

By keeping the number of bits used and the number of
ones in a code word constant in the above two equations,
it is found that the minimum number of spurious
matches occurs when the number of bits in the code
word is e times the number of ones in the code word.
That is when the bit density is' 1/ e. The number of
bits B to use for the code word when there are M
words to be coded in each record is roughly 2.2M.
This is found by considering that the probability that
a given position will be left blank is (l-l/B)M. The
expected bit. density would then be l-(l-l/BM).
Setting this equal to the 1/ e and solving for B yields
the desired results.3

APPENDIXC

The trimming program was divided into three
sections. The first step removes all Ie's, 'd's and is'S
from the end of the word. These letters were removed
since there are many words such as 'attractions' which
have compound endings terminating in s, es, d, and

ed. By removing these letters, in the above, the suffix,
'tion', is left on the end of the word where it can be
easily identified and removed in a later section of the
program. Once this operation is completed the endings
'er' then 'ly' and then 'aI' are searched for and removed
if found. This procedure removes endings such as the
'ally' on the end of 'functionally' and ag~in is a tech­
nique to handle compound endings.

Afterthe above two trimmings have been accomp­
lished, the Trim List is consulted. Suffixes found in the
Trim List are arranged in order by length, starting
with the longest. The ending found in the list is com­
pared letter by letter with corresponding letters on
the end of the word remaining after the first two trim­
ming stages have been completed. Since all of the IS'S,
ie's and 'd's have been removed, the suffixes are in an
unusual form. For example, 'ness' would have belsn
trimmed to In' by the first stage of the trimming
procedure. Also lance' appears as 'anc' in the Trim
List.

The reason for having suffixes in this form can be
seen by considering the problem of trimming the two
words 'finance' and 'financed'. In the second case,
when the 'ed' is found on the end of the word, it is
difficult to decide if the 'ed' or just the cd' should be
removed. The decision was made to remove the 'ed'.
'This means that to trim 'financed', 'anc' mw~t be in
the Trim List. However, 'finance' which should be re­
duced to the same pseudo-root requires either the
ending lance' to appear in the list or the Ie' removlsd
before the ending is compared with endings in the
Trim List. The second course of action was chosen
because it reduces the length of the Trim List and makes
the first step of the trimming operation very simple.

The comparison of the endings in the Trim. List is
continued until either the list is exhausted or a match
is found and the ending removed. There are two more
checks to be made on the trimmed word. First, the
last two letters of the ,vord are compared. If they
are the same, then the last letter is removed. This is
are the same, then the last letter is removed. This
done so t.hat a word such as 'trimming' will be cut
back to 'trim'. First the ling' is removed to give 'trimm,
and then the second 'm' removed to give the desired
root.

The final action provides some protection against
trimming words too severely. The word 'deeds' would
be trimmed to nothing. To prevent such loss of in­
formation, any word which has been' reduced to le8s
than three letters is restored to a length of three. At
this point the word is considered trimmed.

There is one major problem which occurs with the

Information Retrieval System Based on Superimposed Coding 431

Rem ove
Last

Letter

ReMove
L.as t tWD

Le tters

Aemove
LQ,st -two

Letters

Remove
L4St two

Lstte rs

Aemove
The

£nri.,"H}

Remove
L.Q;st

Le tter

Restore
To len,th

3

Figure 5-Trimming procedure

use of a trimming algorithm. Words which do not
convey the same meaning can be reduced to the same
root. An example would be that both 'information'
and 'informal' are reduced to 'inform'. Such a result
may be undesirable; it is unlikely that when searching
for one of the words, the other would be of interest.
Unfortunately the effect of this type of false retrieval
could not be observed in the small pilot program.
Such confusion of terms was rare due to the specialized
nature of the text. In a system utilizing a larger text
file containing a more generalized vocabulary, the
number of such erroneous replies may become sub­
stantial. If a system utilizing a trimmed form of the
vocabulary words is used for the first stage of an infor­
mation retrieval system, the problem of such extra
records is not a serious one, since the purpose of the
search is to locate information-rich sections of the
text. Further examination \vould determine whether
the record is of inteJ;est or not.

The decision to utilize a trimming algorithm in the
pliot program was based on the feeling that the error
of failing to retrieve information was less tolerable
than retrieving some irrelevant information.

TRIM LIST

ology ful
ement val e

icant ial
ition cal
ation ing
orial ene
iting ane
ating iz
istie ry
aney iv
ment it
ient at
ator or
ieal er
ymg en
ary al
eou ag
est id
ent ic
ion ab
ern y
dom n

432 Fall Joint Computer Conference, 1969

APPENDIXD

DELETE LIST

a
his will

am how with
an may being
as nor would
go our every
in the might
is was other
it also since
so does their
to from there
we have these
all more which
a:p.d must while
are that would
but this should
can thus another
for ways however
had were either

what without

BIBLIOGRAPHY

1 R S CASEY et al C S WISE
. Mathematical analysi.'1 of coding systems

Punched Cards Their Applications to Science and Industry
Reinhold PubCo . 1958

2 T C LOWE
Design principles for an on-line information retrieval sllstem
Doctoral dissertation submitted to the Univ of Pa 1966
Philadelphia

3 C N MOOERS
Coding, information retrieval and the rapid selector
American Documentation 4:225 Oct 1950

4 R T MOORE
A screening method Jor large information retrieval systems
Proc SJCC Vol 19 1961 259

5 C F OVERHAGE et al
Massachusetts Institute of Technology
MIT Project Intrex March 15 1968 to Sept 15 1968
Semi-annual Activity Rpt Cambridge 1968

6 E B PARKER
SPIRES (Stanford Public Information REtrieval SeriJice)
1968 Annual Rpt to Nat Science Foundation
Project GN 600 742 Jan 1969

Establishment and maintenance of a

storage hierarchy for an on-line data

base under TSS / 360

by JAMES P. CONSIDINE and ALLAN H. WEIS

Thomas J. Watson Research Center, IBM corporation
Yorktown Heights, N ew York

INTRODUCTION

As on-line interactive systems increase in popularity,
several problem areas become more and more apparent.
One of these is the management of the on-line accessible
data base. It has been the experience of installations
throughout the country that such a data base tends, if
ungoverned, to increase in size as the system continues
in operation, bounded only by the size of the storage
available to. contain it. It is, therefore, essential for
the continuance of a viable system that this data base
be examined and methods devised to control its growth.

In the first section of this paper we record some
observations we have made on the nature of one par­
ticular on-line data base, specifically its growth and
usage characteristics. The second section details a
system we have designed to control the growth of the
data base and insure maximum utilization of the on-line
devices available. The third section describes the
results of operating with the system. The fourth section
details future amplifications and modifications to over­
come some foreseeable difficulties inthe present version.
Finally we summarize our observations and re-state
the conclusions we have reached.

T SS / 360 data base at T. J. Watson Research Center

Since our system first went on a somewhat regular
schedule of four-hour-a-day user sessions in June 1968,
it was clear that, even under these conditions of rela­
tively low availability, managing the on-line storage
was going to be one of our primary problems. The

433

amou.nt of on-line storage occupied by user data sets at
that time was approximately 20,000 pages, or 80,000,000
characters (1 page = 4096 characters or 8192 hexa­
decimal digits). It was a matter of a few months before
the amount rose to what is our working optimum,
30,000 pages or 120,000,000 characters. This o~timum
is dictated by the maximum number of devIces we
wish to devote to on-line storage. The distinction
between devices and volumes should be made clear. A
volume is a unit on which data are actually recorded.
There are in principle large numbers of volumes availa­
ble. A device is a unit on which a volume is mounted
and which carries out the transmission of data to and
from the volume. Devices are necessarily limited in
number. A tape reel is a volume; the tape drive is a
device.

To return to the data base, observations made at
the time indicated that perhaps 10-20 percent of this
data was non-useful. Examples of this are data sets
defined but not used and never erased, output listings
of assemblies and compilations done many days previ­
ous to the current date and other such system- and
user-generated residues. l\1easures were devised to
periodically and systematically remove such unwanted
data from the on-line storage, thereby achieving a
small amount of leeway while the problem was being
further studied.

In an effort to acquire information on the usage of
the data base, we implemented a means of marking a
data set with the date on which it was used. Report
programs were written to process the data thus re-

434 Fall Joint Computer Conference, 1969

corded and the results ""-ere very informative to manage­
ment and system programmers alike.

Extracts from a typical report are presented in
Figure 1. Among the facts which can be determined
from such reports are the names of the authorized users
actually using the system currently, how much storage
each user is occupying, how much he is using, and how
the amount of storage used by e~ch user varies from
observation period to observatiotl period. The total
amount of on-line storage that is being currently used
by all users is also recorded. h~ addition, the data
recorded can be processed to yield an on-line storage
profile, as shown in Figure 2.

For instance, in the reports formulated from data
gathered on February 1, 1969 we discovered that of
our 160 or so authorized users, some 50 had actually
used the system since the beginning of the year. We
also found that most of these 50 were not actually
using all of the storage they were occupying. In one
case, up to 95 percent of the storage of a partiCUlar
user had not been used during the period. In total we
discovered that of some 28,000 pages of storage on
the system only 13,000 pages had been used in the
last month. These figures were based on information
recorded after all the "vaste space occupied by obviously

Date data rr.corrled

Date for co~parison

4/4/G9

3/2/6!9

Total ~~~es Use~ Since 3/2/69

Total Papes In System on 4/~/69

USERID

USEROI

USER02

USER03

USER04

PAGES USED

1588

11

o

263

Figure I-On-line storage reports

14441

27662

TOTAL PAGES

1751

18

7

431

70

60

<!)

Z 50

i
OUI
Ul W 40

~~
::lZ 30
~
2 20

60

o
~ ~o

~
~o 40

;~30
~~20
o

¥ 10
z

N' no. of mil of on -line storage owned by user

NOTE· The 4 users who own more than 1200pages each own about 40% of the
available on-line storage

Figure 2a--()n-line ,.;torage owner;-;hip profile

Q~ 0.6 0.7 0.8 M 1.0

Q. amt of on-lInl 1.1 UHd by UHr bit. 312 - 4/4/1)9
amt. of on-lInl Itoralll allocatld to UHr on 4/4/69

NOTE· Thlnumblr at thl top of each column II thl fraction of on -line Iforav, owned
by UHr, In that catlVory

Figure 2b-On-line storage mage profile

useless data had been reclaimed. Similar data are being
recorded periodically to monitor in a limited way the
interactions of the users with the system. The amount
of available on-line storage is recorded every time the
system is loaded into the machine, a, process which
takes place three or four times in a fourteen hOUlr day.
The usage characteriBtics are recorded much less
frequently, perhaps once or twice a month. Thus far1
observations on this I'omewhat expanded time scale
have been more than sufficient.to give evidence of
imminent difficulties in the matter of on-line storage ..

Even though these mea~mrements were made under
conditions of limited availability, they gave clear indi­
cation of the existing problems involving the manage-·
ment of the on-line data base and the control of its
size. We realized at an early I'tage that unless some
steps were taken to reduce the amount of data m::tin·-

E,stablishment and Maintenance of a Storage Hierarchy 435

tained on-line, it would be impossible to operate the
system in our user environment with the on-line storage
capacity then available. As indicated earlier, the
problem is by no means unique to our installation.
Various means have been adopted to handle the
problem of controlling the size of on-line data bases.
One installation requires that each user validate every
file he wishes to retain once in every twenty-four hour
period. Unvalidated files are erased. Another approach,
similar in some respects to the one which we will
describe, is the "Date Deletion" scheme which has
been in effect for some time on the Compatible Time
Sharing System at lVlassachusetts Institute of Tech­
nology.1

Since we felt at that time that we did not want to
place the primary burden of storage management on
the user, we looked for some systematic way of re­
stricting the amount of data stored on-line. We wanted
to combine ease of operation with convenience for the
users. It seemed clear that a potentially vast conden­
sation of the on-line data base could be achieved by
systematically moving unused data sets from on-line
storage to demountable storage volumes. The under­
lying assumption would be that the overhead involved
in restoring data sets that might be required by the
users would be small compared to the advantages to
be gained by being able to reduce the amount of on­
line storage required at anyone time. There were no
observations of actual data set usage available to
verify such an assumption, or to support any alterna­
tive, so we proceeded to implement a simple design
to alleviate in part our pressing problem, and also at
the same time to provide the experience necessary to
evaluate the underlying assumptions. This "data mi­
gration" scheme is described in the following section.

Management of the on-line data base

Because of the limited amount of on-line storage
available, it appeared necessary to us to establish a
hierarchy of storage volumes, ranging from high-speed
permanently mounted direct access volumes to low­
speed demountable magnetic tapes. The establishment
of such a hierarchy immediately implies a mechanism
for distributing data among the various classes of
volumes according to some predefined or even dy­
namically defined criteria.

Initially; in TSS/360 three categories of storage
volumes suggest themselves: first, on-line direct-access
volumes; second, off-line direct-access volumes, which
would require mounting to enable the retrieval of infor­
mation from them; and third, tape volumes, which
would require mounting and, of course, have a . lower

data transmission rate than the direct access volumes.
The first category comprises what are described in the
TSS/360 system literature2 as public storage volumes.
Categories two and three are handled by TSS as pri­
vate storage volumes. In our discussions below, the
term "archival" storage will be used to refer to storage
volumes of categories two and three which are pro­
cessed by the migration scheme. As far as the rest of
TSS/360 is concerned, these volumes constitute a sub­
set of the general class "private storage volumes".

The criteria to be used to govern the arrangement
of data among the categories of volume are obviously
the subject of wide differences of opinion. We have
been limited in our considerations of this topic by the
information that can be collected on our system about
the usage of individual data sets. We have chosen to
base ourc riterion on the information mentioned in the
first section, i.e., the date on which the data set was last
used. Specifically, a data set is useful or not depending
only on the length of time since its last use. This is
admittedly a very simple basis for judgment but for
the moment it is what is available. Alternatives will
be discussed briefly in the fourth section. The scheme
has been designed to enable easy inclusion of other
migration criteria as they are deemed necessary and
the required information becomes available. It has
been implemented in the form of seven commands and
an auxiliary data set, which records the status of the
data sets moved to archival storage. The commands
are RMPS, MPS, EMDS, LMDS, RMDS, SAVE, and
CMS. The data set is called SYSMDS. A brief de­
scription of each of these commands and the data set
follows:

RMPS-Recreate and Migrate Public Storage

This command and the one that follows, MPS, are
modifications of the TSS/360 system command, RPS
(Recreate Public Storage).3 The RPS command is used
to copy the contents of current public storage, one
volume at a time, onto a new set of public volumes,
leaving behind in the process useless data sets and
producing a new system with cleaner public storage.
The RMPS command adds the criterion of currency to
the criteria of usefulness already in the RPS command.
If a data ·set fails this test of usefulness, instead of
being copied onto the new public storage it is copied
or "migrated" onto an archival volume and cataloged.
In addition, relevant data regarding this "migration"
are recorded in a special data set called SYSMDS.
The format of this data set will be discussed later.

The fact that the data sets which have been moved
to archival storage are cataloged requires some eluci-

436 Fall Joint Computer Conference, 1969

dation. Having these data sets cataloged is important
so as to prevent the duplication Of data set names on
public storage and on archival storage. Only one entry
for a given data set name may appear in the catalog
for each user. Private volume handling, however, is a
sensitive area of TSS/360. If' a user requests that a
private volume be mounted and hfs request is granted,
the device on which the volume : is mounted remains
assigned to him until he specifically releases it or termi­
nates his session. Thus, if the u~er were allowed to
directly access an archival volume simply by requesting
one of his migrated data sets frqm the catalog, this
volume could well remain mounted on the device for
several hours. This would render it almost indistinguish­
able from a public volume, and defeat the purpose of
the migration scheme.

We have avoided this by specifying the first three
characters of the volume identification of all our archi­
val storage volumes as 'SA V'. A' minor modification
to the system prohibits the user from directly accessing
any volume whose identification! begins with these
three letters. Commands described below perform any
service he may require which involves these volumes
and always release the volumes, thus freeing the device,
as soon as the service has been performed. This assures
that devices will be in use as little as possible for pur­
poses dealing with the handling of archival storage

SYSMDS-Mig'rated Data Set Record

It is appropriate at this point to discuss in some
detail the SYSMDS data set. It is an indexed se­
quential data set with an entry for each migrated data
set with the data set name as key . These entries have
~he format illustrated in Figure 3~ As well as being a
record of the migration, the information stored in
SYSMDS is also sufficient to recreate the catalog
entries for the data sets moved to archival storage. In
addition, there is an entry for each of the archival
storage volumes. Included in these entries are the
amount of available space on each volume, the number
of pages to be erased, the numbtr of erase pending
data sets, and the total number of data sets on the
volume. These entries have as key. the nine characters
'ZZZZZZZZ.' followed by the six character volume
identification. There is also a record containing the
total number of archival pages erased and the total
number restored to on-line storage. The information
is all in EBCDIC characters so as to make it available
by simply printing SYSl\fDS. An up-to-date copy of
the SYSMDS data set is made after each modification
and stored on the system residence volume (to insure

LOCATION CONTENTS

o-~~ Data Set Name

~9-50 Data Set Organization

(Sequential,Partitloned,etc.)

53-56

59-6~

67-72

75-80

83-88

91-9~

97-99

102

rlOTE :

~umber of P~ges(Slz~ of the Data Set)

D~te Created -'DDD/YY'

(010/69 indicates the tenth day of 196 0)

Date Last Used

Date Migrated

Archival Volume I~entification

Archival Volume Type

File Sequence Numher(for tape volumes only)

'Eras~ Pending'

(has the val~e 'y' for Yes and 'N' for No)

For a full discussion of TSS/360 terminoln~y please consul

Reference 2.

Figure 3-Format of the data set entry in SYSMDS

continuity between successive versions of public
storage).

MPS-Migrate Public Storage

This command differs from Rl\fPS in that when it
operates on current public storage it moves only those
data sets which fail the test of currency. They are
moved to the appropriate archival storage volume and
the copies in public storage are erased. Appropriate
entries are made in the SYSMDS data set. This com­
mand can also be applied to archival direct access
storage volumes, producing an additional level of
storage on tape, creating the three-level structure
described earlier. Again, the entries in SYSIVIDS are
amended to reflect the changes brought about by the
execution of the command.

"l"he two commands RMPS and MPS are the primary
means bv which out-of-date files are moved 1rom no­
line to a~chival storage. The next group of commands
is concerned with enabling the user to examine the
contents of archival storage and modify the number
and status of his files which are stored there.

LMDS-List Migrated Data Sets

This command enables the user to determine which
of his data sets have been moved to archival storage"

Establishment and Maintenance of a Storage Hierarchy 437

In addition to the name of each data set, information
such as its organization, 8ize, date last used, date
migrated, etc., is provided.

EMDS-Erase Migrated Data Set

This command enables the user to specify that a
data set of his which is on archival storage is to be
erased. This command simply marks the appropriate
entry in the SYSIVIDS data set as "erase pending" for
subsequent processing by the Cl\,fS command (q.v.).
The data set name is not removed from the catalog
until the actual erasure on the volume has been carried
out by the CMS command. The user may specify that
either a specific data set or all his data sets on archival
storage are to be erased.

RMDS-Restore Migrated Data Set

This command enables the user to bring about the
return of a data set from archival storage to on-line
public storage. The process occurs while the user waits.
The data set is copied from the appropriate archival
storage volume onto on~line public storage and the
copy on archival storage is erased. Appropriate entries
in the SYSMDS data set are amended to reflect the
results of this operation. The archival storage volume
is then released, making the device again available
for allocation.

SAVE-Put A Copy Onto Secondary Storage

This command enables the user to specify a data
set as one to be migrated at the next execution of thp.
RMPS or lVIPS command.

The maintenance of archival storage is carried out
by the use of two commands. The first, MPS, discussed
above, can be applied to the demountable direct-access
'SA V' volumes to produce a second level of archival
storage consisting of data sets whose last use is more
remote in time than those on the first, direct-access
level. These would generally be stored on tape. The
second maintenance command is the CMS command
which will now be described.

CMS-Clean Migrated Storage

This command examines data set entries in the
SYSMDS data set for the "erase pending" flag set by
EMDS to indicate that the corresponding data set is
to be erased. The data sets are erased if they are on
direct access volumes. In any case, the entries for the
data sets in SYSMDS are deleted and the appropriate
volume entries are amended to reflect the results of

these transactions. If the number of valid data sets
on a tape volume becomes zero, the tape is released or
made available for further use for migration.

Results observed after 'migration

The first migration 'vas carried out on ~\Iarch 10, 1ge9
in the process of converting our system from Version
2.0 to Version 4.0 of TS8. The criterion used was that
a da,ta set should have been used since January],
1969 to remain in on-line public storage. Operating
problems prevented the processing of two of our six
public volumes at that time. In the ensuing month an
additional 3,000 pages ,vere moved to archival storage.
I t should be pointed out that if the amount of data
which was moved to archival storage had been returned
completely to the current on-line public storage, we
would not have had enough devices available to COIl­

tain it. Thus the project did not simply justify itself;
it proved essential to the continued life of the system.

Since that time the process has been carried out at
approximately one-month intervals. The status of on­
line storage as of July 1, 1969 is reflected in Figure 4
which is presented for comparison with Figure 2. It
can be seen from Figure 4 that the overall character­
istics of the on-line data base have not changed a great
deal in the intervening three months. There are about
twenty more users owning data sets on-line than there
were in April, but the ownership profile remains almost
exactly the same. Figure 4b reveals a noticeable in­
crease in the degree of utilization of on-line storage.
This is indicated on the whole by the increase in the
value of Q, the utilization quotient, calculated for all
users, and in detail, by the shift toward higher values
of Q, especially visible between Q=0.7 and Q= 1.0.
Figure 5 contains similar information for the total
storage on the system, i.e., on-line storage plus archival
storage. This total storage is what ,vould have to be
stored on-line in the absence of migration, assuming
there were enough devices to do so. The total storage,
thus defined, is about 51,000 pages, of vvhich some 32,000
are on-line and about 19,000 are archival. One can
observe that the shape of the total storage ownership
profile (Figure 5a) is very similar to that of the on­
line storage profile. Figure 6 gives an idea of how the
amount of storage occupied is divided between archi­
val and on-line. Looking at this figure, one should
be aware that there are thirty-six users who have
no on-line storage, and thus cannot be classified
as active. They are taking advantage, consciously or
unconsciously, of the archival property of the mi­
gration volumes and leaving all their data stored in
this fashion It should be pointed out that we have

438 Fall Joint Computer Conference, 1969

110.--------------'---------

100

N • NO. OF PAGES OF ON-LINE STORAGE OWNED BY USER

Figure 4a-On-line storage ownership profile on
July 1, 1969

8o.-----------------------~

~
r;:
(3
loLl
B­
e/)

~o50
i~
~1oLI
~3
:::)~30
lL. o
d 20
z
• z 10

10'" QALl. USERS· .595

20%

o ~~--~~~~~~==~+-L-~---L--~
0.1 0.2 0.3 0.4 0.5 0.6: 0.7 0.8 0.9 1.0

Qa AMT. OF ON~INE STORAGE USEd BY USER BET. 6/4-711169
AMT. OF ON-LINE STORAGE ALLOCATED TO USER ON 711169

NOTE: THE NUMBER AT THE TOP OF EACH COLUMN IS THE
FRACTION OF ON-LINE STORAGE OWNED BY USERS
IN THAT CATEGORY ,

Figure 4b-On-line storage usage profile on
July 1, 1969

made no effort to encourage our users to police them­
sel~es in their use of on-line stor~ge. Thus these figures
must not be considered as reflecting what storage
space the users need, but rather what they will occupy
and use if they find it available. An accounting pro­
cedure is being instituted which may result in reductions
by the users of the amount of' on-line storage they
occupy. This approach has been used with success in
other applications, e.g., at Stanford University.4

f3 9
~
~ 80
(!)

~ 70
~
o 60
e/)
a::
ILl
~ 5
IL.

~ 40 o
Z

I~ 30
:::)

Figure 5a-Total storage ownership profile on
July 1, 1969

1I0,-------------------------------·--~

z

23%

100 , SALL USERS· .372

90

10%

20

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
S. AMT. OF STORAGE USED BY USER BET. 6/4-7/1/69

AMT. OF TOTAL STORAGE (OtH.INE+ARCHIVAL) AL.LOCATED
TO USER ON 711/69

NOTE: THE NUMBER AT THE TOP OF EACH COLUMN REPF~­
SENTS THE FRACTION OF TOTAL STORAGE OWNED
BY USERS IN THAT CATEGORY

Figure 5b-Total storage usage profile on
July 1, 1969

Establishment and Maintenance of a Storage Hierarchy 439

o~~--~~~~--~~~~~~~~-

~ · :: ~~c:~~~:::c.=~fs~::: ~~~':~
USER ON 711/69

Figure 6-Archival storage/total storage ratio
Distribution

PAGES ON-LINE PAGES MIGRATED PAnES RESTORED PAGES ERASED

32,000 19,~00 900 1100

Figure 7-Status of storage as of July 1, 1969

The status of migrated storage as of July 1, 1969 is
presented in Figure 7. The small fraction of the mi­
grated storage that has been restored to on-line storage
is a favorable sign for the continued success of the
approach.

Not at all surprisingly, in our experience with the
operation of the migration scheme, several drawbacks
have beoome apparent. For instance, one of the more
valuable features of TSS/360 is that it allows users to
share files with one another. This is made possible by
links established in the system catalog between the
directories of the individual users sharing the files.
Under the present migration scheme, it is not possible
for these links to survive the migration or restoration
process. Thus after a migrated data set has been re­
stored to on-line storage, the users sharing it have to
re-establish the linkages which make the sharing
possible. Another shortcoming from the user's point of
view is that he is made aware of the existence of mi­
gration whenever he attempts to re-activate a file that
has not been used recently. A separate action is required
to make his file available to him once more. Also the
criterion for migration is too simple to satisfy either
the system manager or the user. For the manager, it
is too easily circumvented, while for the user, it does

not sufficiently distinguish between the user who
occupies a large amount of on-line storage and the
user who has a much smaller amount allotted to him.
When migration takes place either one may find that
his data sets have been migrated, and in fact the
smaller user may find that more of his data have been
moved to archival storage than the large user's.

Amplifications and extensions-the evolution of migration

There are several areas in which improvements are
projected. These might be stated as goals in the imple­
mentation of a good migration scheme.

a. Migration should be transparent to the user
except for the wait involved while a data set is
restored to on-line storage. No action of the
user other than his ·wish to use his data set
should be required to activate the restoration
process.

b. There should be reasonable criteria for mi­
gration and the information necessary to evalu­
ate them should be available.

c. There should be a migration 'monitor' to de­
termine the extent to which migration is neces­
sary based on the condition of public storage,
the amount of storage available, etc. In ad­
dition, based on system load, the monitor would
schedule the migration process so as to have a
minimum impact on system performance.

Weare attempting to address a. and c. in a unified
way. The first step is, of course, to allow the migration
routines to be invoked by other programs as well as
by commands from the terminal. Then the transparency
problem can be handled by having the routines which
supervise the user's access to his on-line data sets
recognize that a data set has been migrated and initi­
ate the process of restoration of the data set to on­
line storage. The next step will be having the migration
to archival storage activated by a routine which from
time to time monitors the state of on-line storage and
determines when more on-line space is required. Thus
the necessity of programmer or operator intervention
to initiate the migration process will be eliminated.

In a parallel effort additional information ou the
usage of data sets and on-line storage will be acpumu­
lated. As a simple example, we intend to add to the
'date last used' which we now record on the data set,
information about the frequency of use of the data set.
We hope then to be able to form reasonable judgments
about which data sets to select for migration on the
basis of this additional information. We also expect to
take advantage of accounting routines to acquire infor-

440 Fan Joint Computer Conference, 1969

mation about the users and their use of the system.
By accumulating as much information as possible we
will be able to formulate more and more reliable criteria
for the usefulness and currency of on-line data sets.

SUMMARY

In summary, we have seen that the size of the TSSj360
on-line data base increases rapidly with use of the
system. Since a limited amount of on-line storage is
available, it is necessary to control this growth. Ob­
serving that at any time much ~n-line information is
not being used, we have formulated a systematic
method of allocating data sets to on-line or archival
storage based on some criteria of usefulness. The
elementary scheme put into operation at our instal­
lation has proven of great value,in containing the on­
line data base while giving the users an environment
in which to expand their applications and use of the
system.

We have come to several conclusions regarding the
maintenance of our on-line data base which we re­
st,ate here.

1. Some means of controlling the size of the on­
line data base is absolu~ely essential for the
continued operation of the system in our en­
vironment with our limited amount of on-line
storage.

2. On the basis of our experience thus far, it is
sufficient to examine the usage of data sets on
a weekly basis or even less frequently to keep
our on-line data base of • manageable size. We
do our cleaning up operations at approximately
two-week intervals, with migration being car­
ried out when necessary ~o reduce the size of
the on-line data base to the desired value.

3. It appears that the amouht of space gained by
moving less used data sets to archival storage
more than repays the effort involved. Most of
the data moved to archival storage have stayed
there. This is in part an indication that the

criterion we have used for migration is H reason­
able one, at least for our installation.

We intend to expand this scheme to make it as
unobtrusive as possible while still continuing its work
of limiting the size of our on-line data base. In addition
we will continue accumulating information on the
characteristics of our users and their interactions with
the system so as to formulate the most significa,nt
criteria possible for migration.

ACKNOWLEDGMENTS

The authors would like to gratefully acknowledge
stimulating discussions with Ronald M. Rutledge and
Albin L. Vareha of Carnegie Mellon University and
Lee Varian of Princeton University. We are also in­
debted to Barry Hazlett of IBM Pittsburgh for the
implementation of the CMS command.

REFERENCES

MIT Computation Center
The compatible time-sharing system: A programme~'8 guide
MIT Press 196326-29 Cambridge Ma:5.'i

2 W T COMFORT
it computing system desi(n for user service
Proc FJCC 1965 Spartan Books Wash D C
C T GIBSON
Time-sharinc in the IBM system/360 Model 67
Pmc SJCC 1966 Spartan Books Wash D C
A S LETT W L KONIGSFORD
TSS/360: A time-shared operating system
Proc FJCC 1968 Thomp'·;;on Book Co Wa'3h D C
TSSj360 concepts andfacilities
IBM Document C28-200:3 IBM Corp 1968

3 TSS/360 system programmer's yuide
IBM Document C28-2008 IBM Corp 1968

4 N NIELSEN
Flexible pricing: A.n approach to the allocalinn of CD.y,Y/,pute r

re80urces
Pmc FJCC H)68 Thomp'~on Book Co Wash DC

5 R C DALEY P G ~EUMANN
A general purpose file 8y8tem for sacondary storage
Proc FJCC 1965 Spartan Books Wash D C

Resources management subsystem for a

large corporate information system

by HO-NIEN LIU, WILLIAM S. PECK
and PAUL T. POLLARD

Pacific Ga8 and Electric Co.
San Francisco, California

INTRODUCTION

In the past quarter century, from MARK 1 (1944:)
ENIAC (1946) to IBM-360/195 and CDC-7600, the
information processing oommunity has progressed in
diametrically opposite directions. On the one hand,
the hardwarel and software2 development has been
toward a general purpose computer system. On the
other hand, the computer users often dedicate a general
purpose computer for a special application where only
parts of the computer system resources are used.

There are rarely any special computer applications
which' will utilize a general purpose computer to its
full capacity in a balanced fashion. A corporate in­
formation system with its comprehensive application
spectrum3 will. exploit the full potential of a general
purpose computer system.

To assure a successful marriage between the com~
prehensive corporate information system and a general
purpose computer system one must resolve the probelm
of how to direct" the different application subsystems
to the desirable computer resources. After this problem
is resolved, all the application subsystems within the
corporate information system will operate in a homo­
geneous environment to obtain the optimum efficiency
of the system.

The rest of the paper will describe a resource man­
agement sUbsystem designed and implemented with
the above objective in mind.

SY8tem requirements

The following requirements are essential for an ef·

fective resources management subsystem for a large
corporate information system.

441

1. Provide for the Orderly Execution of Program8

All applications and systems programs must
function in harmony within a large corporate
information system to ensure reliable and ef­
ficient operation. For instance:

• Coordinating the execution of various
asynchronous subsystems:

• File/data management subsystem
• Teleprocessing subsystem
• Systems service facilities
• Various applications subsystems

• Prevent contention of usage of hardware
and software facilities to provide optimal
use of these resources.

2. Support of a Variety of Applications Subsystems

A comprehensive corporate information system
must contain many operationally independent
yet logically interrelated a.pplication subsystems.
The resources management subsystem should
be able to support applications in a manner
best suited to the needs for each individual
project without placing undue restrictions on
the others.
Following are a few representative types of
applica.tions.

442 Fall Joint Computer ClPnference, 1969

• Real-time, high voll1me, random arrival
transactions require large numbers of pro­
grams to process them. For example, a
simple inquiry response application which
services the general public.

• Real-time, low volume random arrival
transactions require. a small number of
rather complex programs to handle them.
For example, on-line computation and up­
date of the data base requires more proc­
essing and safeguard! considerations than
does the inquiry type Qf transaction.

• Batch, extra high vblume sequential in­
puts require extraordinary complex proc­
essing logic. For example, maintaining a
master file with several million large records
involves the insertio:p., deletion, and up­
date of files as well :;LS the detail analysis
of the data. It also in:cludes the generation
of scores of reports ~nd intermediate files
as input to other subsystems.

• Batch, medium or low volume processing
uses time-consuming .;nultiple file searching
strategy to produccl summary reports.
For example, as the! result of exception
conditions many in~errelated data are
analyzed, summariz~, and reported to
aid management' s deci~ion making.

3. Operate in a Multi-Level, Multi-Programming
Mode

Because of high volume, real-time applications
which process a large number of messages, con­
ventional multi-programnl-ing techniques can­
not keep abreast of the traffic. Therefore, it is
necessary that the systein be operated in a
multi-Ievei multi-program~ing, or subtasking
environment within a si~gle region of main
memory.

For flexibility in operation, the system should
also have the following capabilities:

• Ability to suspend a subtask in one region
without endangering the operation of the
other subtasks in the Same region.

• To transfer a sUbtask out of a region in
order to be able to ,schedule a different
subtask in its place.

• To change priority dyjnamically to provide
the best system throughput.

4. Simplicity ojOperaiion

When operating a real time system with a large
network of remote terminals, events occur far
more rapidly than the best computer operator
can respond to them. Therefore, the l'eSOUfi[~es
management subsystem should have facilities
to perform the following functions:

.Minimize the job control data required.

.lVIinimize operator decision and interven­
tion.

5. Test 1vlode oj Operation

In order to properly test programs to be plac:ed
in such a complex environment, a test mode of
operation should be provided to perform the
following functions:

• Allow program testing in an operational
environment.

• Assure data security for those files which
are accessed from or directed to the cor­
porate data base.

• Assure that no actual updating of any of
the corporate data base files occurs either
purposely or accidentally.

6. Statistic Acquisition and Reporting

A continuous evaluation of the system should
be maintained on a day-to-day basis. Statistics
can be gathered during the processing day and
reported at the end of the day. This permits
responsible personnel to evaluate the system

7. Open-Ended Design

The resources management control program
should have an open-ended design for ease of
system expansion and modification. This will
reduce the impact of changes to the control
program on any existing subsystem or appliea­
tions program.

System structure

Figure 1 illustrates the hierarchial structure on
three leveli;; of multi -programming.

The first level utilizes the' multi-programming
capabilities of software supplied by the computer
manufacturer. We call it the "host operating system."
At this level the resources management subsystems
will execute concurrently with other processors, such
as COBOL, FORTRAN, or some other major appli­
cation subsystems. The second level of multi~pl'o-

gramming is accomplished by the regional supervisors
(resources management subsystems) or the so-called
"subtasking facility." This means that many inde­
pendent programs (subtasks) can be run concurrently
within a region or partition of the host operating
system. The third level of multi-programming is
achieved by means of reentrant module (or pure code).
If a module will not self-modify any part of its code
during processing, the module ,Is capable of parallel
processing of multiple numbers of transactions.

System logic flow

As an overview of the P. G. and E.'s corporate in­
formation system refer to Figure 2. You will notice
that the manufacturer's operating system facility
serves as the host to control the overall opera,tion.
On the left of the figure is the front end of the tele­
processing subsystem performing such functions as
polling, addressing of the terminal network, message
queuing and dispatching, terminal hardware error and
security checking, etc. The next major part of the
TP subsystem is the input message editing (TPCHUG)
and output message editing package. This package
makes all the message processing programs indepen;
dent of terminal hardware. At the base of the figure,
the file management subsystem4 centralizes control
of all I/O functions; it exchanges information from the
information system data base and therefore, makes
the data independent of applications programs (or
message processing programs). Beneath the operating
system we find the resources management subsystem
functioning as the regional supervisor for all the sub­
tasks within the on-line region and, therefore, we can
support different application subsystems in the same
region. We can also open another region for on-line
message processing and share the file management,
teleprocessing and resources management subsystems.

(I)
REGION
(PARTITION)

(II)
SUBTASK

(III)
PROCESS
QUEUE

Figure I-Hierarchical control on three levels of multi­
programming

Resources Ma.nagement Subsystem 443

RESOURCE MANAGEMENT SUBSYSTEM

il

Figure 2-Host operating system

On the right side of the figure, we can open a number
of background regions for computing or batch type
jobs, or we can have batch executive subsystem (BESS)
control the subtasking in the batch region. The rest
of this section will briefly describe how a typical on­
line region or a batch region works under the resources
management subsystem.

The on-line system

The Controller of On-Line Processing (COP) is
designed to control the execution of the on-line portion
of the system. Figure 3 graphically depicts how the
computer's main memories are allocated during the
on-line processing day.

• Initialization of the On-Line System

At the start of each on-line day, two subsystems
must be initialized. COP coordinates the actions
of these two subsystems in preparation for the
on-line execution of message processing programs.

• At first, the teleprocessing subsystem must
open the lines to the remote terminals and
initialize the queues where the messages will
await their turn to be transmitted and processed.

• In the meantime, the initialization routines of
COP are busy establishing the necessary con­
trol blocks and data pools (see Appendix I).

• A program control block will be built for each
message processing program. A master control
block will be built for each transaction response
pool (TRP). The number of TRPs to be used
is specified by a parameter that is brought in
with other start-up control data such as the
number of event control blocks (Figure 4) .

• Subsequently, COP will cause the file manage­
ment subsystem to build file/data control

444 Fall Joint Computer Conference, 1909

~ Manufacturer J Rcslt/tYl/ Olf'"dhilg J'fjf/CIII

!J~ ~~ IlJSk COtl/rol
~ Blocks

.~
~ RCIfIPIc ~rlllilla/, Lille alltl AllJJ.tt9gd CtJIII!PI , ~.S

~s.,)"""

~~~ 
~~ 

COnt/1)1 PI ()n-Line ProCfJfJI/lg (()()p) 
Svlitas5 Llflkage 
(SLINK 

1st Processiflg 
f[gq!~~ _____________ 

1St BIJMP 
~ w: Messaqe 5et r-- -i---------- --- ----. 
.~ PCHIJ&) I $I11aflsactioY 
~ rt £dtlOr & Ollfpllf R~sPPflse ,P~ 

c:s( TPMSeOUT) TRP 

~ [{f OVTPlif 
PW71?) 

~ oam Control Manager 
~ (OCM) 
.~ Biill<ecOiilJ' q7iiITpiice itfJ Pro~$i!7g -.J , mNOREC) Program 
~ --'- -- --- ----------iff781JMP 

froqram CPrlITPI BlockS ~-;- --------- --------- ----------- iftJ7RP 
/Jader control BIocK.J ---------------Pata Control Blocks 

~ 
.~ 

Ahl{ othcr off-line w()fk nS:: 
~~.§! 
~~ 

Figure 3-Main memory usage during on-line processing 

blocks, record descriptors, and data buffer pools. 
When all the on-line file~ are opened and ready 
for processing, the file management subsystem 
will notify COP, and COP in turn will wait 
until the teleprocessing subsystem has com· 
pleted its initialization prdcesses. 

.As soon as the telepropessing routines have 
signaled their start of prbcessing, COP repeats 
3: sequence of actions to !prepare message proc­
essing subtasks for multi~thread on-line opera­
tion. COP does this by establishing one sub­
task for each TRP and by signaling the operating 
system to start the teleprocessing get-a-message 
program (TPCHUG).. . 

• Figure 5 shows a path from COP to TPCHUG, 
but this path is not taken until all subtasks 
have been established. For example, assume 
that five streams of messages will be processed 
concurrently. COP will signal the operating 
system five times that a subtask is to be es­
tablished starting with TPCHUG. and before 

Program 
Confrol 
BlOC/(8 

Marter ContnJl 
Blocks g 

Tft1I1JdCf/OIl! 
R8Jpo!J.fe ftJOl! 

Erent Con/rtl 
Bloc1s(ECB) 
For (ljnfr()/ 
Ptogrc1f!1 COP 

1RlllJtJcfion / 
~eJPonfe PotJIs 
(TIR P) 

Pam COntrol 
BI()ckS {or All 
On-Line 

Pr()Cesr/flg 

t
[;ti1ItJI1.G9c1itJlJ if a.r..rfll1et1Io8 
TRP for its t9chve life ill tI7~ 
CfJIIIPvter:r /!I81i! mClfl()11f 

t
Cte8f&rI aI il1lfializati()n I1m"& lor 
tiel! QolIJ J'd1tJ De VJ6Y/ IJtth7f 
olJ-I/i!~ J'lfs#l!!. 

Figure 4-Control blocks for on-line processing 

releasing control to any of these subtaslks, ClOP 
will again signal the operating system that 
five more subtasks are to be established starting 
with Subtask Linkage (SLINK). All ten of 
these subtasks are conditionally e)cecuta,ble 
based on ten event control blocks which will 
be marked by COP. COP marks the five 
event control blocks for TPCHUG to show that 
the five associated TRPs are free, ready to ac­
cept input messages. SLINK's event control 
blocks are marked so that SLINK will wait 
until a message in a TRP is ready to be proc­
essed . 

• COP will now wait· for anyone of five event 
control blocks to be marked by TPCHUG .. 
I t is while COP is waiting that Path 1. is taken 
and TPCHUG gets control for the first time; 
and the system is now active. 

• Active On-Line System 

TPCHUG makes use of the system support rou­
tine FINDREC to locate the place in the TRP 



on-Line C08Ol.. 

UNKAf?E SECTION 

PRociovIl£ lJIYI$IfJ¥ 
ENTER LINKA6£ 

1ISIIJI8/1J1Mt 
E~C()IJOJ. 

ENT9. UNK48£ 
<> CALL 8111fhJtr {/JIM/: .... 
c> lJI!E! (;()fJOL 

£NTER LINKAeE 
<)I CiLL PCMtJEr lAIN#, .... 
<>~R~ 

ENTMLlNKAK 
c:> CAll. PCMPIIf flJINI. ..... 
r:::> ENTER a11kr 

EKTlRUNKAK 
<>(;ALL 8IIMPImI (/JIN~ .... 

[NTl:R COBOL 

ENP 

Figure 5-Flow of program control during on-line 
processing 

where the incoming message and its internal for­
mat are to be placed. TPCHUG will do the fol­
lowing things: 

• Get an incoming message from the waiting 
queue if one is available. If it is not, it will 
wait until there is one so that other subtasks 
may be executed. 

• Place the message in the TRP. 
• Edit and translate the message into the in­
ternal format. 

• Mark COP's event control block for this TRP 
to show that a message is available for proc­
essing. 

• Wait until TPCHUG's event control block 
is again' posted by COP to show the TRP is 
again ready to accept a message. 

When TPCHUG waits, Path 2 back to COP is 
effectively taken. COP will then check its event 
cont;ol blocks to' determine which TRP requires 
serVICe. The following actions are taken by COP: 

Resources Management Subsystem 445 

8 Via a program control list constructed by TP­
CHUG, COP will determine the next module 
to be applied to the current message in a TRP . 

.. Mark SLINK's event control block for this 
TRP to show that action is to be taken. 

f) Wait for the event control blocks to be marked 
by TPCHUG or SLINK. 

Path 3 is now completed and SLINK will gain 
control when this subtask is made active. At this 
time the following functions will be performed: 

• The required applications program will be 
loaded, if it is not already in core memory. 

• Control will be given to the appropriate pro­
gram SO that it may execute. 

'. Upon return from the program, SLINK will 
mark COP's event control block to show that 
the program has completed its processing. 

• Wait upon its event control block for this TRP. 

Paths 4, 5, and 6 have been taken, and the same 
sort of thi,ng occurs for Paths 7, 8, 9 and 10. 
The mrin difference is that when TPMSGOUT 
hoos finished putting the response(s) on the out­
put waiting queue,. COP's event control block 
is complete and the TRP is now free to be used 
again . 

• Termination of the On-Line Day 

Messages may be in waiting queues or in various 
stages of processing when termination of the on­
line system occurs. COP must assure that the 
teleprocessing subsystem has received all incoming 
messages, the input waiting queues have all been 
emptied and all messages have completed proc­
essing before the file management routines close 
the files and COP releases the subtasks. While 
the teleprocessing programs are emptying the 
output waiting queues of messages and trans­
mitting them, COP is editing the statistics which 
have been gathered that day and producing a 
report from them. After all processing has been 
completed, control is returned to the operating 
system. 

Batch system 

• Initialization 

Control information must be gathered and set 
up in main storage to effect the proper sequence 
of jobs to be run during a particular batch job 
stream. The aforementioned control information 
will contain such things as: 



446 Fall Joint Computer Conference, 1969 

--------------------------~-------------------------------------------------------,-------

/ BL..OCKn: \ 

I 
/ BL.OCK2 \ 
r I 

/ BLOCK,l \ 
Program Name: 
Core &pace RequIted 

ReserJled Ar84 
ABENO COI7r1Jtlon Cixle 

InhIbiting CondlhooCOt/ar 
Jolt Control ClK/8 

Proqrc9m Level: 
Contlihont91 Input-file f/l'1 

Locallon of R/~ #"1 
CondltlonallnM file *"2 
LOC8holJ of Rle 'B 

Tht/B il Me bloCK for fam program or,J'Orf fIIeI 1119/1 be 
eyecuted 1/1 #li.r ClIo/e. ; 

Ordered bll Pngrr.91t! i.tfol anti InI!IP/f CM~. 

Figure 6-BESS program control blocks 

• Program Name. 
• Resultant" condition code, if job fails to run. 
• Condition code or codes ;resulting from other 
jobs which this job depends on in order to know 
whether or not to execute. 

• Program level denoting whether or not this 
job can run concurrently with· other jobs 
based on core usage, sequeilce of jobs to run and 
shared use of data files. 

• Names and device locations of conditional 
files; i.e., files which might or might not be 
present during anyone job within a job stream. 

• Processing 
During the so-called batch processing, depending 
on the information supplied for control during 
initialization time, jobs will be scheduled either 
alone or as subtasks, depending on core require­
ments, availability of data fil~s, and shared access 
of data files. 

• Termination 
Upon completion of all the 'jobs which could be 
processed, the operator or o~her appropriate per-

FReGIIA~ 
NAME 

CCPft IT 
Il:fb"'" 
IHeRl" 
IH811l"" 

C('I' 
SC901bd 
IEF8Al't 
IEfbRH 
IEFtRl" 
Il:fB1I1" 
UMReocc 
At.."",. 

It.FCR~AT 10'"' SYSTEMS/RESOURCES MANAGEMENT 
ANAL 'lSI SCF 8ATCH PROGRA~ ACTIVITY 

JOB/STEP NAME OLETEST I 

RESULT TYPE TlMEIMINI-
SIZE u: ~EL tUDE CCI'PLE TI ON ALLOTEO/ACTUAL/WAlT 
0991( 00 8 A81:NO 000C2 000.1l 
C6(1I CC 1 t.e INPUT 
05211 00 Z NORMAL 
05211 00 2· NORMAL 
C~2" CC A 'BHe 000C5 
05211 OC A A8fNO 0013E 
0 .. 011 00 3 '"'OIlM .. L 
C HK CC 6 NOR"AL 
01011 CO 9 NORMAL 
CHI! C2 .. SKIP 1 
CEeI( CC; 5"0 ,"PUT 
0101( 7 hOT AVAIL 

000.11 
000.11 2 
000.11 
000. lit 
000 .... 
000.13 
000.13 

0"-29-'69 

JOS-" 
L lBRARY 

1 

o 
o 
Z 
1 
o 
o 
o 

TUT AL R",", 11"E eccc "IM.lE S 

- "LL 111'H Allf ilEAL TIME, ANt OVERLAP WITHIN LEVELS 
-- A,nAt TillE IS "1t.LTES.SECCt.tS 
••• JUb LI8RARY NLM8ER IS CONCA1EhATICt. t.UMBEII OF LIBRARY FOR PROGRAM 

Figure 7-BESS status report 

sonnel will be notified as to the status of all the 
jobs. Such information as: 

• J oha which were not run due to data not being 
available. 

• J oba which were not run to oompletion <iue tq a 
program failure. 

• Jobs which were run to completion. 
• Other information which wiilhelp key person­
nel to effectively evaluate their choice ole action. 

System facilities 

This section will describe some system support 
facilities ~mplemented to enhance the reliability of 
the system. 

On-line system's facilities 

• Program Test Mode of Operation 

Any new or updated version of a message prOCeEl8-
ing p~ogram which is to be added· to. 1che live 
system is first run in the test mode even thou!~h 
the program has gone through unit systom aud 
high level testing. 

If it is an updated version of an operati.on pro­
gram, it will have the last copy available ~LS back­
up on the library. If it is to update files it will 
not be permitted to. do so directly, . but 1Jpda~13d 
records will be saved, verified, and then added 
to the files in batch runs. Should the progJram f~Lil 
during the test the old reliable copy will be 
brought in and normal processing will continue. 

With new programs, no backup copy is available 
so if it fails, it is dropped from the sYEltem. A 
new program also I;l.ffects the rest of the system 
in that while it· is executing, any production 



programs that might faiJ will be refreshed and 
information processed by the new program will 
also be included in the output. 

• Trouble Procedures 

Trouble procedures and error defaults have been 
developed. 

• Excess Elapsed Time 

Should a' program be in memory top long 
(elapsed time) to process a message, its priority 
will be raised so that it can get a greater share 
of the CPU's time. 

• Excess Processing Time 

Before control is turned over to a processing 
program, a timer is set by SLINK to the num­
ber of machine cycles to be allocated to -this 
program for its processing. The number of 
machine cycles allocated is based upon operating 
history plus a safety factor. If a program should 
exceed the number of machine cycles allocated 
'to it, ~n interrupt will occur and control will 
be returned to COP. 

When a program is terminated due to exceEf.Sive 
operating time or has . abnormally ended, a snapshot 
of the TRP and all associated control blocks is taken. 
An error message is returned to the terminal from 
where the transaction was entered and the control 
block for the program is marked to show that an error 
has occurred. If the program is used by more than one 
type of transaction, or is critical to system operation, 
a fresh copy will be brought into memory. If the pro­
gram is not normally resident, a fresh copy will be 
brought in before it is used again. 

If a program that exceeds the processing time is run­
ning in the test mode, it will not be used again, but a 
backup version will be used instead. If two successive 
errors occur, the program will be marked unavailable 
and the type of transaction that precipitated the 
error will be rejected until manual action is taken to 
reinstate them. 

-Accumulation of Statistics 

During the operation of the on-line system, COP 
is gathering statistics about the various programs. 
These statistics are recorded in ·the appropriate 
program control block and a report produced at 
the end of the day (Figure 8). COP is also recording 
each TRP so that they may be analyzed after the 
day's run. . 

Resources Management Subsystem 447 

Batch Executive Sub-System (BESS) 

• Improved Throughput 

Some operational batch jobs that ran under 360-
'OS-MVT(Multi-programming with Variable num­
ber of T-a.sks) were compared to multi-tasking under 
BESS and l\IVT. They showed a 60 percent 
savings of time under BESS. 

This can be attributed to: 

.Subtasking 
By running two or more of the jobs concur­
rently as subtasks to BESS within an MVT 
reglon, it then makes it possible to take the 
greatest advantage of the computer's resources. 

"Reduction of Job Control Information 

All the jobs are run as subtasks t~ BESS and 
not as individual jobs. This eliminates. the need 
for a great deal of the job control language 
cards for each program. The control informa­
tion required by BESS is minima:! and takes 
less time and space to read, interpret, and use 
(Figure 6). Only one control record per program 
is required. 

e Sharing of Record Accesses 

Each time a record is read from a direct access 
or sequential storage device, it can be shared 
by two or more programs that are run as con­
current subtasks to BESS. There are restric­
tions such as only one program may update 
the file and all must look at the records in the 
same order or fashion. This savings of record 
access times is appreciable for large files ina 
corporate data bank. 

• Job Scheduling 

The programs to be run are dependent upon the 
data that was collected during the on-line day. 
BESS will determine which programs are to be 
run and in what order. 

• Conditional Rims 

Part of the control information supplied BESS 
is the input file (or files) which must contain 
data if the program is to be executed. If data 
is present, BESS will schedule the program for 
execution. If the data is not present, BESS will 
not schedule the program. 

Another part of the control information is a 



448 Fall Joint Computer C~nference, 1969 

----------------------------------------------------------
P~('FIC G~S ~NC [lfCT~TC C~MPANY 

PROGRA~ lI~f~ ~f. V~PSl(~ C~11Tr~L Tf~~S ~ULrlPLF TYPF AV~JL'~lE AMT JOB 
NA~o1ES US[C .. Hr!\;[)S I[HH 1.'~q~)FII,(V REFKf:C;I-1t-r. HH.r'~~cTIr~<; rCf'fp."r E~r rAV C~RE ll~RARV 

(GU P 1,)·1 1 ccce:,' ( c ''In C I\jrl 'H-L~C.~~l[ VF $ 011) 16 .3 
cef lr::CC! c(r(( c;r r'l 721-,;9 "C (\ ~l p[usrA~U' Vf ~ C?Q'C4 ~ 
C(F2('\('101 II,C 
C[F1COCI ';:1'.1 (.'"""'\,) C'~~ ( , 112f.:g NC 0 NO RFUSEAPU" 'fE ~ 
crF/.CI('Ol ~C 
((H('OOI N~ 
CGf'.;2C(,Cl r-.jn 

«(1\:?0C')1 f\C 
((1\41)0')1 11,0 
C('PFRP C( C Cl ece C'lt:'f:S N[ 0 I\C P fl:I\JT P AflJT YES ~H 144 0 
rs T M'()(; 1 ~r·1 ('? rrr 

'. \., I\J(J C "Ie KfL.SI:/lPL[ vES 054~6 3 
C0u1001~ rf'C(C rcc Nfl C NC P·H.SF"PU YES 06'.32 3 
F/lSt<p.-rr.2 I,:,cr(f- rcr Nfl C "C (H L.~[ YES 04776 3 
VI ~r; r I\l" CCCCl C C ,:' NO. C 1\[ ~[LSrr.:'tf VF.S 0'3~20 ~ 
TJ=aCLS :10(~C L r:CC C ~ 1 e~ '1 NO C "( (1\(- LSf YES 014·80 1 
TP;;TSI= C;~i C (: (' CfC C~Ct::l:9 NO C "C RfLSf(lPLE vES 013,76 1 
T I=c'GST "C 
T P:li 0 ~ S C't'0C ~ C f' ( r~] 1::169 f\C ~ NO PFCS("RLF VFS CO~IFlA 1 
T F:;frv (: (' : ',~ ( ref c'?ru·c" NO C !\C r"E L~r VfS 006Q6 1 
TFO'f.:Ri< Cr Cr::J ecc NO C 1\( RFFt-.'TRAt-.T VES OO~~2'. '3 
TFii'F~T ~C 
Tp:iJllf\ nrJ(lL 4'('(; C"31769 f\G 0 Nn ~[lJC;Eh'3LF VI: S O~~~ 12 1 
T r;; LCG ':':;·:-::C ere NO c "c IHl!5FArHF YES 01904 1 
TFiitJCC rCGCC .... , ......... r:;C6fG NO c f\( 1~ F L C; f ~ PI ( YES 01 ~n6 1 
Tfa:Cf( !\C 
lP;:"SG~ ecru' c;r' I\JO 0 Nfl RFFr-.:T~ANT '1E S ccooe '3 
T ?<£TRM ((':'(7- r(c (317(:<; 1\( 0 t-.c ~PJSft\eLf v FS 02944 1 
T p.: 1-1J c: ." .... ,-. 2 ~ CO: ~2::~'tG 'l'F S C vfS PFF"TR~"T YES I')rp17 1 
TPtJS(CUT ncr: It. CCC C~ tel'S 'VF.S c VfS RE["T~h"T VES 03128 0 
THsr crrcc eee NO c ~C RFLSf:tFHE YES "lOtJ2A 3 
1 FWT Ii C:~ (' (' 7 CCC C :: 1f~:f c; Nn C 1\( I-!frt-.1PAt-.T YES 005Q;,? 1-I 

Figure 8-COP status report 

set of inhibit codes for the program. Each pro­
gram that does not run correctly to completion 
will cause a condition code to be set and if the 
particular combinations ~f inhibit codes for a 
program are satisfied, it! will not be run. This 
saves the time of loadiIig and attempting to 
execute a program that should not be executed. 

• Maximun Use of Resources 
! 

Each program's control' information contains 
a level code which show~ two things. The first 
is the order of executiop.. A program with a 
level code of three cannqt be run until all pro­
grams with level codes j less than three have 
been run or rescheduled; The second function 
of the level code is to designate groups of pro-

grams which may be run concurrently without 
conflict. 
With this information, BESS can execute as 
many subtasks as the computer's resources 
permit. 

• Other Features 

This approach to controlling batch runs has two 
other major assets. 

• Better Error Control 

If a· program abnormally terminates, BBSS 
will regain control and can invoke e:rror pro­
cedures to salvage as much as possible from the 
run. By doing so, all other parallel jobS! can (:on­
tinue running without interruption and most of 



the work can still be done while a fix is being im­
plemented to correct the error. 

• Piggy Back Programs 

There are a variety of programs that are run 
only once or very rarely. These programs do 
not update the files but only look at the tecords 
to perform some analysis. These programs can 
ride piggy back on some other run in the system 
under BESS. The added time is negligible 
compared to the cost of passing the voluminous 
files used in a large corporate information system. 

.Reduction of Testing Time for .Application 
Subsystem 

An application subsystem within a corporate 
information system often contains a goodly 
number of interrelated program modules. 

During the system integration testing, if only 
one of the modules fails, it will cause the whole 
job to fail. Therefore, to test all the modules in 
a combined environment can be very time­
consuming. 

However, under BESS each module can be 
classified as a subtask. If a subtask fails, the 
entire job will not terminate and BESS can 
proceed to test the remaining modules. Figure 
7 shows a report by BESS to facilitate the 
analysis of the testing. 

System Implementation 

The Resources Management Programs have been 
written in IBM-360 Operating System Assembly 
Language (ALC). 

1. It is fully interfaced with the IBl\1-360 operating 
system MVT. 

• The applications programs and the systems 
programs operate as independent subtasks 
of the regional resource manager; abnormal 
termination of a subtask will not stop the 
rf'maining subtasks in the region. 

• The package is not tied to any particular 
release of O/S; hence, if a new version is 
released, there should be little effect on this 
package. 

2. The Resources Management packages take 
full advantage of existing operating system 
facilities and make extensive use of the sub­
tasking and master scheduler facilities. 

Resources Management Subsy&tem 449 

3. It is intended to interface with all the operating 
system supported languages (COBOL and ALC 
interface have been implemented) . 

4. The entire package . has been designed to be 
dynamic in nature; that is,all pl'ograms are 
load modules. They are not linkage edited 
into the applications program; thus, the pack­
age. may be redesigned and improved without 
any appreciable effect on the applications pro­
grams. 

5. The entire package has been programmed in 
re-entrant code. 

6. The hardware anticipated over the next several 
years includes 'two large central processors 
with a million bytes of main memory, supported 
by smaller satellite computers and a score of 
multi-drive disk storage units. The system is 
being designed to support several hundred 
terminals, most of which are expected to be high 
speed CRT display units. 

APPENDIX I 

.On·Line System Control Block8 

The on-line system makes use of the control 
blocks established during initialization time. These 
blocks are: 

• Program Control Block (Figure 9) 

This control block contains the program identi­
fication, the storage address within the library, 
operating system controls, on-line control data, 
and counters to record the number of times the 
program was used. It permits the on-line system 
to bring a needed program in from the library 

· in an efficient manner. This block is also used by 
COP to collect statistics about the program and 
determine its current status. 

• The Master Control Block for the TRP (Figure 10) 

This block contains pointers to various other 
control blocks as well as containing the two evenf 
control blocks which apply to the subtasks as­
sociated with the TRP. One pointer shows the 
location of the TRP, one points to the task con­
trol block ·located in the operating system's 
region, and another to the event control block 
that will be marked to tell COP when a program 
has completed processing in this TRP . The next 
one can either be a pointer to the processing pro­
gram or its identifier depending upon conditions 
at the time. Two event control blocks are next 



450 Fall Joint Computer Co~erence, 1969 

----------------------~--------------~-------------------------------------

/ BL-OCI< n i \ 

I 1 
/ BLOCK ;I \ 
I I 

/ BL.OCK 1 \ 
Program Identlfic8tion 

Peripheral .stOltJge JrirlreJtJ of Prof/r8m 
COnfrol,r {/.rcd D# ffJe Opelafing cJ'q~m 
On -Li fie Control lA1ItJ: 

! 

RefteslJer Cov~r 
ABENP cOII~r: 
Nof Ar8l/a{)lo Inri: 
Orihtol Resiticllcli Ina 
A/ulti-7i"t9nsa&fiol/ Inri. 
CofO RCSldcfll In~ 

AI/oClifed Proccsslnq:7Tme 
Program {/Jaqe Coupfef 

1 7l7erIJ if one b/~vk for each proqm}p iIW mal{ b9 rtlll ill 
the on-line Jf/Jftm. : 

2. ToeJ'8 /;locK'! am b(//If ~od](jtJlf J( liJIl!a/!zat/()l1l1mo. 
8. llJel/ mal{ be btlilt r/llrillq tile ()/l-llhe rial{ qlj o/XJrdlor 

tilrtchon or In /I1e eJefl1 of JI/SlCIf/ I7JQlfi/l1ct/O/J. 

Figure 9--Program control blocks used by the 
controller of on-line proc,essing (COP) 

and they are the ones u~ed by TPCHUG and 
SLINK, respectively. The next pointer is to 
TPCHUG's task control block and the last to a 
list of addresses which in turn point to the param­
eters and records to be u~ed or updated by the 
message processing progra$. 

"The Transaction/Response Pools (Figure 11) 

These pools of data and controls are the heart of 
the on-line system. Their number determines how 
many messages can be processed concurrently. 
The first part of the TR~ contains control infor· 
mation to help FINDREd in locating the various 
records and spaces within' the pool. These con­
trols also help COP to loc,ate programs and other 
control blocks that are required. Because COP 
is re-entrant, it cannot store information in an 
area reserved for itself, sq all controls for a given 
message must be maintained in the TRP apart 
from all others; therefore, no "cross talk" will 

I BLOCt< n \ 

I I 
/ BL.OCf< 2 
I 

BL...OCK·l 

PolllIQr /0 the TR P IOCQt/on 
POinter It) II/e l?isk C()IJtr()1 Block o!proceJ.JirA;' 

Pointer 10 tl7e Ellent Control Block (or COP l 
POinter (}f Ide/7f ofiIJepr()CtjJJJilq pfog; 

Pollller trJ table of /JQIa COMol Blook-f 
7he Bent control Block wll/ell TPCHIJ(J 1Y9i/J' 

llJe Event Conlrol BI()ci forltJe pro~/ilg pro~~ 
POINer to lPCHl/u.f TCB fOr 4SJ'OCIiltet/ JI/#tq.f/ 

Poinw toao'tl/~ lift ()f J'vlJ/QSK fJIlmmelelJ In 

1. llJerc if' me co/lllrJl IJI()C;K Iord9c/J TRPll7l1le 01lstem. 
2. lhese blocks ar81J1J/1! at /iJit/a/izfJltb/l tIme atb/lq ;.v/Ih 

tlJe TR P;Y find ore vpriaterJ 8J IJfJ%Ieti r/f/fln, 1m ()Il-llil~ rlall' 

Figure 10-Master control blocks for 
transaction/response pools (TRP's) 

occur between concurrently processing' subta,~ks. 

The latter part of the TRP is used for the mes­
sage, its response(s) and overflow control if more 
room should be needed. Currently, 41096 bytes 
of memory for a TRP have been adequate to 
handle 98 percent of the messages proc:essed" Ex­
pansion is provided by going to an overflow area 
if more room is needed. Figure 12 shows the rela­
tionship between the control blocks and TRPs. 

GLOSSARY 

BESS 

Batch Executive Sub-System 

BUMP 

Branch to UtilitY'Modules and Programs 
This is a small module appended to each high-level 
language program to : 



Fbinl8rfo neff o~n /WA(d p(infer 

'" Pool contro~; Number ofrecorOJ'in '/hiJ 7RP 
ftJin/er -10 next. 'record to Proc8SJ' 
poi!Jler . 
Numb of output ffJC(J((k fIvm /affprog ""!'''' 
!/vmlJero/rwrrif pr;r;8SSed. 

POinters: 70 FIN/JREC Progmfll n:m list of {YOgr3II111i1ff109 -~ 
[!o reo/rtl! will/Ii! !I1lj TRP 

Proc&J'ing~program NamB List 

PointerJ to SUbf8ik /{I/d/fJeIe!ir 

J'Ive lted forTPCHV6; mooVf, alll/ PI/W!Yf)CCSlin, fJl{KjmlTlS 

I sf Rea;rrI- Trlnsaction I/Ilformalled 
2nti Rwrri-T/;JntoctltYl fOrm8l!Bti 
ani Recortl-RBJP()/IJt #/ 

OJler#oPl Co/ltrol 
I. foci! /t;;nSqC/ion Ihd tJI/Ns1IIe JlItIi»J Ii JS{lill(J(/ hJ 8 TRP. 
Z. A TRP if tI6rIlC8IfKi too Ir8flfaclion,iiJ' reJfJ(Y1SM ami ~/i'AJ 

,ffI/JIa.rks dV1'11JII1M life Of 1M InJIistICtlPIJ willi//) 1ht1.fVtf/8111. a. 4~ t1 mp if h!tt, #Ii tllSlJ/N81Y hie 1Ie.rtlt8lJJdCftiJIJ. 

Figure ll-Transaction/response pool (TRP) 

I sf f'ntt:8Jfill, Ptl9rtllll NQ/ffl 
ylfllimlJfilll PrIp4111 Niml 

t> lsi' !vlll8sK n;ftJ/I1BI8r 
t> 2ntI.rv~fK I19rA~ 

II 

Figure 12-Control block relationship in the on-line 
system 

.,J 

• find the various system support modules within 
a dynamic environment . 

• establish the linkage between the program and 
the system support module. 

COP 

Controller of On-Line Processing 

Resour~s Management Subsystem 451 

DCM 

Data Control Manager 
A subsystem which controls the data base for the 
Management Information System. 

DCMGET 

An on-line DCM subroutine which retrieves selected 
information from the data base for applications 
programs. It makes the applications programs in­
dependent af. the data base structure. 

DCMPUT 

An on-line DCM subroutine which selectively up­
dates the data base for applications programs. 

ECB 

Event Control Block 
A small block of memory that contains indicators 
to show if a program is waiting for an event to oc­
cur, if the event has occurred and the completion 
code associated with the event, when posted. 

FINDREC 

A resources management on-line subroutine that 
does dynamic space allocation and locates data 
within the transaction/response pools. 

Multi-tasking 

The interleaved or time-shared execution of two 
or more program tasks within a single CPU; multi­
programming. 

On-Line. 

Pertaining to the responsiveness of a computer 
system. To respond in a timely fashion to user's 
needs who have direct access to the computer via 
data entry devices, terminals and displays; real-time. 

SLINK 

Subtask Linkage 
An on-line resources management program that is a 
constant subtask to COP and links to each process­
ing program. 

Sub8Y8tem 

A system of interrelated programs that is subordinate 
in control and execution to another system. 

Subtask 

An executable program that has all the attributes 
of a task but is subordinate to and under the control 
of another task. 



452 Fall Joint Computer Conference, 1969 

--------------------------~----------------------------------------------------------------
Task 

One of 'two or more programs, or series of programs 
which execute concurrently in a single CPU. 

TPCHUG 

A teleprocessing program that is a constant sub­
task to COP. It reads transactions from the input 
waiting queue, edits them, and. translates them into 
their processing format. 

TPMSC:OUT 

A teleprocessing subroutine that converts a response 
to a terminal's format and pla~es it into the output 
waiting queue. 

TRP 

Transaction Response Pool 
A block of memory which contains a single raw trans­
action (message), some of its' control information, 
its intermediate forms and its' response(s). A TRP 
is assigned to one transaction ~t a time for its active 
life within the CPU. It contains all data associated 
with the transaction in chronologicu,l sequence so 
it is useful for debugging. 

ACKNOWLEDGMENT 

The authors wish to thank Mr. J. R. Kleespies for 
his encouragement and support; Mr. W. D. Ayers and 
Mr. R. T. St. Germain for their dedicated efforts 
in design and programming; Miss Agnes Wolf and 
Mrs. L. J. Fiore for their meticulous typing; lVlr. Leo 
Karl of IBM for initial analysis and Messrs. F. J. 
Thomason and J. W. Nixon of Haskins & Sells for 
their invaluable advice. 

REFERENCES 

1 S ROSEN 
Electronic computers: A historical 4urvey 

ACM Computing Surveys VoliN 0 1 March 1969 
2 R F ROSIN 

Supervisory and monitor systems 
ACM Computing Surveys VoliN 0 1 March 1969 

3 J DIEBOLD 
Thinking ahead: Bad decision on computer use 
Harvard Business Review Jan-Feb 1969 

4 H LIU 
A file management system jor a large corporate injormatWn 
system data bank 
Proc FJCC Vol 33 1968 

The following references are selected by the authors for geners,l 
background information, but are not mentioned in the 1Gext. 

5 J MARTIN 
Programming real-time computer systems 
Prentice-Hall 1965 

6 J MARTIN 
Design oj real-time computer systems 
Prentice-Hali 1967 

7 M G JINGBERG 
Notes on testing real-time systems programs 
IBM Systems Journal Vol 4 No 1 1965 

8 J D ARON 
Real-time systems in perspective 
IBM Systems Journal Vol 6 No 1 1967 

9 J W HAVENDER 
Avoiding deadlock in mu,ltitasking systems 
l~M Systems Journal Vol 7 No 2 1968 

10 B I WITT 
Job and task management 
IBM Systems Journal Vol 5 No 1 1966 

11 D D KEEFE 
Hierarchical control programs jor systems evaluation 
IBM Systems Journal Vol 7 No 2 1968 

12 W C McGEE 
On dynamic program relocation 
IBM Systems Journal Vol 4 1965 

13 IBM system/a60 operating system 
MVT Control Program Logic Summa-ry Form Y28-6658 

14 IBM system/a60 operating system 
MVT Supervisor Form Y28-6659 

15 IBM system/a60 operating system 
MVT Job Management Form Y28-6660 

16 IBM system/a60 operating system 
Supervisor and Data /Management Services Form C28-0046 



Incorporating complex data structures 
into a language for social science 
research 

by STEPHEN W. KIDD 

The Brookings Institution 
Washington, D. C. 

INTRODUCTION 

This paper presents a set of augmentations to the 
language BEAST* (Brookings Economics and Statis­
tical Translator) as part of a continuing effort to define 
a language for a particUlar group of computer users, 
social scientists. In this nebulous group we include 
professional economists, political scientists, psyc1Wlo­
gists, sociologists, and a large· number of univer~ity 
students in those disciplines. An important assumptIOn 
underlying our work has been that the cost of not 
having SUbstantially better software than pljesently 
exists is very large and should be measured in terms 
of researchers' time. The true .cost of inappropriate 
methods of computer utilization should not be inea­
sured by staff and computer costs, but by the social 
cost of the output foregone. When answers to questions 
of importa.nce for national public policy formation re­
quire weeks, months, or even years to obtain, the cost 
becomes a social cost that we all eventually bear. 

BEAST is a computer language designed to embody 
many of the concepts of the more quantifiable social 
scien'Ces. The present version of the BEAST operates 
primarily upon ":r:ectangular". data files, that is, files 
having observations on attributes of enumeration 
units. In other words, acceptable files consist of fixed 

* Jeffrey W. Bean, Stephen W. Kidd, George Sadowsky, Beverly 
D. Sharp, THE BEAST: A User-Oriented Procedural Language 
for Social Science Research. (The Brookings Institution, June 13, 
1968). Reference to "the current BEAST" should be understood 
to refer to that paper. 

453 

length logical records, one record for each enumeration 
unit. Many social science data files either have this 
structure or can be cast in this structure with little 
effort, and the majority·of "general purpose programs," 
written for social scientists also assume this dat a 
structure. However,· many social science data files have 
a more complex structure and cannot be processed 
either by the present version of the BEAST language 
or by most existing computer programs. 

This paper describes possible extensions to the 
BEAST language to make it useful for processing data 
with a more complicated structure. Though the data 
structures and language constructs described here could 
be applied to extensions of other languages, we f~el 
that they have partiCUlar utility when combined With 
features already available in the BEAST. The intent 
of the proposed extensions is not to introduce a general 
list processing capability into the language as has been 
done with some other languages,6,9 ,16 ,18 but to accom­
modate a particular class of files characterized by 
hierarachical record structures. We have deliberately 
decided in favor of a limited structure that permits 
the ease of reference that is essential for the users we 
envision for the language. The generality of those 
complex structure~ which have been disallowed in 
the current proposal is a lUXUry which can only be 
bought for a significant price--the increased specificity 
required in a language to reference such struc~ur~s. 
The user who wants such generality pays the price In 
other languages in the increased tedium of writing 
his program. 



454 Fall Joint Computer Conference, 1969 

Consider a slight variant of the 1966 Survey of 
Economic Opportunity (SEO) File constructed by 
the U. S. Office of Economic-Opportunity. The organi­
zation of data within each enumeration unit is tree­
structured, that is, each level or segment of data may 
be followed by a variable number of segments of data 
at the next lower level. Figure 1 illustrates the structure 
of this file. 

Disaggregation by respondent characteristics, time 
period, income group, geographic area or other con­
ditions is often very fruitful for social science research. 
For example, using this file it should be possible to 
define a subset of households or families based upon 
person characteristics, or the reverse. Such groups 
might be (1) the set of all families such that no persons 
are 65 or more years old, (2) the ~et of all households 
such that at least two persons earn $5,QOO or more 
per year in wages and salaries, (3) the set of all families 
such that exactly two persons are less than 21 years old, 
(4) the set of all persons whose households are headed 
by a woman, (5) the set of all families that live in the 
northeast, and (6) the set of all persons whose families 
are at least five persons in size arid which live in the 
southwest. 

The current BEAST language provides the DEFINE 
SAMPLE statement for defining al subset of the user's 
original population and the ON SAMPLE suffix for 
restricting computations to observations within that 
subset. The format of the DEFINE SAMPLE state­
mentis: 

DEFINE SAMPLE sample name AS logical 
expression 

An example of a DEFINE SAMPLE statement would 
be 

~I I~I 1-=:::::1 
I ~ I 1-:::::::1 
I :J~I I~I 

I I 

~: ~I ~I :J I ;1 

I 'I 
SEGMENT .... 

1U"'NTi sr~I!NT1 SfGMfNT;J WolJ( 

HOUfIHOLD "'~MIL" MTA 'lfCfO~ DATA It"HIl'£"'Ct: 
.AT4 JATA 

Figure I-A logical structure for the survey of 
economic opportunity file 

DEFINE SAMPLE OLDMEN AS AGB > t.5 
AND SEX EQ 'M' 

That sample definition could be invoked using the ON 
SAMPLE suffix to compute the average income of the 
old men in a set of data: 

LET AVINC =. MEAN (INCOME) ON 
SAMPLE OLDMEN 

The ON SAMPLE suffix can be used in a simillar wa.y 
to define a restricted domain for calculation of derivod 
variables, statistical procedures~ and input and output. 

While the current definition of the language is 
sufficient to express extremely general conditions on 
rectangular data files, the syntax for logical expre:3-
sions is insufficient for defining samples of the type 
mentioned above for the SEO file. The next two se.~­
tions describe an augmented I/O facility and an ex­
panded conditional expression syntax designed to 
evaluate logical functions on data structures of the 
type indicated. 

Before proceeding further, it is useful to formalh~e 
somewhat the data structure indicated in Fil~ure 1. 
Data related to a single entity like a person, a family 
a state, or a company we shall call a segment. * An oe­
currence of a segment resembles one row of a rectan­
gular data matrix: it is one set of values for 81 list of 
attributes, and it is defined by the list of attributes ill­
cluded in one occurrence of the segment: For example, 
a segment describing a person (a PERSON se,gment) 
might be defined by the list of attributes AGE, SE:X, 
INCOME", and RENT. We denote that a PERSON 
segment is composed of values for those four attributes 
by writing 

PERSON [AGE, SEX,INCOME, RENT] 

or in general with the notation 

segmentname [attributelist] 

* The concept of a segment as described here should not be COD,­

fused with its usage in discussions of virtual memories and address 
spaces. Our usage is close to what R. M. Balzer ha.s oalled 1:1. 

"collection" in "Dataless Programming", (Ra.nd Corporatioll 
JUly 1967) Memorandum RM-5290-ARPA. It also resembles , , 
the usage in COLINGO of "group": COLINGO C-1Qt User s 
Manual, (Mitre Corporation, May 1968) Document E8D-TH-
66-653; and the POP-2 usage of the term "record." R. Moo Bu~n8, 
J. S. Collins, "An Introduction to the POP.2 Progrnmmml' 
Language," (University of Edinburgh, October, 1967,) Min­
MAC Reports, No.4. The term segment has been adopted for 
IBM's GIS file management system. 



Incorporating Complex Data Structures 455 

------------------~-------------------------

IUNT 

Figure 2-A PERSON segment 

Figure 2 shown an example of one such PERSON 
segment. A rectangular matrix would be composed 
of a set of such "segments" conceptually placed one 
below the other. 

As an extension of that structure, segments can be 
combined by linking them to const;uct a "tree". The 
tree has as its "root" a single segment, and has as its 
"branches" one or more different segments. Figure 
3 shows one such tree structure representing one 
FAMILY and three PERSON's. * ** 

A tree such as in Figure 3 is the basic unit in our 
augmented d.ata structure. . 

We call shall each successive tier of the data hIer­
archy a level. Levels are numbered and begin at one, 
the level for those segment types not contained in any 
other segment. Level one is the highest segment level 
possible. Every segment type has a unique level as­
sociated with it, though more than one segment type 
may occur at any level. When a segment S is connected 
to segment T by a single path through one or more 
segments, we shall say that S contains T (conversely, 
T is contained in S). All segments contained in segment 
S are called subsegments of S. Segments are contained 
in a unique segment of the next higher level. This 
restriction on the data structure permits simplification of 
the language we use to reference the structures. In 
particular, it permits attributes of segments at one 
level to be "imputed" to segments at a lower level, and 
it obviates explicit upward-references when referring 
to low level segments. 

We shall call information about containment (which 
segments contain or are contained in which other seg­
ments) structural information about the data, as dis­
tinct from the data itself. The structural information 
of a file is often contained only implicitly in the 
physical arrangement of the data in the file. When data 
are read into memory, the structural information 

* These figures give no indication of the physicti.l structure of 
the data. There are several.reasonable ways in which such data 
could be armnged, but the language used to talk about such data 
should be independent of the physical arrangement of the data. 

** For convenience we will call "an occurrence of the structure 
defined by "X" simply "an X". 

..I 

r z~ .. 2 

~ .. ~ j ~i .. )( I e ! ~ = ! It 

IT I 
I~: 

I I I 
... CION 1 'A ... ILY' 

I I 
Pl'UON' 

I I I 
I'IIUON I 

Figure 3-A simple enumer.1tion unit 

should become explicitly represented as a list structure 
for efficiency in processing. 

Trees of the forms described above can often repre­
sent naturally the structure of the enumeration units, 
(E~U's) encountered in social science research. For 
the purposes of this paper the tree that represents 
an enumeration unit consists of a unique segment type 
at level one called the root segment together with all its 
subsegments. A file is an ordered set of such enumeration 
units. To denote that an enumeration unit has a 
structure we shall give the entire aggregate a name and 
define its constituents according to their relations. The 
simple tree structure in Figure 3 would be defined in 
BEAST by writing 

DEFINE EU FAMSTRUCT AS 
1 FAMILY [REGION, WEALTH, 

URBANRURAL] 

2 PERSON [AGE, SEX, INCOME, 
RENT] 

The purpose of such a definition is to describe the set 
of possible occurrences of the enumeration unit, si~ce 
an EU definition says nothing about whether a parlwu­
lar occurrence of the structure will actually have any 
subsegments, the number of subsegments, or the phys­
ical order or type of the attributes in the segments. 

Another example of an .EU definition is: 

DEFINE EU CONGCOMMITTEE AS 
1 COMMITTEE [NAME, BUDGET] 

2 MEMBER [LAST, FIRST, STATE, 
PARTY] 

This definition specifies a tree structure with two levels 
that represents a Congressional committee. The root 
segment is a COMMITTEE segment, and for the pu~­
poses of CONGCOMMITTEE it has only two attrl-



456 Fall Joint Computer Co~ference, 1969 

-------------------------------------------------------------------------------,-----
butes, NAME and BUDGET. Segments of type COM­
MITTEE are assumed to contain only segments of type 
MEMBER. On input only str~ctural information 
relating QOMMITTEE and MEl\:1BER segments will 
be retrieved from the file though the file may contain 
other segment types and attributes. On output only 
the structural information indicated will be displayed. 
As a third example consider the strhcture defined by the 
statement 

DEFINE EU DWELLING AS 
1 HOUSEHOLD [AGEOFHEAD, 

SEXOFHEAD]i 

2 FAMILY 

'3 PERSON [AGE, I~COME] 

When a segment name (F AMIL Y) is included in an 
EU definition with no attributes: listed, then only the 
structural information at that le-Vel is extracted from 
the file. In this example, DWELLING would have the 
form indicated in Figure 4. With ~uch an EU structure 
one could evaluate logical expressions that required 
structural information, but no attributes, at the family 
level. We might, for example, reference 

PERSON'S IN FAMILY'S WITH AT LEAST 4 
PERSON'S 

No FAMILY attributes are needed because only 

r.~ • .r-----""1 

: ~L_I __ -----" 

Figure 4-Example3 

structural information is required to evaluate this 
expression. 

New attributes for FAMILY segments could 80180 

be generated from such ~ structure that begins with a 
null attribute list. We could compute the total incolne 
in each FAMILY segment (the sum of all PEnSON'S 
income contained in that segment) using 'the TOTAL 
function: 

LET FAMINC = TOTAL INCOME WITHIN 
FAMILY 

The function TOTAL has the general form 

TOTAL attribute) [WITHIN segmntid OJ. 
[subscript] [boolprim] , 

segmntid 

In the example above we have taken the total of an 
attribute (INCOlVIE), where the summation is taken 
over all values for INCOME contained within the 
specified segment, FAMILY. BEAST assumed that 
iteration is intended over all F Al\HL Y segments since 
no subscript or modifier is put on the segment identi­
fiers. 

To explicitly assign a new attribute to a segment we 
will use the notation 

LET segmntid: attribute name = expres.sion 

Using this notation and the TOTAL function to count 
PERSON subsegments, we can create an B~ttribute 
in each F AMIL Y segmente qual to theav erage income 
of all persons in the F AMIL Y : 

LET FAMILY: AVINC = (TOTAL INCOlv.[E 
WITHIN FAJMILY)/ 
(TOTAL PERSON'S 
WITHIN F AMIL Y) 

Again iteration over FAMILY segments is impUed 
because the segment identifier is unqualifiod. The 
value of the function would become a scalar if the 
second segment identifier were qualified with either a 
simple logical condition or a BEAST SUbscript. 

For example, the statement 

LET X = TOTAL INCOl\IE WITHIN 
FAl\ULY'S (1. .. 100) 

* The syntactic type boolprim represents a single logiical term. 



would compute the sum of the income of all persons 
contained in the first 100 families and assign the value 
to the scalar variable X. 

Conditions on structures 

Logical expressions to deal with tree structures of the 
type described in the above section must be capable 
of expressing both intra-segment relations (analogous 
to present BEAST logical expressions) and interlevel 
relations among segments contained in or containing 
the reference segment of an expression. The reference 
segment of an expression is that segment with which 
the value of the expression is associated, distinguishing 
it from the other segments upon which the value of the 
expression may also depend. For example, the reference 
segment of the logical expression 

FAMILY'S IN HOUSEHOLD'S WITH LESS 
THAN 10 PERSON'S 

is the FAMILY segment because the expression defines 
a condition on FAMILY segments. Three segment 
types appear in'the expression-FAMILY, HOUSE­
HOLD, and PERSON-but 'the value of the entire 
expression is clearly a condition on each F AMIL Y. 
Had the expression been simply 

HOUSEHOLD'S WITH LESS THAN 10 
PERSON'S 

then the reference segment would have been HOUSE­
HOLD. 

Table I gives a formal syntax for sample definitions 
using the proposed extensions to logical expressions. 
The set of words WITH, IN WHICH, etc., are used as 
"noise" words and are not significant for the interpre­
tation of an expression. The construct'S is used op­
tionally to imply a plural and not a possessive. Note 
that, for example, the plural ofF AMILY becomes 
FAMILY'S, not FAMILIES. 

The primary additions to the current BEAST's logi­
cal expression syntax are the three logical primitives 
defined by the syntax specifications 

(1) IN {samPlename 
segmntid [boolprim] } 

(2) quantifier (inboOlPrim 
[boolprim) I segmntid 

(3) {ALL } {segmntid boolprim } 
EVERY inboolprim J 

In~rporating Complex Data Structures 457 

TABLE I -Syntax for conditions on structures 

aampl .. tatement :. DEFINE SAMPLE name AS (refaeamntld] lOlexp 

refaelmntld 

aeptlntid 

10lexp 

:- aeamntld 

:. aeamntname I aeamentname'S \aeamntname (aubacript) 

: m boolprim {~D }lOlexp r boolprim 

FOR WHICH 
boolprim :. ~: WHOM boolprim I NOT boolprim I (l°lexp) I I

~ITH WHICH 1 
HAVE 
INCLUDE 
INCLUDES 

inboolprim I IN {::;;::~~::lprlmJ} I quantllier {::::!:~~Olpr~} I 
{
AIJL } {aelmntld bOOIPrim} 
EVER Y inboolprim 

inboolprlm (l0lexp) \IOlicalvar \ numexp relop numexp 

quantifi.r := NO \ ANY I A I AN I ONLY \ [quantop] intelerexp 

quantop :~ EXACTLY I AT LEAST I AT MOST I MORE THAN I LESS THAN 

where 

IOllcalvar := variable of type 10lical 

numClxp := arithmetic .xpullion 

relop :. EQ I NE lOT I LT I OE I LE 

intelerexp :* exprellion with an intelral value 

1. I t is often useful to test whether a segment is 
contained in another segment having certain 
characteristics, e.g., whether a PRODUCT seg­
ment is contained in a COMPANY segment of 
a particular sort or whether a segment with 
quarterly data is contained in ~ segment with 
particular annual data. To make such a test we 
have added a logical operator with the form 

IN {samPlename } 
segmntid [boolprim] 

If a segment identifier immediately precedes the 
word IN then the test is applied to that segment. 
If no explicit identifier is used then the test is 
applied to the reference segment of the expression. 
For convenience let us call the segment being 
tested'S'. Considering the form 

S IN segmntid [boolprim] 

the system first checks whether the segment 
containing S is of type segmntid. If no condition 
is specified on segmntid then the value of the 
IN phrase is the truth value 'of that inclusion 
test. If the segment S is contained in segmntid, 
then any condition on segmntid is also evaluated 
q,nd the value of the IN phrase becomes the 
truth or falsity of the condition on the segment 
at the higher level. 



458 Fall Joint Computer Conference, 1969 

If the IN operator has the form 

S IN samplename 

the test is TRUE if S is a member of the sample 
defined by samplename and FALSE otherwise. 
In this case the reference segment of the sample 
definition must be (1) the same as S or (2) a 
segment that contains S. 

For example, using the SEO file, one might say 

DEFINE SAMPLE; SI AS FAMILY'S 
IN HOUSEHOLD WITH AGEOF­
HEAD OVER 65 

The reference segment is explicitly specified 
(after AS) as being the FAMILY segment. The 
segmntid is HOUSEHOLD, and the Boolean 
primitive modifying HOUSEHOLD is WITH 
AGEOFHEAD OVER 65. A particular FAM­
ILY segment will be a member of the sample SI 
if it is contained in a HOUSEHOLD segment 
with an elderly head. 

For a second examplef let us assume that 
there are two types of f!limily segments, called 
COUNTRYFAM a1).d CITYFAl\1, each of 
which may contain PERSON segments. We 
define as a sample called CITYFOLK aU PER­
SON segments contained in CITYFAM seg­
ments by the statement: 

DEFINE SAMPLE CITYFOLK AS 
PERSON'S IN QITYFAM'S 

2. While the first logical operator gave us the 
ability to express conditions on the segments 
that contain the referen~e segment of an ex­
pression, the second operator puts conditions 
on segments that the reference segment may 
contain. This operator has the general form 

quantifier linboolPrim ['S] I 
segmntid [boolprim] 

As with IN, the segment ~ to which this phrase 
refers will be the refereIlCe segment unless it 
immediately follows a difierent segment identi­
fier. 

The quantifier operator tests whether S 
contains a specified nUluber (given by the 
quantifier) of occurrences of some condition 

among its subsegments. The permissible forms 
for an quantifier are (1) A, AN, ANY, NO, 
ONLY (2) any of the relations 

EXACTLY 
AT LEAST 
AT IVrOST 
lVIORE THAN 
LESS THAN 

followed by an integral scalar expression or (3) 
simply an integer expression. A, AN, and ANY 
are equivalent to AT LEAST 1, and NO is 
equivalent to EXACTLY O. The quantifier 
ONLY indicates no specific number of oceur­
rences, but is TRUE if and only if S contaim! at 
that level only segments of type segmntid,. and 
they satisfy the condition imposed on them, if 
any. 

The condition referenced by the quantifier 
may be subsegments that satisfy some eondition 
or simply the existence of the subsegments.. A 
segment satisfying a condition is speeified by 
either a segment identifier with a logical primi­
tive, or simply an intrasegment boole~m primi­
tive (inboolprim) which is a condition made from 
attributes all in the same segment type. 
Since the value of ·an inboolprim is uniquely 
associated with a particular segment;, an in­
boolprim is equivalent to a segment with a 
condition on it (See example below). 

The following sample definitions illustrate 
the use of the quantifier logical operator applied 
to a file of household survey data. 

DEFINE SAMPLE BIGFAMS AS 
F AlVIILY'S WITH AT· LEAST .j, 

PERSON'S 

This sample definition has FAlVIILY'S as its 
reference segment. The F AMIL Y segments in 
the sample are defined by a single logical 
primitive. According to the syntax specification, 
AT LEAST 4 is a quantifier, composed ofa 
quantop (AT LEAST) followed by an integerexp 
which in this example is simply the number 4. 
In this example the quantifier is folloVlred by a 
si~ple unqualified segment identifier, PER­
SON'S. 

DEFINE SAlVIPLE CROWDED AS 
FAMILY'S IN HOUSEHOLD'S WITH 
AT LEAST 10 PERSON'S 



The sample CROWDED is defined using both 
the primitives IN and a quantifier. IN is a 
condition on F Al\1IL Y'S because it follows 
immediately after the declaration of ~he refer­
ence segment. IN is followed here by the segment 
identifier HOUSEHOLD'S qualified by the 
phrase AT LEAST 10 PERSON'S. Evaluation 
of this expression involves a relatively complex 
computation on each enumeration unit, since for 
each F Al\1IL Y ea level 2 segment) it is necessary 
to find the total number of PERSON'S (at 
level 3) contained in the parent HOUSEHOLD 
segment at level 1. 

DEFINE SAl\lPLE ELDERL YF Al\lS AS 
F AlVIILY'S WITH A T LEAST 2 
AGE'S> 60 

This example shows one use of the construction 
called an intrasegment boolean primitive. Assum­
ing that AGE is an attribute of the segment 
type PERSON, the quantifier 'phrase above 
would be equivalent to AT LEAST 2 PER­
SON'S WITH AGE> 60. 

3. The final condition on a segment is also an 
operator applied to its subsegments. Though 
similar to ONLY, ALL and EVERY are eval­
uated using only the segment type indicated, 
and are independent of any other subsegment 
types which S may contain at the same level as 
segmntid. Also, a condition must be specified on 
the segment identifier. The ,vords ALL and 
EVER Y .are equivalent. The general form is 

{
ALL } {segmntid boolprim I 
EVERY inboolprim I 

I 
For example, considering a structure of the 

form 

1 FAl\lILY 
2 CHILD 
2 ADULT [ASSETS] 

we could say 

FAl\-1ILY'S IN WHICH EV-ERY ADULT 
HAS ASSETS >. 500 

and the value of the expression would be inde­
pendent of the contents of the CHILD segments 
contained in any F Al\1IL Y segment. 

Incorporating Complex Data Structures 459 

Input and cutput 

An integral part of the BEAST language is its 
reliance upon machine readable codebooks for describing 
data files. The machine readable codebook incIudp-s a 
format description, including the physical and logical 
formats of the data file, the name and positions of all 
data items in the file, and the meaning of their permis~ 
sible values. The BEAST system automatic&.lly refer­
ences this information to interpret any user commands 
relating to a file. 

As an example of a simple input request, suppose a 
user is investigating the relation between hourl~ng 

costs and income for different age-sex combinations. 
He knows that a given file, SURVEYFILE, contains 
the results of a sa,mple rmrvey useful to his investiga­
ti n' he also knows that the file contains at least the , 
following four attributes of each respondent; age, sex, 
rent, and monthly income. In order to access this body 
of information using the BEAST, he writes: 

SELEcrr SURVEYFILE 

to designate SURVEYFILE as the current input file. 
The execution of the SELECT statement causes the 
BEAST to read the codebook associated with SUR­
VEYFILE in preparation for an actual input request. 

The codebook contains attribute names for each 
respondent item; suppose that those corresponding to 
the above attributes are AGE, SEX, RENT, and IN­
COME. For each attribute, the set of measurements 
for all respondents is repre5ented as a column vector. 
To extract these attributes, the user writes in the 
BEAST: 

GET SEX, AGE, INCOME, RENT 

El.ecution of this GET statement C9uses four vectors 
to be extracted from the file and placed in working 
storage. There is no ordering rule for the input list; 
the order of the names has no relation to their physical 
arrangement on the file. ' 

The remainder of this sect jon shows how the "access 
by· name" referercing of files can be extended to in­
corp~rate the more complex Bt~uctures described in 
this paper. When only one segment type is considered 
there' is no ehang~ from the current BEAST specifica­
tion because there is no structural information. To 
signal the system that structural information exists 
in' a file the user replaces the simple attribute list in a 
GET statement with either the name of an EU struc­
ture or an actual EU specification. Such a GET state­
ment indicates that the structural information as well 



460 Fall Joint Computer Conference, 1969 

-----------------------------------------------------------------------------------
as the data values should be retrieved from the current 
input file. Similarly, an EU specification used in an 
output list will result in the display of only the attributes 
and structure indicated in the specification. As with the 
curn,nt BEAST, if no subscnpts or sample qualifications 
are specified in an I/O list then every occurrence of the 
elements specified in the list will be retrieved or printed. 

Using this form of I/O list one could write 

DEFINE EU DWELLING AS 
1 HOUSEHOLD [CITY,. STATE] 
2 FA~IILY [FAMTYPEj 

SELECT SURVEYFILE 

GET DWELLING (1. .. 100) 

The first statement defines DWELLING as a tree 
structure with t,wo levels, the household level and the 
family level. There are two attributes at the house­
hold level; they give the city and state where the 
household is located. '1 here is only one attribute at the 
family level, an indication of family type. The GET 
statement results in the extraction of the first 100 of 
these enumeration unit~ from the data file called 
SURVEYFILE. The resulting: number of F'Al\IILY 
segments in these 100 HOUSEHOLDS is unknown, 
but it can be found by using 'the TOTAL fUDction. 

LETNFAMS = TOTALFAMILY'SlN 
HOUSEHOLD'S (1. .• 1(0) 

Since the segment identifier FAMILY'S is used with 
an e~plicit qualifier as the object of TOTAL, the value 
of the function \\;ll be a scalar eqtu~l to the number of 
FAMILY segments contained in the first 100 HOUSE­
l} OLD segments. 

A small BEAST program 

We conclude with a small ,but complete program 
utilizing the data structures and statement types 
described in this paper. This example also illustrates 
tvv·o other BEAST statemellt types, the REPEAT and 
COIVlPUTE statements. The iteration statement in 
BEAST is distinguished by the fact that its dummy 
argument is defined "by name" ,rather than "by value." 
This is 8 useful device permitting the dummy to be used 
on the left side of an assignment statement, to be only 
partially defined on entry of ,a repeat block, and to 
assume as a value any entity in the language that may 
be named. The general form of the iteration statement 
is given by 

[label:] REPEAT FOR dummy 1 = namelist 1 
[AND FOR dummy 2 = namelist 2] ... 

END [label] 

The dummy variable must be used in such a Wl3,y within 
the range of a REPEAT that substitution of all ele­
ments of the list result in E!yntactically correct BEAST 
statements. 

The COMPUTE statement is used to execute com­
plex statistical procedures and print their results. 'rhe 
COMPUTE statement has the general form 

COMPUTE procedure OF dataphrt:tS€l [WITH 
optionsphrase] [ON SAMPLE name] 

The procedure may specify any of a number of pro­
cedures including cross-tabulation, correlation, multi­
ple regression, and analysis of variance. The datfl, to 
which the procequre is to be applied is specified in the 
dataphrase, and the exact form of the dataphrase de­
pends on the procedure being invoked. The parameters 
of the procedure can be modified using the optilmsph1·ase. 
One may, for example, specify that the residuals of a 
regression equation are to be printed as PBlXt of the 
output. 

When the arguments of a procedure are at more than 
one level the number of "observations" derilved from 
an enumeration unit equals the number of o(~curren.ces 
of the lowest level reference. In such a case the v:a.lue 
of the higher level references are distributed over their 
subsegments giving a rectangular expansion of the tree 
structure. When the phrase ON SAMPLE nfLme is ap­
pended to a COMPUTE statement the procedw'e is 
executed using only the observations that are included 
in the sample name. The reference segment OJ1 the sam­
ple must be at least as high as the lowest levell attribute 
in the dataphrase. 

Table II shows a program that uses the six subsets 
defined in the introduction as selection criteria for two 
cross tabulations using the Survey of Economic Oppo~ 
tunity file. The program will calculate and print a total 
of 12 cross tabulations, two on each of the six samples 
defined. Because the variables in the COMPUTE are 
at the PERSON level we may use either ]PEltSON, 
FAMILY, or HOUSEHOLD level samples. 

CONCLUSION 

Languages designed for statistics have tended to operate 



TABLE II-8ample program 

'DEFINE 'THE STRUCTURE OF THE ENUMERATION UNIT' 

DEFINE EU DWELLING AS 1 HOUSEHOLD [SEXOFHEAD, AGEOFHEAD) 
Z FAMILY [FAMTYP, REGION, URBANRURAL) 

3 PERSON [WAQES, SALARY, AGE, SKILEVEL) 

DEFINE SAMPLE Sl AS FAMILY'S WITH NO AGE'S> 65 

DEFINE SAMPLE SZ AS HOUSEHOLD'S IN WHICH AT LEAST Z PERSON'S HAVE 
(WAGES + SALARY) ~ 5000 

DEFINE SAMPLE S3 AS FAMILY'S WITH Z AGE'S < Zl 

DEFINE SAMPLE S4 AS PERSON'S IN HOUSEHOLD'S WITH SEXOFHEAD EO 'F' 

DEFINE SAMPLE 55 AS FAMILY'S WITH REGION = 1 

DEFINE SAMPLE S6 AS PERSON'S IN FAMILY'S (WITH AT LEAST 5 PERSON'S 
AND WITH REGION EO 7) 

SELECT SE066 'SE066 IS NOW THE INPUT FILE,' 

GET DWELLING (1 •.• S 000) 

LIREPEAT FOR X = 51, SZ, 53, S4, S5, 56 NlTERATE OVER SAMPLE DEFINITIONS' 
liTHE PERMISSIBLE CATEGORIES FOR EACH VARIABLE ARE GIVEN IN THE 

CODE BOOK OF SE066.' 

COMPUTE CROSSTAB OF SEX, AGE, SKILEVEL ON SAMPLE X 

COMPUTE CROSSTAB OF URBANRURAL, SKILEVEL ON SAMPLE X 

END L 'REPEATS MAY BE NESTED TO ANY DEPTH.II 

STOP 

upon the simplest data structures, while languages 
with facilities for the more complex structures have 
seldom had the statistical operations that have made 
the current version of BEAST attractive. By extending 
BEAST to include the tree structures described here 
we hope to increase the usefulness of the language 
without sacrificing any of the convenience of the current 
language. While the methods of referencing such struc­
tures have been stressed here it is nonetheless important 
to be able to manipulate such structures to add and 
delete individual segments and entire levels. We have 
not presented our tentative solutions to the problems 
of manipulating segments. 

REFERENCES 

1 C W BACHMAN S B WILLIAMS 
A general purpose programming system for random access 
memories 
Proc FJCC Vol 26 1964411-422 

2 R M BALZER 
Dataless programming 
Proc FJCC Vol 31 1967535-544 

3 R E BLEIER 
Treating hierarchical data structures in the SDC time-shared 
data management system (TDMS) 
Proc 22nd Nat Conf Association for Computing Machinery 
196741-49 

4 R BUHLER 
P-STAT: An evolving user-oriented language for statistical 
analysis of social 8cience data 
Princeton Computer Center Princeton Univ 1966 

Incorporating Complex Data Structures 461 

5 Colingo project 
Colingo C-1O User's Manual Vol I II May 1968 
Mitre Corp Bedford Mass AF 19 (628) - 5165 

6 RW CONWAY et 801 
CLP-The Cornell list processor 
CACM Vol 8 April 1965 

7 W J DIXON editor 
BMD biomedical computer programs 
Univ Calif Press Berkeley Los Angeles 1967 

8 Economic Growth Center ' 
Development of a generalized economic information retrieval 
system and data files 
Application for Nat Science Foundation Research Grant 
July 1966-June 1969 Principal Investigator Richard 
Ruggles Yale Univ 1966 

9 H GELERNTER et 801 
A fortran-compiled list processing language 
JACM Vol 7 April 1960 

10 M GREENBERGER M JONES H JAMES JR 
D N NESS 
On-line computation and simulation: The OPS-3 system 
MIT Press 1965 

11 M A GOETZ Chm 
The strategy of file organization 
Proc IFIP Congress 65 Vol 2 1965 May 24-29 460-479 

12 Harvard University, Department of Social Relations 
The data-text system: A computer language jor social science 
research designed for numerical analysis of data and content 
analysis text 
Preliminary Manual Harvard Univ 1967 Cambridge 

13 1. B. M. Application Program 
Generalized information system application description (GIS) 
IBM Tech Pub Dept 1965 White Plains NY 

14 Inter-University Consortium for Political Research 
M O,.(:hine readable codebooks and their use 
Inter-Univ Consortium for Politica.l Research Nov 1967 

15 R J JONES 
Data file two-A data storage and retrieval system 
Proc SJCC Vol 32 1968 171-181 

16 A J' PERLIS 
A definition oj formula algol 
Carnegie Mellon Univ March 1966 

17 N S PRYWES 
·Executive (j,nd retrieval based extended machine 
Proc IFIP Congress 65 Vol 2 1965 May 24 .. 29,460 

18 J M SAKODA 
DYSTAL MANUAL: Dynamic storage allocation language 
in }I"'ortran 
Brown Univ 1965 Dept of Sociology and Anthropology 
Unpublished manual 

19 MSCHATZOFF 
Applications of time-shared computers in a statistics 
curriculum 
IBM Data. Processing Division 1966 Cambridge Scientific 
Center 

20 N R SINOWITZ 
Dataplus-A language jor real time information retrieval 
from hierarchical data bases 
Proc SJCC Vol 32 1968395-401 

21 Social Systems Research Institute, Computation Division 
Socioeconomic Information Processing Service user's manual 
(SI.PS) preliminary corrections, February 10 1967 
Univ of Wisconsin 1967 Madison 





Nanosecond threshold logic gates for 
16 X 16 hit, 80 ns LSI multiplier 

by LUTZJ. MICHEEL 

Air Force Avionics Laboratory 
Wright-Patterson Air Force Base, Ohio 

INTRODUCTION 

Previous research and development efforts in digital 
monolithic integrated circuits and arrays were almost 
exclusively concerned with Boolean logic. However, 
by introducing threshold logic, considerable savings in 
gate count as well as in subsystem processing speed 
are evident. When logic subsystems, such as registers, 
adders, counters or combinational control logic, de­
signed with common NOR logic, were replaced by 
subsystems employing threshold logic, average savings 
in gate count of three to one have been demonstrated.15 •J6 

Furthermore, the number of consecutive logic levels 
necessary to implement a given switchjng· fu.nction, 
and thus the relative processing delay, is also generally 
reduced by the same ratio. 

The full adder function requires two inverting 
threshold gates, and carry propagation is accomplished 
with only one gate delay per stage. Basic flip-flop 
types can be implemented by a single threshold gate. 
Advanced parallel adders for three addends would 
consist of three threshold gates per bit, and functional 
multipliers should also become pra~tical in iterative 
array implementation. 

For full utilization of the much greater logical 
capability of threshold gates, the employed techn~logies 
should be amenable to large. scale integration which 
excludes hybrid approaches. Utilization of such mono­
lithic threshold gates and arrays is possible in most 
kinds of computers, data processing and control 
equipment. . 

463 

Threshold logic gates with nonlinear J eedback 

Smith and Pohm have demonstrated the ultra-high 
speed capability of threshold logic gates in the form 
of RTL gates modified with negative, nonlinear current 
feedback.1•2 In these gates V OE was clamped to Vre! 

= V BE by tunnel or backward diodes (Figure 1) which 
prevented both saturation and cutoff; thus, the tran­
sistor always operated in the ON condition near the 
fT peak. In reverse direction, of course, the diodes 
functioned as the familiar Baker clamp. Propagation 
delays between 5 and 1.2 ns were achieved in bread­
board implementation with fan-out of 3 and 2. By 
varying. the bias current I jb , the authors implemented 
NAND,Majority, and NOR for various values of 
fan-in :s;; 8 and a]so the threshold functions lying be­
tween tl~ese special cases. The gates were not amenable 

(, 

Figure I-Modified RTL gate witn tunnel diode feedback 



464 Fall Joint Computer Conference, 1969 

--------------------------------------------------------------
to monolithic integration, however, because of the 
tunnel diodes and because high-aQcuracy resistors 
were required for current biasing. 

Thr68hold logic gate8for LSI 

When the firs·t experimental Schottky barrier diodes 
became available,3 circuits similar to the gates described 
in the first section, but having symmetrical transfer 
functions, were studied by the author. A pair of anti­
parallel diodes were used for the collector base feedback 
(Figure 2). The plastic-encapSulated diodes, with 
molybdenum silicon interface, :had 0.8 pF capacity 
at 0 V, and VD = 0.4V and ~V/~I = 250 at 1 mAe 
Type 2N 918 transistors were selected for maximum 
ff' and minimum r~. With 19.2 mW average power and 
i = 0.8 mA, the switching tithes (td + t,,) and (t. 
+ t,) were between 1.65 and 1.85 ns. 

Luce confirmed these switching time measurements, 4 

and using experimental trans~stors SMX2-T with 
ff' = 2.8 GHz at VeB = 0 V and Ie = 2 mA, he 
achieved propagation delays of 1~8 nswith only 5.6 mW 
circuit power. The 400 mY, TO-18 Schottky-diodes 
contributed 2 pF Miller capacity. With reduced voltage 
swing of ±300 mV, Luce attained average tpd = 1.4 ns 
and minimum tpd = 0.8us. 

Figure 3 depicts the symmetrical current-in, voltage­
out transfer function and the summing point character­
istics of the new gate which exhibits, at I'k a swit('hing 
step in V BB of only 23 m V. 

A basic improvement of this ~ymmetrical threshold 
gate over RTL circuits should b$ pointed out. In RTL 
it is the sum of input currents 2: lin, plus the (negative) 
base bias current I bb , which turns: on the npn transistor. 
In the new threshold gate, the! (positive) base bias 
current keeps the transistor at the threshold point 
ItA in ON condition. The! input current sum 
± I.,.L: L" is merely required to switch the gate from 
I,,, to its high 01' low state. 

First order worst case analysis of the basic 5-input 

Tin:.) 

Figure 2-Thmlhold gate with 8cttottky diodf' feedback 

Vh 

Xk - -lor +1 

1 t ,,-0 
1.2 V' ---------:-..--""!"' .... i, 

I VaE 
0.8 V r- - =..-=-.::.--=-:.....:-=-::.--=-~.;..I -t---=-==-=:-==:=-=--=. - - V ref 

I 

0.4V+--------- --!--\ ..... -..... _.::..::...::...:.=--. 
I " : V, 
I I 

:: i o L-.-----'---+I-+-~I---.'_-J-..... Tl: X k 

--\'- -~ -1 0 t -¥ ~ 
Figure 3-Tran~fer iunction of th~ gate shown irrpjgure ~~ 

gate was performed under the assumption of temper­
ature tracking of communicating circuits in monolithic 
LSI environment. The transistors should have {3!5; 40 
and V BB matching of ± 5 m V, while a resistor r2~tio 
tolerance of ± 3 percent is required. These character­
istics can be attained in LSI with good manufacturing 
yield. The Schottky diodes should have V D = OA V 
± 15 percent at 0.8 rnA and very low capacitance for 
the high-speed version of the gate (i ~ 0.8 rnA). 
Several other versions are discussed in the nex"t section. 

Compatible metal-silicon Schottky diodes have been 
proposed (MOIiI17) and implemented (MO,6 A}7 ,8 ,19 Pt18) 

as Baker clamps in integrated circuits which were mOI~tly 
of the TTL type. The same technology is applics.ble 
to the modified R TL threshold gates. Transis·tors with 
fT~2GHz are now available for LSI utilization at low 
Ie and V CB values.S,IO 

Various optimizations of the integrated gate 

While the experiments described in an earliof section 
were concentrat.ed on high speed gat.es, wi"th unity 
current step i = 0.8 mA, other circuit options would 
emphasize optimization in the following areas. 

Low power. 

For low fan-in gates, power consumption can be 
reduced by small input and collector cw:entl~ an~ by 
lower collector voltage. The former implies t,ranslstor 
beta ;;:: 80 in order to minimize the influence of absolute 
variations in Gbb , G k and (3; unity currents i;~ ?2 InA 
are attainable with this beta. The latter reqUJ.res an 
active source or the collector current. This would 
improve the circuit dc performance since collector 
current variations between the high and the low out­
put states would be minimized. Trade-off studies :B.re 
required in order to determine whether curren.t source 



or collector resistor contributes lower collector load 
capacities. The high area consumption and the low 
beta of lateral pnp transistors makes the current source 
less attractive for LSI circuits at this time. 

High input weight count. 

When many or all inputs are low, the high negative 
summation current must be accommodated by feed­
back diode current and collector resistor current. Mini­
mum input current (i/2~0.1 mA) and high transistor 
beta are again required. Tantalum thin-film overlay 
resistors would provide high sheet resistivity for ac­
commodating the large number of input resistors 
without requiring overly large substrate area con­
sumption. Decoupling diodes1 •2 would ease the problems 
of leakage currents and of resistor tolerance req uire­
ments. 

Improved noise immunity. 

Two Schottky diodes in series per. feedback branch 
(or simply two anti-parallel silicon' diodes) would 
increase the voltage swing to ±0.8 V (or ±0.'6 V). 
Collector biasing would be required in order to avoid 
saturati()n.1•2 

High fan-out. 

Collector biasing in combination with an emitter;. 
follower output stage (Figure·4) would greatly improve 
the output drive capability.!. 

ftC inputs. 

As Smith and Pohm pointed out, capacitive shunting 
of the input resistors would increase the gate switching 
speed for very low fan-out. Capacitive shunting, how­
ev'er, is an acceptable method only for low-noise array 
environment and for non-reversing switching tran­
sitions (no spikes), such as in a ripple carry. 

Reduced Miller effect. 

The detrimental Miller effect could be reduced if 
only one (symmetrical) Schottky diode were u'Jed with 
V D = ::1::0:.4 V at Ip = ±i/2,. Following a. suggestion 
by Schuermeyer, 11 this type of diode can be obtained 
through very high concentration of surface states. 

Proposed functional LSI multiplier 

Recent advancements in the state-of-the-art of 
silicon processing for medium scale and large scale 

Nanosecond Threshold Logic Gate~' 465 

G' 
k 

,....----------+vcc 

~I-----+-..()T· 

L..----~-GNO 

Figure 4-CoJe<'tor bla3ing and emltter follower outPUl 

integration have made possible the implementation of 
monolithic arrays composed of the new threshold gate. 

High densities with 11 mil2 average area consumption 
per component have been achieved in pilot line LSI 
with good processing yield;lo this includes intra/inter­
connections and three layers of metallization which 
facilitate optimum layout. The array was an 8-bit 
adder employing ECL trees with 1.2 ns carry propa­
gation. The transistors have 0.15 X 0.8 mil emitters 
and 100 OJ square base resistivity. The resistors were 
0.5 mil wide with values in the 100 .. .4000 range and 
exhibited 6 percent ratio tolerance on 60 0 /square 
material. 

The threshold gates of the second section require 
cluste~ of equal resistors in the 1 . . . 4 kO range 
with 3 percent ratio tolerance. This tolerance could 
be attained with 0.5 mil wide resistors on 100 
O/square base material. The 2 QH.z transistors with 
0.1 X 0.4 mil emitters discussed by Phillips et aVo 
shOUld also be amenable to LSI in the early Seventies. 

The 10 mW high speed gate with i = 0.8 mA uses 
1 kO resistors; with fan-in of 5, this gate would en­
compass a substrate area of approximately 6 X 13 
mil2 • 

A 16 X 16 bit functional mUltiplier is proposed for 
LSI implementation using the 10 mW, 1 ns threshold 
gate. Figure 5 shows the matrix of multiplier cells in 
skewed form with all sum and output bits having a 
given binary weight arranged in the same column. 
Each cell M'i of the multiplier (Figure 6) is composed 
of a full adder and an AND gate which performs the 
multiplication. The cell in Figure 6 operates on ~ and 
y: and the adder inputs are P ii = XiYi, C(i-l) U), 

a~d S( i+l) (i-I) • U· the gates of the third section with 
symmetrical transfer function are used and if T' wo 

(X1,X2, ••• , X k) = T' wo(Ia) is the inverting threshold 
function, all three mUltiplier-cell gates can be imple­
mented with the threshold Wo = 0 



466 Fall Joint Computer Cpnference, 1969 

INPUT REGISTER X 
Ixis xd 

i i 
I , , , 

,------___ ---:--J 

: : 
I , 

PRODUCT REGISTER Q 

INPUT 
REGISTER 

Y 

Figure 5-16 X 16 bit functional multiplier 

M '+1 i_I) 

Figure 6----'---Function",l multiplier ('ell 

= T'o(X'i' Y';, +0.5) 

C"i = T' 0 (P ii, C(i-l)(J), 8(i+1)(i-l») 

S'li = T' 0 (P I;' C(i-l)(i), S(i+l)(J-l), 2C'i,) . 

The proposed multiplier would be implemented on 
four LSI dies with 64 iterative (ells each (Figure 7) 
with two layers of metallization. 'For attaining optimum 
layout and, thereby, higher component density, an 
implementation with three layers may be preferable.lO 

The three gates per cell would: occupy an area of 13 
X 18 mi12, and each LSI die would have an area of 
~ 115 X 155 mi12 • For 10 mW power per gate, the 
array will consume 1.92 W po~er, and 44-pin 1 X 1 
in2 stud packages would provride adequate thermal 
management. 

The multiplier cells are used ~n two complementary 
ways-as Type 1 cells with positive inputs/negative 

Figure 7-16 X 16 bit functional multiplier on four 
LSI dies 

outputs (Figure 8a) and as Type 2 cells with negative 
inputs/positive outputs (Figure 8b). Equivalen.t to "the 
odd/ even levels in NOR logic design,12 alternating 
matrix columns (Figure 9a, b) are composed of Type 1 
cells using inverted inputs X~ (i = odd, e.g.) and of 
Type 2 cells using true inputs Xi+l (i + 1 == eV€ln). 
Only one bus connection to the matrix is required per 
flip-flop in the X-register, whereas both Yj and Y'j 
are bussed through each hori zontal row. An a:dditional 
column i = 17 of carry inverters (Figure 10) oonverts 
C(16)j into S(17);' 

Although the average carry ripple length is much 
shorter13 than the full length of each partiall product 
adder (having j = const.), no carry look-aheadcir­
ouitry is included since it would corrupt the iteraijive 
structure of the multiplier and also the approach of 
minimum wafer area consumption of the L8I array. 

The worst case mUltiplication time tM for two k­
bit numbers includes 2k - 1 carry delays' and k -- 1 
sum delays (Figure 10). Three nanoseconds should be 
allowed for each package-to-package tranBition ttr 

assuming matched transmission lines, and :B. seU,ing 
time of less than 2 ns is required for the output flip­
flops Q each of which consists of a single threshold 
gate.14 For k = 16, 

tM = tpiAND) + 31 tpd (Carry) + 15 tpd (Sum) 
+ 5 ttr + tut 



! x· 
~ /1 

~--------~------~~' ~~ 

Cout -E - t----Io------. +------1<- Cin 

(b) 

Figure 8a-Type 1 cell 

Figure 8b-Type 2 cell 

(1 + 31 + 30 + 15 + 2) ns 

= 79 us. 

CONCLUSIONS 

New low-power nanosecond threshold logic gates which 
are amenable to monolithic LSI have been discussed. 
These gates require high-performance integrated de­
vices, and the necessary advanced silicon processing 
techniques should be available with high manufactur­
ing yield in the early Seventies. Functional LSI multi­
pliers with 80 us multiplication time for two 16-bit 
numbers have been proposed. Such multipliers and 

(b) 

Nanosecond Threshold Logic Gates 467 

(a) 

Figure 9a-Alternating type l/type 2 cells in the 
multiplier matrix 

D TYPE I CELLS 

~ TYPE 2 CELLS 

Figure 9b-Alternating columns X/X composed of 
type l/type 2 cells 



468 Fall Joint Computer Conference, 1969 

--------------------~------------------------------------------------,------

I, • • -. 
• 

s 
c~c 

's 

• • • • . ~ 
• 

• 
• • 

, 
• 

• • ~ • • • • • • 
L 

°31 

1-
.~ 

• • • • • • • ". 

... 

• 
• 

• 
• 

• ... 
• • • • • • r. 

Figure lo-Longest path for worst-case mUltiplication 
time 

simil.a.r monolithic LSI arrays, ~.g., high-speed adders, 
counters, and control logic subsystems, can be ad­
vantageously implemented with threshold logic ;16 the 
average savings in gate count is ,3 :1, and the number of 
interconnections is reduced by 2:1 or more. LSI arrays 
with the new 10 mW, 1 ns threshold gate would be 
applicable to future ultra-fast * low-power da.ta pro­
cessing systems. Practical procedures for logic design 
with threshold logic gates ~ere published elsewhere 
by Winder. UI 

ACKNOWLEDGMENTS 

The stimulating discussions with R. Winder, R. Luce, 
J. Tellier, and C. Huang are gratefully acknowledged. 

REFERENCES 

1 W R SMITH A VPOHM 
A new approach to resi8tor-tran8i8tor-tunnel diode nano8econd 
logiA; 
IRE Trans EC Vol 11 Oct 1962 658-664 

2 W R SMITH 
Resistor-transi8tor-backward diode nan08econd logic 
Semiconductor Products and Solid-State Tech Vol 6 
March 1963 17-23 

3 Samples of hot carrier diodes developed under Contract 
AF33(615)-2629 by Motorola Inc Semiconductor Div 
for the U. S. Air Force Avionics Lab 
The samples became available in Oct 1965. 

4 R L LUCE 
Personal communication May 1966 

5 W. SE~LBACH 
Monthly Status Letter for May 1966 Motorola Inc unde,r 
Contract AF33(615)-5205 with the Air Force Avionics Lab 
See also Reference 10 

6 Y TARUI Y HAYASHI H TESHIMA 
T SEKIGAWA 
Tranmtor Schottky-diode integrated-logiC circuit 
Inkrnat Solid-State Circuit3 Conf Phila Pd. Feb 11968 

7 R A ALDRICH 
Low storage Schottky barrier diode transistors 
In".emat Electron Devices Meeting Wash D C o.c:t 1968 

8 J E PRICE 
A high-speed integrated Schottky-diode transistor logic circuit 
Intemat Ele(tron Devices Meeting Wa.,h D C Oct 1968 

9 W SEELBACH D METZ 
Compatible semicondu.;lor thin film techniq~leb 
AF Avionics Lab Tech Rpt AF AL-TR-66-305 O<::t 1966 
AD 802 677 r repared under Contract AF33(615)-2629 by 
Motorola In~ Semiconductor Products Div Phoelilix Ari~ 

10 C PHILLIPS G RUPPRECHT FLEE 
A.dvanced integraiion techniques for low power, 1(X)-SOO MHz 
digital processing 
AF Avionics Lab Tech Rpt AFAL-TR 68-226 Se,pt 1968 
AD 843997 Prepared under Contract AF33(61Di)-5205 by 
Motorola Inc Semiconductor Products Div Phoenix Ariz 

11 F SCHUERl\1EYI~R 
Fer.'lonai eommunication Sept 1968 

12 G A MALEY J EARLE 
The Logic Design of Transistor Digital Computers 
Prentice-Hall Inc 1963 Englewood Cliffs N J 

13 B GILCHRIST J H POMERENE S Y WONG 
Fast carry logic for digital computers 
IRE Trans EC Vol 4 Dec 1955 133-135 

14 J I AMODEI D HAMPEL T R MAYHEW 
R 0 WINDER 
A n integrated threshold gate 
Internat Solid-State Circuita Conf Phila Pa Feb 1967 

15 R 0 WINDER 
The statu8 of threshold logic 
Fir.'1t Annual Princeton Conf on Info Science~ and Syst.,mg 
Princeton N .J March 1961 

16 J H BEINART D HAMPEL K. PR03r 
R 0 WINDER 
Integrated threshold loflic Jor IJSI 
USAF Avionico lab Final Rpt No AFAL-TR~~9-195 
on Contract F33615-68-C-1536 Prepared by RCA 
Advanced Communication8Lab Somerville N J 
Published in Aug 1969 AD 857477 



Silicon-on-sapphire complementary MOS 
circuits for high speed associative 

memory * 

by J. R. BURNS and J. H. SCOTT 

RCA Laboratorie8 . 
Princeton, New Jersey 

INTRODUCTION 

The utility of associative memory in a wide variety of in­
formation handling systems has been long recognized 
and in-the early 1950's such memory systems were pro­
posed for implementation through cryotron logic and 
storage arrays. Cryogenic element technology afforded 
the ingredient of compatible logic and memory within 
a basic cell, a requirement essential to the practical 
realization of associative memories. To date, such an 
approach has not been successful due mainly to proc­
essing difficulties connected with thin film elements 
operating in a liquid helium environment. Other ap­
pro~ches, involving the use of multi .. apertured mag­
netIC elements, have been proposed and implemented, 
but the resultant cost was prohibitive due to complexi­
ties of peripheral electronics as well as the magnetic 
storage element itself. Furthermore, systems of this 
type have relatively long parallel search times (,-...., 10 
~secs) especially if aC'cess is on a serial-by-bit basis. 
Th~s~ consider~ti~ns have seriously limited the appli­
ca~Ihty of assoClatI~e concepts in all forms of data proc­
essI.ng and have resulted in a situation where system 
deSIgners do not consider associative memory asa 
solution to a given probiem in spite of many obvious 
advantages in applications such as sorting, merging, 

iii T~e research rep?rted in this paper was sponsored by the Elec­
tronic Research DIrectorate, Rome Air Development Center, Air 
Force Systems Command, Griffiss Air Force nase, New York 
under contract F30602-68-C-0l97. 

469 

pattern recognition, and most recently memory allo-
cation in time shared computers. ' 

Many of the objections mentioned above are not 
valid today because of the rapid evolution of integrated 
circuit technology. This is particularly the case for 
semico~ductor memory arrays where the universality 
and regularity of such sub systems take full advantage 
of the low ~ost potential of Large Scale Integration 
(LSI). ConsIderable effort has been expended through­
out the industry on high speed random access memory 
arrays having non-destructive read-out in the sub-
100 nanosecond range where the cost of competitive 
ma~netic memories is dictated by the high quality 
perIpheral electronic circuitry. Although a substantial 
part of this effort has been on bipolar memories the 
dominant trend is toward MOS memories becau~e of 
tlie simpler processing technology, lower power dissi­
pation, ~d smaller silicon area per bit, all of which 
lead to low~r cost systems. Monolithic silicon MOS 
memories generally take two forms, i.e., single polarity 
MOS arrays, usually P type, and complementary MOS . .. ' a umque CIrCUIt configuration capable of higher speed 
and extremely low power but at the expense of more 
complex processing technology and slightly higher 
costs. This is the approach taken here for the realiza­
tion of sophisticated associative memory with one 
important difference, namely, the utilization of thin 
film silicon-on"sapphire technoiogyl for the fabrication 
of high quality complementary MOS arrays. Silicon-on­
sapphire combines the best features of monolithic 



470 Fall Joint Computer Conference, 1969 

silicon and thin film integrated: circuits through the 
epitaxial growth of thin films of' single crystal silicon­
on-sapphire substrates which c~n be selectively re­
moved so that fiJI.parasitic reactance which degrades 
the performance of monolithic circuits is effectively 
eliminated. Coupled with the improved circuit perfor­
mance is a potentially simpler processing sequence for 
CMOS integrated arrays (requiring only two noncritical 
source-drain diffusions) which will substantially reduce 
costs as well. 

A 880ciative memory design 

General considerations 

Several considerations influence the design of an 
associative memory array, the madority of these having 
to do with the sophistication req~ired of the memory. 
Based on requirements believed tp be minimal in most 
associative applications, the following features are 
desirable: 

1. Normal operation as a read-write random access 
memory (having high speed non-destructive 
read out) in addition to! completely parallel 
associative search operation. 

2. "Masked" search capability so that any part of 
the total field can be eliminated from the search 
word. This will also provide a "masked" write 
wherein partial updating of the field of a selected 
word is possible. 

3. Modular array design So that associative mem-

ories of arbitrary numbers of words and bits 
per word can be constructed by "wired OR" 
connections of the word and bit lines of in­
dividual modules. 

Accordingly, the module was chosen to be one of 
four words each four bits long and has the basic block 
diagram shown in Figure 1. 

Operation of the module is summarized in the follow­
ing Table!. 

As shown, the module performs as a read-write 
memory in addition to the ability to perform a com­
pletely parallel search. In the "don't care" condition 
where both of the bit line pairs are "0," any of 1;he 
digits to be completely masked off in this· condition 
will not produce a mismatch signal in any word re­
gardless of the contents of that bit in the word., Design 
of the basic cell which performs these various functions 
is discussed in the next section. 

Associative ,cell design 

The circuit diagram of the basic cell, designed to 
implement the aforementioned functions, is shown in 
Figure 2 and is seen to consist of 14 MOS devices, 10 
N channel and 4 P channel. The flip-flop portion con­
sists of the cross-coupled CMOS inverters NI, PI, and 
N2, P2. To write a "I" into the cell,W and Dl are r ised 
to + Vo volts and D2 remains at ground. This com­
bination cuts off Pa while the series combination of Na 
and N6 pulls the "0'" side of the flip-flop down toward 

'rABLE I-Associative module system operation 

FUNCTION 'WORD AND BIT LINE CONDITIONS RESPONSE 

Write Wi = "I"; DIj ~ "1," D 2j = "0" Write "I" in jth bit of ith word. 

WI' - "1 "D . == "0 "D . - "I" - , 13, ' 2.1 -

Read W~ = "I" All D; lines = "0" 

Paralle _ Search A:I Wi = "0" 
DIj = "I" 
DIj = "0" 
D1j = "0" 

D 2j = "0" 
D2j = "I" 
D2j = "0" 

Write "0" in jth bit of ith word. 

N on-destructive read of ith word~stored contents 
determined by presence or absence of I, on 
lines D 2j• 

Search for "I" in /h bit. 
Search for "0" in jth bit. 
Don't care. 
Mismatch of any bit in word indicated by current 

on W lines. 



Silicon-on-Sapphire Complementary MOS Circuits 471 

"I" " t Vo 

"0"" GNO, 

~.Assoc~nVE 
~ CELL 

Figure l--;-Associative memory block diagram 

+Vo 

01 
I 
I 

r-­
L..----+----'eo=+= ~ Is 

I I ? I 

Figure 2-Complementary MOS associative cell 

ground and after one stage delay the "I" side is up 
at + Vo. Similarly,.a "0" is written by raising Wand 
D2 to + Vo with Db at ground potential.N ote that 
when both lines are grounded, and W is high, the state 
of the cell is unchanged. 

Non-destructive read out· is obtained by again se­
lecting W, thereby turning on'transistor N lO, and keep­
ing all D lines at ground. Depending on the state of 
the cell, Ns is either, on or off and a large or negligible 
small current is produced on the low impedance D2 line. 

Mismatch detection by means of a parallel search is 
accomplished with all W lines grounded and placing 
the search criterion on each bit line pair, i.e., Dl = + 
Vo, D2 = 0 for "1"; Dl = 0, D2 = + Vo for "0" and 
Dl = D2 = 0 for "don't care" or "0". Transistors 
N6, N7, Ns, and No form the local exclusive OR circuit. 
If the stored information mismatches the information 
on the bit lines, one of the pair of N6-N7 or Ns-No 
will form a conducting path from the positive s~pply 

to the W line (at ground potential) and produce a large 
current (",,1 rnA) in the W line. Both pairs will be cut 
off if there is a match or if a "don't care" condition 
prevails in that bit location. Since all such circuits are 
OJ:t'd together across the word, a match occurs only if 
all ~xclusive OR gates are open or a negligible small 
current appears on the W line. Any bit of the word mis­
matching the search bit will generate a mismatch cur­
rent for the entire word. 

It should be noted that read out and mismatch de­
tection are both accomplished by current sensing in a 
low impedance line. This is an extremely high speed 
operation as the relatively large capacitance on the 
word and digit lines can be swamped by the low input 
resistance of a grounded base bipolar and the voltage 
conversion done at the relatively low capacitance col­
lector and at essentially the same current level. (A 
complementary emitter follower performs more than 
adequately as a combination drive-sense circuit on 
both word and digit lines.) In high speed table look-up 
applications l such as "paging" in time shared comput­
ers, fast parallel search and access is extremely 
desirable as this function is carried out once every main 
memory cycle. 

Another aspect of current sensing on the mismatch­
line is that the magnitude of the mismatch current is 
directly proportional to the number of bits in error in 
that particular word. Utilization of analog detection 
circuitry on this line will then enable the determination 
of the word which most closely matches the search 
word, independent of the significance of the bit. The 
so-caned· "proximity match" condition is quite useful 
in many aspects of pattern recognition, for example, 
or other applications where incomplete information is 
available for the search criterion. 

Processing of silicon~on-8apphire COS / M as 
Technical considerations 

Great difficulty has been experienced and reported 
by workers2 attempting to build high quality, active 
silicon devices on sapphire substrates by the straight­
forward application of standard bulk silicon technology 
to these heteroepitaxial films. These difficulties can 
be traced, in general, to two problems. 

The first is contamination from the substrate, epi­
taxial system or handling procedures, . and the second 
is due to disorder in the epitaxial layer caused by the 
growth interface. It can, therefore, be expected that 
devices and circuits fabricated in heteroepitaxial ma­
terial must have the silicon processing adjusted in order 
to account for these deviation.'3 in properties. 



472 Fall Joint Computer qomerence, 1969 

------------------------~---------------------------------------------------------
TABLE II-Physical characteristics of heteroepitaxial system components 

Silicon Si Sapphire Al2lO 

Crystal Unit celt 
(1) 

face-centered cubic 
a = 5.4301 

r = 4.75.8 
a = 12.991 

Density 
(g/cc) 

Hardness 
(Mohs) 

2.33 

7 

3.98 

9 

Melting point 
(°0) 

1412 2030 

Dielectric constant :11.7 
(500 Hz - 30 MHz) 

9.4 (1 to C) 
(100 Hz - 100 kHz) 

Dissipation factor 
tan 8 

10-a - 10-4 10-8 - 10-4 

Refractive index 3.4975 
at 1.357 JJ. 

1.7707 
at 5461 1 

Thermal conductivity 
cal/ cm sec· °C 

at 25°C 

0.30 0.065 (60° to C) 

The~mal expansion coefficie~t 3159 X 10-& 8.4 X 1(}-8 

1/ °0(25 = 800°0) , 

Table II is a comparison of some of the physical 
characteristics of the components: of the heteroepitaxial 
system that must be taken into account if high quali ty 
silicon-on-sapphire devices are to be built. From this 
data, it is evident that some physical stress and dis­
order due to the mismatch of these characteristics is 
inevitable. 

The effects of disorder and strain on the properties 
of bulk silicon are ~ell known, e.g., base "push out" 
in bipolar transistors. Comparison of what is known to 
occur in bulk and what is observed in SOS yields some 
insight into the processing consIderations. The most 
severe problems are: 

1. Accp.lp.rated Diffusion 
2. Accelerated Oxidation 
a. Contamination 

The change of diffusion coefficient in bulk silicon 

is a function of surface concentration and dislocation 
density. The distribution of disorder sites in BaS has 
been shown to be highest at the silicon to substrate 
interface and decreases as the thickness of the film in­
creases.a Due to this distribution, there is a change in 
diffusion coefficient causing the impurities to move 
faster as they penetrate the' film and thereforH aterall 
diffusion can increase with depth. The resultant dif­
fusion profiles are depicted in Figure 3. The following 
Figure 4 is a photograph of an actual "angle lap and 
stain" demonstrating the results of too long a diffusion 
of the source and drain regions. Note the resulting 
short of the source to the drain is at the silicon to 
sapphire interface. Because SOS has no bulk 1io dilute 
the fast diffusing contaminants plus the additional 
complication that the substrate can contribute to the 
contamination (AI, O2, etc.) much greater ca,re must 
be taken in handling and substrate preparation. This 



Silicon-on-Sapphire Comple·mentary MOS Circuits 473 

~ SlHcon N+ ~ Silicon P fLZZI Doped Sl02 

Figure 3-Diffusion failures in bulk silicon and silicon­
on-sapphire 

. SOURCE 

Figure 4-Photomicrograph of diffusion failure in SOS 

consideration is further compounded by the affinity 
of contaminants for disorder sites. 

Finally, oxidation and its effects must be considered 
in the light of what is known to occur in bulk silicon 
for this is the pillar on which 'silicon technology ~ 
built. Here, one finds three major effects. The first is 
dissolution of O2 from the ambient and the generation 
of donor states with reported values on the order 0 f 
lOts/cc. The second is the precipitation of these im­
purities causing large changes in mobility and, finally r 

segregation of impurities in the oxide.' 
From the previous discussion, it is obvious, without 

going into the' details of the phenomenon involved, 
that bulk silicon technology is not directly applicable 
to the fabrication of high quality complementary 
MOS devices on insulating substrates. The necessary 
alterations in the process involve elimination of 
oxidation where possible and minimization of the time 
that the wafer is exposed to high temperatures. In 
addition, advantage can be taken of the thin film na­
ture of the technology by utilizing the "deep depletion" 
MOS structure,5' thereby enabling construction of 
complementary devices in a film of common conduc­
tivity type. 

Figure 5(a) depicts a wafer of silicon-on-sapphire with 
a 300°C deposited oxide defined by photolithograpl:tic 
techniques in the pattern to etch away that silicon 
not utilized by active devices. Figure 5(b) shows the 
pattern left after the silicon is etched from the undesired 
region. 

After the desired patt~rn is. achieved in the silicon, 
thin layer of boron doped oxide [cross-tracked area 
Figure 5(c)] covered with pureSiO'is deposited (300°C) 
and etched into the desired P+ regions. This is followed 
by phosphorus doped oxide covered by pure SiO' and 
etched to define the N + regions as shown in Figure 5 (d). 

This structure has never been above 300° C and has 
the appropriate doped oxide source defined in the P+ 
and N+ regions with the channel regions clean and free 
of oxide. The wafer is then subjected to its only high 
temperature treatment for the time required to drive 
in the diffusants and grow the channel oxide. This is 
indicated in Figure 5(e) with the appropriate diffusions 
drawn in. The final device structure (see Figure 6), 
including metallization, shows the built-up oxides at 
the edge of the active gate region minimizing the 
parasitic overlap capacitance. 

The metallization utilized to complete these struc­
tures was evaporated aluminum and posed some prob­
lems in continuity due to the relatively large silicon 
steps the metal was required to pass over (~ 1 micron). 
Figure 7 is a scanning electron photograph of one such 
crossover. Note that the metal is thinner than the one 
micron of silicon and that the continuity appears sus-



474 Fall Joint Computer :Conference, 1969 

~PL-tzr_~ 
Sapphire: 

(A) 

p»t\fW»))1 .~~»1 
Sapphire: 

(B) I 

~7W'11 WILZPi7l/@1 
Sapphire· 

(C) 

~z_ .• ~-~~ 
Sapphire: 

tZZl Sillcon 

~Si02 

(0) 

~ Boron:doped SI02 
~ PholP:horus doped S102 

(El. 

i 

Figure 5-Low temperature CMOS Process 

pect. In fact, it was continuous. By increasing the 
thickness of the aluminum used to 15,000 A or 1.5 
microns, this problem was virtually eliminated. 

! 

Unique features of sos technolou;y 

Several significant advantage~ result from the utili­
zation of SOS in the areas of process simplification as 
well as improved device and citcuit performance. The 
use of the "deep depletion" MOSD eliminates the need 
for a difficult counter diffusion to form complementary 
devices while selective silicon: removal restricts the 
critical silicon areas to the channel regions of the 
transistors since all metal in~erconnects are routed 
over the sapphire substrate.: This gives complete 
freedom from metal to substra~e shorts and spurious 

~SL ~Alumlnum 

Figure 6-Final device structure 

A&\ 
SILICON SAPPHIRE' 

Figure 7-Aluminum metallization over oxidized silicon 
edge 

channel formation, two major sources of yield reduetion 
in monolithic MOS arrays. 

The most obvious advantage of this technology i13 the 
substantial improvement in circuit speed due mainly to 
the virtual eliminatjon of all parasitic capacitances 
within the array. As shown in Figure 6, the through 
diffusion of the source and drain contaots to the 
sapphire reduces the contribution of the junetion 
capacitance to the side-wall area, one dimension of 
which is only 1 micron thereby cutting this capacitance 



Silicon-on-Sapphire Complementary MOS Circuiti 475 

by approximately two orders of magnitude over a bulk 
devioe of the same surface dimen.sions. 

Doped oxides as solid diffusion sources serve to fur­
ther reduce parasitics in the form of gate overlap and 
crossover capacitances and all wiring capacitance is 
completely eliminated. Combined with the low threshold 
voltages (typically 0.5 volt enhancement for both 
device types) and the high field effect carrier mobilities 
of the transistors, the overall result is the realization of 
the full high frequency capability of MOS devices 
within an array environment. Inasmuch as the gain 
bandwidth product of the MOS is comparable to that 
of double diffused bipolar devices, circuit speeds ap­
proaching those obtained with non-saturating bipolar 
logic gates (nano-second stage delays) can indeed be 
achieved with this technology while retaining the 
power and noise immunity features inherent in com­
plementary MOS circuitry. 

I ntegrated circuit design wnd experimental results 

The fabrication of the associative array requires a 
total of five photo-masks each of which was generated 
with the aid of an automatic drafting machine. These 
masks define, in order of processing sequence, the 
isolated silicon islands, boron doped oxide, phosphorous 
doped oxide, contact opening and aluminum metaliza­
tion patterns. Heavily doped N+ silicon bars are used 
throughout as a first la"yer of interconnection. Exten­
sion use of symmetry and mirror imaging was used in 
the layout as an effective means of reducing chip area. 
A photomicrograph of the completed silicon-on-sap­
phire associative array is seen in Figure 8 with the 
bonding pads appropriately labeled. The chip has 
an active area of 77 X 53 mils, is packaged in a 14 
lead flat p:wk, and contains a total of 224 MOS devices. 
A test complementary inverter is included within the 
patern for initial wafer evaluation. Each transistor 
in the array (including the test units) has identical 
channel widths of two milsL lengths of 0.4 mils, and 
channel oxide thickness of 1800 A. Characteristics of 
typical test devices are shown in Figure 9. Based on 
these parameters and the assumed lateral diffusion 
of about 1 micron on both the source and drain regions, 
field effect mobilities of 150 cm2/volt second for holes 
and 300 cm2/volt second for electrons are obtained from 
the characteristics. 

Experiments conducted on fully packaged arrays 
show that a storage cell can be written into with a 
10 volt, 10 nano-second duration pulse with the ar­
ray at the 10 volt supply level. Minimum sense cur­
rent during read out is 1 mA as is the minimum 

WI ... 

W2-+ 

W3-+ 

W4-+ 

r TEST INVERTER 
0'3 023 • • °24 

... °14 

.. +Vo 

... ° 12 

t t t 
°Il °21 °22 

Figure 8-16 bit SOS associative array 

0.2 mA Idiv 
2 V /div 
I volt/step 

(a) N - CHANNEL TEST UNIT 

0.1 mA /div 
2 V / div 
I volt/step 

(b) P-CHANNEL TEST UNIT 

Figure 9-Test device characteristics 



476 Fall Joint Computer Conference, 1969 

----------------------------------------------------------

WI 

vi2 

W3 
W4 

SEARCH WORO=OOOI 

SEARCH WORO=~OOI 

SEARCH WORO=;;OI 

MEMORY CONTENTS 

B, B2 B3 B4 

I 0 0 

0 0 0 
0 0 

0 

MMI 

MM2 
MM3 
MM4 

MMI 
MM2 
MM3 
MM4 

MMI 

MM2 
MM3 
MM4 

2mA/div 
20nsec / d iv 

Figure lo-Associative m~mory operation 

value of mismatch current. Assqciative memory opera­
tion is best illustrated by referring to Figure 10 which 
shows the contents of the memory as well as mismatch 
current waveforms generated for three different seJ.rch 
criteria. The result of the first search for contents 
0001 correctly indicate a match in word two only. 
Note that the mismatch current in word four, which 
has two bits in error, is in exceSs of 2 rnA while that 
in words one and three is only 1 mA corresponding 
to a single incorrect bit. The second and third photo­
graphs again show correctly the proper mismatch 
waveforms for search criterion 0001 and 0001, the last 
of which correctly shows a mat'Ch for all four words 
if the first two bits are ignored. 

The additional feature of "proximity" matching 
alluded to previously is shown more clearly in Figure 
11 where the mismatch output:is shown for zero" one 
two, three and four bits in error in a given word. Use 
of analog detection circuitry at: this point will gr~atly 
enhance the utility of resultant associative memory 
system. 

Although the work discussed here is of a research and 
t.'.evelopment nature and the volumes of arrays obtained 
are relatively small, it would be remiss at this point to 

2 m~l/dh, 
10 m.ec I d iv 

0, I, 2,3 , 8 4 BITS IN ERROR 
Figure ll-Analog mismatch signal 

avoid any discussion of yield, an all-importBlnt faetor 
in integrated electronics. It is perhaps even mor.e dif­
ficult to discuss this area when 'One considerfl the fact 
that in this, new technology, a number of problem 
areas had to be overcome before any complex arrays 
were obtained. From that point on, however, the re­
sults were extremely encouraging as yields of 30 to 
50 percent on packaged arrays were obtained ith 
extremely reproducible device characteristies. These 
represent relatively high yields when compltred with 
monolithic MOS circuits of comparable comple~:ity. 
It is believed, again with limited data, that these figlll"es 
are a direct result of SOS technology wherein the 
amount of critical silicon is limited to the channel 
regions of the devices, and that yield depends only 
on this area rather than on total chip area as in mono­
lithic circuits. In the 16-bit associative array, thecri1iical 
area de'3cribed represents 180 square mils whereas the 
total chip size is in excess of 5000 square mils, so that 
significant improvements in yield should. and. do 
result. 

SUMMARY 

System, circuit, and device processing concepts have 
been developed and have resulted in the succeBsful reali­
zation of high performance silicon-on-sapphire associa­
tive memory arrays. Features of the array include high 
speed current sensing for mismatch detection and non .. 
destructive read out. The complementary MOS process 
sequence utiHzed in the array fabrication resulteci in 
yields as high as 50 percent and produced hig;h qU9.1ity 
complementary devices with field effect mobilities 
of 300 and 150 cm2/volt-sec for electrons BInd holes, 
respectively. The drastic reduction of parasitic caplaci­
tance inherent in SOS technology combined with these 
device characteristics provides a performance l!evel 
equivalent to the highest speed bipolar circuits while 
reta.ining ~ll of the other desirable circuit and processing 



Silicon-on-Sapphire Complementary MOS Circuits 477 

features of MOS arrays. 

ACKNOWLEDGMENTS 

The authors gratefully acknowledge the contributions 
of D. J. Dumin and his associates in providing the 
silicon-on-sapphire films used in this work. A. O'Toole, 
J. Sokoioski aJ;ld Mrs. R. Gilchrist are responsible 
for the array processing while W. Salt and Mrs. B. 
Denton diced, mountedJ and bonded the sapphire pel­
lets~ Thanks are due to G. Cullen and G. Gottlieb for 
supplying the material from which the low temperature 
processing sequence evolved. R. Powlus contributed 
to the initial phase of associative array design. J. 
Previte of Rome Air Development Center des l3rves 
considerable credit for recognizing the potential bene­
fits of thin film active devices. 

REFERENCES 

1 J ALLISON J BURNS F HEIMAN 
Silicon-on-sapphire complementary MaS memory cells 
IEEE J Solid State Circuits Dec 1967 

2 C Y WRIGLEY L J KROKO 
Properties of the silicon-sapphire interface in heteroepitaxy 
Electrochemical Society Se:miconductor Silicon Abstracts 
May 1969 

3 D DUMIN 
Deformation of and stress in epitaxial silicon films on single 
crystal sapphire 
J Appl Phys Vol 36 1965 2700 

4 E CROSS G WARFIELD 
Effects of oxidation on electrical characteristics of silicon-on­
sapphire 
J Appl Phys Vol 40 1969 2339 

5 F HEIMAN 
Thin film silicon-on-sapphire deep depletion MaS transistors 
IEEE Trans on Electron Devices Vol 13 1966855 





A main frame semiconductor memory 

for fourth generation computers 

by THOMAS W. HART, JR., DURRELL W. HILLIS, 
JOHN MARLEY, ROBERT C. LUTZ and CHARLES R. HOFFMAN 

MOTOROLA, SPD 
Phoenix, Arizona 

INTRODUCTION 

It has been obvious for several years that Large Scale 
Integration could be applied to memories. Memories 
offer several advantages in that a large volume of one 
type of device can be manufactured, and that the de­
sign can be optimized for one application. There exists 
a wide spectrum of memory product areas with varying 
size, costs, speed and enviromental performance. Most 
of these application areas are presently serviced by 
various forms of magnetic storage. 

Semiconductor memories have been encroaching into 
some of these areas. First, the "scratchpad" was re­
placed by semiconductor memories yielding a better 
performance at lower cost. Secondly, the small buffer 
memories are now being implemented by various forms 
of semiconductor storage, mainly by MOS shift regis­
ters. Large very high speed semiconductor buffers are 
being built for large systems such as the IBM 360/85 
to "effect a hardware performance increase of slower 
core main memories. 

It is felt that the advent of an all semiconductor 
main frame memory is fast approaching. The initial 
market penetration will be in the high performance 
area (100-300 ns) replacing flat-film memory designs 
where costs per bit are quite high. Eventually, most 
memory application areas will be vulnerable to semi­
conductor implementation on a price and performance 
basis. This paper "ill describe a memory module which 
will be used as a building block to implement high 
performance memories in the next generation of com­
puters. 

479 

Jlodule description 

Under various engineering and marketing con­
straints, a module building block concept evolved. This 
module in its general form . contains 8192 bits. Inter­
face to and from the module is performed with standard 
current-mode logic levels. MECL levels were chosen 
because that logic family provides the fastest inter­
face when connecting many modules into a large mem-
0ry system. Also, most of the customers and potential 
customers working on high speed systems are using some 
form of current-mode logic. In any event, it is not dif­
ficult to interface from other logic families to MECL 
levels. . 

By varying the logical connections to the module, an 
organization of 8192Xl, 4096X2, 2048X4, or l024X8, 
can be obtain~d. Figure 1 shows a block diagram of 
the module. Addressing is binary. Inputs and outputs 
may be bussed with other modules for expansion of 
the number of locations in a memory system. No com­
plicated timing is necessary to operate the module. 
When an address is applied, the contents of the speci­
fied address will appear at the output terminals within 
85 ns and remain until a new address is presented. 
Writing in a specified location is accomplished by 
pulsing the write enable line after the address and data 
have been presented. The module can be cycled every 
lOOns. 

The memory module uses p-channel MOS flip-flops 
for storage. Address decoding, word drive, sense, and 
digit drive are accomplished with bipolar circuits. 
This combination results in a low power, low cost 



480 Fall Joint Computer Conference, 1969 

----------------------------------------------------------
ADDRESS 
ENABLE 

ADDRESS 
10 - 13 BITS 

1, 2, 4 OR 8 BITS 

8192 
BITS 

+5 V GRND -5 V 

ARRAY 
LOAD 

DATA OUT 

1, 2, 4 OR 8 BITS 

MAY BE PULSED OR 
RETURNED TO -5 V 

Figure I-Block diagram 8192 bit module 

memory array, while retaining, high speed module 
performance because of the bipolar circuits. The mem­
ory array itself contributes only a small fraction of the 
time used in a memory cycle (see timing diagram, 
Figure 14). The cycle-time is mainly determined by 
the bipolar circuits peripheral ~o the lVIOS-storage 
array. 

The memory module was de~igned to operate on 
±5v power supplies since these ~re fairly standard in 

32 WORD L INES --

ENABLE --
-

ARRAY POWER 
+5 V '-5 V 

11 

; 

i 
STORAGE ARRAY 

32 WORDS 
X 

8 BITS 

• ! 

, 
SENSE lIN~ SWITCHES 

: 

1. : 
~ 

8 BIT-L!NE 
PAIRS 

Figure 2-Block diagram M OS storage array 

Il: 

integrated logic circuits. Total power dissipation is 
about six watts. While readily accomplished, no at­
tempt was made to reduce power by various Bwitching 
and pulse powering schemes since this level of power 
density can be easily handled in most applic~ttions by 
forced air cooling. 

Electrical description 

The module is a multi package hybrid assembly. 
Four different integrated circuits are used to eonstruct 
the module. These chips are (1) 256 bit MOS storage 
array, (2) Array Select Circuit, (3) Word Deeode and 
Drive Circuit, and (4) Sense-Digit Circuit. The com­
plete module has 32 Storage Arrays, four Array Select 
Circuits, two Word Drive Circuits, and four Sense­
Digit Circuits. 

Storage array chip 

A block diagram of the 256 bit lVIOS Sto:rage Ar­
ray chip is shown in Figure 2. The array is organized 
in 2D fashion as 32 words X 8 bits. _ The linoar 
select organization minimizes the number of devices per 
storage cell and also the number of inter-connections 
on the chip. Unfortunately, linear select organization 
causes some complications in packaging. These prob­
lems are circumvented here by placing sense line 
switches on the same chip as the array. This provides 
two benefits. First, additional addressing can be pler­
formed with the sense switches improving decodler 

BIT LINE BIT LINE 

-5 

~ __ --+_ __ ~------~W~O~R~D~L~IN~E~------~--+_---~ 

EN 
~----~--~~---------------------4_---~---___. 

~E.N-4--~--__ --------------------------~--r1_.. 
TO BONDING 

PAD 
TO BONDING 

PAD 

Figure 3-Storage cell circuit schematic 



efficiency. Second, the internal capacitance of the 
bit-lines can be isolated from the external bit lines by 
the sense switches, substantially improving the sense 
loop time constant. 

A schematic of a storage cell and the MOS sense­
switches at the end of the bit line is shown in Figure 
3. Ql and Q2 are the active devices of the flip-flop, RI 
and R2 are the flip-flop load devices, and Q3 and Q4 
are the series gating devices which connect a selected 

Main Frame Semiconductor Memory 481 

cell to the bit line pair. Each bit line has a transistor 
QEN in series with the connection to the bonding pad 
and a transistor QEN which terminates the bit line 
to ground when QEN is on. The geometries of the ac­
tive devices are designed to provide a sense current of 
80 microamperes under worst case processing and 
operating conditions. The load resistor device geome­
tries determine the standby power dissipation of the 
chip which in this case is about 40 milliwatts. 

Figure 4-256 Bit M08 storage array 



482 Fall Joint Computer Conference, 1969 

Figure 4 is a photomicrograph of the chip. The 
dimensions of the chip are 138 mils X 141 mils. A 
low threshold process using < 100> material is used. 
The substrate serves as the buss for the +5 volt supply. 

One layer of metal interconnection is used. A high 
concentration P-diffusion (15-20in/square) is used for 
crossunders so as to minimize series resistance. In the 
layout the bit lines have no crossunders. The word 
lines have nine crossunders. The resistance of these 
crossunders and capacitance associated with the word 
gates on the memory cell form :an RC delay line. In 
this design the delay is about 2.5 us. 

Chip 8election circuit 

A bipolar circuit which decodes three binary bits is 
used to select one of eight MOS Storage Array Chips. 
Each of the output driver stages provides the compli­
mentary signals EN and EN necessary to drive the 
sense switches on the MOS Storage Array. Additional 
inputs to the·· chip-selection Cu;cuit are provided to 
select groups of eight arrays. 

Emitter Coupled Logic (EC~) input signals are 
translated to saturated logic which is referenced to 
the negative supply (-5.0). The complimentary out­
put stages provide logic levels near the positive (+5) 
and negative (-5) supplies for driving the MOS sense 
switches. Block and Logic Diagrams are shown in 
Figures 5 and 6. 

Memory package 

Eight MOS Storage Array chips and one chip selec­
tion circuit are contained in a 1.2·5 inch square memory 
package. Interconnection of these nine chips is made 
by a beam lead laminate as described later in this paper. 
Each memory package contains a total of 2048 bits 

THREE-BIT( 
ADDRESS 

ADDRESS ENAB LE (2) 

+5 V 

GRND 

-5 V 

~ )TOCHI.=' 

ENABLE ) TO CHIP =8 'E"fiJ'A'BIT 

Figure 5-Chip select circuit 

ADDRESS 
ENABLE 
ADDRESS 
INPUT 

ADDRESS 
ENABLE 
ADDRESS 
INPUT 

ADDRESS 
INPUT 

TO ENABLE & ENABLE LINES OF MEMORY .ARRAY CHIPS 

~""""'---='-~E A E EE' 

Figure 6-Chip select circuit logic 

as shown in Figure 7. Four such packages form 'the 
storage portion of the 8192 bit memory modlllle. This 
assembly of four packages results in a total capacitance 
buildup of 250 picofarads on the word lineH and 70 
picofarads on the sense-digit lines. 

Decoding word driver 

Selection of the storage array word lines i:3 accom­
plished by a bipolar circuit which decodes fowr address 
bits and drives one out of sixteen word lines. As in the 
Chip Selection Circuit, ECL input signals are transla'ted 
to saturated logic whose outputs provide . logic levels 
near + 5 and - 5 volts. Block and logic diagrams are 
shown in Figures 8 and 9. Two of these chips are 
packaged in a 1.25 inch square package similar to -the 
memory array package except that interconnection 
within the package is made with a thick film met:Etli­
zation and wire bonds. Two address enable inputs are 
provided. One is used as a master enable and 1~he 
other is used as a one bit decode to select one or 1~he 

16 WORD lINES-~-.t 

8 BIT·lINE PAIRS 

256 WORDS 
X 8 BITS 

NINE CHIP 
HYBRID ASS'BLY 

-5 V GRND +5 V 

..... --16 WORD LINES 

.... --ENAEILE 

..... --ARR.Ay POWER 

Figure 7-Memory package 



DECODING 
WORD 

DRIVER 

'1 WORD LINE 
OUTPUTS 

2 ADDRESS ENABLES----t-t 

ENABLE 

ADDRESS 
INPUT 

ENABLE 

ADDRESS 
INPUT 

ADDRESS 
INPUT 

ADDRESS 
INPUT 

-5 V GRND +5 V 

Figure 8-Decoding word driver chip 

TO WORD SELECT LINES OF MEMORY ARRAY PLANES 
" 

......... ----+lI---++-~+-""*__t+- - - - - - -
~----~~~-~-+~~------

Figure 9-Decoding word driver chip logic 

other of two Decoding Word Driver chips sharing the 
same package. A block diagram of this package is 
shown in Figure 10. 

Sense amplijier"digit driver 

The sense amplifier"digit driver subassembly con­
tains four identical sense amplifier~digit driver 
integrated circuit chips. Each chip receives and sends 
read and write signals to the MOS storage array, ac­
cepts EeL level data input and data enable signals, 
and generates EeL data output signals. 

The purpose of each chip is, of course, twofold. 

16 WOF.lD LINES ..... --4 1---..... 16 WORD LINES 

7 BIT ADDRESS---t~ 

-5 V GRND +5 V 

Figure l~Decoding word driver package 

Main Fr~me Semiconductor Memory 483 

First! . when it ha~b~en properly enabled for writing, 
it must transmita'-W:r..it~ signal to appropriate bites) 
of the selected word ·in the storage array. Second, when 
properly enabled, it must sense the storage cell cur­
rents. of the s~lected word and translate them to EeL 
signals at the data output terminals. 

The logic diagram shown in Figure 11 is functionally 
equivalent to the sense amplifier-digit driver circuit. 
In addition to showing the basic sense amplifier, digit 
driver, and gate blocks of the sense amplifier-digit 
driver chip, Figure 11 also shows the existence of a bit 
line recovery circuit. The purpose of this circuit is 
to rapidly return all bit line voltages to zero, immediate­
ly after each write operation. 

To thoroughly understand the sense amplifier­
digit driver logical organization, consider the sequence 
of events which must occur to perform the read and 
write operations. 

To accomplish a write operation, the desired input 
data is placed at the DATA IN terminals of the chip. 
The data is enabled by a coincidence of logical zeroes 
at the DATA ENABLE inputs. When the WRITE 
ENABLE input is forced to a logical zero, one of the 
bit line voltage drivers in each half of the circuit 
drives one line of each bit line pair to approximately 
+4v. This voltage impressed on a bit line accomplishes 
the write in the storage array. The leading negative 
edge of the WRITE ENABLE signal also sets the 
recovery . circuit flip-flop. The following positive edge 
of the WRITE EN ABLE signal turns the digit driver (8) 
off and turns the recovery circuit driver on. When 
recovery of all bit lines is accomplished, the recovery 
circuit flip-flop resets and the recovery circuit driver 
is shut off .. Both the digit driver and the recovery cir­
cuit driver are designed to exhibit a very high output 

NOTES THE NUMBERED BLOCKS CORRESPOND TO THE FOLLOWING 
1 BIT LINE VOLTAGE DRIVER. 2. SENSE AMPLIFIER, 
3 VOLTAGE COMPARATOR, 4 BIT LINE RECOVERY 
CURRENT DRIVER 

Figure ll-Sense amplifier/digit driver chip logic 



484 Fall Joint Computer C?nference, 1969 
---------------------------ti ------___________________________________________________________ __ 

I 

impedance when off, such that they do not interfere 
with the read operation. 

Reading is accomplished by enabling either one or 
both halves of the chip with ~he DATA E~ABLE 
signals. If the WRITE ENAB.t.E is held at logical 
one, the bit line currents flow into the sense amplifier 
inputs. The sensed information i is made available at 
the DATA OUT terminals. Since the I/O signals are 
EeL, uncommitted emitter outputs are used so that 
wired OR'ing of the positive going output signals is 
possible. 

Figure 12 shows a block diagram of the sense ampli­
fier-digit driver package. Since the DATA OUT 
signals from all four sense amplifier-digit driver chips 
can be OR'ed, various connectioilS of the DATA EX­
ABLE and DATA 1:\ signals j are possible. If the 
DATA EXABLES are connectPd for maximum de­
coding, a one-out-of-eight seleJtioll can be accom­
plished. \Vith all eight DATA IX inputs and DATA 
OeT outputs strapped togethell, the module organi­
zation becomes 8192 words of one bit. Similarly, if all 
DATA EXABLES are tied together, each DATA 
IN and DATA OeT is used as a separate information 
channel, and the resultant mqdule organization is 

8 
DAT A OUTPUTS 

8 
DATA INPUTS 

DATA ENABLES 

(UPT03BIT { 
ADDRESS & 

COMPLEMENTS) 

DATA IN (8) __ ~ 

8 SENSE-DIGIT PAIRS 

-5 V GRND +5 V 

Figure 12-Sense-digit package 

WRITE ENABLE 

DATA OUT (8) 

1024 words of eight bits. Other connections result ill 
"1096 words of two bits, and 2048 words of four bits. 
These various connections occur external to the module. 
lIenee, the sense amplifier-digit driver plane organi­
zation is the same regardless of the final module organ­
ization desired. 

]1,[ odule elcctr'ical organization 

Figure 13 shows an integrated electrical slChematic 

32 WORD LINES 

32 

SENSE-DIG'IT PLANE 
2 4 

DECODING 
WORD DRIVER 

PLANE 

POWER & GND 
BUSES 

3 

4 

16 16 

DWD DWD 

= -
w w 
Z Z 
<t: <t: 
..J ..J 
~ ~ 

:> :> 
ex: ex: 
0 0 
~ ~ 
w w 
~ ~ 

SID DATA ENABLES 6 L-_-4++...;1:.:6_B::.:I:..;.T.....::.L1;,,;,.N:..;:E:.::S ____ ++ ___ -4 ____ 3-t-t4 __ 3-1-1~ 3 
(A 10 - A 12) 0------------' 

AO- A3 

A4.A4 

A5-A7 

A8. A8. A9, A9 

4 

2 

3 

4 

MASTER ENABLE o----------------~ 

Figure 13-8192 bit memory stack-electrical organization 

2 

2: 
w 
Z 
<t: 
..J 
~ 

:> 
ex: 
0 
~ 
w 
~ 

2 



of the 8192 bit memory module. Notice that the pack­
age-to-package connections are accomplished by means 
of long parallel busses or rails which are formed when 
the six packages are stacked. Although these rails 
must be broken in some places to define the inter­
connection, no. jumper wires, etc., need be added. 

There are three distinct methods of addressing 
shown in Figure 13: 

1. Address bits AO, AI, A2, and A3 are bussed in 
parallel to the two decoding word driver chips (DWD). 
Since each DWD is a one out of sixteen decoder, an 
additional address bit (A4-A4) is decoded on the 
enable inputs of the DWD's. Hence, the decoding 
word driver package functions as a one out of thirty­
two decoder, selecting only one of 32 word select lines 
to enable in the memory array. Note that all word 
select lines in the thirty-two lVIOS array chips are 
wired in parallel. 

Address bits A5, A6, A7 drive the chip select circuits 
(CSC) in the memory array packages. The CSC drives 
the ENABLE and ENABLE of memory array's sense 
line switch, and select one of the eight array chips 
with each memory array package. To complete the 
selection of an eight bit word on one lVIOS array one 
of the four memory planes must be uniquely enabled. 
The two enable inputs of each chip select circuit, 
(CSC) are connected to address bit A8 and A9 or 
their complement~ to perform the plane selection. 
Connection to the correct two signals is accomplished 
by providing A8, A8, A9, and A9 at the edge of all 
memory array packages and breaking the bus con­
nection with two of the signals. 

These ten bits (AO-A9) select one eight bit word 
out of the 1024 word array. Subdivision of the eight 
bit word into four, two, or one bit words is accomplished 
by strapping lines (DEI-DE6) together in specific 
combinations. The sense amplifier package can accept 
zero, one, two, or three address bits depending on the 
module organization desired. 

Once a single eight bit word in the storage array has 
been addressed,· sixteen low impedance paths (eight 
pairs of bit lines) exist between the four sense ampli­
fier-digit driver chips and the eight MOS array cells. 
Reading is accomplished by sensing the storage cell 
currents while holding the bit lines at approximately 
ground; writing by forcing selected bit lines to a posi­
tive voltage. 

In addition to the standard I/O and address chan­
nels, a DWD ENABLE and/or CSC ENABLE are 
brought out to allow for further addressing or for 
eliminating skew in the address signals. 

Main Frame Semiconductor Memory 485 

Module timing 

Figure 14 is a timing diagram of the 8192 bit module. 
The diagram is organized into three sections: (1) the 
basic addressing and enabling common to both read 
and write cycles. (2) the basic read cycle, and (3) the 
basic write cycle. The diagram illustrates how the 
various propagation and charging delays add to form 
the minimum cycle times. 

Since all word select and bit lines are parallel con­
nected to all thirty-two array chips, the capacitances 
associated with these lines are high (approximately 
250 pf on word lines, 70 pf on bit lines). Therefore, 
charging times become a significant portion of the 
memory cycle time. 

The labels on the diagram are generally self ex­
planatory. The comments below explain some of the 
special features shown. 

Notice that if desired, the sense amplifier-digit 
driver data enable inputs (DE1-DE6) can arrive 
at the module terminals some 15 ns later than the ad­
dress signal (AO-A9). Therefore, additional levels of 
decoding logic may be added in series with these in­
puts without slowing the cycle time. 

During the read cycle the sensed information must 
be strobed out toward the end of the cycle, as the in­
formation on the sense amplifier-digit driver DATA 
OUTPUTS prior to that time is the stored information 
in the previously addressed location or undefined. Bit 
line recovery after writing is overlapped into the next 
cycle. 

Packaging 

The 8192 Bit l\1emory lVlodule is an assembly of 
four 2048 Bit iHemory Array packages, a word driver 
packa~~e, and a sense digit package. Each of these 
packages are 1.25 inches square with 17 leads on 50 
mil centers on each side. The electrical organization 
is such that the packages can be stacked one above the 
other with the leads bussed. After assembly and test 
of the individual packages are complete, the individual 
leads are cut and formed. The packages are then 
placed in a mechanical holder, and wave soldered one 
side at a time. A molded header is then mechanically 
and electrically attached to the base of the stacked 
assembly of packages,. The header includes guide 
slots so that the ends of the ribbon leads can be in­
serted into a simple etched wiring board nested within 
the header. The 42 signal pins of the header are ar­
ranged in a 1.6 inch square on 100 mil centers. This 
choice of pin form factor permits established printed 
circuit board technology to be employed by the user. 



486 Fall Joint Computer CotIference, 1969 

ADDRE~S LINES TO ~I,~~~~~~~~~~.~~~~_~~~~~~~~~~~~~ 
l)WD iii esc IAII-'I'I' -----X 

~
D~W~D~.~C~~P~: .. R~O~P~D~E~LA~Y~7<E7&~-----~~--~--~~~~~~~~~~~ 

INTERNAL WORD & - LINE CHARGING _ ~. 
ARRAY fN,'\HLE LlN[S . 

I
i 'rr=MEMORY ARRAY PROP DELAY 

~1~~~~R~U~~~~~S \ If ADDRESSING & 
DATA ENABLE 

\~;'0~5D~D'E~ EN~n~ : o-r-f ~ Bn UNE CHARGE t-
HIT LINE VOLTAGES E'j I ~~fy=.I/--~--------1~ 
DURING READ _~~ 

SA:DD DATA OUTPUTS I ~ SENSE AMP. b-' I -=-lSENSE AMPDELAYt;:: 

~DUUR1ING D~8~D DATA: ENABLE DELAYF-I;;o-ss.BLE~;LSE-R~AD).r --', -----r-B-ASIC READ CYCLE 

l XTERNAL STROBE 
FOR READING 

I I 
--~----~---------~ 

SA'DO DATA INPUTS =* : -----
DURING WRITE 
,D11 DIB. ' 

; -; WRITE ENABLE DELAY ~IN. WRITE BASIC 

I i I ~ \ ENJABLE DELAY I WRITE CYCLE 

WRITE ENA~LE DELAY~ I ~, I--BIT LINE RECOVERYl 

WHITE ENABLE PULSE 

BIT LINE VOLTAGES 
DURING WRITE I . tcELL WRITING TlME1 --~ 

I I ' I I I I I I , I I I • tins) 
o 10' 20 30 40 50 60 10 80 90 100 110 

Figure 14-Timing diagram - 8192 bit MOS stack memory 

The heat generated by this module is approximately 
6 watts. The volume of the module assembly in­
cluding the 42 pin header and piug is 1: 75 X 1. 75 X 
2.0 inches or six cubic inches. 0nerational bit density 
is thus over 1300 bits per cubic inch. It is felt that these 
two counteracting factors are fai~ly well balanced to 
each other by this module design cqncept. 

Package interconnect 

The Sense-Digit and Word Driver packages are 
simply one -l~yer thick film met~l patterned ceramic 
packages with connections being made with flying 
wire leads. The memory array p~ckage is much more 
densely populated and uses a neW- technology of inter-
connect. . 

Interconnect technologies curtently available are 
multilayer ceramic, multi-layer s~rface deposition, or 
multi-layer "add on" laminate. i Ceramic multi-layer 
was not selected for three reason.. The high dielectric 
constant of alumina raises the di~tributed capacitance 
to levels which threaten system! speed requirements. 
The many vias required for i~tra-Iayer connection 
cannot be placed on close enough qenters to be compati­
ble with the desired cell densitie~. Finally, the length 
of buried conductors used for power distribution ex­
hibit higher resistance than is desired for low noise 
level operation. ' 

Use of multi-layer surface depositions on a :suitable 
package substrate has been avoided because of yield 
problems of dielectric defects in the presence Qif many 
crossovers, and the presence of deposition interfaces 
at each via buildup location. Surface deposition of 
a single low-impedance thick film pattern on the package 
substrate has been utilized for power distribution to 
the IC chips within the container. 

Interconnect laminate 

The interconnection is implemented by a separate 
part· called an interconnect laminate. The dielectric 
core of this laminate is 1 mil polyimide film and ,exhibits 
the following characteristics: 

1. Physically and electrically stable dielectric 
through the range of -65:lC to +450:l0. 

2. Dielectric constant of 3.5. 
3. Pinhole free and a voltage breakdown rating 

of 7000 volts at one mil thickness. 
Through a series of precisely-registered artwork and 
photo-chemical cycles, the two-layer X-Y intercon­
nections are formed to the following standards: 

1. Via size of 1.5 to 2.0 mils diameter on seven mil 
centers. 

2. Via lands or caps are 4 X 5 mils. 
3. Conductor widths are three mils and conductors 

are spaced on five mil centers. 



Main Frame Semiconductor Memory 487 

UPPER ~6 MIU j VIA 
CONDUCTORS .\J. ~ .:. 6 MILS I DIE~ic~RIC 

P [/ZllZ)Z/*/® I @--:_~W-.....L-_~ 
LOWER 

CONDUCTOR 

I.C. CHIP 

--~------ ----- ----- ------ ------ ------ ------ ------ ------

Figure 15-Interconnect cross-section 

4. Conductors on both sides and the vias are 
electroplated as a single structure having no 
metallurgical interfaces at the vias. 

These standards of fabrication provide an intercon­
nect system which is compact and comparable in 
geometry details to the bond pads and spacing used by 
MOTOROLA on its IC chip products. Capacitance 
measurements of typical center conductors to the sum 
of grounded neighboring conductors, using the above 
dimensional and material standards, read about 2.15 
picofarads per inch of length while dc resistance of 
typical conductors measures 0.40 ohms per inch of 
length. 

Bonding 

Of the three primary methods for connecting signal 
lines to the IC chips pads (wires, bumps, and beam 
leads), a system employing beam leads is used. These 
beams are integrated into the laminate plating rather 
than using the more customary method of integrating 
the beams into the IC chip. This was done to avoid ad­
ditional processing steps to the already complex wafer. 
Not only is the silicon wafer yield protected, but a 
packaging thermal advantage is obtained by being 
able to beamlead bond "face up" against the IC chips. 
The rear surface of the chips is then mechanically 
secured to the substrate base, assuring low thermal 
resistance. 

A cross-section diagram showing the features of the 
inter-connect laminate, the ultrasonic "face up" 

bonding technique, and the heat sinking capability to 
the power-carrying cermet metalized alumina sub­
strate are illustrated in Figure 15. The face-up technique 
permits bonding to the chip one beam lead at a time 

1.25 ~i 

~:~>!(:$:i:~~5 
1.40 ------~ 

Figure 16-Packaging for memory stack 



488 Fall Joint Computer Conference, 1969 

or one chip at a time. It also perrpits quite stringent 
quality control measures to be imMemented since the 
beams can be examined individually~ 

Memory package 

A sketch of the package which ·is being used is il­
lustrated in Figure 16. It consists of a 1.28 inch square, 
96 percent alumina base, which is metallized to a cus­
tom pattern containing 68 metal film leads which go 
under a glass-sealed side wall. The base of the usable 
1.0 square inch interior contains the power distribu­
tl~n pattern. The headroom within the package is 60 
mils. 

As can be seen by inspection of the figure, the area 
occupied by the IC memory chips and the control 
chip is approximately 25 percent of the area, the re­
maining area being used for the XJy interconnect and 
exit bond functions! 

In the assembly cycle, a total of 448 beams leads 
are bonded to the IC chips which is half of the bonds 
required by wire bonding techniq.ues. The laminate 

contains 480 electrically active plated feed throughs. 
Larger beam leads are employed to connect the inter·· 
connection laminate to the exit bond pads and the 
power distribution. A total of 73 such bonds are re·· 
quired. In the computer program which generated the 
interconnect laminate artwork master sets, approxi. 
mately 1400 conductor track segments instructions 
were generated. The cover is alloyed to the package 
subassembly after precap testing. The result is a, 
memory component containing 2048 MOS memory 
cells and having only 68 leads to the outside world. 

CONCLUSION 

A high performance memory module has been des.cribed 
which is suitable for use as a building block for large 
mainframe memories. 1\tlass production of this memory 
module is planned. Costs per bit of a memory system 
using these modules as basic building blocks will be 
much lower than that of other technologies giving fL 

similar performance. In the near future the competi. 
tive pressure of semiconductor memories will be felt in 
moat performance ranges. Magnetics watch out! 



A new approach to Inemory and logic­
cylindrical domain devices 

by A. H. BOBECK, R~ F. FISCHER and 
A. J ~ PERNESKI 

Bell Telephone Laboratories 
Murray Hill, N ew Jersey 

INTRODUCTION 

Magnetic domain behavior in single crystal magnetic 
oxides has been studied extensively over the last 
several d~cades. These investigations, both theoretical 
and experimental, are an attempt to better understand 
these materials and their complex domain structures. 
Recently single crystal oxides have been utilized in 
memory and logic devices. This paper will update 
work on cylindrical domains in orthoferrites first 
published in 1967 and later discussed at the 1968 and 
1969 Intermag Conferences. 1.2,3 

A cylindrical domain, sometimes referred to as a 
bubble, is a localized high energy magnetic state. 
Such a domain is stable and resists any attempt to 
deform it. Domains can be moved about in much the 
same way as a charged particle. A domain can be 
moved one domain diameter in less than 100 nano­
seconds thus indicating that data rates in excess of 
10" bits/sec can be realized in this technology. As yet 
no upper limit to the cylindrical domain velocity has 
been found experimentally. 

Sucessful device utilization of cylindrical domains 
depends upon developing techniques for generating 
propagating, interacting and detecting these domains. 
Domains can be generated by secti~ning an existing 
domain into halves. Each new domain can. be con­
sidered as an information input if the splitting operation 
is selectively controlled. A stream of domains,. fed into 
a propagation channeCand transmitted to an output 
point, can be detected by optical, Hall or induced 
voltage readout. Although all these readout techniques 

489 

have been studied only induced voltage readout will 
be detailed in this paper. 

A new class of. materials, the orthoferrites,··6 are 
now available which, in addition to supporting cylin­
drical domains at densities approaching 106 per square 
inch, have the combined properties of high nucleation 
fields (so domains will not spontaneously appear), low 
domain wall coercivities, and high domain wall mo­
bilities. A description of the general properties of 
cylindrical domains6 •7 in orthoferrites is followed by 
a section on the behavior of domains in gradient 
fields. Conductor circuits; "angelfish" circuits8 and 
in-plane rotating field circuits9 are presented as general 
methods to propagate domains. Finally the relevance 
of domain wall devices to the computing field is dis­
cussed. 

General observations 

If we take a thin platelet of orthoferrite above its 
N eel temperature and cool it to room temperature 
spontaneously nucleated serpentine-like strip domains 
will be present. Such a domain pattern, as seen in 
Figure 1, will usually include a number of single wall 
domains. A single wall domain can be identified by 
noting whether the wall which bounds it closes upon 
itself. If a prescribed magnetic field, the bias field, 
is applied normal to the surface of the platelet the 
single wall domains become cylindrical. An array of 
such domains is shown in Figure 2. The 1.7 mil thick 
platelet of Sm'55 Tb'45 FeOa osoferrite is subjected to 
a 42 Oe bias field. 



490 Fall Joint Computer Conference, 1969 

Figure 1-8trip domains, 1.5 mils in width, in a 1.7 mil thick 
platelet of Sm.65Tb .46FeOa orthoferrite v.iewed by Faraday effect. 

Note the single wall domains.: Bias field is zero 

Those familiar with the earlier references recall 
that cylindrical domains are stable over a limited 
range of the bias field (typically 10 percent of 411"lVI8)' 
An excess bias causes the domain to collapse inward. 
On the other hand as the bias is ~ecreased the domains 
grow in size eventually reachin~ a diameter at which 
they become unstable to elliptical perturbations and 
then suddenly grow int.o long stri~ domains. 

A strip domain can also be. cut by energizing a 
conductor posi~ioned in contacti with the orthoferrite 
and intercepting the strip domain at right angles. 
For SmTb orthoferrite a current of 300 rnA is suf­
ficient. Later, in the discussions of conductor propa­
gating circuits, a technique for splitting cylindrical 
domains will be presented. 

Manipulation of cylindrical domains-Oeneral 

Domains in orthoferrites are maintained in the 
preferred cylindrical form by an overall uniform bias 
field applied normal to the platelet surface. As dis-

Figure 2-With a 42 Oe bias field the single wall strip 
domains of Figure 1 become cylinders each 1.8 mils 

in diameter 

cussed previously an increase in the bias field decreases 
the domain diameter and vice versa. Now consider 
the reaction of a cylindrical domain subjected to a 
nonuniform rather than a uniform field. The response 
will be complex and could involve a changEl in size, 
motion at a nonuniform rate or even the collapse of 
a domain. However, it is possible to treat the case 
in which a uniform gradient field is applied. 

Consider, as shown in Figure 3, a cylindrical domain 
of diameter 2r in a uniform gradient field. The domain 

UNIFORM GRADIENT 
FIELD 

X--" 

Figure 3-A cylindrical domain of diameter 2r pOElitionecil 
in a uniform gradient field 



will experience a force attempting to move it toward 
a position of reduced bias. To overcome the wall 
coercivity, He, the following condition must be met: 

AH>8Hc!1r. (1) 

1 
Furthermore, it can also be shown that the domain wal 
velocity, J, is given by 

J(cm/sec) = AH(Oe) M(cm/sec/Oe)/2 (2) 

where M is the usual domain wall mobility.6 
One method to see the effect of a gradient field is to 

interact one domain with another. In the case of 
domains widely separated the far field of a cylindrical 
domain can be approximated as that of a dipole and the 
following relationship derived (see Figure 4). 

(3) 

Equation (3) specifiedt12, the minimum stable separa­
tion between a pair of domains as they repel one an­
other because of their mutual gradient fields. 

Finally it has been found useful to interact high 
permeability magnetic film patterns with cylindrical 

..112 

Figure 4-Two domains, mutually repelled in a 
material whose coercive force is He, reach a 

stable separation (12. 

New Approach to Memory and Logic 491 

HIGH PERMEABILITY DISCS 

(/1 I~ 0 
~/d/:- .--CYLIN. DRICAL 
~ DOMAIN 

~, (2) 

(0 
Figure 5-Interaction between a matrix of high 

permeability disks and a cylindrical domain 

domains. Consider, for example, a matrix of permalloy 
dots positioned on- the surface of an orthoferrite plate­
let. One finds, by experiment, that a cylindvical domain" 
prefers a position in contact with the permalloy as 
shown in Figure 5. The permalloy dot diameters and 
separations have been chosen to be consistent with 
the stable cylindrical domain size in the orthoferrite 
under study. The dots serve as localized flux closure 
paths thereby reducing the magnetostatic energy. 
They provide a shift register, a memory array,. etc., 
with well defined domain positions. 

Conductor circuits 

In order to utilize cylindrical domains in shift 
registers, memories and logic circuits, we require 
motion in discrete steps at specific times. Therefore, 
highly localized fields are needed. Such fields can be 
produced by small conductive loops placed flat on a 
platelet surface. Since thin film techniques are used 
to fabricate the conductor circuits, a completely closed 
loop is not practical. 

Figure 6 illustrates the basic conductive loop con­
figuration and the resulting field profiles. These were 
obtained by measuring the fields produced by an 
expanded scale replica of the thin film circuits. "The 
circuit dimensions were chosen to provide controlled 
motion of domains whose diameters range from 3.5 to 
6 mils. In order for a domain to move to an adj acent 
loop it must ihitially be in contact with some portion 
of the positive gradient field produced by that loop. 



492 Fall Joint Computer Conference, 1969 

----------------~-----------------------------------'----

AvERAGE I="IELD 
eOR '2 MIL THICK 
ORTHOFERRITE 

l '200mo 

Figure 6-Conductor circuit ~sed to propagate 
cylindrical domains and th~ resulting field 

profiles for 200 rnA applled current 

This puts a lower limit on the dpmain size. The limit 
of maximum domain size is reached when a disparity 
of domain to applied field area results in reduced con-
trol of the domain position. I 

The most important feature of the semiclosed con­
ductive loop circuit is that the field is confined to 
an area consistent with that of:a domain. Therefore, 
the field may far exceed the valq.e which would trans­
form a domain from a cylinder to a strip. The upper 
limit on this field~ however, is tllat value which would 
stretch the cylindrical domain int<i> the strip area defined 
by ~he connections between the loops. 

The limits of the applied drive and bias fields are 
illuStrated in Figure 7. The dat~ was obtained using 
a 2.0 mil thick platelet of YbFeOa operated in a quasi­
static fashion on a conductor pa~tern similar to that of 
Figure 10. The operating conto~r resides within the 
bias field extremes required to maintain a cylindrical 
domain. The position and size of !the operating contour 
within the bias field boundaries ia determined primarily 
by the range of domain sizes Which the circuit can 
accommodate. ; 

In Figure 8, velocity curves ~re given of domains 
in YFeOa, TmFeOa and YbFeO~ platelets. These are 
functional measurements obtained using the circuit 
of Figure 6. Rossol has shown that YFeOs exhibits an 
extraordinarily high mobility. 10: Functional velocity 
measurements of YFeOa have ~onfirmed this. Data 
rates in excess of 3 X 106 bits/sec have been reached. 
A direct comparison of device speed and domain wall 

Q) 

,g 
o 
...J 

40 

30 

<:..OPERATING CONTOUR 

~ 20 

i 10 1I{ffj)~1~ DOMAINS 
ORTHOFERRITE: 
2.0 MIL THICK 
PLATELET 

Vb Fe 0 3 

~ ____ ~ ____ ~~ ____ ~ ____ ~_____-J 
100 200 300 

I DRIVE (MAl 

400 500 

Figure 7-Quasi-static operating contour for 2-0 mil 
thick platelet of YbFeOa. 

10.0 r 
8.0 r 
6.0 ~ t (fL SEC-I) I 
4.0 r-

I 
20 r 

I 

o 

I 0 ~-

! 
08~ 

\ 

I 0.6 '-
T (fL SEC - 1

) 

0.4 -

100 200 300 400 500 
IORIVE (rnA) 

TmFe03 

I YbFe03 . ~ . 
0.2:-/ ~ 

i ~. I I I .L.-J 

o 100 300 500 700 
IORIVE (rnA) 

Figure 8-Functionalvelocity curves of YFeO., T'bFeOI 
and TmFeOa platelets. 

mobility cannot be made because of the complex nature 
of the field profile. Notice that threshold currents as 



1XI--------, ,.------, r----------, 
1X2----_-I-+-----, .-------If-+--. ~----4 
IX3---~ .-----l~--~~ r--f-+-r-~r----' ~--~ 

Figure 9-Thin film conductor pattern for two dimen­
sional propagation of cylindrical domains. Conductor 

dimensions identical with that of Figure 6. 

low as 10 rnA have been measured representing drive 
fields less than 1.0 Oe. 

A conductor pattern is shown in Figure 9. Note 
that the series of loops are interconnected such that 
there are three separate interleaved circuits. Thus, 
with a three phase system, a domain at position A can 
be propagated to C with the sequential application of 
currents IYl, IY2 and Iys. Two dimensional propagation 
can be performed by simply aligning two identical 
circuits orthogonal to each other. The domain at po­
sition A can now be propagated to B with currents 
Ix!, IX2 and Ixs. Bidirectional propagation merely 
requires a reversal in the three phase sequence. The 
domains (bits) are spaced on 10.5 mil centers or every 
third propagate loop. This is adequate spacing to 
avoid interactions in materials having a coercive 
force of 0.25 Oe or higher such as YbFeOs. The resulting 
packing density is over 6 X lOS bits/in2• 

Figure 10 is a photograph of a unidirectional shift 
register circuit. The register is equipped with an input 
and output circuit. Information is written by controlled 
domain replication and the output circuit detects a 
change in flux. The circuit is operated with a biphase 
propagating source. Directionality is achieved with 
the help of permalloy dots. The dots, which provide 
low energy sites for the domains, are uniformly shifted 
with respect to the conductive loops. This asymmetry 
places the domains in a consistent, preferred position 
prior to each propagat.e phase. The permalloy in es­
sence provides a five Oe third phase drive. The permalloy 

New Approach to Memory and Logic 493 

OUTPUT 

Figure lO-Photograph of the conductor pattern of a undirec­
tional shift legist.er utilizing a bipl;l.ase propagating source. The 
circuit contains a controlled replicate input and an out.put circuit 
which detects a change in flux. Circuit is capable of propagating 

domains having, a nominal diameter of 4 mils 

dots are, typically, 4000 A thick, one mil diameter 
and spaced on four mil centers along the propagating 
track. They are deposited on pedestals, fabricated 
as part of the conductor circuit. This is done to ensure 
that the permalloy is in intimate contact with the 
orthoferrite. The biphase register design provides a means 
of constructing long serial registers without necessi­
tating conductor crossovers. With a biphase system, 
however, the packing density of domains is about one 
fourth the propagate positions rather than one third, 
as in the case of the three phase system. In addition, 
speed is reduced by virtue of the limit of the pseudo­
drive provided by the permalloy. 

A suitable material for use with the device is TmFeOs. 
A. platelet two mils thick, exhibiting domains three to 
five mils in diameter was used. Operation is initiated 
by placing a "source" domain in the starting loop. To 
insert a bit, the larger loop encompassing the replica­
tion (hairpin-like) conductor is energized, centering 
the source domain over the replication conductor. 
After the domain is split, one section is returned to 
the start position and the other is simultaneously 
shifted two loop positions to the start of the register. 
The domain is shifted through the register until it 



494 Fall Joint Computer Copference, 1969 

reaches the output circuit. The two outer conductor 
loops are part of the readout ddve circuit while the 
two inner loops comprise the sen$e circuit. The read­
out drive loop nearer the domain ~s energized drawing 
the domain into the loop and then expanding it to 
the extent of the loop. The dom~in is then collapsed 
by a reversed drive through both Iloops. The resulting 
flux change is detected on one Isense loop and the 
induced voltage due to di/ dt is cancelled with the 
other. The domain is expanded to: an area forty times 
the area of the cylindrical domain and provides an 
output of 1.0 m V -ILsec. A photograph of the output 
waveform is shown in Figure 11 J Notice the bipolar 
nature of the waveform. The output circuit has been 
shaped to not only increase the' area of the output 
domain but also to maximize thr rate of change of 
flux linkages during the collapse ph~se. 

The circuit has been operated at speeds in excess of 
106 bits/sec using 350 rnA prop~gate currents. The 
minimum replicate drive pulse is 750 mA, 1 ILsec wide. 
The nominal readout drives for domain expansion 
and collapse are 530 rnA and 700 mA, respectively. 

"A 'Y!'geljish" circuits 

We have progressed through three phase conductor 
circuits where the propagation direction is determined 
by the sequence in which current pulses are applied 
and two phase conductor-permalloy circuits where 
the propagation d":rect:on is built in by a non symmetric 
conductor-permalloy alignment. A logical progression 
is the possibility of an all permalloy circuit to interact 
with, and thereby propagate, domains in orthoferrite. 
There are, in fact, two such general classes of circuits 
and they will be discussed in this and the following 
section. 

The first class, coined the ','angelfish" circuits, 
utilize the fact that a cylindrical dpmain can be modu-

Figure ll-Photograph of the outPl,lt waveform from 
circuit shown in Figure 16. Horizontal scale is I 

#,sec/div; vertical scale is 2 mV /div 

HIGH PERMEABILITY 

+ -
THIN FILM WED~E __ 

HARD + + G~= 
(0) (b) 

Figure 12-Domain positioned on a wedge-shaped high 
permeability permalloy thin film. The domain is more 

easily moved off the point of the wedge (a) 
than the blunt edge (b) 

lated in size by increasing or decreasing the bins field. 
Motion is achieved by maneuvering this pulsating 
cylindrical domain in and out of asymmetrical energy 
traps. The traps are created by wedge shaped 151ms ()f 

high permeability permalloy placed in contaet with 
the orthoferrite platelet. 

The interaction which exists between a cylindric:;},l 
domain and a wedge is illustrated in Figure 12. The 
domains assume a position on a wedge where the 
magneto static energy is minimized. It was confirmed 
by experiment that from this position a domain is 
more easily moved off the point (a) rather than the 
blunt end (b). The mechanical analogy is thll,t it lis 
easier to walk up a ramp than to scale a wall. A shHt 
register can be built which propagates domains along 
a series of wedges by means of a periodic modulation 
of the diameter of the domains. During the expansion 
phase the leading domain wall reaches out to latch 
onto the blunt edge of the next wedge and during the 
contraction phase the trailing domain wall slides o:ff 
the point of the wedge that held it. This pushing and 
pulling action provides the unidirectional motion 
desired. 

An experimental 32-step shift register, shown in 
Figure 13, propagates domains continuously around 
a circle. The permalloy circuit is photoetched from a 
4000 A permalloy film. The size can be estima,ted by 
noting that the outer ring is 50 mils in diameter. The 
inner and outer permalloy rings provide lateral stB~­
bility to the domain as it travels. Lateral stability is 
not required because of any inertia associated with 
the domain, but to ensure that the domain will expand 
and contract along the direction of motion rather than 
across. Operation is obtained as the bias field is oscil­
lated between the extremes of 38 to 44 Oe. The ortho­
ferrite used was a 2.3 mil thick platelet of Tbo"6 TmO"li 
FeOs. 



(a) 

Figure 13-A section of a 32-step unidirectional ring 
"angelfish" register. The bias field is 38 Oe (a), 

440e (b), 38 Oe (c), 44 Oe (d). Motion is 
counterclockwise 

Pr.opagation by "T-./3AR" perm5!lloy circuits 

(b) 

(c) 

(d) 

In a second method of propagation an in-plane 
rotating field acting on a structured permalloy pat­
tern generates traveling positive and negative mag­
netic poles to selectively attract and repel and thereby 
control the motion of a cylindrical domain. A variety 
of permalloy patterns are suitable and one such pat­
tern, the T-BAR, is illustrated in Figure 14. The 
name, T-BAR is, of course, identified with the high 
permeability thin film permalloy pattern shown in 
contact with the upper surface of an orthoferrite 
platelet. 

The operation of this circuit will be most readily 
understood after a study of Figures 14 and 15. First 
the bias field is adjusted to maintain a stablecylin-

New Approach to Memory and Logic 495 

BIAS 
FIELD 

Figure 14-Isometric view of permalloy T-BAR 
pattern in contact wit.h surface of orthoferrite 
platelet. Rotating in-~lane field generates poles 

which cause the domain to move 

drical domain. Next assume that a field is applied in 
the plane of the orthoferrite and directed as illustrated 
in Figure 14. This in-plane field, which has very little 
direct effect on the orthoferrite, produces magnetic 
poles in the structured permalloy circuit thereby pro­
viding the cylindrical domain with the low energy rest 
position shown. Clockwise rotation of the in-plane 
field causes a systematic redistribution of the magnetic 
poles in the permalloy and the domain responds by 
moving from left to right as photographed in Figure 
15(a)-15(e). With each rotation of the field the do­
main advances one period of the circuit. The propa­
gation direction may be reversed by rotating the field 
in the counterclockwise sense. 

Figure 16 shows a typical domain generator. The 
entrance to the T-BAR propagating channel is from 
the left if the field is rotating clockwise. The large 
ge~erator disk at the entrance maintains a domain 
which stays in contact with the + poles formed on the 
disk by a rotating transverse magnetic field. As the 
field rotates to the position shown in Figure 16a, the 
dom~tin is .forced to pass over the first + pole formed 
at t.he left end of the propagating channel. When the 
field rotates another quarter cycle, Figure 16b, one 
end of the domain becomes attached to the advancing 
+ poles of the propagating channel while the other 
remains attached to the + poles of the disk. As the 
field rotates further, Figure 16c, the two ends of the 
domain are forced to travel in opposite directions, and 
a negative pole distribution begins ·to build up near the 
center of the stretching domain, forcing it away from 
the disk. When the negative pole distribution is maxi-



496 Fall Joint Computer Con-ference, 1969 

I .• · ...•... :· •..... T .......................... ' ...... I;.i,., ..... ~ ·······,···,:T j .. 

Figure 15-Sequence of photographs showing a 2 mil 
diameter domain propagating as the field rotates 

clockwise through 360 0 

mum near the stretched portion of ~the domain, Figure 
16d, the field from the disk shrinks that portion of 
the domain width until it becom~ unstable and the 
domain suddenly ruptures into .two portions, one 
remaining on the disk and the other remaining in the 
propagation channel. Bo.th domains then return to a 

(0 ) 

(c) 

(d) o .. · 
(e) 

Figure 16-Domain generation-A permanent domain 
a'3sociated with the rotating + pole configuration of the glenerat­
or disk is forced to stretch when one end becomes trapped in 
the T-BAR propagate channel. When the in-plane rotating; 
field HR is directed upward, the - poles near the stretched 
portion ot the domain cause it to sever into two, leaving III newly 

formed domain in the propagate channel 

domain size determined by the bias field with the result, 
shown in Fi gure 16e. 

In general the minimum transverse field required for 
domain generation is larger than the minimum field. 
for propagation; therefore, insertion of domains 
into a single channel can be controlled by increasing 
the amplitude of the rotating transverse field for either 
an entire cycle or for only that portion of the cycle 
(approximately 34 cycle) where the domain becomes, 
stretched to its maximum. Insertion of information in 
multichannel devices (say up to ten channels) can 
be controlled by designing the geometry of the gen­
erators so that either the amplitUde of the rotating 
field, or the portion of the cycle it must be increased, 
or both, is different for different channels. 

An example of domain generation uses a magnetic 
overlay made from 8900 A isotropic permalloy. The 
T -BAR propagation channel has the same dimensions 
as previously stated and the generator disk is 9 
mils in diameter with a 2.5 mil protrusion into the 



TABLE I 

Experimental CAlculated 

(milS) (Oe) (mils) (mils) ( ergs/c 

Rare Earth 411Ms ~ 2r field Thick, h i .--l 
Y 105 8.4 3.0 33 3.0 2.5 1.8 

La 83 6.6 Not Available 

Pr 71 5.7 Not Available 

Nd 62 4.9 7.5 3.2 2.0 4.4 1.1 

3m 84 6.7 6.0 3.0 1.1 2.9 1.3 

Eu 83 6.6 5.5 10.5 2.0 3.7 1.6 

Gct 94 7.5 3.7 16 2.4 2.9 1.7 

Tb 137 10.9 1.7 51 2.2 1.4 1.7 

Dy 128 10.2 2.0 32 1.6 1.7 1.8 

Ho 91 7.3 4.5 12 2.1 3.3 1.7 
Er 81 6.5 6.0 8 2.0 3.9 1.6 

Tm 140 11.2 2.3 37 2.3 1.9 2.4 

Yb 143 11.4 3.8 41 3.0 3.0 3.9 
Lu 119 9.5 7.5 10.5 2.0 4.3 3.9 

. 3mO.6ErO.4 83 6.6 1.0 33 1.8 0.80 0.35 

3mO.55TbO.45 108 8.6 0.75 61 2.0 0.40 0.30 

a 
td = 4:2 

s 

propagate channel. The orthoferrite is a 2 mil 
thick platelet of Sm .55 Tb .45FeOa with 411' lVI8 = 108 
gauss. The bias field is 42 Oe producing approximately 
1.5 mil diameter domains. The transverse field ampli­
tude necessary to generate domains is 20 Oe peak 
while 10 Oe peak is sufficient to propagate domains. 

Domain logic 

Logic can be performed in cylindrical domain de­
vices by utilizing the repelling forces between domains. 
T -BAR-like overlays are used to transport domains 
close enough to allow the interactions to occur. An 
overlay arrangement particularly useful for performing 
logic functions is that of an idler position into which 
a domain can be inserted and forced to circulate within 
a relatively fixed position as the transverse field rotates. 

An example of domain logic uses the permalloy 
overlay of Figure 17. A logic variable N is determined 
by the presence or absence of a domain circulating in 
the idler position formed by the four bars which pro­
vide the pole positions four, five, six, seven. The input 
variable X is determined by the presence or absence 
of a domain in the T -BAR track defined by pole 
positions ... -3, -2, -1, 1, and two output tracks 
3', 4', 5', ... and 7', 8', 9' ... deliver the logic function 
X • N. N is the flip flop function N = X • (N -1) + 
X • (N -1) where (N -1) is the previous state of the 
flip flop. Poles 2 and 6 are positioned so that if 
there is a domain on one of the poles, and none on the 
other, poles 3 or 7, respectively, are preferred 

New Approach to Memory and Logic 

c=::!J 
~ X'N 

Figure 17-Cylindrical domain flip flop-The state of 

497 

-X'N 

the flip flop is determined by the presence or absence of a trapped 
circulating domain at the sequencing pole positiom; (idler) 4,5, 
6, 7. Each new domain entering the input channel x changes the 
state of the flip flop by becoming trapped in the idler if it is full 

over poles 3' or 7' for the next step. As the transverse 
field rotates counterclockwise, a domain entering this 
device will travel along successively generated poles 
- 3, - 2, -1 and 1. When it reaches pole 2 it 
makes a decision to go to pole 3' or 3 depending 
on whether a domain is present or not on the idler 
position 6. If, a domain is present on 6, the two 
domains repel each other and go to poles 3' and 7' 
when the field rotates the next quarter cycle and 
henceforth sta,y on the output tracks 3', 4', 5' ... , and 
7', 8',9' ... , leaving the idlerposition empty. However, 
if there is no domain on pole six when the input domain 
reaches pole two, the input domain goes next to pole 
3 and becomes trapped in the successively generated 
idler poles 4, 5, 6, 7, 4, 5 ... until a new domain 
from the input track forces it out. The device, 
therefore, acts like a flip flop with one input 
and two identical outputs. The presence or absence 
of a domain in the idler position determines the state 
of the flip flop. A binary counter can be made by using 
one of the outputs as a carry to succeeding stages. 
Flip flops have been operated by using 11 ,000 A 
permalloy with the overlay design consisting of the 
usual one mil by five mil rectangles. The orthoferrite 
was TbFe03, with a 54 Oe bias producing 3 mil 
diameter' domains. The rotating field peak amplitude 
was approximately 17 Oe. 



498 Fall Joint Computer Conference, 1969 

CONCLUSIONS 

We have seen that the orthoferrites provide interesting 
research material for both the theoretician and the 
experimentalist. Papers covering the wide swathe 
from materials preparation to device applications 
have been published. All available orthoferrites have 
been evaluated as potential domain wall device 
materials. It was found, for example, that the use of 
Sm.fi6Tb.46FeOa orthoferrite will maximize the storage 
density since in this compound the smallest domains 
are found. Stable cylindrical domains 0.5 mil in diameter 
allow storage densities of 106 bits/in2• 

Techniques for. propagating domains at data rates 
in ex.cess of three megabits/sec have been demonstrated 
using conductor circuits. The upper limit on the data 
rate (or either the "angelfish" or "T-BAR" is yet to be 
determined although it is expected that the rate for 
the latter will be in ~xcess of one megabit/sec. Thus we 
believe that one of the future applications of domain 
wall devices will be in large capacity shift registers----­
a solid state disk file. 

Although most of the device work presented in this 
paper concerned the propagation of domains other 
efforts have pursued the areas of information insertion 
and detection, and magnetic logic. Magnetic logic is 
readily implemented using interactions of domains. 
Therefore, a second application is' expected in special 
purpose memory-logic systems. 

Domain wall devices are fabricated using the pro:­
duction techniques pioneered by' the semiconductor 
industry. Thus these devices should be a compatible 
companion to LSI in future systems. Domain wall 
devices require few process steps and as such should 
be manufacturable in high storage capacity units. 

ACKNOWLEDG MENTS 

The authors would like to acknowledge the interest 

and encouragement shown by H. E. D. Scovil in the 
domain wall device project. J. J. IVIcNicol, R. H. 
Morrow and R. J. Psonak built and tested many of 
the circuits. We are all indebted to A. A. Thiele for 
supplying most of the theoretical background for this 
work and for allowing us to publish many of his results. 

REFERENCES 

1 A H BOBECK 
Properties and device applications of magnetic domain8 in 
orthof errites 
Bell Syst Tech J Vol 46 Oct 1967 1901-1925 

2 A H BOBECK 
Properties of cylindrical magnetic domains in orthoferrites 
IEEE Tmns on Mag Vol 4 Sept 1968 450 

3 A H BOBECK R F FISCHER A J PERNESKI 
J P REMEIKA L G VAN UITERT 
Application oj orthoferrites to domain wall devices 
i969 Intermag Canf April 15-18 1969 Amsterdam 

4 D TREVES 
Studie8 on orthoferrites at the Weizmann Institute of Science 
J Appl Phys Vol 36 March 1965 1033-1039 

5 S GELLER 
CrY8tal 8tructure of gadolinium orthoferrite GdFeO. 
J Chern Phys Vol 24 June 1956 1236-1239 

6 C KOOY U ENZ 
Experimental and theoretical study of the domain configura­
tion in thin layers of BaFe12019 
Philips Research Rpt Vol 15 Feb 1960 7-29 

7 A A THIELE 
The theory of circular magnetic domains 
To be public hed 

8 A H BOBECK U F GrANOLA 
Magnetic domains 
Science and Technology No 86 Feb 1969 

9 A J PERNESKI 
P1'Opagation of cylindrical magnetic domains in orthoferrite8 
1969 Intermag Conf April 15-18 1969 Amsterdam 
Netherlands . 

10 F C ROSSOL 
To be published 



A new integrated magnetic memory 

by M. BLANCHON and M. C:ARBONEL 

THOMSON-CSF 
Laboratoire Central de Recherches 
Essonnes, France 

INTRODUCTION 

. Very thin permalloy sheets were used by RCA,12 in 1963, 
1n order to achieve integrated magnetic memories. In 
1964, LFEo has described an approach to mass memories 
(1.0~ -109 bits! using this material and an integrated 
WIrlng. For dIfferent reasons, these two projects were 
abandoned. This paper shows that the two conditions 
of success are the choice of the. shape of the element 
and the integration process. 

First, th~ shape of the element is discussed and it 
appears that the toroidal shape j.<, unsuitable for the 
realization of large integrated memory planes. U n­
like the ordinary core, the three-hole element' has 
ver~ broad tole~a~ces on driving currents and on mag­
netlc character1stICs of the material. Therefore, the 
three-hole core was chosen for the integrated memory 
plane described in the third part of the paper. 

Then, the dra~backs of the usual integration proc­
esses are underlined and a new, much more reliable 
method is proposed. A 16 X 8 bits and a 32 X 36 bits 
plane were realized using this fabrication process. 
The characteristics of these memories are exposed in 
the last part of the paper. 

Memory device characteristic8 

Batch-fabrication of memory planes necessitates 
a careful study of the characteristics of the memory 
element. The simplest shape is the toroid. 

Characteristics of the toroid 

Consider the element shown in Figure 1 and let 

499 

us plot the switched flux versus· the driving current, 
when only one current pulse is present (curve A) and 
when a large number of identical pulses is sent (curve 
B). For correct memory operation the toroid must 
switch completely for I and must not switch for 1/2. 
Let us name IMIN the minimum current needed to 
switch 90 percent of the flux with a single pulse (curve 
A), and IMAX/2 the maximum current allowed to switch 
only 10 percent of the flux with a large number of 
pulses (curve B). The required conditions are I ~ IMIN 
and 1/2 ~. I MAX/2. This is not possible for the permalloy 
1/2 mil toroid where IMAX/2 < 1/2 (IMIN). Forother 
pulse widths, other shapes or other thicknesses (1/8 
mil to one mil) this is still not possible. Thus, one is 
then led to . use more elaborate driving curr.mts such 
as bipolar digits or doublet currents.1i With these 
improvements, the permalloy toroid memory will 
work but with relatively tight tolerances. However 
in batch-fabrication of a large number of toroids . ' 
t1ght tolerances will lead to low yield. Therefore, toroids 
were abandoned. 

The three-hole element 

Permalloy sheet intricate magnetic elements are 
easily obtained by etching. The three apertured ele­
ment has many advantages for storage. Diagrams il­
lustrating the operation of the element are shown in 
Figure 2. The four legs of the element are of equal 
width. Starting from tlie clear state, the one-state is 
written by applying the word-write drive alone. This 
will work for any value of the word current p~ovided 
iw > iwo where iwo is the magnetic threshold of the ele-



500 Fall Joint Computer Copference, 1969 

dlp 
~--dt 

e 1 }Js 10~s ~OO}Js 
i 

IMAXA .2 .-' AS 
t MIN 

PERMALLOY 1. mil ARMCO 

o arbitr. units 2 

3 
8 =1 Otis 

2 90~. 

I 

I - ------T---:-16~;:_t L'-"_~,-r-_-_________ L ___ !.t.. 
0,2 I 0,4 0,6; bs 

1 

o Imax/2 I min. ~A> 
Figure 1-8-curves 1/2 mil thick etched permalloy toroids 

me~t: A zero state is written by aPI?lying simultaneously 
a dIgIt an~ ~ word current, the only condition being 
tha~ the dIgIt current exceed the word current. Ap­
plymg a disturb digit drive has t;l0 effect on the zero 
but produces a flux rearrangemeht on the one state 
magnetically decoupling the left: hole from the out~ 
put hole. Subsequent disturbs win therefore have no 
effect. As ~ay be seen from the' bottom of Figure 2 
the operatmg range is very wid~ and is not closely 
de~endent on the magnetic characteristics of the ma-
terial. ' 

This results in wide tolerances and a wide operating 
t~~pe~ature range. Furthermore, a lack or reproduci­
~Ihty In the material or in the ~lement shape is not 
Important. The three apertured 'element is therefore 
very s~itable for batch processing; integrated magnetic 
memones. 

Memory plane fabrication 

The processing technique is extremely important 
for obtaining a good yield. Let us· consider an example 

------~~-CLEAR STATE 

---=;:;.=--ONE 

---=;,:;..a.. ZERO 

---==-~DISTURI3 ONE 

word 

Idigit 

Figure 2-0peration of the three hole element 

(Figure 3). The element here is a simple toroid. and in 
the usual integration technique we find a lower winding 
and an upper winding tied together by a through-con­
nection, thus creating one or two interfaces. These 
interfaces may be a thin layer of vacuum deposited 
copper3 or an electrolytic solder.6 This results in 9, serious 
lack of reliability (broken conductors). 

Another drawback comes from the insulation be­
tween the· winding and the elements. Since there are 
always pinholes in the insulators,- there are often short 
circuits. One should note that the insulation of the 
edge of very thin elements is generally extremely di.f­
ficult.l,2 

Finally the strains induced by the deposition of the 
windings may decrease the uniformity of the output 
signals. 

All these drawbacks lower the fabrication yield and 
the permalloy sheet memories become uneconomic~~l. 

The new method described here starts from ,a, perm­
alloy sheet (1/2 mil thick). The permalloy is electro­
plated with copper (1/2 mil). Using positive photo­
resist techniques, holes are etched in the plate (Figure 



Toroid 

V/hVAI 

_______ .....,./ ....... ;a. ......... ~lns ul at ion 

L \ / 
ower winding ...... _/ :rrough . 

a) 

b) 

c) 

connection 

.Figure 3-Cross sectional view of an ordinary 
integrated toroid 

Etch ing holes 

+ 

Photoresist 
Permalloy 

+ + + 
+ 

+ + + + 

t 
Fine I etching 

Figure 4-The new fabrication process: cross sectional 
view 

4a and Figure 5). Then the sheet is exposed to the 
wiring pattern, developed and gold is electrodeposited 
to make the winding (Figure 4b). The copper is selec­
tively removed, leaving intact the permalloy and the 
gold winding. At this point, the winding is held only 
by the edges of the holes in the permalloy sheet, 

A New Integrated Magnetic Memory 501 

hole· 

core 
Figure 5-Top view 

forming small bridges over the permalloy. The sheet 
is then dipped in photoresist which takes the plaqe of 
the copper. After an exposure to the element pattern, 
the magnetic elements are etched (Figure 4c). If it is 
dlBsired, the memory may be completed by an encap­
sulation. 

This method is attractive for several reasons: 

• Since the upper winding, the through-connection 
and the lower winding have beeh deposited at 
the same time, the wiring is continuous without 
any interface and this is the reason why it is ex­
tremely rare to find a broken conductor. 

• Since electroplating tends to fill up all the holes, 
there are no pinholes at all in a 1/2 mil copper lay­
er. Therefore, there are no short circuits in these 
memories. 

• Since the elements are etched after the wiring, 
there are no insulation edge problems. 

• Mechanical stresses may arise from the electro­
plating of the copper layer and the gold winding. 
Removing the copper and etching the element 
shape relieves the residual stresses of the permalloy. 

!Jlxperimental results 

Memory plane models of 16 words X 8 bits and 



.502 Fall Joint Computer Conference, 1969 

Figure 6-Photographs of 128 ~nd 1152 bits memory 
planes ; 

32 words X 36 bits were easily; fabricated using these 
techniques (Figure 6). High yie~d of acceptable planes 
seems possible even with larger ~lanes. 

Characteristics for the 1152 bits storage planes are 
given in Table 1. 

TABLE I-Memory Plane Characteristics 

Permalloy thickness .5 mil 
Word write current 50 rnA 
Digit current 50 rnA 
Read current 100 rnA ; 
Density 250 bits/ cm2 (1560 bits/Sqin) 
Cycle time < 5 J.l.S 
Vout 1,6 mV ; .7 J.l.s 

The uniformity of the output signals is excellent as 
may be seen from Figure 7 w:here the output of 32 
three apertured element are shown superimposed. 

CONCLUSION 

Until now, integrated permalloy sheet memories were 

Figure 7-8uperimposed outputs of 32 elements (zero. 
one and disturb one) 

Hor 100 ns/cm 
Ver 1 mV Icm 

not a success. This comes from the choice of the element 
shape and the processing technique. By using a three 
apertured element and a new much more reliable fa,bri­
cation method, these memories seem to have a bright 
future for mass memories. Higher densities smd larger 
planes (256 X 72) are under study. 

ACKNOWLEDGMENTS 

The authors would like to thank J. P. Dupeyron 
for his assistance on the experiments. 

The work reported in this paper was supportedl by 
"Direction des Recherches et Moyens d'Esssds" . 

REFERENCES 

1 G R BRIGGS J W TUSKA 
Permalloy sheet transfluxor array memory 
J Appl Phys Suppl Vol 33 No 3 1065-1066 March 1962 

2 G R BRIGGS J W TUSKA 
Design and operating characteristics of a high bit density 
permalloy sheet transfluxor memory stock 
Proc INTERMAG Conf 3-4-1 3-4-8 1963 

3 H W FULLER T L McCORMACK 
C P BATTAREL 
System and fabrication technique for a solid state random 
access mass memory 
Proc INTERMAG Conf 5-5-1 5-5-4 1964 

4 J A BALDWIN JR J L ROGERS 
Inhibited flux-A new operation of the three hole memory 
core 
J Appl Phys Suppl Vol 30 No 4 58-59 April 19591 



ANew Integrated Magnetic Memory 50::-

5 H CHANG 6 M CARBONEL V CHAPTAL 
Coupled memory elements Batch fabricated integrated all magnetic logic 
J Appl Phys Vol 38 1203 March 1967 IEEE Trans Magnetics Vol MAG 3 535-537 Sept 1967 





Mated film memory-Implementation of 

a new design and production concept 

by L. A. PROHOFSKY and D. W. MORGAN 

UNIVAC, Division of Sperry Rand Corp. 
St. Paul, Minnesota 

INTRODUCTION 

A high performance computer memory must operate 
at high speed, require a minimum amount of power, 
and be capable of operating under extreme environ­
mental conditions. Thin film memories meet these re­
quirements, however, anyone who eocpected them to 
become the primary memory technology was certainly 
premature. Despite its superior performance features~ 
the thin film memory has encountered producibility 
problems which have prevented it from becoming cost 
competitive. Univac has developed the MA TED 
FILM* memory concept and a continuous vacuum 
deposition system which togethp,r have overcome 
previous producibility obstacles and now make the 
evaporated film memory a serious contender fOf main 
store applications. l The features which are new and 
unique to this approach are: 

1. Economical continuous deposition for 16-hour 
periods with all deposition paranleters main­
tained in equilibrium. 

2. The closed-flux path design has wide opera,ting 
margins and provides an exceptionally low 
susceptibility to process variations. 

3. Changing the film array organization from a 
word-bit matrix to a bit-slice array has greatly 
reduced the number of connections and process 
steps required to fabricate the memory stack. 

This paper describes: (1) the l\1ATED-:F'ILM 
memory design which can be adapted to a wide range 

... Trademark of Sperry Rand Corporation. 

505 

of capacity and speed; (2) the continuous vacuum dep­
osition facility which has been developed for the 
production of l\IATED ]'ILl\f memories; and (3) a 
wide temperature, 500 nanosecond, 5 X 1(}6 bit memory 
which has been built and tested. 

Storage element 

Construction 

The st.orage element (Figure 1) is formed by a 
deposit of two layers of nickel-iron separated by a thin, 
deposited, copper conducting strip. Silicon monoxide 
layers isolate the nickel-iron layers from the copper 
layer. The layers of silicon monoxide are sufficiently 
thin so they do not interfere with the magnetic coupling 
of the two nickel-iron layers. 

Each layer is deposited through masks on glass 
substrate'3 in a va.cuum chamber (Cont.inuous Vacuum 
Deposition System). 'Vhen completed, the copper 
condu~ting strips form the sense/digit line enclosed 
by the two magnetir layers. 

An etched high permeability keeper is placed in 
close proximity to the depo~it.ed element (Figure 2). 
The storage element and the keeper are separated by 
a one mil imm1ating coating to avoid any shunt current 
paths through the keeper. The storage element now 
has a closed magnetic flux pa.th for both the transverse 
and longitudinal axes. The a.dvantages of this con­
figuration are: (1) The transverse and longit.udina.l 
demagnetizing fields are reduced. This results in lower 
drive currents and improved operating margins. (2) In­
teraction between adjacent bits is reduced to a negligible 



506 Fall Joint Computer Conference, 1969 

MAGNETIC CHARACTERISTICS 
Hk· 3.001 

SENSE/DIGIT LINE ---
(6) 401<1 cu 
(5) 0.4K1 CR 

SENSE/DIGIT LlNE---
INTERCONNECT 

(4) 401<1 cu 
(3) O.4KA CR 

BOTTOM MAGNETIC LAYER 
(2) 5d SiO 

(I) 3Kl Ni FE 

Figure l-Storage element (exploded view) 

WORD CURRENT 

ANISOTROPY 
AXIS 

Figure 2-Storage element drive fields 

level. (3) Word line to sense line capacitance, which is 
a source of word noise, is minimized. 

Theory of operation 

During deposition, a strong magnetic field produces 
a uniaxial magnetic anisotropy in the films of the 
storage element. Therefore, magnetization of the stor­
age elenlent exhibits a preferred axis in the plane of 
the element normal to the depositeds ensel digit line.2 

A stored "1" or "0" magnetic state of the storage 
element is determined by the direction of magnetization 
around the sensei digit line and parallel to the anisot­
ropy axis of the film. The magnetic flux resulting from 

/ \ 
SWITCH 

/\ 
I 

RESWITCH 

WORD CURRENT 
(TRANSVERSE) 

FILM SIGNAL A \ 

\J ----~-~------~~----------------------
\./ 

D 
\ I 
\ I 
\ .... -_/ 

DIGIT CURRENT 
(LONGITUDINAL) 

Figure :~-Signal drive current relationship 

a stored "I" or "0" closes through the silicon monoxide 
insulating layers and around the sensei digit line. 

Readout of the storage element is accomplished by 
passing word current through the word lline. The 
resultant transverse field rotates the magnetization 
of the storage element, which induces a voltage in the 
sense/digit line. 

The initial direction of' magnetization determines the 
polarity of the induced voltage. The relationship of 
the word current, film signal, and digit. current is shown 
in Figure 3. The rotation of the storage element 
magnetization occurs during the rise time of the word 
current. 

Passing a current of selected direction through the 
sense/digit line restores or writes a "I" or ":0" in the 
storage element. The resultant longitudinal lleld over­
laps the trailing edge of the word current field and 
steers the magnetization to a state determined by the 
direction of the digit current. 

Nominal operating characteristics 

Storage element operating characteristies are ob­
tained by plotting output flux as a function of drive 
currents for prescribed reading and writing conditions. 
The total output flux is obtained by integrating the 
output yoltage with respect to t.ime. Since in normal 
operation digit current is common qlode in the sensei 
digit line pair, aU digit currents are given as total 
array currents. This is t,vice the single element curreut. 

Output flux vs read word current 

Figure 4 shows the output flux of a typical element 
as a function of element word current for both the 
"I" and "0" states. 



OUTPUT 
FLUX (MV-NS) 

200 

I I I 
-1000 ·DOC ·600 

COMPLETE ROTATION 
OCCURS AT 500 MA 

I~-

READ WORD 
CURRE NT (lolA) 

600 tOO '1000 

Figure 4-0utput flux vs. read word current 

200 

-100 -10 -10 -40 -20 

OUTPUT (MV-NS) 
FLUX 

DIGIT 
ISTURB 

DIGIT 
CURAt:NT (MA) 

20 40 to .0 100 

Figure 5-0utput flux vs. digit current 

The curve provides information on element output, 
symmetry (skew), and operating word current ampli­
tude requirements. The curve is an actual plot obtained 
by: 

1. Writing adverse history 256 times* 
2. Writing once in the opposite direction. 
3. Reading once and recording flux output at th.e 

indicated word current level. 

* For transverse fields exceeding the write threshold but below 
the saturating write level, the degree of saturation achieved 
becomes a function of the nUl~ber of pulses applied. The first 
pulse will write a portion of the film while each succeeding pulse 
writes a little more. In this way, the film asymptotically ap­
proaches the maximum magnetized state for the given field. 

Adverse history consists of a sufficient number of pulses to 
ensure that the element is conditioned prior to write with the 
magnetic state worst case for the write operation. It has been 
observed that there are no significant history effects beyond 256 
pulses. In memory applications, the element is operated beyond 
the saturating write level, where hiRtorv effects are negligible. 

Mated Film 'Memory 507 

200 
OUTPUT FLUX (MV-NS) 

SATURATING WRITE 

I 

WRITE WORD 

--t--t--f-f--t--...,--k-_t--V-t-_t--_I---=CURRENT (MAl 

-Il00 -600 
\ 600 IlOO 

WRITE THRESHOLD 

Figure 6-0utput flux vs. write word current 

Figure 7-The mated film core array 

4. Repeating steps (1), (2), and (3), incrementing 
the read word current each time. 
History and write word current amplitude: 500 
milliamperes. 
Digit current amplitude: 50 milliamperes. 

Output flux vs digit current 

Figure 5 shows the output flux level obtained with 
a fixed word current of 500 milliamperes as a function 
of digit current after repeated digit disturbs. 

The plot was obtained by: 

1. Writing adverse history 256 times. 
2. Writing once in the opposite direction with the 

indicated digit current. 
3. Digit disturbing 256 times with the indicated 

digit current. 
4. ~eading once and recording the output flux. 



508 Fall Joint Computer Conference, 1969 

Figure 8-Enlargement of memory array 

5. Repeating steps (1), (2), (3), and (4) while 
incrementing digit current each time. 

Write word current !1mplitude: 500 mil-
liamperes. 
Write digit current amplitude: 50 mil-
liamperes. 

A digit current of 25 milliamperes is sufficient to 
write, while a current of over ~O milliamperes is re ... 
quired to digit disturb the storage element. 

Output flux vs write word current 

Figure 6 shows the output flux level as a function of 
write word current with fixed read word current and 
fixed write digit current. 

The plot was obtained by: 

1. Writing adverse history 256 times. 
2. Writing once in the opposite direction at the 

indicated word current. 
3. Reading once and recording flux output. 
4. Repeating steps (1), (2), and (3) while incre­

menting the write and history word current 
each time. 

Read word current amplitude: 500 mil­
liamperes. 
Digit current amplitUde: 50 milliamperes. 

The write threshold occurs at 300 milliamperes and 
a saturated writ.e is accomplished at 500 milliamperes. 

Memory array 

An array of 1024 active storage element plus 32 
spares is vacuum deposited on a photo-etched glass 

subst.rate- (Figure 7). The deposited sense/digit line 
pair links all bits on the array making this a 1024 word 
by one bit slice of the memory. The storage element, 
in the shape of a capital I, is shown in the enlarged 
view of the array (Figure 8). The body of the I is the 
active region of the element. The remainder of the 
element is always in a demagnetized state; however, it 
serves the useful function of reducing the transverse 
demagnetizing field. The two holes, which straddle 
each element, accommodate the word lines. 

Continuous vacuum deposition· system 

The continuous vacuum deposition system is t.he 
one most significant feature which sets MATED FILM 
memory arr!1Y processing apart from conventional 
batch processing systems. Operational shakedown tests 
on the system have been completed. These tests 
demonstrated the system's feasibility as well as its 
capability. The capacity of the present system is 
108 bits per year. A program to increase this rate will 
put the facility in a full capacity mode of 1.6 X 109 

bits per year by early 1970. 

Continuous fabrication 

MATED FILM memory arrays are fabricated by a 
continuous vacuum distillation process using an in-line 
concept of material flow. Glass substrate blanks travel 
sequentially through four deposition chambers (Figure 
9) where progressive layers of magnetic alloy, copper, 
and insulator material are deposited through precision 
contact masks. The lost time due to pump down, sub­
strate heating, and substrate cooling in a batch proeess 
is saved in this continuous process once steady state 
vapor composition is achieved. Typically this is 20 
minutes after start-up. 

Within the vacuum chambers, the various materials 
are vaporized continuously and the deposition is 
monitored and controlled automatically. A proiLlction 
cycle of 16 hours during a 24-hour period i3 realized 
using this process. 

In conventional batch distillation processes, the 
composition of a multi-component vapor is a time 
dependent function. The higher volatility fractiion 
vaporizes in a proportion greater than its melt fractilon. 
To achieve a deposited alloy film of a precise com.po­
sition, for example zero-magnetostriction iron-niekel 
alloy, the vapor stream must be captured at a point 
in time determined by composition versus distillation 
time.s With continuous fabrication, the proce:~ control 
is built around negative feedback techniqu.es which 
routinely control the composition of the alloy v2~por 



Mated Film Memory 509 

DEPOSITION 
HEARTH 

16 HOURS OF 
OPERATION DEPOSITION 

CHAMBER 

0
0 

BoB ~ 
BLANK L....;~...!...-....,L---~~~.!---~~..:::......-T----~......;...-T-----I COMPLETED 
SUBSTRATE ARRAY o 0 0 

o 

LOADING 
SUBSTRATES 

INTO HOLDERS 

LOADING INPUT 
CHAMBER 

D 

~~ 
'-~~ ~~y~ 

PROCESS 
MONITORING 
TEST STATION 

REt.«:>VING 
PROCESSED 
SUBSTR#VE 

CHAMBER I 
BOTTOM MAGNETIC LAYER 

INSULATION LAYER 

CHAMBER 2 
COPPER INTERCONNECTING LINE 

CHAMBER 3 
COPPER DIGIT-SENSE LINE 

INSULATION LAYER 

CHAMBER 4 
TOP MAGNETIC - LAYER 

INSULATION LAYER 

Figure 9-Schematic, thunderbird facility 

for continouus periods of 16 hours. The vapor distilled 
by this steady-state process produces constant zero­
magnetostriction nickel-iron vapor for time periods 
measured in hours rather than minutes. 

The separate production stations (the four deposition 
chambers) of the continuous system permit corrections 
to be made easily and quickly. Also, the continuous 
emergence of arrays allows for prompt monitoring 
of the system. After each deposition stage, the sub­
strates are removed and inspected. As soon as a defect 
is detected, the continuous system can be stopped and 
the problem isolated and corrected. Loss of process 
control in the batch system, no matter when it is de­
tected, usually results in loss of the entire batch. 

System description 

MA TED FILM memory arrays are fabricated in 
four identical continuous vacuum evaporators. Ea.ch 
evaporator (Figure 10) consists of a deposition system, 
a transport system, and pumping system. 

The deposition system is capable of evaporating up 
to three source materials concurrently at specific 
rates. Electron beam heated sources are used for nickel­
iron, copper, and chromium. The SiOsource is resis-

_______ T~RA~NS~PORT~SY~ST~EM~ ____ _ 

----------------
PUMPING SYSTEM 

Figure to-Continuous vacuum evapora.tor 



510 Fall Joint Computer Conference, 1969 

tance heated. Evaporant shutters above each source 
automatically expose the substrate for a, predetermined 
time interval. The evaporation rate of the nickel-iron 
and copper sources is controlled using a vapor rate 
monitor. The monitor signal is used to regulate the 
electron beam gun emission current. Evaporated 
materials are replenished by wire feeders which draw 
nickel-iron or copper wire froIT,l a spool and guide it 
into the molten source. The removable base plate, 
which contains all of the deposition equipment except 
the shutters and vapor rate monitor, fits onto the bot­
tom of the main chamber. 

The transport system moves substrates from a 
magazine in the input chamber to the main chamber, 
where the depositions are made, and then into the 
output chamber. Heaters raise the substrate to dep­
osition temperature during transit from the input 
chamber to the deposition chamber. The substrates 
pass through a water-cooled tunnel in t.he cooling sec­
tion of the transport system, which cools them to 
handling temperaturf:' before. they enter the exit 
chamber. ! 

The automatic pumping syst~m has three interlocked 
subsystems controlled from 4 single console. The 
pumping system maintains higr vacuum in thb depo­
sition section of the evaporator,: while cycling the input 
and output chambers from atrriospheric pressure down 
to high vacuum as required by the transport section. 

System operation 

After the substrate is inspected for possible defects, 
it is placed in the substrate hplder and covered with 
the first mask. Subsequent substrates and masks are 
loaded in holders and placed in a cartridge. A cartridge 
of holders is loaded into the input chamber of Station 1. 
The holders are automatically ejected from the car­
tridge and pushed sequentially toward the deposition 
chamber. Within each deposition chamber the substrate 
is exposed at two of the three positions or windows 
available. At the first position the bottom magnetic 
layer is deposited in the memory bit pattern. At another 
position the silicon monoxide is deposited over the 
magnetic alloy through the same mask. When this 
process is completed, the holders are pushed to the 
e~it chamber. 

After it has been removed from the exit chamber, the 
substrate ",ith the first magnetic alloy and silicon 
monoxide layers is inspected, and returned to the 
substrate holder with the mask for the interconnecting 
elements. The cartridge is then reloaded into the input 
chamber of Station 2. Using the same procedure, a thin 

adhes10n layer of chromium is deposited for the sense 
line interconnecting clements, followed by an overlaying 
deposit of copper. 

At Station 3, the substrate is again removed, in­
spected, and loaded into the input chamber using 
different masks for the sense/digit conductor deposi­
tion. Chromium, copper, and silicon monoxide are 
deposited using 911 three exposure positions. 

A t Station 4, the top magnetic layer and silicon 
monoxide are deposited. The outer film of silicon 
monoxide seals and insulates the memory bits. 

At this point, the completed film arrays a,re ready 
for functional testing before being assembled into 
memory stacks. 

Jf emory stack construction 

The MATED FILlVl memory can be thought of as 
a two wire system. One a'Xis of stringing and its a,8SO­
ciated connections are an integral part of the previously 
desrribed deposition process. To complete the 5tack 
it is only necessary to string the word axis and terminate 
these word lines in the word diode selection matrix. 

The memory plane assembly is formed by bonding 
two film arrays to a single keeper, as shown in Figure 11. 
In this form the array is less susceptible to scratch~ng 
or cracking during subsequellt assembly. 

The film arrays are combined to form a 1024 word 
by n bit substack with one array for each bit in tht: 
memory word. The substack can then be arranged in 
various series/parallel configurations to meet specific 
system requirements. The design will accommoda.te 
word lellgth up to 256 bits without affecting eycle time. 

Figure 12 is an exploded view showing: the substack 
construction. The memory planes are stacked with the 
etched holes vertically aligned; half of each word loop 
is connected to the bussed word line header and is 
threaded down through the subs tack, while the re-

Figure ll-Memory plane assembly 



Figure 12-The substack 

maining half of each word loop is threaded from the 
bottom of the 8ubstack. The preformed wire wraps 
connect the word loops at the bottom. The top end of 
the word loops are wire wrapped to tbe diode leads. 
The wire wrap connections are then mass soldered to 
ensure a reliable electrical connection. The completed 
substack contains 32 spare words and 10 percent 
spare planes which are externally accessible. These 
spare words and planes may be used, without restriction 
anywhere in the substack. This means that the sub­
stack will never require rework unless all of the spare 
words or spare planes are consumed. 

M emory system 

The memory substack and element design does not 
vary with the application; however, some of the memory 
electronics must be tailored to the specific capacity 
and speed required. One typical configuration which 
has been built and tested is a 16K word, 32-bit mili­
tarized memory with a cycle time of 500 nanoseconds. 
A sketch of this memory (Figure 13) shows the location 
of the memory subassemblies. 

The heat exchanger which mounts on the front face 
of the chassis is not shown in this sketch. Cooling is 
accomplished via thermal conduction from the com­
ponents to the heat exchanger which is convection 
cooled by external air. 

The stack module (Figure 14) contains a pair of 
1024 word, 64-bit substacks mounted on a common 
plug-in header. The connectors on each side carry the 
drive lines leading to the diode selection matrix. The 
stack modules are field interchangeable within and 
between chassis. 

Mated Film Memory 511 

FIGURE13. THE MEMORY CHASSIS 

WEIGHT 491bs. CAPACITY 16K words 32 bits 
DIMENSIONS 18.3" x 11.3" x 5.5" CYCLE TIME 500 nanoseconds 
INPUT POWER 190 Watts ACCESS TIME 225 nanoseconds 
INPUT VOLTAGE 90 volt (internal INTERFACE 8 Channel Asynchronous 

de to ac power 
converter) 

COOLING Conduction to a ENVIRONMENT TOLERANCE Mil-E-16400 Class 1 
convection heat 
exchangar 

Figure 13-The memory chassis 

Figure 14-The stack module 

Sensei digit configuration 

The total sensei digit line is formed by intercon­
necting the 1024-bit sections, which are part of the 
individual substacks. Figure 15 shows one of 64 COffi-



512 Fall Joint Computer Conference, 1969 

1024 
ElEMENr 

SU8STAlTE 

Figure I5-Sense/digit line configuration 

plete sensei digit lines. :Stack modules 1 and 2 form 
the left and right halves, respectively, of the 4096-
bit bridge. Stack modules 3 and 4 form a seoond 
bridge and are connected in parallel to a common sense 
amplifier and digit driver. 

The common mode choke ensures that currents 
flowing in and out of the bridge are equal, and provides 
both a common mode and differential null at the sense 
terminals to the degree the legs of the bridge are bal­
anced. This unbalance is contrQlled so that the digit 
noise induced into the amplifier ~s less than three times 
the signal, a level within the tolerance of the amplifiers. 
The center driver transformer reduces the time required 
for the digit current to achieve . steady state through­
out the line to 40 nanoseconds. Without this trans­
former, the time would be 80 nanoseconds. 

Word selection 

Words are selected by the following method. The 
four stack modules, each containing 2048 double length 
words, combine to form the system capacity of 8192 
double length words arranged in a 64 by 128 matrix 
(Figure 16). On the driver side of the matrix, address 
bits S6, ~, and 88 along with Ss, 810, and Sll are decoded 
to form an eight by eight matrix which selects one of 
64 drivers. Similarly, other address bits are decoded to 
select one of 16 diverters and one of eight diverter 
selectors. Word current passes through the word loop 
which lies at the intersection of the drive line and the 
diverter line. The word current generator controls the 
amplitude and timing of the word current pulse. 

Timing 

Figure 17 shows the timing for a typical memory 
cycle. Prior to time zero, all requests were processed 
and ·the memory was waiting. Then, at time zero, a 

$.5,5, -6V 

+IOV 

S, S,S, s..S,SIIS" - +6V 

TO 8 TOTAL GROUPS 
Of 8 DRIVERS 

TO 8 TOTAL DRivERS 

TO 8 TOTAL DlVERTERS 

---- S~IOWS BOUNDARIES 
01' 2048 WOIID BY 
IH BIT STACK IIoIOOULE 

Figure I6-Word selection 

~O 100 

INITIAL 
MEMORY 
REQUEST 

REQUEST HOUSE - TRANSLATION 
KEEPING AND AND SELECTION 
PRIORITY EVAL-
UATION 

MEMORY ACCESS TIME 

500 600 700 800 
.,. .,. 1--'--

MEMORY INmATE. 
R£ ENTRY MEIIOR'I 
ACTIVE I 
R£jEST' 

'-y---J 

PRIORITY 
EVAWATION 

MEMORY CYCLE TINE 

WORD 
CURRENT 

DIGIT 
CURRENT 

SENSE 
PREAMP 

MAXIMUM SYSTEM ACCESS TIME PLUS CA8LE DELAY 

'1' 

OUTPUT '0' 
r-----_:t--.... 

DATA 
AEGISTERi----------

Figure 17-Timing for a typical memory cycle 

memory request arrived at the memory interface. 
For this condition, 165 nanoseconds are required to 
acknowledge the request, process it through the priority 
network and gate the address into the memory address 
register. 

At t = '235 nanoseconds, the address is decoded and 
the proper word and diverter switches ha.ve been 
turned on. Word current is driven through the selected 
word loop, interrogating the films in that wor 1. The 
sense signal peaks within the 50 nanosecond rise time 
of the word current. The polarity of the film sig~nal 
indicates the stored state. The sense preamplifier output 
is shown for both a stored "I" and "0." 



A sense signal from the near end of the sense line 
has only a 10 nanosecond delay through the preampli­
fier; a signal from the far end of the sense lin~ has the 
additional 40 nanosecond delay of the sense line. 

The bottom trace shows the length of time the con­
tents of the data register are valid. During this time, 
the digit driver is turned on; the polarity of the digit 
current determines which state is to be stored. On a 
read cycle, the data is recirculated from the data 
requester. At this time if the data from the requester 
is not available, the memory performs a split write 
cycle while waiting for the data to arrive. 

At t = 600 nanoseconds, priority evaluation of active 
requests begins. If active requests are present, the 
memory will recycle every 500 nanoseconds. 

Test results 

A preproduction model of the memory system de­
scribed was completed in April 1969 and has been 
undergoing environmental evaluation. Figure 18 con­
tains "schmoo" data which indicates the threshold of 
the first bit failure, with the memory system running a 
comprehensive pattern of writes, reads, and disturbs. 
Word and digit currents are shown as a percentage of 
deviation from nominal, Iw = 700 rnA, Id = 45 rnA. 
The center square represents the system's drive current 
limits; these limits are ± 5 percent. This is safely within 
the usable operating region, as indicated by the 
"schmoos", for ambient temperature ranges of - 55°C 
to 65°C. The degree of overlap of the high and low 

-50"10 

Figure 18-Memory system operating margins 

Mated Film Memory 513 

temperature "schmoos" eliminates the need for drive 
current temperature compensation; 

These results show the nominal characteristics of 
the storage element to be quite representative of the 
entire memory. The results also show that there are 
no noise or signal interaction conditions in the stack 
or electronics that will compromise system margins. 

Above the maximum digit current failure is the 
disturb of unselected bits. This limit approaches the 
Hc of the films since the element design very effectively 
minimizes transverse fields on these bits. This would 
otherwise aggravate the condition. Film dispersion and 
skew determine the minimum limit of digit current 
for an adequate write. Word current could not be 
varied above 20 percent of nominal so the schmoo 
in this region is not know. Minimum word current 
failure is caused by the reduced effective rise time re­
sulting in a delayed and reduced signal peak. 

CONCLUSIONS 

The existing MATED FILM memory design is con­
servative, yet competitive. As with any new technology, 
future development can be expected to enhance per­
formance and reduce costs. The two most significant 
growth areas for MATED FILM are higher speed and 
higher bit density. The feasibility of a 200 nanosecond 
cycle time for systems up to 106 bits has been demon­
strated by several partially populated breadboards. 
Expansion of memory in. the word direction has little 
effect on cycle time. The high bit density in this direc­
tion minimizes delay and loading effects. 

Part of the future plan for this memory is to double 
the bit density on the present size array so that each 
array will contain 2048 bits. This will provide such 
direct improvements as reduced costs, increased pro­
duction capacity, and smaller physical size. 

REFERENCES 

1 W M OVERN 
Stat'us of planar film memory 
IEEE Trans on Magnetics Vol 4 No 3 Sept 1968308-312 

2 N S PRYWES Editor W CHOW A CHYNOWETH 
H EDWARDS M HINES D LEENOV 
V NEWHOUSE A POHM N PRYWES S RUBENS 
Amplifier and memory devices: With jiims and diodes 
McGraw-Hill Book Co 1965 Chapters 12 13 

3 N S PRYWES Editor W CHOW A CHYNOWETH 
H EDWARDS M HINES D LEENOV 
V NEWHOUSE A POHM N PRYWES S RUBENS 
Amplifier and memory devices: With films aY/,d diodes 
McGraw-Hill Book Co 1965 Chapter 16 





A computer engineering laboratory 

by D. M. ROBINSON 

University of Delaware 
Newark, Delaware 

INTRODUCTION 

The advent of modern electronic computers has ex­
panded the scope of nearly all areas of scientific 
endeavor. The electrical engineer is perhaps most 
acutely affected by this expanision by virtue of his 
two-fold interest in computer processes. He is, as are 
his colleagues of other scientific disciplines, excited 
by the computing capabilities now at his disposal. 
Even more, he is deeply involved by virtue of his re­
sponsibility for the conception and design of the com­
puter and its hardware adaptation to a variety of ap­
plications. It is to the second phase of the electrical 
engineer's involvement with computers that our 
educational activities are directed, that is, to his in­
volvement in the realization of computers or computer­
like systems. 

The environment 

I n order to adequately portray this educational ac­
tivity, it is necessary to describe the environment in 
which it takes place. This environment will be de­
scribed as it applies to electrical engineering students 
at the University of Delaware. However, this is not 
an atypical situation and the description could apply 
to many of our universities. 

Present status 

Our senior students are now beginning to come from 
a generation which has grown with the computer. Some 
have started their association with computing ma­
chines in high school or even earlier. All have been 
through some sort of a problem-oriented first course 
which leads to machine solutions employing a lan-

guage like FORTRAN. All have become familiar with 
the power of the computer for problem solving as 
early as their first course in Linear Circuit Theory (a 
candid admission here is that some problems at this 
level are indeed a bit forced). By the time these stu­
dents have become juniors, they are aware of user­
oriented packages such as ECAP (Electronic' Circuit 
Analysis Program, an IBM applications program) 
and have employed this type of program in analysis 
of active and passive networks. Modeling and simula­
tion have become familiar terms and tools to these 
students. 

Except in the very earliest courses, machine compu­
tation is not introduced artificially. The students have 
been challenged by the problems. Courses have not 
been modified to simply introduce computational 
techniques; rather, the problem areas have no longer 
been artificially compressed to exclude the large sys­
tem or the nonlinear problem which motivates the com­
putational techniques. It should be mentioned that 
closed-form solutions and functional relationships are 
sought first. We do not seek to relegate all problems 
to computer solutions but rather to find a reasonable 
balance between this and the more traditional treat­
ment of problems. 

All of these activities are motivated by the search 
for solutions to generally traditional problems in 
electrical engineering; these activities have been termed 
applications oriented. For the most part, engineer­
ing educators tend to center their computer related 
activities about the capability of machines for solving 
traditional problems and the vehicle by which this 
computational power may be focused on their particu­
lar discipline. In such application areas, our educational 

515 



516 Fall Joint Computer Conference, 1969 

s:rstem seems to be responsive to the student's re­
quirements. 

Changes 

The electrical engineer's environment is dynamic. 
An educational system which was responsive to the 
needs of the past may not now serve. There are new 
problems of importance, probl~ms which have been 
spawned by the very existence· of the computer. Re­
cent electrical engineering graduates are concerned 
with the design of systems which. may involve a general­
purpose digital computer in an on-line control function, 
a data-retrieval and signal-processing operation or 
some similar real-time application. Control, communi 
cation, pattern recognition, filtering, and numerous 
other system functions are frequently developed about 
special-purpose digital computers. As a class, such 
systems certainly represent a significant portion of 
today's electrical engineering effort. With these prob­
lems for motivation, electrical engineering. students 
view a casual user relationship with computers as 
simply not being relevant to their educational needs. 
Their interests and future respdnsibilities can only be 
served by an involvement which gives them an inti­
mate experience with this developing environment. 

The importance of this changing situation has been 
recognized at the University of Delaware and over the 
past five years, several curriculum modifications have 
been made to strengthen and u.pdate our related ac­
tivities. The subjects which have the strongest rela­
tion to this area and, as such, the ones which have 
received the greatest attention in our revisions, cover 
such topics as logical design, switching theory and 
computer organization. The curriculum modifica­
tions have extended into such traditional courses as 
electronic circuits, control systems, communication 
systems, and information theory. These courses have 
been modified to emphasize the role of discontinuous 
elements or discrete systems or to introduce the no­
tion of digital processes. Some course work is immediate­
ly related to digital systems and their design while 
more remotely related course work simply encourages 
thinking in terms of digital problem solutions. 

Role of the laboratory 

These curricular innovations have permitted the de­
velopment of the general analysis, synthesis or design 
techniques required for the examination of digital 
systems. Mathematical descriptions of the situation 
are developed from models of these systems. As in any 
physical situation, the conclusions drawn from manipu-

lation of the mathematical models are no better than 
the original representation of the system; in additi.on, 
the modeling process itself is often tempered by the 
degree of rigor which may be mathematically tractable. 
Consequently, the conclusions dra.wn from analysis 
of the models may fail to give a complete or accurate 
representation of the physical digital system's be­
havior. In this area then, as in all areas of en~~ineering, 
it is felt that laboratory experience acts as a, medium 
through which the reality of the physical situation 
may be brought to the student. He is made aware of 
the limitations of his system models and the implilca­
tions of his modeling process. It is in the 12Lboratory 
that a student must pursue the details of the subject; 
this is where he "puts it all together." Thus, progress 
in the discipline area requires progress in related labora­
tory experiences. 

Enhancing the quality of laboratory studies in dig­
ital systems is a process which is not accomplished 
without assiduous attention. This is true of 12~boratory 
studies in general and it is especially the c:tse for a 
digital systems laboratory. This is at least partially 
due to the plague which has been termed the "'tyralmy 
of numbers." A common characteristic of digital 
systems is certainly that large numbers of elements 
are required and that large numbers of connections 
must be established. Only trivial problems can be 
attempted in an afternoon spent. in the laboratory. 
Even trivial systems can quickly spread into a maze 
if usual breadboard techniques are used. Lmboratory 
budgets can rapidly become unrealistic if even only 
one or two students wish to retain a problem of moder­
ate complexity. Some early efforts were made to de­
velop small patching stations and arrangements 
which would help alleviate these problems. These 
efforts served some pedagogical purpose; however, 
their limited versatility and the relatively slow ex­
pansion process did not permit them to foster the 
desired growth of this area. 

The state of our laboratory has been enh:tnced by 
the acquisition of a small digital computer and the 
introduction of this machine into a system which ap­
proximates a generalized interface. This system per­
mits physical access to all of the essential eomputer 
functions and incorporates facilities for patching 
connections to external digital logic-modules so that 
an extension of the computer or an interfacing system 
may be rapidly established. We have dubbed the 
system with the acronym DADEC (Design and De­
monstration Electronic Computer). This system, which 
represents only a modest investment, has proved to 
be a boon in the inspiration of interest and stimulation 
of growth in this study area\ 



Several laboratory experiments and exercises have 
been developed about this DADEC system Some of 
these are extremely simple exercises which serve to 
establish familiarity with the machine, its coding, 
logic levels, etc. S~me experiments are rather sophisti­
cated real-time data processing adventures. The set 
of experiments was designed to support course work 
from sophomore computer science level through elec­
trical engineering senior projects. 

In this paper, the DADEC system will be described 
and several example problems outlined. The examples 
have been chosen to illustrate the range of educational 
levels which may be served using the experimental 
system, the versatility of the system, an example from 
several of the particular related course areas, and 
some problems which may be of general interest. 

The DADEC system 

The DADEC system is conceptually and practically 
very simple; a block diagram of the system is shown in 
Figure 1. Central to the system is a small general­
purpose digital computer. A number of digital logic­
modules (flip-flops, gates, one-shots, line drivers, etc.) 
are mounted in adjacent frames with a patch panel 
which permits the rapid establishment of intercon­
nections between these peripheral elements and the 
computer. All of the computer interfacing lines are 
available at terminals on this patch panel. 

The majority of the logical building blocks are 
completely unspecified, that is, any available logic 
module may be substituted in the patching arrange­
ment. It has been found that a few specific functions 
are repeated in a great many interfacing problems, 
and these functions have therefore been prewired on 

PAPER 
TAPE 

READER 
PUNCH 

FIXED 
INPUTS 
DISPLAY 

CENTRAL PROCESSOR 
(PDP 8) 

PATCH SYSTEM 

LOGIC 
MODULE 
ARRAY 

Figure I-DADEC 8ystem -J31ock diagram 

A Computer Engineering Laboratory 517 

the patch panel (two binary up-counters and one 
binary up-down-counter). Switch-registers, light-regis­
ters, some momentary contact switches and free indi­
cator lights are available as a portion of this generalized 
interface. Trunk lines are available for connection to 
remote equipment such as analog tape transports, 
signal sources, etc. 

An analog-to-digital converter is included in this­
system. ~tudents have designed, built and added a 
four-channel analog multiplexer. Students have also 
designed, built and added ten channels of digital-to­
analog conversion. A portion of this D-A converter is 
used to drive a storage oscilloscope facility. This sys­
tem is by no means static; we are presently adding 
additional equipment racks 'for the inclusion of micro­
logic modules. Plans include the addition of a paper­
tape reader-punch and a disc to the system. An incre­
mental digital tape recorder for accumulation of data 
for later off-line processing is to be interfaced by the 
students and added to the system. 

A few comments are in order regarding the selection 
of the particular computer for use in the DADEC 
system. While the computer is general-purpose, it is 
not subject to the same set of constraints which govern 
the selection of a machine for a user oriented com­
puting center. For our purposes, the most important 
criterion for evaluating a machine is its ability to 
contribute to the educational process. In order to 
contribute, it need not have a tremendous core storage 
capacity or a rapid thru-put capability. Since the 
machine has been in use, its applications have been 
concerned with interface problems or the demonstra­
tion of system functions and not with its use simply 
as a computational device. The machine need not 
have a long word length; there is very little pedagogy 
which is served by a twenty-four bit machine which 
is not adequately served less expensively by a twelve­
bit machine. Indeed, the short word length and the 
resulting abbreviated instruction list and core paging 
system actually serves our instructional purposes. The 
computer should be easy to interface and adaptable 
to a large variety of peripheral equipment. It should 
have inherent compatibility with a family of logic 
circuits which are readily available. The machine 
should be easy to service; frequent failures of the sys­
tem are observed, since many of the experiments in­
volve hardware entry into the internal operation of 
the machine. Finally, it, is a desirable attribute if 
the machine has at least a limited FORTRAN language 
compatibility. This enables inexperienced coders to 
immediately use the system once any additional soft­
ware is established for addressing peripheral devices. 



518 Fall Joint Computer Conference, 1969 

One currently has a rather large selection of machines 
which meet these objectives (at least 25 such machines). 
At the time our decision was made, the list was not so 
extensive, but we have found that the Digital Equip­
ment Corporation's PDP-8 is a very satisfactory, 
moderately priced machine. 

Example experiments 

Several example experiments will be outlined in this 
section. Some of the experiments are, of course, promp­
ted by the requirement that students must first be 
introduced to this system; however, the predominant 
motivation is problem solving. When the system was 
first conceived, the faculty felt responsible for specifica­
tion of a number of problems to be implemented. We 
felt that we would be hard pressed to find a sufficient 
number of examples to insure full utilization of the 
system, however, the students have been encouraged 
to suggest problems and their exuberance now pre­
vails. We encourage the students to seek problems 
from other departments on campus and their sug­
gestions have covered the gamut from exotic time­
sharing activities to automatic control of oyster re­
production. These following few examples were chosen 
from student suggested projects. 

An introduction to the system 

The Electrical Engineering Department is respon­
sible for the instruction of computer science majors 
of the College of Arts and Science in a course that is 
oriented toward the hardware and architecture of 
c~mputing systems. For the most part, these students 
wIll have had no experience with a digital computer 
at a more intimate language level than FORTRAN. 
We find that a simple machine-language program tracing 
experiment is extremely effective in establishing both 
an introduction to the DADEC system and the opera­
tion of a compiled language. A simple type-out routine 
is coded in FORTRAN; this program is compiled 
and loaded along with the operating system. The rou­
tine is then executed in a single-step machine-language 
mode s~ that all of the required steps of masking, code 
converSIOn, communication with a peripheral device, 
etc., may be examined using the register information 
supplied by the DADEC system. This experiment is, 
of course, extremely simple; however, it does illus­
trate the fact that this somewhat generalized digital 
system finds use even at early instructional levels. 

An extension of the computer 

These computer science students soon become moder-

ately proficient at programming in the assembly lan­
guage of this machine. Programming instruction is 
not a part of the course per se; but the relation between 
"hard " d" ft "h' h' d' ware an so ware w IC IS Iscussed, quite 
often naturally brings up coding problems. K ear the 
end of the course they are capable of more ambitious 
experiments in which additional commands are added 
to the repertoire of the computer. An example of this 
is the addition of a "hardware" EXCLUSIVE-OR 
command. In this experiment, a program controlled 
input/ output transfer is initiated to transfer the con­
tents of two memory locations to external registers. 
The peripheral portion of the system performs the 
EXCLUSIVE-OR operation and transfers the data 
back into the accumulator. Now, of course, a program­
mer can accomplish a similar result with a sub·-routine 
of ~ome fifteen or so statements. The student is thus 
faced with an example of what is often called the "hard­
ware-software" trade-off. 

Automatic testing 

Within the electrical engineering curriculum em­
phasis is placed on designing the class of elec~ronic 
circuitry which is usually involved in computers. Each 
student is assigned the problem of accomplishing a 
"worst-case" design of a discrete element NAND / 
NOR gate. This design requires that a certain fan-in, 
fan-out requirement be met at room temperature with 
any transistor from a given distribution .. The DADEC 
system is used in the evaluation of the students de­
sign, that is, in testing of the circuits. The students go 
through the procedures of design computation, bread­
boarding, testing, reevaluation of their desig:n, and 
finally, fabrication of their design on a printed wiring 
board which is acceptable in the DADEC interfac:e 
system. The system then exercises their circ:uit by 
connecting output loads and applying worst-case 
signals while circuit conditions are tested with the 
analog-to-digital converter. The computer gives the 
student a grade on the lab experiment which indicates 
how well he met the design objectiv~s. 

Encoding and deooding 

A course discipline area is developed in the theory 
of simple sequential systems. As an example problem, 
and one which draws upon the student's information 
theory background, a single error correction digital 
transmission system is designed. An asynchronous, 
sequential coder and decoder are realized using NAND 
gates. This sub-system is patched into the DADEC in­
terface and the computer is used to gener~te code 



groups which are transmitted to and received from the 
transmission system. A random error generator (a com­
puter subroutine) creates· a noisy channel or errors 
in the transmission path. The computer further analy~es 
the transmission and reports the per~ormance statis­
tics of the system. 

Understanding the computer functions 

The particular computer employed in this system 
has two rapid input-output data transfer mechanisms. 
These are called single-cycle and three-cycle data­
break transfers. These are rather difficult mechanisms 
for the students to assimilate. This is not because they 
are conceptually difficult but because of the large 
number of signals which must be recognized and care­
fully timed. A simple experiment serves to illustrate 
both of these data-break facilities. We call this ex­
periment a hardware clear core. In this interface, 
the single cycle data-break is first called to set zeros 
into core location zero and one into location one. The 
three cycle data-break is then initiated with a word 
count register as location zero accompanied by presen­
tation of all zeros on the data lines. This has the net 
effect of clearing all core locations except zero and 
one. The single cycle data-break is then again called 
to clear these two locations. This is all acco~plished 
with a sequenced switch operation in the interface. 
While the interface is particularly simple, the experi-

. ment does require a sophisticated understanding of 
the operations of the computer. 

Some more challenging experiments 

Student projects are being executed using the 
DADEC system. In this project environment, rather 
comprehensive problem areas are either suggested to 
the students or suggested by the students. They may 
then pursue a solution of the problem for one or per­
haps two terms of their senior year. Several of these 
problems will be described in greater detail than have 
the previous problems, since these serve to illustrate 
the student's approach to problem solving. 

A puise-height.analyzer1 

The analysis of pulse-height information is quite 
suitable for digital sub-system soluti~. This particu­
lar pulse-height analyzer is unique in that the pulses 
are of only about 30 nanoseconds duration and the 
counting interval must be short (about 50 micro­
seconds) with no dead time between successive count 
intervals. The student approached the problem by 

A Computer Engineering Laboratory 519 

HL HL 

• f2 
00 01 10 II 

00 00 01 10 10 
f • f2 

00 01 10 \I Z 

00 (0 2 4 5 I 

01 3 ® 4 5 I 01 I I 01 10 10 

I I ® 2 4 5 0 II I I 01 10 10 

10 I ® @) ® I 10 00 10 10 10 

FLOW TABLE EXCITATION TABLE 

SIGNA~_ 

~:,,~: ~/~ 
F. = H + [ f 2+ L f. f~ 

Fa =H'f2 + H'Lf.' 

COMPARATORS VL L FUNCTIONS Z = ( f. fa )'. 

Figure 2-Pulse-height detector - Description 

designing an asynchronous sequential circuit which 
transmits a standardized pulse whenever its input 
pulses meet the proper amplitude criterion. A descrip­
tion of thi$ system is shown in Figure ·2. Two com­
parators are used as decision elements to determine if 
the input signal has passed either the low threshold 
voltage (V L) or the high threshold voltage (V H)' The 
results of these decisions i.e., the output of the com­
parators, are described by -Boolean variables Hand L. 
A flow table which summarizes the required circuit 
action for any input sequence is shown in Figure 2 
(note that flow tables of this type are described in 
references such as Maley7). 

This fl9w table may successfully be assigned internal 
state variables (fl and f2) as shown. The excitation 
table may be formed, and from these tables excita­
tion functions (F1 and F 2) and the output function 
(Z) may be derived. 

Figure 3-Pulse-height detector - Logic diagram 



520 Fall Joint Computer Conference, 1969 

----------------------------------------------------------------------------------,-------

TIME SCALE 100 ns/dlv 

AMPLITUDE 500mv/dlv 

(OUTPUT 2 volts/dlv) 

Figure 4-Pulse-height detector - Performance 

A logic diagram realizing these excitation and out­
put functions using NAND elements is shown in 
Figure 3. The Z function feeds a, pulse amplifier which 
produces standardized pulses upon a logical 1 to 0 
input transition. Figure 4 indicates the perfor­
mance of this pulse-height detector in response to 
pulses which dwell at the threshold level for only some 
10 to 15 nanoseconds. Notice that pulses less than the 
low-threshold or greater than the high-threshold 
produce no output. Pulses with amplitudes between 
these thresholds produce standard 10.0 nanosecond 
output pulses. 

These output pulses are directed to one of a pair of 
up-counting registers in a synchronous sequential 
SUb-system. These registers alternately store the count 
for the appropriate counting interval and then dump 
the stored count directly into a memory location using 
the computer data-break facility. The entire analyzer 
interface, which consists of some 45 flip-flops, 50 gates, 
and about five other miscellaneous circuits, is patched 
on the DADEC system. The computer controls the 
counting interval and keeps track of the appropriate 
core locations for data storage. 

The computer also controls the two threshold volt­
ages V H and V L by directing appropriate numerical 
values to two channels of the digital-to-analog con­
verter. Two additional D/ A channels are employed 
for graphical display of the accumulated 'Count as either 
a function of the threshold voltages or time. This 
is accomplished by simply presellting these two analog 
channels and a device selectiqn channel to the X, 
Y and Z axis of a cathode-rayLtube with storage fa­
cilities. 

For this problem, and indeed for all problems of a 
project nature, the software support must also be de-

veloped by the students. In this instance, thera H,re 
very few calculations accompanying the process and a 
rather short symbolic program suffices to control the 
experiment, accumulate the data, present the display, 
and punch out information for later entry into a larg;er 
computer for analysis. In this instance, the DADJffiC 
system is functioning as an on-line data retrieval 
system with quick-look facilities and off-Hne d:a.ta 
processing. 

Play ba1l2 

An interesting set of experiments is developing in 
the area of physiological monitoring of athletes. Thru 
the cooperation of the coaches and players of a base­
ball team, it has been possible for us to introduce str:a.in 
gages' and other transducers in the player's bats, 
switches in the player's shoes, contact assemblies in 
the bases and ball-speed monitoring equipment in 
the playing field. Small digital sub-systems h:a.ve been 
designed and built to time the player's fun to first 
base after the crack of a bat, to time the pitch, fmd 
to monitor- the position of the pitcher's and batter's 
feet. The DADmd system is used to collect and corre­
late these data and alsoto sample and digitally repre­
sent the bat acceleration during the swin~~. These 
processes are all moderately simple and their imple­
mentation is straightforward; they will not be further 
described. 

In this application, the DADEC system is used for 
data accumulation. Information is produced on punched 
paper tape for later analysis on large data-processing 
machines. For the baseball fans~ a typiQal se1i of dl:t.ta 

1000 -fh -c:: 
::J 

500 0 
(,) -

~ .~.J... ... ~ .. J.-,.~ .. 
. 
: 

........... /., 

~ -L LABEL .. " ....... ............. ... .... 
z 
Q 0 
~ 
0:: 
LaJ 
..J -500 
LaJ 
() 
() 

........ ,... .................... 
"" ... -II LABEL ----- ....... ""'" 

..... , .. 
", 
'""l 

<X -1000 

BATTER H ~ 

PITCHER ~ 
-.8 -.7 -.6 -.5 -14 -.3-.2 

TIME (sec.) 
-.I 

Figure 5-Typical baseball data' 

. .. '. 

• 
• 

I 

• • 
• • 

o 



showing one batter's swing is presented in Figure 5. 
Two channels of bat acceleration are presented. One 
channel of acceleration is measured normal to the 
axis of the bat in the direction of the label, and the 
other is measured normal to this direction. The time 
at which the pitcher's foot leaves the mound (approx­
imately the release time of the pitch) is indicated as 
is the shift in weight on the batter's feet. Time is 
measured backwards in this diagram from the instant 
at which the ball was hit. It might be mentioned that 
this is not a game situation; this trace was taken dur­
ing batting practice and most pitchers would pitch 
faster than this in a game situation. 

Star gazing 

Afttronomers on campus are interested in monitoring 
the emitted light intensity from a star as it passes 
behind the moon. For a brief moment, when the star 
becomes eclipsed, one may observe diffraction of the 
light from the localized star source by the edge of the 
eclipsing moon. If sufficient detail regarding the dif­
fraction pattern during an occultation is recovered 
from an experiment, then an apparent stellar diameter 
may be computed.' The experimental procedure con­
sists simply of observing the appropriate star with a 
telescope and focusing the total light collected from 
that star on a photomultiplier tube. The data recovery 
problem is being approached in two ways. One solu­
tion resembles the previously described pulse-height 
analyzer while the other resembles a portion of the 
baseball data recovery scheme. 

The first solution method treats the output of the 
photomultiplier tube as a pulse source.3 Pulses are 
again sent to a counter which is directed to count for 
a prescribed interval. At the end of this interval the 
contents of the counter are transferred to a shift regis­
ter, the counter is cleared and again accepts pulses. 
In this application, the words are shifted out to an 
intermediate storage magnetic tape which is later 
read into the computer off-line. The motivation for 
this mode of operation arises from the requirement 
to develop a portable system which can be carried to 
the telescope sight. In this instance~ the DADEC sys­
tem was used as the bread-board for all preliminary 
design of the specialized digital sub-system. The 
DADEC system is again employed in the recov~ry of 
the data from the returning digital tapes. 

The second solution consists simply of processing 
analog tape recordings of the stellar occulation.4 The 
analog source is the low-pass filtered output of the same 
photomultiplier tube. The DADEC system controls 
the analog transport and accomplishes the logic for 

A Computer Engineering Laboratory 521 

extraction of sample values from the appropriate sec­
tor of the tape. 

In either experimental procedure, the end result is 
a number list which represents the light intensity 
as a function of time during the time of the occultation. 
For either set of data, a fast Fourier transform algo­
rithm is applied to the sampled time functions. The 
relative amplitude of certain frequency components 
yields information from which the stellar diameter 
may be determined. 

The final phase of data recovery for these problems 
is highly computational. For this reason, it is deemed 
desirable that the supporting software be written in 
FORTRAN. The students must develop facility with 
FORTRAN in order to establish the proper linkage 
for interface control and data entry within the frame­
work of the language. 

Shocks 

A final example problem to be discussed is a shock­
measurement system. In this system, two pressure 
transducers are mounted on a moving vehicle. An 
air-borne shock-wave is transmitted past these two 
transducers. The relative time of arrival of the shock­
Wave at each transducer and the length of shock dura­
tion at each transducer is measured by a system which 
is attached to the vehicle. This portion of the system 
further converts this information for transmission over 
a telemetry link to a receiver. The typical input se­
quences shown in Figure 6 represent possible received 
signals in this system. The time To to Tl represents 
the shock duration time on one transducer while the 
time T 2 to T 3 represents the shock duration time on the 
other transducer. The physical reasoning is not im­
portant to our discussion, but the times of interest 
are the time differences 1'0 to Tl and To to T2. In 
some instances, for example, th~ second typical input 
sequence, T2 may precede To. NotIce that the two 
transducers modulate the signal differently so that it 
is always possible to identify To as an amplitude in­
crease of two units while T2 results in an amplitude 
increase of one unit. Typical order of magnitude times 
for these events are To to Tl, about 200 to 400 J.l.S and 
To to T2 from about -300 to 800 J.l.S. It is deduced from 
other engineering calculations that a resolution of one 
microsecond would yield sufficient information in the 
-measurement of these time durations. 

The received signal is fed to three comparators with 
three threshold voltages established. The comparators 
then yield decisions regarding the crossing of th.resh­
old level V .tas a Boolean variable A, VB as variable 
B and V c as variable C. These inputs are further de-



522 Fall Joint Computer Conference, 1969 

Vc - i - - t- -t - - + - SIGNAL 
VB - -r-:-=J- -:- --+-
v.d----~ VA 

A I 1 

t- :To li: 112 T3: 
I 1 I I 

TYPICAL INPUT 
SEQUENCES 

INPUT 
DECODING 
LOGIC 

"Figure 6-Shock measurement system - Pront end 

coded to produce the Boolean variables XIJ X2, Xa 
and X 4 which indicate respectively the number of 
thresholds which have been crossed. These signals and 
their logical decoding are all shown in Figure 6. The 
information of interest could be recovered if these 
X variables are fed to a sub-system which produces' 
one megahertz output pulses on three lines called Zl, 
Z2, and Za. The Zl output should then drive an up­
counter which records To to Tl time differences. The 
Z2 output should drive the up-count line while Za 
drives the down-count line of an up-down-counter which 
records Tl to T2 time differences. This will yield the 
appropriate time differences in two's complement 
binary arithmetic which is compatible with the com­
puter. 

A natural solution of this problem is hence suggested 
as a clocked sequential system. A flow table for such a 
system is shown in Figure 7. (Note that this flow table 
must be interpreted differently from the previous flow 
table and is described in references such as Marcus.S) 

The clock is not shown in the flow table, since its 
operation is understood. A state assignment is ex­
ecuted and the excitation table, also shown in Figure 
7, is derived from this flow table. This generalized 
excitation table is of the type d~scribed in particUlar 
by Marcus.s From these tables the excitation and out­
put function, shown in Figure 7 may be derived. A 
possible logic realization of these functions is shown 
in Figure 8. 

This SUb-system does not complete the shock mea­
suring system. The outputs Zl, Z2, and Zs are fed to 
two counters. or registers which f upon completion of 
an experiment, store the register contents in specified 
core locations by calling the computer data-break 
facility. The total experiment consists of observing 

XI Xz ~<:, X4 
YI Yz XI Xz Xa X4 Yz Y

I 0 I 0 I 0 I 0 
- '3 6,2 00 00 10 

- I 
I I 00 II I I 

01
2 - 0'1

2 
01 II 

3 !II I 
10 10 10.01 II 

FLOW TABLE 

S I-XZ+X 4 

SZ-X3 +X 4 

I 
II 

I 
II 

I 
II 

I 
II 

EXCITATION FUNCTIONS 

F'F, O 

I 

FFz 0 
I 

~ 1 I 1 0 1 

0 0 I I 0 I 

0 0 0 0 I I 
10 1 1 1 1 

EXCITATION Tt,BLE 

ZI =X 3 +X 4 

Zz = X3 y: +XIYI1yZ 

Z 3 = Xz y~ + XI YI y~ 

I 
I 
I 
1 

OUTPUT FUNCTIONS 

Figure 7 -Shock measurement system - Description 

I~Z y~ X2 P3>--+ 3 
Y2 Xl 

I 1 

YI Y2 

Figure S-8hock measurement system - Logic dil,gram 

several hundred of such shock waves which are gener­
ated iTh bursts at a possible rate of some 6,000 shoeks 
per minute. 

The support programming for this system was also 
executed by the students. In this instance, eonsider­
able calculation must be applied to the data. It was 
felt that the FORTRAN language was an efficient 
vehicle for such calculations. The FQRTRAN pro­
gram must communicate with the interface and such 
programming problems must be solved by the s'liu­
dents. 

What's under way 

A large number of problems have been suggested 
for solution on this DADEC system. A listing of prob­
lems which have been accepted and are in various 

I 

1 

1 

I 
1 



stages of progress is given below. It should be noted 
that these are undergraduate project problems and 
as such need not necessarily be new or spectacular in 
their implications. The sole requirement is that the 
probl,ems have engineering application and will allow 
the student to follow a reasonable design procedure 
to achieve his ~oal. The problem areas under study 
include signal analysis using exponential basis func­
tions, Lesbegue sampling, speech analysis and genera­
tion, automatic x-ray data processing, on-line corre­
lation analysis, physo-acoustic reverberation studies, 
graphic displays, and control of psychological experi­
ments. 

Spin-off projects 

Several projects have developed which are not ,di­
rectly related to the DADEC system but are inspired 
by it or find use and application in design with the 
system. One example is a Boolean string manipula­
tion program which accepts long strings of Boolean 
expressions combined with a variety of operators 
(EXCLUSIVE-OR, 'AND, OR, NOT, STROKES, 
etc.).6 The string manipulation program operates 
on this set of characters and yields a sum-of-products 
type expression for the Boolean function. Boolean 
simplification algorithms have also been developed. 
A fa'mily of programs that permit a high degree of 
operator-machine interaction have been developed 
for the manipulation of flow tables.6 These programs 
are useful in flow table manipulations such as the 
elimination of superfluous states, or accomplishing 
appropriate mergers and they are helpful in solving 
the state assignment problem. 

CONCLUSIONS 

The system has been in use for about thirteen school 
months. Our classes are generally small; we graduate 
about thirty electrical engineers per year. The list 
of problems presented is perhaps a measure of the en­
thusiasm with which students have accepted this 
problem area and DADEC system. The anticipated 
problem of problem suggestion is itself no longer a 

A Computer Engineering Laboratory 523 

problem. Weare now in the enviable position of being 
able to be discriminating in the suggestions which we 
allow to go to completion. The students are beginning 
to vie for time on the system and in order to qualify 
for this time they must present an acceptable technical 
proposal outlining their application. 

The present status of this DADEC system then is 
one in which a number of experiments have been 
developed in support of a variety of course efforts. 
A tremendous pos~ibility exists for future develop­
ments of this sort. That is, the system configuration is 
sufficiently versatile so that only lack of the students 
imagination precludes his open-minded approach to 
a problem. It thus seems that this modest investment 
has sparked considerable interest and motivated the 
students to pursue the detail necessary to solve the 
problems of our new environment. 

REFERENCES 

The first six references are to student reports which 
are available from the Morris Library of the Uni­
versity of Delaware. 

1 J F BENNETT 
On-line processing of nanosecond pulses 
Dept of Electrical Engineering Univ of Delaware 1968 

2 D L CLARK 
Analog and digUal data recovery jrom magnetic tape 
Dept of Electrical Engineering Uhiv of Delaware 1968 

3 J A BRCICR 
A stellar occultation digital data sub-system 
Dept of Electrical Engineering Univ of Delaware 1969 

4 L T QUICK 
Digital processing oj analog stellar occultation data 
D~pt of Electrical Engineering Univ of Delaware 1969 

5 L R NICHOLS 
Computer manipulation of boolean character strings, 
Department of Electrical Engineering Univ of Delaware 
1968 

6 G D EARLE 
A utomatic flow table manipulation 
Dept of Electrical Engineering U niv of Delaware 1969 

7 G A MALEY J EARLE 
The logic design of transistor digital computers 
Prentice-Hall Inc Englewood Cliffs N J 1963 

8 M P MARCUS 
Switching circuits for engineers 
Prentice-Hall Inc Englewood Cliffs N J 1962 





:Evaluation of an) interactive display 

system for teaching numerical analysis 

byP. OLIVER andF. P. BROOKS, "JR. 

University of North Carolina 
Chapel Hill, North Carolina 

INTRODUCTION 

The purpose of this study was to develop, use, and 
evaluate an interactive" display system for teaching 
selected topics 'in elementary numeriCal analysis. We 
were interested in giving students a thorough intuitive 
understanding of the pertinent mathematical functions 
and in measuring the learning effects of an on-line 
graphical capability. 

This system was developed in the spirit of the Culler­
Fried on-line system.1 It is similar to it in its emphasis 
on the combination of an interactive and a display 
capability, and its mathematical orientation; it differs 
from it in that it is designed primarily as a teaching 
tool rather than for problem solving. 

The system developed enables the insttuctor or 
student to enter a variety of mathematical equations 
into the computer in a FORTRAN:..like format and 
obtain graphical displays of these functions. In ad­
dition, the user can illustrate a number of elementary 
numerical methods, such as Newton's method for 
locating roots of equations, the Euler-Heun method for 
solving ordinary differential equations, and the use of 
interpolating polynomials. The hardware consists of a 
display unit with lightpen and function keyboard and 
a background computer. The software consists of a 
monitor; programs which interpret requests from the 
display user; and programs which produce displays. 

A quantitative evaluation of the feasibility and use­
fulness of computer graphic techniques in teaching 
elementary numerical analysis raises the following 
questions: 

525 

1. Does the system developed perform a useful 
function? 

2. Does it perform this function better than 
currently available visual facilities, e.g., slides 
or film? Does it help the instructor to prepare 
more informative and interesting lectures? Does 
it give the instructor more flexibility in the 
classroom? Does it encourage the students to 
take a more active interest? Does it improve 
student retention? 

3. Can it be integrated into the teaching process 
so as to avoid being a distracting curiosity? 

4. What does it cost to teach with such a system, 
and how can it be economically feasible? 

5. What sort of computer system (software and 
hardware) is required? 

6. How much manpower, tIme, and money IS 

required to develop such a system? 

Procedures 

A brief non-cr~dit course in elementary" numerical 
analysis was offered by the Department of Computer 
and Information Science in the" summer of 1968. The 
course was held twiCL One. group was taught with the 
aid of the on-line graphic system; the other was taught 
conventionally. Thec1ass..met for thirteen periods, two 
hours night,ly. Prerequisites for this course were ele­
mentary calculus and a familiarity with ordinary 
differential equations. 

The topics selected for use in the course and evalu­
gtion were 



526 Fall Joint Computer Co~erence, 1969 

---------------------------------------------------------------------
1. Polynomial approximation and interpolation. 
2. Iterative methods of solving for the real roots 

of algebraic equations. 
3. Numerical solutions to ordinary differential 

equations. 

The system was used by the instructor to show 
examples during lectures and by the students in a 
laboratory session devoted to the properties of poly­
nomials. 

The system had been tested qualitatively by similar 
use during its development. We learned at tl:at time 
that hands-on time by students was useful in removing 
the novelty of the display unit, allO\ving the stu: ~ents 
to concentrate on the material illm;;trated. It was also 
found that presenting a series of illustrat:ons concen­
trating on a single topic, e.g., iterative methods to 
find roots of equations, was an effective way of impart­
ing the key concepts of the material to the students. 

Example 

The use for lecture illustration can be seen from 
an example. The topic roots of equations 'was 
introduced with two specific examples from physics 
-a column-buckling problem and a pipe-flow 
problem. Each problem required solving for the 
real roots of an equation. 

Then there was a brief discussion of the tech­
niques available for solving equations, and the 
field was narrowed to iterative methods. The 
properties common to all iterative methods were 
discussed, and the practical questions which face 
the problem solver, e.g., rate of convergence and 
computational efficiency, were presented. 

The first specific method, linear functional 
iteration with acceleration, was introduced by 
presenting t.he necessary theorems on the e",istence 
of solutions and convergence. 

This was followed by a series of illustrative 
examples. These consisted of polynomial and 
non-polynomial equations. The iterative method 
was applied to each and the regions and rates 
of convergence were discussed for each case. In 
applying functional iteration to the equation 

x8 + 2x2 + lOx - 20 = 0, 

for example, the several ways in which the iterative 
scheme could be set up (e.g., 

x = 20/(x2 + 2x + 10), orx = (20-
2x2

.- r)/lO) 

and the effects on convergence were illustrated by 
actually displaying each of the cases. 

The Aitken acceleration scheme was then ap­
plied to each of the cases previously illustrated, 
and its effects on non-converging as welll as <:on­
verging sequences of iterates were exploredl. 

Finally, a brief review of the techniques discussed 
and the key concepts discovered through the 
illustrative examples was given by the instructor. 

This cycle of introduction, presentation of theory, 
illustrative examples, and review was followed in each 
of the classroom lectures. 

Besides the lectures, each group was given a labora­
tory exercise designed to lead the student to the im­
portant properties of polynomials. The test group 
worked the exercises using the interactive display 
system. The students themselves operated the display 
device after receiving instructions on its use. The 
control group worked the exercises using the bl:ackboard 
as a graphic device. 

An examination was given on each of the three topics, 
as well as a final comprehensive examination covering 
these three topics. Each group. was given a one-hour 
examination (the pre-examination) during the first day 
of class. This examination tested mathematical ma­
turity and previous knowledge of numerical analysis. 

Circumstances did not permit a random assignment 
of students to groups. Students attended the session 
of their choice. 

The course was open to anyone possessing the neees­
sary prerequisites. Each group was composed largely 
of advanced graduate students with backgrounds in 
statistics, mathematics, and physics, and no previous 
experience in numerical analysis. In each group there 
was one non-student. These two non-students had 
college backgrounds (mathematics and physics) similar 
to those of the students, plus professional backgrounds. 

The test group was composed of four subjects; the 
control group consisted of six. Three additional subjects 
were available for measurements on the second topic, 
the roots of non-linear equations; two belonged to the 
first group, one to the second. These three subjects 
were ~iven the same pretest as the others. 

Design of the experiment 

The experiment performed was of nonrandomized, 
control-group, pl'etest-posttest design. 

The two groups of observations were viewed as 
independent samples from a population composed of 
two normally distributed subpopulations. It wa~s further 
assumed that each sample group was drawn from a 
distinct sUbpopulation, and that the subpopulation 



Evaluation of an Interactive Display System 527 

variances were the same, and equal to the population 
variance. 

With these assumptions, the following tests were 
performed :2 

1. A variance-ratio test for each of the post­
examination results to determine the validity of 
the assumption of equal variances of the two 
groups. 

2. A multivariate F -test to determine if the differ­
ence in performance of the two groups, taking 
the results of all four post-examinations into 
consideration, was due to chance or to the· 
difference in treatments. The mean score of 
each group on the pre-examination was taken 
as the covariate, and the mean scores on thp 
four post-examinations were the variables. 

3. A t-test on the within-classes regression co­
efficient to determine if the difference in the 
initial ability of the two groups as measured by 
the pre-examination scores had a significant 
effect on the post-examination results. 

4. A univariate F -test for each of the four post­
examinations to test the null hypothesis 

versus its alternative 

where ml and m2 are the mean scores of the 
test and control groups, respectively. The pre­
examination mean for each group was used as 
a covariate. A significance level of .05 was 
chosen prior to performing the experiment. 

Instrumentation 

Hardware 

The IBNI 2250 Display Unit, Modell, was used 
foro this experiment. This unit is attached to an 
IBM System/360 Model 40H (256K bytes) com­
puter via a selector channel. 

Images are generated by the 2250 on a cathode 
ray tube which has a display area of 12" X 12" 
in size, with 1024 by 1024 addressable points3• 

The following special features were available on 
the unit used for this experiment: 

An 8K byte buffer used for image regeneration. 
A character generator. 
Absolute vector graphics, which allows the 

plotting of vectors by specifying only the 
coordinates of the end points. 

An alphanumeric keyboard for entering charac­
ters into the buffer. 

A function keyboard consisting of thirty-two 
pushbutton. keys, an indicator light for each, 
and eight overlay code sensing switches. 

A lightpen. 

Programming system 

'1'he graphic programming system used in this 
experiment operates under Operating 8ystem/360 
(MFT, Version 16). 

At Initial Program Load time a monitor module 
is loaded into a 44K partition reserved specifically 
for graphics. This mO)litor brings the application 
program residing in the system linkage library into 
the graphic partition and transfers control to it. 

The graphic system is composed of seven load 
modules totaling I1pproximately 5,500 8/360 as­
sembly language instructions. No more than three 
load modules are ever in core at the same time. A 
dynamic overlay structure is used, so that at most 
35K bytes of memory are used at anyone time. 
The multiprogramming environment in which the 
system operates allows the user to operate while 
batch processing and other tasks take place using 
other core partitions. 

The user has the following functions available 
to him: 

General Functions: 

Grid Display-

The user defines- his coordinate system by 
providing upper and lower bounds for the x 
and y axes, and increments (from the lower 
bounds of each axis) at which he desires 
vertical and horizontal lines to be displayed. 

Polynomial Display-

Polynomials may be displayed by entering 
their coefficients or their real roots in the 
appropriate data area. Figure 1 displays the 
polynomial x3 - x, and shows the grid para­
meters along the margins oJ the display. 

Point Display-

Up to fifteen points may be displayed by 
entering the (x,y) coordinates. 
Function Displays-

Functions of one variable may be displayed 



528 Fall Joint Computer Conference, 1969 

Figure I-Display of the polynomial x3 - x 

by defining them in a PL/ll-ike format. 
Figure 2 is the display of the function tan 
(x) - x. 

Redraw Feature-

All the polynomials in a current display, 
plus the most recently entered points and the 
most recently displayed non-polynomial func­
tion may be redrawn on a new grid. 
Erase Feature-

Any single vector or set of points may be 
erased from the screen via use of the lightpen. 
Numerical Analysis Teaching Function-

" ::ill 

• 
H' 

.' 
(tf' '~~Olf ... 
l ,J';, , •• -.- -j - .. 

I 
g 

II 

Figure 2-Display of the function tan(x) x 

P..Iiiiiiii 
l", 

The following numerical analysis techniques 
m'ay be illustrated: 

Polynomial Interpolation 
I terative Methods for Roots of Equations 

Linear Iteration 
Newton's IVlethod 
Secant lVlethod 
Method of False Position 

Solution of Ordinary Different.ial Equa­
tions 

Multipoint -Methods 
Predictor-corretor Methods 
Runge-:l(utta Method 

Using the display system 

The system was designed as a te34hing tool, ntOt a 
problem-solving device, although it has been used as 
such. Ease of use, flexibility, and hardness-i.e., the 
capability of continued operation in the presence of 
disruptions such as invalid entries by U8ers-were 
prime considerations in the system's design. 

Ease of use is facilitated by use of the programmed 
function keyboard (PFK) as the sole source of "~om­
mands" from the user-this is in contrast with using a. 
command language via the alphanumeric keyboard, 
which would require the user to learn the command 
syntax as well as more manual effort on his part. 
Each command is serviced by a subroutine. This 
modularity of program design makes it easy to add, 
delete, or modify sections of code. The calling~ sequence 
is uniform for all subroutines. 

The steps required to define a problem and illustrate 
its solution are designed to parallel those a student 
should perform if defining and solving the problem 
with pencil and paper. 

The following example illustrates this. The use of a 
single function keyboard will be considered an "in­
struc~ion," and will be designated by namin~~ the ]key. 
(Keys are labeled on the PFK overlay.) 8ettin~~ of 
parameters on the designated screen locations will be 
indicated by writing the parameter name, followed by 
an equal sign, followed by its value. The meta-in­
struction < initialize> indicates the setting of the 
screen dimension. In the example which follows the 
coordinates of the lower left-hand corner of the screen 
are (- 5, - 5), those of the upper right-hand corner 
(5,5). 

The problem is to illustrate three iterations of 
N ewton's method to locate the real root of the equation 
x3 - x-I = 0, using x = 2 as an initial estimate of 



the root. DATAPAD1 refers to a program-defined 
screen location used for entering parameters and 
functions. 

Figure 3 gives the program which will generate the 
desired display. Figures 4-6 represent the resulting 
display after each iteration. 

Thus, to illustrate the use of Newton's method to 
locate the real root of the polynomial x3 - x-I the 
user performs the following steps: 

1. Define the domain and range x3 - x-I in 
which he is interested. This is done via the 
alphanumeric keyboard. 

2. Use a PFK key to display the desired coordinate 
system. 

8. Define and display the polynomial, entering its 
coefficient with the alphanumeric keyboard, and 
using a PFK key to enter this definition into 
main core and cause display. 

4. In a similar fashion, define and store the initial 
estimate of the root. 

5. Use a PFK key to illustrate each iteration. 

These actions are those the student or the instructor 
would ordinarily take in solving or illustrating the 
problem, and are taken in the same order. 

As a second example representative of the capa-

Instructions 

(initialize) 
DATAPADI = 

XP3 - X-I; 
STOREF 
PLOTF 

PLACE 

DATAPAD1 = 
3*XP2 - 1; 

STORED 
PLACE 

DATA:PADI = 2, 
DATA 
INIT 

NEWTON 
NEWTON 
NEWTON 

Comments 

define function, x3 - x-I 
store definition 
interpret definition and plot 

function 
place cursor in DAT AP ApI 

area 

define derivative, 3x2 - 1 
store derivative definition 
place cursor in D AT AP AD 1 

area 
define initial estimate, 2 
store initial estimate 
identify stored value as 

initial estimate 
illustrate first iteration 
illustrate second iteration 
illustrate third iteration 

Figure 3-Illustrative program 
Illustration of Newton's method for finding the real 

root of x3 - x-I = 0 

Evaluation of an Interactive Display System 529 

FiJl;ure 4-Illustration of newton's method for finding 
the real root of x3 - x-I = 0, first iteration 

bilities of the programming system, we illustrate the 
use of Euler's method for solving the differential 
equation 

y' = -2xy 

with initial condition 

y = 1 atx = 0 

The domain and range are O~x~3,-1.5~y~ 1.5. A 
step size of .3 will be used. The large stepjsize is chosen 
so as to emphasize the properties of the method. 

Figure 5-Illustration of Newton's method for finding 
the real root of x3 - x-I = 0, second iteration 



530 Fall Joint Computer Conference, 1969 

------~----------------~------------------

Figure f)-Illustration of Newton's method for finding 
the real root of x8 - x - 1. = 0, third iteration 

Figure 7 illustrates the approximate solution (the 
straight line segments) together with the true solu­
tion y = e-x.2 

Results of the tests 

The three subjects who participated only in the 
pre-examination and the roots of equations examination 
were not considered in performing the multivariate 
F -test, since the test requires that the number of subjects 
from a particular group be equal for each of the exam­
inations considered. Their scores were used in all the 
other tests. 

Figure 7-Illustration of Euler's method to approximate 
the solution of y' = -2xy, y(O) = 1 in the range 

0:$ x :$3 

I­
U) 
IJ.J 
I-

20r---,-1I-----------------------~ 

o 

~ 10 
U) 

o 
a.. 

6 Test Group 
5 -- Test Group Means 

o Control Group 
--- Control Group !Means 

o.~~~~~~~~~~~-L~~~ 
o 5 10 15 20 

PRETEST 

Figure 8--Scatter diagram, Interpolation and 
approximation 

The variance-ratio test supports the hypothesis of 
equal variances for each of the four cases. 

The result of the multivariate F -test indicntes that 
the total differences in performance of the two groups 
have only a 5.8 percent probability of being due to 
chance. It appears likely, therefore, that the treatment 
differences had a significant effect on the performance 

2°r---il-------------------

I­
U) 

IJ.J 
I-
~ 10 
U) 

~ 

5 

I 
I 
I 
I 

o 

L ___________________ _ 

CD 

o 
o 

5 

6. Test Group 
Test Group Means 

o Control Group 
--- Control Group Melms 

10 
PRETEST 

15 

Figure 9-Scatter diagram, roots of equation., 

20 



t-
00 
UJ 
t-
I 

t-oo 
0 
0.. 

20r---,-:1:-------------------------~ 

A I 
I 

15 

10 

5 

A 
O 

~ 
10 
I 
I 
I 
I 
I 

o 

-+-0-------------------

A Test Group 
-- Test Group Means 

o Control Group 
--- Control Group Means 

5 10 15 20 
PRETEST 

Figure l{}-Scat.t.er diagram, different.ial equations 

differences, taking all four examinations into 
consideration. 
The~e was significant correlation between the pretest 

and posttest. scores for only one of the four cases-the 
final examination. . 

Figures 8-11 give the scatter diagrams for the four 
examinations. The scores on each post-examination are 
plotted versus the pre-examination scores. These 
diagrams show that the test group avera"e scores 
improved steadily from test to test, while the control 
group performance fluctuated considerably. The differ­
ence in the means for the post-examinations increased 
from test to test and was particularly large for the. final 
examination. This seems to indicate that use of the 
graphic on-line system helped on retention, nnd that 
there was greater carx:y-over of . learning from t.opic to 
topic on the part of the test group. The scatter diagrams 
also indicate greater correlation between pre- and 
post-examination scores for the test group. 

The univariate F -tests for each of the post-examina­
tions show that the use of the graphic system made a 
sig~ificant difference for the roots of equations, differ­
entIal equations, and final examinations. 

The data does not indicate a significant difference in 
performance on the approximation and interpolation 
examination. One may conclude that there was no 
difference, or else that there is insufficient data to 
warrant a definite conclusion. The small sample size 
makes the test performed very weak. Reference to 
power curves shows there would be a probability of .6 of 

E,valuation of an Interactive Display System 531 

t-oo 
UJ 
r 
~ 
0 
CL. 

20 

15 

A 

10 
0 

5 
0 

o 
o 

-r-------------------
I 

10 
I 
I 
I 
I 
I 
I 

A Test Group 
-- Test Group Means 

o Control Group 
--- Control Group Means 

O~~~-L~~L_~~_L~~L_~~_L~ 

o 5 10 
PRETEST 

15 

Figure II-Scatter diagram, final examination 

20 

error if the hypothesis was accepted that the graphic 
system made no difference.2 A definite conclusion cannot 
be reached from these data on the effects of the system 
for the topic of approximation methods. 

Validity oj the results 

The data support the assumptions of normal distribu­
tions and equal group variances. The possible effects of 
previous knowledge or experience in numerical analysis 
were controlled by the use of a pre-examination. Even 
so, these effects were small. The t-tests performed on the 
within-classes regression coefficients indicate that the 
adjustment made for pre-test scores did not affect any 
of the raw scores except those of the final examination. 

The intelligence of the subjects is the major uncon­
trolled variable in this experiment. It was not possible 
to adjust for intelligence, because scores on a common 
measure of intelligence were not available. If the mem­
bers of the test group were much brighter than those 
of the control group, the experimental data could be 
explained thusly. Such a difference is doubtful in view 
of the similar backgrounds and educational levels of 
. the two groups, and in view of the pretest scores. 

Would these results apply to other groups'? We 
cannot tell for certain until the experiment has been 
repeated for groups of different backgrounds, scholastic 
levels, and motivation. There is no a priori reason 
to doubt that it can be extended .. 



532 Fall Joint Computer Conference, 1969 

In summary, the following conclusions can be made 
r f\garding the quantitative results of the experiment: 

1. There is evidence to support the thesis that the 
graphic on-line system provides a useful and 
efficient aid jn teaching numerical methods in 
roots of equations and differential equations. 
This effect is sufficient to be demonstrated even 
though weak tests were used. 

. ) The graphic on-line capability has a positive 
effect on retention. 

J. Further experimentation with an improved 
system and a larger sample must be made in 
order to reach conclusive results for the topic 
of approximation. 

Qualitative observations 

Besides the numerical data, a number of observations 
can be made regarding the use of the graphic system as 
a result of the course conducted. 

1. Preparation time on the part of the instructor 
averaged about four hours per class hour­
considerably longer than is generally required. 

2. Up to twenty-five percent more time is required 
to present an equivalent amount of material 
using the graphic system than when not using 
it. This time is used in setting up illustrative 
displays. 

This set-up time is distrarting to the student. 
Intermittent use of the graphic device during 
a. class session is especial1y distracting. A good 
procedure is to introduce the material briefly, 
present the necessary theorems; give a series of 
examples illustrating the methods an algo­
rithms; terminate the session 'with a brief sum­
mary of the material. 

4. The amount of information displayed is im­
portant---each display should illustrate at single 
principle rather than several. 

5. The ability to regenerate an entire display on 
a changed grid size proved very useful. The 
instructor can illustrate a particular problem 
in the large, and then enlarge a particular part 
to fill the entire screen. 

6. A system will fail at times. The instructor must 
be ready to continue the illustration in progress 
at the blackboard. He must be thoroughly 
familiar with the problems he is presenting. 

'. Whenever possible the instructor should en­
courage the students to discover the point of a 
display. 

8. Hands-on time on the part of the s'Ludents is 
very ,useful. One problem of the final ex~tmi­
nation consisted of determining the parameters 
a, b, and c in the polynomial form a(x + b)2 
+ c so that the reSUlting polynomial would pass 
through three given points. 

The test group handled this with ease., and each 
individual was able to find the correct values 
and explain the steps taken to arrive at them . 
Most of the control group subjects were not 
successful, and those that were were not system­
atic in their approach. The purpose of this 
exercise was not simply to find the coefficients. 
Rather, it was to illustrate the effects of varying 
the three parameters on the behavior of the 
polynomial. 

9. Class participation was much greater in the 
test group. The students in this group were 
eager to pursue topics which were not direetly 
covered in the lectures. During the lecture OD 

iterative methods for finding roots of equation~ 
the students in the test group discovered thp 
effects of applying acceleration to diver!~inf! 
sequences of iterates, and did so by their own 
initiative. The test group also worked the ex­
amination questions much faster than the eon­
trol group, usually starting by drawing a picture. 

Findings and conclusions 

Experience to date gives tentative answers to the 
questions initially posed: 

1. The results indicate that the interactive display 
system is a valuable and powerful aid in. teaching 
selected topics in numerical analysis. 

2. The system performs this function better than 
visual facilities generally used. The graphic and 
the interactive capabilities enable the instruetor 
to develop a large number of significant ex­
amples to illustrate his classroom lectures and 
to make them more interesting. The interac1iive 
capability provides a flexibility not availa,ble 
through slides or filmstrips. Complete response to 
student questions stimulates student inquisitive­
ness. Student retention is improved, a,nd there 
is a greater carry-over of learning from topic 
to topic. 

3. The system can be effectively integrated into 
the teaching process, but delay time-the time 
necessary to generate new displays-and reli­
ability are problems which require an unusual 
level of instructor preparation. 



Evaluation of an Interactive Displ~ System 
533 

4. The cost of teaching with such a system is not 
high except for the cost of the display unit. 
Running the system requires very little pro­
cessing time. Preparing class problems requires 
about five minutes of Model 40 CPU time per 
display hour. Classroom presentation averaged 
about two minutes of CPU time per display hour. 
The display unit is costly, but this application 
could use a simpler and cheaper display device. 
Both cost and reliability can be improved by. 
using this system to prepare slides for class­
room use, but extemporaneity and flexibility 
will be sacrificed. 

5. In determining the hardware and software 
capability required for such an interactive dis­
play system, a number of items must be con­
sidered. A 12" X 12" screen size is about average 
for display units with vector capability. A smal­
ler screen size could be tolerated for individual 
use, but not for classroom use. The alpha­
numeric keyboard is essential for entering data 
into the system, but the function keyboard 
could be eliminated. One could use the standard 
alternative of a menu of lightpen buttons dis­
played on the screen. One could not readily 
substitute the alphanumeric keyboard for 
function buttons without seriously impairing ease 
of use. The 8K buffer used in this experiment 
could be reduced to 4K without impairing 
system efficiency. 

A graphic programming support such as the 
IBM Basic Programming Services is useful but 
not vital. The applications facilities required 
would depend on the use to be made of the 
system. Those used in this investigation were 
minimal though adequate for teaching the 
selected topics in numerical analysis. 

6. Development of the system described here 
required about 1200 man-hours, with one 

individual devoted to this. task over a one-;.vear 
period. Development also required about 163 
hours of 8/360 Model 40 time. 

The results of this experiment indicate that use of 
an interactive display system can significantly increase 
the active role of the learner and improve student in­
sight and understanding of elementary topics in nu­
merical analysis. 

This is a pilot study. It demonstrates the usefulness 
of such a system only for one group of students with 
one particular subject-matter. To generalize, one would 
have to replicate this experiment with other groups of 
students. 

The study is, however, as useful for what it suggests 
as for what it proves. It suggests specific techniques 
for using such a system. It suggests that we measure 
the separate effect of student hands-on time. A con­
trolled experiment should be run in which students 
use the graphic system to work a given set of problems, 
studying a set of notes presenting the necessary back­
ground material. This treatment would not involve an 
instructor except as a monitor. 

Finally, the study suggests the desirable character­
istics of follow-on systems and ways of making them 
more economical. 

REFERENCES 

1 B D FRIED 
Solving mathematical problems 
McGraw-Hil Book Co Inc N Y 1967 In On-line 
Computing edited by W. J Karplus 

2 B J WINER 
Statistical principles in experimental design 
Mc Graw-Hill Book Co Inc NY 1962 

3 IBM System/S60 component description, IBM 2250 display 
unit model 1 
IBM Corp Form A27-27011969 

4 J C R LICKLIDER W E CI.,ARK 
On-line man-computer communication 
Proc SJCC Vo1211962 113-128 





Computer based instruction in computer 

programming-A symbol manipulation­

list processing approach 

by P. LORTON, JR. and J. SLIMICK 

Institute for Mathematical Studies in the Social Sciences 
Stanford, California 

INTRODUCTION 

Since February, 1969, a computer based course in 
computer programming has been running at an "inner 
city" high school in San Francisco, California. Each 
day ninety high school juniors and seniors in classes 
of fifteen interact with a course designed to teach the 
fundamentals of computer programming for business 
applications. For fifty minutes a day each student is 
on-line with a computer located thirty miles away on 
the Stanford University campus. The purpose of this 
paper is to describe the rationale and the major com­
ponents of the software system used to implement the 
project. 

Lesson material and programming problems for 
the students are presented on teletypewriters linked 
via telephone lines to the Computer Based Laboratory 
of the Institute of Mathematical Studies in the Social 
Sciences on the Stanford University campus. In this 
laboratory are several computers which form a unique 
system for presenting instructional material. 

The main computer in the system for this project is 
a Digital Equipment Corporation model PDP-ID. 
The PDP-ID is a single address, 18 bit binary macltine. 
The machine has 32,768 words of core memory of 
which 20,480 words are used by the time-sharing 
operating system. User programs are permitted up to 
12,288 words of core. The time-sharing system allows 
up to 26 users to run concurrently on the computer. 
This is made possible by the addition to the PDP-ID 
of a very high speed drum with 26 tracks, each capable 

of holding 4096 words. The time-sharing system swaps 
programs in and out of core memory very rapidly using 
a simple priority scheme based on "time-slicing." 
Because of the necessity for user micro time-sharing 

. the programs in this project occupy 10 of the 26 
available tracks. 

535 

The PDP-l communicates with the students at the 
high school through a smaller computer (DEC PDP-8) 
used to buffer text output. A PDP-8I has been installed 
at the school to perfDrm a similar function at the other 
end of the line. Collins data sets were used in p]ace of 
the PDP-8I during the first year. 

A im and purpose of the course 

The main goal of this course is to present in very 
general terms the concept of a digital computer as a 
tool for solving business-related problems. As computers 
proliferate in business and industry there will be an 
increased demand for people who can see their jobs in 
terms amenable to computerized operation. Such tasks 
as filing and stockroom control, now available to 
minimally trained individuals, will soon require per­
sonnel able to see and solve problems in terms under­
standable to a computer. 

With the goal of training for applications on these 
kinds of problems, the need for something other than 
a "formula translation" approach is evident. Using 
filing and stock control as sample problem areas, an 
approach which stresses symbol-manipulation and 
list-processing suggests itself. Inventories can easily 



536 Fall 'eloint Computer Conference, 1969 

be viewed as ordered pairs (a symbol-manipulation 
concept) of item names and counts. Retrieving infor­
mation from a file can be thought of as a "tree search" 
(a list-processing concept). 

The advantages of teaching a symbol manipulation­
list processing (abbreviated: SMLP) language are 
best shown in an analysis of the properties of SlVILP 
languages. 

A. SMLP languages operate: primarily on symbols 
and sets of symbols and, secondarily, on quan­
tities. This implies that problems as concep­
tually complex as text scanning become more 
manageable. Once text scanning becomes man­
ageable, then many applications such as natural 
language-based information retrieval or dialogue 
systems for management information collapse 
into programmable problems. The power of an 
approach which emphasizes symbol manipu­
lation is that conceptuaJly difficult problems 
often become readily programmable. 

B. The list structure in SM1P languages provides 
an absolutely general form of data and program 
storage. A programmer, given a universal data 
storage facility, can give some attention to op­
timization of the structure of his data. The 
optimization of data structure cannot be over 
emphasized since information retrieval (among 
other applications) is not: economically possible 
without structuring the data so that the comput­
er answers efficiently the ,most frequently asked 
questions. ' 

C. SMLP languages teach the use of pointers and 
indices. While properly part of (B), the simplest 
definition of a pointer is that it is a quantity that 
specifies the location or existence of some other 
quantity; an index can be defined as a quantity 
specifying some base location. The concepts of 
pointer and index are useful in teaching the 
manipulation of data by using references rather 
than moving blocks of data from one place to 
another. An immediate example of an application 
of pointers is data sorting. 

D. SMLP languages allow Simple implementation 
of push-down stacks. While not of great in­
trinsic value, push-down stacks simplify the 
calling and structure of subroutines, particularly 
recursive ones. 

E. SMLP languages simplify the treatment of name 
scope problems in a hierarchical store. A -funda­
mental concept of symbolic programming is 
that a quantity can have a name; furthermore, 
it may be desirable to limit the area of the pro-

gram in which a given name refers to a partil[}u­
lar quantity. Thus, it is desirable to have a 
method of associating a given name to the rele­
vant quantity on the basis of "area" j, this as­
sociation is referred to as "name,:,scope." 

In general, language possessing properties A-E pro­
vide exceptionally general approaches to programming 
digital computers. It can also be pointed out that the 
COmmon Business Oriented Language (COBOL) re­
sembles this kind of language more than it re8embles a 
"formula translation" language .. The general concepts 
available through an SMLP language would, it is be­
lieved, be of considerable help to the student13 in their 
future efforts to build an understanding COBOL nnd 
related languages. 

Basic ,concepts 

G.ood computer programming, under the philosophy 
advanced here, depends on the understanding of <:er­
tain concepts not particularly oriented towatd nny 
one machine or language. The basic concepts which 
seem necessary for understanding the kind of appli­
cations programming taught in this project seem to 
divide into concepts which are related to making a 
stored program machine work for the user and concepts 
which are related to what is felt to be the basic task 
of business applications programming: symbol manipu­
lation-list processing. It is these concepts which form 
the basic content for this course. 

The first nine general concepts in the following list 
are of the first type. The tasks described are all aElso­
ciated with the how and why of making stored pro­
gram machines do the work required of them. 

I. "Machine" related concepts: 

A. Stored Program. Refers to the ability to have 
a set of imperative actions implying some over­
all task stored in a machine which can execute 
it in some sequential fashion. 

B. Stored Data. Refers to the ability of a ma­
chine to store quantities like "stored program" 
actions but not encompassing an over~Lll me;a.n­
ing. 

C. Variable. Refers to the ability to name some 
part of the stored program and refer to ·the 
properties or value of this part through ref­
erence to its name. 

D. Operations. Refers to the capabilities c:ontained 
in the Central Processing Unit. Two main claBses 
of operations are felt important: Arithmetic :a,nd 
Non-Arithmetic. 



Computer Bsaed Insturctuion in Computer Programming 537 

E. Addressing. Refers to the capability of pointing 
to various parts of the stored program as well 
as the ability to form data into clusters or ar­
rays in some useful' way. Three sub-concepts 
are felt noteworthy: Indexing, Base addressing, 
and Indirect addressing. 

F. Branching. Refers to the ability of a stored 
program to reorder the sequence of events it 
performs in completing a task. 

G. Loops. Refers to the ability to re-execute a 
subsequence of the stored program to complete 
a repetitive task. 

H. Blocks/Sub-Programs/Procedures. Refers with 
minor differences in emphasis to sub-groupings 
of the stored task which form semi-self con­
tained programs often capable of being intro­
duced into the main event sequence by being 
"called." 

I. Input-Output. Refers to the machine's methods 
for listening and talking to the user. 

The following concepts are more directly related to 
the symbol manipulation..;list processing approach to 
the problem space than they are to the problem of 
making a machine work. This does not mean that the 
concepts listed above are unrelated to issues associated 
with the nature of the problem space. Neither does it 
mean that a ymbol manipulation-list processing lan­
guage is unsuited to presenting them. 

II. "Language" related concepts: 

A. Data Handling. Refers to the method of viewing 
and manipulating the data a program is to han­
dle. 

B. Recursion. Refers to a "self calling" ability of 
sub .. blocks of the program in an SMLP type 
language. 

C. Arrays and Strings. Refers to a more general 
and efficient way of clustering stored data so 
that its manipUlation becomes a simpler task. 

D. Data Structures. Refers to named functions 
which use indexing' and pointers to locate ele­
ments in the stored data. Examples might be 
"trees," "lists", "graphs", etc. 

Languages selected for the project 

Given the conclusions on the advantages of teaching 
a "symbol manipulation-list processing" language and 
the fact that some machine level concepts might use­
fully be introduced into the course, a language appro­
priate to each conclusion was selected: a simple as-

sembly language and a fundamental SMLP language. 
Each of these languages is briefly described below. 

Major components of the project 

The implementation of the conclusions reached in 
the preceding discussion involved developing three 
separate programs which, when loaded into the PDP-
1-D, operate as the software system for this project. 
The three programs include a "driver" (SLAKER) to 
supervise the interaction of the student with the cur­
riculum material and the language processors, an 
interactive assembly language processor (SIMPER)} 
and an interpretive SMLP language processor (SLO­
GO). Each of these parts of the software package is 
described below. Appendix A contains a sample lesson 
illustrating many of the components described" below. 

Major component: SLAKER 

Introduotion 

SLAKER [Slimick-Lorton All Knowing Educator 
Routine] is designed to provide the interface between­
the student at a teletypewriter and the curriculum 
material of the project. The over-riding concern in 
the development of this driver was to provide as much 
freedom and flexibility for each user as is consistent 
with service at reasonable intervals. 

If a student's program would cause a real machine 
to enter an infinite loop or write over his data, then 
this would happen to him in the instructional setting. 
Certain obvious restrictions have been placed on this 
goal. A student's work is not free to "clobber" other 
users (although this might well happen on a "real" 
machine). A student can wipe out his own effort and 
experience the pain of having to recover from the error. 

Functions 

The balance of the description of SLAKER is de­
voted to the major functions it is designed to perform. 

1. Text Emission 

One of the major tasks SLAKER has is the presenta­
tion of problems to the student at his teletypewriter. 
Several of the disc files attached to the driving program 
contain the curriculum material which is organized 
into four sequences of lessons and problems through 
which the student is to proceed. In addition to the 
lesson-text, the problem code contains certain values 
which indicate various subsections of the problem such 



538 Fall Joint Computer Conference, 1969 

as the "correct answer" or the "hint," as well as the 
problem type to the driver. 

The four strands into which lessons and problems are 
grouped for this project are: Lesson, Homework, Extra 
Credit, and Test. For problems in the Lesson strand, 
SLAKER is charged with waiting until the student 
enters the correct answer before going on to the next 
problem. With the other thr~e strands, SLAKER 
presents the next problem as soon as any answer is 
entered~ In every case the student is informed of the 
correctness of his answer. 

2. Response Evaluation 

After emitting the text for a problem to the user, 
SLAKER monitors his output, collecting it as an 
answer. When the user enters an "evaluate my work" 
request, ~LAKER checks his answer according to the 
type of problem the student was given. 

A. MUltiple Choice 

Under this format the answer is first compressed 
so that all duplicate characters are eliminated. 
Then the answer is searched for matches with 
the characters recorded as the correct answer. 
lJp to twenty characters are collected from the 
student as possible answers for problems stated 
in this format. Only alphabetic characters are 
collected so that spaces, punctuation marks, 
or numbers can be inserted in the answers with­
out affecting the correctness of the alphabetic 
string. 

B. Constructed Response 

When the student's input is a response to 
this type of problem, all the characters he types, 
with the exception of carriage returns and line 
feeds, are collected. The checking routine then 
examines the response string looking for two 
kinds of characters: those that must be present 
and those designated as optional. The serach 
and match routine is of such generality that it 
is felt all possible correct answers will be marked 
correct if they are defined in the curriculum. 

C. Anticipated Alternative 

Although not a separate type of problem, 
this checking capacity is a separate skill of 
SLAKER. If alternative answers are expected 
they can be specified and checked for .. If a cor­
rect response is not found, then the answer 
evaluation routine checks the student's effort, 
in the same fashion, against the strings speci-

fled as possible alternatives. If a match is fOUlnd, 
then an appropriate comment is given and the 
student is told to try again, just as if he were 
wrong. At present this capability is availHble 
on constructed response problems and single 
choice-multiple choice problems. 

D. Programming Problems 
. Evaluation of these problems is done by 

asking the student questions about his program 
after he wrote and debugged it with given d:ftta. 
This method of evaluation allows the student 
flexibility in programming a different solution 
than the solution the curriculum writers had 
in mind. 

3. Communication with Language Interpreters 

Since the main aim of the course is to provide rich 
and varied experience in programming, a main respon­
sibility of SLAKER is readily to provide this' c:on­
tact. Each language differs slightly in how it wantB to 
be told a student is using it but, basically, SLAKER's 
role is to make the initial contact with the language 
processor, pass subsequent information to it ~:md await 
the user's indicated wish to return to the main program. 

4. Special requests from the Student Station 

The following activities can be requested from a 
student station. As a group they provide the student 
with considerable flexibility in how he proceeds through 
the course. 

A. Restart Station. Allows a user to request a 
station be restarted from the sign-on point. 
Used to correct improper sign-on efforts by 
students. 

B. Sign-off Station. Allows a user to terminate his 
lesson when he is ready. Part of the execution 
of this command involves storing where the 
student left off on his history file so that he may 
restart from this point on the following d.ay. 

C. Go to Choice Point. Places the user at a point 
where one of the following choices can be ms,de: 

1. Return to Last Problem. Allows the stu­
dent to continue working from where he 
last signed off in the strand he specifies. 

2. Go to Specific Lesson. Allows the student 
to begin working on the lesson number in 
the strand he indicates. 

3. Attach a Language Processor. Allows the 
student to call forth one of the language 
processors available in the course. 



Computer Bsaed Insturctuion in Computer Programming 539 

D. Skip Problem. In the Lesson strand, only a 
correct answer will advance a student on to the 
next problem. This feature allows a student 
to skip out of this loop. As the next problem is 
called, the. correct answer to the skipped prob­
lem is printed. 

E. Give Hint. Commands SLAKER to print the 
"hint" provided for the particular problem. 

F. Erase Answer. The user has the option of 
erasing all of the answers he has typed or merely 
the last character. Erasing the last character 
can be repeated until the entire answer is erased 
if wished. 

G. Communicate with Stanford Monitor. This 
feature allows student stations to type mes­
sages to the monitor teletypewriter at Stanford. 
Usually, its use is reserved for the classroom 
teachers who may want to correct a lesson, enter 
a new student, or ask a question. As part of 
this feature it is also possible to communicate 
from the monitor teletypewriter to any of the 
student stations. 

Major oomponent: SIMPER 

Introduction 

SIMPER [Simple Instructional Machine for the 
Purpose of Educational Research] represents an at­
tempt to make available to the student at a teletype"­
writer a simple computer which he can program in a 
manner analogous to "assembly language program­
ming" on digital computers of modest size. 

This instructional package can be most easily under­
stood when viewed as consisting of two main parts: 
a machine (SIl\1PER) and an assembler (SASS). 
The latter is designed to generate the machine code 
for SIMPER. The "machine" is a mythical digital 
computer which can be described in a formal way and 
for which programs can be written. Although the ma­
chine responds to 18 bit instructions in its "machihe 
language," there is no direct access to the machine via 
18 bit numbers. The purpose of the machine is to teach 
students to program so the machine is programmable 
only through a symbolic assembly language. 

The assembler generates code for SIMP~~R from 
Assembly Language instructions typed by the student. 
Assemblers generate code instruction by instruction. 
This one generates code for SIMPER immediately 
after each instruction is typed, in by the student. This 
feature enables the student to receive immediate cor­
rection for most syntax errors and, when the student 

avails himself of the option, each line of code can be 
checked immediately to assure the student that the 
assembler translated, the student's instruction as he 
wished. 

The current version of SIMPER is designed to time 
share up to 15 students concurrently. The interpreter 
occupies 4096 words of PDP-ID core memory while 
the arrays representing the simulated machines for all 
15 possible users occupy an additional 4096 words of 
memory. 

Description of the SIlVIPER machine 

SIMPER is a fixed-point, single address machine 
with a memory of variable size (currently 128 words). 
Operations are performed in two general purpose 
registers. Instructions are six digits in l~ngth: two digit 
operation code, one digit register specification field, 
and a three digit address field. At present, 16 operations 
can be performed. 

The size ,of the machine's memory is variable de­
pending on the available space. For this project the 
memory .3ize is 128 decimal (200 octal) locations. This 
size was chosen because it allows the fifteen students 
to run parallel in the space available on the PDP-ID 
and it also means the students' daily programming ef­
fort can be "saved" on a disk scratch file of convenient 
length, enabling the student to continue programming 
efforts from session to session. 

Operation of the SIMPER machine 

SIMPER runs by executing the six digit number it 
finds in the memory location pointed to by the pro­
gram counter. The program counter is updated as part 
of the instruction-fetching activity. An instruction by 
instruction-execution of a program is printed on the 
Teletype. While thus being able to monitor the exeou­
tion of his program, hopefully, a student is given 
special insight into how each instruction operates and 
how a sequence of instructions can be converted into 
meaningful work. This "printing out" of the execution 
sequence also slows down the speed of execution so 
that the work of the machine is easily followed. The 
student can also watch the effects of "bugs" arise and 
develop into problems which require attention. This 
feature is' intended to make the debugging of machine 
language programs an easier task. A special flag can 
be set at execution time to suspend this feature. Exe­
cution speed is then improved by a factor of four. 



540 Fall Joint Computer Conference, 1969 

----------------------------------------------------------.-----------
The assembler 

Description 

The assembler recieves its instructions from a stu­
de,nt through a teletypewriter keybo.ard. Each student 
interacting with the program is listened to for characters 
which are collected as an instruction to be assembled. 
Students are served by the as!3embler in a manner 
which both time shares and "oils the squeaky wheel 
first." 

When the student is given a problem involving as­
sembly language programming, he is told to sign on to 
SIMPER. He calls the choice point option and, in 
response to "Where to? ~", types "SIMPER." The 
student is then in contact with the assembler. He is 
informed that he may now write his program and 
columns labeled "LOC" and "INS rRUCTION" 
are created. In the LOC column the assembler prints 
the number of the memory location into which the 
instruction· being written will be assembled. The as­
sembler then awaits an instruction from the student. 
The student types his instruction and an indicator 
that he is finished'. The assemble~ immediately examines 
the text string and attempts to generate SIMPER 
executable code. If all is in order, programming ad­
vances to the next memory location. If all is not in 
order,- the assembler generates an appropriate error 
message. By assembling in real-time after each in­
struction is entered, the assembler can give immediate 
feedback on syntax errors to the student. 

Major component: SLOGO 

SLOGO (Stanford LOGO) is the I.M.S.S.S. im­
plementation of LOGO, a computer language developed 
by Wallade Feurzig and Seyrp.our Papert of Bolt, 
Beranek, and Newman expressly for teaching the 
principles of computer programming. SLOGO is 
similar to LISP 1.5 in that both are left prefix lan­
guages, both have a simple type of function definition, 
and both have similar sets of primitive operations. 
SLOGO functions, unlike LISP, have predefined 
numbers of arguments which" along with the left pre­
fix notation, allow SLOGO to require minimal user 
punctuation. 

While SLOGO is an ideal symbol manipulation and 
string processing language, it has substantial weakness 
in not providing structures that are effectively lists of 
lists a la LISP .1.5. While generality is very desirable 
to the programmer, the choice of LISP 1.5 as the sym­
bol manipulation-list processing language for this 
project posed such severe curriculum problems that 

the attempt to use it was abandoned; thus, SLOGO 1 

which has less generality, was implemented instead. 
SLOGO currently time shares five concurrent users; 

each user has a 4096 word drum track that contfdns 
his own functions, execution stack, etc. SLOGO is a 
re-entrant program when executing commands from 
a user, but it is not re-entrant with respect to console 
input and the queuing apparatus. The curren1Gly avail­
able functions with short definitions attached :are listed 
in Append~x B. In the following sections, :first, the 
basic data types used in SLOGO are descrihed, and 
immediately thereafter is a discussion of the 1iWO 

processing modes of SLOGO. 

Data types in SLOGO 

There are three basic data types in SLOGO: word, 
sentence, and number. A brief explanation of each fol­
lows. 

(1) A "word" consists of a string of letters, digits, 
or certain punctuation marks; punctuation. marks 
that cannot be used are blank, single qu01Ge, ">", 
" <", "-", and possibly others that depend on which 
version of SLOGO is being run. 

(2) A "sentence" consists of a group of words. Al­
though one can argue that sentences could consist 
of one or more words, to avoid ambiguity we assUlme 
that sentences consist of two or more words. 

(3) A "number" consists of a string of decimal 
digits plus a leading minus sign, if the number is nega­
tive. The largest number acceptable is ± 131,0'71. 

There are three methods of referring to data: func­
tion values, pointer variabies, and literals. A brief 
explanation of each follows. 

(1) A literal is a direct reference to the indicated 
data. Word and sentence literals are written with the 
single quote (') surrounding the desired datl:~. Lit£lral 
numbers appear as the number itself, without quotes. 
A quoted ~umber is assumbed to be a word. 
Example: 

The following are word literals: 

'AARDVARK' 
'45' 
'3A' 
'MIXTEC' 
'THISISA WORD' 

The following are sentence literals: 

'AARNOLD IS A APATHETIC AAR])VAE~K' 
'ONTOGENY RECAPITULATES PHYLOGE-



Computer Bsa€d Insturctuion in Computer 'Programming 541 

N¥"' 
'12345' 
'THIS IS A SENTENCE' 

The following are number literals: 

1 
1776 
-10 
131071 

(2) Function values. Most of SLOGO's built-in 
functions and all of the defined functions return a . 
value. This value may be subsequently referenced by 
other functions, and the type of this function may be 
any of the three basic types. 

(3) Pointer variables are in reality name pairs, 
where one part of the pair is the name and the other 
part is the value. Names must have type values of 
either word or sentence but never number. The value 
type can be word, sentence, or number. Names are 
written inside closed symbols, which can be either" <" 
and" > " or " - " for left and right sides. 

Example: 

<ANTEATER> 
< NURNDY IS A GAl\tlE> 
_POINTER_ 
<A> 

The peculiar literal " is accepted by the read-in 
routines, can be generated internally, and is always 
printed by SLOGO as "NIL". 

To illustrate the difference between literals and 
pointer variables, assume there is a name pair whose 
name is "HEROINE" and whose value is the sentence 
"OUR GAL SUNDAE." 

The value, then, of < HEROINE> 

is OUR GAL SUNDAE. 

T,he value of 'HEROINE' 

is HEROINE. 

SLOGO processing modes 

SLOGO operates in two modes, command and defini­
tion. There is a special character printed at the extreme 
left-hand end of the type line to indicate which mode 
SLOGO is in. 

"Command" mode is indicated by a ">" ("greater 
than") sign, and is the normal mode of operation. In 
command mode, as soon as a line of functions and 
arguments is typed in, terminating with a "." (period), 
the line is converted to a Polish string of interpretive 

code and then interpreted by the SLOGO interpreter. 
Upon detection of a~ error or the successful execution 
of the Polish string of code, whatever output produced 
is printed (if PRINT is used) and SLOGO returns to 
a listen state while the next line is being typed in. 

"Definition" mode is indicated by a "~,, ("right 
arrow") sign, and is the exceptional mode of operation. 
It is entered from command mode when an input line 
has been terminated with a period and begun with a 
"TO". At that point definition mode is entered and 
cannot be left until the command "END" is entered. 
There is no attempt at function . execution while in 
definition mode. The only use of definition mode is 
to define a SLOGO function by entering successive 
lines of functions and arguments. During definition 
mode, checking is done on the function names, validity 
of arguments, etc., but no functions are executed. 

SUMMARY 

The purpose of this paper has been to describe the 
software and corresponding rationale for a project 
designed to teach high school students how to use 
computers. The main thought behind the project is 
that, especially for business applications, an approach 
which stressed symbol manipulation and list proc­
essing skills would very likely prove of long-term use 
to the students. 

To implement this course, a three-part software 
package has been developed which provides guided 
interaction for each student with important program­
ming concents. The software package includes a 
"driver" to shepherd the student through the course 
material, an assembly language interpreter to provide 
him with an understanding of basic machine operation 
and a symbol manipulation-list processing language 
interpreter to provide him with experience in solving 
problems in a suitable higher level language: 

It is worth noting that all of these programs are 
written in a subset of ALGOL-60. A course dedicated 
to the teaching of higher level computer languages could 
show the utility of such languages in no better way 
than to have its software packages written in such a 
language. One of the very useful demonstrations this 
project has made has been to show that complete, use­
ful and efficient computer-based instruction systems 
can be written in a higher level language. 

Preliminary and informal results from the students 
in the course are quite encouraging and tend to sup­
port the basic philosophy of this approach. There is 
every reason to believe that the future statistical 
analysis of the effects of this course will confirm these 
initial observations. 



542 Fall Joint Computer qonference, 1969 

APPENDIX A 

Sample lessons 

(The following are short exam;ples from the actual curriculum; they have been retyped. Cc)'"nrnents 
within brackets are parentheticalicomments added to indicate various features.) 

3 JULY 1969 
SLAKER (VERSION OF 28 MAY 69) 
PLEASE TYPE YOUR NUIVIBER·· ,--+11 
(CTRL G TO BEGIN-CTRL T TO RESTART) -'; 

WHERE TO? -'; L68 

LESSON 68: USING TESTS 

WE CAN USE 'FIRST,' 'BF,i AND SO.oN WITH 'CALL' 
IF YOU TYPE THIS: 

[si~n-on] 

[start at Lesson 68] 

[a SLOGO lesson] 

CALL FIRST OF BF OF 'BEARS HIBERNATE IN WINTER' 'X' 
IF WORD? < X > THEN P < X >. 

THEN SLOGO FINDS THAT; < X > IS 'H,' WHICH IS A WORD, 
SO SLOGO REPLIES: 

H 
FOR PROBLEIVIS 1-6, TYPE: WHAT SLOGO REPLIES 
TYPE 'N' IF NOTHING IS tRINTED. 

1. CALL FIRST OF 'BLU~ SKIES' 'W' 
IF WORD? < W > THEN P < W >. 
~ BLUE·· . CORRECT [constructed response1 

2. CALL DIFF OF 9 AND 6 'X.' 
IF NUMBER? < X >, THEN P TIMES OF 4 AND < X >. 

DOES SLOGO THINK 3 IS A NUIVIBER? [a hint) 
~ 12·· . CORRECT [another constructed response1 
NOW SIGN ON TO SLOGO AND DO PROBLEMS 7-10. 
AFTER ALL 4 PROELElVIS ARE DONE, TYPE CONTROL A. 

7. TEST TO SEE IF" 'PLACE KICK' IS A SENTENCE. 
IF IT IS, PRINT 'IS SEN.' 

8. TEST TO SEE IF 7 I~ A WORD. IF IT IS, PRINT 'IS WORD.' 
9. TEST TO SEE IF '1 4'8' IS A NUMBER. IF IT IS, PRINT THE NUMBER. 

10. TEST TO SEE IF 'P' IS A WORD. IF IT IS, PRINT BF OF THE WORD. 

WHERE TO? -'; SLOGO·· ·O~ 
SLOGO· .. THE ORIGINAL CONJURING CAT 
> IF WORD? 'P' THEN P BF 'P.' 
= NIL 
> TO REVERSE < A >. 

~ IS < A >' .' 
-'; IF YES RETURN' .' i 

[sign-on to SLOG01 
[hello from SLOG01 
["P" is "PRINT." ("BF" is "BUT­

FIRST"); this is solution to 10 :above1 
[Sample of SLOGO programming1 

~ RETURN WORD LAST <1 A > AND REVERSE OF BUTLAST < A >. 
~END. 

> P REVERSE '1234567890.'" 
= 0987654321 
> ... OK [return to SLAKER] 



Computer Bsa€d Insturctuion in Computer 'Programming 543 

OUTPUT SHOULD BE: 
7. IS SEN 
8. NO OUTPUT 
9. NO OUTPUT 

10. NIL 

LESSON 11: PROBLEM SOLVING 

[correct answers to 7 -10; control 
S ("SNIP") takes one on to 11] 

[a SIMPER lesson] 

WRITE A SIMPER PROGRAM TO SOLVE EACH OF THESE PROBLEMS FOR YOU 
1. MARY BOUGHT 3 POUNDS OF CANDY AT 29 CENTS PER POUND. 

WHAT WAS HER BILL? 

WHERE TO? -? SIMPER· .. OK 
SIMPER (VERSION OF 6 JUN 69) 
BEGIN PROGRAMMING 
LOC INSTRUCTION 
000 -? BEGIN 
001 -? GET X 
002 -? GET Y 
003 -? LOAD X 
004 -? MUL Y 
005 -? STOR X 
006 -? PUT X 
007 -? END 
008 -? 

EXECUTE·· . STARTING LOC -? 0 AND ENDING LOC -? 7 
PROGRAM EXECUTED ON 3 JULY 1969 

P C INSTR REG A REG B 
000 BEGN 0 32768 

INPUT -? 3 
INPUT -? 29 

000 LOAD 
004MUL 
005 STOR 

OUTPUT = 87 

3 
87 
87 

32768 
32768 
32768 

007 END 87 32768 
.. ·END OF EXECUTION, CONTINUE' 

008 -? .• ·OK 
HER BILL WAS 87 CENTS. IF YOUR PROGRAM SAID 
OUTPUT = 87, SKIP ON. 

[go to SIMPER] 
[hello from SIMPER] 

[possible student solution to this problem 

[execution of solution1 

[back to SLAKER1 
[answer1 

-? [skip on1 
·2. A RECTANGLE IS 8 INCHES LONG AND 4 INCHES WIDE. 

FIND ITS AREA. 
~ TO FIND THE AREA OF A RECTANGLE, MULTIPLY THE LENGTH [hint1 
TIMES THE WIDTH. 

WHERE TO? -? SIMPER·· ·OK [sign-on to SIl\1PER] 



544 Fall Joint Computer Conference, 1969 

----------------------~-----------------------------------------------------,------
APPENDIX B 

Concise guide to SLooO 

(Optional words are italic). 

WORDS OF X AND Y 
SENTENCE OF X AND Y 
FIRST OF X 

BUTFIRST OF X 

LAST OF X 

BUTLAST OF X 

SUM OF X AND Y 
DIFFERENCE OF X AND Y 
TIMES OF X AND Y 
QUOTIENT OF X AND Y 
IS X Y 

IF YES THEN 81, when 81 is some 
executable statement 

IF NO THEN SI 
IF WORD? OF X THEN 81 

IF SENTENCE? OF X THEN SI 
IF NUMBER? OF X THEN 61 
TO NAME OF < X > AND < Y > 

RETURN X 
END 

GO TO LINE N 

CALL THING X NAME Y 

LOGO 
ERASE name 
TRACE 
UNTRACE 
PRINT X 

produces a word which is X concatenated with Y. 
produces a sentence of Y appended to X. 
if X is a word, result is the first letter; if X is a sentence, 
result is the first word. 
if X is a word, result. is all but the first letter j: if X is a 
sentence, result is all but the first word. 
if X is a word, result is the last character; if X is a 
sentence, result is the last word. 
if X is a word, result is all but the last character; if X: is 
a sentence, result is all but the last word. 
X+Y 
X-Y 
X(8)Y 
X+Y 
sets internal flag to true if X = Y (equality of a.rgumcmts 
for numbers; character by character equality of words; 
word by word equality of sentences); false otherwise. 
"execute 81 if internal flag is true; ignore 81 if false. 

execute S1 if internal flag is false; ignore 81 if true. 
executes S1 if X is a word. 
executes 81 if X is a sentence. 
executes 81 if X is a number. 
begins definition of a function named "name" and whose 
formal parameters are X and Y. 
exit from current function with value X. 
complete definition of function and insert RETURN' , 
in the code for safety's sake. 
branching statement to be used inside of user-defined 
functions. 
assocfates the name produced by evaluating Y with the 
value produced by evaluating X. 
reset. 
erase the function named "name." 
turn on trace for all user-defined functions. 
turn off the trace. 
print the value of X on the user's teletype. 



A touch sensitive X-Y position encoder 

for computer input 

by A. M. HLADY 

National Research Council 
Ottawa, Canada 

INTRODUCTION 

Any input device used in conjunction with a computer 
controlled display for interactive information ex­
change between man and computer must function 
as a position encoder. Input devices for handling two 
dimensional positional information· can be grouped 
into two general types, one type encoding absolute 
positions and the other encoding changes in position. 

Devices accepting absolute positions rely on a direct 
mapping of positions from an input surface to a dis­
play surface. The input surface is usually a fiat plate 
or tablet on which positions are indicated with a mova­
ble hand held stylus. One consideration in developing 
a device of this type is the location of the input sur­
face with respect to the display surface. The mapping 
relationship between surfaces is simplified for the user 
to the extent of being instinctive if the two surfaces 
are coincident. If the input surface is superimposed on 
the display surface with a finite separation, the user 
has to cope with the problem of parallax. A transparent 
input surface and a one to one mapping scale are im­
plicit in these two arrangements. A third possibility 
is that the two surfaces are in different physical loca­
tions. This makes it necessary for the user to rely o·n a 
visual feedback process by observing the mapping of 
his selected position in relation to the desired posi­
tion and then modifying his selection to decrease the 
difference. 

The stylUS used for indicating positions on the sur­
face is typically an active one which contains a signal 
sensor, as for example, in the RAXD Tablet,! or a 
signal radiator, as in a magnetically coupled device 

545 

described by Lewin.2 The stylus must be large enough 
to accommodate the necessary components, and, in 
addition, present devices require a cable connecting 
the stylUS to the console for signal transmission. his 
makes some active styli difficult to use with dexterity. 

Input devices for encoding position increments do 
not have separate input surfaces, and their operation 
depends entirely on visual feedback from the display 
surface. This type of device consists of a mechanical 
assembly having at least two degrees of freedom, such 
as a joy-stick or track-ball, which can be manipulated 
to indicate changes in the position of a cursor displayed 
on the screen. 

Touch sensitive overlay 

Work on the device described in this paper began 
with several primary objectives which are related to 
the considerations outlined above. These objectives 
are: 

1. The device must encode absolute positions 
indicated by the user. 

2. The input surface must be as close as possible 
to the display surface. 

3. Positions are to be indicated with a passive 
Rtylus, including a human finger. 

The first two objectives en~ure that the relation­
ships between the positional information that the 
user must provide and the information he observes 
on the screen are fundamental ones. This reduces 
the time and mental effort expended, especially when 
the device is used for item selection, that is the selec-



546 Fall Joint Computer Conference, 1969 

tion of a sub-set from a set of items shown on the dis­
play surface. 

Assuming that the first two objectives are met, the 
third allows one to select items or positions on the 
screen merely by pointing at them with a finger. Be­
cause pointing with a finger iSi man's mQst natural 
method of indicating selection l it touch activated de­
vice creates a minimum of distraction for the user. 
In fac~1 an ideal implementation of the three objec­
tives listed above would result in an input device 
that was apparent to the user in function rather than 
in substance. 

Admittedly,. the human finger is a rather coarse 
stylus but the resolution attainable is sufficient for 
many types of manual information entry. The words 
or phrases displayed for selection in an information 
retrieval system could be in a format suitable for this 
type of input technique. I~ a conventional keyboard 
is used in conjunction with the display terminal, a 
touch activated display overlay reduces the time spent 
in going from keyboard to display by eliminating the 
intermediate step of picking up a stylus. In addition, 
a portion of the display screen could be used as a 
touch sensitive keyboard with dynamic computer 
control of the associated key functions. The apparent 
simplicity, both physically and; functionally, of this 
type of input device is a signifidant advantage if· the 
user is a young child communicating with a computer­
assisted instruction system. 

For information entry requiring more resolution 
than one can obtain with a fing~r, a suitable passive 
stylus could resemble an ordinary pencil with its con­
venient size, light weight, and f~eedom of movement. 

One touch sensitive devices that has been developed 
for use with a CRT oonsists of a number of wires 
terminating at the front surface of the display tube. 
Each wire forms the arm of an AC bridge which is 
unbalanced by body capacitance. A second device, 
developed by Control Data Corporation, has a series 
of translucent, touch-activated strips in front of a 
CRT display. 

The approach taken in our case was to use an echo 
ranging technique with elastic surface waves. Echo 
ranging with pulsed ultrasonic surface waves has been 
applied successfully for a number of years in the field 
of flaw detection for structural materials. The propa­
gation delay of ultrasonic elastic waves has been used 
as the basis for graphic input devices for a computer. 
However, these devices do not employ echo ranging 
and consist basically of fixed sources or radiators with 
the sensor in a movable stylus. One of these, developed 
by Woo at IBM,4 also uses surface waves on a glass 

plate. The Lincoln Wand5 provides a three dimensional 
input capability by using ultrasonic waves propagating 
in air. 

In the device developed at NRC, the radiator 9,nd 
sensor are physically the same piezoelectric transducer 
which is electrically switched between the driving 
circuitry and the echo receiving circuitry. Pulse modu­
lated surface waves are produced on a transparent 
glass plateJ and any object contacting the surface 
reflects some of the wave energy back to the source. 
The distance from the radiator/sensor to the tarl~et 
is proportional to the time between the radiator pulse 
and the reception of the echo pulse. 

Surface wave characteristics 

An elastic surface wave can be represented. mathe­
matically as a combination of inhomogeneous longi­
tudinal and transverse waves. This is exempHfied by 
the particle displacements for a surface wave. The 
particles describe elliptical orbits with the major axis 
perpendicular to the surface and the minor axis parallel 
to the direction of propagation1 correspondinl~ to the 
transverse and longitudinal components respectively. 

The particle displacements decrease exponentially 
with depth into the material", the depth decay factor 
being a function of the wavelength and the material. 
For glass, the wave energy at a depth of one wave­
length is only about three percent of its value at the 
surface. A practical implication of this result is thu.t, 
to a close approximationJ a plate several wavelengths 
thick appears as the solid half-space necessary for 
true surface wave propagation. 

Waves on the free surface of a solid half-space, which 
are also known as Rayleigh waves, are not dispersive 
and their phase velocity depends only on the properties 
of the material on which they are propagating. For 
plate glass the velocity is 10,400 ft/sec. 

The amplitude of all elastic waves decreases with 
distance from the source through three mechanisms·­
beam divergence, scattering, and absorption. Because 
a surface wave is essentially a two-dimensional phenom­
enon, the decrease in amplitude due to beam diver­
gence is proportional to l/Vr, compared to l/r for 
spatial waves, where r is the distance from the souree. 
The attenuation due to scattering and absorption is 
related to that of spatial waves, with the attenuation 
factor being approximately proportional to frequeney 
in the ultrasonic range. The attenuation coeffieient of 
plate glass measured at 8 MHz is 0.40 nepers/inch. 

An interesting property of surface waves is their 
ability to propagate along curved surfaces. If the r:l1-
dius of curvature is large with respect to the wave-



length, there is only a slight change in attenuation and 
velocity. This property makes it possible to employ 
the echo ranging principle described to produce a de­
vice which uses the curved front face of a CRT as the 
input surface, reducing parallax to a practical minimum. 

Echo ranging parameters 

All systems using echo ranging for target location 
have similar design parameters. Although considerable 
effort has gone into the refinement of echo ranging 
techniques for radar and sonar, the additional com­
plexity and cost of such developments as signal cor­
relation makes them impractical for this application. 

For two dimensional space~ the stylus location can 
be determined by measuring its distance from two 
fixed points or its normal distance from two fixed 
lines. The latter method was chosen and implemented 
by alternately scanning the surface in orthogonal 
directions using linear transducer arrays fixed at the 
edges of a square plate. This method can provide the 
stylus location directly in terms of x-y coordinates 
without additional computation. The line reference 
method also avoids the problem of edge reflections 
obscuring valid echoes. Furthermore, with the large 
beamwidths needed in the first method, it is difficult 
to achieve an adequate surface wave power density 
a t frequencies in the megahertz range. 

The choice of plate material was limited by the 
transparency requirement. Ordinary plate glass was 
found to be satisfactory although its attenuation coef­
ficient is higher than that of fused quartz and some 
optical glass. All the glass tested had several surface 
flaws per square foot but most of these were shallow 
enough to be eliminated by localized hand grinding 
and polishing. The plate size was chosen to provide a 
usable surface of 10 X 10 inches. 

Factors involved in the choice of carrier frequency 
include the positional resolution, the surface wave 
attenuation, the radiator beamwidth, the gain in 
reflected energy for a given target size, and the availa­
bility of piezoelectric transducers. A carrier frequency 
of 8 MHz was chosen for the initial device with the 
corresponding wavelength on glass being about 
0.015 inch. 

Radiator/sensor development 

One of the most efficient and convenient ways of 
generating surface waves at frequencies in the low 
megahertz range is by the mode conversion of a longi­
tudinal spatial wave. This occurs when a longitudinal 
wave is incident on an interface between two solid 

Touch Sensitive:X-Y Position Encoder 547 

PI EZOELECTRIC 
TRANSDUCER 

\ 
\ 

" ...... 
...... 

...... 

....-----2..t 

" 

PRISM 

" " ...... 
...... 

·1 
Figure 1-Sm1ace wave radiator/sensor 

materials with an angle of incidence large enough 
that total internal reflection occurs, and no energy is 
refracted into the second material. In order that the 
boundary conditions remain satisfied at the interface 
for this caseJ inhomogeneous longitudinal and trans­
verse waves are produced in the second material. In 
ther words, a surface wave is generated. 
A practical implementation of this, shown in Figure 

1, consists of a thickness mode piezoelectric trans­
ducer mechanically coupled to a solid prism. Max­
imum surface wave output occurs for a prism angle, ai, 
such that the spatial period of the surface pertur­
bations corresponds to the wavelength of the resultant 
surface waves at the frequency of the incident wave. 
That is, when 

where CL is the longitudinal wave velocity in the 
prism, 

and Cs is the surface wave velocity. 

For this optimum angle to be real, the prism material 
must be chosen so that CL <' cs. One of the commonly 
available materials that meets this velocity require­
ment for generating surface waves on glass is an acrylic 
resin such as Plexiglass or Lucites. 

The same configuration also makes an efficient sur­
face wave sensor. In this case, incident surface waves 



548 Fall Joint Computer Conference, 1969 

excite spatial waves in the prism with an angle of 
propagation determined by the velocity ratio. When the 
same transducer is used for both sending and receiving, 
the energy that was internally reflected within the 
prism during the send interval: appears as clutter or 
noise during the receive interval. Although this excess 
energy is gradually absorbed by the prism material, 
its effect can be reduced by moqifying the prism shape 
and coating it with an absorbent material, For the 
tr&nsducers actually constructed, the first two inches 
of range could not be used 'because of the clutter. 

The pie210electric transducers are made of a lead 
zirconate-Iead titanate ceramic having a thickness 
mode electro-mechanical coupling coefficient of 0.66. 
This material is relatively good for energy transforma­
tion in both directions. The bandwidth and mechanical 
output power of a piezoelectric· transducer are related 
to the mechanical impedance of the materials to ,vhich 
it is coupled. After some experimentation with quarter 
wa ve impedance matching transformers and various 
backing materials, it was decided to sacrifice band-

OHMS 

180 

160 

140 

20 

10, 
I 

, 
I 
I , 

I 
~ I , , 
I , 

I 
I 
I 

~L.5----~70-----1~5-----8~~----~8.5~---9~0~--~9~.5----~ 
FREQUENCY (MHZ) 

Figure 2-Parallel impedance components for a serier:-! 
connected array of four 1/2 X 1/4 inch transducers 

width for sensitivity by using air-backed transducers 
bonded directly to the prism. The result was a radiator 
fractional bandwidth of 20 percent. The parallel com­
ponents of the electrical input impedance for a small 
test array constructed in this way are shown in Figure 
2. 

For an 8 :MHz pulse modulated signal with a 1.6 
MHz bandwidth, the minimum resolvablle stvlus 
movement should be about 0,04 inch. As will be' ex­
plained later, this resolution was attained but unusable 
in the first device constructed. 

Array design 

The method of target location being used requires 
a line source of waves having uniform amplitude :and 
phase across a ten inch width. To combine separate 
radiator elements into a linear array with the desired 
characteristics, the radiation pattern of individual 
elements must be known. An expression for the direc­
tivity characteristics of a prism type of radiator has 
been derived,6 and it yields results similar to the sin 
x/x function for spatial radiators. Figure :3 compares 
values computed for an 8 MHz radiator usinl~ this ex­
pression with experimentally measured values. 

For practical plate dimensions and transdUlcer sizes, 
the usable surface area lies in the far-field region of the 
individual elements but in the near-field region of the 
overall array. By computing the response for various 
linear array configurations, a radiator width of 0.465 
inch, and a spacing of 0:565 inch, were selected .. 

After the arrays were assembled and tested, the 
measured radiation pattern was more irregular than the 
computations indicated. This discrepancy was at­
tributed to the variation is spacing, orientation, and 
bond characteristics due to assembiy tolerances :and 
the variations in transducer sensitivity. The gap8 in 
the pattern were sufficiently large and numerous that 
it was necessary to add a second set of arrays on the 
opposite sides of the plate. These are offset with respect 
to the first so that the beams from opposite arrays are 
effectively interleaved. The arrays are energized se­
quentially to avoid mutual interference. 

The maximum two-way propagation time for a ten 
inch usable surface and a two inch buffer zone is about 
200 J,Lsec. Therefore, even with four separate arrays, 
the sampling rate can be greater than 1 KHz, which 
is more than adequate to follow normal stylus motion. 

Electronic circuitry 

The signal processing circuitry consists of ~L radiator 
driver, an electronic s,vitch, and an echo receiver. The 



I.OO~---------------------. 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

10 12 

DEGREES 

Figure 3-Direct.ivity pattern for a surface wave radiator 
at 8 MHz with 0.23 inch width 

L..--__ --'y. 

COMPUTER 

Figure 4-Position encoder block schematic 

x. 

. Touch Sensitive X-Y Position Encoder 549 

timing circuitry digitizes the signal propagation time, 
and the control logic maintains the correct operating 
sequence. Figure 4 shows how these components are 
interconnected. 

The radiator driver and the arrays are matched to 
50 ohms allowing them to be connected with standard 
coaxial cable. The' diode switch, with a four-pole 
double-throw action, permits the four arrays to be 
multipIexed into a single driver and receiver, and it 
also isolates the receiver during the driver pulse. The 
echo receiver consists of an RF amplifier followed by 
a demodulator and a threshold detector. The receiver 
gain is electronically swept during each scan to com­
pensate for the signal attenuation with range. A range 
gate rejects echoes originating outside of the designated 
area. Figure 5 shows the demodulator and threloJhold 
detector outputs for a single scan. The signal at. the 
centeris the echo from a finger touching the g1a.ss. 

Echo timing is performed by a free running counter. 
Both up and down counting are required to digitize 
scans originating at opposite sides of the input surface. 
The coordinate grid is considered to have X and Y 
axes coincident with the edges of the usable surface, 
the origin being in the lower left corner. Adjustments 
on the range gates and counting circuitry allow the 
size and position of the coordinate grid to be varied 
slightly to permit registration with the grid of an as­
sociated display device. 

The control circuitry allows two modes of operation: 
a continuous mode and a discrete mode. In the con­
tinuous mode, a Data Ready pulse signals the comput-

Figure 5-Echo receiver response 
Vertical: Upper 0.5 v/div .. Lower 5.0 v/div. 

Horizontal: 25 /lsec/div. 



550 Fall Joint Computer Conference, 1969 

er f.or every set of c.o.ordinates generated while stylus 
c.ontact is maintained. In the discrete m.ode, .on the 
.other hand, .only the l.ocati.on .of the initial c.ontact is 
transferred t.o the c.omputer. The stylus must be lifted 
and" rep.ositi.oned t.o initiat~ an.other data transfer. 
The discrete m.ode significantly reduces the am.ount .of 
data that must be handled with.out degrading the 
resp.onse time when the device is ,being used f.or item 
selecti.on purp.oses .only. 

In applicati.ons such as CAl which require a cluster 
.of c.omputer terminals in .one l.ocation, it bec.omes feasi­
ble t.o time-share the electr.onic circuitry am.ong several 
terminals, thereby decreasing c.ost per unit. 

Device performance 

The c.omplete device is sh.own in Figure 6 with a 
static display card behind the glas~ f.or dem.onstrati.on 
purp.oses. It has been interfaced wlth a Digital Equip­
ment C.orp.orati.on PDP-8 c.omputer f.or testing and 
evaluati.on. 

Tests have sh.own that stylus m.ovements .of 0.04 
inch c.ould be res.olved, which c.or~esp.onds t.o the cal­
culated value menti.oned earlier. However, it was found 
that a c.ontact area appr.oximately 74 inch in diameter 
is necessary t.o ensure .operati.on, anywhere .on the 
10 X 10 inch surface. The c.ontac~ area must be as 
large as that t.o bridge the regi.ons .of l.ow sensitivity 
which result fr.om the irregularities ~n the surface wave 
radiati.on pattern. This means that even th.ough the 
device has an inherent p.ositi.onal res.oluti.on .of 0.04 
inch, the usable w.orking res.oluti.on is c.onsiderably 
l.ower. 

When using the device with a qnger, a pressure .of 

Figure 6--Touch sensitive po:oition encoder 

.only a few .ounces is adequate f.or .operati.on .over m.ost 

.of the surface. In a few places, the pressure has t.o be 
increased t.o enlarge the c.ontact area sufficiently. In 
the f.ormer case, p.ointing with a finger t.o items dis­
played behind a seemingly .ordinary glass plate is 
quite natural, and, except f.or the parallax, a pers.on 
can make use .of the device with.out c.onsci.ously bein;g 
aware.of its presence. 

The p.ositi.on enc.oding is accurate and linear to ab.out 
0.,5 percent. This figure takes int.o acc.ount the variati.on. 
in wave vel.ocity due t.o temperature change and ma,­
terial inh.om.ogeneity, n.onlinearity .of the rSidiated 
wavefr.ont, and the stability .of the timing circuits. 

Because scratches and marks .on the glass pr.oduce 
small ech.oes which c.ontribute t.o the backgr.ound 
n.oise level in the receiver, s.ome care must be used to 
keep the surface clean. The accumulati.on .of finger,· 
prints .on the glass als.o c.ontributes t.o the backgr.ound 
n.oise. H.owever, this is n.ot a seri.ous pr.oblem when the 
device is used with reas.onably clean hands. 

The initial device as described has served t.o dem.on·· 
strate the feasibility .of using surface wave ech.o ranging: 
as the basis f.or a t.ouch-sensitive p.ositi.on enc.odeJ'" 
The experience gained in c.onstructing and testing: 
the device has been useful in determining where iill" 
pr.ovements are needed and h.ow they sh.ould be im.·· 
plemented. Further c.omputati.ons indicate that 9, m.ore 
s.ophisticated appr.oach t.o the array design and as·, 
sembly sh.ould impr.ove the radiati.on pattern uni·, 
f.ormity and thereby reduce the present disparity 
between the minimum c.ontact size and the inherent 
res.oluti.on. Tests have been sh.own that l.owering the: 
carrier frequency t.o ab.out 4 MHz sh.ould increase 
the signal-t.o-n.oise rati.o .of usable stylUS ech.oes by de­
creasing the signal attenuati.on and l.owering the sen­
sitivity t.o surface c.ontaminati.on. The .overall lc.onse­
quences .of these changes will be t.o impr.ove the per­
f.ormance with medium and l.ow res.oluti.on styli and 
als.o t.o simplify the circuitry, and hence reduc:e the 
c.ost, by using tw.o arrays instead .of f.our. Work is 
pr.ogressing .on the constructi.on .of a device which in­
c.orporates the impr.ovements described. 

REFERENCES 

1 M R DAVIS T 0 ELLIS 
The RAND tablet: A man-machine communication device 
AFIPS FJCC Proc Vol 26 325 1964 

2 M H LEWIN 
A magnetic device for computer graphical input 
AFIPS FJCC Proc Vol 27 8311965 

3 E A JOHNSON 
Touch display: A novel input/output device for computers 



Electronics Letters Vol 12 1964 Vol 13 1965 
4 P W WOO 

A proposal for input of hand drawn informatio'll to a digital 
system 
IEEE Trans on Electronic Computers EC-13 609 1964 

5 L G ROBERTS 
The Lincoln wand 

Touch Sensitive X-Y Position Encoder ,'131 

AF'IPS F'JCC Pro(' Vol 28 223 1966 
(; I A VIKTOROV 0 M ZUBOV A 

Directivity diagrams of radiators of Lamb and Rayleigh waves 
Soviet Physics-Acou~tie~ Vol 9 1H62 Vol 138 1963 

7 I A VIKTOROV 
Rayleigh waves in the ulirasoll ic range 
Soviet Pysics-Acoustics Vol 8 1962 Vol 11 X 1962 





A queueing model for scan conversion 

by T. W. GAY, JR. 

IBM Systems Development Division 
Kingston, New York 

STATEMENT OF PURPOSE AND EXPECTED 
RESULTS 

The purpose of this paper is to present a queueing 
model for analyzing a video scan converter (VSC). 
The system analyst constantly strives for quicker 
methods, parallel approaches, and more accurate re­
suIts. Queueing theory is generally useful in the first 
and second of these categories. How then does the 
analyst develop a queueing model of a VSC in the 
hardware development and design stage? 

The model is constructed through study of the in­
ternal functioning of the VSC and a queueing model 
is then developed which functions analogously with it. 
The queueing model developed for the VSC was an 
extension and adaptation of the known queueing model 
called Hthe machine interference queueing modeL" 
(See first section for an explanation). 

The general machine interference queueing model was 
extended and modified to permit the servicing of 
multicharacter conversions in lieu of single character 
conversions. 

The results are presented in the first two sections of 
this paper. 

IN'rRODUCTION AND EXPLANATION OF THE 
VIDEO SCAN CONVERTER 

Queueing analysis is a recent branch of probability 
theory which studies the characteristics and effects 
of congestion in systems subject to random flows. The 
system under study may be a supermarket, a busy 
airport, or a real-time message processor. Ideally, 
the behavior of each of these systems could be repre­
sented in mathematical terms, the common elements 

identified, and the appropriate analysis applied to 
determine the expected effects of various modes of 
operation. Practically, however, no such extensive 
analysis can be carried out. This is due in part to the 
lack of complete knowledge of the system specifica­
tions at the time analysis is required. But more im­
portant is the· present limitation of the mathematics. 

The function of the video (analog) scan converter is 
to effect the conversion of characters which have been 
generated by a computer in directed beam format into a 
video scan format. In fulfilling this function, a video 
scan converter ordinarily "paints" character(s) on the 
face of a cathode ray tube and. "converts" their image 
by scanning the image with a Vidicon. The directed 
beam character appears to be painted on with no 
presence of dots (or scanning lines). The painted image 
is converted to a video scan character and is composed 
of horizontal dots conforming to the character shape. 
The smooth painted character has now become a 
configuration of dots close enough together so that the 
eye perceives an entire character(s). 

One video scan converter is normally used to service 
a group of video displays. If a keyboard is attached 
to a video display, then the operator can enter key­
strokes thru the keyboard into the computer. The key­
stroke(s) are converted to the video scan format and 
appear on the operator's display screen. If characters 
appear on the display, one by one, this is called "single 
character conversion", a subject not discussed in this 
paper. However, characters frequently appear on the 
display screen in groups due to (batches) because of 
high traffic. This paper assesses this multiple character 
conversion phenomenon. 

553 



554 Fall Joint Computer Conference, 1969 

A queueing model for the video scan converter 

Explanation of the general Case "machine inter­
ference" queueing model, with development of as­
sociated equations. (Reference: Feller, W., An In­
troduction to Probability Theory and its Applications 
2nd edition, New York: J. Wiley and Sons, 1957: 
Pages 416-418.) 

The machine interference model is a general class of 
queuing models. Weare here specifically interested in 
the "Machine Servicing With Single Serviceman." 

This model has a finite number of customers arriving 
randomly at a single server. It was original1y applied 
in Swedish industry to determine how many machines 
(customers) one setup man (server) could tend without 
undue waiting delays resulting from several machines 
requiting service at the same time. 

Assume there are "m" identical machines assigned 
to one serviceman.: Each machine is in one of two 
states. 

1. "up" (operating) 
2. "down" (requiring service) 

When a machine goes "down", it joins the queue for 
the s,erviceman. If the serviceman if free he im­
mediatel~ begins to service the machine. If h~ is busy, 
the machll~ must wait for service. The queue (waiting 
line) is organized on a "first-in, first-out" basis. The 
design is shown in Figure 2. 

To obtain the only readily available solution, the 
following assumptions are made: 

1. S?rv~ce Time. for all machines is expotentially 
dIstrIbuted wIth mean time, "T s". 

2. The "up" time for each machine expotentially 
distributed with mean time "'T " , a' 

These assumptions result in worst-case answers if 

1.0 

.9 

.8 

.7 

.6 

rmlZI.5 

.4 

.3 

.2 

.1 

0.1 
I I ! I ", I 

0.2 0.4 0.6 0.8 1.0 4 6 8 10 
SERVICE RATIO Z 

20 40 60 100 
80 

Figure I-Poisson ratio function VS. service ratio 

the actual service and "up" time distributions a:re 
more regular. 

Since there is a "fixed" number of customers, we 
can readily see that the arrival rate of the machines 
to th~ service queue is proportional to the number still 
operating. If all machines are in the queue, the arriv:al 
rate is reduced to zero. Because of this "captive audi­
ence" characteristic, the system has a built-in limiting 
effect and cannot become unstable (no infinite number 
of customers in the queue). For a relatively efficient 
machine, the mean operating time, Ta , is comparatively 
large compared to mean servicing time, T 8' The ratio 
of these two values is termed here the "service ratio", 
z. 

Ta 
z =-

T" 
(1) 

If P k denotes the probability that K machines are 
"down", then let Po denote the probability that an 
machines are operating and the serviceman is idle. No 
machines are in the waiting line nor being serviced. 
Po i~ the probability which represents the frac1Gion of 
time the serviceman is idle. Thus, 1 - Po is the frac-

I: Ta 

OPERATING 
"up" TIME 
=Ta 

Ta 

• 
• 
• 
• 

Ta 

Ta 

~ I- Tw 

Tb 

WAITING 
LINE 

WAIT- Tw 

-I- T!s-j 

SERVICE . ,', 

Figure 2-Model of machine servicing with single 
servireman 



tion of time the serviceman is· busy, and can be called 
the server utilization. 
Hence: 

e-Z 

( 

z(m-k) ) 

(m - k): 
Pk = ------ (2A) 

Where P k is the probability that k machines are 
"down" Equation 2A is the ratio of two Poisson ex­
pressions, both obtainable from Poisson tables, and 
is known as the truncated Poisson distribution. If 
K = 0, then Equation 2A would give the probability 
of no machines in the service queue. If 1 - Po is server 
utilization, then substituting k = 0 into Equation 2A 
and subtracting it from 1 gives: 

Server Utilization = 

(1 - Po) 

For convenience, this function has been plotted in 
Figure 1, "Poisson Ratio Function versus Service 
Ratio." Given Ta and T 8 , z can be calculated using 
Equation 1. Given m, the number of individual queues, 
rm (z) can be found at the intersection of z and m and 
its value read from the "y" axis, Figure 1. Note that 
rm (z) denotes server utilization. 

For each machine, a breakdown is followed by a 
wait for service, a service time, and an operating time 
until the next time it has a breakdown. In equation 
form: 

Where: 

T b - is the mean time between breakdowns per 
machine 

Tw - is the mean time waiting to be serviced per 
machine 

T8 - is the mean time to service a "down" 
machine 

Ta - is the mean time a machine is "up", (oper­
ating) 

Queueing Model for Scan Conversion 555 

The mean rate of machine breakdown is 1/Tb• Since 
there are m machines, the total mean rate. of machine 
breakdowns entering the service queue is miT b. Each 
breakdown requires a service time T 8' Therefore, the 
server utilization, rm (z), must be: 

(4) 

But if fm (z) is already known thru use of Figure 1, then 
Equation 4 can be solved for T b: 

m T8 
Tb = --; 

rm(z) 
where T b is mean time 
between breakdowns. 

(5) 

By further examination of Equation 3, it can be seen 
that the mean time a machine stays in the "down" 
state is: 

[ 
m T, ] 

T w + T 8 = T b - T a = .--- - - T a 

rm (z) 
(6) 

A correlation which will be made later is that T w + T 8 
is sometimes referred to as average response time, T r' 
A useful alternate form to Equation 6 is: 

T w + T, = [ --~- - ~ T, (7) 
rm (z) 

Since Ta = z T 8, and substitute for T a in Equation 6. 
The mean number of down machines in the waiting 
line, not including the one In service, is given by: 

m 

Lw = L (k - 1) Pk = m - (z + 1) rm (z) (8) 
k=l 

The mean number of all "down" machines, including 
the one in service, is given by: 

m 

Lq = L k Pk = Lw + rm (z) m - z rm(Z) (9) 
k=l 

Where, in Equations 8 and 9 above: 

P k is the probability that k machines are down 
k is the number of machines "down" 

m is the total number of machines in the systems 
and is a constant 

z is the ratio of the machine "up" time to the 
machine service time. 

rm (z) is the server utilization 



556 Fall Joint Computer Conference, 1969 

The proportion of time that a ~achine spends in the 
"down" state is found by divid~ng Equation 6 by Til: 

Prob (machine K and only 
machine k is "down") 

= (1 - z/m rm(z» (10) 

Example 

Suppose that eight machines are tended by one 
serviceman. The mean operating time of a machine is 
380 seconds, and mean service time is 34.5 seconds. 
Assume that both operating and service times are ex­
ponentially distributed. Determine the operating 
characteristics of this system. 

The service ratio is z = 1
T

"a =' ::05 secon~ 11 
• . secon s 

a. What is the serviceman's utilization? 
Using Figure 1 ,with z = 11 and m = 8 
rm(z) = ra (11) = .62 = 62%, which i." the 
serviceman's utilization 

b. What is the average number of "down" ma­
chines? 
Using Equation 9, with im == 8, ra (11) = .62, 
and z = 11 Lq = 8 - 11 (.62) = 8 - 6.82 = 
1.18, which is the average number of machines 
"down" and are located in the waiting line or in 
service. 

c. What is the average time a machine spends in 
the "down" state? 
Using Equation 6, with m = 8, ra(ll) = .62, 
Ta = 380 seconds, T.s = 34.5 seconds. 

(T + T ) mT 8 T 8 (34.5) sec. 380 
W 8 = fa(1l) - a = .62 - sec 

(Tw + T 8 ) = 445 sec. - 380 sec, = 65 seconds, 
which is the average time a machine is "down." 

d. What fraction of the tots'! time is a machine in 
the "down" state? 
Using Equation 10, with m = 8, ra (11) = .62, 
z = 11. Prob = Fraction of total time = (1-
11/8 (.62» = .15 = 15% 

Let us consider the same example again, the one we 
have just used to determine op~rating characteristics. 
To illustrate the practicality of: the case of "Machine 
Servicing With a Single Serviceman" let us transform 
the example by considering the analogies we wish to 
introduce. 

ITEMS FOUND IN 
ORIGINAL EXA~lPLE 

ANALOGOUS ITEIVr 
NOW- REPLACING 

THE ORIGINAL 
-----------------

8 machines, 
m=8 

8 independent sources for 
incoming data; m = 8 

--------------- ------
one serviceman, 
n = 1 

380 seconds = the mean 
operating time, T a, per 
machine (time frame is 
immaterial) 

34.5 seconds = the mean 
service time, T s , per 
machine (time frame is 
immaterial) 

one service facility, 
n = 1, required to 
service all eight sources 
of data (the video scan 
converter) 

380 milliseconds = the 
average inter-arrival 
time, T a , between 
characters coming from 
anyone source of data 

34.5 milliseconds = the 
averag-e service time per 
character of input from 
any source of da1Ga, T 8 

------------------_ .. _--------------------

serviceman's utilization 
rm (z) 

utilization of video scan 
converter (servic,er), 
rm (z) 

_.--------.--------_ .. ---------------------

down machines, Lq total characters waiting 
or being serviced in the 
system, Lq 

-----~-- ----~ ----.-----------~---- .......... -

the average time a 
machine spends in the 
"down" state ::;: 
(TID + T.) 

the average time a 
character spends waiting 
for and receiving serviee 
= (T w + T 8), response 
time. 

----_. ----.---------.... -.~---.----~-

Tb is the average time 
between "breakdowns" 
per machine, and is the 
sum of T a , Tw and Ts 

The average time interval 
between services of a 
specific queue; l/Tb is 
the average numloer of 
queues serviced during 
this time interval 

--------._--------------------
Prob (machine K is in the 

"down" state) 
= fraction of the total 

time a machine is in 
the "down" state 

Prob (that any character 
in the system is waiting 
or is being serviced) 
= fraction of the total 

time any chara,cter in 
the system is waiting 
or is being serviced 



Transformed example continued 

Th . t" T a 380 ms 
e serVice ra 10 IS Z = T! = 34.5 ms 11 

a. What is the average scan convertEr utilization? 
Using Figure 1, with z = 11, m = 8 

rm(z) = ra (11) = .62 = 62% utilization 

b. What is the average number of characters in 
the system? 

Using Equation 9, with m = 8, rm (11) = .62, 
z = 11 Lq = m - z rm (z) = 8 -11 (.62) = 
8 - 6.82 = 1.18 characters on the average are 
in the system waiting or being serviced. 

c. What is the average response time per character? . 
Using Equation 6, with m = 8, rs(11) = .62 
Ta =; 380 ms, T, = 34.5 rns 

( 
m T8 ) 

(Tw + T B ) = -- - Ta 
ra (11) 

= [ 8 (34.5 rns) _ 380 rnsJ 

.62 

(Tw + To) = [445 ms - 380 rns] = 65 ms, 
average response per character 

d. What fraction of the total time does a character 
spend waiting for or being serviced? 

Using Equation 10, with m - 8, rs (11) = .62, 
z = 11 

Fraction of total time = (1 - z/m (rs (11» 

= (1 - 11/8 (.62» 

.15 = 15% 

Extension and adaption of the general case "machine 
interference" queueing model to permit multiple char­
acter updates per service cycle. 

Consider now that we wish to adapt the single charac­
ter update model to one which is capable of representing 
a mUltiple character update. Specifically we mean the 
ability to service "N" characters coming from the 
same source and residing in the same queue in the same 
34.5 milliseconds service cycle. In effect, the service 
time per character reduces to: 

Queueing Model for Scan Conversion 557 

34.5 millisecond 
TB' = -- = -------- (11) 

N N Characters 

We are especially interested in the response time, 
Tn since this provides a measure of "machine respon­
siveness" to a keyboard operator entering a character 
stream into the system. T r , is meant to be the average 
response time per character, since the response time for 
the first character will be longer than that of the last 
character awaiting service from the same source. 

As with our previous model, our service ratio is de­
defined as: 

z = (12) 

Also using Figure 1, the server utilization, rm (z), 
can be found at the intersection of z and m, and its 
value read from the "y" axis. 

Let T,. * = (T w + T 8) = [ ~ - z ] T B (13) 
rm (z) 

During the time interval between services, T b, the 
number of characters which arrived at a specific queue 
is: 

(14) 

Where N is the character contents of an individual 
queue and is the average number of characters services 
as a "batch". 

Referring to Figure 3, in a typical multiple character 
service there are N characters and N - 1 time intervals, 
T a, between the characters. T a is the average inter­
arrival time of the incoming character stream. As the 
wait time becomes longer more characters arrive at 
the individual queue, awaiting service simultaneoulsy 
with the first character in the queue .. When the queue 
is serviced, all characters residing in the queue at that 
point in time are serviced in the same constant service 
time of 34.5 millisecond for all N of them. Note that 
the service time per character haA been effectively re­
duced to 34.5 mslN characters. 

The response time per character must reflect, how-



558 Fall Joint Computer Conference, 1969 

CHARACTER ARRIVAL 
POSITION 

TIME 

-(Tw -2Ta 1 -----

----- --- (T w-T 01 

THE SUM OF THE INDIVIDUAL WAITING TlMES- (FOR THE CASE,N-51 

= ~Twl+<Tw-T a)+(Tw-'2T al+(T w- 3T a l+(Tw-4T 0 1] 

n = (N-ll 

= L (Tw-nTa 1 :WHERE, Tw= (T,:*:-Tsl 

T:E=:VERAGE RESPONSE TIME PER =- r~:N-1) (T - nT lJ + T 
CHARACTER L...", was 

n=O 

Figure 3-Time profile of 5 charnGters, (~ = 5), 
awaitiug service in the lth queue arid the summation 

of total time, TwN = 5 

ever, that all N characters did in fact require 34.5 ms 
each willIe they were serviced as a "batch" 

The concept used to obtain the average response time 
per character was to first separate the waiting time 
from the service time portion found in the first character 
response time: 

(15) 

Where T w is the waiting time only of the first charac­
ter, T 8 is the servi ce time of the first character, and 
Tr * is the response time for the first character. 

The sum of the individual character waiting time 
(See Figure 3) 

n-(N-l) 

T 8um = L (Tw -nTa) (16) 
n=O 

The average waiting time per character is: 

Tw (average) 
__ [n I:n-~No-l)(TNW - nT a)] 

(17) 

Since the service time was subtracted out in Equa-· 
tion 15, it must be re-entered so that each and every 
character in the "bash" is charged with Ts. Inserting 
T 8 into Equation 17, gives the average response time 
per character, Tr: 

[

lIf _l)CTW - nTa)] 

T, = .... N + T. (18) 

Equation 18 is important since it is the mathematjcal 
expression we originally set out to find. The reader 
should note that Tr is the Overall Average Response 
Time per Character. The following example should be 
of interest. 

Example 

Assume m = 32 independent sources of input 
character streams, each assigned to an individual 
queue. Each queue is serviced on a "first come­
first served" priority, as determined by the arrival of 
the first ,character to enter the individual queue. Let 
Ta = 313 milliseconds, T 8 = 34.5 milliseconds. Find 
T T1 the Overall Average Response Time per Character. 

Using Equation 12, the service ratio, z, is: 

z = Ta/Ts = 313 ms/34.5 ms = 9 

Using Figure 1, the server utilization, r32 (9) = 1.0 
Wherem = 32, Z = 9 

Using Equation 13, the first character response time, 
Tr *, is: 

Tr* = [32 __ 9J 34.5 ms = 795 ms 
1.0 

Where m = 32, Z = 9, r32 (9) = 1,0, and Ts = 34.5 ms 

Using Equation 14, the character contents of nn in­
dividual queue, N, is: 

N = [ 79~ms + IJ = 3.54 characters 
313 ms 

N = 3.54, is the average character content of Hn in­
dividual queue. The characters are serviced once per 
cycle. 

Using Equation 15, the average wait time fOir the 
first character, T w, js: 

T w = (79.'5 ms - - 34.5 ms) = 760.5 ms 



U sing Equation 16, the sum of the individual character 
waiting times is: 

T 8um = [(760.5 ms) + (760.5 ms - 313 ms)-+­
(760.5 ms - 2 X 313 ms)] 

T Bum = [(760.5 + (447.5) + (134.5)] = 1,342.5ms 

Using Equation 18, the overall average response time 
per character, T r, is: 

[ 

1,342.5 ms ] 
TI' = + 34.5 ms = 414.5 ms per 

3.54 Char. character 

As compared to the value obtained with a simulation 
~odel, the following is the % difference: 

% Difference = (414.5 - 390) ms X 100% 

390 ms 
= + 6.3% Difference 

Presentation of results with comparison to a 
simulation model 

Table 1 and Figure 4 show the computed and simu­
lated values from the queueing model described in 
an earlier section and a simulation (GPSS) model respec­
tively. The purpose of simulating the video scan con­
verter was to establish validity of the queueing model 
results, within a range of + or - 20%. 

The argument is valid that error in modeling can 
exist in: 

a. The queueing model 
b. The simulation model 
c. Both models 

Of paramount importance, however, is the under­
lying principle that the probability is least that both 
models will be in error. As a general rule for confirming 
validity: 

a. Values from both models should be in the same 
"ball park." 

b. Output values from both should increase 
or decrease as independent variables are changed 
by like amounts. 

c. Produce approximately the same slope of values 
d. Provide a reasonable division of positive and 

negative % "differences" over the range of the 
model's output. 

en 
E 

~ 

Queueing Model for Scan Conversion 559 

450 

400 

;- OVERALL AVERAGE RESPONSE 
: TIME PER CHARACTER VERSUS 
: ATTACHED VIDEO DISPLAYS. 
: QUEUEING MODEL VERSUS 
f-- SIMULATION MODEL RESULTS 

VIDEO (ANALOG) SCAN 
CONVERTER 

414.5 

~ 350 1 
~ 

1'90.0 
0:." 
W 
I-
U « 
0:. 
« 
J: 
u 
0:. 
w 
0-

w 
:E 
i= 
w 
(f) 

z 
0 
0-
(f) 
W 
0:. 

w 
C> « 
0:. 
w 
> « 
...J 
...J « 
0:. 
w 
> 
0 

300 

250 

200 

150 

50 

34.5 

" 

-

~SIMULATION 
MODEL 

j 
180.0J ~QUEUEING 

/1162.0 MODEL 

/; 

--L~ __ ---,-__ ----.l __ ----.l 

16 24 32 40 48 

Figure 4-Attached video displays with keyboard, m 

U sing this as criteria to determine validity the fol­
lowing is my evaluation of the results: 

a. The values differed by 10% maximum (at 
M = 16, the queueing model value for Tr = 
162.0 millisecond versus Tr = 180 millisecond 
for the simulation model. 

h. Over the complete range of m = 0 thru m = 
32, the values of T r from both models increased 
as m was increased a like amount. 

c. The slope of T r values from both models differed 
over the range of m = 0 thru m = 32. They 
were: 

Range Queueing Model Simulation Model 

m =: o thru 8, Slope = + 4.77 Slope = + 5.06 
m =: 8 thru 16, Slope = +11.16 Slope = +13.12 
M =: 16 thru 32, Slope = +15.78 Slope = +13.12 

---- ---

Tota.ls +31.71 +31.30 

Even though the slopes are somewhat differer u 

they are not appreciably so. I t appears t1 Le 



% 

. 

560 Fall Joint Computer Conference, 1969 

TABLE I-Computation of values for Figure 4-
Overall average response time per character, T .. 

m 1 4 8 1~ 32 EQUATION 

rm(z) .10 .43 .77 .995 1.0 FIG.l 

* Tr 34.5ms 45.0ms 83.0ms 276;.Oms 795.0ms 13 

N 1.110 1.146 1. 270 1.893 3.540 14 

T w o .00ms 10.5ms 48.5ms 241,.5ms 760. Sms 15 

LTw o .00ms 10. Sms 48.5ms 241. 5ms 1,342. Sms 16 

LTw/N O.OOms 9.15ms 38.2ms 1271.5ms 380.0ms 17 

T r = ~Tw"N+T s 34.5ms 43.65ms 72.7ms 162.0ms 414.Sms 18 

7S. Oms 180:.0ms 390.0ms SIM. T r 
(SIM. ) 34.5ms 46.00ms MODEL 

DIFFERENCE o .00ms -2.35ms -2.3ms -1S;.Oms +24.Sms -----

DIFFERENCE 0.00% -5.1% -3.07% -10'.0% + 6.3% 19 

z = ~ z 278.0ms z 8 for m=1, 4, 8, 16 
Ts 34.Sms 

z=~= 313.0ms = 9 for m= 32 
T 34.5ms s 

queueing model does not tak~ into account some 
factor at the 1m,' end of m and somewhat over 
compensates at the high end of m. 

d. As shown in Table 1, the maximum negative 
difference is - 10.0%, the :maximum positive 
difference is + 6.3%. This is calculated as follows 

% Difference = 
(queueing value, T r - simul~ted, (19)T r) X 100% 

(simulated, Tr) 

There appears to be a reasonable division be­
tween positive and negative % differences. 

CONCLUSIONS 

The queueing model as presented, in my opinion, 
provides a very satisfactory mathematical representa­
tion of a video scan converter and better than originally 
anticipated. 

ACKNOWLEDGMENTS 

The author wishes to thank IVIr. P. H. Seaman for 
his help in the form of technical discussion and evalua-· 
tion; }Ir. T. G. Greene for his cooperation in developinp: 
the simulation model; l\Ir. V. L. Hoberecht for hils COll·­

sultation and advice regarding video display systems; 
and to :11r. D. H. Rumble for his encouragement.. 

REFERENCES 

\y FELLER 
A. n intror/cf1;on tv probability theory and its apphcai'iou.~ 
John Wiley and Som;; 1!)57 N Y 2nd ed 416-11.~ 

2 P II SEAM:\'"\" 
.1nalysis of so'me fjueuein(}tI1,odels in real i1:me 1~!/8tem::; 
IBM Data Proeessing Technique~ Manual F20-0007-0 
.'39-4247·48 (Note: Th~ PoiH::>on ratio function l';"(z) VH. 
service ratio z c= Ta/T. waf; ohtained from this IBM 
publicat.ion. 

:~ W FEI,LEn. 
.-in inlrod]lciion to probability theory and ih; applications 
John Wiley and Sont,: ); Y 1965 3rd ed 460-468 

4 J MARTIN 
Design of real-time computer sytem.s 
Prentice-Hall Inc Eng1ewoorl Clifis N J 1967 396-426 

5 D R COX W L SMITH 
Queues 
John Wiley and Sons ~ Y 1961 general reference to var­
iOll~ Chlt;~es I)f qupueing pmble n.:.: 



Character generation from resistive 

storage of time derivatives 

by MICHAEL L. DERTOUZOS 

Massachusetts Institute of Technology 
Cambridge, Massachusetts 

INTRODUCTION 

Recent advances in man-machine communication 
have stimulated increased interest in techniques and 
special circuits that generate characters, for graphical 
and alphanumeric Cathode-Ray-Tube (CRT) display 
terminals, at the display site. The primary advantage 
in employing such local character generation is com­
pression of the data that is required to store and com­
municate a character from the computer to the dis­
play-a single binary word of length n is all that is 
required to instruct the character generator to dis­
play one of 2n possible characters. The primary dis­
advantage of local character generation is display 
cost, for it is generally considerably less expensive 
to generate characters from a longer sequence of more 
elementary commands-for example commands that 
cause the CRT beam to move right, left, up or down 
by a minimum resolvable increment. Besides these 
conflicting costs of data storage and transmission 
versus local-display generation, several other less 
tangible criteria such as character stability and fi­
delity (aesthetics), are instrumental in the design and 
evaluation of a local character-generation approach. 

This paper discusses a character-generation tech­
nique which requires, for each character, the storage 
in a resistive memory of the time derivative functions 
for the horizontal and vertical CRT deflection signals. 
The first section of the paper descrIbes specific geometri­
cal primitive segments that can compose a large class 
of characters and symbols; "the choice of such primi­
tives is important, since it affects directly the quality 
of the displayed characters and the display cost. Also 

561 

given. in this section is a complete list of primitive 
sequences for the 94-character ASC-II set. The second 
section of the paper describes a character-generation 
system that stores the above primitives in a resistor 
matrix, and uses them to compose desired characters 
on a CRT display'~ In the third. section, this approach 
is evaluated and compared to more conventional 
methods of dot intensification, in terms of cost, speed, 
and fidelity. 

Character primitive8 

Ch.aracters and symbols, generated on CRT dis­
plays, are made up of certain elementary graphical 
segments. Character primitive8 over a character set 
will be called those segments which are (i) atomic or 
indivisible to smaller segments, and (ii) sufficient in 
number and quality to compose within acceptable 
accuracy every character in that set. At one extreme, 
the points of a uniformly spaced grid are adequate 
character primitives (Figure la); however, as the 
number of these points is reduced (Figures Ib ami c), 
it becomes progressively more difficult to recognize 
the displayed characters. At the other extreme, the 
set of all characters may be considered itself as a set 
of character primitives. This set, however, is not very 
useful, for while it is generally easy to construct a 
system capable of implementing the primitives of 
Figure 1, it is considerably more difficult and expen­
sive to implement the primitives at the other extreme. 
Conversely, it takes only seven bits to specify one 
of the 94 characters of the ASC-II set, while it takes 
49 bits to specify every one of the possible subset of 



562 Fall Joint Computer Conference, 1969 

169 POINTS 49 POINTS 16 POINTS 

•••••••• • • • • • • • .. .. . .. ..•. • • .. . ... 
• • • .. ... • .. . .. .. ... • • .. . . . . ... • • • •••••••• • • • • .. .. • .. 

• • • • .. . . 
(0) (b) (c) 

Figure I-Points as character primitives 

dots of Figure lb. These simple observations on the 
above two extremes are characteristic of the problems 
of character generation and of the objectives in the 
design of an effective character generator-that is 
the, desirability for a small number of primitives which 
can be economically implemented. 

The primitives used in the character generation 
technique of this paper are continuous strokes which 
are either (i) straight lines or (ii) so-called "cusps". 
A straight-line primitive is specified relative to a 
point P by increments Az, All which ,are real numbers; 
in our notation each such primitive; is denoted, when 
visible, by (Az, All) or, when invisible by an under­
score (Az , All). Figure 2a shows two such primitives. 
The equation of primitive (Az, All) is relative to a 
coordinate center at point P as follows: 

~ = ~ for 0 < ~ < 1 0 < ~ < 1 (1) 
Au Az - Au - , - Az -

where x and yare the horizontal and v:ertical coordinates 
of every point on that primitive. 

.1.10- (2,3) (3,3) .L}:/' 

--"- ...- r- If ." 
~ r--pro. 1'- .. ~ 

r-
R 

1:-i"" 
(1,-3) (3,-1) 

1--
IL (0) (b) 

~;[] 
o 1 2 1 

'3 "3 
...!..-(c) Ax 

Figure 2-Straight/cusp primitives 

The cusp primitive, on the other hand, is specified 
relative to a point P by increments Az, All, whieh are 
real; moreover, one of these increments is overs,cored, 
and is called the cusp increments; that is eithe:r (Az , 

Au) or (Az , All) are valid cusp primitive notations . 
Geometrically, a cusp primitive is, as shown in :Figure 
2b, contained in a rectangle of dimensions Ax, Au; 
the curved segment corresponding to the overscored 
increment is obtained by dividing the other increment 
into three equal parts, fitting a straight line in the 
middle section and a parabola in each of the othe:r two 
sections so that the parabolas are tangent to the above 
straight line. More precisely, the cusp, (Az, All), shown 
normalized in Figure 2c, is given, relative to a coor­
dinate center at point P, by 

In Region I (0 ~ ~ < ~); 

L = 1 - (1 - 3 ~>,' (a) 
Au Az 

In Region II (1 < ~ < ~). 
3-Az 3' 

.1 = 1 
All 

In Region III (~3 ~ ~ ~ 1); 
Az 

(b) (2) 

x = 1 - (3 ~ _ 2)2 (c) 
Au Az 

The cusp (xz, All) is obtained from Equations (2) by 
interchanging literal x with literal y everywhere in 
these equations. A cusp is always visible. These ap­
parently mysterious primitives are justified on two 
counts: (i) ability to represent a large class of charac­
ters and symbols with a small number of primitives, 
as discussed immediately below and (ii) ease of im­
plementation, as discussed in the following section. 

A character or symbol is composed from a sequence 
of these two types of primitives; here the first primitive 
is specified relative to the . lower left corner of the 
character field, and each subsequent primitive is 
specified relative to the terminating point of the. 
preceding primitive. For example, capital lette)r A 
is formed in Figure 3a by the primitive sequence 

SA = (.45, 1.2) (.45, -1.2) (- .788, .3)(.676, 0) 

Observe· that the first segment is a visible straJight 
primitive which starts at the lower left corner and 



Character Generation from Resistive Storage of Time Derivatives 563 

1.2 

1.0 

.8 

.6 

.4 

.2 I 
rJ o 
o 

IA 
1.2 I::; ~ / ,. 

1\ l~ ~i~ I' 
I \ 

I , 
~ IJ \ ' lf2~ 
~ VI 

II 

I ~t\ 

II !~ ~ 
..... r- .... Io... 

.2 

.. ~ ~ 
~ 

.4 .6 
(a) 

\~-

i\ 
\ 

1\ 
\ 

r-. ~ 
.8 

1.0 

.8 
1/' 

.6 

.4 

o 
.0 

.& 

H 

J~I ~ 
l' r--' 

I~ r 
~II 

~ 

.2 .4 

(b) 

./~ 

.6 

Figure 3-Character composition by straight/cusp 
primitives 

1~ 
I~ 

.8 

terminates at the point [,45, 1.2]. The second segment 
is again a visible straight primitive, which starts as 
point [.45, 1.2] and terminates .45 units to the right 
and 1.2 units below that point. Observe further that 
the third segment is invisible, and that the direction 
and order in the sequence of each primitive is shown 
adjacent to each segment in Figure 3a. Capital letter 
P of Figure 3b is formed by the primitive sequence 

Sp = (0, 1.2) (.4, 0) ( - .4, - .5) (.4, 0) (.2, 5) 

o p 

Here, the first four primitives are straight with the 
third primitive invisible. The fifth primitive however 
is a cusp which starts at the point [.4, .7] and ends at 
the point [.4, 1.2]. 

Figure 4 shows the primitive sequences corresponding 
to all 94 alphanumeric characters and symbols of the 
ASC-II code. This Table is arranged exactly as the 
table of the ASC-II code for reference purposes. Some 
statistics of interest here are as follows: 

1. The average number of primitive segments per 
character is 4.43. 

2. The maximum number of primitives per charac­
ter is eight. 

3. The total number of different magnitudes for 
the primitive increments is 13. 

4:. No character uses more than two cusp primi­
tives; these primitives occur (intentionally) either 
at the fifth, at the seventh, or at both the fifth 
and seventh segments of that character's primitive 
sequence. * 

Of the above observations, 1, 2, and 3 indicate that 
a relatively small number of primitives can form a 
relatively large class of symbols. The fourth as weIJ 

• or they can be made to occur at these segment positions by 
introducing primitives (0,0) anywhere in the sequence. 

<.!.!!1· ... !)(0.·.&)( ... ·.~)10 •. 5) ~t3 •. 6)~I-.3 •. 6)1-.3.·.6)~I-.i!i,1.2)(.2.-.3) 10.1.2)1.4.011~1.4.011.! •. 51 1:.M:2!1-.2;.21 12.:l)(0~.ZII~I".-.5)(0 •. 3)(-.8 •. 51 

~10.-L01\Qd!10.-.1l \!.!:2!IZ.ZMO.-I.Zl 

2 
~IO •. Zll:k&lIO •. Z) ~1.7. !)(-.7.-.911.8.01 

• 3 
IJM.lI.2,l.2MMI-.Z.-I.2M~I-.7.OM.!.!)1. 7.01 u.!1.XI.OH.g.-.511.i.-.7H·.Z.Ol 

4 
1~10.-l611~H-.... !11.8 •. 511-.8.-.~1 Ua21 (O,lZ){ -.7, - 9)(.8,0} 

'" 5 
\U!l1.8.1.2lt!,Q110.-.211 .• -.'110.-.21 1 .•.. 7HI.5)(.6.01 

8 6 
<.!.Q!1-.8.11C3,.2)(-.5.-.III .•• -.~) ~-2.0X-.•• -IZ)( .••. 711-.4.-.Z1 

7 
~IO.-o.Zl 101.211.'.011-.8.-1.21 

8 
~1-.~.\.21 \1.!.M· .... 3)( .•• -.511· .•• -.~)( .... 51 

9 
\!ml.Z.0)(.:i.U)(-.;j.-.7M.4. Zl 

\:!,!)C4 •. 411Jcl,)(-.6,0)CI.Z1I.4.-.41 1~IO.OIIo..-.'IIO.OI 

+ 
\MM ... OI~IO.-.Il 

I~hl.-.Zl <.!.2.)(-.6, .• )(AI •.• 1 

\2.,!lCI.o.l 

A Q 
t45.LZII.45.-LZ1I~I.676.01 ~1-.2 •. 21~1·.8 •. 3110.-.511.8.-.4)IO •. 51 

B R 
10.1.2H.4.0I(~.4.0M.5. 5M~II.'.-.711-.4.01 10.1.2l!.4.01\::&:~I,'.OH.5 •. 511~1 .• -.7) 

C 5 
18 .9H-.8 •. !HO.-.511.8.-.~1 1!.1)1-.8 •. 3H.8.-.51(-'8.-.~1 

o 
10.I.ZII.'.01l.'.-IZII-.'.01 

E 
10~.ZI17.01l·.7.-.511.6,011-.6.-.711.8.01 

F 
(O.t.2)(.1.0}~( .•• OI 

G 
I.!.!.M-.••. !110.-.5)( ... -.~M-.S.0'1 

H 
(0).ZlI!t!!l.a,oI~)IO.-I.Z) 

~1.4.oM~M:!2II,"'01 

J 
IJ.IR\.4.0.1I::L2!1Q,·10.)(-.4 ••. ll 

I< 
1O,I.1IQ:!!1.7 •. 7H.:Ja::!)ta.-. 71 

.. 
IO,I.IM .... -.. II. ..... HO.-U) 

N 

T 
~(O.I.21~Olt8.01 

U 
10~.2110.-.8)('8.- ')(0 •. '1 

II 
1~.2)('4.-\.2)(.4.\'ZI 

W 
~11.2.-1.211.1~.")('25.-.8)(2).ZI 

x 
IQ,UlI ... ·I.ZIt;.LQ1I .•• 1.21 

y 
12.!1!1.4.-.1M.4 •. 'I~MO.-.81 

Z 
1l!.!l1l.l,OlI-.•• ·I.Z1I ... Ol 

L!.U.1I-.... 011Q,-U)(.4.0'1 , 
~1I.'-Ll) 

1~1.4,OMO,12M-.4.01 

1!!,£)(0 •. 9H~II-.8.-.!HO •. 3)1.8 •. !1 1.8.-.3MO.IZHo.-.8M-.8.-.!Ho..31C8 •. !1 

b r 
10.IZ1~18 •. !HO.-.3H-.'.-.!) 1J.2!10..9)12cl)1.7 •. ~1 

C 
18 •. 311-.8.-.3110 •. 311 .... 31 \Qdl1 ... -.'5M-.••. 3M .... '51 

~10.IZII2L:!!I-.8.-.!110 •. 3)1. ... !1 !:!.2!1-.I.OX-!~Ho.Ult:!cl)14.0) 

e U 
10 •. 5U.OHO •. IH· .... 3HO.-.31C .. -.l1 \J.2!10..9H!!.::!I.I-... -.!Mo..81 

~HO.tOH.Z -.1)(-.3.0)(.1 .1)(.4 .. 21 

\I W 
1~1.5.0}('2 •. Z)10 •. 7)(-., •. 11l0.-.3)1. •• -.!1 12.:!11.2.-.• II.Z •.• )(.2.-.IIU •.• 1 

h 
10.I.ZII2.:!!I .... !)(0.-.61 1.7,.')(~1.7.-.• 1 

~10 •. 91~10.0l IJ..::!lU'OM! •. I)(.5~.11I.:,,!.Q.M.4.-.• 1 

~0.O'M!1.:!110'-.911-.6.-.31 

10.1.21~1.".5M~I."-.51 1!.::!!1-.Z.ZlIQ,5M-.I •. lltl •. llIo,.511.2 •. Z1 

1~(0).21 I~IO""I 

m 
10 •. 911~10'-.61\2.:!11-.4 •. 3)(~1.4 •. !1 I~MZ •. ZKO..5IU.!)I·.I •. I)IO,.tll(-.Z •. Z) 

~1~~.O_)(_O'O'_I ______________ -4=~_O'I_IAI_.AI_)(_-.. __ •• 1 __________ ~I~~~Z-II .. ~--\.I~IIO,l~21----------__ ~~~.4~M-... ~.~-.4~.-•. -S) ____________ +1~0..~.)(=o=-~~AI~ •. !~)(0~.-~ .• I~ ________ 4=~=.21~(. .. ~OI~I-=.Z'O~I ____________ ~ 

~10 •. ll~10 •. ZM.3.5M-.••. '5) ~ .... !Mo,-.&Ita.-.;j1tO,.51 12cl)1..,o1 ~ •. 5)( ... 3110.-.S11 •.•• -.!1 1.'.1.2) 

Figure 4-Straight/cusp primitive sequences for U4-character ASC-II set 



564 Fall Joint Computer Conference, 1969 

as the other observations above. will be used in the 
following section in connection with the implementa­
tion of this character generation technique. 

The character generator 

A local character generator for a CRT display is 
generally a system (Figure 5) with input a seven-bit 
word, denoting a character, and output two deflection 
and one beam-intensification wa:veforms (functions 
of time), which when applied to the CRT deflection 
and beam controls, respectively, display that character 
relative to beam position, Xp and i y p' Character and 
line spacing is usually accomplished by a control unit 
external to the generator, which varies Xp and y p upon 
completion of each character and line, respectively. 
If the CRT display module is of the refresh type, then 
the codes of characters to be displayed are stored in 
a local storage medium, usually a delay line, and are 
presented periodically, usually every 1/30 to 1/40 
sec to the character generator. If the CRT display 
module is of the storage type, ~hen the character 
generator generates the waveforms x, y and b only 
once for each character to be displayed, and the cor­
responding character is stored on the screen of the CRT. 

Any given character primitive y = f(x) can be 
generated by such a system in an . infinite number of 
ways, since for everyone of many possible choices 
for a horizontal deflection waveform x(t), where t 
is time, there is always a vertical deflection waveform 
yet) = f(x(t» which when applied simultaneously with 
x(t), causes the CRT beam to trace the primitive y = 
f(x). Two particular types of waveforms, set) and 
c(t) were chosen to implement the primitives of the 
preceding section; they are shown in Figure 6a, and 
their time derivatives in Figure 6b. 

A straight-line primitive about any point is generated 
by applying waveform set), apprqpriately scaled, to 
both the horizontal and vertical axes. Thus, setting 

x(t) = Llx set) + Xl (a) 

(3) 

yet) = Lly set) + YI (b) 

where Llx and Lly are real numbers, results in a straight 
line primitive from [Xl, YI] to [Xl +.1x, Yl + .1y] given 
by 

(4) 

DISPLAY 
MODULE 

7-bit 
Input 

CHARACTER· 
GENERATOR Y@] 

Yp 

Figure 5-Local character generator 

and shown in Figure 6c. This is the desired primitive 
of Equation (1). 

A cusp primitive about any point, is generated by 
applying waveform set) to one axis and waveform c(t) 
to the other, after each waveform has been appro·· 
priately scaled. Figure 6d shows the resulting segmen1i 
when set) is applied to the horizontal axis, and c(t) 
to the vertical axis, and Figure 6e shows a sel~menti 
obtained with different scaling and interchange of the 
two waveforms. More generally, setting 

x(t) = .1xs(t) + Xl (a) 
(5) 

yet) = .1yc(t) + Yl (b) 

where .1x and .1y are real numbers, yields a cusp 
primitive, about-point [Xl, Yl] described as follows: 

for 

o < X - Xl < 1, 
-.1x 3 

y = y. + l1Y[l - (1 - 3 x ~XX')2J (a) 

for 

1 < X - Xl 2 - -- <-, 3 - .1x 3 

for 

y = Yl + .1y 

~ < X - Xl < 1 
3 - .1X - , 

(Ib) (6) 

Y = y. + l1y [1 - (3 x ~ x. - 2) ] (n) 

Equation (6) is identical in form to the desired cusp 
primitive, given by Equation (2). Since Equations 
(4) and (6) implement exactly all the primitives of 
the previous section, about any point (Xl, YI), it re­
mains only to provide means for forming a string of 



Character Generation from Resistive Storage of Time Derivatives 565 

y 

t 
Yl+~Y 

-~~--l: 
1 Y1 I I 

~ I 
I I 

t xl+~x 
X 

0 iT 2T T 
xl 

:3 :3 (C ) y 
(0) 

Yl+~Y --Jill 
4~ ds (t) 

I I I 

dt 
1 I 

Yi __ +-1 

1 
I I 1 I 
I I I 1 

T 
1 1 I I 

X 
x1+~x -;....t xi 

0 T 
Y (d) 

6 Yl --TI I I 

T ---l-
I 

---, I 

T Yl+~Y -- -I 

t I 
0 I 

-~~--------
X 

xl xi +~x 

(e) 

(b) 

Figure 6-Waveforms for straight/cusp primitives 

primitives, so that all the characters of Figure 4 may 
be implemented. 

The formation of strings of primitives, that is of 
characters and symbols, is accomplished by concat-

enating the derivat.ive waveforms of Figure 6b, for 
each primitive segment, after they have been scaled 
by ~x and Ay. Such waveforms, denoted by (l/T)dx/dt 
and (l/T)dy/dt, (T constant) are shown for letter P 



566 Fall Joint Computer Conference, 1969 

-----------------------------------------------------------------------------

-1.2 

«lIt .: 

.2 

Figure 7-Composition of CRT deflection 8,nd beam 
waveforms 

on the top half of Figure 7; sllbsequent integration 
in time of these waveforms yields! the deflection wave­
forms x(t) and yet), shown on the lower half of Figure 
7. Also shown in Figure 7 is the 'beam waveform bet) 
which turns the beam off in the third time segment 
2T S t S 3T. The character r~sulting from simul­
taneous application of these x(t) and yet) waveforms 
on the CRT is the letter P of Figure 3b, specified by 
the primitive string: . 

Sp = (0,1.2)(.4,0)(-.4, -.5)(.4,0)(.2, .5) 

Observe that these five primitives correspond to and 
are ordered as the five time segments of Figure 7. 

One way of implementing this· character-generation 
approach is shown in Figure 8., Here, sixteen lines 
carry eight rectangular constant-amplitude voltage 

Figure 8-Character generator implementation 

pulses. Pi' and their negatives and four lines carry 
two cusp-derivative pulses C i and their negatives. 
Waveforms and relative timing of these pulses are 
shown on the top center of Figure 8. Operation of 
the system is as follows: a character to be displayed 
is specified to the decoder shown on the right side of 
Figure 8, by, a seven-bit binary word. This word is 
"decoded", so that. one of the 128 output lines of the 
decoder, say the line marked P, becomes energized. 
That line, turns "on" the three analog switching deviees 
to which it is connected, and starts the timing sequenc~es 
of the Pi and Ci pulses. The dx/dt, dy/dt and b wave­
forms for the selected character are formed by resistive 
mixing of the above pulses in three groups, respectively. 
For the case under discussion, letter P is "stored" in 
the· values and manner of interconnection of eight 
resistors shown enclosed by dashed lines. Here, the 
top four resistors mix pulses Pz, -Pa and P4, all equally 
weighted by a conductance of .4 units; the fourth 
resistor in that group weighs waveform C6 by .2. As 
a consequence of this mixing, the resulting current in 
the so-called xbus is the weighted sum of all these 
waveforms and is identical to the dx/dt waveform of 
]figure 7. The next group of three resistors having 
conductances 1.2, .5 and .5 respectively forms, in a 
similar manner a current in the ybus which is the dy / dt 
waveform of Figure 7. Finally, the complement of the 
beam waveform of Figure 7 is formed by the last group 
consisting of one resistor of unit conductance, as a 
current in the b bus. The dx/ dt and dy / dt currents are 
subsequently amplified by low-input-impedance ampli­
fiers A and integrated in time to yield the XA (t) and 
y A. (t) waveforms of Figure 8. These are identical to 
the desired x(t) and yet) waveforms of Figure 7. 
These waveforms are, in turn, summed with the con­
stants Xp, yp and the beam waveform is inverted 
resulting in a display of character P about point 
[xp, yp]. At the end of this sequence, the integrators 
are reset to zero output and the analog switching 
devices are turned off, thereby making the character 
generator ready for display of the next requested sym­
bol. Also shown in Figure 8 is the resistor "memory" 
for character I; the reader may verify that when this 
character is selected, the system does indeed g;enerate 
the primitive sequence for that character, shown iln 
Figure 4. Observe finally that the system of Figwre 
8 has two rather than eight cusp lines, C i , which are 
active at timing positions five and seven. The reason 
for this choice is one of economics, since as we discussed 
in connection with Figure 4 it has been established over 
a large class of characters and symbols that the8e 
pulses 'at such relative positions are quite adequate. 



Character Generation from Resistive Storage of Time Derivatives 567 

Figure !:.l-Implemented character.; (Courte.-y ;)f Computek Inc., Cambridg3, ~VI'1;;') 

A photograph of characters and symbols generated 
by such a system is shown in Figure 9. 

An alternative realization of the above character­
generation technique would be to store for each charac­
ter k bits in a digital read-only memory. These bits 
would? in turn, control a common, over all characters, 
resistive mixing network, by varying in discrete steps 
the conductances of this network. Such an implemen­
tation, however, requires approximately k = 90 bits 
of storage per character and is considerably less 
economical than the system of Figure 8. 

COMPARISONS AND CONCLUSIONS 

Ultimately, the merits and disadvantages of a character 
generator rest on economic and aesthetic criteria. The 
former are very strongly dependent on technology and 
are subject to rapid change, while the latter are, beyond 
a certain point, quite subjective. Nevertheless, certain 
conclusions can be drawn. 

First, the use of stroke primitives such as straight 
lines and cusps results in more economical character 

storage than the use of points; and the relative advan­
tage of such storage increases, over a certain range, 
with finer resolution. Consider for example that every 
character is formed on a grid of n2 points. A stra,ight­
forward point-intensification or incremental-stroke 
scheme on such a "dot-matrix" would require the 

14 

12 

10 

8 
log2(memory size) 

6 

4FT ________ ~r~es~is~ti~ve~m~e~m=or~y ________ ___ 

2 

100 
n 

Figure IO-Memory growth versus re,;olution 



568 Fall Joint Computer Conference, 1969 

storage of n2 bits per character, indicating the points 
"which must be intensified-the corresponding memory 
growth curve, giving the number of diode components 
per character, is shown in Figure 10 and is labeled 
read-only memory". From Figure 4, however, we 
know that the average number of segments per 
character, over the 94 character ASC-II set, is 4.43 
for the approach of this paper. Each segment, in turn 
requires two resistors, for x and y . We also know from 
Figure 4 that there Will be of the order of 1.4 resistors 
per character for the beam. Hence, the average number 
of resistors per character is constant or 

2(4.4) + 1.4 :-: 10 

In addition, each character requires three analog 
switching devices (FETS) and, their driver, or the 
order of five components. Thus~ the total number of 
components is 15 per character, remaining constant 
within the limit of analog resolution, or n :$ 100, as 
shown by the graph labeled Hresistive memory" in 
Figure 10. With present technology, it is more eco­
nomical to construct the character generator out of 
discrete components; the reSUlting cost, is for an ac­
ceptable resolution n2 = 240, l~wer than that of a 
read-only memory of }i the resolution. With forth­
coming technology, the above ten resistors and five 
active components, should cost: each about as much 
as a diode, hence an even better cost advantage can 
be expected. Observe however, as was indicated above, 
that resolution cannot exceed that of analog circuitry, 
since the storage and generation of characters is analog 
in nature. On the other hand, the CRT is an analog 
device, on which resolutions higher than analog can­
not be effectively used. The above savings in character 
storage, result in lower generator cost, and reduced 
genera tor size. 

Second, the speed of character generation of such 
a stroke technique is of the same order as that of dot­
intensified character generation, since the current 
through resistors will generally change over its mini­
mum resolvable increment as rapidly as, or faster, 
than the full current swing through a diode. 

Third, the mixing of time-derit;ative waveforms, and 
the subsequent integration of these waveforms pro­
vides good character appearance through suppression 
of spurious noise and continuity of the integrated 
waveforms. 

Finally, the fidelity of continuous-stroke characters· 

4 5. 4 

'P2 • 3i-'~' 
3. 6. 

21_~/s. 2 7 • • 11 7 
1. 

(a) dot intensification; (b) 7small vectors; (c) 2 straiiQht a CIJSp 

7 dots some resolution primitives; some 
resolution 

Figure ll-Comparison of straight/cusp and point 
inten<;ified chara.cter3 of 3a'lle "e'3olution 

with the above primitives is considerably higher than 
that of dot-intensified,. or incremental-vector charac­
ters of comparable resolution. Such a comparison can 
be made visually by the reader on Figure 11 for a 
resolution of n = 4, or a grid of 16 points. 

The approach discussed in this paper can be further 
extended to a more complete hardware "grammatical" 
structure, through a straightforward extension. That 
is, characters can be constructed from primitives llmd 
other simpler constructs which are themselves com­
posed of primitives and/or other constructs of 1;he 
same class. For example, as seen from Figure 4, the 
primitive sequence, S8, for numeral 8 contains the 
primitive sequence Ss for capital S. That is, S8 = Ss 
(.8, .5) It is not yet clear whether such a hardware 
structure will result in even lower cost, without saeri­
fice of performance. 

Finally, we would like to close with the philosophical 
observation that the use of sizable straight-·line and 
cusp primitives is well suited to character generation, 
sin~e characters and symbols were generated, on the 
first place, through such strokes, by pen or stick, on 
paper or sand, rather than by dots or by infinitesim!1l 
straight-line segments. 

ACKNOWLEDGl\1EKTS 

I wish to thank Dr. H. L. Graham of Computek I(l:~., 

for his contributions to the design and constructioa 
of a prototype generator; Mr. Ben Simpson of Compu­
tek Inc., for the design and development of a practieal 
generator, and l\1r. L. Dounias of Ashely ~1eyer & 
Associates for his aesthetic design of the character set. 
This work was performed on a consulting bagis for 
Computek Inc., 143 Albany Street, Cambridg;e, Mag­
sachusetts. 



Economical display generation of a 

large character set 

by KOJI NEZU and SACHIO NAITO 

Nippon Electric Company, Ltd. 
Kawasaki, Japan 

INTRODUCTION 

Electronic computers find wide applications in the 
fields such as document production, compilation of 
printed articles, language translation. The need for 
high speed printers and display systems for various 
types of characters and symbols is increasing. There 
is a high demand for high speed printers and display 
systems for "Kanji (Chinese characters)" in Japan and 
other Oriental countries. A character generator with 
a font capacity greater than 1000 is required. Nearly 
the same number of character fonts might be needed 
also in Western countries, if special fonts of Greek 
or Roman alphabets, italics, bold face, or special 
mathematical symbols are included. 
~ pattern generator is of prime importance because 

it carries out the translation from binary coded in­
formation into characteristic and symbolic informa­
tion. The pattern generator is important as it is an 
initial link. It is contained in a printer and acts to con­
nect the computer and printer. It is of paramount im­
portance that the pattern generator has high speed 
and high resolution. 

High speed pattern generation systems with the 
font capacity greater than 1000 have been reported. 
However, they were designed for typesetting and 
consequently too expensive.1 ,2 In a typical system a 
flying spot SCanner and a character grid are utilized. 
The character grid is a pattern carrying film or glass 
plate on which a number of character patterns are 
printed in a negative form. The flying spot scanner 
must exhibit a very high resolution in order to dis­
criminate more than 1000 characters and symbols 

569 

stored in the character grid. The electronic circuits 
must be of high quality in order to achieve precise· 
control of scanning. This makes high speed pattern 
generation systems expensive and bulky. In this paper 
we would like to present a new pattern generating 
system which is low in cost and compact in size. 

System concept 

The attempt to decrease the cost and size of pattern 
generators was carried out by replacing the expensive 
flying spot scanner and associated circuits with other 
means. One such means would be a vidicon, a photo­
electric conversion device, in which a light-irradiated 
photoeonductive element is scanned by an electron 
beam producing a video signal. However, the vidicon 
has no resolution which can be attained with a flying 
spot scanner. It cannot discriminate more than 1,000 
characters and symbols when they are proj ected 
simultaneously on the face of the vidicon. 

It is apparent that the resolution and discrimination 
characteristics can be improved if a small number of 
larger patterns are projected on the face of the vidicon. 
The use of larger patterns keeping the total number 
of characters constant, is achieved by introducing 
character grids. :&:Lch grid shares the total number of 
characters and symbols, and the grid is selected and 
projected on the face of the vidicon by a flash tube 
selectively energized. 

Vidicons retain residual image. This property is un­
favorable for the time-shared use of several character 
grids. Thus the residual image formed on the face of 
the vidicon by a prior projection should be erased 



370 Fall Joint Computer Conference, 1969 

Figure 1-8chematic diagram of th~ character generator 

before the succeeding projection of a different charac­
ter grid is made. Accordingly, the erasing scan of the 
vidicon face should precede each reading scan. How­
ever, if an erasing scan is applied to the entire face of 
the vidicon, a certain time would be wasted prior to 
each reading scano In our pattern generating system the 
erasing scan or prescanning is restricted to the area 
where the reading scan is to follow. The remaining area 
is occupied with residual image. 

Character generating unit 

Figure 1 shows a schematic diagram of the character 
generator designed for Kanji. Ch~racters and symbols 
are printed in a 16 by 16 matrix form on each of four 
character grids. Four miniature; flash lamps whose 
light emission timing is determirted by a control cir­
cuit are used to project the re~l image of the four 
character grids. When one of the! flash lamps is selec­
tively energized, all the patterns, printed on the cor­
responding character grid are projected on the full 
effective area of a target face qf the vidicon (type 
8572) by means of a half mirror and a lens having re­
duction ~atio 1/2. F-number of the:lens is 5.6. 

Generating cycle 

The vidicon consists of a highlr evacuated envelope 
containing an electron gun at one end and a transparent 
optical flat target face at the other (Figure 2). A trans­
parent conductive layer is deposited on the inner sur­
face of the target face as a signal plate. A photocon­
ductive film is deposited on this layer so as to form 
capacitors. In the site of electron impact the surface 
of photoconductive layer catches a negative charg~ of 
electron. When no light falls on the photoconductive 
layer, its surface is maintained at the cathode (ground) 
potential by electron beam scannihg because the layer 
is a good insulator. When a patt~rn is projected con­
duction increases in the bright a~eas. The bright part 
of the pattern enhances the leaka,ge current through 

LIGHT 

PHOTOCONDUCTING 
LAYER 

DEFLECTION YOKE 

FOCUSING COIL / 

t§SXX6>_ CUlL ~
/ AUGNME.NT 

RING ~ 

,-~,,""==== Inc i BEAM~~\ _ 

'......-::::: =::::::-------- \ J-
./ ~~ GUN 

~~~~~~~~T ~ 
SIGNAL PLATE L-..---vvv-_

T 'TARGET RESISTOR

VIDEO OUT

Figure 2--8chematic cross-section of the vidicon

the layer and let the capacitors discharge during ex­
posure. The reading scan which follows the exposure
restores the negative charge, and the current for the
restoration produces a video signal across the targ:et
resistor.

Generation of a character is accomplished by the
f ollowing sequential steps:

1. Prescanning the area where the desired cha,r­
acter is to be projected.

2. Flashing a xenon lamp in order to project and
store the character image on the vidicon target.

3. Scanning the area of a particular character in
order to pick up the video signal.

In the prescanning step, the deflection yoke moves
the electron beam to the position on the vidieon ta.r­
get where the character is to be projected, and lets
the beam form a small raster throughout the area to
cover the image of charaeter. The raster size is 0.7 mm
square (about 1/250 of full effective area of the vidicon
target). It takes 1.5 ms to erase completely the resid­
ual image stored by preceding flashes.
. Two factors are specified for the image persistence,

viz., the transient response of photoconductive ma­
terial, and the time lag which results from incomplete
charging of electrons on the target with large capaei­
tance by the scanning beam of low landing effici.ency.ll."
Generally the photoconductive decay time constant
is very short, of the order of one ms. On the other hand,
the capacitive lag makes a predominant contribution
to the image persistence (of 10 ms) in the standard
TV application. Since the total target capacitance is
proportional to the size of the raster, there is no Sil~­
nificant capacitance in the present application where
about 1/250 of the total surface is used. The localized
scanning reduces the resultant image persistence time
from 10 ms of TV application to about one millisecond.

Economical Display Generation of Large Character Set 571

The flashing illumination just after the prescanning
continues only 5j.J.s. Each miniature xenon-flash lamp
is energized by tha discharge of a capacitor, which is
triggered by a selection pulse. Although more than two
hundred characters are projected on the target face
of a vidicon, only one of them is exactly stored on the
vidicon target, because the correspondi~g part of the
vidicon target has been presecanned.

The last step is the reading scan. The deflection of the
scanning beam during this step is the same as that of
the prescanning. However, the videosignal on the out­
put of the vidicon, is taken out through a video gate
circuit.

Figure 3 illustrates a portion of a real image. It is
projected from a character grid onto the target face
of the vidicon. Owing to the image persistence of the
vidicon target, the image focused persists for a certain
period even if the projection is executed for a very
short time. The prescanning and read scanning of
particular area are accomplished by the X and Y de­
flection yoke. The prescanning and read scanning modes
are illustrated in Figure 3. Examples of prescanning
and read scanning are shown by the lines superimposed
on the letter 3.

The deflection of the scanning beam to any position
on the vidicon target can be accomplished in 5j.J.s.
Linearity and stability of the deflection amplifier are
approximately 0.1 percent. The bandwidth of deflection
amplifier is 5QO KHz.

y

6

t£ e
~~~ 

4 

K~~~ 
3 

~,~ 1~ I~' ~ ,~ 

2 

o 1 2 N"1/4 
ABCDEF 

0 2 3 4 5 6 

Figure a-Figure of the image of a character grid 
projected on the face of the vidicon 

X 

Perpendicularity and residual magnetism of the de­
flection yoke, and pin cushion or barrel distortion of 
the vidicon are the other factors influencing the posi­
tioning accuracy of the electron-beam deflection. The 
pin cushion distortion of the vidicon diminishes the 
accuracy considerably. Four small magnets each of 
the size 2 X 2 X 3 mm placed close to the vidicon 
target correct the distortion. Residual magnetism of 
each magnet is about 2000 G along the longitudinal 
axis. Positions of magnets are adjusted by means of 
screws. In the present system the overall error of beam 
positioning is kept within 0.5 percent of full deflection. 
This is sufficient because the projected characters are 
larger than those in the flying spot system. 

Processing of video signal 

The video signal output of the vidicon is amplified 
and converted to a two-level signal by a video-proc­
essing circuit. 

As the aperture of the scanning electron beam is not 
very sharp, the video signal contains an intermediate 
level notwithstanding the fact that the character 
grid has two levels of black and white. Considerable 
variations in both modulation depth and dc level oc­
cur in the video signal depending upon detailed patterns 
of projected characters. Shading of the vidicon also 
causes variations. Thus a simple clipping circuit of con­
stant clipping level cannot be used. 

Figure 4 shows a block diagram of the video proc­
essing circuit. The increment of the video signal is 
detected in the differentiation circuit which consists 
of a 0,5 j.J.S delayline and an integrated differential 
amplifier j.J.PC53. This circuit eliminates the dc-level 
shift from the video signal and sends trigger pulses to 
a flip-flop which converts the video signal to a two­
level signal. 

System operation 

The control circuit in Figure 1 decodes a pattern­
representing binary signal, selectively energizes one 
of the flash lamps, and controls the pres canning and 
read scanning in the vidicon so that the desired one 
of the proJected patterns is scanned. 

Figure 4-Block diagram of the video processing circuit 



572 Fall Joint Computer Conference, 1969 

Two significant bits of the character-representing 
signal are decoded into four flash: lamps to select one 
character grid out of four character grids. The re­
maining eight bits are supplied to; the X and Y direc­
tion D-A converters in the deflectiop circuits. 

There are two saw-tooth waveform generators in 
the control circuit, one for X-scaiming and the other 
for Y-scanning. The repetition fiequency of Y-scan­
ning is 20 KHz while that of X-scanning is 0.67 KHz. 
The ratio of these frequencies isi determined by the 
number of scanning lines for one character. In the 
present system, each character is ~canned by 30 verti­
cal lines. The scanning signals £i'om each saw-tooth 
wave generators are respectively added to the character 
selection signals of X- and Y-axis which are supplied 
from the D-A converters. Figure 5 shows a block dia­
gram of the deflection circuit. 

The control circui~ produces th,e gate pulse for the 
video signal as soon' as the read-scanning starts. Syn­
chronizing pulses for X- and Y-axes are available from 
the control circuit for the reconstruction of the char­
acter images either at display or at printer unit. 

Operating characteristics. 

The optical unit of character g~nerator is shown in 
Figure 6. The size of this unit is 500 mm wide 600 mm : , 
long and 150 mm high. The weiglit is 20 kilogram. Al-
most all the electronic circuits are:constructed by IC's. 

The quality of the characters generated by the 
present 1024 font capacity system is sufficiently high. 
Figure 7 shows an example of Japanese sentences dis­
played on a CRT display unit. The storage CRT which 
needs no costly memory devices' for the refreshment 
of the information, is suitable for this application. 
Figure 8 shows an example of printed pages performed 
by a fiber optics CRT unit. 

The generating speed of the present system is 330 
characters per second. The machi*e speed is restricted 
by the persistent lag in the vidicon. In order to decrease 
the time for erasing a new photoconductive layer of 
the vidicon is required. 

Figure 5-Block diagram of the deflection circuit 

Figure 6-The optical unit of character generator 

Figure 7-Displayed Japanese sentences on CRT 

The reliability of the vidicon operated under unusual 
condition of selective scanning on the target was in­
vestigated by the running test of about 1000 houriS. 
But no noticeable change was observed. 

CONCLUSION 

I t has been confirmed that the new opto-electronic 
character generating system with 1024 font cl1pacity 
has many advantages such as high font capacity, high 
speed, high quality, low cost and small size. The ad­
vantages have been achieved by utilizing four char­
acter grids and one single vidicon. Each character grid 



Economical Display Generation of Large Character Set 573 

NEC PATTERN GENERATOR 

Q1234!:J6789 ABCDEFGHIJKLMNOPO 

RSTUVWXYZ 

r f ,~ :r. t IJ '" ? 7"::J +t j A -t! '/ lI'r ';I T" -r'='.A;t.. 

/ 

~ I.' j "- h ~,~ < It.:. ~ l,. T it.of t:. f, -., ""(" 1: 1..: f: II:l b 

(T) 1;1 (}o .t ........ 11 J h t.: /If) L ~ ~ ," I) 6 tl ~ h !- It. 

+to ~ -t:':" '/ . ~ t::::." 7' "0{ ,-f,. on ,op t \" 1 'I 

-r :">- f. ;".;1 1; .;~. " loJ l·tll~ ~ t . .(f. ftl ,. ~ I ,!i, *' 'f. ri" r.,::, ,i; ';rt; It W '.1', '7t 

~ ~ '1n o-,f f-'''t.~';i;*~rr;;:-,tti~ ~,~'. ~~(A. ~ <If:1i.+~~ ~ 
., ~t i* 1~ ,it, im.1~ !e l' 1;f, 1. _ .~: 111 ~ •• ft.,oX. ... Ph 1'- ),'-'3 ., K ~. M·',/ 

Ii V l'T rIfh .7:0;;. "j!. 'l~.'1t ~ [I'l." "./lJUI *- * * *- ~,. .~* •. * to'ji 

" -H '4' 6Jf -('. l( ~ ~l!- ~ L' ~ L' 6 ~ t'f ~ /' IJ Y 11 (1). C H 

E C K /'0 7''7 .t..-('l,. 1": • 

END 

Figure 8--An example of printed pages performed by a 
fiber optics cn T unit 

contains 256 characters, and one grid is selectively 
projected on the vidicon by the combination of half­
mirrors and flash lamps. A vidicon is used instead of 
an expensive flying-spot scanner to convert projected 
characters into video signals. 

The problem of image persistence in the vidicon was 
solved by a localized prescanning which quickly makes 
the target ready for projection. 

The generation speed of 330 characters per second 
was realized with the new character generating system. 
Excellent stability was confirmed for a long period of 
operation. 

ACKNOWLEDGMENT 

The authors wish to thank Dr. Shigeru Sekiguchi and 
Mr. Yasukuni Kotaka for their kind interest in this 
work, and Mr. Tomoyuki Watanabe for his coopera­
tion in the circuit design of the device. 

REFERENCES 

1 T TAKAHASHI J HASEGAWA 
A design of high speed Kanji printer 
Proc 33rd FID Conf and International Congress on 
Documentation Sept 1967 

2 G D FRIEDLANDER 
A utomation comes to ihe printing and publishinu indU8t1'l~ 
IEEE Spectrum 48-62 April 1968 

3 Y KIUCHI 
The persistent lag in the vidicon 
Toshiba Review Vol 13 920-926 1958 

4 R W REDINGTQN 
The transient response of photoconductive camera tubes 
employing low-velOcity scanning 
IRE Trans ED4 July 220-2251957 





ISDS-A prograIn that designs computer 

instruction sets 

by F. M. HANEY 

Scientific Data Systems 
El Segundo, California 

INTRODUCTION 

ISDS (Instruction Set Design System), a program 
that designs instruction languages for computers, is 
the result of research aimed at gaining a better under­
standing of computer-assisted design and, in particular, 
automated design of computers. The primary goal of 
the research was to develop techniques for writing 
programfl that solye design problems without inter­
vention by human designers. This paper describes a 
program that solves a specific design problem-the 
selection of an order code for a computer-but the 
general approach can be easily adapted to other de­
sign problems. 

ISDS contains a generalized model of a computer 
instruction set and solves a design problem by filling 
in details of the model, analyzing the result with respect 
to the requirements of the given problem, and selecting 
instances of the model that best meet the requirements 
of the problem. 

The model used by ISDS is GIS (Generalized In­
struction Set) which is capable of representing a broad 
range of computer instruction sets, including most of 
the features of existing computers. 

The programs that make up ISDS operate at several 
levels, the lowest. of which is used to manipulate the 
tree structures storing GIS representations of in­
struction sets. Other programs in ISDS perform compu­
tations useful in analysis of instruction sets, select 
values for single values of the instruction set, analyze 
an entire instruction set, and determine the optimal 
method of selecting parts of the instruction set. 

575 

This paper is organized into four sections: 

1. A discussion of design theory and the basis for 
the ISDS approach to constructing design pro­
grams. 

2. A description of GIS, the model of an instruc­
tion set that ISDS uses as its basic design con­
cept in solving a problem. 

3. A description of the programs· that make up 
ISDS and the actual operation of ISDS, in­
cluding an example of an instruction set designed 
by ISDS. 

4. A summary of the results of experimentation 
with ISDS. 

Formalizing the design, process 

Before programs that simulate design process can 
be considered, the complex nature of this process must 
be understood. Many models of the design process have 
been proposed, but for the most part they are the same 
in content if not in detail. However, two men have ade­
quately expressed the complexity of design process­
Asimow1 and Alexander.2 

Asimow considers design as a process of specifica­
tion during which the solution to a design problem is 
gradually transformed from an abstraction into a 
physical reality. At each step the solution is analyzed. 
If any part of the solution fails to meet some require­
ment of the design problem, or if other decisions lead 
to better solutions, some parts of the solution may have 
to be re-specified. Dealing primarily with engineering 



576 Fall Joint Computer Conference, 1969 

design, Asimow identifies over !25 different steps in 
the design process, each dealing i with a different level 
of detail. 

Alexander's view of design is consistent with As­
imow's, although Alexander placc;Js greater emphasis on 
the relationships between design! variables which must 
be considered at each step. The value of any part of 
a solution depends on, and may help to determine, the 
value of other parts of the soltrtion. Since design is 
generally a serial process, the d~signer must be aware 
of these interactions and be careful about the sequence 
in which he makes design decisions. A particular method 
for treating the relationships between design variables 
is called "design strategy." 

For many design problems, the truly creative part 
of the process seems to take pl~ce in the very early 
stages when the "design concept" is formed. This is 
the most abstract form of the solution, except, of 
course, for the more abstract functional descriptions. 

Some design problems consist; of complex sub-prob­
lems that require creative design, but for many, once 
the design concept is formed the solution is a relatively 
simple process of specifying detajls in such a way that 
the resulting solution meets the requirements of the 
problem. The fact that many computer instruction 
sets are so similar, suggests that the instruction set 
design problem is one for which 'most solutions can be 
generated by a single design conc~pt. 

This observation is the basis of an approach to 
writing a program that designs: instruction sets. The 
trick lies in providing the program with an appropriate 
design concept that is general, enough to include a 
broad range of instruction sets,i but it must contain 
enough information to guaranteei that the program can 
transform the concept into a solution in a reasonable 
amount of time. 

GIS: A design concept for instruction sets 

Existing instructions for computers have many com­
mon features. A typical instruct~on occupies one word 
of the computer memory and consists of several fields 
of information, each encoded in a particular set of 
bits. Most computers have a field containing a code for 
an operation the computer is toi perform when it exe­
cutes the instruction. An instruction may be comprised 
of one or more fields containing: addresses of locations 
in memory which embody information to be used during 
execution of the instruction. Some computers allow 
special methods, such as indexing and indirect ad­
dressing, for specifying data in the main memory of 
the computer. The purpose of GIS is to organize as 

many of these features as possible into a single, general 
model of a computer instruction set. 

Since GIS is a model for a type of languag;e, it can 
be described in the notation of Backus Normal Form. 
The complete description of GIS is rather detailed 
since it includes almost all of the features that have 
been used in instruction sets and a detailed description 
of the meaning of each syntactic feature of GIS. 

For illustration, part of a GIS representation of an 
instruction is: 

<simple instruction> : : = <operation> <lleft 
operand part> < right operand part> < result 
part> < condition part> < if part> < else part> 

The <operation> part of an instruction in GIS 
may be one of a list of 36 operations including: 

add, subtract, multiply, divide, compare, branch 
shift, move logical operations, and others. 

The < left operand part>, < right operand part>, 
< result part>, < if part>, and < else part> are 
< addresses> . 

An <address>, in turn, consists of many parts in­
cluding displacement information, indexing, indirect 
addressing, bits to distinguish between references to 
various types of memory such as main memory or 
register memory, and other special techniques for 
specifying memory locations. 

Each part of an instruction has an interpretation. 
The right and left operand parts specify operands 
which are to participate in the operation. The < result 
part> specifies an address where the result of an opera­
tion is to be stored. The < condition part> specifies 
some internal condition which may be set as the result 
of the operation. The < if part> specifies the address 
of the next instruction provided that the internal con­
dition is satisfied and the <else part> specifies the 
address of the next instruction if the internal condi­
tion is not satisfied. 

In most instruction sets, some of the GIS parts 
have implicit values. For example, in a single-address 
instruction format one of the operand addresses is al­
ways assumed to refer to the accumulator. The sa,me 
is true of the result address. The if and else instruction 
addresses are assumed to refer to the next instruction 
in memory. To completely specify an instruction set 
by means of GIS, it is necessary to indicate whether 
each instruction part is implicit or explicit. The as­
sumed value must also be specified for implicit P~l>rts 



while, for explicit parts, the parts of the instruction 
format used to encode· the value of the part must be 
precisely specified. 

GIS can be used to represent almost any instruction 
format in use in existing computers. From a syntactic 
point of view its primary limitation is its list of opera­
tions, which is necessarily restrictive since some opera­
tions in actual computers deal with special features 
and cannot be generalized. From a semantic point of 
view, GIS is not capable of all the subtle nuances as­
signed to certain instructions in some computers. For 
example, GIS makes no distinction between post-in­
dexing and pre-indexing. In most cases, however, 
these subtleties have little effect on the design of the 
syntax of the instruction language which is of primary 
concern. 

The most important attribute of GIS so far as the 
design program is concerned is that it is a design con­
cept for instruction sets which it appears to represent 
at an appropriate level. 

GIS meets the requirement of generality because 
it contains all the important addressing methods as 
special cases. It can be used to represent single ad­
dress instructions, double- or triple-address instruc­
tions, memory-to-register instructions, and register­
register operations, as well as others. 

Another requirement .is that a program using GIS 
as its model of an instruction set should be able, with­
out a great deal of effort, to generate instruction sets 
that are plausible solutions to a design problem. GIS 
possesses this feature in the sense that any instance of 
the GIS model is indeed a valid instruction set. 

ISDS: The design program 

The first step in the construction of ISDS was the 
selection of a method for storing GIS representations 
of instruction sets in the memory of a computer. The 
Backus Normal Form representation of GIS suggests 
a tree-like data structure. The structure actually used, 
called a "form-variable", is an IPL-V (Information 
Processing Language-V) list structure· containing 
each instruction part identified by name and an attri­
bute-value description list for each part to store impor­
tant information about the part (whether it is implicit, 
whether the specification is a list of possible values or 
the number of bits needed to encode the time, and 
other descriptive information.) 

All of the programs of ISDS are written in IPL-V, 
the primary reason being that IPL-V contains instruc­
tions for manipulating the tree-like data structure that 
is most appropriate for representing GIS instruction 

rSDS 577 

IOOSiC.~ ______________ -T ______________ r-____ ~ 

Figure I-Hierarchy of routines and data in ISDS 

sets in the memory of a computer. However, the form­
variable is a slightly more specialized data structure 
than the IPL-V list structure. Hence it was necessary 
to write a set of programs for manipulating form­
variables. 

These form-variable routines add items to form­
variables, delete items, search for items, find attribute 
values on item description lists, and insert and delete 
attribute values on item description lists. The form­
variable is a recursive data structure since an item may 
be a single value, a list of values or another form-vari­
able. 

The form variables of ISDS are at the lowest bvel of a 
hierarchy of routines (see Figure 1 *) and are the building 
blocks of other routines in the sense that the higher­
level routines make use of them to store new items in 
an instruction set, search for an item, and so on. 

The form-variable routines are general in that they 
contain no information about instruction sets, GIS, or 
any aspects of the design process but are merely book­
keeping programs. ISDS contains another set of pro­
grams that are general in the sense that they perform 
the numerous computational tasks that must be under­
taken during the· design of an instruction set. These 
tasks include counting the number of items on a list 
and determining the number of bits required to encode 
a list of items. 

At the level above the form-variable and computa­
tional routines, ISDS contains routines that add sin­
gle parts to an instruction set. One such routine, for 

* Figures I through 4 from thesis, "Using A Computer to De­
sign Computer Instruction Sets", by Dr. Fred M. Haney. Car­
negie-Mellon University. 



578 Fall Joint Computer Conference, 1969 

--------------------------------------------------------------------------------------
example! adds a specified number of bits for designating 
index registers in a memory address. The number of 
bits is an input to this routine. 

This routine performs no analysis, but merely the 
bookkeeping required to add a new part to an instruc­
tion set. The analysis required to determine the num­
ber of bits to be added for indexing is performed at the 
next level of the hierarchy. One. routine, for example, 
adds indexing to the address references of an instruc­
tion set. For this routine the number of bits is not 
specified. The routine performs the analysis to deter­
mj.ne the number of bits to be specified and then calls 
its counterpart which adds the specified number of 
bits. The routines which add specified parts to an 
instruction set are called "strategy-level utility rou­
tines". The routines which perform analysis and call 
for specific parts to be added are called "operators". 

The routines in the higher level of ISDS are much 
more specialized than the low-level form-variable 
routines that can be used to represent many different 
kinds of objects. At the next higher level, the strategy­
level utility routines are intended specifically for con­
structing instruction sets although they could be used 
in any design strategy since they have no decision 
power. Some decision power begins at the level of the 
operators which are based on a particular view of the 
relationships between the differe~t parts of an instruc­
tion set. Each operator uses the values of certain parts 

Figure 2-Relationships between the design variables 

of the instruction set to determine the value of some 
new part. The types of possible relationships are il­
lustrated in Figure 2. 

In many cases, the relationship between parts of 
the instruction set are relatively obvious, but dif­
ferent results could be obtained with a different set 
of operators. 

So far, nothing has been said about how the operators 
of ISDS are applied. One way is to write a program 
consisting of a sequence of calls on the operators. 
Operators that might be called, for example, are the 
address operator (which selects the number of address­
es per instruction and the size of each address), the 
indexing operator, the indirect addressing operator, 
the arithmetic operator, and the logical instruction 
operator. (This program would be a specifie design 
strategy for the instruction set design problem.) It 
must be recalled that a design strategy is a particular 
method for selecting the parts of a solution to a design 
problem. In particular, a design strategy is a specific 
choice of the independent variables that determine 
each part of the solution, together with a particullar 
sequence in which the design decisions were made. As 
was pointed out, the operators represent a particular 
view of the independent variables and their influence 
on each part of the instruction set. The operators could 
have been used to write a set of different design strate­
gies. Instead, however, a heuristic program that would 
determine its own strategy according to the demands 
of the design problem was written: 

The statement of the design problem to this progra.m 
consists of the following information: 

1. An optional GIS representation of a p2~rticular 
instruction set containing features whieh mUlst 
be included in the final product. 

2. A cost-value matrix which assigns a relative 
cost and value to each instruction feature of 
GIS. The cost-value matrix also specifies a 
maximum cost for the instruction set. 

3. Optional constraints on instruction features. 
4. Memory size, word size, and byte size of the 

computer. 

The heuristic design program consists of two rou­
tines; a basic strategy and a search routine. The basic 
strategy uses the memory size and word size to deter­
mine the number of addresses in each instruction and 
the general format of each address (whether it is a 
memory reference or an address augmented by a ba:3e 
register, page bit, etc.). 

After this basic strategy has provided a starting 
pointl the search routine adds one instruction part ::lIt 



memory 
& 

data 
requirements 

no more 
operators 

Figure 3-0ptimization in ISDS 

a time until there is no remaining space in the instruc­
tion format or the cost limit is reached. At each stage 
of the specification of the solution, the search routine 
tries every operator and evaluates the result with re­
spect to the value coefficients provided in the state­
ment of the problem (See Figure 3). 

Corresponding to each operator there is a routine 
that restores the instruction set to its status before the 
operator was applied. 

Hence, the sequence of events at each stage of speci­
fications is "apply an operator", "evaluate", "restore", 
"apply the next operator", etc., until all operators have 
been applied, at which time the search routine reap­
plies the operator that resulted in the greatest im­
provement in the instruction set. 

The search described above is a one-step search in 
the sense that the instruction set is evaluated after 
application of a single operator. Presumably much 
more interesting strategies could be obtained by evalu­
ating after the application of sequences of operators, 
but the geometric increase in the computing time 
required made this approach impractical. 

This example illustrates the operation of the heur­
istic program described above: 

ISDS 579 

The following inputs were presented to the heuris­
tic program: 

1. A cost value matrix as follows: 

Cost Value 

Indexing 10 10 
Indirect Addressing 0 20 
General Registers 0 10 
Partial Word Address 0 1 
Extra Operations 0 1 
Permanent Adjustment To 

Index Registers 0 10 

2. A cost constraint of 10. 
3. Required operations of add, subtract, multiply, 

divide, compare, and absolute value for fixed 
point and floating point arithmetic. 

4. Required operations of "negate", "and", '.'or", 
and "no operation for logical data." 

5. A move operation. 
6. Memory size and word size of 65536 words and 

36 bits respectively. 

The basic strategy determines that 16 bits are re 
qui red for each main memory address. Since five bits 
are needed to encode the required operations, there 
is only room in an instruction word for one address 
without some augmented addressing scheme. The basic 
strategy can specify augmented addressing, but for 
this case it specifies a single, main memory address 
specification of 16 bits. The search strategy specifies 
additional instruction features in the following se­
quence: general registers, indirect addressing, addi­
tional operations, additional operations, indexing, a per­
manent adjustment to an index register after indexing, 
operations, operations, partial word addressing. The 
resulting instruction set has the following format: 

o 5 6 9 10 13 14 15 18 19 20 35 

Opera~ Partial General Index Index Indirect/MemOry 
tion Word Register Adjust Address Address 
Code Address 

This format is almost identical to the format of 
the Univac 1108 computer, however, the instruc­
tion set designed by ISDS is not. The primary 
difference is in the number of operations in the 
two instruction sets. The 1108 permits over 150 
operations, whereas the ISDS instruction set con­
tains only 52 operations. 



580 Fall Joint Computer Conference, 1969 

The instruction sets also differ in their interpreta­
tion of some of the instruction features. How~ 
ever, this example shows that ISDS is capable 
of designing an instruction language that in its 
essential features resembl¢s the instruction lan~ 
guageofthe Univac 1108. 

It is interesting to note in the above example that 
if only 16 or fewer operations are required in the state­
ment of the problem, then the· basic strategy assigns 
four bits for the operation code and the remaining 32 
bits permit two 16-bit memory references. In this case 
the search routine would not b¢ able to apply any of 
the operators since every bit of the instruction word 
is used by the basic strategy. This illustrates a prac­
tical value of the present heuristic program; i.e., it 
permits a designer to learn by experimentation how 
the different design variables interact and how minor 
changes in one part affect the final product. 

SUMMARY 

Working with ISDS indicates that for some design 
problems it is plausible to write programs that solve 
the design problem without human intervention. In 
general, the approach consists of the following steps: 

1. Select a design concept---a model of solutions 
to the design problem. 

2. Select a data structure for instances of the de­
design concept. 

3. Create operators that perform analysis and 
specify single parts of the model. 

4. Create programs that use cost, value and con­
straint information from' the statement of the 
problem to apply the operators in some sequence 
that results in a solution td the problem. 

This process, as it is applied in ISDS, is illustrated 
in Figure 4. 

To be of practical use, a design program based on 
the ISDS approach would require a more sophisti­
cated search strategy than the one used in the present 
version of ISD8. In general, it is probably possible to 
find clever ways of selecting the operators to be ap­
plied without actually trying everyone. Any such 
scheme would give the search mu,ch more direction and 
enable the program to evaluate strategies of depth 
greater than one. 

completely speciiFied 
instruction set 

Figure 4-ISDS as a design model 

The approach to automated design described is of 
limited use in many practical design problems. How­
ever, as designers experiment with interactive design 
systems they are likely to discover problems for which 
the so-called creative effort is relatively routine. For 
such problems, the approach of ISDS offers 1Ghe pros­
pect of more efficient automation than can be achieved 
in an interactive system. 

REFERENCES 

1 M ASIMOW 
I ntroduclion to design 
Prentice Hall, 1962 Englewood Cliffs N J 

2 C ALEXANDER 
Notes on the synthesis of form 
Harvard University Press 1964 Ca.mbridge Ma.ss 



Directed library search to 

minimize cost 

by DR. BRUCE A. CHUBB 

Lear Siegler, Incorporated 
Grand Rapids, Michigan 

Statement, of the problem 

The system engineer operating within the frame­
work of a typical manufacturing organization operates 
from the following basic information and constraints: 

a. A set of customer specifications to be met, 
b. A basic system configuration to' be used in real­

izing these specifications, 
c. A set of standard components that fit into this 

configuration. The problem is to determine the 
collection of components that satisfies the given 
specification at minimum total dollar cost. 

The above described situation exists in every area of 
system engineering where the configuration is "fixed" 
and a multitude of candidate components are available. 
The characteristics of these components can be stored 
in computer libraries by part numbers and an analysis 
program can be written to systematically analyze the 
system for any candidate set of components by merely 
inserting the appropriate part numbers. Such computer 
programs are structured so as to retrieve the data for 
each particular component, proceed with the various 
performance calculations and display the results to 
the designer for each set of part numbers manually 
selected. 

This paper goes one step further and presents tech­
niques and procedures for the effective use of computers 
in automating the solution to the above class of design 
problem. 

Theoretical development 

Development of the analysis program 

The analysis section is the starting point of any com­
puter-aided or automated design program. Optimiza­
tion, in the design context, is derived from an efficient 
use of iterative analysis techniques. Devoid of a good 
analysis capability, the designer has nothing. Its pres­
ence provides a powerful tool in itself. In this case, 
however, it is simply a means to an end-Automated 
Design. 

Although the internal details of the analysis program 
vary greatly for different appJications, the input-out­
put characteristics can be readily defined as shown in 
Figure 1. The first, and primary, requirement of the 
analysis program is that it must accurately represent 

Component 
Parameter 
Vect~r X 

System 
Perfozmance 
Vector Y 

( ) 

One-to-One 

Correspondence 

System 
Specification 

Vector S 

581 

Figure l-Input-output characteristics of system 
analysis program 



582 Fall Joint Computer Conference, 1969 

the hardware. This requires a significantly detailed 
model, including often overlooked nonlinearities, and a 
realistic consideration of componmit toler[\nce effects. 
Second, the outputs of the analysis program must have 
a one-to-one correspondence with, the list of system 
specifications. That is, if the cU8t~mer specifies over­
shoot, response time, accuracy, etc~, then the program 
must have the capability of calchlating the system 
performance characteristics in this form. Third and last, 
since the analysis is to be repeated many times in an 
iterative fashion, the solution time should be a mini­
mum. 

The analysis problem is now defined mathematically 
by letting S, Y, and X be vectors, defined in general as: 

System Specification Vector 

System Performance Vector 

Component Parameter Vector 

(1) 

where 

k = number of performance specifications 

n number of component p~rameters 

Si = numerical value for the ith specification 
(1 ::; i ~ k) 

Y i = system performance function corresponding 
to ith specification (1 ::; ~ ::; k) 

Xi = numerical value for jthcomponent param­
eter (1 S j ::; n) 

Thus one can write in general that 

Yl Fl(Xl, Xt, X., "', X,,) 
Y2 Ft(Xl, ~, X., ' .. " X,,) 

(2) 

where the F's represent the functions that need to be 
programmed to provide the system analysis. It is 
only necessary, at this time, that t~e X vector contain 

the elements as required to calculate the system per­
formance function vector Y. However, it is convenient 
to include the component costs as part of the X vecto:r 
[even though they will not appear explicitly in (2)] sincle 
they are required to calculate the optimization function 
that is introduced later. 

Thus (2) can be used to calculate the system per­
formance vector (Y) given any component vector (X). 
By programming this equation as presented, one ob­
tains the desired analysis program except for one 
deficiency. That is, due to manufacturing tolerances, 
the X vector varies from unit to unit, and we :are in­
terested not in a particular value of Y but what spread 
or limits to expect. The tolerance effects can be in­
cluded by using either the Monte Carlo or M:oment 
Methods. I ,2 The latter technique is used in this paper 
since it also provides information that is extremely use­
ful in minimizing the system cost. 

The Moment technique makes use of an expansion 
of the function about the mean parameters using a 
Taylor series. The higher order terms of the series arle 
neglected. This requires taking the partial deri.vativ4~ 

* This path automatically 
followed for initial 
guess. 

Figure 2-Computer aided des1gn program flow chart 



of each performance variable with respect to each 
component parameter. Assuming that the component 
performance parameters are independent and noting 
that the aY ifaxj = 0 if Xj is a component cost, the 
mean value of Y, is given by the equation 

UYi = V aY, 2 aY 2 

[ (Ux.) ax~ ] + [ (un) ax, ] 

[ 
aY iI 2 

+ ... + (Ux.) ~ ] (4) 
aXn 

where i = 1, 2, "', k and the partial derivatives are 
evaluated while all other parameters are held at their 
mean value. As can be seen from (4), the use of the 
Moment method requires that we calculate the partial 
derivatives of each system performance function with 
respect to each component parameter. The matrix 
of these partials is the Jacobian. 

J = 

aY k aY k aYk 

(5) 

The entries in the Jacobian are obtained numerically 
by programming (s) and using a subroutine to make the 
following steps: 

1. Set all the X/s equal to their mean value (/J.yJ, 

and the calculated Y vector is taken to be the 
mean value /J. y. 

2. Xl is replaced by (/J.Xl· + aX z) and the cor­
responding value of Y is calculated with all other 
X's at their mean value. From this, we obtain 
the first column of the Jacobian matrix using 

Directed Library Search to Minimize Cost 583 

aY i Y i -/J.Yi 

- c:= ---- for j 1, 2, ... r k and j 1 
aXj aX j 

3. Step 2 is repeated for each Xi for j = 1, 2, 
.. " n thereby obtaining the complete Jacobian 
matrix. 

Development of ·computer optimization design 
procedure 

Use of the computer-aided design procedure described 
in the previous section, although many times more 
effective than any manual method, nevertheless repre­
sents only a passive use of the digital computer. That 
is, the engineer makes all the design decisions and the 
computer only serves as a fast calculator. The next 
logical step toward optimized design is to use the com­
puter to determine how the components should be 
varied to converge on the desired minimum cost system. 

Figure 2 illustrates in general how a computer could 
be used in a dynamic Rense. The prerequisite to design 
is to input the data for all components. This is accom­
plished by loading in the component data cards pre­
punched in a prescribed format. This need be done only 
the first time and thereafter only if that data is to be 
changed; e.g., updated. These data are then stored by 
part number in an easily retrievable form on magnetic 
disk and are referred to as the "component libraries." 
In order to provide the mainline design program with a 
guide as to part number selection, some ordered array 
of these is desired. This is accomplished by using a 
"search matrix library," the precise working of which 
is explained later. Thus, immediately after generation 
of the component libraries, the computer calculates 
the component search matrices and stores these in a 
second block of data-the search matrix library. Now 
the program is ready to be used. The designer inputs 
the system specifications, fixed production labor costs, 
and any initial set of components of his choice. The 
latter item could be made a random selection if desired. 
In either event, the computer retrieves the component 
data from libraries and proceeds to calculate the system 
performance. The component parameters are then per­
turbated one at a time and the partials of each system 
performance function with respect to each component 
parameter are determined. Once this is completed the 
partials are stored in the form of a Jacobian matrix. 
The calculated performance limits are then compared to 
the specification limits. The fraction of the units pro­
duced that statistically fall outside of the specification 
limits is then calculated as the "rejection ratio." From 
this rejection ratio, the fixed labor cost, and the summa-



584 Fall Joint Computer Conference, 1969 

tion of the parts cost, the total cost is calculated. A 
printout is then made so that the user can follow the 
steps that a computer makes. Following this, some 
method must be employed to determine if cost is a 
minimum. If it is, then a final printout can be made. 
If it is not, then an option is shown as to how one wants 
to optimize. This can be accomplished by the user 
reading in another set of part numbers or the computer 
automatically can select a set in the manner described 
in a later section using the search matrix library. This 
procedure is repeated in an iterative manner untiJ the 
optimum design is reached. 

Generation of ohject functions 

The first question that must be answered in an 
optimization problem is, "What is to be optimized 
and what is optimum?" Often, this is not a trivial 
problem in itself since there are 'many separate and 
usually conflicting factors; i.e., minimum cost, maxi­
mum accuracy, small volume, best response, otc. These 
factors may be considered simultaneously be defining 
a scalar P of the form 

k 

P = L: Ai(Y i - Di)2 
i~l 

where 

P = object function to be minimized 

k = number of desired properites 

(6) 

Ai = weight factor selected to;give the ith property 
the desired priority 

Y i = current value of ith property 

D i = desired value for ith property 

A serious difficulty inherent in this approach, however, 
consists in finding a set of weigh~ing factors AI, A2, 

.. " Ak such that scaling between the various terms is 
properly considered in· order to maintain sensitivity 
and obtain good convergence. Considering properties 
such as accuracy, weight, cost and response, these 
weight selections often become s~bjective in nature. 

It is proposed in this paper that ~n entirely different 
object function shall be used. It is fbunded on the com­
petitive philosophy that the maI).ufacturer wants a 
design that fulfills the customer reGluirements at mini­
mum overall cost. With this result, ihe can either maxi­
mize his chances of competing or: if his sale price is 

"fixed" he maximizes his profits. Using this miinimum 
cost philsophy, an appropriate object function can be 
generated in the following manner. 

The total cost to build a given number of 8ystems 
is represented by the equation 

Total = Number [Labor 
Cost Built Cost 

+ L: component] 
Costs [

1 + ove~head] 
RatlO en 

However, the number that must be built fora given 
contract is given by 

Number = 
Built 

N umber Required 

[
1 - Rej~ction] 

RatlO 

Thus, we have for the total cost 

N umber Required 
Total = 

Cost [1 - Rejection] 
Ratio 

(8) 

[
Labor + L: component] 
Cost Costs [

1 + ove~headJ 
Ratio 

(QI) 

Since the number of required units and (1 + overhead 
ratio) are product terms which are not functions of the 
components, one obtains the same cost minimizing 
set of components using the function 

Cost = 

Labor + L: Component 
Cost Costs 

1 _ Rejection 
Ratio 

(10) 

Equation (10) is the object function used for what is 
defined later as "the fine search mode." When it is at a. 
minimum, the desired optimum set of components has 
been defined. However, one problem may exist in the 
early portion of the iteration cycle. That is, the design 
can be so far away from specification that, for all 
practical purposes, the rejection ratio is unity, th'3 
denominator of (10) goes to zero, resulting i~ infinite 
cost. As long as this occurs, (10) has no practical value. 
In fact, one loses all sensitivity in calculating partials, 



and there is no way of telling jf one design is better 
than another. For this reason, a "course search mode" 
is defined. Its corresponding object function is: 

k 

Q = L: A,R,(Y, - S,)2 
,=1 

where 

• Q = object function to be minimized 

k = number of specifications to be met 

A, = weight facgor for ith specification 

R, = rejection ratio for ith specification 

Y i = calculated system performance 3 sigma 
limit corresponding to ith specification 

S. = jth specification limit 

It should be further noted that 

(11) 

Y, = !J.Yi -3uy, if S. is a lower limit, and 

Since Equation (11) is used only in the coarse search 
mode, selection of the weight factors is not too critical. 
For this study, Ai was set at I/S i

2 except for the case 
when Si equals zero and then Ai was arbitrarily set 
equal to unity. 

In the coarse search. mode, cost is neglected in an 
attempt to determine the performance such that the 
rejection ratio becomes less than unity. The incorpora­
tion of the Ri term in (11) greatly aids in the accom­
plishment of this condition. First it nulls each term in 
the summation which represents an overdesigned con­
dition (i.e., Ri = 0) and secondly it applies a linearily 
increasing weight on the others according to their 
significance. 

Once each of the R/s is driven less than unity, the 
cost becomes finite, and the optimization 'process is 
switched from the coarse to the fine search where (10) 
is used as the object function. 

Calculation of rejection ratio 

The total rejection ratio R is the probability of a 
design falling outside of the specification, and assuming 
that the specification limits are constant, it is given by 

Directed Library Search to Minimize Cost 585 

R = 1 - t" lL.. ... t .. 
Lll L21 Lkl 

fYI, Y2, "', Yk(Yl, Yll, "', Yk)dYI dY2 ... dYk 

(12) 

where: 

{ Lil = -- oo} for the ith specification an upper bound 
L,2 = S. 

{
Lil = S. } 
Li2 = 00 

for the jth specification a lower bound 

The joint density of the Y's is given by: 

e· """"'"[(Y - Y)My-l(Y - y)T] 
(13) 

where: 

and the (k X k) covariance matrix My is 

My = JMxJT (14) 

Since the component performance parameters are 
assumed independent and (JXi = 0 if X, is a component 
cost, one caR write the component covariance matrix 
M~as 

o ... 0 ] 

(JX22 ••• 0 

o ... (JXn 2 

(15) 

In order to evaluate R using (12), one must evaluate 
the multiple integral of dimension k. This can be ac­
complished using numerical techniques, however, the 
process is very time consuming. In the interest of 
minimizing computer time, one of the three alternate 
procedures listed in Table I are best implemented. Each 
of these approximations requires calculating only the 



586 Fall Joint omputer Conference, 1969 

--------------------------------------------------------------------
individual specification rejection ratios (Ri for i = 1, 
2, ... , k) which are given by 

1 
-~(~~)' 

2 (jYi 

R. = 1 -----­
V2'lr(jYi

2 

e dy (16) 

Equation (16) can be evaluated by using the standard 
error function 

2 
ERF(z) (17) 

0, 

using the relationships summarized Table II. 
Since the upper bound approx~mation is always on 

the safe side, it is the one used here. However, the in­
dependent approximation does lie between the two 
extremes and thus might be closer to the actual cases 

Obje~t function derivatives 

It is of necessity that the partial derivatives of the 
object function be calculated in!. the steepest ascent 
method of optimization. If th~se derivatives were 
somehow known for the direct :search technique, it 
would be of advantage since on~ could then conduct 
exploratory moves in descending order of importance. 
In our case, it would be a major task to perturbate each 
of the component parameters ag&in and calculate the 
resulting change in the object function to obtain the 
partail derivatives. It is shown, however, that these 
can be obtained directly from the Jacobian matrix 
which is already available from 'the tolerance calcu­
lations; namely, Equation (5). This is accomplished 
in the following manner as derived first for the fine 
search and then for the coarse search. 

The object function used in fine search, Equation 
(10), can be written as 

C(X) = [K + f(X)] [1 - R(X)]-l (18) 

where 

x = component parametet vector [XI, X 2,' • " 

Xn] 

C (X) = total system cost 

K = labor cost 

R(X) = rejection ratio 

f(X) = L component cost 

Taking the partial derivative of C with respect to 
X i and expanding to include all Xi 

"', ~~] 
ax" 

Expanding the aR/ ax vector interms of the Jacobian 
defined by (3) one obtains the desired matrix equation 
for the fine search cost derivative vector as 

aC ac ac [-.- ..... -- ] 
aX l aX2 ax .. 

1 [af af af ] 
----- --,-, "',-
- R(X) aX l aX2 aXk 

K + f(X) [aR aR aR ] 
+ ------ -- -- . .. -

(1 - R(X»2 ay l ' ay2 ' , aY k 

-aY k (20) 

where: 

~ = {I if Xi is a component cost 

aX i 0 otherwise 



Table I-Estimates of total rejection ratio (R) 

Upper Bound Lower Bound Independent 

k k I 
if I L R. L R. < I Rj where Rj 2. Ri k 

i=l 1 i=l 1 

I -TI(I-Ri ) 

I otherwise for all I 2. i 2. k i=l 

and the vector 

aR aR aR 
, (21) 

aY l aY2 

is referred to as the "rejection ratio derivative vector" 
and given the notation aR/ aY. 

The calculation of the aRjaY vector, as required for 
the fine search mode, depends on the particular equation 
used in approximating the rejection ratio R [see Table 
I]. We consider here only the case where R is approxi­
mated by the upper bound [see Reference 3 for other 
cases]. Since in the fine search mode 

one has 

R(upper bound) = Rl + R2 + ... + Rk (22) 

and since R i is a function of Y i only for i = j 

aR(upper bound) 
for i = 1, 2, "', k (23) 

aY i 

and only the partials of the individual rejection ratios 
are required. 

Considering the specification limit a constant, the 
magnitude of aR i / aY i is given by the Y i density func­
tion evaluated at the point Yi = Si and the sign of 
aR i/ aY i depends on whether S i is an upper or a lower 
bound. That is 

---e 
aY i y21rO"y2 

Directed Library Search to Minimize Cost 587 

where 

Si = ith specification limit 

J.'Yi = mean value of Y i distribution 

O"Yi = standard deviation of Y i distribution 

and the + sign is taken jf 8 i is an upper limit and the -
sign is taken if Si is a lower limit. 

The object function used for coarse search is of the 
form [see (11)] 

F(X) = A1R1(X) [Y1(X) -81]2 + A?R2(X) [Y2(X) -82]2 

+ ... + AkRk(X)[Y k(X) - Sk]2 (25) 

Following the same type of procedure, as for the fine 
search, the coarse derivative vector is found to be 

[ 

aF aF aF ] 
--,-, "', --
aX I aX2 aXn 

aR? 
= 2 A2(Y2 - 82)R2 + (Y2 - 82)2 -­

aY2 

. aYI aYl aYll 
-- -- ... --
aX l ax'! aXn 

(26) 

l 
BY k aY k aY k 

---_ ... --
aX l aX2 ax,. 



588 Fall Joint omputer Conference, 1969 

------------------------------------------------------------------------------------------
Equation (26) gives the desired partial derivatives 

of the coarse search object function with respect to 
each component parameter in the system. Again, like 
(20), it is in terms· of the already available Jacobian 
matrix and no further parameter perturbations are 
required. 

Design program strategy 

The design program developed as part of this study 
has two basic operating options-;-analysis and directed 
search. When operating" with toe analysis option, the 
component part numbers required for each analysis 
may be either read in from cards or selected at random 
by the program. In either case~ as many consecutive 
runs are made as requested and a final printout is 
provided summarizing the best design obtained. Thus 
the engineer can make a rapid ~valuation of a selected 
number of designs of his choosing, or, he can perform 
Monte Carlo runs by letting the computer select the 
part numbers at random. 

With the directed search option, the computer pro­
gram uses the object derivatives in connection with 
search matrices to direct the next component selection 
in an attempt to reduce the object function. This proc­
ess is repeated 'in an iterative· fashion until a local 
minimum is obtained. Since there is no guraantee that 
this condition is the absolute! minimum, numerous 
starting points are employed ~nd the one with the 
lowest cost in assumed to be the best design. The 
starting points for each search may be specified by the 
user or otherwise selected at random by the program. 

The generation of the search matrices is a prerequisite 
to a directed search. A separate: search matrix is used 
along with each component libra~y and their generation 
automatically follows each library update. These 
matrices consist of an order array of the component 
part numbers defined by 

(27) 

Sm2 ••• sml 

where 

= the number of parameters used to describe the 
ith component 

m = the number of part numbers for ith component 
stored in the library 

S1li = a component part number for 1 ::s; n ::s; m and 
1 2 j 2 1 

Each column of Si corresponds to a particular param­
eter of the ith component and the entries of the column 
consist of all the ith component part numbers arranged 
in ascending order of the mean value of that parameter. 
That is, let the jth column of Si correspond to the kth 
component parameter of the X vector. Then Slj, S2" 

•• " Smi are chosen such that 

::s; Xk(Smi) (28) 

where 

Xk(SnJ signifies the mean value of the component 
parameter X k for the part number stored in 
location S1li 

In order to explain the strategy used by the design 
program to conduct a search, the following definitions 
are established. 

search 

base point 

sub-search 

= minimiza tion process which be­
gins with the initial Se1G of ]part 
numbers and ends once a local 
minimum is found. 

= set of part numbers for which the 
object function is less than that 
calculatt.d for any previous set of 
part numbers in a given search" 

= that part of a search which takee 
place between successiive base 
points. 

exploratory move = a set of part numbers whiich arlB at 
least tentatively being considflred 
for a system performance analysir. 

failure = an exploratory move whi<:h is stna-
lyzed and the object Junction 
obtained is greater than (0 i equal 
to) that of the base point. 

success = an exploratory move whieh is less 
than that of the base point. 

local minimum = the object function corresponding 
to the base point which remains 
once all the exploratory moves 
analyz'ed in a given sub-search 
result in failure. 



Table II -Equations for calculating individual 
rejection ratios (R i ) 

Si Upper Bound Si Lower Bound 

[ c-"y )] [ c-"y )J Si .::. Ily . • 0" S 1 " -" ERF ;, < 0.5 1 • ERF ;, < 
i 

[ ('y -S ) J [ ("y -S )] Si < Ily. 0" 5 1. ERF 12'< 0.5 1 - ERF /2\y: 
1 

Thus a search is made up of many sub-searches and 
each of the latter are in turn made up of numerous 
exploratory moves. Each exploratory move consists 
of changing one component part number while keeping 
the others fixed at the base point. Once an exploratory 
move results in "success," the move is defined as a new 
base point and new sub-search is started. This process 
is repeated until all the exploratory moves of a sub­
search are exhausted and no success is found. The 
base point for this last sub-search defines the local 
minimum. 

The following ten steps describe the general pattern 
of the program's search strategy: 

1. The object function being minimized is Q 
[Equation (11)] while in the coarse search mode 
and COST [Equation (10)] while in the fine 
search mode. The program is in the coarse 
search mode as long as the total rejection ratio 
[Equation (12) or Table II] is equal to unity, 
once less than unity the program switches to 
the fine search mode. 

2. Each time a lower object function is found, 
the corresponding part numbers are stored as 
a new base point. 

3. At each new base point, cal~ulations are made 
to establish the object function derivative vector 
using Equation (26) for the coarse search mode 
and (20) for the fine search mode. 

4. Priority and direction vectors are established 
as the bases for making exploratory moves. The 
priority vector (IPAR) consists of are-ordering 
of the component parameter numbers (i.e., 
subscripts of the X parameter vector) such that 

I 
a objectl ~ ! a objectl ~ ... ~ ! a object! 
aXIPARl ! aXIPAR2 !aX1PARm! 

(29) 

Directed Library Search to Minimize Cost 589 

where 

Thus 

m, the dimension of IP AR, equals the number 
of component parameters. The direction vector 
(IDEX) is defined by 

a object 
aX lI 

IDEXII = ----- for 1 ::; n ::; m (30) 

I 
a objectl 

aXIl 

IDEXII = + 1 if the nth parameter should be 
increased 

= -1 if the lIth parameter should be 
decreased 

in order to achieve a reduction m the object 
function. 

5. A "sub-search progress number," denoted by 
the symbol II, is used by the program as the 
subscript for the IP AR and IDEX vectors. 
It is initjalized equal to unity (i.e., II = 1) at 
the beginning of each sub-search and incre­
mented under program control as the sub-search 
progresses. As II is increased from one to m, 
IP ARII corresponds to the component param­
eter numbers having decreasing sensitivity 
values with respect to the object function. 
Likew\se, IDEX[PARII corresponds to the desired 
direction the IP ARII parameter is to be 
changed. 

6. Each exploratory move is initiated by calling a 
subroutine, named SEARCH, to select the new 
part number which is to be investigated. This 
is accomplished using the statement: 

CALL SEARCH 

where 

[IDEX[PARIl' IPAR II, IPNJJJ, IBOUND] 

IDEX [PAR II = direction IP AR II parameter is 
to be changed 

IPAR rr 

IPNJJJ 

= parameter number for change 
being considered 

= present part number on en­
tering the subroutine and on 



Fall Joint Computer ?onference, 1969 

------------------------~----------------------------------------------------------------
return it is the new part 
n umbe~ to be used 

IBOUND = 0 unles~ present part number 
is already at the boundary and 
cannot. be changed further, 
then it, is set to 1 by the 
subrou~ine 

JJJ = compo~ent library number 

The SEARCH subroutirie takes the IPARII 

entry which corresponds ~o the subscript of the 
X vector and seeks the corresponding column of 
the appropriate search matrix. This column is 
then searched until the cutrently used part num­
ber is found (IPN JJJ)' Once this occurs the sub­
routine increments either: down or up one lo­
cation depending on whether IDEX is + 1 or -1 
and replaces the old part pumber with the new 
one found. If the old part number happens to 
be on a boundary such thtitt a new part number 
cannot be obtained, the suhroutine sets IBOUND 
to 1 and returns with the old part number. 
If this occurs, no further: minimization can be 
obtained considering the; IPARII parameter, 
therefore one returns the: part nl,lmbers to the 
base point and incremen~s to the next most 
significant parameter by: increasing the sub­
search progress number ~II) by 1 and step 6 
is repeated. . 

7. For each new component selected by SEARCH 
a library subroutine, nam~ LIBR, is called to 
retrieve the correspondip.g parameter data. 
This is accomplished by th~ statement 

CALL LIBR[IPNJJJ;, XMAX, XMIN] 

where 

IPN JJJ = part number for W;hich data is desired 

XWMA = a vector containirig the mean +3 sigma 
values for the tota~ X parameter vector 

XMIN = a vector containing tile me~n -3 sigma 
values for the total X parameter vector 

The LIBR subroutine ta~es' ~he part number 
(IPN JJJ) and s~arches the appropriate cOlnponent 
library stored off-line on magnetic disk, until the 
part number is located. Once located its associ­
ated parameter data is redd back and inserted 
in the p~oper locations ()f the XMAX and 

XMIN vector. Thus by calling the LIBR sub­
routine with H part number, one is able to auto­
matically update the three sigma limits for the 
X's corresponding to that part leaving the 
others unchanged. 

8. After the new data is obtained for the exploratory 
move, the program checks for the existence of 
two conditions before the system performance 
is evaluated. The first is used to control the extent 
that the program explores changes based on a 
given parameter before it moves on to th~ next 
parameter. This is accomplished by calculating 
a normalized distance (DIST) according' to 

DIST = XMIN i for IDEX i > 0 
XMAXSi 

XMINS i 

XMAXi 

where i = IPAR 11 

for IDEX i < 0 (al ) 

XMAXS = a vector containing '~he 

mean + 3 sigma values for 
the total X parameter 
vector for the base point. 

XMINS = a vector containing the 
mean -3 sigma values for 
the total X pluameter 
vector for the base point. 

This normalized distance is then compared to a 
program input parameter XNN. For XNN > 
1, one is assured that the XIPARII random variable 
has been varied so that its frequency distribution 
inside the 3 sigma lim,its lies outside 1ihe 
distribution for the corresponding baBe point 
parameter. Thus by selecting the value of XNN, 
the program user can control the extent 1GO which 
exploratory moves are made. A value of X:NN = 
1.5 was found to give satisfactory results. By 
making XNN larger one explores more possi­
bilities at the expense of increased computer 
time. Thus, for DIST < XNN the progra,m 
returns the part numbers to the basl~ point, 
increments to the next most significant param­
eter incrementing the sub-search progr~ss 
number by one, and returns to step 6 above by 
calling'SEARCH. If DIST ;:;; XNN, the pro­
gram continues to make the second. check. 
This second check consists of calculating the 



estimated change in the object function based 
on its first derivative vector using the equation. 

m a object 
..!1object I: 

where XNOM and XNOMS are the mean com­
ponent parameter vectors corresponding re­
spectively to the exploratory part number 
vector and the base part number vector. Since 
the i = IPARII term in (32) is negative, one 
knows that· if ..!1object turns out to be positive, 
the summation of the changes caused by the 
.parameters in IPNJJJ other than IPARII have 
resulted in an estimated increase in the object 
function. Sinc.e an increase in ..!1object is unde­
sirable, one returns to step 6 above, when 
..!1object > 0 and calls SEARCH keeping the 
same sub-search progress number (II). If 
..!1object :::; 0, a complete system performance 
analysis is made using the exploratory move 
part numbers. 

9. If the exploratory move turns out to be "a 
success" (i.e., the object function is reduced) 
one returns to step 2 above and the process 
is repeated. If it is "a failure" (i.e., the object 
function isn ot reduced.) one returns to step 6 
and the next exploratory move is investigated. 

10. The optimization procedure terminates once 
aU the exploratory moves madeJrom a given base 
point are completed "without success." This 
base point defines the local minimum. 

Figure 3 summarizes the described design strategy 
in the form of a flow chart for the computer program. 
For simplicity sake, only the logic fundamental to 
the directed search option is included. 

A utomated design example 

Application problem 

The example presented here is the ~utomated de­
sign of an instrument servomechanism consisting of a 
follow-up device, electronic ampHfier, drive motor with 
feedback generator, and geartrain. A pictorial diagram 
showing a fixed system configuration using these com­
ponents is shown as Figure 4. 

It is assumed that a design of this configuration must 
meet up to five preassigned specifications in the areas 

Directed Library Search to Minimize Cost 591 

~ 
"/ 

I 
r- -- _.J 

I 
I 
I 

DETERMINE 
NEXT 

COMPONENT 
SELECTION 

Figure 3-Directed search basic program logic 

Table III -System specifications 

Name Symbol' Boundary Units 

Static accuracy Sl upper degrees 

Resolution S2 upper degrees 

Velocity lag S3 upper degrees 

Follow-up rate S4 lower deg/sec 

Damping ratio S lower -
5 

of dampi~, accuracy, at),d time response, Table III 
lists the specifipations by name and vector notation, 
tells :whether each specification is an upper or lower 
bound, and the units used. 



592 Fall Joint Computer Conference, 1969 

--------------------------------------------------------------------------------------------

-1 
>~~Ftu~", Control 

transmitter (CX) 

Excitation, 
voltage. : 

Control 
tran,former (CT) 

\ , , , , ~
\\\I't,,\ 

'[EAmPlificr 

111111\\\ 

Excitation 
voltage 

-------' 
t ----------+----------·t--~ 

Amplifier ,"put Error 
voltage ~." voltage r. 

Figure 4-Schematic diagram 6f motor-generator 
instrument servomechanism 

Four component libraries are established to list the 
part characteristics as follows: 

a. Follow-up-25 part numb~rs 
b. Amplifier-50 part numbets 
c. Motor-generator--25 part numbers 
d. Geartrain--25 part numbers 

Even though the size of each dem6nstration library was 
purposely kept small, the number of theoretical possible 
candidate systems is large; namely, 25 X 50 X 25 X 
25 = 781,250. 

The optimum collection of components is defined as 
"the one that satisfies the given specification in a man­
ner resulting in minimum total cOE1t." 

Component libraries and search matrices 

The design equations corresponding to the five 
specifications are listed in Table IV (see Reference (4) 
for their derivation]. By grouping the parameters 
shown in Table IV according to component and adding 
the corresponding cqmponent cost, one obtains the X 
parameter vector as summarized in Table V. 

In addition to specifying any desired combination 
of the above described five performance requirements, 
the user must also define the load that the servo is to 
drive. For the example program developed, the load 
is represented by an inertia (Jt) and a coulomb friction 
(Tt )· These are shown as X21 and 1C22 of Table V. 

The components selected to make up the libraries for 
this study, chosen so as toprovirl;e a broad base of de­
sign, are typical of those used t~roughout the servo­
mechanism industry. An example of the parameter 
used is shown in Table VI which, consist of the valU(~s 
follow-up component library. ' 

Each column of the library data is labeled with the 
appropriate X-vector notation; i.e., Xl, X 2, "', X 20, 

Table IV-System design equations 

Name Symbol 

Static Accuracy 

Resolution 

Velocity Lag 

Follow-up Rate 

Damping Ratio 

Equation Used 

e [ T +T J E ~ I - -.IL2. 2!!. 
N NT E 

s c 

N2 (B +K K T IE ) 
m g ag sl' c 

each of which is assumed to be a random variable with 
a normal distribution defined for each component by 
the mean ± 3 sigma limits gi~en by the MAX 
and MIN values shown. The variables Xi for i = 1J• 4, 
9, 16, 17, and 20, which are the individm~l component 
costs, motor rated voltage and the gear ratio and have 
no manufacturing tolerance, are still treated as rH,n­
dom vairables" but having zero variance; XIVIAX, = 
XMIN i . 

The search matrices are generated immediat.ely after 
the library data is stored in the computer system. The 
search matrix for the follow-up is shown as Table VII 
and consist's of the follow-up component part numbers 
arranged in an ordered array. 

Computer solution 

In order to demonstrate the application of the pro­
gram in its most comprehensive form, a customer re­
quirement is assumed which makes use of all five spelCi­
fications. The particular set is: 

1. Static accuracy = 0.35 degrees 
2. Resolution = 0.3 degrees 
3. Velocity lag for 300 deg/sec input = 5 degrees 
4. Follow = up late = 300 deg/sec 
5. Damping ratio = 0.5 

The assumed labor cost is $200. 
The results obtained using the program in the direct 

search mode now are illustrated in detail for three 
s~arches. The first, shown in Table VIII, is a caf~e where 
the initial guess fails completely to meet three out of 



Directed Library Search to Minimize Cost 593 

Table V -Component vector notation for library 

COMP VAR PARAMETER NAME SYMBOL UNITS 

F 
Xl Cost Cf dollars 

0 
L 

X2 Gain Kf volts/rad L 
0 

X3 Accuracy Sf minutes 
W 
U 
P 

A X4 Cost C dollars 
M a 
P Xs Gain to Followup Kaf volts/volt 
L 
I X6 Gain to Generator K volts/volt 
F ag 
I X7 Output Saturation Level E volts 
E sat 
R Xs Output Null Voltage E volts an 

X9 Cost C dollars m 

G XIO Stall Torque T oz-in 
E s . 

M N XII No-Load Speed S rpm 
o E m 

T R Xl2 Inertia J gm-cm2 

o A m 

R T Xl3 Starting Voltage E volts 
0 

s 

R Xl4 Generator Gain K volts/IOOO rpm g 

XIS Generator Null E millivolts gn 

Xl6 Rated Control Voltage E volts c 

G Xl7 Cost C dollars 
E g 
A 

XIS Inertia J gm-cm2 
R g 
T Xl9 Friction T oz-in 
R g 
A X20 Gear Ratio N --
I 
N 

L 
0 

X21 Inertia JR, gm-cm2 

A X22 Friction T oz-in 
0 t 



594 Fall Joint Computer Conference, 1969 

---------------------------------------------
Table VI-Followu,p library data 

X VECTOR NOTATION 
Xl X2 X3 

PART NU. COST FClLOWUP C;AIN ACCUR ACY 
f)OLLARS (VOLT S/I1.AD) (MIN OF ARCI 

MAX M1N MAl( MJN 

1001 300.00 23.6O(;C 21.4000 1.0 /).') 

100? 24.00 12.7rcc 1('.3000 10.0 f).0 
lJ'H 35.00 24.flOCC 2C.2000 7.0 ('.0 
1004 20C./)0 0.5050 C.495C "0.0 O./) 
10'15 61)0.f)O /').502" 0.4975 10.0 0.0 
10')6 28.00 24.80CO 20.200(' 15.0 0.0 
1') )7 40.00 12.100C 1(,.900Co 3.0 0.0 
10)8 3£:.00 12.100( 1 C.9000 7.0 ~.O 

1(119 27.')0 12.70CI) 1('.3000 15. (', 0.0 
1011 30.0CI O.50~0 [.495(' 120.0 0.0 
10 II 95.00 11.700(' 11.300('1 2.0 0.0 
1012 90.0r 0.5050 0.4950 60.0 0.0 
1013 300.00 0.505e C.495C 15.0 0.0 
1014 60.0( 24.8'JOC 20.2000 3.0 0.0 
1015 16.0('1 12.7C~C 1 o. :'IOOC 30.0 0.0 
1016 3').00 2~.q()CC 19. 100C 10.0 0.0 
If)! 7 260./)0 11.7(')CO 11.3000 I.e 0.0 
1018 15C'.OO 23.tOCC 21.4;1)00 7.0 0.0 
101Q 2C'.:JG 27.00CC lA.OOOO 30.0 0.0 
1021 ze.nC' C.515C O.505C 180.0 0.0 
10?1 26.00 5.5CeC 4.5;OCC 10.0 ).0 
1022 V'i.O(' 5.25(0 4.7500 5.0 C.O 
1023 2{i. ')O '5.5CCO 4.5000 1<;.0 I)./) 

1::>24 28.f)C 5.25(0 4.1500 7.0 n.n 
L125 18.00 5.500C 4.500C 30.0 0.0 

the five required specifications, thus resulting in an 
infinite cost (shown as **** when cost ~ 1. X 106 

dollars). Each line represents an analysis run and lists 
the cost (10), scalar (11), total reject [upper bound of 
(12)], the four component part numbers used, and the 
individual specification rejection percentages [Ri 
using (16) for i = 1, "', 5]. Fifty-five iterations 
are required by the program to minimize the scalar 
object function to the point where the cost be­
comes finite and the program switches from the coarse 
to the fine search mode. It should be noted that for 
this and subsequent computer runs, the intermediate 
printout is eliminated for all iterations where the 
scalar (cost when in fine search) is not reduced. These 
are considered "failure iterations" as is the case for 
numbers 2, 6, 7, etc., for the coarse search in Table 
VIII. 

Once the program is in the fine search modfj, the 
cost is minimized up to run number 2.02 where it is 
reduced from $38,261.30 to $374.27. As shown, an ad­
ditional 23 iterations are required according to the 
termination procedure, as explained in an earlier sec­
tion, in order to establish that part numbers 1009, 
2003, 3002, and 4014 establish a local minimum. 

Table IX illustrates the results obtained from the 
second search. This case represents the opposite condi­
tion where the initial guess at first hand looks like a 

T~ble VII-Followup search matrix 

COST K~F THETA 

1015 1010 101 7 
1025 1005 1001 
1023 1004 1018 
101q 1012 1011 
1009 1013 1014 
lOr) 2 1020 1007 
1021 1024 1022 
1006 1021 1074 
1024 1025 1003 
10?O 1072 100R 
1022 1023 1021 
1010 1015 10C5 
1016 1007 1002 
1013 1011 1016 
100R 1009 1013 
1007 1017 1('06 
1014 1:)08 1023 
1012 1]02 1 !)( 9 
1011 1014 1 en 5 
101~ 10(')6 1025 
1004 1003 1 01 9 
1017 101R 1004 
1013 1816 1012 
10'11 100 1 1010 
IO()5 IOlY 1020 

"reasonable design"; i.e., the rejection is only 0.77 
percent. However, after 74 iterations in the direct 
search mode, the cost has been reduced from the 
original design value of $555.30 to only $.374.2~(­

a savings of $181.03 per unit! The computer run time 
was less than one minute. 

The third search is shown in Table X where 1;his 
time the initial parts result in a design which fails com­
pletely to meet four out of the five specifications. After 
55 iterations, the program has reduced the scalar from 
59,610,000 to 3.396 and only one specification remains a 
complete failure; however, this point turns out to be 
a loc,al min : mum and no further reduction is obtained. 

A total of 15 searches was made and the local 
minimums found and their frequencies are summarized 
in Table XI. Based on the results listed in Table XI, 
the system obtained using part numbers 1009, 2003, 
3002 and 4014 is assumed to be the best de::;ign. The 
final computer printout sheet summarizing this com­
bination is shown as Table XII. 



Directed Library Search to Minimize Cost 595 

Table VIII-Directed settl'C'h with initial guess undersigned 

····*··***BEGIN SEARCH ~U"'BEk 2 ••••••••• M , 
C 

RUN PEI'CENT COMPCNE NT S SHECTED ·······INDIVIDUAL REJECTIONS····· 0 
NO. C )ST SCAlAQ. DEJECT FOUP A,..,P ~OGEN GRTR STAlIC RES LAG FURA TE OAMP E 

1 *********' 3. 722 [+i:'l2 lCJ.'C 1"0') Z(46 3015 402i IIUJ.L'U 1()u.00 IOO.O~ 0.00 0.03 1 
~ ••••• **** 7.147E+02 1").OC 10C5 2('46 3e12 4022 100.0C 100.00 1 CO. 0' 0.00 1.09 2 
4 **.****** 3.)42E+J2 1(,:). C'O 10(5 2(46 3021 4022 10O.OC 100.00 IOC.O) 0.0 100.00 2 
5 **.****** 8. 662E +CO 101. 0(' Ion 2C46 3021 4(\22 18,,45 82.34 0.0 0.0 100.00 2 
>l ********* 8.61 Ef +C'O 1 C). oc. 1024 2(46 3(>21 4022 4 .. 18 82.88 o.c 0.0 100.01) 2 

12 .******** 8.611E+:}·,) 1')).00 1022 2('46 3021 4022 0 .. 90 82.88 0.0 0.0 100. (II) 2 
16 ********* 5. BO[ +00 In').0C lJ22 2("46 3021 4024 0 .. 01 21.95 C.O 0.00 100.0') 2 
B ********* 4.497E +00 101').11(, 1022 204h 3012 4024 55.55 100.OC O.C 0.03 11)0.00 2 
34 **** •• *** 4. 'B4E' +::0 1(1).('(, 10G7 2('46 3012 4024 0.0 O.CO C.O 0.03 100.00 2 
35 ********* 3.l59E+SO 1 C'O. 0(· 1 ('C' 7 2('46 3"23 4024 O.CO 63.32 0.2:) 56.16 94.76 2 
40 *****:l<*** 3.291E:+on 100 •. 1( If)G7 2046 3005 4(:24 iJ.CO 74.21 27.87 B8.46 55.68 2 
41 ********* 3.207F+(lO 1 '"'". CC 1('('7 2(46 3011 4024 0.00 21.45 18.67 54.19 6.71) 2 
55 3 B 261. 30 3.222HO(, qR.76 1 I) 1 1 2046 3011 4024 0.00 21.11 16.88 54.19 6.52 2 
76 2999.5C 3.213E:+00 h4.6S 10 l I 2(46 3011 4023 0.0 11.20 16.3() 51.22 5.93 '3 

109 79,.05 4.742E+OJ ? B. 12 1(11 2('2'5 3011 4023 0.0 0.0 O.OJ 28.32 0.0 3 
119 565. ')4 4.254F+JI) 1 •. ') 1 1 r~: 1 2C2'J '3 ('11 4020 O.C 0.0 0.0 C.01 0.00 3 
120 544.01 5.27bF+')O 0.1)0 1 (I) 1 ?r.? 5 3002 4020 0.0 0.0 0.00 0.00 0.00 '3 
122 537. ·)1 5.349[+1'\0 1.1( 101 1 2r2'5 ~OC2 4014 0.0 0.0 O.OJ 0.00 0.00 '3 
127 527.15 2.89b~+SI 'J.Gl 1111 2(.41 3002 4014 0.0 0.0 0.01 0.0 0.0 '3 
133 521.0( 1.~:6E+Cl J.O 1 ~ll 2030 3002 4014 0.0 0.0 0.0 0.0 o..e 3 
136 512.11 b. 4"'94E' +00 0.0(' Hl1 20B 30e2 4014 0.(\ 0.0 0.0 0.00 0.01') '3 
14q 4d1.JC 5.166[+00 o.ro 1') 1 1 204A 30(2 4014 0.0 0.0 0.0 0.00 0.00 '3 
159 432. Jr S.694E:+0~ 1.00 trH'7 2(413 30('2 4014 0.0 0.0 0.0 0.00 0.00 '3 
162 423. ')( 5.4~OE+')a (\.:)0 10(,8 204A 3002 4014 0.0 0.0 0.0 0.00 0.00 '3 
172 42'>. H '5.!>9t-F+C'J 1. 1 f. H~ 16 2('48 3007 4014 0.0 0.0 0.0 0.00 1.16 '3 
118 424.26 5. 522E+'J8 1 • C"l ),)(,6 2C48 3002 4(\14 0.00 0.0 0.0 0.00 1.01 3 
181 41 b. ')( 5.293E+),) o. or 10('2 2C48 3C07 4('14 0.00 0.0 0.0 0.00 0.00 3 
194 414.')(' 5. 144,E:+00 !."C 10('9 2048 3002 4(114 0.0C' 1).0 0.0 0.00 0.01) 3 
202 314.21 6.973F+QO 1.41 lCC9 2e03 3002 4014 0.00 0.0 1.4:> 0.00 0.00 3 
22'5 314.27 6. 973E +00 1.4) lOOq 2('03 3()02 4014 o.co 0.0 1.4) 0.00 0.00 4 

Table IX-Directed search with initial guess overdesigned 

.*********BEGIN SEA~CH NUMBER 1 •• * •••••• M , 0 
RUN PERCENT CO~PONE~TS SELECTEO ·····*.INDIVIDUAL REJECTlONS···** 0 
NO. CJST SCAlA~ Q,EJfCT FOUP A~P MOGE~ GRTR STATIC RES LAG FURATE DAMP f 

1 ~5~.3(, 4.43lf+CO 0.77 lC('6 2050 3('16 4013 0.04 0.0 C.13 0.00 0.0') 1 
2 55').b~ 4. 'BOE +00 0.48 10C6 2050 3002 4013 1).00 0.0 0.48 0.00 (\.00 3 
5 547.11 4.751E+IJC ~.O2 1006 2050 3002 4020 1).00 0.0 0.0 1).0 0.02 3 
7 544. ')l 3.936E+~a 0.00 1006 2(50 3002 4009 0.00 0.0 0.0 0.00 0.00 3 
8 54).LO 4.821E+C'O ~.C2 1006 7(150 3002 4014 0.00 0.0 0.0 0.0 0.02 3 

12 53~.89 4.537E+OO 0.17 1')02 2050 3002 4014 0.00 0.0 0.17 0.0 0.00 3 
26 41)().38 4. 9aCE +00 O. C8 1002 2025 30e2 4014 0.00 0.0 0.08 0.00 0.00 3 
27 464.7q 4. B90E +00 0.17 1.::'109 2("25 3002 4014 0.02 0.0 0.15 0.00 0.00 3 
36 454.8P 2. B02E +0 1 O.lQ 1009 2('41 3002 4014 0.00 0.0 0.19 0.0 0.0 3 
42 454.0C 1.550E+-J1 0.0(': 11)09 2(:30 3002 4014 0.00 0.0 0.0 0.0 O.C 3 
44 449.)1 5.740E+00 0.00 1009 2033 3002 4014 0.00 0.0 0.0 0.00 0.00 3 
56 414.0C- 5.144E+00 ').OC 1009 2048 3002 4014 O.OC 0.0 0.0 0.00 0.00 3 
74 374.27 6. q73E +('1) 1.41 lCC9 20/)3 3002 4014 0.00 0.0 1.40 0.00 0.00 3 
97 374.21 b. 913E +00 1.41 1 CC9 2003 3002 41)14 O.CO 0.0 1.40 0.00 0.00 4 

The validity that the above $374.27 local minimum 
is also the absolute minimum can be checked, for this 
example, by using the procedure explained as follows: 

to test if a local minimum is also the absolute minimum, 
one need analyze only the subset of the total combina­
tion for which 

The lowest possible cost for a system made up of any 
collection of components is the summation of the in­
dividual component costs alld the labor cost since if 
there are rejects, they only increase this cost. Therefore, 

labor cost + L:,component costs < local minumim (33) 

If it turns out that analyzing each system in this subset 



59..6 Fall Joint Computer Conference, 1969 

RUN 
NO. 

T 
2 
3 
5 
7 
8 

10 
11 
12 
13 
14 
1'; 
16 
17 
18 
19 
55 

156 

Table X~Directed search resulting in/an unsatisfactory local minimum 

********.*BEGIN SEAPCH ~U~BEP 3 •• *.* •••• 

PERCENT CO~PONENTS SELECTED * •• ·**.INDIVIOUAL REJECTIONS····· 
C)S T :;CALAR REJECT FOUP AMP "'OGEN GRTR STATIC RES tAr. FIIRATF DAMP 

.**.***** 5.'J61E+(l7 100.OC 1013 2014 3010 4017 99.91 100.00 '100.00 100.00 0.0 
********* 4.616E+(,7 100.00 1013 2014 3014 4011 99.93 100.00 100.00 100.00 0.0 
••• * •• *.* 4. :H3f +07 Ina.CO 1013 2(114 3009 4011 99.94 100.00 100'.01) 100.00 0.0 
*.* •• *.** 2.07BE+07 lOa •. or 1013 20'14 3004 4017 99.92 100.00 100.00 100.00 0.0 
*.* ••• **. 1. 919E +07 100.0C 1013 2014 3016 4011 99.89 100.00 100.00 18.15 0.0 
•••••••• * 1. B12E +01 100.00 1 C13 2('14 3002 4011 99.96 100.00 100.00 100.00 0.0 
••••••• *. 1.094E+07 100.00 1013 2014 3003 4011 99.91 100.00 100.00 100.00 0.0 
•••••• *** 6.126E+06 I(,O.OC 1013 2014 3011 -4017 99.98 100.00 100.00 100.00 0.0 
••••••• ** 6.678E+06 100.0C 1013 2014 3005 4011 99.98 100.00 100.00 100.00 0.0 
••••••• ** 5. 485E +1)6 100.0C 1013 2014 3023 4017 99.93 100.00 100.00 100.00 0.00 
.*.* •• *** 5.216E-+Ob 100.00 1020 2014 3023 4011 99.95 100.00 '100.00 100.00 0.00 
•• **.*.** 5.6f!1E+1)4 100.00 L024 2014 3023 4017 99.86 99.63 100.00 100.00 0.00 
.* •• ***** 8. b48E+Ol 1CO.CO 1024 2C14 3012 4011 99.82 56.60 100.00 100.00 0.0 
.** •• **** 3.746E+00 100.('0 1024 2014 3011 4011 58.94 98.59 0.00 100.00 69.54 
.*.* ••• ** 
* •• *.*.** 
.. * ...... ** 
* •••••• ** 

3.434E+OO 1CO.OO 1024 2('14 3015 4017 26.65 41.15 0.08 100.00 
3.399E+00 1CO.,)C 1022 2014 3015 4017 14.80 47;.15 0.06 100.00 
3.3<;16E+QO loo.or 1022 2006 3015 4017 14.80 47.1~ 0.06 100.00 
3. ~96E +,)0 10'.).00 111;22 2006 3015 4017 14.BC 41.15 0.06 100.00 

Table XII-Best design obtained using directed search 

AUTOMATED D~SIGN PESEARCH PROGRAM 

JANUARY 15, 1969 

•••• OEFINITION Of LOAO •••• 

INtRTIA (GM-CMSQR) 
FRICTllIN COl-it") 

MAX 
9.00("·E-+07 
S.OOCE-Ol 

MIN 
7.000E:+02 
4.000E-Ol 

•••• PART NUMBfRS OF COMPONENTS SELECTED •••• 

FOLLOWUP AMPLIFIER MOTOR-GF,N GEAR TRAIN 
1009 2003 3002 4014 

•••• PERfORMANCe •••• 

SPEC LIMIT PCT PfJ 
TOTAL INERTIA (GM-CMSQR) 
TORQUE CONSTANT (Ol-IN/RAD) 
DAMPING COEFFICfENT (Ol-IN-SEC) 
NATURAL fREQUENCY (HERTZ) 

0.00 STATIC ACCURACY (OEG) 
0.0 RESOLUTION (OEG) 

0.00 
0.00 
0.00 
0.00 

MAXIMU,", 
4.011E+03 
4.578E-+03 
6 .. 1&9E-+Ol 
4.895E-+Ol 
3.033E-Ol 
5.457E-02 
5.295E+00 
9.702E+02 
2.227E+00 

MINIMUM 
2.928E-+03 
2.056E-+03 
2. 711E +0.1 
3.218E+Ol 
It.712E-0;2 
2.666E-02 
3.091E+OC 
6.192E+02 
1.213E+00 

0.350 
0.300 
5.000 

300.00C 
0.500 

1.40 LAG FOR 300. DEG/SEC RAMP (DEG) 
0.00 FOLLOWUP RATE COEG/SEC) 

1.41 
1.41 
1.40 

200.00 
169.00 
174.21 

0.00 DAMPING RATIO 

•••• COST SUMMARy •••• 

PCT REJECTION (UPP[R BOUND) 
PCT REJECTION (INDEPENOENT) 
PCT REJECTIO~ (LOWER BOUND) 
LABOR COST 
PARTS COSl 
TOTAL COST (USING R-UPPFR BOUND) 

E SIGNIFlf~ CONV[NTIONAL PO~ER-Of-TfN NOTATION 

... 
0 
0 
E 

1 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
4 



Number 
Times 

Table XI-Local minimums obtained for design 
example 

System Component Part Numbers 

Ioccurred Cost Rejection PI Pz P3 P" 

1 '" 100% 1016 2004 3024 4025 

1 '" 100% 1022 2006 3015 4017 

1 $410.01 0.25% 1023 2008 3006 4014 

1 $394.63 1.43% 1009 2003 3002 4002 

1 $394.29 0.07% 1009 2012 3006 4014 

9 $374.27 1. 41% 1009 2003 3002 4014 

1 Search terminated as iterations exceeded maximum allowed 
of 300 

results in a total system cost higher than the local 
minimum being investigated, the latter is the absolute 
minimum. 

For the above $374.27 local minimum there are 
17,835 combinations which satisfy (33). This number 
although large is much less than the 781,250 total pos-

Directed Library Search to Minimize Cost 597 

sible combinations and it becomes a practical value 
when one considers the solution time. The 17,835 
combinations were, therefore, analyzed (at a cost of 
1.7 hours of computer time compared to 74.4 hours for 
a complete exhaustive search) and each resulted in a 
total system cost> $374.27 thus proving the latter 
to be the absolute minimum. 

REFERENCES 

D MARK 
Choosing the best method of variability analysis 
Electronic Design Nov 8 1963 

2 D G MARK L H STEMBER JR 
Variability analysis 
Electro-Technology Vol 76 July 1965 35-48 

3 B A CHUBB 
Computer aided optimizatiorl: of nonlinear servomechanism 
employing a directed search of multiparameter component 
libraries and statistical tolerancing 
Michigan State Univ 1969 PhD Thesis 

4 B A CHUBB 
Modern analytical design of instrument servomechanisms 
Addison-Wesley 1967 





Computer-aided design for custom 

integrated systems 

by V.i. K. ORR 

The Singer Company-Friden Research Center 
Palo Alto, California 

INTRODUCTION 

The computer-aided design (CAD) system described 
herein was developed to aid in the design of digital 
systems to be implemented by custom integrated cir­
cuits (CIC) and multi-chip hybrid custom integrated 
systems (CIS). The terms MSI/LSI are avoided here 
due to the general confusion which exists in the litera­
ture as to what constitutes an MSI/LSI circuit. The 
CAD system philosophy is tlmt each Ole is imple­
mented from a selected set of "library elements". 
This design approach results in some size inefficiencies, 
compared with manual designs, but provides many 
advantages, of which flexibility and a shortened de­
sign cycle are the most important. This CAD system 
captures fundamental design information in a machine­
readable form early in the design process, thus maxi­
mizing potential computer assistance and minimizing 
costly and time-consuming errors. This paper contains 
an overview of the complete CAD system, highlighting 
its more distinctive features. The complete system 
has been operational on a 360/30 for several months, 
and specific experiences with it can therefore be dis­
cussed. 

Overview 

Following are the major sections of the complete 
CAD system, and the distinctive features to be dis­
cussed more fully iI\ later sections. 

Logilc design 

These programs convert a description of the logical 

function required of a CIS into the corresponding 
functional logic. 

Distinctive features include: 

1. Logicspec~ a special register-transfer source 
language, 

2. Compiled functional logic independent of hard­
ware implementation, 

3. Designer control of factoring and gathering. 

Logic simulation 

These programs provide a complete simulated en­
vironment for the CIS, and a bit-simulation of response 
to input pattern sequences. 

Distinctive features include: 

1. Random access and cyclic memory, 
2. Read-only-memory, 
3. Time-dependent and conditional input signals, 

4. Logic level statistics, 
5. Selective output facilities. 

Logic conversion 

These programs convert the functional logic to the 
logic family selected for hardware implementation, and 
create the design data-base. 

Distinctive features include: 

1. Efficient NAND/NOR logic generation, 

2. Wired-OR 

599 



600 Fall Joint Computer Conference, 1969 

Logic element design 

These programs facilitate origination and revision 
of the library elements used in final system imple­
mentation: 

Distinctive features include: 

1. Graphospec, a special graphic source language, 
2. Logic element library, 
3. Artwork generation facility. 

Partitioning _ 

These programs enable the designer to explore al­
ternative partitionings, and post the final locations 
of all logical elements to the design data-base. 

Distinctive features include: 

1. Minimization of total pad-count for the CIS, and 
2. Extensive designer/computer interaction. 

Element selection 

These programs select the smallest eligible element 
meeting all the circuit requirements. 

Distinctive features include: 

1. Automatic insertion of gate expanders and intra­
CIS pads, and 

2. Capabilities for handling variable size elements. 

Element interconnection 

This program establishes the X-Y interconnection 
routing. 

Because of the nature of this paper, references are 
not cited in the text, instead an annotated bibiography 
is given at the end of the paper. 

Logic design 

The initial input to the CAD system, as shown in 
Figure 1, consists of a set of Logicspec statements. 
Logicspec is a language which has been developed to 
simplify the task of describing a logic design in machine­
readable form. 

The Logicspec language permits the designer to 
avoid many of the burdensome details of logic design 
These details are filled in by the Logicspec Translator, 
which converts a Logicspec des<;lription into a com­
plete set of design equations. These design equations 
are essentially Boolean equations t the operators being 
AND, OR and NOT. However, they are written in a 
modified form of polish notation.: In this notation the 
equation 

A=B·C·D+E·F 

L 

r--___ ----.~_-P-'LA1J 
LIBRARY 

----- --- .... ___ --1 MAINTENANCE 

INTER- l 
CONi'.IECTIOI~ 

L 
CONNECTIO'"'J 

DECK GRAPHOSPEC 
r= I VERIFICATIOI~ 

Figure l-Computer-aided design system for CIS 

appears as 

A = ((B CD·) (E F·) +) 

An important characteristic of this notation is tha,t 
each operator corresponds to a gate in an AND/OR 
implementation of the equation. This greatly simplifies 
those programs in the CAD system which must operate 
on these equations. 

Since the Logicspec language is similar to other 
register transfer languages which have been proposed, 
only some of its more distinctive features will be 
discussed here; a full description will be published 
elsewhere. 

Flip-flops are the only memory elements dealt with 
directly in a Logicspec description. Memory systems 
such as core and delay line memories are treated as 
systems interfaced to the logic design through signal 
lines. The description of these memories is deferred 
until simulation, where the simulator controller governs 
the manner in which the various memories interact 
via the signal lines, with the logic design. 



Flip-flops are introduced in a description through 
the use of a Flip-Flop Collection declaration such as 

FFC 12 A(l, 8*), B(l *,8) 

The foregoing indicates that the collections A and B 
both contain eight type-12 flip-flops. The "*,, identifies 
the high order end of the collections for decoding ref­
erences such as "A = 2". The type code ("12") is used 
by the simulation system to determine how the as­
sociated flip-flops are to be simulated and by other pro­
grams to determine how the flop-flips are to be imple­
mented. This information is contained in an on-line 
disk library which can be expanded as required. Each 
flip-flop declared may have a maximum of five input 
and two output terminals: 

A(l)/R, A(l)/S, A(l)/T, A(l)/P, A(l)/C, A(l) 
and A(l)'. 

The functions of these terminals is determined by 
the information contained in the corresponding library 
entry. 

The bulk of a Logicspec description consists of a 
set of statements which specify that if a certain con­
dition C is true then an action S, or set of actions SI, 
S2, ... , Sn occur. 

The statement form actually used by the designer 
is the more concise conditional statement: 

IFCTHENS 

or when several actions are involved: 

The actions prescribed may include such operations 
as SET A, CLEAR B, C ~ D (transfer C to D), and 
INHIBIT TX. Conditional statements can be nested, 
i.e., Si could be another conditional statement. The 
condition C may be any Boolean expression formed 
using the operators + (OR), . (AND) and '(NOT). 
I t is permissible to describe an entire design using only 
Boolean equations; one need not use conditional state­
ments if he so desires. 

Most designers who have used the system feel that 
the conditional statement is rather cumbersome, and 
generally prefer to use an alternate form referred to 
as a qualification statement. This statement takes the 
form: 

*C: 

Computer-Aided Design 601 

All subsequent statements are conditioned by C 
until another qualification statement occurs which 
overrides the condition C. To illustrate this consider 
the following: 

FFC 12 A(l *,3), B(l *,2), C(l *,2); 

*(A = 3): 2 ~ B; 

GLEAR C; 

*(A = 0): B ~ CIS; 

. The modified Polish equations produced by the Logic­
spec translator for the above description are: 

C(l)/C = *(A = 3)* 

C(l)/S ~ (*(A = 0)* B(l)/l . ) 

C(2)/C = *(A = 3)* 

C(2)/S = «(*A = 0)* B(2)/1 . 

B(l)/R = *(A = 3)* 

B(2)/S = *(A = 3)* 

*(A = 3)*= (A(l)/O A(2)/1 A(3)/1 . ) 

*(A = 0)* = (A(l)/O A(2)/0 A(3)/0 . ) 

Qualification statements may be nested using a form 
of subscripting: 

*C1 : Sl; 

S' 2, 

*1 C2: S3; 

S4; 

*1 Ca: So; 

*C4: S6; 

In the above, SI and S2 are conditioned by C1, S3 and 
S4 by C1 · C2, S5 by C1 • Cs and S6 by C4 only. Logic­
spec is a free-form language, thus the identations above 
are for documentation only. 

The structure of a Logicspec description contains 
important "clues" which are used by the translator 
to produce efficient logic. As an example, the majority 
of common control conditions are described using 
qualification statements. Referring to the above, C1 

is a common control condition in that it controls the 
actions SI and S2 and in conjuntcion with C2, Sa and , . 
S4' The Logicspec translator searches all qualificatIOn 



602 Fall Joint Computer Conference, 196~ 

statements for such common conditions, and may 
either duplicate the gates 'involved every time the 
condition is used or generate a llew signal which is 
used wherever the condition appears. This decision 
is under the control of the design~r, who specifies the 
minimum number of times a condition must be used 
before a new signal is generated. The designer can also 
control the generation of new signals based on how the 
condition is used and the number of gates required to 
generate the condition. 

The designer can use the flexibili1,y described above to 
reduce the time required to simulate a design by in­
structing the translator to gener~te a new signal for 
every common condit.ion. This g¢nerally reduces the 
number of gates in a design and t;hus the p;atc evalua-
tion time during simulation. ! 

The basic Logicspec language ,is very simple, but 
means are provided for extending the language through 
the use of subsystem definitions. A subsystem definition 
for the four bit ring-counter pic~ured in Figure 2 is 
given in Figure 3. , 

In Figure 3, line three is a signal collection declara­
tion for the single rail bus OUT (dQuble rail bus declara­
tions begin with SIGC/2). Line: four indicates that 
the words COUNT and SETa are to be added to the 
basic Logicspec vocabulary whenever a RINGC is 
used. Lines five and six simply describe fixed connec­
tions. 

Once a subsystem has been d~fined and added to 
the subsystem library, the design~r may use it in one 
of two ways-he may INCLUDEi it or simply SIMU­
LATE it as part of his design. 

The INCLUDE option specifies that the actual 
text describing the subsystem is to be passed to the 
Logicspec translator and processed along with the 
text describing the rest of the design, in much the same 
way as a rnacro call functions in prdgl'amming langua~es. 

The SIMULATE option makes the logical descrip-

OUT I 

r------
I 
I 
I 
I 
I 
I 
I 
I 
I 

COUN T-4-----I 

A (I) 

OUT 2 OUT S 

SET 0 -1------+---..... --....... ---.1 

I 

OUT .. 

L ________________ ~ 

Figure 2-Four bit ring-counter 

tion of the subsystem available for simulation purposes 
only-the rest of the logic design must interaet with 
the subsystem through its input/output terminals. 
The subsystem logic does not become part of the sys­
tem being designed: subsystem simulation information 
is passed directly to the simulation program, and is 
not processed by the Logicspec translator. 

The same subsystem may be included and simulated 
in the same design, For example 

INCLUDE RINGC A(AO), B(BO); 

SIMULATE RINGC C(CO); 

indicates that two ring-counters, A and B whose out 
put buses are AO and B01 respectively, are to be in­
cluded in a design whereas C is only to be simulated. 

The efficiency of the logic produced by the Logie­
spec translator has been evaluated, using designs for 
two systems which were in production before Logi.~­
spec was developed. These two systems were described 
in Logicspec, processed through the translator, and 
the resultant logic compared against that in the pro­
duction systems. In both cases the logic produced 
by the translator contained five percent more gates 
than the production designs. 

Logic simulation 

The electronics industry increasingly uses logic 
simulation to eli mate logic design errors before COnl-

DEFINE RINGC (OUT)i (1) 

FFC 12 A (1*, 4); (2) 

SIGC OUT (1 *, 4)i (3) 

OPERATION COUNT, SETa; (4) 

A 4-- OUT; (5) 

A(4)' --+ A(l); (b) 

*SETO: CLEARAi (7') 

*COUNT: SHR Ai (8) 

END; (9) 

Figure 3-Subsystem definition for ring-counter 



mitting a design to hardware. Many designers, how­
ever, insist on building breadboards to isolate lead­
length and other circuit problems. In some cases, this 
is still a valid position. However, whenever the product 
will utlimately use CIC's a breadboard serves only 
to . correct logic errors, simply because of the difference 
between the breadboard and final product technologies. 

The creation of a logic simulation program begins 
with the simulator ordering program. This program 
orders the design equations, in preparation for the 
simulator compiler which produces the simulation 
code. The equation order, E I , E2, ... , En, produced 
by the ordering program has the following property: 
the variable defined by equation, E i , is a function of 
flip-flop outputs, system inputs (external inputs) or 
variables which have been defined in the preceding 
equations Et, ... ,E i =l' In addition a level list is produced 
which gives the number of gate delays in the definition 
of each signal. This list is used by the designer to iso­
late signal paths which contain excessive delays. These 
may be eliminated by changing the Logicspec descrip­
tion. 

Whenever an equation occurs which defines a signal 
as a function of itself the program will fail to order it. 
At the completion of the ordering process a list of all 
unordered equations is produced. The designer must 
change his description such that every equation can 
be ordered before proceeding to the simulator compiler. 
From this the reader may wonder how flip-flops built 
from cross-coupled gates (latches) are processed. The 
answer is that the designer uses a flip-flop which has 
the characteristics of a latch, but he does not write 
the equations which describe the latch itself. 

The simulator compiler generates code to evaluate 
each equation in the order specified by the ordering 
program. One pass through this code may represent 
one simulated clock time; the equivocation is clari­
fied by the discussion of the simulator controller. 

The simulator controller simulates all memory ele­
ments in a given CIS design, monitors various signals 
to find predesignated error conditions, and applies 
time-varying input signals so as to provide a realistic 
simulation of the environment in which the CIS must 
operate. A set of powerful commands has been de­
veloped to facilitate the designer's interaction with 
the simulator, and to maximize the information he 
receives about the simulation results. Concise state­
ments are provided for describing wave forms which 
are to be applied to the machine's inputs (system in­
puts). Commands are provided to control the display 
of selected signals and flip-flops during simulation, 
as well as the status of any delay line or core memories 
involved in the design. 

Computer-Aided Design 603 

The flip-flop control procedure used by the simu­
lator controller is outlined in Figure 4. A pass through 
the simulation code will define each signal and flip­
flop input. If any asynchronous (non-clocked) flip-flop 
changes are required the controller makes these changes 
and another pass is made through the simulation code 
to propogate the effect of these changes. The controller 
counts the number of times recycling is required be­
'tween clock times. If this count exceeds a limit specified 
by the designer, an error message is generated, thus 
permitting detection of any oscillating conditions 
which may be present in a given design. When there 
are no more asynchronous changes, a clock time is de­
fined and all clocked flip-flop changes are made. This 
procedure for handling asynchronous flip-flop changes 
is also used to handle asynchronous changes in all other 
types of memories. 

Simulation running time is clearly increased when­
ever asynchronous events occur. However, in the ab­
sence of asynchronous events there is virtually no run 
time overhead associated with the capability to handle 
such events. As regards running time, a logic system 
containing 100 flip-flops and 600 gates is simulated 
at a rate of 18 clock periods per second. 

EVALUATE BOOLEAN 
EQUATIONS 

(SIMULATION CODE) 

MAKE ANY NECESSARY 
NON-CLOCKED FLIP-FLOP 
STATE CHANGES (SUCH 
AS A DC PRESET OR 
CLEAR) 

MAKE ANY NECESSARY 
CLOCKED FLIP-FLOP 

STATE CHANGES 

Figure 4-Simulator controller 



604 Fall Joint Computer Conference, 196·9 

Logic conversion 

As discussed earlier, the logic; produced by the 
~gicspec translator consists of a s~t of Boolean equa­
tlOns. Generally our logic is implemented in either 
NANDS or NORS, thus the design. equations must 
be converted to one of these logic families. 

The Logic Conversion Program is a one pass table 
driven program capable of converting the 'design 
equations into either NANDS or NORS. When strap­
ping (OR-tieing) is permitted, the program will use 
it when it yields a savings in gates: and/or logic levels. 

One of the unique features of this program is the 
order in which it converts the design equations. The 
conversion pro~uced for the ith eq\lation can be done 
efficiently (in terms of the number of gates required) 
only when it is known how the signal defined by this 
equation has been used-positively~ negatively or both. 
In other words, to produce an efficient conversion for 
equation i one must first produ~e a conversion for 
e.ach. equation which uses the sigI~3J defined by equa­
tlOn 1. On the surface this seems like a difficult problem 
at least a time consuming task, however, as it turns out 
all of the necessary information is produced by the 
ordering program used in simulatio~. 

Recall that the simulator orderi~g program produces 
the design equation ordering El, E~, ... ,En' where every 
signal in equation Ei has either been defined by a 
preceding equation or is a flip-flop output or system 
input. The conversion program ~onverts the design 
equat~ons in the order En, En-l, ... ,El. That is, the first 
equatlOn converted is the one which appears at the 
end of the list produced by the simulator ordering 
program. 

As the conversion is done, thei program maintains 
a "usage list" which indicates how each signal has 
been used. As an example, if the equation A = B + C 
is converted to NANDS the progtam records the fact 

that Band C have been used negatively, sinc:e the 
NAND conversion for this equation is A = 13 @C, 
where @ represents a NAND gate. Thus, we see that 
when the program reaches equation Ei the usual~e list 
entry for the singal Vi defi,ned by E i , contains all of the 
information as to how Vi has been used. Returning to 
the previous example, if B was used only in the equation 
which defines A then the conversion program would 
produce an equation for B rather than B. 

The table used by the conversion program to con-, 
vert the design equations to NANDS, assuming 8u 

strapping capability, is shown below. This table is 
somewhat simpler than others which have appeared 
in the literature. 

The entries in Table I give the NAND gate replace­
ments for each Boolean operator as a function of the 
polarity that is required at a given level in the logie 
network. The "positive", "negative" entries which 
appear in the table are the polarities required IOn the 
inputs to the gate(s) which replace the Boole{m op .. 
erator. "Strap" implies that under the indicated con­
ditions strapping may be used. Whenever the NOT 
operator occurs, it is simply removed with the indicated 
polarity reversal. 

Figures 5a and 5b illustrate how the conversion 
table is used. In Figure 5a the implication is that :!I. 

conversion is to be produced for H rather than j1; thus 
the first conversion table access is made with (Polarity, 
Boolean operator) = (POSITIVE, AND). 

To insure that conversion is done correctly, the 
designer must supply a list of the system inputs and 
outputs with their required polarities. In addition, 
he must specify the polarity required at each flip-flop 
input. 

Figure 7 shows a conversion produced for the design 
equations given in Figure 6. The symbol $ is used to 
indicate strapping. Each operator, @/$, is followed 

TABLE I-NAND conversion table. 

Boolean Operator 

AND OR NOT 

@@ (STRAP) @ ELIMINATE 
POSITIVE 

POSITIVE NEGATIVE NEGATIVE 

@ @@ (STRAP) ELIMINATE 
N,EGATIVE 

POSITIVE NEGATIVE POSITIVE 



LEVEL: 
A -tl_--t 

B -+----t~ 
c-t----t 
D~----1 

E-+----t 
F----t I 

I I 

2 

I I 
REQUIRED I POSITIVE I NEGATIVE 
POLARITY: I 

I 
I 
I 
I 
I 
I 

CONVERSION 
BEGINS HERE 

3 

: POSITIVE1 
I I 

Figure .5a-H = (A . B + C . D + E . F) . G 

A---I 
B---I 
C---I 
D---I 
E---I 
F---I 

Figure 5b--NAND equivalent for H (without strapping) 

H 

by an operator number. The signal Z, which appears 
as *Z'* in -Figure 7, was produced rather than Z be­
cause this ~ignal was described separa tely to the con­
version program as a negative polarity system output. 

Generally when AND-OR-NOT logic is converted 
to NAND or NOR logic, additional levels are intro­
duced. The designer normally will pass the logic pro-

duced by the conversion program back through the 
ordering program to determine if excessive logic levels 
have been introduced. If there are excessive levels, 
the designer must eliminate them by changing the 
original Logicspec description. 

To facilitate further processing, implementation 
equations such as those of Figure 7 are compacted into 
a file which resembles a wiring list. This file, referred 
to as the design Data Base, it used by all subsequent 
programs. 

Logic implementat-ion 

Following logic conversion, artwork must be gen­
erated to produce the CIS which implements the logic 
contained in the design data base. In part this involves 
the selection of an IC equivalent for each gate and 

Computer-Aided Design 605 

Z = (( (B A .) C(l)/l +)1 D(l)/l .) 

2 A = ((L K .) M +) 

3 G = (M N +) 

Figure o-Df'oign equation"l 

*M'* = ( M @10) 

2 *N'* = ( N @11) 

3 (1) *Z'* = ( ( ( 8 A @4) ( C(l)/l @3) $2) 0(1)/1 @1) 

4 (2) * A' * = ( ( L K @9) ( M @8) $7) 
5 A = ( *A'* @ 6) 

<> (3) G = (*M'* *N'* @5) 

Figure 7-Implementation ]ogi(' 

flip-flop in the data base. The central information 
source used in establishing these equivalences is the 
Element Library. Since this library is used by all sub­
sequent programs, it is appropriate to introduce it at 
this time. 

The library elements important for the following 
discussion are gates (NA~D/NOR), flip-flops, line 
drivers, and expanders. Although the Element Library 
contains a much broader range of digital elements, the 
CAD system is presently only capable of utilizing 
these simple logic elements to implement a CIS. The 
effectiveness of the CAD system will increase as the 
complexity and variety of library elements that can 
be used to implement a CIS is increased. 

The library entry for each element contains all of 
the information required to produce the artwork for 
the several mask levels for the given element. This in­
formation is stored in a disc file in relocatable form so 
that an element may be positioned at any location on 
a chip in one of four possible rotations, and optionally 
as a 'mirror image. Dimensions, fan-in and fan-out 
capabilities and logic type are iricluded in each ele­
ment entry. 

A complete set of programs accomplishes element 
library maintenance. Most important of these are 
the programs which the element designer uses in the 
creation and modification of library elements. Ele­
ments are generally built up in a bootstrap fashion. 
Resistors, diodes, and transistors are described to the 
system, in a special Graphospec language, as a col-



606 Fall Joint Computer Conference, 1969 

lection of rectangles. In this langljIage the description 
of a rectangle consists of the coo~dinates of one ver­
tex, the length of the associated diagonal and a mask 
layer designation. More comple~ elements such as 
gates are described as collections: of these elements. 
There is virtually no limit to th¢ complexity of the 
elements that can be built up in this: fashion. 

The computing equipment currently available at 
the Research Center for use in CAD does not include 
a graphic display terminal. In anticipation that one 
will be available in the future the Graphospec language 
was designed for use on such a terminal. 

Partitioning 

The logic contained in the data base, representing 
that to be implemented by a CIS, may exceed the 
capacity of a single IC chip. It is then necessary to 
partition the logic into groups (partitions), each of 
which can be implemented by a sIngle IC chip. It is 
important to note that partitioning is accomplished 
before IC equivalents have been se~ected for each gate 
and flip-flop in the data base. One reason for this is 
that there can be a significant size difference between 
gates and flip-flops whose inputs are generated and 
outputs used on the same chip andJ those whose inputs 
(outputs) originate (terminate) on a different chip. 
Thus, it is not possible to know ~xactly the area re­
quired for each element until partitioning has been done. 

The approach taken toward partitioning was to 
develop a set of manipulation and: reporting programs 
that the designer can put together to implement a wide 
variety of partitioning strategies. Some understanding 
of what is done by these program~ can be gained from 
the following brief descriptions. 

The input program 

Calculates approximate areas fot each logic module. 
A given logic module consists of either a flip-flop, a 
collection of flip-flops, or the gates required to im­
plement a design equation. As an illustration, the 
equation A = ( (B C @ 3) (D E @ 2) @ 1) is treated 
as a four input logic module which has one output cf. 
Figure 8. The area of this logic module is the sum of 
the approximate areas for the gates which make it up. 

The locate program 

Places named logic modules on specified chips. Ad­
ditionally, the designer can speci£y that a module is 
to be locked in place, that it cannot be moved from its 
designated location by subsequ~nt programs. The 
name of a logic module is defined to be the name of 

D-......-----­
E-I------II 

£>----I-A 

Figure R-Logic module a3 defined fol' partitioning 
purposes 

the output signal (the name of the logic module in 
Figure 8 iR A). Flip-flop outputs bear the name of the 
flip-flop. 

The randomize program 

Randomly distributes all logic modules which have 
not been placed over the chips which the designer 
designates as available. The designer can elect to 
begin partitioning with any number of chips. 

The weld program 

Creates a new logic entity by associating any 
specified set of logic modules together. For example, 
one might weld the reset logic for a flip-flop collection 
to the flip-flop collection itself. 

The reduction program 

Moves logic modules, or logic module sets, between 
chips whenever a move will result in a reduction i1l1 
the total number of interconnection pads required 
within the CIS. Moves are made subject to the area 
and pad limitations the designer has given for each 
chip. 

The display program 

Produces a chip interconnection table which gives 



the name of each "back-plane" signal, the number of 
the chip which generates the signal and the numberCs) 
of the chip(s) the signal is connected to. This is only 
one of the several reports designed to aid the designer 
in executing his partitioning strategy. 

Frequently an "optimum" partitioning job can be 
done only if the designer is willing to change his 
design. Gates can often be traded for pads, reducing 
system cost, also the duplication of registers, especially 
those that are extensively decoded, may reduce cost. 
The cost effectiveness of trade-offs such as these will 
of course change as packaging techniques improve, 
however, the situation will still arise when for want 
of a pad a chip must be added to a CIS. 

To simplify the task of implementing design changes 
made to improve partitioning results, a facility is 
provided which allows the designer to obtain a "lo­
cation deck" at any time during the partitioning 
process. Each card in this deck contains a logic module 
name and the number of the chip on which the module 
is located. The cards are punched in the format ac­
cepted by the locate program. 

All design changes must be made to the associated 
Logicspec description-this fundamental design docu­
ment is always kept up to date. Once a change has 
thus been made and a new data base created the lo­
cation deck is processed to obtain the new partitioning 
results. If design changes eliminated certain logic 
modules the associated cards in the location deck are 
rejected. Furtherz if logic modules were added the 
designer is required to include cards for these in the 
location deck. 

Element selection 

Chip locations for each logic module established by 
the partitioning process are posted to the design data 
base. The element selection program then selects 
the library elements that are to be used to implement 
the logic on each chip. Selection is controlled by a 
list, which the designer prepares, of eligible library 
elements. From this list, the program selects for each 
gate and fiip.Jlop the element of smallest area which: 

1. Provides the logic function required by the 
associated element in the data base, 

2. Has the required fan-out capability, and 
3. Has the required fan-in capability. 

Whenever there is no eligible library element with 
adequate fan-in, gate input expanders are automatically 
added. Whenever the source and destination of a 
signal are on different chips, appropriate output and 
input pads are added automatically. To effect further 

Computer-Aided Design 607 

area minimization, the selection program recognizes 
special combinations of logic elements and substitutes 
corresponding special library elements. At the moment 
the only special element substituted is a dual output 
NAND. 

From this point on all processing is done on an in­
dividual chip basis. 

Placement and interconnection 

Three layers of metal interconnections are generally 
required for the chips within a CIS. In such three 
layer systems the first metal layer is used solely for 
element intraconnections, and the second and third 
layers are used for element interconnections. Thus, 
the CIS placement and interconnection task is equiva­
lent to the two-sided PC card placement and intercon­
nection task. The algorithms used are modifications 
of those which have proved effective tools for generating 
PC card artwork. 

Element placement and interconnection are alway s 
done using the power bus] ground bus and pad layout 
prescribed by the designer. Several "standard" chip 
layouts are stored in the element library and the par­
ticular layout specified by the designer is referenced 
by the programs as required. A typical chip layout 
is shown Figure 9. 

The CAD system can handle chips of various sizes, 
however there are certain aspects of chip layout which 
are standard from chip to chip: 

1. Pads are located on the perimeter; 
2. Power and ground busses are on separate metal 

layers-one under the other, 

PAD 

Figure 9-Typical chip layout 



608 Fall Joint Computer Conference, 1969 

3. The minimum horizontal. dimension of the 
region bounded by two segments of a bus or 
by a column of pads and a i bus segment is C­
the maximum must be 2C (M figure 9). 

The CIC placement problem is complicated by 
the fact that the library elemel}ts which must be 
placed on a chip are not all the: same size. This is 
simplified somewhat by the restdctions imposed on 
chip layout an~ library element' design. Reflecting 
the restrictions __ discussed regarding chip layout all 
library elements must be designed with one or the 
other of the aspect ratios pictured in Figure 10. 

Placement is accomplished in' three steps. First 
the elements and pads are placeq on a regular grid, 
assuming that all the elements are the same size' the . .' 
partIcular size chosen is that of the smallest element 
which must be placed on the chip. 

Element pairs are then intercqanged on this grid 
until a minimum approximate intetconnection distance 
is found. Second, the elements are expanded to their 
full size into a new, initially empty, grid which actually 
represents the chip. :8lements ate processed one at 
a time starting at the center of the "small" grid and 
moving outward along a spiral path. For each element 
processed all possible positions on the new grid are 
evaluated with respect to three criteria: (1) the distance 
from the ideal position as defined by the small grid, 
(2) the degree of occupancy of this position by clements 
already processed, and (3) the angle of rotation be­
tween the lines defined by the grid center and ideal 
point and grid center and positi9n being evaluated. 
The third criterion is designed to: keep the expansion 
progressing outward from the center point. If the 
position picked as minimal with ~espect to the above 
criteria is partially or fully occupied, a search is 
entered to find other positions. for the occupying 
elements. The third placement st~p is to again inter­
change pairs of elements so as t6 minimize intercon­
nection distance, although this time only elements of 
the same size may be interchanged. 

l 
VARIABLE 

~------~ 
1---'2C~ 

Figure l~Permissible library element aspect 
ratios 

For each chip processed, the placement program 
produces two outputs. The first includes a list of alll 
of the library elements on each chip, with their abso­
lute chip location given, this is entered in the element 
library. The second is a list of required interconnections; 
this is the input for the wiring program. 

The wiring program makes all power and ,ground 
connections first, using a simple heuristic. Given that 
the point x, y is to be grounded or connected ,to power, 
a bi-directional search beginning at x, y is' made in 
a direction perpendicular to the two closest segments 
of the appropriate bus. If an obstruction is encountered 
during the search a turn is made perpendicular to 
the preferred search direction. When one of the bus 
segments is encountered the required connection is 
wade. 

When all power and ground connections have been 
processed element interconnections are made using 
the Lee-algorithm. To speed up this process these 
connections are made in two steps. At first eaeh pair 
of points to be connected is enclosed in a rectangle 
and the Lee-search is restricted to this enclosing rec­
tangle. The particular rectangle chosen for a given 
pair of points is the one whose diagonal passes through 
the two points and is four units longer than the line 
joining the two points. If the program fails to make 
the connection within the enclosing rectan~~le the 
pair of points is added to a" failure list" and processing 
continues with the next pair. Once all point pairs 
have been processed pairs in the failure list are again 
processed; this time, however, the search area, is not 
restricted. 

Resticting the Lee-search as described above, in 
some ca.;;es improves running time as much as 28 percent.. 

The average density, in interconnections/square, 
of the chips processed to date has been 3.8, where a 
square is 10 wiring grid units on a side. At this density 
manual completion has been required for less tha,n 
1 percent of the interconnections processed. 

To facilitate manual completion the output of the 
wiring program is a card deck referred to as a connee­
tion deck, which can be manually manipUlated to 
make those connections which were not made auto­
matically. These cards actually contain a deseription 
of the connections in the Graphospec language ac­
cepted by the element library maintenance programs. 
Thus, these programs can be used to plot metal masks, 
as a basis for deciding how to make the remaining 
connections. 

This manual wiring completion procedure is a 
potential source of errors. A verification program is 
therefore provided to validate all manually introduced 



connections. Actually this program checks all con­
nections in the connection deck against the design 
data base and produces an error list of all missing 
and erroneous connections. When a final connection 
deck is obtained it is entered in the element library. 
At this point the element library contains all of the 
information required to produce the artwork for a 
given chip. 

Non-recurring engineering costs 

In June 1969 an experiment vms pm'formed to 
measure the non-recurring engineering costs of custom 
integrated circuit design. 

~For this experiment, a digital system whose logio 
design was already complete was chosen as a starting 
point. This system, as it existed in prototype form, 
consisted of 42 flip-flops, 215 NAND gates and 20 
NOR gates implemented in 69 conventional dual inline 
packages. 

The experiment began when the system design, in 
the form of four D-size logic diagrams, was received 
at the Research Center. Members of the CAD staff 
transformed the design into a machine-readable form 
using the Logicspec language. It should be noted that 
Logicspec was not being used as a design language, 
but merely as a means of conveying design informa­
tion to the computer. 

Following the transformation to .Logicspec R com·· 
plete logic simulation was performed to identify any 
errors introduced by the manual transformation. 
Several such errors were found. Tn addition, two errors 
were found in the logic diagrams. 

At the beginning of the experiment it ,vas decided 
that the CIS would be implemented using chips mea­
suring 140 mils on a side with a maximum of 39 signal 
pads/ chip. On these chips power and ground buses 

Computer-Aided Design 609 

and pads occupied approximately 7,100 mils2 of the 
available area, leaving 12,500 mils2 for the placement 
of library elements. 

U sing a parts list submitted with the logic diagrams 
it was estimated that with the selected chip size the 
system could be implemented using six chips. The 
six ohip partition obtained is oharaoterized below. 
The area utilization figures given below were obtained 
after element selection had been performed. 

The area utilization figures given in Table II clearly 
indicate that the six chip partition makes somewhat 
inefficient use of the available area. At the time it was 
not obvious that fewer chips could be used due to pad 
limitations. For this reason the experiment was com­
pleted. using the six chip partition. Subsequently a five 
chip partition was obtained this is characterized below. 

The five chip partition required more gates than the 
six chip partition because it was necessary to trade gates 
for pads in order to stay within the prescribed pad limits. 

Following element selection each of the six chips was 
processed through the placement and wiring programs. 
Of the six chips processed only one required manual 
completion:one connection was made manually. 

The end product of the experiment was a complete set 
of rubylith mask masters (11 mask layers) for one chip 
(chip five). In determining costs it was assumed that 
the mask masters for each of the remaining chips would 
cost approximately the same. 

The professional manpower and computer costs 
required to perform the experiment are summarized 
below. At the Research Center all plotting is done in a 
multiprogramming environment (i.e., it is overlapped); 
for this reason the summary is broken into two parts. 
The entire experiment was completed in an elapsed time 
of three weeks. 

The non-overlapped time shown above was the time 

TABLE II-Six chip partition. 

Chip Gates Flip-Flops Pads Area % of 
Used In Mils2 Available 

Area 

1 26 9 31 10,762 86% 
2 40 7 38 11,343 90% 
3 38 9 38 11,438 91% 
4 32 4 37 7,446 59% 
5 43 6 37 11,052 88% 
6 28 7 36 8,696 690/0 

Total 207 42 217 60,757 
Average 34 7 36 10,126 



610 Fall Joint Computer Conference, 1969 

TABLE III-Five chip partition. 

Chip Gates Flip-Flops Pads Area % of 
Used In lVIils2 Available 

Area 

1 33 10 37 12,321 98% 
2 44 7 36 12,117 97% 
3 37 10 39 12,136 97% 
4 51 8 38 12,117 97% 
5 45 7 39 12,162 97% 

Total 210 42 189 60,853 
Average 42 8.4 37.8 12,170 

TABLE IV-Manpower and computer costs for experiment (exclusive of plotting). 

Professional % of Computer Hours % of 
2\1an Hours Total (IBM 360/30) Total 

Transfer Design to Logicspec 40.5 39% 1.8 7% 
Logic Simulation' 26.0 25% 1.6 7% 
Convert to Nand Logic 2.0 2% 0.4 2% 
Partition System to 6 chips 31:0 30% 11.0 45% 
Library Element Selection 0.5 0.5% 0.6 3% 
Placement of Elements 3.0 3% 4.1 17% 
Interconnection of Elements 1.0 1% 4.5 19% 

Totals 104.0 24.2 

TABLE V-Computer costs for plotting portion of experiment. 

Prepare Composite for Manual 
Interconnection' Completion 

Prepare Mask IVlasters Chip 5 
Prepare Mask lVIasters for Other 

Chips (Extrapolation) 
Totals 

required to load a disk file with ~he information which 
was to be plotted. 

Experience at the Research Center indicates that 
approximately 2.5 nonprofessional man hours are 
required to strip and check a rubylith mask master. 
Including this the total cost for a final set of mask 
masters for the six chips is as summarized in Table VI. 

Computer Time 
(IBM 360/30) 

N on-Overlapped Overlapped 

.3 
3.3 

16.5 
20.1 

(Plotting) 

.8 
11.8 

59.0 
71.6 

TABLE VI-Non-recurring engineering 
costs of CIS design. 

Professional Man Hours 
Non-Profesional Man Hours 
Non-Overlapped IBM 360/30 Hours 
Overlapped IBM 360/30 Hours 

104.0 
165.0 

44.3 
71.6 



CONCLUSION 

Development of the CAD system described herein 
required approximately twelve man years of effort. The 
system is now providing the tools which make the task 
of developing a CIS as simple as, and as regards 
non-recurring costs, no more expensive than the task of 
developing the same system using discrete IC packages 
and printed circuit boards. 

ACKNOWLEDGMENTS 

The author is indebted to Messers. L. P. Robinson and 
G. Hare for their continued support and encouragement. 
The development and implementation of the system was 
carried out by the author, J. Landau, L. P. Robinson, 
R. Quick, A. Watson, and V. Wilson. We are all 
greatful to those designers who struggled with it during 
its infancy. 

REFERENCES 

An excellent source paper on computer-aided design is: 
1 M A BREUER 

General survey of desion automation 
Proc IEEE Vol 54 1966 1708-1721 

The ba""ic CAD System philosophy is similar to Motorola's 
Poly cell approach 

2 M S CALLAHAN 
Moving into MOS production 
Electronic News Vol 4 1968 

Computer-Aided Design 611 

A classical paper on regi ~ter transfer languages is: 
3 D F GORMAN J P ANDERSON 

A logic design translaior 
Proc FJCC 196286-96 

Th.e modified polish notation is discus;;;ed in: 
4 W K ORR J M SPITZE 

Design automation utilizing a modified polish notation 
Proc F JCC 1964 643-650 

A good description of equation ordering techniques appears 
in: 

5 I H YETTER 
High-speed jault simulation jor Univac 1107 computer system 
Proc ACM Nat Conf 1968 265-277 

The simulator compiler was patterned after: 
6 R A RUTMAN 

LOG! K a syntax-directed compiler jor computer bit-time 
simulation 
Masters Thesis Univ of Caif at Los Angeles 1964 

A logic conversion teehnique similar to the one described 
appears in: 

7 M KLERER G KORN 
Digital computer user's handbook 
McGraw-Hill Book Co Inc N Y 1967 4-185-4-192 

The exchange algorithm used in placement is similar to: 
8 J POMENTULE 

An algorithm jor minimizing backboard wiring junctions 
CACM Vol 8 1965699-703 

The wiring algorithm used appears in: 
9 C Y LEE 

An algorithm jor path connections and its application 
IRE Trans on Electronic Computers Vol 10 1961 346-365 





An overview of the computer output 

microfilm field 

by DON M. A VEDON* 

Scan Graphics Corporation 
Stamford, Connecticut 

INTRODUCTION 

From the earliest times, man has made his mark. At 
first his marks were made with his own fingers on 
walls of caves. He used a chisel or brush to create 
pictures of animals. He developed symbols, alphabet 
and languages. lVlan used marks to pass information 
from person to person and from generation to gener­
ation. Through the ages, man recorded information 
to be used again and again. He recorded history, 
mathematics and law. These things brought order to 
his life. The history of civilization is the history of 
man's ability to communicate, record and make marks. 

In making marks, there is most always a moving 
object. lVlan used his own fingers. Today most marks 
are made by a type slug, a print hammer, a moving 
drum, or some mechanical device. And now man has 
electronic digital computers. These machines manipu­
late and generate information at unprecedented speed. 
Man's need to make marks has multiplied many times 
in the past few decades. lVluch of the drudgery of 
handling information has been relegated to the com­
puter. The speed of computers is so great that mechan­
ical mark-making devices can no longer keep pace. 
Devices using a stylus or print hammer will not move 
fast enough and require too much maintenance. 

This is the beginning of our story-a new method 
for making marks-COM. 

What does COlVI mean? 

1. Computer Output Microfilm: microfilm con-

* Also Director, National Microfilm Association, Annapolis, 
Maryland. 

taining data, produced by a recorder from 
computer generated electrical signals. 

2. Computer Output Microfilmer: a recorder which 
converts data from a computer into human 
readable language and records it on microfilm. 

3. Computer Output Microfilming: a method of 
converting data from a computer into human 
readable language onto microfilm. 

This paper will describe COM technology and the 
various types of COM recorders. Some of the uses and 
applications will be explored. A description of the 
various recorders and a comparison of the units will 
be made. Microfilm origination, dissemination and 
retrieval systems will be reviewed. Some COM market 
forecasts will be looked at and a survey of the field 
by the National Microfilm Association will be pre­
sented. 

General 

Over the past several years, American industry as 
well as the scientific community have turned increasing­
ly to the use of computers and microfilm as a means of 
controlling what is referred to as the "paperwork 
explosion." Computers and microfilm have been 
generally used independently to cope with the same 
problem. Both have been successful, but neither alone 
has completely solved the problem. The effect of com­
bining microfilm and the computer in a system for 
information handling may turn out to be more dramatic 
than the effect of either alone. 

Computer systems of all generations, first, second and 
613 



614 Fall Joint Computer Conference, 1969 

third, ha ve been plagued by an imbalance of speeds. 
The fUIlctions of computer systems namely, input pro­
ce8sing, and outpu t--though intundned a:::: f1.mctions, 
have been sadly imbalanced in their speed relation­
ships one to the other. The computer itself, or the main 
frame, has seen an ascension of speed and power of 
phenomenal proportions from the mid-1950's to the 
present. The older vacuum tube equipment could pro­
cess at thousandths of seconds or milliseconds. The 
transistor and solid state technology brought forth 
microseconds or a millionth of a second speeds. Finally, 
the third generation in this evolution, the micrologic 
of integrated circuits, has caused nanosecond speeds, 
a billionth of a second, to be realized. However, the 
input/ output twins have seen no similar evolution. 
On the input side the basic medium of data input is 
still the EAl\1 card which is over 30 years old. On the 
output side mechanical printing and its hardcopy paper 
medium has been the major avenue of getting the 
information to the user. 

Although there have been several major efforts to 
improve the input/output situation, and especially to 
eliminate the output bottleneck, none has succeeded 
until now. The Computer Output Microfilmer, or COM 
recorder provides the solution to the computer output 
problem. A COM recorder has the output equivalent of 
as many as 30 impact printers operating simultaneously. 
Some COM units have a transfer rate as high as 100,000 
characters per second (transfer rate: the speed at 
which information can be transferred from magnetic 
tape to microfilm). 

The COlVI is a device which records computer data on 
microfilm in human readable form. It is a recorder 
which may be connected directly to the computer for 
"on line" operation or to a magnetic tape unit for 
"off-line" operation. The magnetic tape unit "reads" 
information into the COM from a magnetic tape which 
previously has been recorded directly from the com­
puter. 

There are three types of COM devices: 

Business-alphanumeric printer 

Scientific-alphanumeric printer and plotter 

Graphic Arts--special quality alphanumeric 
printer and plotter 

Recording the output of a digital computer directly 
on microfilm is not new. As early as 1955 at least one 
COM recorder was in use for this purpose. The early 
units as well as some of the new units were designed 
for scientific work. These recorders are printer-plotters; 

that is, they are capable of reducing the digital output 
of computers to convenient, usable plots and curves 
that are annotated with alphanumeric information. 
Figures 1 and 2 are typical scientific plots. This was 
the role of the COM until recent years when some of 
the scientific users began using the printing cap.ability 
for non-scientific alphanumeric listings. 

J 

-"'1-...... - ...... - ... &.. , .,. It .... _ ••. "" 

".:!':' _ ..-.- ........... H ..... .....,.-. ...... t • 

... "\ 
/ .... . '. 

• "1111t .. -..-_ II ....... ,.. •• t. _. _.M. __ .. 1.1, ..... . 
.... •. .,..... • ...... I.f... • ........... " 

Figure 1-Typical scientific plot. 

..... ". .,A Wi .......... 1.. •• , N _ .... 

II .• " , ...... ..- _MIff- '0.'" II..,. •• .,....,......,. I ..... II """" .... -...-. I' .... _ ............. -. ................. , .• ~. 
...... • ...... -t ...... t. • ...... , , ............ .. 

Figure 2-Typical scientific plot 



Overview of Computer Output Microfilm Field 615 

100000 

"" " IltU5 
I30U' 
In ... 
1114" 
IU.I' 
Iltllf 
UtlU 
140.U 
14010. 
1401n 
140 .. 1 
14010t 
140"0 
140111 
140" 3 
140"4 
140"5 
140.U 
1401" 
1401 .. 
1401lt 
140.ao 
140111 
140UI 
140lU 
140114 
140115 
\4101 .. 
140ln 
140UI 
1401 .. 
140130 
14011l 
1401U 
1401ll 
140114 
140tU 
14011' 
14011' 
140tU 
1410U 
14 I'" 
14"t3 
14 "t4 
141 't5 

~4 "" 14 .. 10 
14"" 
I .. IU 
14 .. 2t 
14 .. 30 
14 .. 31 
1 ... 143 
14".4 
14U45 
14,,4e 
14"4' 
1418.t 
141180 
142022 
14 3031 
'430U 
143035 
143Ul! 
I .. 3'02 
1/ .. 0'0 
14 .. 1&3 
14~05l' 

145080 
1 .. 5332 
1 .. 53311 
1 .. 1I33e 
... 5JlT 
... 53U 
14533t 
1 .. 11 340 

LOC 

NCt 
MHt 

'I-C.t 
'I-C.t 

c.t 
'I-HOt 
'I-HOt 
'I-.At 
'I-.At 

HO. 
HOt 
HUt 
HOt 
HOt 
HOt 
HOt 
HOt 
HOt 
HOt 
HOt 
HOt 
HOt 
HOt 
HOt 
HOt 
HOt 
HOt 
ttot 
HOt 
HOt 
HOt 
HOt 
HOt 
HOt 
HOt 
HOt 
HOt 
HOt 
HOt 
HOt 
HOt 
HOt 
HOt 
HOt 
HOt 
HO. 
HO. 
HO. 
HOt 
HO. 
HO. 
HO. 
HOt 
HO. 
HO. 
HO. 
HO. 
HO. 
HO. 
HO. 
HO. 
HO. 
HO. 
HO. 
HO. 
HOt 

MG-HOt 
HO. 
HOIl 
HOt 
H()~ 

HOt 
HOt 
HO. 
HOt 
HOt 
HOt 
HOt 

.TAftJ. 

ACTIVI 
MilliNG 
ACTIVI 
ACTIVI 
ACTIVI 
ACTIVI 
ACTIVI 
ACTIVI 
ACTIVI 
ACTIVI 
ACTIVI 
ACTIVI 
ACTIVI 
ACTIVI 
ACTIVE 
ACTIVI 
ACTIVI 
ACTIVI 
ACTIVI 
ACTIVE 
ACTIVI 
ACTIVI 
ACTIVI 
ACTIVI 
ACTIVE 
ACTIVI 
ACTIVI 
ACTIVI 
ACTIVI 
ACTIVE 
ACTIVI 
ACTIVI 
ACTIVI 
ACTIVE 
ACTIVI 
ACTIVI 
ACTIVI 
ACTIVE 
ACTIVI 
ACTIVE 
ACTIVI 
ACTIVI 
ACTIVI 
ACTIVE 
ACTIVI 
ACTIVI 
ACTIVI 
ACTIVE 
ACTIVE 
ACTIVE 
ACTIVE 
ACTIVE 
ACTIVE 
ACTIVE 
ACTIVE 
ACTIVB 
ACTIVB 
ACTIVE 
ACTIVB 
ACTIVE 
ACTIVE 
ACTIVE 
ACTIVE 
ACTIVE 
ACTIVE 
ACTIVE 
INACTIVE 
ACTIVE 
A'::TIVP. 
ACTIVE 
ACTIVE 
ACTIVE 
ACTIVE 
ACTIVE 
ACTIV~ 
ACTIVE 
ACTIVF. 
ACTIVE 

145141 
145lt5 
145UI 
145Ut 
145UO 
1 .. 5UI 
145'tl 
145'" 
145800 
145104 
145105 
14510e 
1458n 
145108 
14510t 
1451" 
145113 
145"4 
1"5"5 
... &1 .. 
145" , 
1451 .. 
145830 
145131 
14513e 
145151 
14515' 
14515t 
11.58'2 
It5Ue 
145nl 
145n 2 
1 .. 5n 3 
14511 ° 
145113 
145 ... 
14511t 
145tn 
145." 
I4l1tJO 
1411.33 
14~t34 
145142 
14eOIl 
1480.5 
l4eo" 
14 .. 15 
14euo 
14e 12" 
14el25 
I .. elll 
14 .. 30 
l4e 131 
14e 13e 
14 .. lT 
14 .. 31 
148'5' 
, .... tl' 
14'2"1 
l4e 2" 2 
, .. e2 .. 5 
l4e2 .. e 
I .. e2 .. T 
14e1l4l' 
14e2 .. t 
... e2110 
14e251 
.... 252 
'48 25 J 
1"'254 
.... 2511 
1 .. 11 2511 
141125T 
14'2!'111 
1 .. 11 25t 
1411280 
14'211 I 
1411282 

LOC 

HOt 
HOt 
HOt 
HOt 
HOt 
HOt 
HOt 
HO. 
HO. 
HOt 
HOt 
HOt 
HOt 
HOt 
HOt 
HOt 
HOt 
HOt 
HOt 
HO. 
HO. 
HOt 
HOt 
HOt 
HOt 
HO. 
HOt 
HO. 
HOt 
HOt 
HO. 
HOt 
HO. 
HO. 
HOt 
HO. 
HOt 
HOt 
HO. 
HO. 
HOt 
HO. 
HO. 
HO. 
HOt 
HOt 
HO. 
HO. 
HO. 
HOt 
HOt 
HOt 
HOt 
HOt 
HOt 
HOt 
HOt 
HOt 
HOt 
HOt 
HOt 
HOt 
HOt 
HOt 
HOt 
HOt 
HOt 
HOt 
HOt 
HOt 
HOt 
HOt 
HOt 
HOt 
HOO 
HOt 
HOt 
HOt 

.TAftJ. 

ACTIVI 
ACTIVI 
ACTIVI 
ACTIVI 
ACTIVI 
ACTIVI 
ACTIVI 
ACTIVI 
ACTIV' 
ACTIVI 
ACTIVI 
ACTIVI 
ACTIVI 
ACTIVI 
ACTIVI 
ACTIVI 
ACTIVI 
AC'rtVI 
ACTIVI 
ACTIVI 
AC11VI 
ACTIVI 
ACTIVE 
ACTIVE 
ACTIVI 
ACTIVE 
ACTIVE 
ACTIVE 
ACTIVE 
ACTIVI 
ACTIVI 
ACTIVE 
ACTIV!! 
ACTIVE 
ACTIVI! 
ACTIVE 
ACTIVE 
ACTIVE 
ACTIVI! 
ACTIVE 
ACTIVE 
ACTIVE 
ACTIVE 
ACTIVE 
ACTIVB 
ACTIVI! 
ACTIVE 
ACTIVB 
ACTIVB 
ACTIVB 
ACTIVI! 
ACTIVE 
ACTIVE 
ACTIVI! 
ACTIVB 
ACTIVE 
ACTIVI!! 
ACTIVE 
ACTIVE 
ACTIVE 
ACTIVE 
ACTIVE 
ACTIVE 
ACTIVE 
ACTIVE 
ACTIVE 
ACTIVE 
ACTIVE 
ACTIVE 
ACTIVE 
ACTIVI!. 
ACTIVE 
ACTIVE 
ACTIVE 
ACTIVE 
ACT I VE 
ACTIVE 
ACTIVE 

14' .. 1 
14' au 
141"6 
14'''' 
14'''' 
14'If' 
14.UI 
14'U4 
14.ua 
14.145 
14'114 
14' lie 
14'1" 
14.lIt 
14lnl 
l4'UI 
14'41a 
14'411 
14'414 
14l4ae 
14'4" 
14'4 If 
14'441 
14.4 .. 1 
14'4t5 
14 ..... 
14'"'' 
14l4t8 
14'4It 
1415U 
1411120 
14.521 
14.5a' 
14.538 
, .. ,51' 
14.1138 
14.11 .. l 
14.ee I 
14eee3 
14.5I1e 
14.55T 
l4e55e 
14ellel 
14e5el 
1415" 
14e5,. 
1 .. 15'2 
14e5T .. 
l4e588 
l4e5tO 
l4ellll 
l4e518 
14 ell 18 
1 .. 1102 
14110J 
1411011 
14eeoe 
141 .... 
141115 
... eett 
14e700 
14"01 
... eTOt 
I4I1TU 
1411'IJ ... e, ... 
1411,.5 
1411TU 
1411'44 
"'11'5' 
1411Tllt 
""'81 
1411T'l 
.... TII5 
1411UT 
... IITTO 

''''T'' ... 1I'tt 

LOC 

HO. 
HO. 
HO. 
HO. 
HO. 
HO. 
HOI 
HOI 
HOt 
HOt 
HOt 
HOt 
HOt 
HOt 
HOt 
HOt 
HOt 
HOt 
HOt 
HOt 
HOt 
HOt 
HOt 
HOt 
HOt 
HOt 
HOt 
HOt 
HOt 
HOt 
HOt 
HOt 
HOt 
HO. 
HOt 
HOt 
HOt 
HOt 
HOt 
HOt 
HOt 
HO. 
HOt 
HOt 
HO. 
HOt 
HO. 
HOt 
HO. 
HOt 
HOt 
HO. 
HO. 
HO. 
HOt 
HOt 
HOt 
HO. 
HO. 
HOt 
HO. 
HO. 
HO. 
HO. 
HO. 
HO • 
HOt 
HO. 
HOt 
HOt 
HO. 
HOt 
HOt 
HO, 
HOt 
HOt 
HO. 
HOt 

.TAftJ. 

ACTIVI 
ACTlvI 
ACTIVE 
ACTIVI 
ACTIVI 
ACTIVI 
ACTIVI 
ACTIVI 
ACTIVI 
ACTIVI 
ACTIVI 
ACTIVI 
ACTIVI 
ACTIVI 
ACTlvI 
ACTIVE 
ACTIVI 
ACTIVI 
ACTlvl 
ACTIVI 
ACTIVI 
ACTIVI 
ACTIVI 
ACTIVI 
.CTIVI 
ACTIVE 
ACTIVI 
ACTIVI 
ACTIVI 
ACT~VI 
ACTlvl 
ACTIVI 
ACTIVI 
ACTIVE 
ACTIVI 
ACTIVI 
ACTIVE 
ACTIVE 
ACTIVE 
ACTIVE 
ACTIVI 
ACTIVI 
ACTIVE 
ACTIVI 
ACTIVE 
AC.,IVE 
ACTIVE 
ACTIVI 
ACTIVE 
ACTIVI 
ACTIV!! 
ACTlvl 
ACT"'!! 
ACTIVE 
ACTIVE 
ACTI"E 
ACTIV!! 
ACTIVE 
ACTIVI 
ACTIVI 
ACTIVE 
ACTlvl 
ACTIVE 
ACTIVE 
ACTIV!! 
ACTIVE 
ACTIVE 
ACTIVK 
ACTIVE 
ACTIVE 
ACTIVE 
ACTIVE 
ACTIVI 
ACTIVF. 
ACTIVE 
ACTIVE 
ACTIVB 
AC riVE 

)"igure ;~-l'ypical business information-aiphanumerie:; 

These non-scientific (business) applications prompted 
the development of special COM devices which are 
designed for high speed recording of alphanumeric 
computer output. These units record the same type of 
information as impact printers only they are much 
faster and the information is placed on microfilm 
instead of paper. Figure 3 shows an example of this 
type of information. Thousands of computers in use 

today do not yield full capacity. The computer systems 
are slowed down by their output devices, the impact 
printers, which pr.oduce too much paper. The mountains 
of printout they produce are smothering the very 
efficiencies for which computers were designed. These 
thousands of computers do not put vital information 
into the hands of the right people in the right places 
in time for the right decisions. These new business 



616 Fall Joint Computer Conference, 1969 

SALES 

600 5.000 THOUSANDS OF DOLLARS 
- l-

I 
-

- I- -
- - -- - ---

- --- - --500 -- -
r- - 4.000 - --- - --- '-- - -

-- -
/ =-400 -

-

/= 
- /~/ -- -I 

- 3.000 - /. / ...., - - -
- /\ - - ~/ 

...., 

I - ..... 
3,00 

) - / 

V ~~, " ~ 
-I 

- - - -I 

- ~ p - -
/. 

-
I \ VI '\ - -

- - 2.000 '1'-- \ . - -! // - \ - - -
200 

; / \ -
''-....J. I- / -

I- -
I I- -

r- - I- ( -
I- ! - I- -

I- -
f- - 1. 000 

100 l- I- -
I- -

I- - l- I -
I- -

I 
f- - L / -
I- - I- -
I- - I- -

1-- -
i.-

DEC JAN FEB MAR APR MAY:JUN JUL AUG SEP OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP OC T NOV 

MONTHLY YEAR TO DATE 

~AST I~I~ 
19:68 1968 

...... c--., <.D .,...., - c-... - 0:> :;::; ........ ...... ...... ...... ::g ........ ........ -- <.D -- ....., 
...... ..,.. c-... ..,.. ....., ;::: 0:> ...... ...... ..,.. .,...., ....... 0:> ::2 ~ ~ 

....., c- ........ c-.... 
...... ...... c-... c--.. ,....., - c-... "" - FORECAST ....., <.D c:n - .... ..,.. <.D c:n -- - - ........ ........ c--.. ........ c--.. ....., 

c- .,...., c:n .,...., .,...., r-.. - = c--.. c- ........ - ~ 
(""") .... .... <.D 

ACTUAL = ~ ...... <.D '" en 0:> .... - - <.D .,...., 
::2 

....., - ~ c--.. ...... c--.. ........ ....., - - ACTUAL - c- c:n ........ .... c--.. - - - "" ........ ........ 
1 

u.~~ f--

VARIANCE I ~ I ~ - ~ <.D - - - co c- ........ .,...., 

I . 
- -- .... ...... - ~ VARIANCE 

.,...., .,...., .--, .... .... c- o:> 0:> 

"" -- ........ "" - ....., ...... 
........ 

::-'_-

-
R[(~R[)[[I I'I~I THE 'NF~RMATl·~N INTERNATl~NAL FR80 

Figure 4-1'ypical business report.-gt"aphic~ 

COM recorders can solve this problem. The problem 
is solved by the following advantages the COM system 
has over the impact printing syste~: 

1. Printing at computer tape speeds. 
2. Forms printed with data simultaneously. 
3. Retrieval coding placed on records ttS it is 

created. 

4. Smaller records storage. 
5. Reduced cost of supplies and material. 
6. Weight of information significantly reduced. 
7. Microfilm doesn't have to be decollated, burst 

or bound. 

The third type of COM is the graphic arts printelr. 
This is an electronic composition system. This type 



Overview of Computer Output Mi·crofilm Field 617 

of recorder can produce alphanumerics and graphics 
with graphic arts quality at data processing speeds. 

The evolution of the COM is quite interesting, it 
began with the scientific device being used for plotting 
technical data in graphic form. Now it is being used 
extensively by business for alphanumerics as a re­
placement for impact printers. I predict that business 
management will quickly realize that they too would 
have great advantages from the scientific type of 
system and have their business information plotted 
and 'presented in graphic form instead of as alphanumer­
ics or having a draftsman manually prepare charts from 
alphanumeric data. Figure 4 shows a business report 
produced by a scientific COM recorder. 

Technology 

Speed 

The most obvious technological advantage of a COM 
is the speed at which computer information is translaMd 
into human readable form on microfilm. It is difficult 
to visualize or appreciate this speed. I, therefore, 
present these comparisons: 

5,000 
electric 

typewriterR 

30 
impact 

printers 

Looking at it another way: 

Characters Lines 
per sec. per min. 

Typewriter 15 7 

Impact Printer 2420 1100 

CO M recorder 70,000 32,000 

1 
CalVI 

recorder 

Lines Pages 
per hr. per hr. 

400 6 

66,000 1031 

1,900,000 30,000 

Cathode ray tube (CRT) systems 

The Computer Output Microfilmer, as the name 
implies, produces computer generated microfilm records 

, with no intervening paper copy. This is achieved by 
converting the computer digital signals to voltages 
which are applied to a cathode ray tube. (Another 
method, electron beam recording, will be described 
later.) This conversion process results in the infor­
mation being displayed on the cathode ray tube screen 
in human understandable form. The microfilm record 
is produced by photographing the information dis­
played on the cathode ray tube. The basic nature of 
this process is illustrated in Figure 5. 

FIXED DATA 

LOGIC 
AND 

CONVERSION 
ELECTRONICS 

CATHODE 
RAY 

TUBE 

MICROFILM 
CAMERA 

FI!?;tJre 5-CI~T ll1ierofilm recording 

Electron beam re,cording (EBR) systems 

The second method of recording directly on micro­
film uses an electron beam, see Figure 6. Using the 
stroke method1 much like that of a pencil writing on 
paper, the electron beam writes a latent image directly 
on dry-silver microfilm. The electron beam originates 
at t.he cathode of the electron gun, located on the top of 
a sealed housing. Electrostatic plates and electro­
magnetic yokes, or magnetic lenses, deflect the be3.m 
to form characters and position them on the micro· 
film frame. The housing is similar in principle to a 



618 Fall Joint Computer Conference, 1969 

Electron Gun --~ Gage Panel 

..-=~~ Electron 8eQm 

Vacuum Control 
Panel 

To Heat 
Processor 

Figure 6-Electron beam recording on microfilm 

cathode ray tube except in place of a phosphor screen 
it has a small aperture through which the beam passes 
to write directly on the microfilm. Vacuum pumps 
reduce the air pressure within the housing to a level 
low enough to facilitate generation and precise control 
of the beam. Because the beam has practically no 
inertia, it can be deflected, or modulated, rapidly 
enough to keep pace with the data transfer rates of 
the tape drive. 

Character generation 

There are several methods of creating characters for 
COM recording. Stromberg-Datagraphix has de­
veloped a special cathode ray tube called a Charactron®* 
Shaped Beam Tube. The Charadtron tube creates an 
image by directing an electronic· beam through indi­
vidual characters cut in a matrix-a thin precise disc 
with alphanumeric and symbolic characters etched 
through it. This matrix is located within the neck of 
the tube. This method extrudes the beaminto the shape 
of the character being printed. This has the effect of 
stenciling each character onto the tube face. 

Another method of creating characters is by the 
use of a "stroke" generator. In this type of system a 
spot is deflected to trace the shape of the character 
desired. The voltages necessary . to deflect the spot 
are generated by sweep generators~ one for X deflection 
and one for Y de:flection. Instructions for the charac-

* Charactron is a trademark of Stromberg-Datagraphix, Inc. 

ters are stored in memory. About 16 strokes are used 
on an average per character. 

Characters can also be created by point plotting:. 
This method is generally used, for special symbols or 
typefaces. 

Line generation 

Line generation in scientific COM recorders is done 
by the use of a "line" or "vector" generator. This is 
known as a vector stroke generator and is capa,ble of 
drawing vectors. Line width) vector direction and 
intensity levels are all generally programmable. 

Forms overlay 

Forms overlay features are provided on most units. 
The forms overlay feature provides the capability of 
superimposing predetermined, fixed forms with the 
generated image. Forms are interchangeable by an 
operator or on some units may be called in by program. 
These forms may contain maps} company logos, charts 
and graphs such as the one in Figure 7. 

Retrieval coding 

COM recorders can generate retrieval codes and 
patterns for each or selected frames of information. 
The following coding systems are usually standard 
features: Codeline, Image Blip (Image Count) and 
Miracode. These indexing identifiers are recorded on 
film simultaneously with the data. This feature is the 
key to push button easy retrieval of information on 
microfilm. 

Films 

There are two recording films in use today in the 
COM field. Almost all CRT systems use Koda~k (Re­
cordak) Dacomatic* film, types 5461 and 7461. The 
EBR systems use 3M Computer Film~ type 761 (dry­
silver). The Dacomatic film is available in thefollowing 
sizes: 

a. 105mm nonperforated 
b. 35mm with perforations 
c. 16mm with perforations 
d. 16mm nonperforated 

The 3M dry-silver film is available in 16mm nODL­
perforated form. 

The 105mm film is used in the business type COM 
and the film is cut and used as microfiche. The 35mm 

* Dacomalic is a trademark of East,man Koda.k. 



Overview of Computer Output Microfilm Field 619 

" .... A 110 ...... , •• .... ....... .,. .............. --
, .... 

..... " ~ 
'" • ..... • • 

" • 
• • ..... 

""- r'\. 

'~ 
• • " 9 

• ..... • • 
• • 

~ 
~ 

"'~ 
"' 9 • ..... • " • 

II .. 
~ 

"'-..... 
'" " i'.. I.~... I.IN 10 •• I.'. 1.1. '.1. ..HI •.• " '.1. ..... ..... r-" ............ .. -" 

Figure 7 - Forms overlay 

film is generally used for scientific work (graphics). The 
16mm nonperforated film is used for almost all business 
applications. The perforated 16mm film is only used 
for special high precision applications. 

Users and applications 

Scientifilc 

A few of the scientific applications are: circuits, 
printed wiring board masters, thin film masks, animated 
mov:ies, graphs and charts. See Figures 1, 2 and' 3. 
rrhe following are some of the organizations using 
scientific COM recorders: 

North American Aviation 
NASA 
Collins Radio 
Bell Telephone Laboratories 
Lawrence Radiation Laboratories 
MIT Lincoln Laboratories 

Business 

Business applications include all types of listing; 
account reports, management reports and anything 
that might have been produced by a computer and 

impact printer. The following are some of the organi· 
z,ations using COM's in business applications: 

Sears Roebuck & Company 
J. C. Penney Company 
Social Security Administration 
Equitable Life Assurance Society 
Bureau of the Census 
International Harvester Company 

Systems servi,ce centers 

At the present time there are over 40 systems service 
companies operating COM service centers in the follow­
ing cities in the United States: 

California 
CanagoPark 
Culver City 
ElSegundo 
Glendale 
Los Angeles 
San Francisco 
Stockton 

Colorado 
Bolder 



620 Fall Joint Computer Conference, 1969 

Denver 
Connecticut 

Hartford 
Westport 

Florida 
Miami 

Georgia 
Atlanta 

Illinois 
Chicago 

Indiana 
Indianapolis 

Louisiana 
New Orleans 

Maryland 
Baltimore 
College Park 

Massachusetts 
Boston 
Springfield 
Wilmington 

Michigan 
Dearborn 
Detroit 

Missouri 
St. Louis 

New Jersey 
Cherry Hill 
Dayton 

New York 
Binghamton 
Buffalo 
New York City 
Rochester 
Spring Valley 
White Plains 

North Carolina 
Winston-Salem 

Oh~'o 

Columbus 
Cleveland 
Dayton 

Penn$Ylvania 
Philadelphia 
Pittsburgh 

Texas 
Austin 
Dallas 
Houston 

Utah 
Salt Lake City 

Virginia 
Arlington 

Washington, D. C. 
Wisconsin 

Brookfield 

COM recorders 

At the writing of this paper the followng companies 
were marketing COIH units: 

a. AMETEK/Straza (Scientific) 
b. Beta Instrument (Scientific) 
c. California Computer Products (Scientific) 
d. Canon (Business) 
e. Computer Micro-Data Systems (Scientific) 
f. Computer Industries (Scientific & Business) 
g. Control Data (Scientific) 
h. Eastman Kodak (Business) 
1. Information International (Scientific) 
j. 3M (Business) 
k. RCA (Graphic Arts) 
1. Scan Graphics (Scientific) 
m. Singer-Link (Scientific) 
n. Stromberg-Datagraphix (Scientific & Business) 

Total COM systems 

As can be seen in Figure 8 there is very little difference 
between photographing a CRT or a paper document. 
In selecting the film for recording from a CRT it 
should be matched to the phosphor of the tube in 
sensitivity. The polarity of the image on a CRT is 
negative (light lines on a dark background) and on 
paper it is usually positive. Therefore, with normal 
film processing the image of the CRT will be reversed 
and appear on film as a positive and a microfilm of a 
positive paper document will appear as a negative. 
Since most users of microfilm prefer to use negative 
images in readers and for making hardcopy it is neces­
sary to obtain a negative image of the COM film, this 
is done one of two ways. At the time of processing the 
recording film is flashed and developed in a special 
movie processor which provides a negative image on 
film from the negative CRT image. The second method 
of obtaining negative film images is to make a second, 
generation duplicate on Kalvar or silver film which 
will reverse the polarity again and therefore from a 
negative CRT image we get, with normal processing, 
a positive first generation recording film and then a 
negative second generation duplicate. 

Figure 9 depicts the various systems used for COM 
operations. In scientific applications the film is most 
often put in aperture cards or used as short st.rips or on 
reels. In most business applications the film is used i~. 
roll from in cartridges. There are a few systems where 



Overview of Computer Output Microfilm Field 621 

the film is cut and pasted up to make a master micro­
fiche. A recent development, the 105mm film head for 
a COM provides microfiche directly and therefore 
eliminates much of the manual labor in producing 
microfiche. In most business applications film duplicates 
are required to disseminate the information to many 
users. In all systems, readers, reader-printers, retrieval 
devices and enlarger-printers are needed by the end 
users of microfilm. Additional information on these 
items can be obtained from the National Microfilm 
Association's "Guide to Microreproduction Equip­
ment" now in its fourth edition. 

There are six generally used methods of making 
copies of computer generated reports. Figure 10 pro­
vides a cost comparison of a 100 page report. As can 
be seen on the graph, distribution of microfilm dupli­
cates is the lowest cost method at any quantity of 
copies. 

The COM market & NMA survey 

At the end of 1968 there were about 300 COM 

CATHODE 
RAY TUBE 

IMAGE 

PAPER 
DOCUMENT 

Figure S-Microtilmmg systeJ:ls 

~ I ~ .... ,," (]i::\. C~.", i ~ Prepared ~ Prepare<! 

~ 1 "", l ... 

~ .... ;:-"'. ~ ~--~. ~ 3~1~ ~-~-~ L.J[IJ ~~ Camera Processol I 
5~ .. COM Recorder 

lio e--.:: -----i f:~:=--~ :~~::~. 
'.'=' ~ Prepara"on 

~~:~tt~r Roll J, Aperture ~ . 

• ~~r~nter ~ 

:I ~ .. '''''~. ~;Jf~re ~ ~~ROliS F,che 

b6 
Cl"·· • to-FIche 

n1 .... Card. ! Pllnter 
Cartlldges ijI 

~ 
~;r~~~~ ~~ 

t I 
9 

Reader 

Duplrcate 
• Cards 

".. Mleloflchc 
Dupltcates 

ca~ 
Reader· Enlarger 
Punter Pun lei 

Figure 9-:\ltcrographlC infor n:-ttiun sy;;tel:l" 

recorders in use. Of this number about 60 units were 
being operated by systems service companies. 

There have been many forecasts made of the COM 
field with as many conclusions as studies. Figure 11 
shows the range of these forecasts, which is that by 
1975 there will be between six and 12,000 recorders in 
operation. The cost of a COM is $60,000 to $300,000 
with the average being about $100,000. This average 
rental is in the order of $40,000 per year. 

In the Spring of this year the National Microfilm 
Association made a survey of all its over 3,000 members. 
with regard to the use of Computer Output Microfilm. 
The following are some of the statistics obtained and 
my comments: 

1. Questionnaires were returned by 24 percent of 
those queried. 

Comment: 24 percent is considered an excellent 
return on a direct mail survey. NMA 



622 Fall Joint Computer Conference, 1969 

$3.50 

3.00 

2.50 

] 
] 

2.00 
~ 
& 

2-
I 

§ 1.50 

i 
~ 

1.00 

.50 

10 

Duplication U.lng Xarox 2<400-IV 
(Poper Cople.) 

Microfilming CompuMr Poper Prlnt-<>ut 
(Microfilm Cople.) 

•••••••• ••••• 11 ••••••••••••••••• 

COM Recorder To Enlarger To Offset Duplication 
(Paper Cople.) 

COM Recorder 

To ~~~"\~f:.rrlnter 
............... -................................................ . 
20 30 «l 50 100 200 300 400 SOD 1000 

NUMBER OF DISTRIBUTION POINTS 

• Cost of ... lcrofIl ... retrlewl equipment NOT Included 

PiglJre IO-Comparative cost.s of creating copies ot 
comput.er generated' output 

Number of 
Units 

n-. .... 

20 

19 
18 
17 
16 

15 
14 
13 

12 
II 

10 

YEAR 

Fil!ure Il-CO:\j rf'corder unit placement foreea~t 

members are interested in the COM 
field. 

NOTE: SYSTEMS SERVICE COMPANIES 

HAVE NOT BEEN INCLUDED IN ANY 
OF THE FOLLOWING STATISTICS. 

2. Questionnaires were returned by 74 organi­
zations indicating they now have a COM re:­
corder(s), 29 were scientific and 59 business unitE!. 

Comment: 33 percent of COM's are scientific 
type today 67 percent of COlvl's are 
business type today 

3. 105 organizations indicated they would obtain 
their first COM in the next two years. 28 organil­
zations indicated they would obtain an ad­
ditional COM in the next two years and 55 
organizations indicated the use a C01VI was 
under study. 

Comment: By the end of 1970 there will proba­
bly be more than 1,000 COM'/3 in use. 

4. Positive versus negative original recording film: 
56 using positive (normal processing) 
29 using negative (flash reversal proeessin!~) 
A few organizations use both positive and nega­
tive 

Comment: Even though it requires spechtl 
processing equipment to obtain a 
negative image on the original film 
it is being done, there must be a 
need. 

5. The following film processors are being used in 
COM systems: 

Fulton 
Kodak 

10 users 
18 users 

Remington Unipro 3 users 
Stromberg 6 users 
Other 35 users 

6. The following is the quantity of original re­
cording film being used per month by 48 respond 
ents who gave figures: 

16mm perforated 
16mm nonperforated 
35rnm perforated 
35mm non perforated 
105mm nonperforated 

80,000 feet 
852,000 feet 

6'2,000 feet 
3] ,000 feet 

6,000 feet 

Comment: The following is an estimate of 
the quantity of recording film 2~1l 
COM's are currently using per 
month. 

lomm perforated 400,000 feet 



16mm nonperforated 
35mm perforated 
35mm nonperforated 

4,200,000 feet 
300,000 feet 
150,000 feet 

7. 57 of the 74 users duplicate their film. 

23 Diazo 
29 Kalvar 
22 Silver 

Some used more than one process. 

Comment: Convenience and turnaround time 
are most important. 

8. Duplicating film being used per month by 40 
COM systems reporting: 

16mm-3,800,000 feet 
35mm-35,000 feet 
105 x 148mm-34,000 fiche 
3-1/4" x 7-3/8"-270,000 fiche 
6" x 8"-34,000 fiche 
Aperture cards-367,000 cards 

Comment: The following is an estimate of the 
quantity of duplicating film being 
used per month by all COM 
systems: 

16mm-22,800,000 feet 
3.5mm-200,OOO feet 
Aperture ca.rds-2,200,OOO cards 
Microfiche (various sizes)-2,OOO,OOO fiche 

9. Microforms being used in COM systems re-
porting: 

Roll Film (including cartridges)-56 users 
Microfiche-21 users 
Jackets-13 users 
Aperture cards-13 users 

Comment: The following are the percentages 
of COM systems using each micro­
form: 

Roll film (including cartridges)-55 percent 
Microfiche-21 percent 
Jackets-12 percent 
Aperture cards-12 percent 

10. For those using roll film and cartridges the 
following indexing systems are in use: 

Overview of Computer Output Microfilm Field 623 

Miracode*-IO users 
ImageBlip (Image Count)-24 users 
Code Line-7 users 
Flash -9 users 
Other-12 users 

Comment: Most COM systems are now using 
the Image Blip (Image Count) 
system of retrieval. 

11. Regarding a question on the use of hardcopy 
the following responses were received: 

Never used-5 users 
Seldom used-20 users 
Frequently used-34 users 
Always used-6 users 

Comment: Hardcopy is required, but on a 
selected basis. 

12. For 35 respondents, 844,000 pages of hardcop~' 
are produced each month. 

Comment: The average COM. system pro­
duces 24,000 pages of hardcopy per 
month. 

Standards 

In February of 1968 the National Microfi'm Asso­
ciation (NMA) established a committee to investigate 
and recommend standards for microfilm produced by 
COM recorders. This committee has members from 
most of the C01\.1 manufacturers, several COM systems 
service companies and many users in government and 
industry. There are three sub-committees each with a 
rnlssion as follows: 

Format. Quality and Glossary. 

The National Microfilm Association is attempting to 
coordinate the activities of this new microfilm appli­
cation by considering standards, reporting of mauy 
specific applications in its Journal and having COM 
exhibits at its annual convention. 

For additional information on the CO:vI field, write 
to the National Microfilm Association, P.O. Box 386, 
250 Prince George Street. Annapolis, Maryland 21404, 

* Miracode is 1:1 Lrademark of Eastman Kodak. 





The microfilm page printer-Software 

considerations * 

by S. A. BROWN 

Datalogics, Inc. 
Chicago, Illinois 

INTRODUCTION 

Magnetic tape microfilm recorders have been available 
in the market place for the past several years. It has 
been only within the last eight months or so that a 
general awareness of these devices has developed. 
Trade magazines and journals are now carrying feature 
articles describing computer based, microfilm infor­
mation systems. Investment houses are releasing 
surveys and market evaluations of this area. Talks on 
the economics and human engineering aspects of this 
approach are being presented at many technical con­
ferences. Little, however, has been said about program­
ming considerations for the preparation of the specially 
formatted magnetic tape required for the operation of 
these devices. The purpose of t~is paper, then, is to 
examine the fiexibilities and capabilities of magnetic 
tape microfilming as viewed by the programmer, to 
discuss the software problems that he faces when 
attempting to Use such a device and to describe several 
generalized solutions to these problems. 

The machine 

A typical such device is the Series F Electron Beam 
Recorder manufactured by 3M Company. It is a micro­
film page printer with an extended graphic set. The 
page area is a 132 X 64 character array organized as 
64 lines each containing maximally 132 characters. 
Data to be printed reside as line images on magnetic 
tape. Each line is represented as a character string 

* The work described in this paper was sponsored by 3M Com­
pany, Computer Graphics, St Paul, Minnesota 

625 

prefaced by one or two characters of coordinate .data 
and terminated by delimiter character. The coordInate 
characters specify the position of the line on the page. 
This spec~fication may be in absolute, in terms of a 
specific character in the page array! or relative to the 
last printed line. . . 

A page printer differs from a conventlOnal Impact 
line printer in allowing the line to be placed randomly 
on the page rather than in ascending line sequence. It 
is possible to skip from the bottom of a page to. t~e 
top as easily as from the top to the bottom. ThIS 18 

illustrated in Figure 1. 
This may be contrasted to an impact printer which 

can only advance. . 
The fiexibilities of a page printer can best be appreCi­

ated by considering the probl~m of printing a report 
containing, say three vertical columns. To print suc~ a 
report on a conventional line printer would reqUIre 
buffering an entire page in core or at least the first two 
columns before any data could be printed. In a page 
printer environment, this restriction is removed. 

Extended character set 

Electronic rather than mechanical generation of the 
character se~ provides a wide variety of available 
graphics. In addition to the standard upper case set, 
most microfilm printers provide a lower case as well 
as a bold face. Series F Electron Beam Recorder further 
includes a large size set. 

This graphic variety allows design of highly le~ible 
microfilm documents that previously could be obtaIned 
only at the expense of typesetting. 



626 Fall Joint Computer Conference, 1969 

lin. 3 

Magnetic Tlpt Rlcord 

132 characters 

...:.l.!.!LtI_ 1_-_ 

64 lines 

M1croftl. Pigi 

Figure I-Microfilm page orgflonization 

Forms or line art 

This machine provides a meaflS of inserting line 
drawings or ruled forms with printed headings similar 
to custom line printer forms. This capability allows 
insertion of single fixed forms, random retrieval from 
a library of 30 images and sequential retrieval from 
a file of 2000 images. 

Applications 

The application for this device' ranges from that of 
replacing current impact line printers printing on stock 
or custom forms to preparation; of material that is 
typeset or types, such as illustrated parts catalogues 
and directories. 

Software implications 

Typically, a microfilm printer is used to replace some 
or all of the functions of a line impact printer. Con­
ceptually this is easy to visualize, line printing is a 
subset capability of page printing. The user, however, 
finds himself in one of two situations. Either his 
program prints directly on· line or formats a tape for 
off.line printing. The former case obviously implies 
changes to the application program; the latter implies 
either program modification or a tape to tape transcrip­
tion pass. The low unit page cost exhibited by microfilm 
recorders makes even a nominal tape to tape computer 
charge relatively expensive. It may amount to 20·40 
percent of the total microfilm' cost. The apparent 
alternative is program modification. Typical program 
conv~rsion takes from two hours to two days, de­
pendm~ on the availability of program source, docu­
~ent~tlOn and test data. Although, the reprogramming 
tIme. IS minimal for a single program, if the universe 
conSIsts of hundreds, as is normal, a major expenditure 
of effort is required. Further, in those instances where 

the user wishes to retain the original progrs,m for 
back-up purposes2 he is forced to maintain both 
programs. The user is confronted with -the potential 
requirement for a large re-programming investment 
and must weigh this against the economics of a micro­
film system . 

The user is in a similar position when he requires the 
extended character set, page printer or forms capa­
bilities. This time, however, he is really modifying his 
application and can be expected to expend program­
ming effort. He has more than a simple media con­
version problem to solve; he is designing a microfilm 
format that did not previously exist. 

In so modifying his application, he has to consider 
all of the characteristics and idiosyncrasies of the 
specific microfilm printer he is going to use. These 
include placement of inter-record gaps and control 
codes within the text of the microfilm document. 

Solutions 

In the best of circumstances the user would prefer 
to see extensions to his operating system and program­
ming languages to support output devices-with extended 
graphic and page printing capabilities. If he desires 
merely the same output on microfilm that he obtained 
on hard copy, 'he should have to change only a pe­
ripheral assignment statement in his job deck and 
execute his program. In the case where the user re­
quires full utilization of the microfilm device's capa­
bilities, he would prefer to resort to new statements in 
his application languages such as COBOL, PL/I, RPG~ 
etc. These might include facilities for declaring muliGi­
column output, invoking alternate character sets or 
specifying insertion of graphics. 

3M Company has recognized the need for system 
software with these capabilities and feels that as the 
computer microfilm user community grows, operating 
system and language implementors will include them 
in future systems. During the initial design phases of the 
Series F EBR, they asked us to formulate interim 
solutions for several specific computer systems. 'We were 
instructed that these solutions remain valid until such 
time that microfilm page printers were recognized by 
operating system implementors as standard peripherals. 
These solutions can be categorized as either conversion 
support or new application support. . 

Conversion support 

Support software has been written for the IB1VI 360 
DOS and 0 IS operating systems. This has taken the 
form of extensions to the operating systems. Con-



siderable care has been-taken to insure that the change 
was local and did not disturb the rest of the system. 

The DOS extension is a supplement to DOS Logical 
IOCS and provides object program compat~bility with 
problem programs written in PL/l, COBOL, RPG and 
Assembly Language. I/O Modules similar in concept 
to the ones that comprise Logical IOCS were written 
to interface a printer file definition with a physical 
magnetic tape drive. This interface routine is responsi­
ble for adding the EBR control codes to the print 
image and forwarding it to the magnetic tape drive. A 
series of these routines reside, together with standard 
IBM supplied I/O routines, in the relocatable library. 
To invoke the extension, the user adds a single link 
editor control card and re-links his program. The out­
put that normally appeared on a line printer is directed 
to magnetic tape in a format appropriate to the EBR. 

The result of processing this tape on the microfilm 
page printer is identical in all respects to that previously 
obtained on the line printer. 

A similar extension was provided for IBM's 0 jS 360 
operating system. In this case the user is provided 
with load module compatibility. Extensions were writ­
ten for the four QSAM move and locate mode modules. 
The modules have been modified to examine the volume 
serial number of the output data set and if the first 
three characters are "EBR" and the data set is in 
ASA mode, the file contents are re-formatted before 
being written on its assigned device. Operationally, the 
user is required to include only one control card to 
divert his output from a standard system output 
writer (SYSOUT) to a magnetic tape in EBR format. 

A similar system involving modification of the IBM 
1401 Autocoder assembler provides source language 

The Microfilm Page Printer 627 

compatibility for the EBR. Further object program 
support is being developed for the CDC 3300, GE 400 
and RCA Spectra 70 TDOS operating systems. I 
personally feel that object program support is extremely 
important, particularly in this age of proprietary soft­
ware where source programs may not even be available. 

New appli£ation support 

Here, the user requires an output format not obtain­
able on a conventional line printer. He must develop a 
new program or at least modify a current one. Again, 
he should be insulated from certain details of the 
microfilm printer, such as placement of control codes 
and inter-record gaps. The approach in this case was 
to provide a general purpose output package written 
in COBOL. This package, called EBRP ACK, provides 
entry points to select form overlays and character sets, 
plus additional entries to replace the standard COBOL 
printer command "WRITE dataname 1 AFTER 
ADVANCING dataname 2 LINES." 

SUMMARY 

Software support for microfilm page printers is neces­
sary and desirable; it must utlimately come from 
operating system and programming language imple­
mentors. In the interim, operating system extensions 
providing microfilm-line printer interchangeability may 
readily be prepared. Applications requiring specific 
features associated only with microfilm page printers 
may be designed and implemented utilizing output 
packages written in machine independent lanJl;uages. 





Computer microfilm-A cost cutting 

solution to the EDP output bottleneck 

by JOHN K. KOENEMAN and JOHN R. SCHWANBECK 

Oppenheimer & Company 
New York, New York 

SUlVIMARY 

Although the computer microfilm recorder has re­
ceived little attention to date, this new output device 
represents a technological breakthrough which will 
have a major impact on the computer industry. In­
stallation of a recorder generally results in a tenfold 
increase in the speed of computer output and a con-' 
comitant substantial reduction in CPU time which can 
result in major data processing and report production 
cost savings. As an added bonus, a microfilm system 
is the equal of most electronic time-sharing systems 
for information storage and retrieval applications. 
Consequently, we feel that computer microfilm, al­
though little noticed thus far, represents a major in­
dustrial and investment concept. 

The electromechanical line printer-heretofore the 
only practical means of obtaining hardcopy rapidly 
from the computer-has a maximum' output rate of 
only 2,500 characters per second. But; the computer's 
throughput capability is 25,000 to 100,000 characters 
per second. Owing to the severe output bottleneck 
that results from this imbalance of speeds, the bulk 
of information ingested and produced by computers 
has, until now, essentially been locked on magnetic 
tape and not easily available to the computer user. 
With the advent of the computer microfilm recorder, 
which can produce output as fast as the computer can 
process data, this mass of stored information has sud­
denly become readily available in humanly readable 
form. One of the most important questions which must 
therefore be asked is: "How much information is 

stored on magnetic tape and how badly is it desired 
by the computer user?" Our field work has consistently 
shown that an early Xerox type phenomenon exists­
user volume rises rapidly to meet capacity. 

Because the microfilm recorder eliminates the com­
puter output bottleneck, it also results in a major cost 
savings, This effect is most readily apparent in the 
data processing service industry, where a customer 
can now realize an approximate 40 percent to 50 per­
cent reduction in his monthly service bureau bill if 
microfilm rather than continuous paper froms is ac­
c.~pted as computer output. 

Even greater relative savings can be realized by 
companies with medium to large-scale in-house data 
processing departments. Overall, it can be shown that 
the lowest data processing costs, at all levels of use, 
are achieved when microfilm recorders are employed 
to produce alphanumeric or graphic computer reports. 

Moreover, acceptance of computer output in film 
form automatically creates an information storage 
and retrieval system which is the equal of most elec­
tronic systems. Although microfilm has gained a bad 
reputation because of the poorly designed equipment 
and improperly processed film which library users 
have been forced to endure for years, newly introduced 
microfilm equipment can now easily provide the quality 
of image and speed of retrieval of the most expensive 
time-sharing terminals. 

In addition to the standard data processing market, 
there is another separate and distinct market, that of 
pure information storage and retrieval, for which com-

629 



630 Fall Joint Computer Conference, 1969 

puter microfilm can compete very effectively because 
of its low cost. In fact, computer microfilm is frequently 
referred to as "the poor man's time-sharing." The 
service bureau charge for processing and producing one 
page of computer generated microfilm daily for one 
month is 10 percent to 40 percent that of storing one 
page of information on magnetic disc for the same time 
period. When the terminal and communications costs 
of electronic time-sharing systems are also considered, 
the cost advantage weighs even more heavily in favor 
of microfilm. In large measure, this dramatic cost 
difference is the result of the substantially greater 
density of data storage which film (1,000,000 bits/ 
sq. cm.) enjoys over magnetic media (1,000 bits/sq. 
cm.). Thus, although highly optimistic forecasts have 
been made for the growth of electronic systems for 
use in information storage and retrieval applications, 
we feel that fundamental economic considerations 
strongly suggest that computer generated microfilm, 
instead, will become the most common (although, 
obviously, not the sole) method of computer informa­
tion storage and retrieval. 

Several other benefits are derived from the computer 
microfilm recorder which are normally of peripheral, 
q ut can on occasion be of prime, importance: 

• An unlimited number of report copies can be 
obtained from one computer run with no loss of 
clarity; by contrast, only four or five truly readable 
copies can be obtained from a single run when an 
impact line printer and continuous paper forms are 
used. 

• Owing to its compactness, microfilm essentially 
eliminates the problems and costs of computer 
report storage. 

• Microfilm permits dramatic reductions in com­
puter report transportation or communications 
costs. 

Computer microfilm is not without certain draw­
backs, however. A computer microfilm information 
system cannot be used in situations where the data 
base changes rapidly, such as in airline reservations 
or stock market quotations. It also cannot be employed 
where user interaction with the data base is desired. 
Additionally, paper possesses a distinct advantage as 
data processing output where computer usage is very 
light, or sc~entific applications (i.e., high computation­
low output) are involved. 

In summary, with the development of the computer 
microfilm recorder, the most efficient processor of in-

formation-the computer-has finally been directly 
linked with the most efficient means of information 
storage and retrieval-microfilm. User experience to 
date strongly suggests that very large and potentially 
vast demand exists for the inexpensive and fast access 
to computerized information that this combination 
provides. Indeed there is every indication that com­
puter microfilm could bring about a real information 
explosion. Certainly all ingredients necessary for sueh 
pyrotechnics are present-a sudden quantum jump in 
the speed of information output, low cost, and ease 
of use (Exhibit 1). As a consequence, we feel 1~hat the 
computer microfilm service, hardware, and supplies 
industries will experience impressive growth over the 
near and intermediate term. Indeed, output oj[ micro­
film recorders, which should jump from lOO units in 
1968 to about 400 units in 1969, presently is production 
limited. 

The microfilm recorder substantially reduces data 
processing and report generation costs for all users 

Although there are considerable variations in volume 
discounts and prime or off shift machine rates, a 50 
percent cost saving is common when a data processing 
service organization customer changes from paper to 
microfilm as computer output. Similarly, cost reduc­
tions of 40 percent to 70 percent have been documented 
by heavy in-house computer users even though, in 
most cases, the availability of computer reports has 
been substantially increased as well. Although the 
relative cost savings of the in-house user and the service 
bureau customer are similar, the source of these savings 
is not. Whereas essentially all the service bureau cost 
reduction can be attributed to lower computer time 
charges, the bulk of in-house economies derives from 
labor and material savings. On balance, however, it 
can be shown that the lowest data processing eosts 2~re 
always obtained when a microfilm recorder is em.ployed. 

Service 'center cost reductions 

To obtain 1,000 pages (and three carbon copies) 
of processed information, a data processing service 
organization customer presently accepting paper out­
put will incur about one hour of IBM 360/30 machine 
rental at $65.00 per hour and a materials charge of 
$30.00 for continuous forms. Thus, total service bureau 
charges for the processing and production of 1,000 
pages of information will total about $95.00 whlen paper 
is used as the computer output medium. 

If, however, a change to computer microfilm is 
made, the cost of a similar run drops to about $40.00 



COMPUTER MICROFILM VS IMPACT PRINTERS: DISTINCT ADVANTAG£S 

uno 
FILM RECORDER 

IMPACT PRINTER 

PltlIT 
TIME 

1 
10 

-.nil 
TIME 

1 
18 

IIlTIIlYAi. 
TIME 

1 
"3 

COST If 
IlATtIlAlS 

1 
8" 

Exhibit 1 

1 
50 PHYSICAL VOLUME AND WEIGHT OF PRINTOUT 

..... NOOUCT lIUUTL!ll 

Exhibit l-Computer microfilm vs impact printers: 
Distinct advantages 

to $45.00. Because the economics of large, fast com­
puters can be used to advantage when the machine is 
no longer output bo,:!nd, most computer microfilm 
programs are run on 'an IBM 360/6'5 or equivalent. 
Because the time necessary to process 1,000 pages of 
information on a 360/65 is about 0.2 minutes, total 
data processing charges at $600 per hour amount to 
only about $2 or $3. Conversion from magnetic tape 
to a single microfilm original, can be accomplished for 
about $30.00 (three cents per original page), and the 
cost of three copies will add an additional $10.00 
(3.3 mills per page). Thus, for comparable data proc­
essing and report production services, a computer micro­
film service bureau will cost only $40.00 to $45.00, in 
contrast to about $95.00 for a traditional data proc­
essing service organization (Exhibit 2). 

In-house cost reductions 

In the next exhibit (3), it can be seen that although 
the installation of a microfilm recorder (SD4360) in­
creases the fixed cost of 'a data processing installation 
about $2,000 per month, variable costs for materials 
are s? low that the recorder becomes economically 
advantageous after 90,000 to 100,000 pages per month 
of output, or the equivalent of five to six machine 
hours per day of a relatively small four-tape System 
360/30. Thus, an in-house installation operating two 
shifts can achieve a 25 percent-30 perCllet cost reduc­
tion through the elimination of machine shift permiums, 
labor, and materials savings. Extensive Army studies1 

have shown that operating savings of 40 percent to 
70 percent can be achieved when three-shift operation 
or multiple satellite computers with attached line 
printers are involved. 

The magnitUde of the demand for computer reports 
that is presently unsatisfied because such reports are 
considered uneconomical can perhaps be judged by 

Computer Microfilm 631 

Exhibit 2 
TOrTM __ CO_ST_H_.~M~ON~TH~~~~) ________ , 

$45 

COMPUTER MICROFILM 40 

VS 
IMPACT LINE PRINTER: 35 

SERVICE CENTER COSTS 30 

50% SAVINGS 
IN DATA PROCESSING AND 25 

REPORT PRODUCTION COSTS 20 

15 

10 

10URCE: 

m~m~ ~rg~'R~~~IITS, 
SERVICE CENTER PRICE LISTS 

Exhibit 2-Computer microfilm vs impact line printer: 
Service center costs 

TO=TA;;;...L C;;..;;.OST;;.;.......H;;..;;. • ..;;.;MO;;.;;NT.;.;.;H~~ ___ --. 
illlibit 3 $45'-

COMPUTER MICROFILM 40 

VS 
IMPACT LINE PRINTER: 
LEASED IN-HOUSE COSTS 

IREAKEVEN @ 1110_ 
PAGES PER MONTH; 

SIGNIFICANT SAViNCS 
THEREAfTER 

o o 200 
NUMBE. OF O.IIIIHAl PAIIES H. MONTH (000) 

Exhibit 3-Computer microfilm vs impact line printer: 
Leased in-house costs 

noting that if the management of a corporation with as 
little as $15 million in annual sales desired detailed 
daily reports on finished parts inventory, accounts 
receivable, and unfilled orders, almost seven hours 
of computer time would be consumed in printing out 
these reports. 2 Incremental costs of about $3,000 to 
$4,000 per month for materials and possibly $2,000-
$2,500 for additional labor would probably thereby 
be incurred. Thus, although the utility of detailed 
management reports such as these is probably high, 



632 Fall Joint Computer Conference, 1969 

MATERiAlS 

COMPUTEI MICROFILM YS It) .90 COST PER DUPLICATE 

.IO~ ••••••••• .70 f- • PUll 
PAPER CONTUIUOUS FORMS OUTPUT: 
SUlSTAIITlAL SAv.5 • 1lATUtALS. 
__ IElfTIl. AIItIlAIOII COSTS 

IIIACHINE RENTAL 

COST PER DRIGINAL PAGE 
10)1.75 

lSOf-

125f- ',API. 
1001- '. 

.60f- .-

.50 f- • 

.40f- .l 

.30f-

.20f- -......... filM 
.10 f-

0 
0 I 2 3 4 5 • DUPlICATES/PAGE 

WDR COSTS 

COST PER ORIGINAL PAGE 

1013.01- , 
f-

,PAPI. , 
2.0 f- , .. 

.751- ~~ 

.SOf- -. -. f- , ..... 
1.0 f- 1 ~411 .~ •• 

. 25f-~ ....... f- filM 

0 
0 100 2DD 3ClII 4DD 5DD I0Il 

0 
0 ll1D 2DD 3DD 4DD 5DD 

HOURS UTlLlZATlON/1II0NTH HOUIIS UTlLlZATlON/1II0NTH 

Exhibit 4-Computer microfilm vs paper continuous 
forms output: Substantial savings in materials, 

machine rental, and labor costs 

I0Il 

we think it likely that the operational difficulties and 
the extremely high EDP costs necessary to produce 
such information have led many manufacturing com­
panies to forego such data until now. However, with 
the installation of a computer microfilm recorder, the 
same $15 million company described above could pro­
duce the same reports at an incremental cost of only 
$400 to $500 per month for materials and no incremental 
cost for labor. Thus, the company would then find it 
feasible to produce these reports. Operating experience 
to date of computer microfilm recorder owners certainly 
would point toward such a conclusion. 

Moreover, it is important to note that the cost 
curve of a computer microfilm data processing in­
stallation is essentially flat out to very large quantities 
of output (Exhibit 3). Thus, the corporate manager 
would now be able to obtain additional detailed re­
ports almost instantaneously at virtually no incre­
mental cost. 

Experience to date indicates that most managements 
will quickly begin to utilize the full capacity of a newly 
installed recorder. 

For example, in one case, a large insurance 
company installed a microfilm recorder in May 1967. 
Although the equipment operated only five hours 
per week when first installed, after approximately 
one year, utilization had increased tenfold to 50 
hours per week. In another case, a manufacturing 

concern which began using prototype computer 
microfilm equipment in 1967 had increased its film 
consumption to 20 million feet per year (400 million 
pages) by 1967 and reached 38 million feet ('760 mil­
lion pages) in 1968. 

The substantial savings in consumable materhtls 
costs, labor costs, and machine rental are, of course, 
the three major cost elements considered in calcu­
lating operational savings (Exhibit 4). 

Additionally, however, considerable savings in com­
puter report shipping and storage costs can frequently 
be realized, although these expense elements have not 
been included in our calculations (Exhibit 5). 

COMPUTER MICROFILM VS Exhibit 5, 
PAPER CONTINUOUS FORMS OUTPUT: 
SUBSTANTIAL SAWlIIIS III $lOUIE AND SHIPPlIIC COSTS ••• 

APPIOXIM ATE 
11,111 'AlES VOLUME _VAl 

STOIAIE C: On 
MICROFILM 0.10 FtJ $0.05 

PAPtI 4.50FtJ $4.15 

UPII0XIM 
11,000 'AlES WEIIMT filST CU 

. MAIL co 

MICROFILM 3.0 Lbs. 0.010 I 
PAPER 150.0Lbs. 4.05 0 I 

Exhibit 5-Computer microfilm vs paper continuous 
forms output: Substantial savings in storage and 

shipping costs 

Cost reductions for all users 

In summary, then, by superimposing the costs of 
service centers (Exhibit 2) on those of in-house in­
stallations (Exhibit 3), it can be seen that the use of 
a computer microfilm recorder will always result in 
the lowest data processing cost at all levels of US~tge 
(Exhibit 6). 

These facts should be apparent; 

1. A computer microfilm service center is always 
about 50 percent cheaper than a paper service 
center, and this cost advantage proba.bly will 
go higher. 

2. A computer microfilm service center is the 
least expensive data processing alternative up 
to about 200,000 pages of output per month. 
(200,000 pages per month is the maximum out­
put of a single shift working six days per week 
on a 360/30 with one attached line printer.) 



ExhibitS 
TOTAL COST PEII MONTH 1$0001 

$45 
•••• IMPACT LI. ""NTEl 

SUMMARY OF 40 

COST COMPARISONS: 
35 

COMPUTER MICROFILM 
RECORDER RESULTS IN 30 
THE LOWEST COSTS 

AT ALL LEVELS OF USAGE 25 

20 

'DUlCE: 

~¥~g:~~ ~'lf~'R~~TS: . 
SERVICE CE.NTER 'PRICE LISTS 0

0 
NUMlEII Of 01l1l11W. PAlES PEII MONTH CIIIIII 

Exhibit 6-Summary of cost comparisons: Computer 
microfilm recorder results in the lowest costs at 

all levels of usage 

3. Beyond 200,000 pages of output per month, 
an in-house computer with a microfilm recorder 
is by far the least expensive data processing al­
ternative. 

4. An in-house computer/microfilm recorder can 
bring about a cost saving vis-a-vis a com Lter/ 
line printer installation beyond about 90,000 
to 100,000 pages per month, or only five to 
six hours of computer time per day, with paper 
output. 

Thus, if decisions regarding an in-house capability 
versus utilization of a service bureau were always ra­
tional and financially sound, 100 percent conversion 
from paper to computer microfilm output could be 
expected. To anticipate a conversion ratio of 100 per­
cent is, of course, unrealistic. Nonetheless, the pricing 
revolution which the computer microfilm service com­
panies have brought about in the data processing 
service industry should result in very extensive use of 
the computer microfilm recorder in this segment of 
the computer industry. The small data processing user 
will be the primary beneficiary of the dramatic reduc­
tion in data processing service bureau costs. Similarly, 
medium-scale to heavy computer users will find the 
substantial cost and operating advantages of an in­
house recorder sufficiently compelling to bring about 
heavy conversion to microfilm output in this market 
segment. 

Computer Microfilm 633 

Microfilm is the most efficient medium for storing 
and accessing generated computer data 

Computer microfilm is actually, by a wide margin, 
the most efficient and economical storage and retrieval 
system for computer generated information. Microfilm 
has always been superior to paper from a bulk handling 
and storage standpoint. With the introduction of the 
computer microfilm recorder, it can now also approxi­
mate electronic time-sharing systems in performance 
for the great majority of information storage and re­
trieval applications. Thus, computer output on micro­
film can provide a simple, fast information system far 
superior to those currently in use. Indeed, computer 
microfilm service bureau managements indicate that 
it is not the substantial cost advantage of film over 
paper computer output which is most attractive to 
prospective customers, but rather its usefulness as an 
effective information system. The dramatic cost bene­
fits, however, can be an extremely effective sales too, 
in getting the customer to consider microfilm seriously. 

Microfilm joins the computer era 

Development of the computer microfilm recorder 
has brought in its wake a flurry of product develop­
ment activity aimed at greatly facilitating access to 
information on microfilm. Most individuals think of 
microfilm only as an archival medium-for storing 
outdated information for which a need might or might 
not arise at some time in the future. Actually, the ac­
tive use of microfilm for the storage and retrieval of 
information in daily use has been practiced by some 
pioneering users and companies for years. For the most 
part, these have been extremely large users (e.g., 
Social Security Administration). We feel that in large 
part the reluctance to adopt active microfilm systems 
has been due to the fact that information in such sys­
tems had to be manually sorted, updated, and coded-­
a tedious and time-consuming task. 

Now, however, this task has been eliminated through 
the development of computer microfilm coding systems 
which can provide manual access to one page out of 
73,500 in one to five seconds. 

Additionally, the speed and ease with which com­
puter information can be obtained on mi~rofilm has 
been increased from days to literally minutes. One 
manufacturer has adopted a marketing program stress­
ing "on time" information rather than "real time", 
which is, in fact, an accurate description. There is 
virtually no computerized information which cannot 
be obtained overnight in a fully useful, properly indexed 
format. 



634 Fall Joint Computer Conference, 1969 

In sum, the user of computer microfilm has access 
to a "poor man's time-sharing" information system, 
as some have termed it, with no addition to his CPU 
costs. 

Computer microfilm competes effectively 
against time .. sharing 

Many feel that time-sharing will become the most 
common method of providing access to computer 
generated information. But, it can be shown that for 
most applications, the storage and retrieval of infor­
mation electronically is very uneconomical relative to 
a computer microfilm system. 

For example, in one specific application, a data 
storage capacity of 15,000 pages, to be updated 
daily, was required. The effective cost of this appli­
cation on a commercial time-sharing disc file system 
equalled about $3.00 per page or a total of $45,000 
per month. On microfilm, this same information 
can be updated once a day for approximately $0.60 
per page or $9,000 per month-a storage cost re­
duction of almost 80 percent. l\loreover, the time­
sharing system would incur additional costs for 
terminal connect time and computer search time. 

Therefore, we feel that microfilm, as a medium of 
access to computer information, will become much 
more commonly employed than time-sharing in the 
future. Time-sharing, however, will always be required 
for applications in which immediate interaction with 
the data base is desired. 

Microfilm permits the storage cost savings just 
described because it has a significantly greater storage 
density capacity than the magnetic storage media used 
in time-sharing systems (i.e., disc packs and data cells). 
While it is only possible to store approximately 1,050 
bits per square centimeter on computer magnetic ma­
terials, it is possible to store 1,000 times this amount; 
or over one million bits, on a square centimeter of micro­
film. 

In addition to storage costs, the relative disadvan­
tages of time-sharing for information storage and re­
trieval include substantially higher terminal and com­
munications costs (Exhibit 7). 

As shown in the exhibit, a full page of information 
can be accessed in one to four seconds on the CARD 
device. To equal this speed with a time-sharing system 
a high-cost video terminal and Telpak-D communica­
tions line must also be employed. 

As a result of these cost factors, microfilm is the more 
economical of the two systems for most normally en­
countered information storage and distribution prob-

MICROFILM VIEWERS VS. TIME SHARING SYSTEMS: 
fAVORABLE COMPARISON IN TERMS OF COST AND SPEED 

TERMINAL COST 

TERMINAL TYPICAL RENTAL 

MICROFILM VIEWERS 
ONLY PER MONTH 

(Includes Modem) 

HF IMAGE CARD SYSTEM $2,00II-$3,450 $95-$1&0 

Stromberg DatagraphiX 1700 
(Automatic MagaZine, $ 1,248 $ 42 

KODAK PVM (Manual Roll) $ 600 $ 21 

COMPUTER TERMINALS 
(Includes 

Maintenance) 

SANDERS 720 (Video) $ 9,025 $468 

IBM 2265 VIDEO (Plus Controls) $15,000 $471 

IBM SELECTRIC 2741 $ 3,100 $130 

TELETYPE KSR 33 $ 450 $90 

APPROXIMATE 
COMPUTER COMMUNICATIONS TRANSMISSION COST 

HIGH SPEED - BROAD BAND (TELPAK·D) $ 45/lllile/month 

WATS SERVICE $240· $2,OOO/lllonth 

DEDICATED VOICE $ 2· J/mile/month 

LO SPEED $ l/mile/month 

hhibit7 

TIME 

TIME TO OISPL'Y 
FULL PAGE 

(8.000 Characte'rs) 

r 4 second; 

4·15 seconds 

8·20 seconds 

0.2 seconds 

3.1 seconds 

533 seconds (9min.) 

800 seconds (13 min.) 

TIME TO TRANSII'ORT 
FULL PAGE (8,000 Characters) 

0.1 seconds 

2:7 seconds 

27 seconds 

800 seconds (13 mi'~.) 

I COMPUTER COMMUNICATI()HS COST" MUST B£ INCLUDED WITH TERMINAL AND STOMCE COSTS IN TIME SHARING SYSTE'\4S, 
SOUItCE: AUERBACH ttl-n>, INC., r,('.MMUNICATlOHS REPORT; AUERBACH INFO, tNC., STO EOP REPORTS; COMPANVPRI(:E LISTS 

Exhibit 7-Microfilm viewers vs time sharing systems: 
Favorable comparison in terms of cost and speed 

lems. The surface illustrated in Exhibit 8 delineates 
the points (determined by file size, number of users, 
and update frequency) at which a microfilm Bystem 
is roughly cost equivalent to an electronic information 
storage and retrieval system. 

For the problems located within the surface, a micro­
film system is less expensive; for those outside the 
surface, electronic systems are less expensive. 

For example, the exhibit demonstrates that when 
information must be available to 200 users and up­
dated every business day, a microfilm system is more 
economical for files of 14,000 pages or less. A file of 
this size could contain the daily closing stock quota­
tions for the NYSE, ASE, and OTC market for over 
four years. Similarly, a 14,000 page file could contain 
all the records for payroll, personnel, and finished 
goods inventory (plus 10,000 accounts receivable 
records) for an average industrial corporation with 
sales of $800 million per year.3 

There are two types of commonly encountered ap­
plications for which microfilm is not a suitable re­
placement for time-sharing: when the user wishes to 
input, manipulate, and extract data at will, and when 
updating is required more than once a day, such as 
in transportation reservation systems (these cases are 



COMPUTER GENERATED MICROFILM 
VS 
ELECTRONIC COMPUTER SYSTEMS: 
MOST ECONOMICAL INfORMATION STORAGE AND RETRIEVAl SYSTEM 
fOlIlOST COIIIIOIILY EIICOUIITER£D APPlICA-r. ... 

_. __ I'III_OII __ .IIIC .• 

__ DATA _l1li-., "'tel LIITI 

Exhibit 8-Computer generated microfilm vs electronic 
computer systems: Most economical information 
storage and retrieval system for most commonly 

encountered applications 

Computer Microfilm 635 

located above the update frequency = 20 times/month 
plane in Exhibit 8). Whereas time-sharing allows in­
formation stored in a computer to be updated im­
mediately and made readily available in updated form 
to all users, with a microfilm system four to six hours 
is the minimum time one may expect for file update, 
preparation, and distribution. 

However, in most other commonly encountered in­
form.ation storage and retrieval applications, computer 
processed data is required for informational purposes 
only, such as in referencing records to service a cus­
tomer inquiry. In these cases, a microfilm information 
system is equally as effective and far less expensive than 
a time-sharing system. 

Recently, hybrid information systems have been 
introduced in which a data base is stored on microfilm 
while recent updates and changes can be retrieved 
electronically from computer memory. These systems, 
which utiliz,e the advantages of both microfilm and 
time-sharing systems, should find widespread accept­
ance in the future. 

REFERENCES 

1 Report on non-impact printing proJect 
Army Materiel Command Jan 1968 

2 The computer and the small company 
Auerbach Info. Inc. 

3 Statistical Abstract of the U S 1968 (89th edition) 
U S Bureau of Census 
Washington D C 1968 and 
The computer and the small company 
Auerback Info. Inc. 





Design of distributed' communications 
system-A case study 

by N. NISENOFF 

Computer Command and Control Company 
Washington, D. C. 

INTRODUCTION 

The development of a concept for a Department of 
the Army Civilian Personnel Management and Man­
power Data Reporting System and an Optimum Auto­
matic Data Processing System was undertaken by 
Computer Command and Control Company in June, 
1967.* 

The work was initiated by the Department of the 
Army to meet the increasing demand for more detailed 
information about civilian employees, as required in 
connection with Army-wide civilian personnel career 
management programs, and in view of new and more 
detailed general governmental reporting requirements. 
In addition, the system was to be capable of main­
taining data concerning the wide range of skills and 
experience of Army personnel. A further goal was the 
reduction to a minimum of the time delay in com­
municating relevant personnel data for the purpose 
of applicant screening. 

The system, as developed, is a generalized civilian 
personnel information system that embraces all as­
pects of the Army's civilian personnel management 
activity and control. It provides the information 
gathering, processing, storing, querying and. reporting 
capabilities to meet the requirements of Headquarters, 
Department of the Army; all echelons' of field com­
mands; the Department of Defense; the Bureau of 
the Budget; the Civil Service Commission; and other 
governmen t agencies. 

* This effort has been performed for the Deputy Chief of Staff 
for Personnel, United States Army, ~nder contract DAHCI5 
67 C 0265. 

637 

The design concept: 

1. Provides a powerful, efficient, open-ended, 
processing capability at a cost level tha~ is 
the minimum commensurate with the system 
requirements. 

2. Utilizes the most advanced (yet proven) hard­
ware and inform.ation entry, storage and retrieval 
techniques available as so to effect data entry, 
validation, distribution, storage and organized 
retrieval with minimal human intervention. 

3. Offers direct, rapid, complete and easy exchange 
of both formatted and unformatted personnel 
information among authorized individuals and 
offices at all levels. 

4. Provides standardized funtional personnel man­
agement information formats and processing 
techniques, together with adequate on-line 
analytical tools. 

5. Makes exchange of data with the Civil. Service 
Commission, the Department of Defense and 
with other Army systems simple and easy, pro­
viding data definitions have been standardized. 

Insofar as practicable, use has been made of presen t 
data bases. By applying automatic file conversion 
techniques previously developed, it will be possible 
to efficiently convert many existing data bases into 
random access files that can be electronically updated 
and queried. Particular attention has also been given 
to the problems of interfacing with and making the 
best use of existing automated or partly automated 
general management information systems within the 
Department of the Army. 



638 Fall Joint Computer Conference, 1969 

--------------------------------------------------------------------------------------------
The scope of the project is in part indicated by the 

following: There are over half a million civilian em­
ployees of the Army paid from appropriated funds, 
of whom about 140,000 are foreign nationals. In addi­
tion, there are about 200,000 civilian employees over­
sea~ who are p9.id from non-appropriated funds but 
who are administered by Civilian Personnel Offices. 
To service these employees, there are some 200 Civilian 
Personnel Offices scattered around the world. For just 
the United States Civil Service employees, it is es­
timated that approximately two billion characters of 
information will need to be carried in the Army Ci­
vilian Personnel Management and lVT anpower Data 
Reporting System. 

Following the initial data gathering and analysis 
phase, the record and file structuring effort was under­
taken. During this phase all candidate data elements 
were identified, classified and organized into files. 
File usages were then examined and files were assigned 
to appropriate storage media. For example, the data 
elements required to develop a reply to a relatively 
frequent query were placed in a fast mass random ac­
cess storage subsystem. On the other hand, any data 
elem,ent required but infrequently was placed in the 
magnetic tape storage subsystem. 

Given the results of the file structuring study, four 
separate and distinct Continental United States 
hardware configurations 'were postulated, and two 
additional prepared for overseas components. Each 
configuration is capable of performing the data proc­
essing functions required. The Continental United 
States configurations specified were: 

1. A centralized single computer system; 
2. A regionalized five computer system; 
3. A decentralized twelve computer system; and 
4. A localized twenty-one computer system. 

A cost analysis was then performed to evaluate each 
configuration. The overall results .of this evaluation, 
including the cost of initial loading of the data bank, 
is shown in Figure 1. 

After considering this cost data plus the other r~dvan­
tages and disadvantages, Configuration I was selected. 
It of is interest to note that the total cost of the system 
per Civilian Personnel Office for Configuration I is 
about the same as the salary and overhead cost of 
oneGS-5.** 

To establish the practicality of the implementation 
of the proposed system, a br~ak-even analysis was 
performed. A reduction in work force of four percent 

** At the time the report was prepared, a GS-5 earned $5,732.00 
per year. 

0 
p.. 
u 
..: 
<.1.l 
p.. 

,... 
til 
0 
U 

>-< ..... 
::c ,... 
z 
0 
::E 

$3,200 

$2,800 

$2,400 

$2,000 

$1,600 

$1,200 

$ 800 

$ 400 

RANGE OF 
HARDWARE 

COST 

t 
HARDWARE 

AND 
COMMUNICATIONS 

~ 
IMPLEMENTATION 

SYSTEM DESJ(J~N 
AND 

~OST OF~OADING DATA IN~O THE AUTOMATED SYST16] 

I ..... 

1 5 12 21 

NUMBER OF COMPUTER SITES 

I I II I IV 

CONFIGURATION NUMBER 

Figure I-Monthly cost per CPO for four examined 
configurations 

within the Civilian Personnel Offices is the break­
even point, while a six percent reduction would pro­
duce net savings of approximately 1.25 million per 
year. There is evidence that in an automated system, 
this reduction in work force could be made with no 
loss of efficiency or productivity. In fact, the automa.ted 
system could be expected to greatly increase staff 
efficiency and productivity, as well as provide manage­
ment information vastly improved with respect to 
timeliness, completeness, accuracy and internal eon­
sistency. Finally, analytical services would be availnble 
which cannot be achieved with a manual system.. 

The software and programming aspects of the ov€~rall 
problem were not examined as thoroughly as desired. 
Certain assumptions were made, among these were: 

1. The computer hardware would be dedics~tej 
to the application. 

2. Computer manufacturer's software support 
would be adequate for all needs except spedfic 
applications packages. 

3. The query language and the storagE) and re­
trieval subsystems were not specified. 



Design of Distributed Communications System 639 

Fortunately, the study was not performed without 
prior experience or knowledge concerning these points. 
Previous efforts by the Company, as well as members 
of the team, had been concerned with these very 
points. Estimates were made and employed. 

A subsequent investigation***· required a more 
detailed and thorough examination of these very 
points. The results of that study will be reported upon 
in the near future. 

The dimensions of the problem 

General description 

Within the Department of the Army, military and 
civilian personnel administration is centered in single 

**. Contract No. FA68WA-1913, Design of FAA Manpower 
and Personnel Information System. 

offices, at all levels, wherever both military and civilian 
personnel are found in significant numbers. However, 
at the execution level, branching is noted between the 
military and civilian personnel staffs in executing 
day-to-day detailed, direct operational responsibilities. 
This will continue to be the case in the future. 

Table I indicates the distribution of civilian e~­
ployees with respect to citizenship; by Army area in 
the Continental United States, or geographical area 
outside Continental United States, and membership 
of the staff of Army Material· Command, Corps of 
Engineers or "other" organizations. Additionally, it 
presents the number of Civilian Personnel Offices 
servicing the ten designated groupings. 

Information and processing requirements 

As a basic premise, it is assumed that processed num-

TABLE I-Distribution of civilian employees and civilian personnel offices 

Army or Total U.S. Foreign 
Geog. Area No.ofOrgs. No. of CPO's Employees Nationals Grand Total 

I 87 63 147,800 147,800 
III 34 22 57,200 57,200 
IV 25 20 45,200 45,200 
V 37 30 63,600 63,600 
VI 29 25 42,600 42,600 

Hawaii 7 1 5,900 5,900 
Alaska 6 3 ::!,100 3,100 
Far East 4 5 5,100 81,000 86,100 
Europe 19 16 7,600 56,200 63,800 
SOCOM 2 2 1,900 2,800 4,700 

---
Totals 250 187 380,000 140,000 520,000 

Breakdown of U.S. Employees 
Army or 

Geog. Area AMC Corps of Engineers Other Total U.S. Employees 
I 72,400 14,300 61,100 147,800 

III 19,700 10,700 26,800 57,200 
IV 16,400 7,000 21,800 45,200 
V 31,700 8,500 23,400 63,600 
VI 19,800 6,700 16,100 42,600 

Hawaii 5,900 5, 9()(}-~ 
Alaska 500 2,600 3,100 
Far East 5,100 5,100 
Europe 300 7,300 7,600 
SOCOM 1,900 1,900 

Totals 160,000 48;000 172,000 380,000 



t.-:.40 FI . val Joint Computer Conference, 1969 

---------------------------------------------------------
eric, textual and graphic information delivered to the user 
must be adequate to meet both predicatable and ad hoc 
needs Processing and delivery must be timely. 

The basic parts of such an automated system are: 

1. A central processor (or processors). 
2. Data storage capacity and retrieval capability. 
3. A means for inputting and outputting informa-

tion. . 
4. Adequate data communications. 

Central processor 

In discussing central processors, there are two basic 
factors to consider. If there is to be but one central 
processor, then the only require~ent of importance is 
that it have the capacity and· time available so as 
to be able to handle the input and output loads and 
perform the required processing. 

On the other hand, if a multiple computer configura­
tion is decided on, in addition to the requirement set 
forth above, there has to be a distinct set of software 
programs for each local or decentralized computer 
type which is not internally compatible with the master 
computer, plus additional programs to provide for 
transfer of data from one computer to another. This 
adds considerably to both the cost and the complexity 
of the system. 

If the central processor is not dedicated to civilian 
personnel use, but is shared, the particular priority 
that would most probably be accorded civilian person­
nel information processing would entail delays of 
indeterminate length. As the number of computers 
handling civilian personnel information is increased, 
the likelihood of sharing the computer increases 
greatly. At the same time, any procedure that involves 
the output of more than one computer would not be 
completed until time is available on the last available 
computer. It is not only the delay that can prove to 
be vexing; it is also the fact that it is most difficult to 
ascertain how long the delay might be. 

Data storage capacity and! retrieval capability 

When, as is expected, 40 percent of all employees 
are in the career management program, storage for 
approximately 1.8 billion characters of information 
will be required for the records of the United States 
Army civilian personnel. Storage for an additional 
600 million characters will be necessary for United 
States employees overseas and foreign national em­
ployees. 

Data elements 

In determining how large an individual record 
would be, it is recognized that the record of a new {,m­
ployee will not be as extensive as that of an l~mployee 
who has worked many years. To measure that dif­
ference, the number of characters for a typical personnel 
record of a GS-l through GS-5, of a GS-6 through 
GS-l1 and a GS-12 through GS-18 wererecordled. 

Table II is a summary of information concerning 
the data elements which are required to meet both 
present and anticipated needs. ~t also provides the 
numbers of characters required for each of three record 
categories. 

Input and output requirements 

There are 160 Civilian Personnel Offices in the Con'· 
tinental United States, which will require a, tot all of 
from 300 to 400 input/ output consoles, depending on 
the make or type finally chosen. The overseas Civilian 
Personnel. Offices will require an additional 60-90 
consoles. 

Both from qualitative and cost standpoints, the ef­
fects of proper or improper console selections will 
clearly be very significant in view of the large number 
of units involved. 

Four broad categories of information ar4~ preBent 
within the system. 

1. Information necessary to update the files and 
records. 

2. Queries and responses. 
3. Statistical data. 
4. Processing outputs in general. 

Detailed analysis of data presently handled or 
required in updating files and records and in meeting 
all except ad hoc query demands results in 20 characters/ 
man/day of data input and 18 characters/man/day 
output. To handle ad hoc queries and their response, 
an additional 12 characters/man/day (six input, 
six output) are considered adequate. These statiBtics 
are based on there being 240 working days a year. 
Table III shows the known inputs to and outputs 
from the central processor and the numbers of charac­
ters/man/year and characters man/day. 

A lternative configurations 

As a starting point, a single computer system was 
considered. Next, an integrated system of six c}omputers 
was examined, then one with 13, and finally, one with 



Design of Distributed Communications Sy.stem 641 

TABLE II--Summary information: Data elements 

A verage Sized Record 
Maximum 

Record as 1-5 as 6-11 as 12-18 
Size Plus 

Data Elements (Char) Plus W. B. W. B. Supervisors 

Single Multiple Single Multiple Single Multiple 
Computer Computer Computer Computer Computer Computer 

Organization Elements* (0) 
Position Elements (P) 164 164 164 164 164 164 164 
Civilian Personnel 
Elements (CP) 11,132 2,796 2,796 4,335 4,335 6,192 6,192 
Career Management 
Program Elements (CM) 7,548 2,562# 7,548# 2,456# 7,548# 
Executive Assignment** 
Elements (EA) 2,467 
Primary Personnel (PP) 
Elements 139 139 139 139 
Statistics' (ST) * 

TOTAL 2,960 3,099 7,061 12,186 8,812 14,043 

U sing the statistical data tabulated below, the average record length would be 4,700 for a single computer system 
and 7,100 for a multicomputer installation. 
as 1-5 plus W. B. less W. B. Supervisors-230,000 employees = 60% 
as 6-11 plus W. B. Supervisors -113,000 employees = 30% 
as 12-18 and PL Appointees - 37,000 employees = 10% 

(U.S. citizens only) 
* The storage requirements for organizational and statistical elements are insignificant as compared with the 

personnel data storage requirements. Therefore, no values are assigned. 
** Executive assignment data not carried in Army System but by Civil Service Commission; presented here for 

information only. 
# The character count for average record length in the CM category is kept at maximum record length since it is 

expected that personnel in this program will have been in the civil service for several years and therefore will 
have need for all the record space available. 

22. The process halted at this point because it was 
becoming apparent that the complexities of a multi­
computer system-and, as a result, the unpredictable 
time responses as well as costs-were growing at a 
far higher rate than any advantages that might accrue. 

The first configuration involves a single computer 
located in the Washington area. Figure 2 shows a 
schematic of this. Each Civilian Personnel Office 
would input to and receive data from this one com­
puter. A complete record concerning each civilian 
working for the Department of Armr would be main-

tained in this computer, except for foreign nationals 
in Europe and the Far East. This would result in a 
total of approximately 380,000 records. 

At each Civilian Personnel Office, there will be at 
least one input/output console. Here, all information 
would be entered that would update personnel records, 
as well as Civilian Personnel Office queries. Each 
console would also ~cieve all query-response outputs 
as well as general information outputs and record 
printouts that are needed for all personnel management 
purposes. 



642' Fall Joint Computer Conference, 1969 

--------------------------------------------------------------------------------,------
TABLE III-Major inputs to and outputs from system (Annual) 

INPUTS 
Payroll Change Slip (2515) 
Request for Personnel Action (52) 
Application for Federal Employment (57) 
Request for Referral List (2302·2) 
Installation Training (750) 
Employee Performance & Career Appraisal (2302.4) 
Employee Performance Rating (1052) 
Job Description Rewrite (374) 
Qualification Record (2302) 

Total Inputs 
OUTPUTS 

Referral List Response (2302.2) 
Notification of Personnel Action (50) 
Career Employment Record (2302-5) 
Position Review (275) 
Occupational Inventory of Civilian Positions (1629) 
Table of Distribution & Allowances (2952) 
Civilian Personnel by Basic Rate (3100) 
Civilian Personnel Employment Report (3250) 

Total Outputs 
Known Inputs 4,750 = 20 Characters/man/day 
Nnown Outputs 4,427 = 18 Characters/man/day 

Known Requirements 9, 177 = .38 Characters/ man/ day 

No. of C'haraCj~er8 
150 
300 
750 
350 

1,000 
1,600 

100 
·400 
100 

4,750 
165 
300 

3,600 
100 
100 

70 
70 
22 

4,427 

For ad hoc queries and presently unanticipated requirements, 6 characters/day each for input and output are 
added~ 

For system'concept development the following values are used: 
Total Inputs' 26 Char/man/day 
Total Outputs 24 Char/man/day 

Total Requirements 50 Char/man/day 

The system will be able to accept inputs of authorized 
manpower spaces and changes to them. as these allo­
cations or changes to specific spaces are made. By 
comparing the data with position information re­
ported by Civilian Personnel Offices, it will be easy to 
cietermine, at any time, discrepancies between vacan­
cies and established positions. 

The second configuration provides for five computers 
carrying personnel records in addition to the RAPID 
system computer complex in i Washington. Figure 3 
is a schematic diagram of this. 

These five processors would be located, with numbers 
of Army and Civilian Personnel Offices serviced, as 
shown in Table IV. 

Personnel records of employees assigned to each 
Civilian Personnel Office would be stored in the com-

puter for the respective Army area. Each Civilian 
Personnel Office would use its consoles to communicate 
with the computer in the Army area where it was 
located, in the same manner as described previously 
for the operation of a single computer system. 

These five area computers would be connected 
electrically to the RAPID computer in Washington. 
The central (Washington) computer would store Borne 
20 critical elements of information (applroximn,tely 
100 characters) concerning each non-career employee 
plus additional career management information for 
each employee in the career management Bystem. 

This master computer would thus be able to produce 
statistical data as well as provide responses to many 
queries without requiring access to the area Icomputers. 
Answers not obtainable from the RAPID system 



Design of 'Distributed Communications System 643 

160 CPOs rN u,s, 

Figure 2-8ingle computer configumtion data input 
and output 

computer complex would be generated by ,polling the 
computer(s) able to furnish the answer, or if the specific 
computer containing the desired information was not 
known, all five computers would be queried. 

The third configuration provides for twelve com­
puters carrying (primarily) personnel records, plus 
the RAPID system computer in Washington. Figure 
4 shows a schematic diagram of this, 

o COMPUTER SITE IN EACH ARMY, EACH 
INSTALLATION INCLUDES CENTRAL PRO· 
.CESSOJl... MASS STORAGE AND PERIPHERALS. 

Figure 3-8ix computer configuration 

In this approach, a configuration was developed 
wherein the two major employers of civilian personnel, 
the Army Materiel Command and the Corps of En­
gineers, retained the records of their own personnel 
in their own computers. The balance of the employees 
are serviced in Army area computers as in Configura­
tion II. 

In an effort to store the data as close to the Civilian 
Personnel Offices as feasible, a twenty-two computer 
configuration was also postulated and studied. A 
schematic of this is shown in Figure 5. Again, the 
RAPID system computer would serve the same 

TABLE IV-Six computer configuration description 

Command Location Personnel Serviced Number of CPO's 
DCSPER Pentagon 
First Army* Ft. Meade, Maryland 163,000 
Third Army Ft. McPherson, Georgia 57,000 
Fourth Army Ft. Sam Houston, Texas 45,000 
Fifth Army Ft. Sheridan, Illinois 63,000 
Sixth Army** The Presidio, San 

Francisco, California 52,000 

380,000 

* To include records for U. S. personnel in Europe, the Far East and Southern Command. 
** To include records for U. S. employees in Hawaii and Alaska. 

86 
22 
20 
30 

29 

187 



644 Fall Joint Computer Conference, 1969 

(> COMPUTER SITE IN EACH ARMY AND AT INDICATED 
COMMANDS. EACH INSTALLATION INCLUDES CENTRAL 
PROCESSOR, M~SS STORAGE AND PERIPHERALS. 

Figure 4-13 computer configuration 

function as described in the explanation of Configura­
tionII. 

Hardware technology 

The general considerations which must be taken 
into account in designing a complex system such as the 
one under discussion can be divided into two major 
areas. One is concerned with the hardware to be em­
ployed and the other with the software. The hardware 
area, in turn, can be subdivided into four parts, while 
there are two distinct aspects of software use to be 
considered. 

The following discussion will be concerned only with 
the hardware aspects, specifically: 

1. The central processor hardware considered 
during the study, 

2. The mass random access storage systems, 
3. The input/output terminals to be located at 

the various Civilian Personnel Offices and 
Headquarters offices throughout the Continen­
tal United States and, 

4. The communications techniques or channels to 
be utilized. 

--

~~ <waSh. > 
V-I 13 

8 (3 
8 13 
8 13 
8 13 
8 /8 
EJ 18 
8 8 
13 8 
8 

Figure 5-22 computer configuration 

Of the four specific hardware subsystems, the com­
munication channels, the terminals and the computers 
are highly interrelated. Further, the communication 
software package either provided by the hardware 
manufacturer or developed by the contractor· must 
be integrated in such a fashion as to permit the large 
volumes of data transfer tg work in a smooth, well­
integrated fashion. ~his was assumed to be true for 
this study. 

Automatic data processing systems 

Following a detailed examination of the automatic 
data processing systems available at the time of the 
study (1967), a representative selection was made. 
Summary data concerning these systems will be found 
in Table V. 

Random access mass storage systems 

Of the four configurations specified, Configuration I 
requires the largest and fastest mass random alCcess 
storage subsystem. Under this configuration, an on­
line storage capacity (at one computer site) of an esti­
mated 1.8 billion bytes of information will be required. 
Today, no single device is available which can meet 



Design of Distributed Communications System 645 

TABLE V 

CPU AND MEMORY PRINTER 
MANUFACTURER DATE FIRST 

AND MODEL INSTALLED 
MEMORY COST 

RANGE AND 

~ 
SPEED 

CYCLE MODEL 
TIME URCIIASE 

RCA 16- :%. 1250 LPM 

SPECTRA 70/35 10/66 65K BYTE 
1. 44~·' 210K 70/243-10 

RCA 16- V- 1250 LPM 

SPECTRA 70/45 7/66 2621: BYTE 
1. 44~, 540K 70/243-10 

RCA 16- V- 1250 LPM 

SPECTRA 70/46 9/68 131K BYTE 
1.44", 8llK 70/243-10 

BURROUGHS 4-

~ 
1040 LPM 

BSSOO ll/64 
32K WORD 
4."_ 778. SK B328 

BURROUGHS 16- V- 1040 LPM 

B6500 1/68 
1961: WORD 
.6", 772K 9241 

SDS 4- V- 1000 LPM 

SIGMA 5 8/67 
l31K WORD 
.85~, 542K 7445 

SDS 4- V- 1000 LPM 

SIGNA 7 12/66 131K WOR:! 
.85", 775K 7445 

GENERAL ELECTRIC 16- % 1200 LPM 

435 9/65 128K WORD 
2.7"' 417IC PRTZ01 

IBM 16- V- 600-ll00 
'262K BYTE LPM 

360/40 5/65 2.5", 500IC 1403 

IBM 65- v.:: 600-1100 
262 K BYTE LPM 

360/50 9/65 2. "' 6841: 1403 

IBM 131-104U V- 600 -1000 

360/65 3/66 BYTE LPM 
.75"5 580K 1403 

CONTROL DATA 8- V- 800-1000 

3100 32K WQIIP LPM 
2/65 1. 75", 299K 501 

CONTROL DATA 8- V- 800-1000 
3300 12/65 32K WOIID LPM 

1. 25", 470K 501 

CONTROL DATA 8- V- 800-1000 

3500 3/67 262K WORD LPM 

.8", 650K 501 

this requirement. To attain this storage volume a 
number of units must be integrated into the total 
system. For example, use of the RCA RACE unit, 
actually the cheapest available device on a dollar per 
byte basis, would still require three units to accom­
modate the total volume of data. To purchase these 
units (including their individual control units), will 
cost nearly half a million dollars, while rental would 
be about $12,000 a month. 

Table VI presents a summary description of the 
most likely candidates for the mass random access 
storage systems. Note that this listing of devices in­
cludes the largest mass storage units that are presently 
available as well as smaller units which have been 
considered for utilization with the smaller decentralized 
centers described in Configuration IV. Figure 6 shows 
the storage capacity as the independent variable with 
the cost/performance ratio shown in cents per bytes 
stored. 

CARD READER 
COMMUNICATIONS SOFTWARE MAGNETIC TAPE CONTROLLER 

I COST I COST 

SPEED TRANS. 

~ 
MAXIMUM 

~ MODEL RATE RATE FULL PARTIAL 

MODEL RCHASE MODEL PURCHAS 

1435 CPM 601( C/S % 2400 % X 
BAUD 110 MULTI-

70/237 70/442 42.3K 70/668 PROC. 
45K 

1435 CPM 601( C/S x: 2400 % X 
BAUD NO MULTI-

70/237 70/442 42.31( 70/668 451( PROC. 

143S CPM 601( C/S 

~ 
6J: B/S 1/ X 

70/237 70/442 42.31( 70-668-31 

1400 CPM 18-721 C/S x:: 2400 BAUD % X 
B249 AlID NO 

B129 B425 38. ZI 
B5480 44K ASSEMBLER 

1400 CPM 9-321 C/S l/C VERY HIGH % X 
B6350 AND NO 

DUAL DR. B6350-1 ASSEMBLER 
9112 9381-2 43.21 481 

900 CPM 601 C/S 

~ 
lSOO V- X 
BAUD NO IPG 

7140 7321 10K 7614 20K COBOL 
6/68 

900 CPM 601 C/I 

~ 
1800 x: BAUD 

7140 7321 101 7614 201: X 

900 CPM 15-42K ~ 2400 BAUD ;<: DATANET X 
CRZ201 MTH301 261( 30 

951 

800 CPM 30-lS0a: C/S % % X 

1402 2401 
NO MULTI-

, 311 2702 40.11 PROC. 

800 CPM 30-180IC C/S V. l% X 
NO MIlLTI-
PROC. 

1402 2401 3U 2702 40.1l 

800 CPM 30-1801: C/S L/:. ~ X 
NO MULTI-

1402 2401 381 2702 40.n PROC. 

1200 CPM 15-60K C/S X 40.U 1/5 V X 
NO MULTI-

405 604 27.51 3316 PROC. 

1200 CPM 15-601: C/S bG 40.81: B/S V x 
MULTI-

405 604 27.5K 3316 PROC. 6/69 

lIZOO CPM 15-60K C/S V. 40.81: B/S / x 
AS OF 

405 604 27.5K 3316 12/67 

Communications channels 

Initially, the U. S. Postal System was considered 
as a valid technique of transmitting the daily accumu­
'lated data (from each Civilian Personnel Office) to 
the computer site. Further examination raised two 
objections. These were: 

1. Cost involved. 
2. Transmission delays. 

The use of the Postal Service entails several costs 
which can be summarized, on a m.onthly basis, as: 

Postage 
Packaging 

$37,884 
233 
375 Addressing and Handling 

Replacing Damaged and Lost 
Reels 375 

$3S,867 or $24:0/ 
month/CPO 



646 Fall Joint Computer Conference, 19tm 

CAPACITY 

NAME ~~gF~g~~fEtrpJ;" 
NUMBER OF UNITS PER· 

BYTES CON\ROL 
MEDIA 

: 
RCA 568-11 (RACE) 560M STRIP 

IBM 23ZI (DATA CELL) 400M STRIP 

DATA PRODUCTS s'01P5 400M DISK 

BRYANT 2AC 4000 419M DISK 

BURROUGHS 9375 500M DISK 

IBM 2314 210M DISK 

CONTROL DATA 814 151M DISK 

UNIVAC FASTRAND 2 100M DRUM 

NCR 353-3 (CRAM) IBM 16 STRIP 

SDS 7202 737K DISK 

IBM 2311 7.3M DISK 

ARRANGED IN ORDE~ OF COST PER BYTE OF STOAAGB 

·Price for 1 (one) storage module only. 

1.0 

• 11 
_10 

0.1 

0.01 

0.001 

1M 10~f 

I J 

• 9 
8 • 7 • 

v 

100M 

CAPACITY (BYTES). 

STORAGE U!IIIT LEGENll 

• .' 4 

'3 2 • 
1 

18 

STORAGE 

TRACXS 
PER 

SURFACE 

128 

100 

510 

728 

150 

200 

192 

12,480 

56 

128 

200 

o~. 
0'/ 

f-rQ 
<~ 

1. RCA 568-11 (RACE) 5. BURROUGHS 9375 9. NCR 353-2 (CRAM) 

2. IB~f 2321 (DATA CELL) 6. IBM 2314 10. SDS 7202 

TABLE VI 

ACCESS ACCESS TIME: M ILL I SECONDS PRICE" 

NUMBER OF 
HEADS PER 
MECHANISM 

16 

20 

150 

56 

128 

20 

lOB 

COST 

P~~~D MINIMUM AVERAGE MAXIMUM PURCHASE RENTAL PER 
BYTE 

(fiB) 

16 20 200 385 $145K .026 

20 25 '\<300 ~600 136.5K $2,800 .034 

50 85 250 143K .036 

30 110 180 375K .089 

60 120 590X 9,900 .118 

18 25 75 135 250K .118 

20 60 110 BOX 5,500 .152 

64 39 92 154 165K 3,750. .165 

24 235 Z35 35.5K .195 

17 35 18K .245 

10 25 75 135 26.3K .360 

For electrical communications, two distinct and 
different classification schemes or methods can be 
employed to facilitate the analysis. These are: 

1. Governmental/non-governmental facilities. 
2. TWX voice grade/broad band facilities. 

Comparisons among costs for each of the serviees 
noted become very involved and complicated for a 
single configuration, let alone for four. However, each 
service is described below, following a brief di.scussion 
of the data volumes expected. With approximately 
380,000 United States citizens covered by the system, 
and with a flow of forty to fifty characters per man per 
day over the communications channels; it seems almost 
mandatory that a "dedicated" communicatiorul syst(~m 
be available. 

3. DATA PRODUCTS 5085 7. CDC 814 11. IBM 2311 (DISC PACK) 

In the event personnel records are procesesd by tit 

computer used for other applications as well, it is 
assumed that the personnel system will be u.vailalble 
for major update processing and for query response 

4. BRYANT 2AC 4000 8. UNIVAC FASTRAND II 

Figure 6-Cost (cents per byte)/capacity (bytes) 



Design of Distributed Communications System - 647 

during the third shift (eight hours). With an ,average 
of fifty characters/man/day traffic for 380,000 records, 
there will be a traffic flow of nearly twenty million 
bytes (eight-bit characters) a day. With a 70 percent 
line utilization, this requires a 1,000 bytes/second 
transmission capability. 

Autodin 

Autodin ,can be used to provide the type of service 
required. However, the rfollowing points serve to 
eliminate it from consideration: 

1. The service is not available at approximately 
20 percent of the Civilian Personnel Office sites. 

2. It is an extremely costly means of transmitting 
civilian personnel data. The charge is a fixed 
rate per site and is high, in part at least, because 
the system must be able to pass classified in­
formation. Since civilian personnel data would 
not be classified, except possibly for occasional 
specific information that would be afforded 
special handling, this costly apsect would not be 
needed. 

3. Civilian personnel information would' be af­
forded a low priority as compared to other data 
using Autodin. This would cause delays of 
variable and indeterminate length. 

The cost, per site or terminal, depends upon the 
line bandwidth required, not the distance the message 
is sent or the line usage (time). These costs are shown 
in Table VII. 

Autovon 

Autovon is a military leased, voice grade, direct 
dial telephone system. There is no apparent reason 
for not employing this system to transmit digital 
data during off-hours (6 p.m. to 6 a.m.). 

Charges are variable, but an estimate of $315-
$372/month/CPO seems reasonable. 

Hard decisions concerning the use of Autovon for 
digital data transmission were not obtained, though 
statements were made that Autovon is used in some 

TABLE VII-Costs 

A utodin Bandwidth 
(Band) 

75 
150 

1,200 
2,400 

Cost/Month 
Termina l Sit 

{1,188 
2,375 
9,504 

14,250 

cases for data transmission. Neither could any indica­
tion be obtained that for night use lower or preferential 
rates were available .. 

Wide area telephone service (WATS) 

The most attractive data transmission channel 
studied during this effort, from the viewpoint of the 
Army Civilian Personnel Program, is the Wide Area 
Telephone Service (WATS). WATS offers two billing 
plans; a 24-hour, unlimited service, and a measured 
time service. 

, Under a measured time W ATS contract, a basic 
monthly charge for the first ten hours of usage is 
made and an additional charge per hour of actual 
usage is levied. The tariff which governs this service 
is extremely detailed and a full discussion is beyond 
the scope of this report. However, a single computa­
tion will indicate the method of selecting between the 
unlimited and the measured W ATS. 

A single W ATS line with a six band capability (full 
48 state coverage), based in Washington, D.C. costs 
$2,250 per month. The measured WArS, with the 
same capability, costs: 

C = 370 + 29(H) , 

where, 

C = Cost in dollars per month 

H = Hours of usage beyond the first ten hours, 
per month. 

The break-even point can be calculated by setting 
C = 2,250 and solving for H. This yields a value of 
H = 65 hours or 75 hours/month of circuit time or 
approximately three hours/day. 

Definitive evaluation for the Army Civilian Per­
sonnel System must await final implementation de­
cisions. However, a computation con~erning the use 
of W ATS for several possible configurations has been 
carried out, and is detailed i~ Table VIII. 

Leased broad band lines 

Finally, use of leased broad band lines was examined. 
Their use was considered only for Configuration I 
implementation. 

Many possible line linkages can be conceived. The 
one demonstrated here is for illustrative purposes only, 
but is typical. 

Postulate that a concentration device, or subsystem 
(such as a very small digital computer with magnetic 



648 Fall Joint Computer Conference, 1969 

-------------------------------------------------------------------------------------
TABLE VIII-Number of WATS lines required vs configurations 

Configuration Location 
I Washington, D. C. 

II Ft. Meade, Maryland 
Ft. McPherson, G'eorgia 
Ft. Sam Houston, Texas 
Ft. Sheridan, Illinpis 
Presidio, CalifornIa 

P ADIR System Input 

III Ft. Meade, Maryland 
Ft. McPherson, Qeorgia 
Ft. Sam Houston" Texas 
Ft. Sheridan, Illinois 
Presidio, California 
Corps of Engineers, D.C. 
AMC, D. C. 
MUCOM, Edgewood, Maryland 
T & E Com., Aberdeen, Maryland 
WeapCom., Rock,Island, Illinois 
ECom., Ft. Monmouth, New Jersey 
Missile Com., Huntsville, Alabama 

RAPID System Input 

* Includes intrastate charges, as required. 
** Shared. 

tape or disk), will be located at each Army Headquar­
ters. A W ATS system, similar to' the system described 
for Configuration II (see Table VIII) will be installed. 
Leased broad band lines would aslo be installed from 
the five Army Headquarters to the RAPID site. 

A broad band channel capable of transmitting 5,100 
characters/second costs $15/mil~/month. In addition 
each terminal requires a termin~tion which rents for 
$250 each. As a result, monthly rental for the com­
munication channels (and their terminations), but 
not the concentration, would be $18,465. 

Number 
of Bands Bands 

4 1,3, 
6, 6 

2 1,3 
1 1 
1 1 
1 5 
1 2 

I 6 

1 3 
1 1 
1 1 
1 5 
1 2 
1 6 
1 6 
1 6** 
1 6** 
1 5 

1 6 

Terminals 

Cost/ 
Month * 

$ 6,100 
----

$ 6,100 
$ 2,075 

1,300 
2,015 
2,075 
2,000 

----
$ 9,465 
----
$ 2,250 
----

$11,715 
$ 1,575, 

1,300 
2,015, 
2,075; 
2,000 
2,250 
2,250 
2,250 

1,500 

$17,215; 
2,250 

$19,4:65 

Terminals must have certain attributes. The re­
quirements will vary, depending on whether the 
terminal is located (for example, at a major command 
headquarters, or in an operating Civilian Personnel 
Office) on the final network configuration ;selected, 
and on the communication means employed. How­
ever, certain minimal capabilities can be specifiEd: 

1. The data terminal must possess an "extended" 
(ASCII) keyboard, for entry of data. 



Design of Distributed Communications System 649 . 

TABL~ VIII-(Contd)-Number of WATS lines required vs configurations 

Configuration Locat'ion 
IV Boston 

New York City 
Philadelphia 
Baltimore 
D. C. Area 
Atlanta 
Kentucky 
Chicago 
St. Louis 
Kansas City 
Colorado 
New Orleans 
Texas Gulf 
NE Texas 
West Texas 
South California 
San Francisco 
Hawaii 
Utah 
Seattle 
Alaska 

X = Intrastate charges. 

2. The terminal must have an extended storage 
ability to retain up to one day's input for 
transmission to the data- processing site, with 
due allowances for peaks. 

3. The terminal must be capable of receiving and 
storing infor~ation transmitted by the ser­
vicing computer (in general, during the night) 
in response to ad hoc requests or standing 
requirements. 

4. The terminal must be capable of producing in 
hard-copy form all information transmitted 
from the computer site to the Civilian PerSQJl,nel 
Ofijce or other location either on-line, or on a de­
layed basis. 

5. The unit must be able to communicate, via 
low cost (voice grade) telephone lines with 
the computer center. 

After careful consideration of the characteristics 
of the many available principal Input/Output equip­
ments,' :we have narrowed the field for further con­
sideration to three. These are: 

1. Mohawk 1103. 

Number Costl 
of Bands Bands Month * 

1 X $ 330 
2 1, X 1,150 
2 1, X 875 
1 X 375 
1 1 500 
2 I, X 1,300 
2 1, X 1,200 
2 2,X 1,475 
I X 645 
1 X 610 
2 2, X 1,825 
2 1, X 1,400 
1 X 815 
2 1, X 1,815 
2 1, X 1,915 
2 1, X 1,850 
1 X 650 

No information 
1 X 500 
2 1, X 1,775 

No information 
----
$21,005 

2. Dartex 1022. 
3. Comml)nitype 100SB. 

The selection 

In performing the cost analysis ifor,.each of the four 
configurations ~xamined, four different manufacturers' 
equipments were examined. These manufacturers' 
equipments were examined in the Qontext of the proc­
essing loads required for both the centralized and 
distribut~ coD:figurations. Table IX shows the specific 
central processors considered. 

Although there are many approaches that can be 
followed to select a central processor for each of these 
'confignratio,ns, one dpminant constraint controlled 
the selections. This constraint was the requirement 
th~t the cotpputer be able to utilize the amount of 
random access storage needed by the system at each 
location. Thus, although there are smaller computers 
available, ~ot only from the four manufacturers 
whese equipments were examined, but also from other 
sour~~s, the equipment seleQted represented, in general, 
the smallest comput~ls that could do the job. 



650 Fall Joint Computer Conference, 1969 

~-----------------------------------------------------------------------------------
TABLE IX-Central processors t}mployed in the cost analysis for each configuration 

.J."\f anufacturer I 

CDC 3304 
BURROUGHS 3501 
IBM 350/40 
RCA 70/45 

Configuration I 

Configuration I has a single centralized site into 
which all Civilian Personnel Offices address their data. 
Detailed examination showed that approximately 1.8 
billion bytes of information would be the largest amount 
of dedicated random access storage required at this 
location. Supporting that sUbsystem would be a high­
speed disk subsystem of approximately 10.0 million 
bytes. This subsystem would act as a directory and 
contain a high-use skeletal record for each employee 
whose total record was contained in the random ac­
cess storage system. The central processor at this 
site is provided with approximately 65,000 bytes of 
high-speed core storage, a normal complement of stan­
dard peripherals; such as, a high-speed printer, a card 
reader and punch, a communications control unit as 
well as eight high-performance magnetic tape units. 
The magnetic tape units are employed to maintain an 
on-line journal of all system actions. They also act as 
replicate security repositories of current information 
in the event of equipment destruction, electrical in­
formation losses, over-writing, etc. In additidn, the 
magnetic tape drives can be employed for other pur­
poses during non-civilian personnel operations at the 
site. Finally, magnetic tape would be used to store 
trailer information (overflow beyond single fixed-format 
record storage capcaity) and archival information. 

Communications with the centrally located computer 
site can be handled by four W ATS lines. Two of these 
would cover the 48 states, one for the Eastern one­
fourth of the United States, and one for the Eastern 
Seaboard. The extent of these lines, that is, the number 
of W ATS bands, have been selected to provide the 
optimal coverage of CONUS based upon the geographic 
distribution of Civilian Personnel Offices and the 
populations they support. 

Finally, each Civilian Personnel Office was examined 
to determine the number of terminals required. A 
keyboard~ hardcopy printer, and an intermediate 
storage capability are considered a mandatory re­
quirement for this system application. 

To better understand "the operation of the Config-

II III IV 

3304 3114 3114: 
3501 2501 2501 

360/40 360/30 360/2:0 
70/45 70/35 70/85 

uration I system, consider the requirements jror da,ta 
transmission from and into a Civilian Personnel Of­
fice on a daily basis; 26 characters per man per d,ay 
(on the average) are inputted to the computer from 
a Civilian Personnel Office, while 24, characters per 
man per day are outputted from the computer to a 
Civilian Personnel Office. With these figures, an esti­
mate of the communication requirements can be made. 
Similarly, the estimate of the actual keyboard typing 
or data outputting can be obtained. 

Taking all these facts plus the data provided in an earl­
ier section into account, it can be shown that the cost 
for Configuration I will be in the order of $130,000 to 
$150,000 rental per month. 

Configurations II, III and IV 

Configuration II is schematically represented in 
Figure 3. Configuration II represents a total of five 
computer sites and thus the amount of rental required 
to support these sites does increase. Similarly, the com­
munication cost rises from approximately 6.1 to 11. 7K 
dollars per month. 

Configurations III and IV have been treatled irithe 
same fashion as Configuration II. 

Detailed Configurational Comparison 

The results developed thus far may now be applied 
to the crucial problem-which of the four pl:.>stulated 
configurations is recommended and why. The central 
processors selected for examination with respect to 
the four configurations postulated have been specil5.ed 
in Table IX. 

In presenting a detailed description and price com­
parison, Table X summarizes the key requirements, 
i.e., the number of personnel serviced, mass random 
access storage capacities, and the data tralllsmis8ion 
vorumes for each of the four configurations. These d.ata 
were . employed as guides in the hard ware selections. 
Detailed equipment specifications and pricing/rental 
were also examined and are summarized in 1'able :X.I. 



Design of Distributed Communications System 651 

• 

TABLE X -Summary of requirements for the four configurations examined 

Configuration Number I 

N umber of Computer Sites 1 

People Serviced 
Maxima (Exclud'ed from Range Figures) 380K 
Minimum 
Range (Not including Maxima) 
A verage for Range 

RAM Capacity Requirements (Bytes) 

Maxima (Excluded from Range Figures) 1.8G 
Minimum 
Range (Not including Max'ma) 
A verage for Range 

RAPID Supplemental RAM Capacity 
Required 0 

Data Transmission Volumes (Characters 
per Second) 

Maxima (Excluded from Range Figures) 
Minimum 
Range 19M 
Average for Range 

Two key aspects of the information. contained in 
Table XI have been plotted to provide a clearer view. 
These are: 

1. Hardware comparisons (exclusive of communica­
tions and terminal costs) )for the, four manu­
facturers, for each of the four configurations. 

2. Comparison of monthly rentals for all l,tard­
ware aspects (using an average set of v~lues 
for the on-site computers and their conventional 
peripherals) . 

Point 1 is amply described in Figure 7, while Point 
2 is presented in Figure 8. 

At this point, Configurations III and IV were dropped 
from further consideration. The few advantages which 
could be enumerated in their favor were not sufficient 
to outweigh the added costs. ! 

The selection between Configurations I and II 
appears less clear cu~ Although the monthly rental 
for Configuration Ir- is approximately JO percent 
greater than the monthly rental for Configuration I, 

II III IV 

5 12 11 

163K 48K, 75K, 83K 47K,58K 
45K 11K 2K 
45-63 (4) l1K-27K (9) 2K-31K (19) 
54K 19K 14K 

655M 225M, 350M, 390M 223M, 180M 
162M 52 15M 
162l\{-251M 52M-127M 15M-II8l\1 
201M 90M 62M 

I.2G 1.2G 1.20 

8.2M 2.4M, 3.6M,. 4.2M 2.41VI, 2.9M 
2.3M 0.6M O.IM 
2.3M-3.2l\1 0.6M-1.4M 0.IM-I.6M 
2.7l\1 1. OM 0.7lVl 

other factors must be examined. Only then can a 
decision be made. 

In favor of Configuration I implementation are: 

1. l~ower monthly rental. 
2. l~ile centralization in one physical location close 

to Department of the Army and Department of 
Defense headquarters activities. 

3. No undesirable redundancy in either hardware, 
software or machine processing. Also, if this 
processor is identical with that of the present 
RAPID system, then each pan act as back-up 
for the other. 

4. Availability of a "dedicated" computer for 
Army Civilian Personnel record-keeping. This 
implies that a self-established priority system 
can be employed. 

5. A minimum of highly skilled ADP programmers, 
opera.tor persoanel, etc., required. 

6. Data base "timeliness" and uniformity. 
7. No limitations on "cross servicing." 



652 Fall Joint Computer Conference, 1969 

--
TABLE XI-Purchase and rental comparison-four computer manufacturers and four system configurations 

Co~figuration I II 

Subsystem Purchase Rental Purchase 
M$ K $ * M$ 

Computer Site-
Mass RAM 

CDC 1.0M 26K 4.6M 
Burroughs 0.8 16 2.6 

IBl\1 1 .1 17 4;0 
RCA 1.2 26 4.7 

Mass RAM 
(Inchiding. 
RAPID 
Supplement) 

CDC 0.9M 19K 1.7M 
Burroughs 2.4 40 2.1 
IBM 0.8 17 1.9 
RCA 0.6 12 2.0 

Communications 
Channels-W ATS 6K 

Terminals 3.5M 88K 3.5M 

Totals 
CDC 5.5M 138K 9.7M 
Burroughs 6.6 149 10.5 
IBM 5.3 131 8.9 
RCA 5.3 131 10.1 

*-lVIonthly 
M-Millions 
K - Thousands 

On the other hand, Configuration II provides: 

1. Local, autonomous control at the Army level 
of each computer system. 

2. Redundancy of equipment which offers an 
alternative processing site in the event a system 
is down. 

3. With lower processing loads per machine, cost 
sharing could be practiced. 

No numerical weighting of these advantages seems 
appropriate. However, after a thoughtful review of 

III IV 

Rental Purchase Rental Purchase Rental 
K $ * M$ K $ * M$ K $ * 

115K 9.6M 226K 14.4]\11 384K 
60 5.6 132 10.1 2::n 
83 8.7 179 15.4 316 
96 8.6 196 17.0 345 

41K 2.4M 43K 4.1M ~ro 

67 3.4 55 7.5 107 
40 3.5 65 4.4 ~)5 

40 3.6 65 4.4 'H5 

12K 20K t'J!HK 

88K 3.5M 88K 3.5M 88K 

255K 15.6M 371K 22.0M 51B3K 
227 13.5 294 21.2 447 
221 15.7 351 23.3 519 
235 16.7 378 24.8 549 

each point, and a careful summation of all1ihe points 
concerning each alternative, one is left with. but one 
reasonable choice-Configuration I. 

SUMMARY 

The investigation demonstrated that a highly distrib­
uted, Automated Personnel and Manpower System 
was feasible and would be cost-effective. It alISO showed, 
rather forcefully, that although the terminals were 
located throughout the country, a single concentrated 



Design of Distributed Communications System 653 

480 K 

400 K 

160 K 

80 K 

12 21 

NUMBER OF COMPUTER SITES 

II III IV 

CONFIGURATION NUMBER 

Figure 7-Monthly rental of CONUS computer systems 
for four manufacturers for all four configurations 

(Computer hardware only) 

central processing site was by far the most economical 
approach to the system implementation. 

An interesting fallout of the study was the fact 
that the cost of the communications channels required 
to support the system accounted for only one and 
one-half to three percent of the cost of the fully-im­
plemented system. 

Finally, the broadest result of the study was the 
conclusion that real time, on-line (or quasi on-line) 
systems were practical, cost-effective and currently 
attainable. 

ACKNOWLEDGl\1ENTS 

The material presented in this paper has been almost 

480 K 

'40"~ 

320 K 

240 K 

160 K 

80 K 

TERMINALS 

12 
NUMBER OF COMPUTER SITES 

II III 

CONFIGURATION NUMBER 

21 

IV 

Figure 8-A typical total monthly rental breakdown for 
all four configurations (CONUS Only ) 

completely drawn from a report* submitted to the 
Department of the Army in February, 1968, The 
report was prepared by Mr. H. H. Lowell, Mr. J. V. 
Heimark, Mr.Q. A. Koehler, 1\Ir. R. J. Gibbons and 
the author. 

Particular appreciation is due to l\!Iiss L. Richard 
for all her help and assistance in preparing this paper. 
Without her help it would not have bee,n submitted. 

* Final Report, "Civilian Personnel Management and Man­
power Information System Concept for Department of the 
Vmy," 28 February 1968, H. H. Lowell, J. V. Heimark, G. A. 
Koehler, N. NisenotI, R. J. Gibbons, Computer Comml,\nd and 
Conrrtol Company. 





Analysis of the communications aspects 

of an inquiry-response system 

by J. S. SYKES 

Bell Telephon.!3 Laboratories, Incorporated 
Holmdel, New Jersey 

INTRODUCTION 

In order to meet the information retrieval needs of 
various industries, inquiry-response systems are being 
implemented by storing large data bases in centralized 
computer files. In some systems, the files are accessed 
by personnel primarily as the result of telephone calls 
from customers. As an example, in the airlines industry, 
computer files are accessed by reservation clerks to 
determine the availability of reservations for a specific 
flight. In this example, and in similar applications 
involving queries or requests from customers, input 
messages requesting certain information are generated 
by a customer representative and then transmitted 
to a computer from an input-output terminal such as 
a visual display device. When the computer has ob­
tained the requested information, a response message is 
transmitted back to the requesting terminal, and the 
representative continues her dialogue with the customer. 

For an inquiry-response system to function properly, 
the system must be designed to meet two grade-of­
service, or performance, objectives. One objectIve is 
concerned with the interval a customer. must wait 
before his call is answered by a representative. The 
other objective is concerned with the interval a cus­
tomer must wait during the conversation until the 
customer representative can secure the necessary in 
formation froni. the computer; the naturalness of the 
dialogue degenerates as the retrieval time* increases. 

* In this analysis, the retrieval time is defined as the interval from 
the time an input message is generated until the complete response 
has been received. 

In order to meet the first objective, sufficient repre­
sentatives must be available to handle the incoming 
voice traffic. To meet the second objective, an adequate 
data communications subsystem and sufficient com­
puter processing capability must be provided. 

In this paper an analytical model is presented that 
approximates the interaction of the voice and data 
communications subsystems in an inquiry-respons'e 
system. The model can be used during preliminary in­
vestigations to gain insight and to obtain conservative 
estimates of communications capabilities required in 
order for a system to meet specified grade-of-service 
objectives. The model consists of relationships that 
involve basic communications parameters such as the 
following: . 

a. Rate at which calls are received from customers 
b. Interval required for representatives to handle 

incoming calls 
c. Number of input and corresponding computer 

response messages generated as the result of 
a customer call 

d. Data transmission rates to and from the com­
puter 

e. Lengths of input and response messages. 

The model uses these relationships in order to esti­
mate the following quantities: 

655 

1. The number of customer representatives re­
quired in order to handle a given volume of 
offered calls at a specified grade of service 

2. The volume of data traffic generated as a result 



656 Fall Joint Computer Conference, 1969 

of the incoming voice traffic 
3. The number of equivalent active terminals 

that can be served by a data link while meeting 
a specified retrieval time objective; an estimate 
of the retrieval time as a function of carried data 
traffic is used to obtain this quantity. 

4. The number of data links required in order to 
meet a specified retrieval time objective 

5. The average occupancy of the one or more data 
links serving the input-output terminals. 

. For illustrative purposes, the analytical model is 
applied to a hypothetical inquiry-response system. 
Both half-duplex** and full-duplex** methods of opera­
tion are considered for the data communications sub­
system. For this example, estimates of average re­
trieval time are obtained with mathematical queuing 
models. 

Assumed system characteristics 

The analysis and its appEcation presented in this 
paper are based on assumptions· concerning the in­
coming voice traffic, the characteristics of the data 
communications subsystem connecting the input­
output terminals to the computer, and the computer 
processing capability. These assumptions are considered 
in this section. 

The basic assumptions that have: been made concern­
ing the origination and nature of the voice traffic are 
the following: 

1. The overall system is in a state of statistical 
equilibrium. 

2. Calls are generated by custbmers in accordance 
with a Poisson distribution, which implies a 
large group of potential customers. 

3. Durations required for representatives to handle 
incoming calls *** are distributed according to a 
negative exponential probability law. 

4. Calls are answered immediately when there is 
a customer representative not currently engaged 
in a conversation; all other calls experience 
delay. 

5. Delayed calls ar~ answered in a first-come, first­
served order as representatives become free. 

** With half-duplex operation, message transmission is allowed in 
either direction, but not both directions simultaneously; simul­
taneous transmission in both directions is called full-duplex 
operation. 

*** These durations would consist of the talking time with the 
customer plus subsequent time (if any) required to perform 
call-related tasks. 

The assumed overall configuration of the voice­
access network as well as the data communications 
subsystem is illustrated in Figure 1. The voice-access 
network is assumed to consist of the established tele­
phone network that provides line-switched connections 
from the customer to the business location. Ca,lIs are 
automatically routed to an idle representative unless 
they must be delayed; if so, the call distributor main­
tains the calls in a queue until a, representative becomes 
free. 

The data communications subsystem is assumed 
to consist of a group of input-output terminals such as 
visual display devices that are associated with Il, 

common control unit, which is connected to a computer 
by means of a data link. Various methods of operation 
are possible for this data communications configuration. 
These possibilities depend on whether or not message 
transmission is allowed simultaneously in both direc­
tions, whether or not the computer requests traffic by 
means of polling, whether the polling characters are 
directed to individual terminals or to a control qnit 
that gathers input messages from all of the terminals, 
etc. This analysis considers both full-duplex and half'­
duplex methods of operations. Polling of the lControl 
unit by the computer and multi message transmissions 
in each direction are assumed. 

Computer processing time, itS used in this paper, 
refers to the overall interval from the instant an input 

. message* enters the multiprocessing computer until 
the corresponding response is placed in queue for 
transmission back to the requesting customer repret­
sentative. Thus, processing time includes input message 
analysis, data retrieval from one or more memory files 
(perhaps even from another computer),· and response 
preparation; in addition, the processing times may be 
prolonged by queuing delays within the computer. It 
has been assumed that an estimate of the averag;e com.­
puter processing time for a system is available; as willI 
be explained, this estimate is used ill. determini.ng the 
average retrieval time. 

System analysis 

In this section the analytical model of the communi­
cations aspects of an inquiry-·response system is de­
veloped. 

* Examples of input messages are initial inquiries, requesta for 
page flips, and any subsequent inquiries generated dluring a 
customer's call. In addition, in some systems, update messagoa 
may be sent to the computer, perha,ps after a call has been teJr­
minated. If so, it is assumed that fo:r each updating message the 
computer returns some type of acknowledgment. 



DATA 

}~R~~~C1 
VOICE 

TRAFFIC 

COMPUTER 

r=l 
COMMON 
CONTROL 

UNIT 

...l NPUT - OUTPUT 
TERMINALS 

Figure l--Inquiry-reE'pon~e system 

Personnel required to handle offered voice load 

Assume that during the period of maximum incoming 
customer calls, i.e., the system busy hour, the calls are 
received at a rate Av. Assume further that the average 
duration required for representatives to handle in­
coming calls is V. The voice load Ev handled by the 
representatives is therefore given by 

Ev = AvV, (1) 

where Ev is commonly expressed in erlangs, a dimen­
sionless unit. The number S of personnel required to 
handle Ev erlangs during the busy hour is dependent 
on the grade of service G(x) to be offered customers, 
i.e., the promptness with which customers' calls would 
be answered. An example of G(x) is the following: at 
least 0.95 of the customers' calls should be answered 
within x = 20 seconds from the time ringing begins. 

If the assumptions previously stated concerning the 
voice traffic are met, values of S can be obtained for 
a specified G(x) by using the following formulas: l 

G(x) 1 - Prob[Answering Delay > x secs] 
1 - P[D > x] 

.Analysis of Communications Aspects 657 

{ 
-xeS - Bv) 

1 - p[n > 0] exp _ } ; 

V 

o ::; Bv < S (2) 

where P[D > 0], commonly called the Erlang C func­
tion, is given by 

(S - 1) ! (S - Ev) 
PfD > 0) = ----------

8-1 (Ev)n (Evl 
L -+-----­
n=O n! (8 - 1) ! (8 - Bv) 

o ::; Bv < S . _ (3) 

Equation (2) is a result of A. K. Erlang's exponential 
holding time analysis. A summary of his analysis along 
with various delay curves was published by E. C. 
Molina.2 For specified values of S, values of P[D > 0] 
are tabulated in Reference 1 as a function of the ratio 
Ev/S. 

Conversion of offered voice load to data traffic 

The amount of data traffic generated as the result 
of a customer call is a random variable. Some calls 
may involve only one or possibly two input messages 
and the associated responses. Other calls, which may be 
multipurpose, may require six or eight such interac­
tions; in addition, some updating of the computer files 
may be involved. In this paper, f will be used to repre­
sent the average number of interactions generated as 
the result of a call. 

Let Ai represent the average rate during the busy 
hour at which input messages are generated by the 
group of customer representatives served by one data 
link. By using 1, Ai can be related to Av as follows: 

(4) 

Let AT represent the average rate during the busy 
hour at which corresponding response messages are 
prepared by the computer and placed in the output 
queue for the data link. Since it is being assumed that 
each input message to the computer results in a re­
spon~e, the average rates Ai and AT are equal. 

The second factor influencing the volume of generated 
data traffic is the average time t i required to transmit 



658 Fall Joint Computer Conference, 1969 

a message to the computer. This quantity is the quo­
tient of 

li = the average number of characters that com­
prise messages transmitted to the computer, 
ani' 

1 
Ti. = the rate of transmission from the contro 

unit to the computer, i.e., 

(5) 

Correspondingly, tr, the average time required to 
transmit response messages from the computer to the 
control unit is given by 

-tr 
tr = -. (6) 

The product of Ai and t,.;., which wjll be denoted by 
pi(Ti), represents the erlangs of data traffic generated 
during the busy hour for transmission at a rate T i from 
the control unit to the computer. Likewise, the product 
of Ai and tr, which will be denoted by pr(Tr), represents 
the erlangs of response data traffic transmitted at a 
rate Tr from the ·computer to the control unit during 
the busy hour. 

With full-duplex message transmission, separate 
one-way transmission facilities carry Pi(Ti) and Pr(Tr). 
Therefore, expressions for the magnitudes of Pi(Ti) and 
pr(Tr) (in erlangs) can be independently determined 
by using Equations (1), (4), (5), and (6), i.e., 

which leads to 

EvIl: 
Pi(Ti) = ---. (7a) 

VTi 

Similarly, since it is being assumed that ~ = Ar, 

EvIl 
Pr(Tr) = --. (7b) 

VT'I' 

With half-duplex message transmission, the same 
facility is alternately used for input and output traf­
fic. Therefore, p,(Ti) and pr(Tr) Can be cl)mbined to give 
Ptot(T" T'I'), i.e., 

(8) 

Let a represent the ratio of the aver8.ge length of 
response messages to the average length of input mes­
sages; if T i = Tr, Equation (8) then reduces to 

Eviti 
Ptot(Ti, T'I') = -- [1 + a] . (9) 

V"fi 

In summary, Equations (7), (8) and (9) reveal the 
manner in which the various communicatiom; param­
eters affect the amount of generated dat~~ traflfic. 

Volume of data, traffic allowed per data link 

As indicated by the notation, calculated erla.ng 
values obtained for Pi(T,), pr(Tr), and Ptot(Ti:, Tr) are 
based on specified transmission rates. Erlanl; values 
are not sufficient by themselves, however, to determine 
the number of data kinks operating at the assumed rates 
that would be required to implement the data com­
munications subsystem. For example, if Ptot(Ti, Tr) 
were less than one erlang, it could be inferred that one 
data link would suffice for that traffic. However, in 
order to avoid excessive storage usage and extended 
retrieval times, data links cannot be used to their 
full capacity. In fact, as will be shown, the average 
retrieval time increases without bound as the average 
occupancy of a data link approaches unity;: a:erage 
data link occupancy refers to the average portIon of 
the busy hour that the data link is being used for nles-
sage transmission. .. it 

Although data link occupancy m~Bt be hnute~, 
is desirable to use data links as effiCIently as pOSSIble. 
Let Ptot(Ti, Tr) denote the maximum volume (in 
erlangs) of data traffic that can be carried by the data 
link operating at transmission rates Ti and Tr. For h81£­
duplex operation, Ptot(Ti, Tr) is numerically eq~al to 
Pmax(Ti, Tr), where pmax(T" Tr) represents the maXImum 
allowable occupancy for a data link operatinl~ at rates 
Ti andTr. 

For full-duplex operation, ~tot(T" Tr) is ~he SUn:1 of 
Pi (T,) and pr (Tr), which represent the maxnlllum. data 
volume (in erlangs) that can be carried, on the In.put 
and output links operating at rates T i and 1''1', res]pec­
tively. For systems in which the input an.d output 
traffic volumes are unequal; the average, occupa,ncy 
of the input and output links may be cOllsidera,bly 

iifferent. For this case, 



where Pmax(Ti) and Pmax(Tr) correspond to Pi(Ti) and 
1lr(Tr), respectively. For a full-duplex system, Ptot(T i, Tr) 
is not a constant but is dependent'on the ratio tr/ti' 

The value of Ptot(Ti, Tr) for a particular subsystem 
is governed by the specified retri~val time objective 
for the system. A commonly used objective is as fol­
lows: The average retrieval time', should be Tmax 
seconds or less. Another type of objective* can be 
expressed similar to the voice traffic" grade of service 
G(x), e.g., 0.95 of the retrievals should be received 
within T' seconds. 

Either a computer simulation or analytical means 
can be used to determine values of Ptot (Ti, 1"r) that 
correspond to a specified retrieval time objective. 
With a properly written simulation, one can obtain 
probability distributions as weH as all moments of 
interest. However, using a simulation can be costly 
during preliminary investigations in which one is 
studying the effects of various communications param­
eters on the retrieval time. For this reason, a well­
formulated mathematical queuing model can be useful 
and rewarding for these investigations, even though 
results from queuing models that represent complex 
systems are often limited to average values. 

Number of input-output terminals allowed 
per data link 

An important consideration in the communications 
design of an inquiry-response system is the maximum 
number of active input-output terminals, or equiva­
lently the maximum number,of active personnel, that 
can be served by a partiCUlar data link without exceed­
ing a specified retrieval time objective. This maximum, 
which will be denoted by Smax, is obviously related to 
Ptot(Ti, Tr). In this section, a method is outlined for 
approximating values of Smax for specified values of 
the grade-of-service objectives and the other com­
munications parameters. As will become apparent, the 
method may be used iteratively to determine which 
combinations of parameter values permit specified 

'" System studies are often desirable in the final design stages of 
a aystem to determine whether a given design will allow a specified 
percentile-type objective to be met. Because of mathematical 
complexity, however, analytical methods can seldom if ever be 
used for such studies; a simulation is normally required. For 
preliminary investigations, analyses based on average values can 
be used to obtain valuable insight concerning the aensitivity of 
the retrieval time to various system parameters. This insight can 
be very helpful in designing and running a subsequent simulation. 
Lack of such insight often resultJ in very costly system simula­
tions. 

Analysis of Communications Aspects 659 

voice traffic and retrieval time objectives to be met· 
If costs are associated with these combinations, insight 
can be gained concerning which means of implementa­
tion is most economical. 

The first step towards getting values of Smax is to 
use the specified values to construct graphs (using 
Equations (3) and (8), respectively) that show S 
versus Ev and Ptot (Ti, Tr) versus Ev, where Ptot(Ti,Tr) 
represents the sum of Pi (T i) and Pr(Tr) for both full­
duplex and half-duplex cases. Corresponding points 
from these two graphs are then plotted to give a third 
graph showing S versus Ptot (Ti, Tr); the value of S 
corresponding to the point Ptot(Ti, Tr) = Ptot (Ti, Tr) 
iB SmaX' 

The second step is to relate the values of Smax and 
the values of the retrieval time objective, e.g., T max, 
that correspond to equal values of Ptot (Ti, Tr). Thus, 
a graph such as Smax verus T max can be constructed 
for given tran~mission rates T i and Tr. The benefit of 
such graphs can be increased considerably if the or­
idnate also shows the values of Ev that correspond to 
the values of Smax' By using estimates of the expected 
voice load incoming to a cluster of customer repre­
sentatives, the number of data links required to ac­
commodate the cluster can be readily deduced from 
the graph for each specified retrieval time objective. 
This technique will be discussed further in the model 
application section. 

Plots of Smax a.nd Ev versus the retrieval time ob­
jective can aid investigations of the cost of imple­
menting a system to meet a specified average retrieval 
time objective. For example, a designer 'may discover 
that for a relatively small increase in the allowable 
Tmax, considerable savings in transmission and com­
puter port costs could be achieved by serving more 
representatives with a single data link. 

Number of data links required 

As was mentioned above, graphs showing Smax and 
E" versus the retrieval time objective can be used to 
estimate L(Ti, Tr), the number of data links required 
to interconnect the computer and the input-output 
terminals serving the customer representatives. There 
is also a more analytical method for estimating L(Ti' Tr) 
in which values of Ptot(Ti, Tr) are used. The same general 
method can be applied to full-duplex and half-duplex 
message transmission subsystems; however, it should 
be remembered that for the full-duplex case, the value 
of Ptot(Ti, Tr) may change if the val~e of the ratio 
tr/t i is changed. 

Let k represent the ratio of the total volume of 



uuO Fall Joint Computer Conference, 1969 

--------------------------------------------------------------------------------------
generated input and output data traffic (in erlangs) 
to Ptot(Ti, Tr), i.e., let 

k= 

Let K represent the integer part of the ratio k. The 
number of data links required to serve the cluster is 
given by 

(lOa) 

If K = k, i.e., k is an integer, then 

For half-duplex links, if it can be assumed that the 
total volume Ptot(T i, Tr) is divided evenly among them. 
the average occupancy of each link is given by 

P = --_. (lOb) 

Model application 

In this section, the analyti.cal model is applied 
to a hypothetical information retrieval design problem. 
For this example, it is assumeq. that information re­
quired for the operation of a business, such as customer 
service and billing records, is to be stored in a com­
puter. Input-output terminals will permit access to the 
computer files; it is assumed that retrievals are pri­
marily required in order to intelligently handle tele­
phone calls from customers. Several clusters of input­
output terminals are to be served by the same computer 
complex. The cluster to be considered in this example 
is concerned only with information retrieval; it is 
assumed that file modifications are done by other per­
sonnel. 

The basic configuration proposed for this cluster is 
illustrated in Figure 1. Telephone calls from customers 
are routed by the automatic call distributor to idle 
customer representatives. Each customer representa­
tive is equipped with an input-output terminal. These 
terminals are associated with a: common control unit, 
which is connected to the computer by means of a data 
link. 

One objective of this analysis is to determine the 
basic requirements of the data communications sub­
system, i.e., how many common control units in con-

junction with their data links are required to accom­
modate the number of customer representatives that 
will be needed to handle the incoming telephone calls? 
To help answer this question, both full-duplex and 
half-duplex methods of operation are considered. :Fol­
lowing the description of these assumed methods of 
operation, representative parameter values ;are used 
to indicate how these two proposals can be quanti­
tatively compared. 

Description of assumed methods of opelrntiolll 

The first assumed method of operation to be de­
scribed involves half-duplex message transmission, 
which may have some economic advantages over full­
duplex operation for some geographical config;urations. 
Half-duplex operation is more suited for clusters 
generating and receiving relatively low data traffic 
volumes and for which retrieval time objectives are 
not critical. One disadvantage of half-duplex operation 
is the line time required to reverse the direction of 
transmission; this interval will be referred to as the 
reversal time. 

The disadvantage of reversal times can be partially 
overcome if the computer polls and delivers groups 
of messages to the common control unit instead of 
single messages to the individual input-output ter­
minals. This method of operation will be referred to as 
group poll and delivery as opposed to single poll and 
delivery operation. When a large number of terminals 
are served by a control unit, group polling significantly 
reduces the line time required for reversing the diJrec­
tion of transmission and tram;mitting polling characters. 
In addition, as the volume of data traffic increases, 
group polling lessens the variance of the interval from 
the time an input message is ready for tran.smisE;ion 
until it has actually been transmitted to the eomputer. 

When the reversal time durations are comparable 
to message transmission times, data link efficiency is 

. increased considerably by allowing multimessltge trans­
missions for both input and response messages, i.e., 
priority is not assigned to either type of message. 
Line efficiency increases because a reversal is not re­
quired following the transmission of each lower priority 
message in order to check the status of the higher 
priority message queue. 

With group polling and multimessage tranBmissions, 
all input messages generated by the terminals since 
the last poll are sequentially transmitted to the com­
puter. Only when the input message queue becomes 
empty is the direction of transmission reversed. After 
the reversal, the computer begins delivering the queue 



h 
P: TRANSMISSION OF POLLING CODE 
R: TRANSMISSION FACILITY REVERSAL 

Tj: TRANSMISSION OF INPUT MESSAGES 
T,: TRANSMISSION OF RESPONSES 
Dp: COMPUTER DELAY PRECEDING NEXT POLL 

(ASSUMED ZERO IN THIS PAPER) 

Dp 

Figure 2A-Typical cycle of operation (Half-duplex 
message tran~mi.:;sion) 

h 

of responses to the control unit, which distributes each 
response to the appropriate terminal. After all responses 
have been delivered, the computer polls the control 
unit either immediately, or optionally after some 
specified deJay* D p , and the cycle repeats. A fixed 
number of characters that identify the control unit is . 
sent preceding message transmissions from the control 
unit. This cycle of operation is illustrated in Figure 2A. 

During a given cycle, either queue or even both 
queues can be found empty. If, for example, both are 
found empty, a group poll and delivery cycle de­
generates to a polling sequence followed by a succession 
of reversal times, which are separated by a "No Traf~ 
fie" character sequence.that identifies the control unit. 
Such degenerate cycles are assumed to reoccur until 
at least one message accumulates in either the input 
or the response message queue. 

With the full-duplex case, reversal times are unneces­
sary, since the control unit can be transmitting and 
receiving simultaneously. However, group polling of 
the control unit is still beneficial, since polling inter­
ference on the delivery line occurs less frequently. With 
full-duplex operation, input messages generated by 
the customer representatives are ordered in a first-come, 
first-served manner for transmission from the control 
unit. Transmissions to the computer begin immediately 
after a polling code is received from the computer; 
the polling codes are interspersed among messages're­
ceived from the computer. All messages that have 
accumulated awaiting the polling code, as well as those 
that are generated during the transmission, are trans­
mitted to the computer. An interval of duration** Dp 
starts at the end of a transmission from the control 
unit; at the end of this interval the computer sends 
another polling code. 

'" For the half-duplex case, Dp is assumed to be zero in this paper 
for the, half-duplex case. 

*'" For full-duplex operation, Dp was assumed to be one second 
in this paper. 

Analysis of Communications Aspects 661 

_ ~s soon as .a response is prepared by the computer, 
It IS entered Into an output queue for delivery. It is 
transmitted immediately unless -another transmission 
is already in progress; if so, the response is delayed until 
all responses ahead of it in the queue have been sent. 
Thus, while input messages are being transmitted by 
the ?ontr~l unit, response messages corresponding to 
preVIOUS mput messages are being received by the 
control unit. Full-duplex message transmission is 
illustrated in Figure 2B. 

Personnel to handle incoming voice traffic 

It will be assumed that the assumptions stated 
previously concerning voice-access sUbsystems apply to 
this example. It will further be assumed for this example 
that during the busy hour of the busy day the average 
number of calls per hour are not expected to exceed 
600; the average duration of each call is expected to 
be approximately three minutes. By using Equation 
(1), it is found that Ev, the expected voice traffic load, 
should not exceed 30 erlangs. In order to determine S, 
the number of customer representatives required to 
handle this traffic volume, a grade-of-service objective 
must be specified. In Figures 3A and 3B, S has been 
plotted as a function of Ev. Figure 3A shows 0(10), 
0(20), and 0(30), where each is assumed equal to 
0.95. Figure 3B shows the effect of varying the value 
of 0(20) from 0.90 to 0.9,75. 

Figures 3A and 3B reveal that the grade-of-service 
standard ,for answering voice calls can be improved 
considerably with the addition of a relatively few 
representatives. For example, assuming that the aver-

TRAFFIC FROM COMPUTER 

I 

P: TRANSMISSION OF POLLING CODE 

Tr : TRANSMISSION OF ONE OR MORE RESPONSES 
I: IDLE LINE 

TRAFFIC TO COMPUTER 

I P Tj Dp I P 1i 
. IliIii!AOO!!<IiI!ij! • ~ 

Tj: 1 RANSMISSION OF ACCUMULATED INPUT MESSAGES 
Dp: COMPUTER DELAY PRECEDING NEXT POLL 

(ASSUMED I SECOND IN THIS PAPER) 

Figure 2B-Typical cycle of operation (Full-duplex message 
Transmission) 



662 Fall Joint Computer Conference, 1969 

(G(I)-0.95) 
50.---------------------------------~~ 

o 45 
..... 
o 
~ 40 
-IA.I 
::>0 
~> 35 
0::0:: 

IA.I 

d'? 30 
z"­
zO 
~~ 25 
0::0 
IA.I« 

~ffi 20 
0 ..... 

~~ 15 
m:::E 
:::E 
::> 10 
z 

5 

ASSUMPTIONS 

ERLANG C APPLIE S 

PR[O~ISECS] -G(l) 

Ij- 3 MINUTES 

L--_.L-__ -L-_-1I __ IL-_. _J~_---.l 
o 5 10 15 20 25 30 35 

EV. AVERAGE VOICE LOAD 
(ERLANGS) 

Figure 3A-Effect of grade of service on number (If 
personnel required I~(x) = 0.95) 

EFFECT OF GRADE - OF- SERVICE 
ON NUMBER OF PERSONNEL REQUIRED 

(G (20) • Y) 

40 

50r-------·--------------------------__ ~ 

o 45 .... 
o 
~ 40 

5~ 
~> 35 
0::0:: 

IA.I 

jj '? 30 
z"­
zO 
~~ 25 
0::0 
IA.I« 

~~ 20 
0 .... 

~~ 15 
CD:::E 
:::E 
::> 10 z 

5 

o 5 

ASSUMPTIONS 

ERLANG C APPLIES 

PR [0 ~ 20 SECS] -0(20) 

Ii - 3 MINUTES 

10 15 20 25 30 

Ev. AVERAGE VOICE LOAD 
(ERLANGS) 

35 

Figure 3B-Effect of grade of service on number of 
per30nne] required [0(20) = y] 

40 

age voice load during the busy hour is 30 erlangs and 
the grade-of-service objective is such that calls should 
be answered within 20 seconds1 Figure 3B indicates 
that the fraction of calls that meet the objective can 
be increased from 0.9 to 0.975 by increasing the ~lUmber 

of representatives from 38 to 42. These a,dditional 
representatives could be individuals that are assigned 
as representatives only during busy hour conditions. 

Conversion of offered voiee load to data tra,file 

The amount of data traffic generated is dependent on 
the degree of interaction hetween customer repre­
sentatives and the computer. As an example, pro­
cedures could be outlined that would minimize the num­
ber of computer interactions per call by simply trans­
mitting in a single response as much as possible of the 
information in a computer file. On the other hand, if the 
intent were to minimize the information that must be 
read by representatives, several interactions could be 
used during which the computer eliminated most of 
the undesired information. Computer processing limita­
tions would favor the former method of operation; 
human factors considerations may favor th'B latter.3 

An illustration of the effect of interactions on the 
amount of data traffic generated for a half-duplex 
method of operation is presented in Figure 04:, which 
shows Ptot(T i, 'l1r) as a function of Ev. Let Type I in­
teractions be those in which whole pages of information 
are transmitted to the representative; parameter 
values assumed are t r = 300 characters and I == 3 
interactioIl9. Let Type II interactions be those in 
which more specific items of information can be re­
quested; values assumed are tr = 75 characters tmd 
j = 6 interactions. Figure 4 indicates that in order to 
accommodate 30 erlangs, the less interactive method 
would require at least two half-duplex data links where­
as one link may suffice for the Type II method, de­
pending on the specified retrieval time objective. 

Volume of data traffic allowed per data link 

For this example it has been assumed that the re­
trieval time objective would be stated as an averu.ge 
value, i.e., as if maX' Mathematical queuing; models 
have therefore been used for this example to aid in 
determining values of PeolTi, °Tr). Separate models were 
used to represent the half-duplex and full-duplex 
methods of operations; descriptions of these models 
and associated formulas are presented in the Appendix * ; 
a derivation of the formulas for the half-duplex model 
appears in Reference 4. 

* A computer simulation was used to verify the queuing model 
of the half-duplex method of operation. Values of T obta,ined with 
the queuing model were found to be conservative estlmates. 
Additional dhcussion concerning the results of the queuing model 
and the simulation appears in the Appendix. 



-

I.O,....-----------r-------~ 

I, -75 CHAR 

Y • 6 INTERACTIONS 

jSSUMPTIONS 
i -15 CHAR 

f. 0.2 y- 3 MIN 

o 10 

TI· T, • 120 CHAR/SEC 

15 20 25 

'lv. AVERAGE VOICE LOAD 
(ERLANGS) 

30 35 

Figure 4-Conversion of voice load to data traffic 

40 

The correspondence between Ptot (T i, T r) and T max was 
actually established in reverse, i.e., values of the average 
retrieval time T were calculated as a function of the 
total volume (in erlangs) of input and output data traffic 
carried by the data link. The five durations included 
in this retrieval time calculation are the following: 

Di= Delay of an input message awa;ting trans­
mission 

ti = Transmission time of the input message 

Op = Computer processing time, i.e., interival from 
the arrival of the input message until the 
appropriate response is entered in an output 
queue 

Dr = Delay of the response in a computer output 
queue 

tr = Transmission time of the complete response. 

T was obtained by summing the mean value of these 
intervals, i.e., 

The queuing models were used to determine values 
of 15i and Dr. Since the server in these models repre­
sents the data link, these delay values depend on 
the average occupancy of the data link. For the half­
duplex case, the average occupancy is numerically equal 
to Ptot(Ti, Tr), providing Ptot(Ti, Tr) < 1. For the 

Analysis of Cqmmunications; Aspects 663 

full-duplex case, the average occupancies of the input 
and output links are numerically equal to Pi(T,) and 
Pr (Tr), respectively, providing Pi(Ti) and pr(Tr) are 
both less than 1. 

Values for ti and tr were obtained from Equations 
(5) and (6). The value of C p was chosen to be two 
seconds; for other analyses, the value should be chosen 
to fit the characteristics and expected load of the 
system computer. With Op = 0, it should be noted 
that 1; represents the average retrieval time due solely 
to data communications, i.e., message queuing and 
message transmission. 

In Figures 5A and 5B, T is plotted as a function of 
the erlangs of data carried per link for the half-duplex 
and the full-duplex cases, respectively; in each plot, 
T' is shown for different average response lengths. For 
the half-duplex case, the erlangs of data carried per 
link is equivalent to the average data link occupancy. 
For each of the plots, as the erlangs of carried traffic ap· 
pro aches zero, T approaches the sum of ti, tr, Cp , and 
R, where R = 0.2 seconds for the half-duplex case 
and zero for the full-duplex case. Figure 5A can be 
converted into plots of T versus Ev by reference to 
Figure 4. 

Other communications parameter values assumed 
for the plots in Figures 5A and 5B are as follows: 

t, = 15 characters 

c2(t,) = 0.1* 

C2(tr) = 0.5 

(5p = 2 seconds 

Ti = Tr = 120 characters per second. 

The queuing models permit values of each of these 
parameters to be varied individually or in various 
combinations; by observing the results of such varia­
tions, insight is gained concerning which parameters 
most significantly affect T. As was mentioned pre­
viously, the graphs can also be used in reverse to deter­
mine the effect of parameter variation on values of 
Ptot(Ti, Tr) for specified values of Tm~' 

Number of customer representatives allowed 
per data link 

By relating values of Sand Ptot(Ti, Tr) appearing in 
Figures 3 ~nd 4, respectively, that correspond to equal 

* The coefficient of variation of a random va.riable y, which is 
denoted by c2 (y), is defined as follows: c2 (y) = Var(Y)/Y2. 



664 

12 

II 

10 

w 
9 :E 

l- e 
...J 
« .... 

7 >U) 
~o 
a::z 6 1-0 
wo 
a::w 5 U) 
w-
C) 
« 4 
a:: 
w 
~ 3 

II- 2 

0 

12 

II 

10 

w 9 ! 
l- e 
...J 
« 

7 > .... 
win 
_0 
a::z 6 ..... 0 
wu 
a::w 5 

In w .... 
C) 

4 « a:: 
w 
> 3 « . ..:- 2 

o 

Fall Joint Computer Conference, 1969 

ASSUMPTIONS 

Ai -15 CHARACTERS 

Ti - Tr - 120 CHAR/SEC 

C2(li)·0 .Ii C2 (lr)·0.5 
- -
R·0.2 SECi Cp • 2 SEC 

ERLANGS OF DATA CARRIED PER UNK 
(AVERAGE DATA LINK OCCUPANCY) 

}l'igure 5A-Effect of response length on average 
retrieval time (Half-duplex me.:lsage transmission) 

ASSUMPTIONS 

Li • 15 CHARACTERS 

C2(lj). 0.1; C2(.i r }. 0.5 

Dp-I SEC; Cp.2 SEC 

Tj • Tr " 120 CHAR/SEC 

1;. 150 C 
~ . -----­_---------.... 'z,. 75 CHAR 

ERLANGS OF DATA CARRIED PER LINK PAIR 
(INPUT PLUS OUTPUT TRAFFIC) 

1.0 

1.0 

Figure 5B--Effect of response length on average retrieval time 
(Full-duplex message transmission) 

values of Ev, a graph of S versus Ptot(Ti, Tr) was ob­
tained. This graph was then used in conjunction with 
Figure 5A, which shows T verSus Ptot(Ti, Tr) in order 
to obtain Figure 6A, which shows Smax versus T max 

for the half-duplex method of operation. Values of 

50.----A~S~S~U~MP~T~10~N~S---------------------~ 

45 
TI • !r • 120 CHAR/SEC 

"1·15 CHAR 

CpO 2 SEC 

V • 3 MIN 

GClO)· 0.95 ..H2li! 
"fWAX CAN BE ACHIEVED IF 

FALLS TO RIGHT OF CURVE. 

- --i . 75 CHAR !r· 300 CHAR 
..! ~ I ·3 INTERACTIONS 

""r~TI( 

35 

30 

,~ 

20 :5 
> 

15 :~ ." ,II: 
I~ 

10 ~ 
,..r 

o 2 3 4 5 6 7 B 9 10 II 12 I~I 14 
TWA)(' AVERAGE RE TRIEVAL TI ME OBJECTIVE 

( SECONDS) 

Figure 6A ---Effect of re."ponse length on pel'sonnel 
allowed per data link (Half-duplex message 

transmh;~ion ) 

Ev that correspond to values of Smax for G(20) = 0.95 
are indicated on the right-hand vertical boundary of 
the graph. Curves are plotted to depict the eft'ect of 
Type I and Type II interactions. Values of 'fimax that 
fall to the right of these curves can be achieved. 

The graph indicates that for the indicated para,m­
eter values, the more interactive procedure allows 
considerably more personnel to be served by a single 
data link. With Type I interaction, i.e., the less in­
teractive procedures, a T max of five seconds cannot be 
met. However, with Type n interactions, this objec­
tive can be met for values of S less than approximately 
35 representatives, which would be required to handle 
an incoming voice load of approximately 2(], erlangs. 
If a T max of three seconds is desired, it is obvious that 
some of the parameter values must be changed. Perhaps 
the transmission rates T, = Tr could be increased, or 
if possible, Cp could be reduced. Trade-oft's can thus 
be studied between data communications and eomputer 
processing capabilities. 

Figure 6B shows Smax versus T max for full-duplex 
message transmission. As expected, the graph indim;~teE' 
that full-duplex operation allows more representative~ 
to be served on one data link' than does h2~lf-duplex 
operation. Figure 6B also reveals that with full-duplex 
message transmission, a T max: of five or possibly four 
seconds can be met with ono data link while handlling 
30 erlangs of incoming voiee traffic. In compari8on, 
reference to Figure 6A revoals' that with half-duplex 
operation, two data links would be required 1:.0 meet a 
Tmax of five seconds with ltv = 30 erlangs; with one 
data link, T would equal approximately severt seconds. 



60 

415 
..J w z 40 

~ I 
~::i 315 

~ S 30 
~ 0 
U a: 
C tt! 215 

~I 20 

!~ 115 
x c a 10 

II) 

15 

0 

A"!r'Mt!S 
'1'1- 't;;' 120 otARISEC 

li -115 otAR 

Cp - 2 SEC 
Dp. I SEC 
-y. 3 fIIlN 

30 

6 (lOt-O.H 20 ~;; 
----..., ~i 

1. • 300 CtWt 
'i - 3 INTERACTIONS 

115 ~! :­
~ 

10 iC 

J&i 
Y _!~N~:~Cc;.:.( 

1

..ItQIl: 15 
\we CAN BE AotlEYED IF 

FALLS TO RIGHT OF CURVE. 

2 3 4 15 6 7 8 9 10 II 12 13 14 
TMAX, AVERAGE RETRIEYAL TlfIIE OBJECT lYE 

(SECONDS) 

Figure 6B-Effect of response lengt.h on personnel allowed 
per data link (Full-duplex message transmission) 

SU_Y.TMARY 

An analytical model has been presented that can be 
used for preliminary investigations of the voice and 
data communications aspects of inquiry-response sys­
tems. The model can be used to gain insight and to 
obtain conservative estimates of communications capa­
bilities required' in order for a system to meet speci­
fied grade-of-service objectives. 

In particular, the mathematical relationships ·in 
the model can be used to estimate quantities such as 
the number o' customer representatives required to 
handle incoming voice traffic and the volume of data 
traffic generated as a result of this voice traffic. 
These estimates in conjunction with retrieval time 
estimates are used to predict the number of data links 
required and the number of equivalently active input­
output terminals that can be served by a data link 
without exceeding a specified retrieval time objective. 

The model is useful for studying the sensitivity /of 
the voice and data communications requirements to 
changes in various communications parameter values. 
This insight can aid in limiting the cost of subsequent 
detailed system simulations. Also, the model can be us~d 
iteratively to determine which combinations of param­
eter values permit specified voice traffic and retrieval 
time objectives to be met most economically. 

As an illustration, the model is applied to a hypothet­
ical system. Requirements for full-duplex and half­
duplex message transmission are compared. The as­
sumed methods of operation are characterized by group 
polling of and delivery to a common control unit rather 
than individual input-output terminals. For this appli-

Analysis of Communications Aspects 665 

cation, estimates of average retrieval time as a function 
of erlangs of input and output data traffic were obtained 
by using delay formulas from mathematical queuing 
models. 

ACKN OW LEDGl\1ENT 

lVIr. E. J. Rodriguez wrote and ran the computer 
simulation referred to in this paper. His assistance in 
obtaining this data as well as other data appearing in 
the figures is much appreciated. 

REFERENCES 

A DESCLOUX 
Delay tables jor finite- and infinite-source systems 
McGraw-Hili Book Company Inc N Y 19624 

2 E C MOLINA 
Application of the theory of probability to telephone trunking 
problem8 
Bell System Tech Journal Vol 6 1927461-494 

3 D MEISTER D E F ARR 
The utiKation of human factors information by designers 
Human Factors Vol 10 1967 71-87 

4 J S SYKES 
Analytical model of half-duplex interconnection8 of comptl,ters 
IEEE Trans on Com Tech Vol 17 1969 235-238 

5 Analysis of 80me queuing model8 in real-time 8y8tems 
IBM Tech Pub Dept F20-0007-1 16 

APPENDIX 

Queuing models were used in the application section 
of this paper to represent the assumed method~ of 
operation of the data communications subsystem. This 
appendix contains a description of these queuing models 
as well as the associated delay formulas used for cal­
culating D i and Dr, two of the terms in the expression 
forT. 

H ali-duplex message transmission 

The queuing model selected to represent the assumed 
half-duplex method of operation is a single-server 
dual-queue model4 in which service is alternated be­
tween the two queues; a finite interval is required to 
switch service from one queue to the other. Each queue 
is assumed to have an independent Poisson input and 
an independent general service time distribution. The 
alternating priority rule is followed. With this rule, 
all customers entering a queue while that queue is 
being served are also served; when that queue even­
tually becomes empty, service can be switched to the 
other queue. 

In this model the single-server represents the data 
link that alternately allows transmission of the input 



666 Fall Joint omputer C~nference, 1969 

messages that accumulate in the control unit and the 
responses that accumulate in the computer. The 
service times in the model represent the intervals ti 
and tr required to transmit individual messages. The 
switching, or reversal, times represent the intervals 
required to reverse the direction of data link trans­
mission. For calculation purposes, it can be assumed 
that the reversal times also include the constant 
intervals required to transmit a fixed number of char­
acters for supervisory purposes., Examples are polling 
sequences to request input messages from a control 
unit and identification sequences that precede input 
messages to identify the transmitting control unit. 

Assu:ning the transmission times ti and tr have 
mean values 'ii and tr and coefficients of variation 
c2(t,) and C2(tr) and assuming, the facility reversal 
time R, the polling time PI, and the control unit identifi­
cation time P2 have constant durations, the formula for 
D i is as follows: . 

Pitigi Prgrtr(l - Pi)2 + p,giLPr2 

Di = + _____ ._1 --------

where 

2(1 - Pi) 2(1 - Pi) (1 - p) (1 -- P + 2P,Pr) 

(1 - Pi)(J) + .h) 
+--------

2(1 - p) 

P average occupancy of the data link 

= Pi + pr < 1 

Pi = Alti < 1 

p, = A,tr < 1 

J1 = (R + PI) 

J 2 = (R + P2) 

gi = [1 + c2(ti)] 

g, = [1 + C2(tr )] 

Note that as P ~ 0, 

(J1 + J 2) 

Di~---.-

2 , 

The formula for Dr is identical to the one shown for Di 
with all i subscripts changed to r's and vice versa. 

Two additional formulas th~t may be helpful in 

estimating storage usage at the control unit and at the 
computer are the following, which give the average 
number of input messages and responses, respectiv1ely, 
that would be included in a multimessa~~e trans­
mission: 

(1 - p) 

A,[J 1 + J 2] 

Nr = ------
(1 - p) 

A computer simulatio:n was used to determine how 
well this queuing model represents the assumed mE,th­
od of operation. Values of T obtained with thE~ queuing 
model were found to be conservative. In general, the 
best agreement was obtained as long as value8 of P were 
less than 0.6 to 0.7; differences were within a range 
from zero to 15 percent. With most combinations of 
parameter values, the disparity increased significantly 
for values of P exceeding 0.8; La., the queuing model ga,ve 
.overly conservative estimates of T. Agreement im­
proved as the value of a = tr/ii decreased and/or the 
value of Ti = Tr increased. 

The disparity can be explained as follows: in the 
simulation the arrival pattern of responses in the com­
puter output queue was not quite as r~ndom as is ex- . 
pected for Poisson arrivals, which are assumed in the 
queuing model. A principle of queuing theory is that 
as regularity of arrivals and, service times incref~se, 
the average delay decreases.s Excellent al~reement 

between the results of the queuing model and the simula­
tion were achieved when the value of Ar used in the 
queuing model was set equal to 0.9 times the Ar Ul3ed 
for the simulation. 

Full-duplex message transmission 

Independent models were selected to represent the 
input message queue and the response queue in the 
assumed full-duplex method of operation. Polling inter­
ference on the delivery line W3,S assumed to be negligible. 

For the response queueJ the classical MIGII model was 
assumed. For the input message queue, an accumulat.ion 
interval of Dp seconds was assumed prior to each poU. 
This situation was modeled as an M/G/1 queue with a 
setup time of Dp. Assumptions for ti and tr are the 
same as stated for the half-duplex case. Formulas for 



Analysis of Communications Aspects 667 

D, and Dr are as follows: Expressions for N i and N r for this case are as follows: 

Xit~[1 + C2(ti)] Dp 
Di = --------- + - ~, = -----; Dp > 0 

2(1 - Pi) 2 (1 - PI) 

A/t~[l + c2(t r )] 1 
Dr = -----.---- Xr = -~-.--. 

2(1 - Pr) 1 - Pr 





A study of asynchronous time division 

multiplexing for time-sharing computer 

systems 

byW.W.CHU* 

Bell Telephone Laboratories, Incorporated 
Holmdel, New Jersey 

INTRODUCTION 

In order to reduce the communications costs in time­
sharing systems and multicomputer communication 
systems, multiplexing techniques have been introduced 
to increase channel utilization. A commonly used 
technique is Synchronous Time Division Multiplexing 
(STDl\I). In Synchronous Time Division Multiplexing, 
for example, consider the transmission of messages 
from terminals to computer, each terminal is assigned 
a fixed time duration. After one user's time duration 
has elapsed, the channel is switched to another user. 
With synchronous operation, buffering is limited to 
one character per user line, and addressing is usually 
not required. The STDM technique, however has 
certain disadvantages. As shown in Figure 1,' it is 
inefficient in capacity and cost to permanently assign 
a segment of bandwidth that is utilized only for a 
portion of the time. A more flexible system that effi­
ciently uses the transmission facility on an "instanta­
neous time-shared" basis could be used instead. The 
objective would be to switch from one user to another 
user whenever the one user is idle, and to asynchro­
nously time multiplex the data. With such an arrange­
ment, each user would be granted access to the channel 
only when he has a message to transmit. This is known 
as an Asynchronous Time Division Multiplexing 
System (ATDM). A segment of a typical ATDM data 

* Present address: Computer Science Dept., UCLA, Los Angeles 
California, 90024. 

stream is shown in Figure 2. The crucial attributes of 
such a multiplexing technique are: 

1. An address is required for each transmitted 
message, and 

2. Buffering is required to handle the rahdom 
message arrivals. ** 

If the buffer is empty during a transmission interval 
the channel will be idle for this interval. ' 

An operating example of an ATDM system for 
analog speech is the "Time Assignment Speech Inter­
polation" (TASI) system used by the Bell System on 
the Atlantic Ocean Cable.1 Using TASI, the effective 
transmission capacity has been doubled and the system 
operates with a negligible (with respect to voice trans­
mission) overflow probability of about 0.5 percent, 
even without buffering. 

The feasibility of the· ATDM system depends on: 
(1) An acceptably low overflow probability-of the 
same or lower order of magnitude as the line error 
rate--that can be achieved by a reasonable buffer 
size, and (2) an acceptable expected message queuing 
delay due to buffering. To estimate these parameters, 
analyses of the statistical behavior of the buffer are 
presented below. The user-to~computer traffic is in 

* * There may be other reasons for providing buffering such as: 
tolerating momentary 103S of signals (e.g., fading), momentary 
interruptions of data flow, permitting error control on the line, 
etc. Under these conditions, the buffer should be designed to 
-satisfy also the above .specific requirements. 

669 



670 Fall Joint Computer Conference, 1969 

----------------------------------------------------------

ASYNCHRONOUS 
TIME-DIVISION MULTIPLEXING 

~ DATA FROM USER "A"AT THE i TH CYCLE 

Figure 1--Time-division multiplexing 

(a) USER·TO- COMPUTER DATA STRUCTURE 

I ADS ~EI ADS ~[~_-_-~_-_-_-_~ --IADS~EI 

(b) COMPUTER -TO - USER DATA STRUCTURE 

ADS ADDRESS 

E END OF MESSAGE 

~ MESSAGE 

Figure 2-Asynchronous time diyision multiplexing 
data stream 

units characters, while the computer-to-user traffic is 
in units strings of characters which we shall call bursts. 
The length of the bursts are d~fferent from one to 
another and are treated as random variables. Because 
of the asymmetrical nature of the traffic characteristics, 
the statistical behavior of the buffer in the user-to­
computer multiplexer and the co~puter-to-user multi­
plexer are quite different and, therefore, are treated 
separately. An example is given to illustrate the multi­
plexer design in a time-shared; computer-communi· 
cations system that employs A TDM ·technique. 

Analysis oj buffer behavior 

User-to-computer buffer 

An ATDM system consists of a buffer, encoding/ 
decoding circuIt, and a switching :circuit (in the case of 
mUltiple multiplexed lines) as sh9wn in Figure 3. For 
the analysis of the statistical behavior of user-to­
computer buffer, the character (fixed length) arrivals 

ENCODING 
a 

DECODING 

COMP\fTltR 

t--__ .....:MU=LT.:.:.;IPL=E=:;:XE:=..,D ........ .=.L::.::INE=--_____ -I8UFFERI~IG 

Figure 3-Asynchronous time division multiplexing 
system for time-sharing computer communication'! 

from the sources to the buffer are assumed to be gener­
ated from a renewal counting process; that is, the 
character interarrival times are independent and 
identically distributed. Since the line transmits with 
constant speed, the time it takes to transmit each 
fixed length character (service time), 1/ #-" is assUlned 
to be' constant. For reliability and simplicity in data 
transmission, synchronous transmission is assumed. 
The data are taken out synchronously from the buffer 
for transmission at each discrete clock time. The d~l.ta 
arriving at the buffer during the periods between clock 
times have to wait to begin transmission at the begin­
ning of the next clock time, even if the transmission 
facility is idle at the time of 3,rrival. In queuing theory 
terminology, the above system implies there is a gate 
between the server and waiting room which il3 opened 
at fixed intervals. Thus we shall analyze the queuing 
modelt with finite buffer size (waiting line) and synchro­
nous multiple transmission channels (servers). Powell 
and Avi-I tzhak2 analyzed 3. similar queuing model 
with an unlimited waiting line. Birdsall,s and later 
Dol" analyzed a queuing model with limited waiting 
room but with a single server. In here, the model is 
generalized to accommodate multiple servers with 
limited waiting room. 

To establish the set of state equations for analysis 
of a buffer with a size of N nharacters and e serve.rs, 
we assume that the system has reached its equilibrium. 
Let Pn be the probability that there are exactly n 
characters in the system (in the buffer and in servi,~e) 
at the end of a service time, and ac be the pr.obabil:ity 

t The results derived from this study can also be used as a con­
servative estimate (upper bound) for the case in which the lines 
are permitted to transmit the characters arrived during the 
service interval. The estimate yields better approximation for 
the heavy than light traffic intensity case. Because under heavy 
traffic case, the lines are usually all busy and the charaeters that 
arrive during the service interval have to wait and cannot be 
serviced during the service interval. The maximum over design in 
8. buffer syatem with c transmission lines that permits to transmit 
the characters arrIved during service interval is c characters. 



Study of Asynchronous Time Division Multiplexing 671 

there are no more than c characters in the system at 
that time, i.e., 

c 

a c = L: Pi -(.1) 
i=O 

Without loss of generality, we can let the service 
interval equal to unity. We shall express the proba­
bility of number of 'characters present in the buffer at 
the end of the unit service time interval (left side of 
equation (2)) in terms of the probability of the number 
present in the system at the beginning of the interval 
(right side of equation (2)), multiplied by the proba­
bility of a given number of characters arriving during 
the service interval. As this can occur in different 
combinations, we add the probabilities. With synchro­
nous transmission, all characters in service. would 
finish their service and leave this system at the end of 
a service interval. 

Thus in a unit service interval of time, we have 

po = ac7l"o 
PI = a 0 7l"1 + pc+l7l"o 
P2 = ac7l"2 + pc+l7l"1 + pc+271"O 

Pn = ac'1l"n + pC+171"n-l + ... + PHn-171"1 
+ Pc+n7l"O, for n :s; N - c (2) 

pn = ac'1l"n + pc+t'1l"n-l + 

N 

l2 Pi = 1 
i-O 

+ pN-171"nH-(N-c) + pN7I"n-(N-c) 

for N - 1 ~ n > N - c 

Due to limited buffer size, 

Pi>N = 0 

Where 

(3) 

71"110 = probability of n characters originating from a 
renewal counting. process during a service 
interval 

N = buffer length in characters 

c = number of transmission lines 

The first equation describes the case in which the 

buffer is vacant, if no more than c characters are in 
transmission at the beginning of the interval, and no 
arrivals occur during the interval. The second equation 
describes the case in which one character is in the buffer 
if no more than c characters are in transmission at the 
beginning and . one arrives during the service time 
interval; or there are c + 1 in the buffer at the be­
ginning and no character arrives during the service 
interval, etc. In the numerical computation carried 
out in this paper, we assume the character arrivals 
are generated from a Poisson process; that is, 71"110 = 
exp( -- Au)A~/n!, where Au is the average character ar­
rival rate to the user-to-computer buffer (offered load) 
from the m independent users. Since the buffer has a 
finite size of N, Pi>N = 0. Thus, when a character 
arrives and finds the buffer is full, an overflow will 
result. Therefore, the average character departure rate 

: from the user-to-computer buffer (carried load), au is 
less than the offered load from the users Au. The carried 
load can be computed from the buffer busy period 

c-l N 

au = L: i'Pi +c L: Pi (4) 
i=O i-c 

The overflow probability of the user-to-computer 
buffer, the expected fraction of total number of charac­
ters rejected by the buffer, is then equal to 

P _ offered load-carried load = 1 _ au/Au (5) 
oj - offered load 

The traffic intensity from user-to-computer, Pu, 

measures the degree of congestion and indicates the 
impact of a traffic stream upon the service streams. 
I t is defined as 

(6) 

Channel (server) utilization, 1], measures the fraction 
of time that the lines are busy. It can be expressed as 

(7) 

Since physically it is impossible for the transmission 
lines to be more than 100 percent busy, the utilization 
is limited to a numerical value less than unity. In the 
no-loss case (unlimited buffer size), P oj = 0, then 1] 

== p. 
The time average queuing length in the uset-to-

computer buffer, Lu , is equa,} to 



·672 Fall Joint Computer Cqnference, 1969 

N 

Lv. L: (i - C)Pi + Av./2 characters 
i-o for N > c. (8) 

The first term in Equation (8) is: the expected number 
of characters in the system at the beginning of a service 
interval. Since the characters could not leave the 
system during the service interv~l, we add the time 
average number of character ~rrival (for Poisson 
arrivals) during the service interVal which is Au/2. The 
expected (time average) queuing delay of each charac­
ter at the user-to-computer buffer due to buffering, 
Dv., can be evaluated by using Little's/) result. We have 

Dv. = Lu/(Au(1 - Po,)) ~ervice times (9) 

For the single server case, that is, c = 1, the set of 
state equations (2) becomes ali imbedded Markov 
Chain, and can be solved itera~ively to obtain the 
state probabilities as shown in ~eferences 3 and 4. 
For the multiple server case, however, the multiple 
dependence on the various states prevents us from 
using the iterative techniques for solution. Thus, the 
set of state probabilities, p/s, mu~t be solved from the 
set of linear matrix equations (2) .• The overflow proba­
bility, queuing delay, and queue length are then com­
puted from the pi's via Equations 4:,5,8 and 9. 

The size of the matrix (Equation 2) corresponds to 
the buffer length. The matrix equation was solved by 
the Gauss elimination method.6 For purposes of ac­
curacy, double precision was useq. in all phases of the 
computation. From the character arrival rate, Au, the 
coefficient values can be comput~d from (2) and they 
are stored in the computer program. Due to the limi­
tation of the computer word size~ double precision on 
IBM 360/65 provides 15-digit accuracy. Therefore, 
when the coefficient value is less than 10-16, it is set 
equal to zero. The computation time required to solve 
this type of system equation is largely dependent on 
its size. For a 10 X 10 matrix the: computation time is 
about 0.8 seconds, while a 50 X 50 matrix equation 
takes about 1.67 minutes. 

Numerical results are presented in Figures 4, 5 and 
6. These results reveal the relationships among the 
overflow probabilities, number of transmission lines 
used, traffic intensities, and buffer sizes. 

Computer-to-user buffer 

In a previous section, the buffer behavior has been 
ana1yzed for a finite queue with multiple server, 
Poisson arrivals, and constant service time, which 
corresponds to the users-to-colnputer traffic. The 

c 
en 

~.S 1>.1 
::I 
j: 

CI> 
z 
Q 

3.0 -I 
0 
:c 
II: 

~ 
U 
c[ 2.S II: 
c[ 
:c 
u 
~ 

~ 2.0 

~ 
CI> 
il 

~ I.S 
0 

~ 
u 
It! 1.0 x 
1>.1 

o.S 

LCr 
Lc=}4 
Lc=Y! 
Lc:Y! 
LCr 

I x 10 -10 L.---L_ . .JI.,..-....J.._~I ::---1-~~-..J. __ I~--L1 --L-
Co: I 0 5 10 20 40 SO 
C-S 5 10 IS 25 35 45 55 

BUFFER SIZE IN CHARACTER LENGTH. N 

Figure 4-0verflow probability vs buffer size 

C-I 

C· i! 

~ 
0 10 IS 20 25 
~ __ -+ ____ ~ __ ~~ __ ~~ __ ~ ___ L-_.--L--

30 35 40 

BUFFER SIZE IN CHARACTER$, N 

Figure 5-Expected queuing delay vs buffer size 



Study of Asynchronous Time Division Multiplexing 673 

2.5 

0.5L---::-,--",==::~:::::;;;;;~~~;::;;;;~_~~~~~~ o 0.1 0.2 0.3' 0.4 0.5 0.' 0.9 
TRAFFIC INTENSITY. II' 'A IC,. 

Figure 6-Expected queuing delay vs traffic intensit y 

computer-to-user traffic, however, is quite different 
from the users-to-computer traffic. The central pro­
cessor of a time-sharing computer sequentially per­
forms fractions of each user's job and the output 
traffic to the users are strings of characters which we 
shall call bursts. The length of the bursts are different 
from one to another and are treated as random vari­
ables. It is assumed that the internal processing speed 
of the computer is very fast as compared to the line 
transmission speed. Further, it is assumed that the 
various processing tasks generated by the user-com­
puter interaotions are independent from one user to 
another and have exponential interarrival times for 
a given user. In ATDM operation with these assump­
tions, the arrivals of bursts at the common output 
transmission buffer for the group of users are approxi­
mated as random. In this section, we shall analyze this 
buffer behavior under the assumptions of a finite queue, 
single server with batch (burst) arrivals, and constant 
service time. 

Using the burst length and traffic intensity as param­
eters, we would like to find the relationships among 
the overflow pr"'obabiJities, expected burst delays due 
to buffering, and buffer Edzes. 

Let us consider the case that the burst length, L 
is geometrically distributed with mean, t = 1/0; and 
the number of bursts arrived during a unit service 
interval (time to transmit a character from the multi­
plexed line), N, is Poisson distributed with mean, Ac 
bursts/service time. The distributions of Land N are 
as follows: 

f = 1,2, ... 

n = 0,1,2, ... 

(10 ) 

(11) 

The total number of characters that arrived during 
the time to transmit a character on. the mUltiplexed 
line is a random sum, SN, and is equal to 

(12) 

where L i , a random variable distributed as (10), is 
the number of characters contained in the ith arriving 
burst. N, a random variable distributed as (11), is 
the total number of bursts arriving during the unit 
service interval. For simplicity in notation, we let 
S = S~ 

The characteristic function of S, cf> s(u), can be ex­
pressed in terms of the characteristic function of. Lt. 
cf>t(u) , and Ac. 

Since the burst lengths are geometrically distributed 
the characteristic function of L is 

"'L(U) = OoeXP(iU)/( 1 ~ (1 ~ O)exp(iU») (14) 

. where i = Y=1. Substituting (14) into (13), then 

cf>s(u) = exp[- Ac + Ac·O·exp(iu)/ 

(1 - (1 - O)exp(iu))] (15) 

From (15), it can be shown that the probability 
density of j characters arriving during a unit service 
interval, f(S = j) = fj, is a compound Poisson distri­
bution as shown in (16) 

fj = f(S = j) 

t (j - 1 ) ( AcO ) k 

k=l k -- 1 

(l - 0) i-kexp ( -Ac)/k! 
j = 1,2, ... 

exp( -Ac) j = 0 
(16) 

The expected value of S is given by E[S] = E[L]E[N] 
A/O, and the variance of S is given by 

Var[S] = A(2 - 0)/02 (17) 



674 Fall Joint omputer Con~erence, 1969 

The time required to compute the probability density 
function of S, fil from (16) is dependent on the size of j. 
For large j (e.g., j > 1000), the computation time 
could be very large and prohibitive. A convenient and 
less time consuming way to compute fi is from cJ>B(U) by 
using the Fast Fourier Transform7 • inversion method as 
follows: 

M 

fi = L cJ>s(r)exp[ -2'1rirj/M] 
,.-1 

j = 0, 1, 2, "', M - 1 (18) 

where 

I' = 27ru/M 

M ::::: total number of input points to represent 
cJ>s(r) = total number of output values of fi . 

In order to accurately determine cJ>s(r), it is computed 
with double precision on the IBM 360/65. Further, we 
would like to use as many points; as possible to repre­
sent cJ>s(r); that is, we would like to make IVI as large 
as possible. Because of the word length limitation of 
the computer, double precision provides 15-digit ac­
curacy. Therefore, when fi < 10~111, it is set equal to 
zero. M is selected such that fi>M < 10-111 . The M's 
are different for different values of>.c andl. 

The following is the set of state equations for a 
buffer size of N characters with batch renewal arrivals, 
single server, and constant output rate. 

or 

and 

n 

Pn = 7rOPn+l + L 7rn-i+1Pi +7rnPo 
i-l 

n = 0, 1, 2, "', N - 1 

N 

L Pi = 1 (20) 

(21) 

The above equations are reduced 'from Equation (2) by 
letting c = 1. 

The average character departure rate from the buffor 
(carried load), a c, is less than the average character 
arrival rate to the buffer (offered load), {3 = Ac/8, 
from the computer. The carried load can be computed 
from the probability that the'buffer is idle, 

ClIc = 1 -po 

The overflow probability of the buffer with burst 
input, the expected fraction of total number of char~w­
tel'S rejected by the buffer, is equal to 

offered load-carried load 
P~f = ---------­

offered load 
1 - a./{3 (23) 

The traffic intensity from computer-to-user is 

The set of state Equations (19) is an imbedded 
Markov Chain. In the following numerical compu­
tations, we shall assume that the character arrivals 
are generated from a compound Poisson procc~ss, i.e., 
7ri = f i • The state probabilities can be solved iterative­
ly and expressed in terms of po. From (20), we can 
find the value of po. Thus we find all the state proba­
bilities. The overflow probabilities for various burst 
lengths can then be computed from (23). These results 
are presented in Figure 7 which provides the relation­
ships (at pI oJ = 10~) between burst lengths and buffer 
sizes for selected traffic intensities. 

In the above 9.nalysis, we have treated each charac­
ter as a unit. However, in computing the expected 
burst delay, Dc, due to buffering, we should treat ef~ch 
burst as a unit. The service time is now the time re­
quired to transmit the entire burst. For a line with 

e,le --""""=--~~~,e~2 ~~~~:::=='-~";3-~-
BUrFER I..ENGTH (CHARACTERS)' N 

Figure 7-Buffer length vs avercl.ge burJt length, 
P:, = 10-0 



Study of Asynchronous Time Division Multiplexing 675 

constant transmission rate, the service time distribution 
is the same as the burst length distribution except by a 
constant transmission rate factor. When overflow 
probability is very small, for example, p l

01 = 10-6, 

then Dc can be app~oximated by the expected burst 
delay of the infinite waiting room with Poisson Ar­
rivals and single server with geometric service time, 
M/G/l, mode1.8 •9 Hence 

Dc = AE(L2) = Ac(2 - 8) 
2(1 - p) 2(8 - Ac) 

character-holding times (25) 

where E(L2) = second moment of burst length, L. The 
delays are computed from (25) for selected traffic 
intensities and burst lengths. Their results are por­
trayed in Figure 8. 

1000~~~--~--r---.---.---.---,----r--~ 

0 

ui 
w 
:e 
...... 
I 

C) 
z 
0 
...J 
0 
J: 
I 

a: w 
...... 
v 
<t 
a: 
<t 
J: 
V 

~ 
>-
<t 
...J 
W 
0 

C) 

~ 
::> 
w 
:::> 
0 
...... 
V) 

a: 
:::> 
CD 

0 
W 
...... 
v 
w 
n. 
x 
w. 

60 

40 

20 

100 10 

4 

2 

10 

O.IL-__ L-__ L-__ L-__ L-__ ~ __ ~ __ ~ __ -L __ ~ 

0.1 0.2 0.4 0.6 0.8 1.0 
TRAFFIC INTENSITY P = 'A.J/fL 

Figure 8-Traffic intensity VB expected burst queuing 
delay 

Discussion oj results 

We shall first discuss the user-to-computer buffer 
behavior. Figure 4 portrays the relationships between 
overflow probabilities and buffer size for selected 
traffic intensities and selected numbers of servers. The 
curves for two.;,., three-, and four-servers lie in the 
region between the single and the five-server curves. 
For a given traffic intensity, the overflow probability 
decreases exponentially with buffer size. For a typical 
traffic intensity of 0.8 ,a buffer of twenty-eight charac­
ter length will achieve an overflow probability in the 
order of 10-6. A larger buffer size is needed for Pu > 0.8 
in order to achieve the same degree of buffer perfor­
mance. For a given p, the queuing delay increases as 
the overflow probability decreases (or the buffer size 
increases). When the overflow probability is less than 
10-4 (for pu = 0.8, this overflow probability corresponds 
to a buffer size of about eighteen characters), the delay 
increment with buffer length becomes negligible and 
the delay can be approximated as independent of buffer 
size as shown in Figure 5. 

For the data transmissions in time-sharing systems, 
the buffer overflow probability should be somewhat 
less than the line error rate. For currently available 
lines, the error rate is about 10-5 • Therefore from 
Figure 5, we know that the queuing delay range of 
interest is almost independent of the buffer length. 
Figure 6 describes the queuing delays (at overflow 
probability = 10-6) for various traffic intensities. The 
queuing delay increases exponentially with P. For a 
given p, the queuing delay decreases with the increase of 
number of servers. Figures 4 and 6 agree with our 
intuition that whenever multiple servers are needed, 
it is always advantageous to use a common buffer 
rather than using several single lines with separate 
buffers. 

N ext we shall discuss the computer-to-user buffer 
behavior. The overflow probability depends upon the 
buffer size, the traffic intensity, and expected burst 
length. For a given average buffer length, the overflow 
probability increases as the traffic intensity increases. 
For a given traffic intensity, and a desired buffer 
overflow probability, the required buffer size increases 
as the average burst length increases. Figure 7 provides 
the relationships between the average burst length 
and required buffer size to achieve an overflow proba­
bility of 10-6 for selected traffic intensities. 

When the average burst length equals unity, then 
the result reduces to the case of Poisson arrivals, 
single server and constant service time as had been 
analyzed.8 •4 For a given traffic intensity, required 
buffer size for average burst lengths tCe > 1), Nt, to 



676 Fall Joint Computer Conference, 1969 

achieve the same degree of overflow probability is 
much greater than that for unity burst length, N l . In 
general, N( > tXN1• As t increases, the difference be­
tween Nt and tXN l increases. For example, for Pc 

= .8, t = 1, the required buffer size to achieve Plol 

= 10-6 is N 1 = 28 characters. When t = 4, then from 
Figure 7, N4 = 212 > 4 X28 = 112 characters. In 
the same manner, if f, = 20, N20 = 1200 > 20X28 
= 580 characters. This is due to the fact that the 
variance of S is proportional to t as shown in (I 7). 
Figure 8 portrays the relationship between expected 
burst queuing dela,y and traffic intensity for selected 
expected burst lengths. For a given expected burst 
length, the expected queuing delay increases as traffic 
intensity increases; for a given traffic intensity, the 
expected queuing delay increases with burst length. 
These are important factors that affect the delay. 

Optimal design of multiplexing system 

Let us first consider the design of the user-to­
computer multiplexer. Based on the user-to-computer 
traffic characteristics, the number of user terminals, 
maximum allowable queuing dela.y, and overflow 
probability, several different buffer system configu­
rations might satisfy the desired requirements. Hence 
there are trade-offs among the number of transmission 
lines we might use, the transmissjon rates of the lines, 
and the buffer sizes. We would like to design the multi­
plexing system whose total cost (t:ransmission cost and 
buffer storage cost) is minimum. One way to proceed 
with this is first to select the set of possible multiplexing 
system configurations based on the queuing delay 
requirements from Figure 6. Based on the maximum 
allowable overflow probability, we can obtain the 
required buffer length for this set of possible multi­
plexing system configurations. The optimal user-to­
computer part of the multiplexing system can then be 
selected as that which minimizes the cost of the system_ 

Next, we shall consider the optimizations of the 
computer-to-user multiplexer. Data collected from 
several operating time-sharing systemslO revealed that 
the average number of characters sent by the computer 
to the group of users is an order of magnitude greater 
than the number of characters sent by the group of 
users to the computer. Thus, using high transmission 
rate line for computer output data would significar. tly 
reduce in buffer size and the queuing delay due to 
buffering. Further, the change in the computer system 
such as changes in the scheduling algorithmll- 17 in the 
central processor can strongly influence the computer 
output traffic statistics, which will directly affect the 

buffer performance, and the design of the decoding 
system. 

In practice, we ,,,"ould like to design a system that 
has minimum total cost yet satisfies all the require­
ments such as the inquiry-response delay, average 
holding time of each user, etc. Since the multiplexing 
system and the central processor intimately interaet 
with each other, the multiplexing system should be 
treated as a subsystem of the time-shared computer 
system. The economical and performance optimization 
should be carried out jointly between the central pro­
cessor and available communication facilities. 

Example 

Consider the design of a time-sharing system that 
consists of many remote terminals and that employs 
the ATDl\1 technique with full duplex operation be­
tween the terminals and the central processor. M:easure­
ments of the traffic characteristics from several oper­
ating systems have revealed that the character inter­
arrival time per user line can be approximated as 
exponentially distributed with mean about 0.5 seconds.10 

Thus, the character arrivals can be treated as Poisson 
arrivals with a rate of 2 char/sec. A reasonable c:onserv­
ative guess is that 50 percent of the transmitted 
information is sufficient for addressing and fl~aming. 
Voice-grade private lines can easily transmit 240 chari 
sec from users. Suppose this operating system I~onsists 
of m = 48 terminals, all the terminals are assumed 
to be independent and have the same traffic character­
istics. The buffer is designed such that the overflow 
probability is less than about 10-6. We shall use our 
model to determine the buffer size and the a,vera!~e 
queuing delay incurred by each character. 

The traffic intensity is Pu = 1.5 XmAu/ CJLu := 1.5:X 
48X2/240 = 0.6. To achieve the desired overflow 
probability, from Figure 4, the required buffer length 
is 14 characters. From Figure 6, the normalized queuing 
delay due to buffering is equal to 1.25 holding times. 
Since each holding time is equal to 1/ JLu = 1/240 = 4. Jl6 
millisecond, the waiting time of each character is 5.06 
milliseconds. Now suppose the number of termina.ls 
is increased from 48 to 96. In order that traffic intensity 
be less than unity, two transmission lines are required 
and the traffic intensity is still equal to 0.6. From 
Figure 5, the buffer length corresponding to the desired 
overflow probability for two transmission lines is 
about 14 characters. The waiting time is about 0.8 
holding times which is equal to 3.33 milliElecondls. 
Although the difference between 5.06 milliseconds and 
3.33 milliseconds may not be detected by a UBer at a 



Study of Asynchronous Time Division Multiplexing 677 

terminal, a common buffer of the same size operating 
with two ou~put lines can handle twice the number of 
input lines as with one output line. Thus, the' common 
buffer approach permits handling a wide range of 
traffic without substantial variation in buffer size. 

Next, we shall consider the buffer design problem 
that employs the ATDM technique to transmit data 
from. central processor to remote terminals. The traffic 
statistics as well as the message length are different 
from that of the users. The burst interarrival timelO 

can be approximated as exponentially distributed 
with a mean of 2.84 seconds. Thus, the bursts can be' 
approximated as Poisson arrivals with a rate of Xc = 

0.35 bursts/sec. Further, data collected in the same 
study indicate that the burst length can be approxi­
mated as geometrically distributed with a mean of t 
= 20 characters. Suppose we use a wideband trans­
mission line that transmits 480 char/sec to provide 
communications from the central processor to 48 ·ter­
minals. Assuming 20 percent of the transmitted 
information is used for addressing and framing, then 
the traffic intensity, Pc = 1.2XJ,,uc ~ 0.84. To achieve 
an overflow probability of 10-6, from Figure 7, we 
find that the required buffer size is 1,400 characters. 
From Figure 8, the expected queuing delay for each 
burst is 85 character-holding times, or 85/480 = 0.176 
seconds. 

Suppose now we changed our transmission rate from 
480 to 960 char/sec; then the traffic intensity Pc ~ 0.42. 
The corresponding required buffer size in order to 
achieve an overflow probability of 10-6 is 480 charac­
ters, and the delay is 15 character-holding times or 
16 milliseconds. Thus, these results also provide in­
sight regarding the trade-uff between transmission 
costs and storage costs. 

The above example is based on the output traffic 
characteristics of a specfic computer scheduling algo­
rithm. As the output traffic statistics changes with 
different scheduling algorithms, the buffer performance 
in the multiplexing system is affected. To design an 
optimal ~ystem, we should jointly optimize the sched­
uling algorithm and the multiplexing system such that 
yield minimum total cost and also meet the required 
system performance such as maximum allowable 
inquiry-response delay, desired overflow probability" 
etc. 

CONCLUSIONS 

Queuing analyses indicate that for an allowable over­
flow probability and queuing delay, moderate buffer 
sizes can be achieved for asynchronous time division 
multiplexing for time-sharing computer systems. 

Further, when multiple transmission lines are required, 
better buffer performa.nce will be achieved by using a 
common buffer rather than by using separate ones. 

Because of the asymmetric nature of the traffic 
characteristics of user-to-computer transmission versus 
computer-to-user transmission, a much larger buffer 
is required for the computer-to-user mUltiplexer to 
handle the larger volume of data generated by the 
central processor. 

The mUltiplexing system and the central processor 
in a time-shared environment directly interact with 
each other. To design an optimal operating syst~m, 
we should jointly optimize the central processor and 
the multiplexing system (for example, the interaction 
between scheduling algorithm and buffer performance) 
to obtain a mi:g.imum cost system that meets the system 
performance requirements. It is apparent that closer 
coordination between the computer and communi­
cation system designs would be fruitful in terms of 
economics and technological improvements to the 
overall system design. 

ACKNOWLEDGMENTS 

The author wishes to thank E. Fuchs and D. Heyman 
of Bell Telephone Laboratories for their helpful dis­
cussions. 

REFERENCES 

1 K BULLINGTON J M FRASER 
Engineering aspects of T AS! 
B S T J March 1959 353-364 

2 B A POWELL B AVI-ITZHAK 
Queuing system with enforced idle time 
Operations Research Vol 15 No 6 Nov 1967 1145-1156 

3 T G BIRDSALL et al 
Analysis of asynchronous time multiplexing of speech source8 
IRE Trans on Communications Systems Dec 1962390-397 

4 N M DOR 
Guide to the le'Yfflth of buffer storage required for random 
(Poisson) input and constant output rates 
IEEE Trans on E C Oct 1967683-684 

5 J D C LITTLE 
A proof of the queuing formula L = }o., W 
Operations Research Vol 9 1961 383-387 

6 R WHAMMING 
Numerical methods for scientists and engineer8 
McGraw-Hill Book Co Inc N Y 1962363-364 

7 W M GENTLEMAN G SANDE 
Fast fourier transforms--for fun and profit 
Proc FJCC Vol 29 563-578 

8 N U PRABHU 
Queue8 and inventories 
John Wiley and Sons Inc NY 196542 

9 PM MORSE 
Queues Inventories and Maintenance 



678 Fall Joint Computer Conference, 1969 

-----------------------------------------------------------------------------------------,-------
John Wiley and Sons Inc 1958 15-18 

10 P E JACKSON C D STUBBS 
A study of multiaccess computer communications 
Proc SJCC Vol 34 1969491-504 

11 A L SCHERR 
An analysis of Time-Shared Computer Systems 
MIT Research Monograph No 36 MIT Press Cambridge 
Mass 1967 

12 P E DENNING 
Effect of scheduling on file memory operations 
Proc SJCC Vol 30 19679-21 

13 J E SHEMER 
Some mathematical considerations of time-sharing scheduling 
algorithms 
JACM Vol 14 No 2 April 1967 262",272 

14 E G COFFMA:N JR 
A nalysis of two time-sharing algorithms designed for 
limiting swapping 
JACM July 1968 

15 E G COFFMAN L KLEINROCK 
Feedback queuing models for time-shared system 
JACM Vol 15 No 4 Oct 1968549-576 

16 L KLEINROCK 
Certain analytic results for time-shart5d processors 
Proc IFIP Congress 1968 Edinburgh Scotland Aug ,5-10 
1968 D1l9-D125 

17 W W CHU 
Optimal file allocation in a multicomputer information system 
Proc IFIP Congress 1968 Edinburgh Scotland Aug !)-1O 
F80-85 



The involved generation-Computing 
people and the disadvantaged 

by DAVID B. MAYER 

IBM Systems Development Division 
White Plains, New York 

lNTRODUCTION 

Motivated computer professionals all over the United 
States have undertaken a most special and extraor­
dinary task: they are involving themselves in every 
way possible in the training of disadvantaged and edu­
cationally-deficited men and women from the so.;.called 
ghetto and poverty areas of the country~ They are 
exhibiting a special and wonderful tension which im­
pels them to appear at that interface between their own 
computing community and those underprivileged who 
wish to enter it. 

As Chairman of the new ACM Committee On Com­
puting And The Disadvantaged (ACM-CCD) I haye 
heen privileged to visit or directly participate in ten 
projects in New York City, Boston, Los AIigeles, San 
FrancJsco, Sacramento, St. Louis, and Philadelphia. 
From them can be drawn some broad brlish pictures 
of such projects, some of their special problems, and 
t heir relative probabilities of success. 

The disadvantaged-Who are they? 

The term "disadvantaged" w~s origin~lo/ coined in 
connection with educational grants from the govern­
ment, for potentially very bright youths from proverty 
backgrounds for experiments in educational techniques 
programs. Since that time, it has broadened to in­
clude all those who are educationally-deficited (and 
with minimal hope of retrieval of those years they are 
behind), including those from both poor white and 
non-white communities. 

679 

Typically, computer projects have undertaken to 
trai~ some of the disadvantaged either as operators or 
programmers. Generally the participants have been 
characterized as follows: 

· i 9-23 years old 

.4ropped out of ninth or tenth grade 

• are black or brown 

• are two to three years behind their white counter­
parts who are at the same grade ~evel in terms of 
tested comprehension 

• about two-third~ male 

.have a job of some kind,. but are underemployed 
apparently by reason of race or langua~e 

• come from a poverty-stricken area, often an ur­
ban" ghetto" 

• have police records in about onejthird the cases 

.evidently have some motivation to better them­
selves 

.have children or heavy "family" responsibiliti~s 

• on aptitude tests score over the complete range 
from high to low 

More particularly though, a review of spme other 
statistics may help us to orient ourselves :17 

For Negroes in the 25-34 year old age bracket: 



680 Fall Joint Computer C~nference, 1969 

i 

.47.0 percent dropped out before graduatipn from 
high ~chool i 

.45.6 percent completed high s~,hool 

• 7.4 percent completed high school and c~llege 

.A Negro sixth grader was 2+1/2 grade levels be-
hind his white counterpart :in general scholastic 
achievement ! 

.A Negro ninth grader was thr¢e grade levels behind 
his w.hite counterpart ' ; 

This three-year deficit picture p~rsists, through 12th 
grade and graduation, in general. ' 

Remediation, restructuring, and 'relevaIlJCY' 
! 

What does this mean to the computer training course, 
or to the jobs which people with such backgrounds can 
undertake? 

It means some tutoring in the technical concepts 
during the computer operator's lor other courses. It 
almost cel tainly will mean lengthening the course de­
liberately. Currently computer operator and program­
ming (usually Cobol, by the way:) courses run two to 
five times longer than the equiv~lent course given in 
the regular industrial milieu. i 

It means teaching only 'rele~ant' material, only 
the guts of content, only that which is directly ap­
plicable to that job waiting at tije end of the course: 
ergo, no frills. ' 

It means employers will have! to restructure some 
jobs, in smaller, less complex, carefully detailed clus­
ters, so that a rather straight-forward set of behaviors 
can be carried out by new employees. 

It is possible to take small top :level segments of the 
disadvantaged populace and tr~in them directly in 
computer tasks without remediation. But in general if 
we want to really dig into the American dilemmas of 
today, remedial training will be needed for any broad 
training program developed to ~ting students up, to 
the level of comprehension needed to understand some 
of the computer concepts of our: more abstruse com­
puter texts. 

Trade-oils in training 

There i~~ then, a kind of balan:ce of course content 
requirements versus several variab.les-principally time 
-which one can invest to obtain effective training and 
eventual on-the-job performance r~sults. 

For example, most disadvantaged projects teaching 
key punch operators required that trainees be able to 

type 20 to 40 words per minute prior to entering kiey 
punch classes.2,3,4 Where the normal key punch class is 
five days, in projects for the disadvantaged they run 
15 to 20 days . 

A project choosing high school graduates can train 
computer operators quite effectively, and include 
theoretical material on operating systems, program­
ming techniques, the intern8~1 supervisor/program 
coupling within the computer, enough so as to allow 
an operator to make some reasoned judgements in 
error situations. This is obtained through trade-ojls 
such as (a) lengthening the course, or (b) intensifying 
the hands-on expereince. This probably gives the di.s­
advantaged person who graduates one of the finest 
running starts in 'operations' in. the country. (N. B. 
Particularly true of the Urban League/IBM/Bank of 
America project in Los Angeles.4 

The placement problem and the a~l8Umed job mar~vet 

Most projects have been located in large urban, 
highly computerized geographilcal areas; groups in 
the planning stages have typicallly looked about them­
selves and faced the combinatorial possibilities of 
probable jobs available and probable people they were 
hoping to train. Almost invariably they concluded that 
three possible combinations were feasible: 

• key punch operator 

• computer operator, either as a trainee handling 
tapes and discs and peripherals primarily, or as 
a trainee console operator. 

• a trainee Cobol programmer 

Generally rejected for training were job desc:riptions 
which involved: 

• Fortran or basic language programmers 

• pure EAM or "unit record equipment" operatOlrs; 
however, this was sometimes appended to the 
computer operator trainee position description 

• tape librarians, dispatchers, I/O clerks, and the 
like. 

Most projects made only a cursory pass at the actual 
placement planning question and generally a,ssumed 
that any graduates they offered "the marketplace would 
be snapped up with only a modicum of effort to fiIlLd 
interviews. Inevitably, halfway through the training 
when efforts turned toward placement interviews 
there were some rather rude awakenings to sever:a'! 



facts: the students' color, language, and prior records 
were obstacles that required active selling to over­
come. More often than not there was a mad scramble 
toward the end of the training period to find employers 
willing and able to hire trainee' computer operators 
from the poverty sector of our poplulation. Only heroic 
efforts upon the part of placement committees would 
slowly find openings for interviews, much less pre­
comffiitted employment slots. 

Hence, if there w~re one piece of advice this author 
w~)Uld give it wpuld be: plan your placement process 
first; involve would-be employers at the earliest plan­
ning stages to test the marketplace, to involve them in 
the training stages, to be interested in the graduates, 
and to assure jobs at the end of the course. It is almost 
axiomatic that if you should fail to place your 'dis­
advantaged' trainee within a very few weeks of his 
graduation you may have lost him or her forever and 
all the training investment will have been for naught. 

The computer operator-What is he? 

In order to converge upon concrete results and make 
some comparisons only the training surrounding the 
job of Trainee Computer Operator will be described. 

Let us consider three different, but related, aspects 
of the Computer Operator position description: 

• EAM or "unit record equipment" knowledge and/ 
or ability; 

• pure computer operating, highly structured, highly 
practical, based on detailed specified stimuli and 
response patterns. 

• an "understanding" computer operator who has 
sufficient theoret'ical knowledge about operating 
systems computer operator, who has sufficient 
theoretical knowledge about operating systems to 
solve unexpected error situations, so as not to 
abort, but successfully run a job. 

In a typical job description, the Trainee Computer 
Operator works under close supervision, performs the 
simpler operations on peripheral devices and on the 
console, expedites the data in and out of the system 
and the installation, and is generally a careful intel­
ligent follower. He is usually expected to have two 
years of college (possibly an AA degree) or several 
years of tabulating machine (EAM) experience or 
a 200-hour hands-on computer operating course.16 

The Journeyman Computer Operator is expected 
to do more: based upon six or more months of actual 
Trainee experience, he checks input and output for 

Computing People. and the Disadvantaged 681 

general results, analyzes stops and takes corrective 
action, and runs test programs. He is also required to 
know the principles of operations, basic elements· of 
programming, follow directions carefully and analyze 
data, and perform arithmetic computations. 
J It is the author's contention that the EAM tasks 
and training are frills and basically obsolete and should 
not be taught (excepting a little keypunching for error 
corrections); that the second or "structured, practical" 
job description is the one for minimal entry level jobs 
for the disadvantaged; and that the third description 
adds a requirement for "theoretical understanding" 
for computer operator train',ng projects. This htter 
requirement is significantly high in terms of language 
comprehension and acts as a deterrent to large sectors 
of the disadvantaged population tl'ying to take advan­
tage of the training. 

It is interesting to note that in almost every case of 
the disadvantaged training projects with which the 
author is familiar, nowhere nearly such stiff conditions 
are placed either upon the students for entry into· the 
computer operator course, nor upon them for eventual 
hire. And there is every indication they can perform 
successfully upon the job with considerably less strin­
gent qualifications.2 •7 .12 

The author therefore urges that to be able to develop 
the truly disadvantaged, educationally-deficited per­
son (a dropout from as low as the ninth grade) com­
puter installations should re-structure their basic 
computer operator job specifications and training 
projects their content to reflect the entry-level re­
quirements for the "practical, structured" computer 
'operator trainee. This would give gainful employment 
of a meaningful type to many more people in the total 
community, particularly the disadvantaged. 

Computer operator curricula 

In this section are described two examples of opera­
tor curricula to exhibit the basic approaches, typical 
content, and a preliminary view of some of the training 
techniques employed. (Treated more fully in another 
section.) 

In the Mitre Corporation's fully in-house, fully 
funded (internally) on-the-job (OJT) format' students 
are paid at regular industrial rates. Remedial training 
in basic language skills and mathematics takes up 
most training hours daily, for the first few of the 26 
weeks total. Gradually it is replaced by computer 
operations training on both the IBM 7030 (Stretch) 
and the IBM 360/30 and 360/40 systems; and of 
course gradually the students work out on the line. 



682 Fall Joint Computer Conference, 1969 

--------------------------------------------------------------------------------,-----
Instructors are internal, paid, staff members; four 
students started ,and three finished successfully. They 
were part of a 12-trainee Mitre project for clerks, 
operators, and the like. 

The salient features of this Project's outline include: 
(a) deliberately assigning their second shift Supervisor 
for nine months as Training Coordinator to prepare the 
technical curriculum, instruct,' supervise the OJT 
aspects, and coordinate with the remedial training; (b) 
giving all first shift personnel a stake in the outcome, and 
include them in the evaluation process; (c) providing 
separate remedial training on a descending scale 
concurrent with increasing line operations training 
and expereince. A full Outline is available from the 
ACM.18.28 

The second basic approach a~d the one most often 
used, was the external, separate training program; it 
is typified by the CPDA project in New York City.l 
Using a "self-selection" process12 75 prospective stu­
dents went through an 'orientatiop' to computer operat­
ing, and then 48 volunteered for:actual training. Thir­
ty-two stayed with it, 27 graduated on the first round, 
three more were tutored to completion, and 17 of the 
30 were placed as of this writing. . 

The program, approach, and Syllabus Outline of 
CPDA are given in Figures 1 and la. 

EAM/Unit Record equipment training is not given 
in this course. Several of the courses did offer as much 
as a week's equivalent of such training, on the basis 
of its relevan'ce still in today's. card-oriented input/ 
output part of the computing world. The Urban 
League/IBM/Bank of America project in Los Angeles, 
the Philadelphia ACM/Boardof Education project, 
and the St. Louis IBM/Board of Education are noted 
in particular .4,l0,11 The latter have a regular EAM 
course available in their vocational schools as well. 

Training techniques 

It would seem obvious that sorne specialized training 
techniques would have to be employed to reach dis­
advantaged or educationally-deficited people, and a 
few such techniques have been attempted in the com­
puter training field. Such experiments should be carried 
out in a professional, measured" feedback atmosphere, 
but rarely has that been available. In the projects 
studied, probably the three aspects of training that 
have paid off the most are: 

• lengthening the courses by two to five times the 
average; 

1. ORIENTATION PROGRAM 

a. Registration 

.Welcome 75 prospective students 
• describe project 
• history and needs of the computer field 
• introduction to the computer 
• film on computer and operations. 

b. Introduction To Computer And Business En­
vironment 

• devices used at an installation 
• business environment and general working 
conditions 

• employment prospects for the computer 
operator. 

c. Computer Installation Visit 

d. The Computer Operator And The 'Trainilng 
Program 

• computer concepts 
• general responsibilities of the operator on 1~he 

job 
• the operator's relationship to the eomputer 

field 
• the training program 
• general discussion and individual counseling. 

Extensively, throughout these orientation sessions 
instructors and counsellors mingle with the Btudents, 
interact on questions, and encourage self-selection into, 
or not-into, the actual training. 

Figure l-A no-frills training syllabus. Computer 
Operations Training for the IBM S/360 Models 3.0 and 

40. Training consists of two parts. Since motivation 
a.nd interest are prime factors in training com­

pletion and job performance, a preliminary 
four-session orientation program was designed 

to give the candidate a data base for 
making up his own mind, to enter or 
not-enter training. (After CPDA1,lS). 

• making the classes small; or alternati vely as­
signing two instructors per class to bring the 
pupil/teacher ratios down to as low as four-to-one; 

• allowing the class to teach itself, to a certain ex.:. 
tent, by teaming or as a full group. 

Interestingly enough, no project used any specialized 
audio-visual material (other than hands-on work with 



the computer itself), most of them depending upon 
the standard available texts, programmed instruction 
books, or books of illustrations. 

Nevertheless, a kind of experiment did take place 
in the CPDA project, observed by the teachers, staff 
professional guidance counselors, and the students 
themselves. It involved trying three differing teaching 
techniques: 

1. The 'classical' approach con~ists of a teacher 
lecturing to his students, with the· teacher as 
focus for feedback (answers, discussions, ques­
tions). This can be characterized as a 'vertical' 
organization of class structure. 

2. The 'teams approach consisted of the teacher 
breaking up the group into five teams of three 
students each. This came about to solve the prob­
lem of demonstrating the computer console and 

2. COMPUTER OPERATIONS TRAINING 
PROGRAM 

a. Course Structure 

• The training program will consist of both 
classroom sessions and computer room visits. 

• It is expected that approximately 30-45 stu­
dents will complete the Orientation Program 
and enter the Operations Training Program. 

• There will be three sections, each with 10-15 
students. . 

• Each section will have one primary teacher 
and one assistant teacher. 

• Classroom sessions will meet twice a week for 
two hours. 

• Computer room visits will be scheduled as 
required by the Syllabus and will be from two 
to three hours in length. 

b. Educational Material. The basic student text 
for the course will be: 

IBM System 360 Model 30 DOS System 
Operation Training Manual and Book of 
Illustrations (Studen.t Text); Forms C20-
1676-0, C20-1677-0). 

.Examples of I/O media will be available in 
the classroom for student familiarity with 
cards, tapes, disk packs, printer forms, car­
riage control tapes, etc. 

Computing People and the Disadvantaged 683 

SYLLABUS 

Section A (INTRODUCTION AND PERIPH­
ERALS) covers: 

• Introduction to Input/Output Media 
• Computer Room Procedures 
• Computer Room Visits (hands-off demon­
strations and hands-on practicums) 

• Operations of Peripheral Devices 
• General Review 

Section B (SOFTWARE INTERFACE) covers: 

• Introduction to "Operating Systems" 
• Control Information 
• Operator Interface With DOS(Disk Opera-

ting System) 
• Computer Room Visits (hands-on practicum) 
• Stand-Alone Programs 
• Compatibility Modes-Emulation 
• Course Review 

Figure IA--A no-frills training syllabus (con'td). Note 
the absence of EAM/unit record equipment training, 

and a maximum of immediately-applicable job 
knowledge given in a 54-hour course over a period 

of 2.5 mont.hs (20 sessions). (After CPDAl 13). 

More detailed versions of this and other 
curricula, syllabi, and lesson plans are avail­

able through the ACM Committee on 
Computing and The Disadvantaged 

(ACM':CCD). 

peripherals effectively. Having 15 students stand 
around in a large semi-circle proved boring and 
ineffectual; by placing the few most hep students 
with two of each of the others, he could in effect 
assign problems to teams to work out, and allow 
students to teach each other within teams. 
When competition rather than cooperation 
started to raise its head, the team members 
were rotated. In addition, the instructors, after 
giving the teams a problem, deliberately gave 
the impression that they would answer no 
further questions. After computer runs the 
whole class would hold a· post-rrwrtem. Instruc­
tors also created unexpected . problems, such as 
casually dereadying a printer, or flipping a 
tape into 'file protect' mode without a file 
protect ring being inserted. Furthermore, stu­
dents would be called upon at random at the 
beginning of a class to recapitulate the pre-



684 Fall Joint Computer Conference, 1969 

vious session's work and lessons, taking the 
instructors' place in essence. The remainder 
of the class usually jump~d in to help the hap­
less classmate-after waiting an appropriately 
gruesome few minutes. This 'team' process, 
a combined 'horizontal' and 'vertical' class 
structure, and the random 'instructor' , all 
created an involvement within the class. It 
worked, and beautifully; in fact the class got 
ahead of the syllabus. 

3. The 'fully horizontal 'or 'group/workshop' ap­
proach was occasionally attempted by the third 
pair of instructors. This normally involved the 
teacher bringing much of the material to the 
students' attention via! lectures and some 
reading, but required that answers to problems 
and operations, co~e from the class as a group. 
In this particular instance) the structure worked 
fairly well, the class completed the material on 
schedule, but as an exper~ment it was relatively 
inconclusive. This was' partly because the 
amount of lecture required, and individual help 
given was more than normally used in a true 
'horizontal' workshop situation. That is, in this 
case, the technique never got a thorough 
workout. 

To summarize: the lecture technique worked fairly 
well on the brighter students, who expected it as a 
matter of previous exposure. Their class suffered the 
greatest number of dropouts, but not from the training 
technique used. 

The 'teams' approach was very effective for both 
morale and learning. The class was able to cover a few 
items the others didn't. 

The 'interactive' 'fully-horizontal' group organized 
as a workshop also finished, and reasonably well, cer­
tainly comparable to the others: in content knowledge. 
But it is predicted that the stronger extension of that, 
the new Montessori/workshop group involutional 
methods should give far better results for disadvantaged 
people, especially when the staff and the facilities can 
be structured properly.16 

The Montessori environment. requires careful guid­
ance upon the part of the instructor,andaspecialquality 
of allowing the class to explore freely the alternative 
paths to answers. The instructor, in a sense, must be 
willing to subdue his usual posit~on of center-focus role, 
become a part of the discussion, part of the group, al­
most at their own level. Over a period of weeks, the 
group should become highly interactive, over the 
material, over technical and occasionally external life 

problems, and must be handled carefully. It has been 
used very effectively for teaching programmers and 
systems analysts (advantaged),8 and it is strong;ly urg:ed 
that the Montessori techniques and environment be 
attempted on the disadvantaged in all occupations. At 
least one project, the Sacramento/ ACM Education 
Committee,16 is planning to use it for a computer 
operators' course. 

Training and stability 

There is still one more important aspect of training 
which will aid a project immeasurably: the main­
tenance of continuity of warm, stable teachers with 
whom the class can identify, and the assured conti­
nuity of class sessions, the same physical facilities. 
knowing that the class is going to meet, and there will 
be . a job waiting at the end of the course. Changing 
classrooms every few weeks and uncertaintie8 of com­
puter time when promised try the motivations of the 
stud.ents (and instructors) sorely, at times. Those 
situations which had good steady facilities, the same 
instructors throughout, (usually paid, and profes­
sional at teaching itself) have the highest attend:1 nce 
and morale levels. Though these items go almost without 
saying, the proliferation of volunteer projects impels 
the author to issue this type of warning, for the sake of 
everyone involved, partiCUlarly the disadvantaged 
students; they have been through enough instability 
in Iif e already. 

Curricula comparison: Methodology of evaluation 

Now that somE: specific curricula have been presented, 
we wish to set down some criteria and the method by 
which we will compare the various content a,nd tech­
niques; to do so we have prepared ourselves in the pre­
ceding paragraphs with the job specifications, the 
required curriculum content, and the training ap­
proaches. We consider some of the following points of 
comparison expanded in Figure 2. 

.Ts content aimed at the structured, stimulus­
response, practic al type of course? 

• Are the results of the course immediately appli­
cable to a job in a computer installation? 

• Does curriculum allow a "flexible tail" so that 
graduate can go to work in an installa,tion that 
has computers and operating systems other than 
the particular one taught? 

• Does the course lead into on-the-job training 
(OJT) easily? 



ComputingP~ple and the Disadvantaged 685 

FIGURE 2-Comparison of curricula for computer operator training projects for disadvantaged peoples 

ACM+ CPDA Midwest Boston LA/Urban St. Louis SanU'B 
Phila. NYC Side MITRE League + Board of cisco IBM 

Board of NYC Corp. IBM + Education 
Education Bank of & IBM 

America 

Practical Structured? Yes Yes Yes Yes Yes Yes Yes 
Immediately Applicable? Yes Yes Yes Yes Yes Yes Yes 
Any Computer? Sort of No No . Yes Yes Yes No 
Theory /Oper. Systems Yes No No Yes Yes Yes No 

\ 

Programming? No No Separate No Some Yes Some 
Basic Language No No No No No Yes No 
Higher Language No No COBOL No COBOL RPG, COBOL 

COBOL 
Program Structures No No Ye~ No Yes Yes Yes 
Prog's vs. Op. Systems Yes Yes Yes Yes Yes Yes Some 

Flexible Tail-Toward 
Other Computers Yes Little No Yes Nt- No No 

Lead into OJT Yes Could No Yes No No Could 
OJT Part of Course? Yes No Some Yes. No No No 

Training Measurements 
-Written Exams No No Yes Yes Yes Yes 
-Hands-on Exams Yes Some Yes Yes Yes Yes Yes 
-Post-Grad Performance Not Yet Call Inter- OJ-by None None Check-

Backs views Super- Back, 
visors Verbal 

"N 0 Failures" Policy? No Yes No No No No No 

Support: Remedial No Yes No Yes No No No 
Support: Tutoring Yes Yes Some Yes No No Little 
Support: Guidance Some Yes No No No No No 

No. Students/Teacher 20 16 12 or 6 4 12 or 6 11 10 

Non-English Help? No Yes Yes No No No No 

Buddies? Liaisons? 2 per Yes; Both No Some No No No 
Student Counsel-

ors and 
Tutor~ 



686 Fall Joint Computer Conference, 1969 

Figure 2-Comparison of curricula for computer operator 
training projects for disadvantaged peoples (Cont'd) 

Attrition Rates 
Number Started ~O 48 12 4 12 11 21 
N umber Finished 19 32 6 3 9 9 
Number Graduated 19 27 6 3 9 9 
N umber Placed 11 17 4 3 8 9 

Length of Course 
Orientation (Hours) 0- 8 0 0 0 2.5 2 
Hands-On-Time ( " ) 25.5 10 0 40 70 15 
Technical Class ( " ) 42.5 30 0 200 175 30 
Other Classes (Remedial) 8* No 0 No 
Tota 1 Class Hours 68 48-56 240 350 47 
N umber of Sessions 27 20 30 40 22 
Elapsed Time (Weeks) 12+ 10 26 6 8 2-4 
Hours per Session (av.) 2.5 2 1-5 t 8 5.5 2-3 

EAM Taught? Yes No No No Yes Yes Yes 
Only Key-Punching? No Some Yes No No No 
IBM 360 DOS Yes Yes Yes Yes Yes Yes Yes 

OS No No No Yes No No No 
Other (1401, 7030) No No No Yes No No No 

Teacher Stipends Yes No Some Yes Yes Yes Yes 
Student Stipends No No No Yes No Yes No 

Sponsors:. ACM; CPDA Also MITRE Urban St. Louis San Fran-
Phila. Volun- ACM; Corp. League + Bd. of oisco-IBM 
Bd. of teers Then Inter- IBM + Education Education 
Educa- & City Volun- nally Bank of + IBM Center 

tion Univ. of teer + America 
N.Y. Paid 
Guid- Staff 
ance 
Counsel-
ors 

*Optional tClass 
Hours 
Only 



• How are the results of training measured? 

.How is the post-graduate performance measured? 

• How much time is given in classroom lecture? I:n 
hands-on experience per student? 

• Is there a "no failures" policy of teaching? 

• How much supportive remedial help is built into 
curriculum? 

• Are non-English students helped? 

• How many teachers per student? 

• Course . content: was EAM/U nit Record equip­
ment taught fully, or was only the keypunch 
taught (for computer room use)? Was operating 
system taught as button-pushing course? Or was 
a 'theory of operating systems' taught in addition, 
and the relationship between the resident appli­
cations programs and the operating system con­
cepts taught? 

With these criteria and questions in mind, a chart 
of the Y es/N o/Comments type, (Figure 2) gives a pic­
ture to the reader of the various projects, and their rel­
ative strengths and weaknesses. 

Performance criteria-Some measures of the projects, 

If one were to attempt to measure the results of such 
training for the disadvantaged, one might look to the 
annual salaries accruing, of those who obtained jobs, 
versus the expenditure for the project. MWSDPS16 
suggests that for approximately $14,000 they graduated 
28 students of all types (key punch and computer 
operators, and programmers), and placed 20 of them, 
for a job value of $98,000 annually, relieving the wel­
fare rolls of eight people at the same time. By the same 
token, CPDA graduated and placed '17 computer 
operators, who now earn about $74,000 per year, all 
for something less than $1,000 cash, but using six 
teachers, eight guidance counselors, and about a dozen 
more in placement, tutorial, curriculum development, 
measurement, and find-a-computer chores, all 
volunteer .12 

In another performance measure, it is ,evident that 
the more deeply into the social problems' fabric a 
project wishes to penetrate, the more 'underpinning' 
or training support techniques one must invest energy 
and staff: these include tutoring, remedial training, 
high school equivalency aid, teaching English as a 
second language, and both vocational and life-guidance 
counseling. The volunteer projects expend 10 to 20 

Computing People and the Disadvantaged 687 

supportive hours for every student class hour .12 Pro­
fessional staffs and funded projects tend to use a lower 
ratio of time (about one-to-one) but this js often bal­
anced by a much larger expenditure of up to approxi. 
mately $1,000 per student, involving facilities and 
professionals. 

Other ,measures, such as performance on the job, 
have been followed up by projects too cursory to 
warrant reporting at this time. 

The 'shadow programming aide' 

It seems to this writer that there are considerably 
more jobs available at a slightly higher level of com­
plexity: that of a 'shadow programming aide'. 27 Not 
just a coder, this person works in shadow relationship 
to a regular programmer, carrying out some of the 
more onerous details of programming, such as flow­
charting from given coding, setting up debug runs, 
keypunching, expediting the debug process, or carrying 
out some of the detailed, but highly supervised coding. 
This kind of programming technician could very well 
have real upward mobility, dependent primarily on 
the trainee's learning rate, general intelligence, in­
terest, and proven ability. The national crush for pro­
grammers is far greater currently than for operators; 
and in addition, the direct personal involvement of a 
disadvantaged person with a regular, stable, accepting 
programmer or two, would be one of the best stabilizing 
entries into the computing field. 

SUMMARY-PITFALLS AND SUGGESTIONS 

A number of points may rbe abstracted from the 
foregoing, in addition to others not made in the main 
text: 

• The 'typical project' for training disadvantaged 
people is created by a highly motivated group of 
computer-Cand other) proCessionals, with a desire 
to get involved, to do something. 

• The question each project must face is: just how 
deeply into the social problems it wants to delve: 
underemployed, unemployed, educationally-def­
icited, hard-core unemployed, or whatever. 

• Most computer training projects aim at the 19-
23 year olds, who are two or three years behind 
in their ed.ucation, and won't need very much 
remedial training to get them through a computer 
operator (or programming) course and into a mean­
ingfuljoh. 



688 Fall Joint Computer Cc;mference, 1969 

• It is a surprising note, but t~ere seem to be rela­
tively few trainee computer i operator courses in 
the country: mostly these have been given on the 
job (OJT) , or from reference manuals supplied 
by the manufacturers; leastwise the author has 
detected very few. This points up a real econ·mic 
advantage for the prospective employers: very 
little OJT need be spent to start these employees­
they're ready to go from Day One. For once, in 
this case at least, the disadvantaged are probably 
starting out ahead of their advantaged brethren. 

• The first psychological jolt for motivated whites 
is to discover they will not, most of them, be acting 
at the actual 'interface' bet~een the disadvan­
taged and the advantaged community. More of 
them will have to find psychic reward in support 
functions, such as finding employers with available 
jobs, writing curricula, obtalning free computer 
time, finding teachers and class space, obtaining 
funds. 

• The second psychological jolt comes in discovering 
how much planning is to be~one (or should have 
been done). 

• The third jolt is the marketplace: obtaining job 
slots requires persuading people outside your lit­
tle narrow project, and it's tough. Start very early 
to involve would-be employers, even at the plan-
ning stages. ' ' 

• Courses, so far, have usually involved computer 
operator training on IBM machines, particularly 
the 360 series, in DOS or; OS (Disk Operat­
ing System or Operating 'system/360). Pro­
gramming usually means Cobol, rather than basic 
languages. A way to teach a '~ore' curriculum ap­
plicable to any operating system for any manu­
facturer's machine needs to he developed. Such 
a step has begun to take shape with the ACM­
Philadelphia/Board of Educ~tion project, using 
the 'flexible tail' method' fot phasing to OJT. 
(Ref. 11). 

• The single greatest lack is fuhds. They are hard 
to get. Working with the local Board of Education 
to obtain government funds, or with local indus­
try for underwriting expenses I privately, seems to 
he most effective. 

• Volunteer projects usually failed of their total 
objectives, but succeeded partially; but they tend 
also to peter out. Plans for r~al continuity must 
be built in. ' 

• One cannot stress too much the responsibility we 
have in changip.g the lives of would-be trainees. 

• The one thing training projects are prepa.red for 
is attrition; their expectations are that they will 
graduate 30 or 40 per,cent of the people who arrive 
~t their door for the first formal class day. It 
works out that way, though some projects have 
gotten over 80 percent. 

• What is needed for the classes is a new, simple, 
straightforward text on operating a computer wrl"t­
ten in the language which the disadvantaged can 
understand. It may have to be aimed at the ninth 
grade level, for both the English and the commer­
cial algebra comprehension. It could start with 
what they know already: numbers systems can 
come from the numbers game, and you could g:o 
on from there. Here's a set of books someone could 
write, and the whole computing profes~ion may 
benefit. 

• Serious consideration of new, less complex, job 
descriptions can be attained in the operations and 
the programming area. It is up to employers and 
the industry to develop them, in order t.o include 
a larger part of our population. 

• Finally, the author strongly urges that the com­
puting community initiate a national broad-based 
organized effort, to develop jobs, regular training 
projects, and adaptations of training techniques 
for disadvantaged to enter the field. Two major 
proposals are now before the ACM Committee on 
Computing and the Disadvantaged: one from the 
Sacramento Chapter, one of the few ACM: chap­
ters actively pursuing a generalized, funded-plus­
volunteers approach; and the other from ACM's 
Special Interest Group on Computer Personnel 
Research (SIGCPR) for a Massive TlLaininl~ 
Project, involving 50 cities and a 1000 students 
per year, and fully documented, measured re­
search on selection, training, and perfoI'mancf~ 
within such projects and their graduates .. 

All these are part of bringing students from the dark 
into the light, to help them enter the world of working 
and earning peoples, to stand on their own two feet 
with self-respect, and dignity:-in' the words IOf the 
. Prophet Micah, "that they shall sit every man undeJr 
his vine and under his fig-tree, and none shall mak(~ 
him afraid." 



APPENDIX A 

Computer training, project8 for the di8advantaged 
-Brief characterization8 and de8criptionb 

1. NEW YORK CITY: CPDA (Computer Pro­
fessionals Development Association; Fall, 1968. Three 
parallel classes of 16 men each, Computer Operators 
only; completely volunteer teachers and staff. First 
pilot course completed November, 1968, hopefully 
leading in a funded and/or at least a teachers-paid 
project~ Dr. Allen Morton, IBM/SRI, NYC, President. 

• Unique aspects: candidates self-selected based 
upon own interests after four-session "orienta­
tion." Three differing teaching techniques tried: 
classical lectures, two- and three-man teams, and 
semi "workshop" group involutional approach, 
yielding differing results. Strong professional guide 
ance counseling, heavy tutorial aid, and high school 
equivalency training available. 48 started, 32 
finished, 17 placed. Cost less than $1,000; jobs 
worth $74,000 per year. 

2. NEW YORK CITY: MWSDPS (Middle West 
Side Data Processing School); with Puerto Rican 
community group; a semi-funded project; started with 
ACM, then became industry-supported and volunteer. 
Summer, 1968. L~ Barnett, Long Island University, 
Director. 

• Unique aspects: started with 164 off-the-street 
prospects through advertising, etc. Interviewed 
applicants for "logic capability", "motivation" 
and language comprehension. Started 19 prq­
grammers in COBOL, graduated 14, placed 9. 
Started 17 keypunchers, graduated 8, placed 
7; started 12 computer operators in IBM 360/DOS, 
graduated 6, placed 4. Cost about $14,000, and jobs 
worth $108,000 annually. 

3. NEW YORK CITY : Harlem; a series of IBM 
keypunch operator courses organized by W. DeLegall, 
Columbia University Computing Center. Basic lesson 
learned: after first course taught basic typing from 
scratch as preliminary to keypunch training, subse­
quent classes required candidates to have 40 wpm 
typing skill before entering. 

4. LOS ANGELES: ULDPTC (Urban League 
Data Processing Training Center), 7226 S. Figueroa 
Ave.; jointly sponsored by League, with professional 
IBM teachers and IBM donated equipment, in Bank 
of America donated building. Urban Leag'ue both 
selected and placed candidates. This is the most profes.-

Computing People and the Disadvantaged 689 

sional and thoroughly equipped computer field training 
project for. disadvantaged in the country. Supported 
completely by private/industrial funding. John O. 
Adams, (IBM), Training Director. 

• Unique aspects: three parallel courses in key­
punching (12 people, four weeks), computer oper­
ations (IBM 360/30, DOS, 12 students, six weeks), 
programming (COBOL, 12 students, 12 weeks). 
Full daytime staff and students; no student sti­
pends. Has full IBM 360/30 with tapes, discs, 
printer, card reader/punch, dedicated to project 
only (i.e., no production, only classes). Runs two 
years, about 250 students per year. Attrition rate 
very low (5 percent-20 percent) and placement 
rate very high. 

5. LOS ANGELES: Maywebb Science8 Corp. Orig­
inally a Watts area volunteer project, spearheaded by 
Louis Webb. Has graduated programmers primarily. 
After two years is offering courses on regular paid 
"private EDP school" basis, and to private industry 
on government funds. 

6. LOS ANGELES: Operation Boot8trap: part of 
Watts area self-help in manufacturing and retail 
stores. Also started as key punching classes and pro­
gramming; 47 enrolled in latter, plus remedial training. 
Founder: Louis Smith. 

7. SAN FRANCISCO: IBM; computer operator 
course (EAIVI + DOS) completely staffed and equipped 
by IB1\1's Branch Office Education Center; con­
centrated on somewhat older group (average age = 
28.5 years, top is 45 years), a good portion of whom 
had seen tab equipment before. High percentage of 
police records and unemployed. Very successful em­
ployment placement. Director, Philip Brav~rman, 

IBM San Francisco. 

8. SACRAMENTO: ACM CHAPTER, Education 
Committee. Specially planned computer operator 
training project, to begi'n classes in September 1969. 
Includes long, detailed market study of job specifica­
tions to determine job placement availability and 
committed slots for graduates in state government 
and private industry. Detailed employer/project in­
teraction; year-long careful planning in all phases­
systems analysis approach; use of PMS (Program 
Management System) for scheduling; professional, 
external structured measures of selection, evaluation 
of curricula and training performance, being woven 
in from the start; 'Montessori/workshop' group in­
volutional training techniques; paid teachers; possible 



690 Fall Joint Computer qonference, 1969 

student stipends. Totally ACM-tlirected project, with 
industry / government cooperatiop.. Organizer: Eliza-
beth R. Alexander. ' 

9. BOSTON: MITRE Corp.l; totally funded by 
MITRE: the only fully in-house OJT in this survey; 
see section on Computer operator curricula. 

10. ST. LOUIS: Board of Edtcation and IBM; 11 
students, eight ~eeks, 5.5 hours i per day, in program­
ming and operations; 8 out 6f 11 graduates are 
either computer operators or ~eleprocessing clerks i 
1968 Summer project, not being!repeated. Funded by 
Board of Education (Dr. La~son, Treasurer) and 
staffed by regular IBM Systen;ts Engineers, as pro­
fessional teachers. Students received stipends, and 
were chosen from group of 60 ndt planning to go on to 
college and with average grades. former Director: Ron 
Dobies, IBM/DPD, Clayton, Mi~souri. 

11. PHILADELPHIA: ACMand Board of Educa­
tion; Delaware Valley Chapter ACM in cooperation 
with Thomas Edison High School counsellors; an 
after-school hours project (twO! days/week) for 20 
volunteer students; paid teachers, two "buddies" 
per s~udent volunteer from ACM; runs about 25 weeksj 
includes EAM through full 360/DOS operations; 
furnishes some OJT at end of course to dovetail with 
prospective employers' non-IBM: computers. Director, 
Milton Bauman, ACM and Pr~ce, Waterhouse and 
Co., Phila. ' 

REFERENCES 

12 J P GILBERT D B MAYER i 

Experiences in selection of disadvantq,ged people into a self 
computer data processing training prqgram 
Proc Seventh Annual Conf on Computer Personnel Research 
ACM-SIGCPR (to be published) 1969 

13 J BURROWS ' 
Report on Mitre OJT training project 
Personnel communication to the author 

14 W A DE LEGALL 

Teaching techniques and quality education/training for the 
disadvantaged 
Proc Seventh Annual Conf on Computer Personnel Researeh 
AClVl1969 to be published 

15 E R ALEXANDER 
Montessori techniques applied to programmer trainin" in a 
workshop environment 
Proc SJCC Vol 34 1969 373-379 

16 Data processing training for the underemployed: an evaluation 
oj an experiment 
The Diebold Group Inc 196927 

17 U S Dept of Labor Bureau of Labor Statistics Nov 1967 
on a Census of the Negro Community 

18 J EYELER 
From welfare rolls to over $i,OOO a year in four monthlt 
Datamation Mag Apri11969175-177 

19 M BAUMAN 
Computers and the ?wderprivileged 
Proc SJCC Vo1341969 35 

20 J J DONOVAN 
A program for the underprivileged and the overprivileged in the 
Boston commum:ty 
Proc SJCC Vol 34 1969 36 

21 W B LEWIS 
What the JOBS program is all about 
Proc SJCC Vol 34 196937 

22 A L MORTON JR 
Computers and the underprivileged 
Proc SJCC Vol 34 196938 

23 J SEILER 
Experimental and demonstrat'ion manpower projects 
Proc SJCC Vol 34 196938 

24 H GRIFFIN P GRAVELLE 
Report on the philosophy and m.echanics oj' the urban 
education commiUee oj Philadelphia 
Proc Seventh Annual Conf on Computer Personnel 
Research Assoc for Computing Machinery 1969 to be 
published 

25 Cal~fornia State Pe1"sonnel Board: Specifications for compUlier 
operator trainee and for computer operator 
1969 

26 The Mitre Corp: Example oj an in-house computer operator 
training u~ing OJT techniques 
File Memorandum Outline ACM Committee on Computing 
and the Didsavantaged May 1969 

27 D B MAYER 
A sugge!~ted new entry-level job for the disadvantagerl: 
Shadow programming aide 
File Memorandum Job Spec ACM-CCD 1969 



The Q approach to problem solving 

by J. D. McCULLY 

TRW Systems 
Redondo Beach, California 

INTRODUCTION 

The problem of determining derivatives on a digital 
computer has received a great deal of attention for 
several years. Some exotic systems have been developed 
and. numerous papers have treated the problem. In 
1964: it was suggested by Wengert! that the chain rule 
could be applied to values for the determination of 
derivatives. 

This general concept has served as the basis for a 
series of programs developed at TRW Systems. It 
has been expanded to permit the essentially simul­
taneous computation of first and second partial deriva­
tives with respect to several independent variables. 
Second partials are especially valuable in optimization 
problems, and excellent results have been obtained 
with this technique. The first program written at TRW 
some years ago to apply Wengert's chain rule concept 
was called ROP (for Restricted Optimization Program) 
and has been used to optimize sets of algebraic equa­
tions. After some experience with this program it was 
decided that a complete system should be devised to 
permit wider application of the technique to problems 
where partial derivatives would be of value. The system 
was initially named CUE, for Computer Utility for 
Engineers, but was recently renamed Q in deference 
to another system named CUE. 

The intent was to make Q essentially a computer 
operating system. On the other hand, it was to be used 
within an already existing operating system (SCOPE 
2.1) on TRW's CDC 6500 machine without modifica­
tion to the existing system. A good discussion of this 
type of system is found in Glass.2 The consequence 
was necessarily some added overhead operating cost, 
but it was hoped that two factors would offset this 

added cost. One of these factors was the planned rna 
chine-independent characteristic of the Q system 
which essentially uses only FORTRAN and FORTRAN 
routines (including 1-0). In practice, some of the ma­
chine-oriented functions of the SCOPE operating 
system proved impossible to resist and conversion to 
another machine may be less easy than was originally 
planned. 

The second factor that would make Q attractive 
despite the increased machine time was the inclusion 
of several unique features in the system. The most im­
portant of these features is the above mentioned par­
tial derivatives. Another is dynamic storage, and a 
third feature' of interest is a macro processor for the 
input language. With this feature the system is suitable 
for use by the engineer who is more or less familiar with 
FORTRAN and wants his job done quickly even at 
the expense of some extra machine time. 

Sample problems 

Before the structure and characteristics of the Q 
system are described in detail, it may be useful to 
give some examples of the kind of problem for which 
it has proved most useful. These examples are taken 
from INTRODUCTION to SLANG.3 In general it 
can be said that Q is suitable for mathematically com­
plex problems. It has been designed to relieve the user 
of most of the complex calculations involved and to 
provide him with a short turnaround time that makes 
practical a series of alternate approaches or formula­
tions. 

As an essential part of making Q user-oriented, a 
high-level language called SLANG has been evolved 
to allow easy communication with the computer by 

691 



692 Fall Joint Computer Conference, 1969 

~----------------------~---------------------------------------------------------------
engineers with little programming knowledge. For 
purposes of the sample problems :it is necessary to keep 
in mind that the problem statements shown are writ­
ten in SLANG. The convenience of formulating prob­
lems in this way will be apparent. 

The first example illustrates the use of SLANG for 
solving a typical optimization problem with nonlinear 
implicit equations imbedded in the engineering model. 
The problem is to minimize the weight of a three-stage 
liquid rocket vehicle boosting a payload from the sur­
face of Mars. The optimum values of thrust level and 
burn time for each stage are to be determined for the 
specified mission. Total burn time, total velocity in­
crement, and payload weight are given. The SLANG 
statements required to solve this problem are shown 
in Figure 1. 

In this problem, the quantity being minimized is 
WT0T'the statement 

0PTIMIZE WT0T (1) 

identifies the payoff function a~d establishes an op­
timization loop which ends with the second END 
L00P card. The statement 

INDEPENDENT THRUST (2), THRUST (3), 
TBURN(l), TBURN(~) (2) 

designates thrust levels of two stages and burn times 
of two stages as independent variables which are being 
determined by the optimization. Equations Gland G2 
are being solved to constrain the solution such that 
total velocity increment and burri time match specified 
values. The statement 

SOLVEG1,G2 (3) 

identifies the implicit simultaneous equations being 
solved and establishes an equatiqn solving loop which 
ends with the first END L00P dud. The independent 
variables of the S0LVE loop are identified by the 
sttttement. 

INDEPENDENT THRUST(1), TBURN(3) (4) 

Even though they are expressed !in terms of interme­
diate variables, the equations Gland G2 are equiva­
lent to the ultimate form 

G1 = G1 (THRUST (1), T~URN (3)) (5) 

G2 = G2 (THRUST (1), TBURN (3)) 

VARIABLE ISP(3) , ISPVAC(3) , TBURN(3) , THRUST (3) ,XIl)(3). 
* WPR0P(3) ,W~TAGE(3) ,STRFAC(3) ,DELV(3) ,MR(3) 

1 READ DATA 
0PTIMIZE WT0T 

INDEPENDENT THRUST(2) ,THRUST(3) ,TBURN(l) ,TBUlrn(2) 
0LIMITS(FPRIN - 0) 
S0LVE G1,G2 

INDEPENDENT THRUST(1),TBURN(3) 
DLVT(IlT - 0 
W - WPAYLD 
TBT(IlT - 0 
D(Il F(IlR L - 1 T0 3 
I • 4-L 

ISP(I) - ISPVAC(I) * (1 - XIP(I» 
WPR(IlP(I) - THRUST(I) * TBURN(I) I ISP(I) 

. WSTAGE(I) - 0.0234 * THRUST(I) + WPR0P(I) 
* + 1.255 * WPR0P(I) 'II'll 0.704 + 4 

STRFAC(I) - WPR~P(I) I WSTAGE(I) 
W - W + WSTAGE(I) 

REPEAT 

MR(I) - W I (w - ~TR0P(I» 
DELV(I) - GC * ISP(I) * L0GN(MR(I» 
DLVT(IlT - DLVT(IlT + DELV(I) 
TBT(IlT - TBT(IlT + TBURN(I) 

G1 - DLVT(IlT - DELVIP 
G2 - TBT(IlT - TBTIP 

END L~P 
WT(IlT - W 
PRINT VARIABLES 

END L~P 
G(Il T(Il 1 
END 

DATA 
THRUST-5400, 1237, 317, TBURN-142,127 ,131,GC-32,17'~.WPAYLD· 
DELVIP-2.8E4,TBTIP-400,ISPVAC-315,315,315,XIP-O,O,5E-3, 
$END 

Figure 1-8LANG formulation of sample optimization 
problem 

The purpose of the S0LVE loop is to find the values 
of THRUST (1) and TBURN (3) that satisfy G1 = 
o and G2 = O. Engine performance and vehicle weig~ht 
quantities are computed in a loop beginning with the 
statement. 

D0F0RL = 1 T03 (6) 

and ending with 

REPEAT (7) 

The equations between these two statements H,re used 
three times, one time for each of the three stag;es. Two 
characteristics of SLANG should be evident from this 
example. One is that the SLANG expressions used to 
describe the engineering model (}losely resemble those 
of F0R TRAN. The other is that numerical algorithms 
for optimization and nonlinear equation solving are 
invoked using the commands 0PTIMIZE and S0LVJ~. 

The total running time for this problem was eight 
seconds on the CDC 6500. The printout of the Bolution 
is shown in Figure 2. 

The second example demonstrates how a S0L VE 
loop can be used to match ~n integration boundaJry 



Variable Values 

D£LVIP 2.80000£+04 DELV 
GC 3.21740E+Ol Gl 

3. 15000E+02 ISP 
3. 00000£+00 HR 
7.95069E-01 
1. 33079£+02 

WPAYLD 5.00000£+01 WPROP 
6.78801E+02 
O. 

1.06014E+04 
O. G2 
3.15000£+02 
2.84635E+OO 
7.14542£-01 TBTIP 
1.15853E+02 THRUST 
2.45111£+03 
1. 69824£+02 WTOT 
5.0oo00E-03 

9.30107E+03 8.09754E+03 DLVTOT 2.80000E+04 
O. ISPVAC 3. 15000E+02 3. 15000E+02 
3. 15000E+02 3. 13425E+02 I 1.00000£+00 
2.50361E+00 2.23222E+00 STRFAC 8.51072£-01 
4.00000E+02 TBTOT 4. 00000E+02 TBURN 1. 51068E+02 
5.ll094E+03 1.27746E+03 3.28288E+02 
5.39694£+02 1.21347E+02 WSTAG£ 2.88002£+03 
3.77865E+03 W 3.77865E+03 XIP O. 

Figure 2--SLANG printout of results from problem 
shown in Figure 1 

/S¢LID R\1ICKET ENGINE START-UP TRANSIENT PR\1IBLEM 
/ THE PURP\/ISE \/IF THIS PR\/IBLEM IS T\/I DETERHINE 
/ THE PERCENTAGE \/IF EQUILIBRIill1 CHAMBER PRESSURE 
/ ATTAINED BY AN END BURNING S\/ILID R\1ICKET ENGINE 
/ AT A SPECIFIED TIHE (TSPEC) DURING ITS STARTUP 
/ TRANSIENT 
/ THE PR\1IBLEM INV\1ILVES INTEGRATI\/IN, B\1IUNDARY C\/INDITI\/IN 
/ MATCHING, AND HAS A S\/ILVE L\1I\/IP 
READ DATA 
PCEQ = (12/32.174 * RH(l\P * CSTARO * A * K) ** (1/(1 - N - Q» 

S(l\LVE C(l\NST 
INDEPENDENT PCSPEC 

* 
* 
* 

END L\1I0p 

FAC = VC / (GAM ** 2 * AT * 12) 
LET TINTEG - INTEGRAL (1 / (CSTARO * PC ** 

Q * PC * (RH(l\P * CSTARO * PC ** Q * A * 
K * PC ** (N -1) * 12 / 32.174 - 1», 
PC ~ PCIG T\1I PCSPEC IN 10 STEPS) 

TC\1IMP - FAC * TINTEG 
C\/INST .. TC\/IMP - TSPEC 
PRINT VARIABLES 

PERCNT - PCSPEC * 100 / PCEQ 
PRINT VARIABLES PERCNT 
ST\/IP 
END 

DATA 
TSPEC - 0.5, 
PCSPEC • 1500, 
PCIG • 700, 
RH\1IP • 0.064 
CSTARO • 3320, 
A • 4.4 E-4, 
K - 172.65, 
N .. 0.745, 
Q - 0.015, 
VC .. 220, 
GAM - 0.66175, 
AT - 0.35, 
$END 

Figure 3-8LANG formulation of houndary matching 
problem 

condition. The complete set of input is shown in Figure 
3. 

The expression in the argument of the integration 
statement is an equation for dt/dPc (where t = time, 
Pc = chamber pressure) during the start up transient 
of a solid rocket engine. The problem is to determine 
the value of chamber pressure at a specified time. This 
. value is the upper limit of integration, and is being 
computed such that the integrated tiine (TC0MP) 
matches the specified time (TSPEC). That is, when 
the value of the constraint, C0NST, is zero, the upper 
integration limit PCSPEC is the value of chamber 
pressure at TSPEC. The final calculation of PERCNT 
computes the percentage of equilibrium chamber 

Q Approach to. Problem Solving 693 

pressure, PCEQ, achieved at time TSPEC. PCEQ 
is computed from input data. The lower limit of inte­
gration, PCIG, is the ignition pressure, and is an input 
constant. 

Strucutre of the Q system 

The Q system is basically a Complier/Interpreter 
type package with the four major elements of the sys­
tem shown in Figure 4. The user's input language 
(SLANG) is converted by a set of system-supplied 
macros into the MODTRAN language. The MOD­
TRAN compiler then converts this language into an 
assortment of pseudo instructions and some associated 
tables. These are processed by the link editor before 
going to the interpreter for execution. 

With this system it is possible to omit the macro 
processor if the user chooses to write directly in MOD­
TRAN. On the other hand, a user might wish to use 
only the macro processor to perform some transforma­
tions on BCD data. 

The ML/I processor was originally designed by P. 
J. Brown4 of Cambridge University, who supplied the 
logic to TRW. The processor was converted to FOR­
TRAN with little difficulty, and this version was in­
cluded in the CUE system for making an initial pass 
at the input of non-programmer users. It was found 
that the average engineer in a hurry (for whom the 
system was designed) was unwilling to take the trouble 
of writing his own macros. Ideas for suitable macros 
were solicited from potential engineer users, and the 
resulting language was christened SLANG. Additions 
are continuously being made to SLANG to make it 
more useful. At one time it was planned to have four 

HL-l 
11ACRO PROCESSOR 

(SLANG) 

MODTRAN 
COMPILER 

t -
CLINK EDITOR OJ . 

I -
INTERPRETER 

Figure 4-B~sic Q system elements 



694 Fall Joint Computer Conference, 1969 

------------------~------~---------------------------------------------------------,-------

"dialects" of SLANG of increa~ing degrees of sophis­
tication, but this idea was abandoned in favor of a 
single version. 

An example of how the processor converts SLANG 
macros to MODTRAN is shown in Figure 5. It is 
worth noting that the writing a.o.d debugging of macro 
definitions is considerably easier than would be the 
modification of the ::-"10DTRAN compiler itself. The 
programmer need in general b~ concerned only with 
the particular macro definition l'1e is working on, and 
both his inputs and his outputs arp in BC D. 

I t was originally planned to, incorporate some of 
the more popularSLANG variations into ::\10DTRAN, 
thus reducing processing time; unfortunately this 
project has been continuously I)Ostponed because of 
more pressing work. The more recent versions of the 
Q system allow for relocatable subroutines, which have 
served to reduce machine time considerably. Previously 
an illusion of subroutines was: created by suitable 
macros, but it was necessary to 'process the user's en­
tire input deck each time the equations were modified. 

The l\10DTRAN language bears a strong resem­
blance to FORTRAN or BASIC, since it was designed 
by FORTRAN programmers. Algebraic statements are 
essentially the same, and DO 106ps are provided that 
have the same function except that they provide for 
backward stepping when desired. Arrays are as in 
FORTRAN except that they are ~imited to two indexes. 
READ and WRITE statement~ are similar, as are 
FORMA T statements. All variables are floating point 
as in BASIC, and corrections ar¢ automatically made 
for round-off errors on comparison~s. 

--
IF (A.LE.S) GO TO ,10204 

GO TO 10200 

102?4 IF (A.LE.4) GO TO 10210 

GO TO 10206 

102io GO TO 10212 
IF A LE S 

GO TO 10214 
THEN IF A LE 4 

102i2 HCNO-A 
THEN GO TO NODE(A) 

"- GO TO 20000 
ELSE GO TO ERROREXIT 

y 10214 GO TO 10208 
REJOIN 

10206 GO TO 10216 
ELSE IF A EQ 0 THEN STOP 

10208 GO TO 10202 
REJOIN ALL 

10200 IF (A.EO.O) GO TO 10222 

GO TO 10218 

10222 CONTINUE 

10218 CONTINUE 

10202 CONTINUE 

SLANG HODTRAN 

Figure 5-Example of SLANG/M0DTRA~ conversion 

Some lVIODTRAN statements are unusual, as for 
example EXECUTE label, which will cause a transfer 
to the label. When a JUl\fPBACK statement is en­
countered, control is tranferred to the statement fol­
lowing the EXECUTE label. 

The FORTRAK subroutine concept is used in 
MODTRAN, but the CO~\1l\10N method of communi­
cating between subroutines was eliminated in favor 
of using the names of the variables themselves to 
communicate locations, as in BASIC and other lan­
guages. Another provision is that a variable can be 
typed as LOCAL to a particular subroutine, permitting 
subroutines to be written independently. The FOR­
TRAN concept of calling sequence/argument list is 
used for communication between such subroutines,' 
so that lVIODTRAN subroutines may be written and. 
placed in the system library for general use. 

The MODTRAN compiler has no provision for 
user-written functions (arithemetic or other), which 
makes it possible to determine an indexed, variable 
even though no suitable allocation statement has ap­
peared. When the compiler encounters what appears to 
be an array (which could be a misspelled system func­
tion), it processes the indices and assumes that by the 
time the statement is executed another s1batement 
making the allocation for the array will have been 
previously executed. The allocation statement can be 
either GLOBAL or LOCAL. For example, the state­
ment: 

GL0BAL X (NR,0W, NC,3L), Y (10), Z (8) 

will cause the release of any arrays previou:sly asso­
ciated with X and Y and the allocation of ten words 
to Y as well as the generation of an array NR0W rows 
by NC0L columns for X. Such statements are executa­
ble, and once executed will apply to all other subrou­
tines where the variables X and Y appear as globnls. 
The variable Z in this statement is only given a global 
assignment by the compiler and that portion of 1~he 
statement is not executable. If the compiler encoun­
ters a variable not defined as GL0BAL or L!2>CAL it 
assigns the variable to the nominal category previously 
defined by the user (normally GL0BAL). 

Generation of partial derivatives 

Perhaps the most interesting feature of the Q system 
is the way in which partial derivatives are treated. 
The MODTRAN language provides for speeification 
of three levels of partials: 



NO PARTIALS 

FIRST PARTIALS List 

SECOND PARTIALS List 

(9) 

In these statements, List specifies which variables 
are to be the independent variables. An INDEPEN­
DENT List statement might also be used for this 
purpose. A typical set of statements might be: 

SECONfl PARTIALS X, Y, Z 

F = Y *X/Z 

D = F *F 

(10) 

These statements will cause the dependent variables 
D and F to be evaluated and all of the first and second 
partial derivatives of these two variables with respect 
to X, ¥. and p will be computed. The resulting storage 
requirerrients can become quite large; in the case of 
three independent variables one word is required for 
the value, three for first partials, and sLx for second 
partials, making a total of ten words (see equation 
11). In the case of 15 independent variables 136 words 
of storage are required for each dependent variable. 
The system tries to hold down the total storage re­
quired by ret,urning the partial storage to the free 
area wherever possible. We are considering a scheme 
to reduce the numb~r of words required in the case of 
a dependent variable that is not a function of all the 
independent variables. 

The actual operation of computing partial deriva­
tives is carried out by the interpreter in the course of 
evaluating the given expressions of the problem. This 
evaluation consists essentially of a sequence of opera­
tions, which may be unary (perfo~med on a single 
variable), for example SIN (X) or binary (performed 
on two variables), for example X *Y. The result of an 
operation either becomes one of the variables going 
into the next operation or, if the sequence is complete, 
the result is stored as the answer in the appropriate 
location. An operation is performed by the interpreter 
causing a transfer to one of the appropriate subrou­
tines. Each subroutine has either one primary input 
(unary), or two primary inputs (binary), and a single 
output. The inputs (operands) mayor may not have 
partials, and if they do it may be necessary to compute 
only first partials or both first and second partials. 
Consider the division operator, for example; either or 
both the divisor and dividend mayor may not have 
partials, leading to four different possible cases. Each 
case is different with respect to how the partials of 

Q Approach to l?roblem Solving 695 

the resultant variables are computed, and four separate 
subroutines have been written for the division operator; 
the appropriate subroutine is selected by the interpreter 
during the execution of the user's program. If an equa­
tion is evaluated several times, it is entirely possible 
that a variable may have partials during one evalua­
tion and none during another, in which case the appro­
priate subroutine would be executed during each 
evaluation. At the time that the link edit is performed 
every variable is given a core location assignment. 
If the variable has no partials then the value associ.;. 
ated with the variable is stored in this location. If, 
however, during the execution of the model the variable 
develops partial derivatives by being a function of 
variables which have partials, then a vector is opened 
for the variable and the initial location replaced by a 
pointer to this vector. As an illustration, consider the 
following sample vector for a variable F when there 
are three independent variables X, Y, and Z: 

F aF aF aF a2F a2F a2F 
, aX' jjY' aZ' aXaX' aXa Y' aXaZ ' 

All of the variables which have partials will have similar 
associated vectors. The independent variables will 
each have such a vector where all of the partials are 
zero except for the one corresponding to the derivative 
of the independent with respect to itself where a value 
of one will be stored. When an INDEPENDENT 
statement is encountered all of the vectors which 
happen to be active at that point are deleted and a 
new set of independent vectors set up. As the run 
progresses new dependent vectors will be allocated. 

In MODTRAN statements for unary operations, the 
subroutines tend to be similar except for the three 
lines for the evaluation of F, S1, and S2 (see below for 
definition of SI and S2). In the example of Figure 6, 
SINX is used as the name of the interpreter subrou­
tine for evaluating the sine of a variable. NUMIND 
indicates the number of independent variables, E is 
the operand vector, and F is the resultant vector. 

There would of course be similar routines for COS, 
EXP, TAN, etc., which might appear in the user's 
input. In the general case all of these subroutines would 
be identical except for F, S1 and S2. Suppose ·oper 
corresponds to the unary operator that is being used, 
then F, S1 and S2 can be expressed in general as fol­
lows: 



696 Fall Joint Computer Conference, 1969 

1 

2 

3 

SUBROUTINE 5INX(E~F) 

DIMENSION 

C0MH0N/NUMIND/NUl'1IND 

F(l) = SIN(E(l» 

51= COS(E(l» 

52= -SIN(E(l» 

H==NUHIND 

DO 20 K=l,Nll1IND 

IF (FIRST) G0 TO 20 

S3=.32*E(K) 

DO 10 L=I,K 

H==H+l 

10 F(M)=E(M)*SI+S3*E(L) 

20 F(K)=F(K)*SI 

RETURN 

END 

10 

20 

SUBROUTINE MUL(D,E,F) 

DIMENSION D(1) ,E(1) ,F(1) 

C~MM~N/NUMIND/NUMIND 

M=NUMIND 

DO 20 K-1,NUMIND 

00 10 L-1,K 

IF(FIRST) G~ TO 20 

M-M+1 

F(M)-D(M) *E(1)+E(M) *D(1)+D(K) *E(L)+D(L) *E (K) 

F(K)-D(1)*E(K)+D(K)*E(1) 

F(1)=D{1)*E(1) 

RETURN 

END 

Figure 7 -Sample interpreter subroutine for binary 
operation 

Then from any table of derivatives 

aF D aE + aD . E 
ax - . ax ax (14) 

Figure 6-Sample interpreter subroutine for unary while 
operation 

F = oper (E) 

SI = aoper(E) 
aE 

S2 = a2oper(E) 
a:B.2 

(12) 

Should it be necessary to evaluate only first partials 
then at the time each of the subroutines is executed 
the logical variable FIRST will be set to true and the 
computing of the second partials will be bypassed. 

Binary functions vary considerably, but an example 
of this type of function is given in Figure 7 for the 
multiplication operation. D and E are the operands 
and F is the resultant vector. 

Perhaps it would be useful to demonstrate the man­
ner in which the equations of the MUL routine were 
derived. Assuming for purposes of explanation that 
X & Yare the only independent variables then we 
know that 

F =D·E (13) 

aF2 a2E aD. aE aD. aE 
axay = D. axaY + ay aX + ax aY 

+ 82D. E 
axaY" 

(15) 

The reader should be able to convince himself that 
the statement at label 20 on Figure 7 correspon.ds 
to (14) while the statement at label 10 corresponds 
to (15). It should also be possible to place these state­
ments in the context of a generalized number of in­
dependent variables by referencing equation No. 11. 

Tabular function defined by arrays of input df~ta 
are handled by a system routine which fits a poly­
nomial to the data and then assumes that the deriva­
tives of the polynomial correspond to those of the 
function. This is of course rather cumbersome and 
the results may n.ot be accurate for many functions. 

System supplied routines 

In addition to the usual system-supplied routines 
such as those illustrated above, the Q system attempts 
to provide rather elaborate sets of routines whicha.re 



called algorithms. These routines should remove some 
of the burden off the user to provide a method of so­
lution. They are kept in the Q FORTRAN library 
and are called as needed. Since one of the main fea­
tures of the system is the ability to take partial deriva­
tives, it is not surprising that most of these routines 
are built around this capability. The most important 
and most frequently used of these algorithms are 
called SOLVE, OPTIl\1, and INTEG. 

The SOLVE algorithm makes use of the Xewton­
Raphson technique in order to drive specified func­
tions to zero. In order to do this it is necessary to 
evaluate the first partial derivative of the functions 
and apply correction factors to the independent vari­
ables based on this information until the convergence 
criteria is reached. Since it is possible to obtain first 
partial derivatives by numerical techniques this 
method of solving functions is rather common. The 
partials of the Q system should be more accurate, how­
ever, especially in the neighborhood of singularities. 

The optimization function is initiated by writing 
MAXIl\1IZE, l\HNIMIZE, or CRITICALIZE fol­
lowed by the variable to be optimized and an INDE­
PENDENT statement for the variables the system 
will vary in an attempt to find a solution. The partial 
derivatives playa major role in this algorithm. Original­
ly the system made use of Lagrangian multipliers in 
conjunction with the Newton-Raphson technique for 
optimization, but this method has been superseded 
by a modified version of rotational discrimination, as 
described by Law and Fariss.6 

The INTEG algorithm is used to integrate a set 'of 
simultaneous differential equations by a fourth-order 
Runge-Kutta method. It can be combined with the 
SOLVE algorithm to solve two-point boundary value 
problems, as in the second SLANG example given 
earli'er. In this case the INTEG routine is imbedded 
within a SOLVE loop, where the solution to the 
SOLVE operation is the end points to match certain 
expressions. Other routines are available to save and 
restore partial derivatives, to add and delete indepen­
dent variables, to input or printout all global variables, 
etc. 

Implementation of the system 

As implemented on the CDC SCOPE system Q 
requires two back-to-back executions under SCOPE 
with a compilation by the SCOPE FORTRAN com­
piler separating the executions. The user need not be 
aware of these efforts in his behalf, however, as he sub­
mits one job and gets one output. It is even possible 

Q Approach to Problem Solving G97 

to place the SCOPE control cards necessary to run 
the Q system onto a file, along with the various other 
files required by the system, so that the user need only 
see a few of the SCOPE control cards. 

In the first execution under the Q system a basic 
monitor surveys the user control cards to determine 
the objective of the decks which the user supplies. 
Thus in one run the user might have some SLANG 
decks to be sent via the ML/I processor to the MOD .. 
TRAN compiler, some MODTRAN decks which 
would go directly to that compiler, some FORTRAN 
decks for compilation by the SCOPE FORTRAN 
compiler when it is called in between the executions, 
and perhaps even some FORTRAN and/or MOD­
TRAN relocatable decks. Control cards are intermixed 
with other input and some action is normally taken 
immediately with the cards following a control card 
until the next control card in encountered. Sometimes 
a set of cards is sent directly to a processor, such as a 
MODTRAN deck going to the MODTRAN compiler, 
while in other cases it is necessary to place the deck 
on a file for later processing, such as a FORTRAN 
deck. The flow of operations is shown in Figure 8. 

Once all the user's input except for data cards has 
been read and either processed or assigned, the link 
editor is called in to tie together the various MOD­
TRAN routines. The link editor assigns all of the 
variables to their final locations in the data portion 
of the bucket and performs the required relocation of 
the pseudo instructions. An attempt is made to satisfy 
all of the externals referenced from MODTRAN 
routines with MODTRAN entry points, including 
a search of the Q MODTRAN library file. The references 
which are still unsatisfied are assumed to be for FOR­
TRAN routines and a search of the Q FORTRAN 
library file is performed. Any routines found there are 
pulled off for loading by the next execution. At this 
point the link editor writes a FORTRAN routine 
which will be compiled by the CDC FORTRAN 
compiler. This routine consists of a computed GO TO 
followed by a call to each of the routines which it has 
determined are FORTRAN. For example it might 
write: 

SUBROUTINE CALLI 
COMMON/N/N 
GOTO (1,2),N 

1 CALLINTEG 
RETURN 

2 CALLBROP 
RETURN 
END 

(15) 



698 Fall Joint Computer Conference, 1969 

Figure 8--Flow diagram of the Q system 

Actually the routine CALLI will be more complicated 
than this example, since the user is allowed to have 
arguments to these FORTRAN routines. The basic 
concept is, however, that this is the manner in which 
it is made posible to call a FORTRAN routine from a 
MODTRAN routine. Should the user, for example 
write 

CALL INTEG (16) 

in MODTRAN he will in actual.fact be calling sub­
routine CALLI with N set equal to 1. Since the 
routine CALLI is placed in the input stream to the 
FORTRAN compiler the user receives a listing of 
this routine in the middle of his: output. It was not 
deemed worthwhile to try to suppress this listing, 
since the user might very well be compiling some of 
his own routines on the same call to the FORTRAN 
compiler. 

After the link editor has relinquished control to 
the FORTRAN compiler and that processor has com­
pleted its task, the second execution of the user's job 
begins. This consists of a loading of the Q interpreter 
and all of the FORTRAN routines which have been 
collected by the link editor on the previous execution 

and placed on the FORTRAN relocatable file. The 
nature of this core load varies radically depending on 
what the user requires. Control is initially passed t.o 
the main MODTRAN routine 'but after that the user 
is on his own. 

During execution of a MODTRAN routine, the 
pseudo instructions put out by the MODTRAN com­
piler are being interpreted. As is usual with interpretive 
schemes, quite a bit of control can be exercised in 
making sure that the user is not getting into trouble 
and in taking some appropriate action when he at­
tempts to do something which would be improper. 

There are three user data areas in the Q system.: 
variables, arrays, and partials. The three areas are 
rather heavily intertwined with pointers, a pointer 
being distinguishable from a value by the fact that 
it is a positive integer while a value is a normalized 
floating point number. Initially only the variable 
area is assigned (by the link editor) and the interpre­
tation of the user's program causes the buildup of the 
other two areas. Thus suppose the user says 

GLOBAL X(lO) (1'7) 

where X was previously only a value. An array will be 
opened in the array area and the location at which X 
was assigned will be replaced by a pointer to the array. 
A double tag system as described by Knuth6 is used 
for the allocation of arrays, a system which allows a 
good method of returning variable length arrays to 
the free area. Two more words are used to speeify the 
dimensions on the array, causing the use of four words 
in addition to the actual size of the user's array. When 
an array is released, the two words which were used 
for indexing are replaced by linking pointers to facili­
tate the search for free areas of adequate size. The user 
of course need not be aware of this process when he 
opens or closes an array. 

It is also frequently the case that a variable will 
not only have a value associated with it but will have 
some partial derivatives. In this case the 10catioIl of 
the variable, or the indexed location within its array, 
is replaced by a pointer into the partial area. At the 
location in the partial area the value and the asso­
ciated partials are stored. Some rather complicatted 
chaining-down pointers may result before the desired 
location is finally achieved; but normally if the user 
is taking partials he will be spending most of his time 
during execution doing just that, computing partia;ls, 
and the time spent on pointers will be relatively small. 
I t was also necessary to make some provision for re­
turning these partial vectors to the free area, but this 



is a rather simple matter since all of these vectors 
are of the same length. 

Additional complications are entered into the system 
when the user performs such operations as saving 
partials and beginning a new set. This is basically 
performed by closing off the current partial area and 
opening up a new one. A swapping of pointers with 
values ,occurs so that the partials can be restored later. 

SUMMARY 

No claims are made that the Q system is a direct chal­
lenge to other computer systems. It does, however, 
offer anapproach to some rather difficult problems. 
As was pointed out earlier, it is easy to introduce 
modifications into the SLANG language, a charac­
teristic which is not common to programming lan­
guages. It is also rather easy to introduce new al­
gorithms into the system, thereby expanding its 
problem solving capability. It is hoped that the Q 
system constitutes a basis for further development 
along these lines 'since the user is' frequently denied 
this flexibility in a computer system. 

Q Approach to Problem Solving 699 

ACKNOWLEDGMENTS 

Bob Kennedy helped in the preparation of this 
article and Dave Adamson provided the sample 
SLANG problems along with the discussion of them. 

REFERENCES 

1 R E WENGERT 
A sinple automatic derivative evaluation program 
C A C M Vol 7 1964463-464 

2 H L GLASS 
A n elementary discussion of compiler/interpreter writing 
Computing Surveys 1 196955-77 

3 D ADAMSON 
Introduction to SLANG 
TH W Doc 99900-6672-HO-OO 1968 

4 P J BROWN 
Macro processors and their use in implernenting sojtware 
Thesis Univ Math Lab Cambridge England 1968 

5 V J LAW R H FARISS 
Rotation discrimination for optimization with limits on the 
variables 
Preprint 19B Second Joint AICHE-IIQPR Meeting 
May 19-22 1968 Tampa Fla 

6 D E KNUTH 
The art of computer programming 
Addison Wesley Publishing Co Vol 1 Chap 2 1968 p.442 





Self-contained exponentiation* 

by NANCY W. CLARK and W. J. CODY 

A rgonne National Laboratory 
Argonne, Illinois 

INTRODUCTION 

The traditional implementation for floating-point 
exponentiation, x raised to the y power, is to compute 
exp (y fn(x» using standard subroutines for the 
logarithm and the exponential function. While it is 
possible to provide extremely accurate subroutines 
for these latter functions, we shall shortly see that 
this is seldom done. Even in those rare cases where 
excellent subroutines are available, the exponentiation 
routine, for sound theoretical reasons, is poor. In this 
paper, we present brief titatistics indicative of the 
quality of these three subroutines in the basic Fortran 
libraries provided by various manufacturers, a de­
tailed error analysis for exponentiation, and a method 
for exponentiation via self-contained subroutines. 

In the following discussion we will use the term 
exponentiation to refer to XV where we will always as­
sume x > O. The term exponential will refer to CV 

where c is a fixed constant base, usually either 2 or e. 

The present situation 

With the cooperation of a number of different in­
dividuals and computing centers, we ran some simple 
tests on the exponential, logarithm and exponentia­
tion subroutines in the basic Fortran libraries on eight 
different computers representing six different manu­
facturers. The only version of the single-precision 
library on the CDC-3600 available to us contained 
routines we had written according to the methods to 
be described and does not necessarily represent the 

* Work performed under the auspices of the U. S. Atomic Energv 
Commission. ' 

701 

manufacturer's library . We also tested our own version 
of the library for the IBM 8/360 in addition to the 
standard library. 

These tests were not intended to be complete certifi­
cations of the routines tested, but were designed to 
lightly probe areas where such subroutiries are most 
likely to have tlouble. The tests consisted of compu­
tations with a series of arguments exactly representable 
in binary notation. The corresponding function values 
were output in octal or hexadecimal form and compared 
against similar computations in 96-bit arithmetic on 
a CDC 6400. The computations involved were: 

exp(ri) n = 40(1)88, 

fn(x) x = .25(.015625)2.0, 

I n = 0(1)22, 
(2 n ,22 - n) 

(4 n , 11 - n/2) 
x**y (x, y) 

(2 n
, 44 - 4n) ) 

n - 1(1)11. 
(.75 X 2 n , 46 - 4n) -

The test results are summarized in Table I. 
Certain of the computers used have either octal or 

hexadecimal floating-point arithmetic. On these com­
puters, a mantissa can be properly normalized and 
still have the first two or three bits zero. This accounts 
for the apparent tabular discrepancies between the 
sum of the maximum number of bits in error and the 
minimum number of correct bits, and the total number 
of bit ~ in the mantissa on these machines. 



702 Fall Joint Computer Conference, 1969 

TABLE I-Accuracy Test Results 

lVlachine and 
Subroutine 

Single-Precision Double-Precision 

IVI N M N 

Machine and 
Subroutine 

Single-Precision Double-Precision 

IVI N 1\1 N 

Burroughs B-5000 (39 bit mantissa) (78 bit mantissa) IBlVI 360/75 (24 bit mantissa) (56 bit manti:~sa) 

EXP 
LN 
X**y 

9 
3 
7 

30 
35 
31 

Control Data 3600 (36 bit mantissa, 

EXP 
LN 
X**y 

Argonne library) 
1 35 
2 34 
1 35 

Control Data 6400 (48 bit mantissa) 
EXP 1 47 
LN 2 46 
X**y 7 41 

8 
7 

11 

69 
71 
67 

(84 bit mantissa, 
CDC library) 

4 80 
5 79 
8 76 

G.E.225 (30 bit mantissa, FIZ1\10P system) 
EXP 3 27 
LN 12 18 
X**Y 10 20 

G.E.645 (27 bit mantissa) (63 bit mantissa) 
EXP 1 26 14 49 
LN 4 23 4 59 
X**Y 1 26 14 49 

1\1 = maximum number of bits in error. 

We will show presently that accuracy in exponentia­
tion depends very heavily on the accuracy in the 
calculation of the exponential function. Note, however, 
that even with a good exponential function~ as is 
apparently the case in the single precision CDC 6400 
and the original IBM 360 libraries, the exponentiation 
routine can still be in error by two to three significant 
decimal places or more. Also note that the exponentia­
tion routines corresponding to OUr methods as well 
as the single-precision routine on the G.E 645 display 
primarily round-off error in these tests. 

Error analysis 

There are two major types of error in any function 
subroutine. The first is transmitted error, i.e., error 
due to small errors in the arguments. If we assume 

IBNI library 
EXP 
LN 
X**Y 

IBlVf 360/75 
Argonne library 

EXP 
LN 
x**y 

SDS Sigma 7 
EXP 
LN 
X**Y 

Univac 1107 
EXP 
LN 
X**Y 

Univac 1108 
EXP 
LN 
X**Y 

1 
3 

10 

21 
20 
14 

7 
3 

10 

49 
52 
46 

(24 bit mantissa) (56 bit mantissa) 

1 
2 
2 

21 
21 
21 

1 
2 
1 

52 
52 
52 

(24 bit manti~sa) (56 bit manti~:sa) 
4 20 8 48 
4 
8 

19 
15 

4 
8 

50 
46 

(27 bit mantissa) (54 bit mantissa) 
2 25 4 50 
6 21 7 47 
6 21 10 44 

(27 bit mantissa) (60 bit mantissa) 
2 25 8 52 
6 21 6 54 
8 19 9 51 

N = minimum number of correct significant bits. 

z = f(x) 

where f(x) is differentiable, then 

f' (x) 
oz ~ x £ex) ox (1) 

where 

(jz = flz/z ~ dz/z (2) 

denotes the relative error in .z, and ~z denotes the 
absolute error in z. It is clear that the tra,nsmitted 
error, oz, depends solely on the inherited error, OX, 
and not on the subroutine. The second type of error 
is generated error, i.e., that error generated by the 



computational process. This includes both errors due 
to truncating an infinite process at some finite point 
and roundoff errors. 

Even infinitely precise subroutines have no control 
over inherited error. Therefore, in designing subroutines 
we assume there is no inherited error and seek to 
minimize the generated error. 

Now let us consider the logarithm-exponential 
method for exponentiation. We use the relation 

x > 0, (3) 

where 

w = ys 

and 

s = logc(x). 

From (1) and (2), and recalling our assumption that 
~x = ~y = 0, we see 

AW = yAs 

where As represents only the generated error from the 
logarithm computation. 
If 

u 

then 

DU = fn c AW + DG (w) (4) 

where DG(w) denotes the generated relative error from 
the exponential computation. For good exponential 
routines DG(w) affects only the least significant one 
or two bits of u. Thus, the relative error in the exponen­
tiation is essentially proportional to the absolute 
error in w. Clearly, we want to minimize AW as it 
appears to the exponential routine. 

There are two major contributions to this error: 
the generated error from the logarithm calcula tion, 
and the finite word length of the computer. The 
second is by far the more important of the two. Sup­
pose the floating-point mantissa of the calculator 
contains 2t significant bits, but w is of the order of 
2t. Then the floating-point representation of w, the argu­
ment to be passed to a standard exponential routine, 
may have a rounding error as large as 2- t , i.e., AW ~ 2-t • 

Consequently, u may be accurate to only about t bits 

Self -Contained Exponentia tion 703 

independently of the accuracy of the logarithm calcu­
lation. This is the reason some of our tests found in­
accurate exponentiation even though the logarithm 
and exponential routines appeared to be reasonably 
accurate. 

A new approach 

There are at least two alternatives to the traditional 
computation. One is to resort to "overkill" by carrying 
out the traditional computation in a higher precision 
arithmetic. This is expensive in time; it is easy to do 
for single-precision routines, but difficult for double 
precision routines. (Is this the approach on the G. E. 
645?) The second alternative is to raise the status 
of exponentiation routines. At the moment they are 
considered to be secondary routines which call upon 
the primary routines for the exponential and logarithm. 
We propose that they become primary, self-contained 
routines with possible secondary entry points for the 
exponential and logarithm. 

If we accept this major reversal in philosophy, we 
free the computation of several restrictions. For 
example, we need not pick c = e in Eqs. (3) and (4), 
but can make the choice c = 2 which appears most 
natural for a computer, and which introduces the 
factor fn2 = .69315 in Eq. (4). This permits us to 
obtain extra significance in the results of the logarithm 
computationz as we shall shortly see, and to retain 
this significance throughout the remainder of the calcu­
lation. 

The first implementations of the algorithm we will 
outline were programmed using single-precision fixed­
point arithmetic to do single-precision exponentiation 
on both the CDC 3600 and the IBM 360 computers. 
Because neither computer allows efficient double­
precision fixed-point arithmetic, the algorithm has to 
be modified to use double-precision floating-point 
arithmetic to do double-precision exponentiation. So 
that the presentation will not be too abstract, we will 
present basically the algorithm as used on the IBM 
360 in double-precision.. Modifications for single­
precision floating point ~r fixed point versions, or for 
other machines should be obvious. 

We first reduce the range over which the logarithm 
must be approximated. Let 

x = 2 k ·m, 1/2 :::; m < I, 

and choose 

b = 11./16 



704 Fall Joint Computer Conference, 1969 

and 

n 'an odd positive integer less tha.n 16, such that 

where 

Then 

where 

and 

x = 2k- b m/a 

SI = k - b, 

S2 = log2 (1 + z) 
1 - z , 

m-a 
Z= 

m+ a' 

Since z is quite small CI zl :::; .022),: 82 is easily computed 
to full floating-point accuracy usi~g a low order rational 
approximation, or even the first few terms of the Taylor 
series, provided z is computed accurately. (A little 
extra care is necessary at this point in base 16 floating­
point but we will not go into the, details here.) Since x 
is assumed to be exact, m is exact and we can achieve 
full precision in m-a by breaking the constant a into 
two parts such that 

to the precision desired and such that the exponent on 
a2 is much less tha,n that on al. Then the computation 

will retain the low order bits of, a. Normal floating­
point can be used for the rest or the evaluation of z. 

Note that by carrying 81 as one floating point num­
ber, and 82 as another, we have rather painlessly 

achieved a logarithm accurate to well beyond usual 
working precision. Since /821 :::; 1/16, the ab80hde error 
in s is now about 2-4 times the normal relative error in 
floating point. Careful multiplication of 8 by y will 
minimize the crucial quantity dW. At this point, the 
usefulness of fixed-point arithmetic with the extra 
significant bits in the representation of a number is 
apparent. When such arithmetic is not available, as 
we have assumed is the case, it is necessary to arrange 
the floating-point computations to achieve the extra 
significance at minimal cost. This is done as follows. 

Let us say we reduce a number z when we write it 
in the form 

such that Zl is the integer part of 16z. Essentially, 
then, 8 is already in reduced form. We compute the 
exponent W in reduced form by writing 

where YI and Yz are the double-precision representa­
tions of the most significant and least significant halves 
of y respectively, and forming the products 8'IYl, 82YI, 
and SYz. Each of these quantities is again reduced and 
the results combined to form the reduced 

N ow WI is of the form 

WI = t + j/16 

where t and j are integers. We then finally compute the 
exponential value 

(5) 

Since IW21 :::; 1/16, a Taylor series computation of the 
exponential is quite efficient, although we used rational 
Chebyshev approximations. The quantities 2i/16 can be 
carried in a table. In fact, if Eq. (5) is rewritten as 

and the quantities 2-n / I6 are tabulated, the same table 
can be used for the constant a needed in the logarithm 
computation. This dictates the form of the: earHer 
decomposition. of a into al and az. Clearly al should be 
the value of a correctly rounded to working precision 
while az becomes a positive or negative correction term. 



Self-Contained Exponentiation 705 

TABLE II--Random argument tests on conventional double-precision X**Y on IBl\f 360/75 

Argument Range Frequency of Bit Errors IVIax. ReI. RlVIS 
No. of bits in error Error ReI. Error 

x y 0 1 2 3 4 5 6 7 8 9 10 other 

(1/16,16) (-4,4) 272 467 405 371 240 197 47 1 0 0 0 0 1.25E-15 3.65E-16 
(2-16 ,216) (-16,16) 78 123 153 168 247 377 321 294 195 44 0 0 8.82E-15 2.70E-15 
(2-32 ,232 ) ( -8,8) 80 109 131 152 216 288 295 234 241 120 86 48 5.08E-14 9.60E-1.5 
(2-64 ,264) ( -4,4) 57 95 115 126 161 215 293 352 303 192 82 9 2.68E-14 6.97E-15 
(2- 8 ,28) (-32,32) 59 90 115 109 199 312 406 343 253 107 7 0 1.40E-14 4.02E-15 
(1/16,16) (- 64, 64) 60 96 110 128 196 275 318 318 281 167 48 3 1.95E-14 5.73E-15 

-.---------.--

Average execution time for (x, y) random in (0, 1) = 195,usecs. 

TABLE III-Random argument tests on self-contained double-precision X**Y on IBl\1 360/75 

Argument Range Frequency of Bit Errors lVlax. ReI. RMS 
No. of bits in error Error Errror 

x y 0 1 2 3 4 ReI. 

(1/16,16) (-4,4) 1301 677 22 0 0 2.22E-16 6.24E-17 
(2-16 ,216) (-16,16) 1206 759 35 0 0 2.22E-16 6.11E-17 
(2-32 ,232) ( -8,8) 1314 667 19 0 0 2.22E-16 5.81E-17 
(2-64 ,264) ( -4,4) 1350 634 16 0 0 2.21E-16 5.44E-17 
(2-8 ,28) ( -32,32) 1097 812 89 2 0 2.22E-16 6.31E-17 
(1/16,16) (- 64,64) 872 823 250 52 3 2.22E-16 6.94E-17 

"-------~--------------------

Average execution time for (x, y) random in (0, 1) = 180 psecs. 

Since the last two factors in U are each less than unity 
in magnitude, and the 2t+1 factor affects only the 
floating-point exponent, we see that the construction 
of U from its factors is a stable process. Note that the 
error Llw, hence by Eq. (4) the error aU; now depends, 
primarily on· the magnitude of y. Using Eq. (4), and 
noting that we have gained an extra four bits in our 
calculation of 8, we see that y must be greater than 
roughly 32 before the inaccuracies in w become large 
enough to greatly affect aU. To verify this point, and 
to provide an in-depth comparison of our method and 
of the traditional computation, we have subjected our 
routine for the IBM 360 and the original IBM routine 
to a full certification as described in references one 
and two. The results, for identical tests, are presented 
in Tables II and III. 

One final word about the fixed point version 0" 

this algorithm. In fixed point, the extra bits over t 1 

normal floating point manitssa length are already 
available. As we have indicated, the decomposition of 
a and y and the reduction of 8, w, etc. are no longer 
necessary. This constitutes a savings in storage as 
well as in the number of instructions to be executed. 

But no matter which approach is taken, the fixed 
point or the floating point, the self-contained routine 
can be expected to be competitive timewise with the 
traditional routine because we have saved the over­
head of linking with other subroutines. All three of 
the self-contained programs we have written 
are actually faster than their traditional counterparts. 
The price is paid in terms of storage. This price can 
be minimized by incorporatIng entries for the ex­
ponential and logarithm routines into the exponen­
tiation routine, thus eliminating separate routines for 
the former. 



706 Fall Joint Computer Conference, 1969 

----------------------------------------------------------------------------------,--------
ACKNOWLEDGMENTS 

We would liketo acknowledgethe assistance of J. Boyle, 
P. Businger, L. Fosdick, C. Hammer, J. Pagels, R. 
Royston, H. C. Thacher, Jr., J. F. Traub and the 
computing centers at Argonne, Bell Telephone Labora­
tories, University of Illinois, Northwestern University, 
Univac, and the University of Notre Dame for their 
assistance in the tests reported in Table I. 

REFERENCES 

W J CODY 
Performance testin(J oJ Junction subroutines 
Proc SJCC 1969 759-763 

2 N CLARK W J CODY K E I-ULLSTROM 
E A THIELEKER 
Perlonnance statistics of the Fortran IV(H) library for the 
IBM system/360 
Report ANL 7321 Argonne ~atl Lab 1967 



Dens digital simulating system * 

by H. POTASH, A. TYRRILL, D. ALLEN, 
S. JOSEPH, and G. ESTRIN 

Universiity of California 
Los Angeles, California 

INTRODUCTION-SIMULATION SYSTEMS 

To see a world in a grain of sand 
And a heaven in a wild flower, 
Hold infinity in the palm of your hand 
And eternity in an hour. 

-William Blake 

This article is concerned with the problems of digital 
simulation and describes methods used in the Digital 
Control Design System (DCDS)1 for the simulation 
of digital structures. The paper is divided, into five 
parts: 

• A short introduction to DCDS, its structure and 
purposes. 

• A discussion of simulation techniques, entities and 
attributes. 

• The DCDS pseudo machine simulator. 

• The pseudo machine program. 

• A simple example'of a DCDL program. 

DeDS, its structure and purposes 

The Digital Control Design System (DCDS) was 
developed at the University of California at Los 
Angeles to aid in the design and architecture of com­
puter systems. The design system operates under the 
following assumptions: 

• This refj~arch was supported in part by the Atomic Energy 
Commi~eiG)n AT(ll-l) Gen 10 Project 14, and the Office.of Naval 
Research, Information Systems Branch, NOOO14-67-A-0111-0016. 

1. A set of basic building blocks whose properties 
are known is available. 

2. An instruction set or task assignment for the 
computer system is defined along with cost and 
performance constraints. 

3. Using his experience and intuition, the designer 
generates an ensemble of modules. These mod­
ules form the system's building blocks which the 
designer believes will perform the stated func­
tions effectively. 

Given the above (1-3), the digital system must 
be describable to a design aid system. The designer 
then needs a language, its translator, and an operating 
system with the following properties: 

707 

4. The set of functions to. be performed can be 
described. 

5. The building blocks, their interconnection, and 
their place and function within the ensemble 
can be described. 

6. A computer program can generate a fabrication 
description of control modules capable of going 
through a sequence of states necessary to have 
the system perform the above functions. The 
designer may specify synchronous or asyn­
chronous control systems. 

7. A simulator can accept the descriptions in (4) 
and (5), and the sequence description generated 
in (6), and produce measures of accuracy and 
performance. 

8. If the performance of the ensemble is "good", 
the description of the computer. system is in 
such form that. it may be fed into a more de-



708 Fall Joint Computer Conference, 1969 

----------------------------------------,---
tailed design process. If l1ot, the designer may 
al ter his architecture. 

To satisfy the above needs, Digital Control Design 
Language (DCDL) has been implemented as part- of 
design automation research being conducted at the 
University of California at Los Angeles.2- 6 A. compiler 
for DCDL has been implemented for the SSD SIGMA 
7 using a META 5 compiler writing systcm.6,7 The 
DCDL compiler is currently also being implemented 
for the IBM/360. 

The DCDL system illustrated in Figure 1 contains 
two compiler processors written in META 5, a pseudo 
machine (which is the subject oithis paper) written in 
FORTRAN IV and the machine language, and twO" 
control implementation modules written in FORTRAN 
IV. T~e input processor is a DC:r;>L syntactic analyzer; 
(~) thIS program translates the digital system descrip­
tIOn (example in Part IV) into an interpretive code 
used by the pseudo-machine for simulation of the 
described hardware. The second META 5 processor 
(2) produces a numerical code which is then transformed 
into a binary control program and a fabrication de­
scription of a control subsystem for the computer system 
being designed. The implementation specificatio~s for 
the wiring of the control matrices are produced by the 
two FORTRAN IV programs (3,4). Control modules 
imp~ied by microprograms have their wiring lists auto­
matICally generated by the Control Matrix Processors 
in DCDS. The hardware construction of the controi 
processor is then effected by using a set of one or more 
similar building blocks (Control Matrix Building 
Blocks), according to wiring specifications given by 
DCDS. 

Figure I-DCDS system flow chart. 

The software module described in Part III is a pseudo 
machine {5) in charge of executing simulation runs. 
The pseudo machine is composed of a combination of 
FORTRAN IV and machine language subroutines. The 
simulation runs are designed to check test cases in 
order to ass~ss the validity of a described design as well 
as to calculate its estima.ted execution time. 

DCDS is designed to analyze asynchronous as well 
as clocked systems, with the former posing a. spedal 
problem: dynamic reevaluation of variables. Any time 
a logical variable is changed, the system must, as a 
consequence of this change, reevaluate any other 
variable which is a function of the changed variable. 
This process must continue until no further "conse­
quential changes" occur. 

DCDS's capability to dynamically reevalua,te vari­
_ abIes allows the designer to describe his system using 
-the same logical equations and timing relations which 
he uses to implement it. Programming in a form (see 
Part IV) which is highly related to the actual hardw:are 
provides for a system directly used by the designer 
eliminating the programmer as a "middle-man". This 
direct correspondence also makes the DCDL progr:am 
an up-to-date documentation of the system designed. 
The syntax analyzer accepts a description which images 
the hardware and translates this description into 
simulation code. Thus the designer is freed from the 
tedious job of programming the structure-of the model 
required-a process sometimes more time-consuming 
than building a hardware prototype and testing it on 
the bench. 

'rhe Digital Control Design Lang~ge (DCDL) 
is built as a ~luster of three ntain sublanguages: a 
language intended for expressing ~~olean €:guations 
and time relations; a microprogramming language; 
and an algorithmic language. DCDL uses FORTRAN 
as the algorithmic sublanguage. The user may choose 
anyone of the three sublanguages to describe any of 
the parts or module"s in the describ~d design. The logical 
aI).d micl'oprogrammi'nlg sublangu~g~s use the s~me 
declarations and access the same variables by their 
names. The execution statements of sublanguages a.nd 
their syntactic formats differ and one cannot combine 
statements of different sublangu,ages. Thus DCDS 
~rovides' the user with a powedul means of expression, 
since he can select the most convenient and expressive 
form from among the three s'ublanguages to describe 
a hardware module. 

Entities and attributes in simulation systems 

For our observations herein, we consider the simula-



tion of a ~ystem to be the modeling and associated 
measurement of a system by a STRUCTURE in which 
EVENTS occur in TIME according to a set of RULES. 
Thus there are four sets of basic elements which must 
be dealt with in simulation: 

STRUCTURES, EVENTS, TIMES, and RULES 

Different simulation methods neglect one or more of 
these sets (e.g., time independent models). Anyone of 
the four sets may be selected as primary entities and 
the others treated as attributes of that set. 

One may choose to consider an analytic closed form 
solution to be a simulation of a real system. In this 
case, the process of simulation becomes a transforma­
tion. ~ssume for examQle the transfer equation for an 
electronic circuit. Both internal even.ts (voltages and 
currents in the individual elements) and struct?J,re 
(top~logy of the circuit) may be neglected and one 
manipulates the set of rules (Le. Kirchoff's law and 
Ohm's equatiqns) to produce a transfer function which 
gives the output event~ as a function of time and ~nput 
events. 

Thus whenever the rules are considered to be the 
main entities, then either an analytic transformation or 
an algorithmic procedure is used for simulation. The 
type and form of the information transferred into the 
simulation system as well as the simulation systems 
themselves vary from one another depending upon 
~hich of the four sets was chosen as the main. set of 
entities. Due to these differences, different languages 
or input rules are used to describe the simulated system 
to the software package designed to perform the simu­
lation. 

The following examples of different programming 
structures will serve to illustrate the previous discussion. 

Main Entities-EVENTS 

Examples of programming structures: 

SIMULA [8], GASP [9], SIMSCRIPT [10], [11], 
[1~], [13], GPSS [14]. 

A simulated system is described by an event flow 
chart. The programming systems above use input 
~anguage formats suitable for the description of events 
in such a form. 

Main Entities-RULES 

Examples: 

NASAP [15], LISA r16], Boolean Analyzer [17]. 

DGDS Digital Simulating System 709 
. ( 

1, 

The input to circuit analysis programs like NASAP 
and LISA or to the Boolean Analyzer is in table-form 
which either explicitly gives the set of rules (Boolean 
equations) 01' gives a table that implies a unique set 
of rules (Kirchoff's and Ohm's equations for the cir­
cuit). 

Main Entities-8TRUCTURES 

Examples: 

LOGIK [1~], Weather Simulation Program [19]. 

Partial Differential Equation Simulation [20]. 

The input format is any form suitable for describing 
the physical or hierarchical structure of the simulated 
system. 

Modeling and approxima,tions 

After the selection of the entity and attribute rela­
tions, the next step for simulating a system is to decide 
what can be approximated and how the selected ap­
proximations c~p. be done. The choice of what to ap­
proximate can be categorized as: 

a. mak~g certain entities (inputs) constants; for 
example t = 0 in time independent mo~eling. 

h. neglecting parts of the attributes; for example 
in simulation of partial differential equations by 
Monte Carlo methods, the field constants are 
calculated for only a small number of selected 
field points in the structure. 

c. modifying the set of rules; the use of differenc~ 
equations to solve partial differential equation 
problems is an example of modifying the rules,. 
For a different example of rule modification, 
consider a simulation program simulating an­
other program on a digital system. The purpose 
of the simulated program is to execute a matrix 
inversion in which the inversion is performed 
on a 2X2 part o{the matrix instead of the entire 
n X n array. In this case, the system rules may be 
modified to obtain fast simulation time for a 
simualtion that "takes the system through the 
motions" without obtaining the actual nu­
merical result. Thus for Such approximatiop.s, 
one ~ay simulate the system faster than real 
run time. 

Event directed simulation can be expected to be faster 
than structural simulation since structure simulation 
has to go through all possible events in the system, 
while event simulation takes the system only through 



710, Fall Joint Computer Cqnference, 1969 

--------------------------------------------------------------------------------------,------
the prescribed events. This is, of course, also the main 
pitfall of event simulation; it does' not point out events 
that might occur in the system but are unforeseen by 
the programmer. 

DCDS pseudo machine simulator 

A computer module in DCD L may be described by 
its structure (LOGIC), by the set :of events that it con­
trols (PROGRAM), or by th~ algorithmic rules 
(SIMULATE). In order to perforrrt this task, the DCDS 
pseudo machine simulator operates as an algorithmic 
simulator by calling on the FORTRAN programs; as 
a structure simulator when simulating a logical struc­
ture (operating from the Call Stack); or as an event 
simulator when processing a microprogram. The 
Program Stack (see Figure 2) operates the sequence 
of events generated by the control microprogram. The 
Call Stack operates all the logical details occurring in 
the logical structures forced by the control events. 

The DCDL event simulation is limited to operations 
within a logical structure. The eve~ts that are generated 
by the control as time moves forward, forces the simu­
lator to follow all consequences of the events within 
the described logical structure. For example, the event 
simulator may directly order (by executing an in-

REGULAR 
LOGICAL 

VARIABLES 

TEMPORARY 
LOGICAL 

VARIABLES 

OELAYEO 
STORAGE 

TABLE 

INOEXING ANO 
ARITHMETIC UNIT 

IMCI 

INSTRUCTION REGISTER 
ANOCOUNTER 

OR 

ARITHMETIC INSTRUCTION 
VARIABLES TABLE 

PROGRAM 
STACK 

MEMORY 

Figure 2-Pseudo machine structure 

struction in the program stack) transfer of data 1~0 
register A. All the other consequences of this action 
(i.e., all the outputs of gates whose input is A) are 
simulated from the Call Stack (structure simulation.). 

The pseudo machine program 

A pseudo machine processor is a program written in 
machine language or higher level language for the 
machine on which one performs the simulation runs. 
In the present implementation on the SIGMA 7 this 
program is written using FORTRAN and aBsembly 
language. 

The process in which the translation is separated 
from the simulation allows one to write the translator 
program independently of the machine in use. The 
separation of the compiler program and the pseudo 
machine program allows independent debugging and 
changes in each. Modifications in DCDL tmd i1GS 
compiler are done by changing the META 5 compiler 
program. FORTRAN changes in the pseudo machine 
provide for changes in simulation methods as well as 
insertion by the designer of other features expressed 
in FORTRAN to capture event information relevant to 
one design or another. 

Thus, by the process of programming in DCDL and 
by translation one obtains: 

A. Documentation of the design; 
B. A check on the consistency and completene8s 

of all logical variables and all logical functions; 
C. Automatic implementation of control sections; 
D. Simulation runs for given sets of input data; and 
E. The amount of time a certain run will take on 

the described design. 

Following is a discussion specifying the pseud.o 
machine structure and operation codes. 

Instructions, interpretation, addressing, and 
indexing 

This unit contains the following parts (see Fi~~ure 2). 

(a) Time counter and time registers. 
The counter counts simulated execution 
time. The time registers are u,ed to store 

time counts of different parallel br,anches. 
At a parallel junction, comparison between 
duration of operation on each branch is made 
and the highest time count will be the new 
value of the simulation time counter. 

(b) Indexing arithmetic unit. 
This unit is capable of fixed point operatioJ[l 



(plus, minus, multiplication, and division) 
and is used for indexing arithmetic. 

(c) Call-stack and Program-stack. 

Two push down (LIFO) stacks. One of the 
elements in the stacks is the operative ad­
dress; i.e., the address of the instruction to 
be executed next. The operative address 
is usually the word at the top of the call­
stack. If the call-stack is empty, the opera­
tive address is the word at the top of the 
program -stack. 
A control branch to a lower (subordinate) 
control level (CALL) is instrumented by 
putting the first address of the lower control 
level program into the call stack, thus making 
the call address the operative address. When 
the lower control level is of type PROGRAM, 
the address is put in the program stack. 
The operative address is incremented by 
1 after an instruction is executed or the 
address is replaced by another due to the 
execution of a branch (a normal branch that 
occurs within the program being executed). 

An exit or return from the subordinate program will 
cause the stack to pop while a further entry into another 
subordinate program brings a new address into the call 
stack. The consequential calls are put into the call 
stack but their execution is delayed until all the parallel 
operations have been carried out and then all conse­
quential calls are carried out. Two key words in DCDL 
indicate parallel structures. *GROUP indicates a set 
of similar modules operating in parallel and controlled 
by the same binary control variable (for example, 
a set of 32 single bit adder modules in a 32 bit binary 
adder). *P ART indicates a set of dissimilar modules 
operating in parallel under the control of a single 
binary control variable (for example, shifter and counter 
in floating point normalization). A *P AR T may con­
tain simple and nested *GROUPS in which case the 
whole structure is operating simultaneoulsy under 
the supervision of a single control variable. The stacks 
have three points. TOPC (top of the call stack). TOPP 
(top of the progranl stack) and OPR (the operative 
address.) 

OPR = TOPP.if call stack is empty 
OPR = TOPC if call stack is not empty 
OPR = TOpe at the time of entry to *GROUP 

or *PART if executing inside a *GROUP 
or a *PART. 

DCDS Digital Simulating System 711 

Consequential calls are intended for the dynamic 
reevaluation of variables. The STORE instruction 
invoking the consequential calls puts new addresses 
of variable reevaluation routines into the Call Stack. 
This is accomplished according to the following steps: 

1. The old and the new value of the variable are 
compared. 

2. The new variable value is stored. 
3. If the comparison mentioned above shows a 

difference between the old and new value, the 
address of the subroutine that calculated the 
new value of the dynamically dependent vari­
able is put into the Call Stack. 

4. The address of the next instruction is the address 
on the top of the Call Stack. Thus, if there were 
allY consequential calls, they would be executed 
prior to the completion of the execution of the 
subroutine that invoked those consequential 
calls. 

When there are no more changes in the values of the 
variables, the instructions proceed to the end of the 
reevaluation routine, which contains RETURN as 
the last instruction. The RETURN instruction pops 
the Call Stack sending the program to finish operations 
in the routine which invoked the consequential calls. 

The process of dynamic reevaluation will stop only 
if the variable values and the logical functions are 
consistent. Assume the following st~tements: 

A = /\ (B,C); 
D = V (A,E); 
B = ~ D; 

with initial conditions A = 0, B = 1, C = 0, D = 0, 
E = O. This set of relations and values is consistent. 
Now (lonsider that the variable C is changed to one. The 
new set up of variables and relations is inconsistent 
and the reevaluation of variables will not reach a 
steady state. Each reevaluation will put a new address 
in the call-stack: 

A change in operation occurs once an address is 
put into location n in the stack. The pseudo machine 
prints an error message which is followed by the names 
and values of variables partaking in a STORE instruc­
tion. This process continues allowing the program to 
put addresses in the next ten slots of the call stack. 
When the execution calls for storing an address at 
n+ll the call stack is cleared (TOPC = 0) and the 
operative address is tllken as the instruction on top 
of the program stack. This debug feature allows the 



712 Fall Joint Computer Conference, 1969 

----------------------------------------------------------------------_,-----
program .to check for IQgical inconsistencies without 
getting into an infinite loop or having to stop simula­
lation runs. 

5. Delay table. The result of a logical transforma­
tion specified in DCDL can be effected directly 
or after a specified time, for example in the 
statement 

A = 'DELAY(3)' & (C, D, E): OPl; 

the transformation &(C, D, E) is performed if 
control variable OP1 is activated, but the con­
tent of A will be changed only three time unitR 
later. 

To facilitate translation of the delay modifier, the 
pseudo machine contains a delay table. An entry into 
the delay table contains three parts: variable name 
variable's new value, time of exit. 

Variable name Variable value I Exit time 

Each time the time counter is incremented, all time 
of exit entries into the delay table are checked, and 
the entries with a time of exit matching the time counter 
activates a store operation storing the new value in 
the appropriate variable, invoking consequential calls 
if such are present. 

Logical manipulating accumulators 

The pseudo machine contains two string accumulat­
ors, A and B. The machine performs the operations 
of AND, OR and EQUAL between the respective bits 
of the string accumulators and the result is stored in 
string accumulator A. The current size of both string 
accumulators is given by the content of String Ac­
cumulator Size Register (SASR). 

All operations are performed on words of the same 
size. Calling an operand of the wrong size causes an 
error message printout and the machine goes to the 
next instruction. An exception to. this occurs when the 

operand is of size one bit. In this case, the one bit is 
extended to a word that contains all zeros or all ones 
of the size indicated by the SASR. A special imltr~ction 
sets the size of the string accumulator (Le., the cont£mt 
of SASR) thus setting the size of all followin:g logi1cal 
operations. 

Data Blocks 

Data blocks have different lengths and contli.in 
binary arrays. A binary array can possess up to three 
dimensions. Only a single bit or a binary word string 
can be addressed in the blocks. Each data block con­
tains a two word header containing the variable name 
followed by the structure described below. 

Storage for a Single Bit 

The storage blcok for a single bit is one word (four 
bytes) plus a word for each consequential call. A 
consequential call occurs when a variable A is a dly­
namic function of a variable B. B forms the input to 
the gate, the output of which is A. When B is <,hanged, 
a consequential call causes the pseudo-machine to 
reevaluate the variable A. Thus, the storage location 
of variable E contains the addresses of sets of instruc­
tions which will reevaluate all variables which are 
dynamically dependent on the variable B. 

The single bit storage words format 

indicator flags 

number of consequential calls 

variable value 

Byte 1: number of consequentilal calls 
invoked by a change in the 
stored binary variable. 

Byte 2: this byte contains indicn.tors for 
high bit position, number of 
dimensions of th~ logical vari­
able, and variable type. Eaeh 
indicator occupies two bits. 



variable dimension 

00: bit variable 

01: one dimension array (word) 

10: two dimensional variable 

11: three dimensional variable 

variable type 

00: logical point, the variable does not 
contain memory 

01 : 1 level storage, declared as *RS 

10: 2 level storage (clocked) 

position of the high order bit 

00: the high order bit is the roost significant bit 
(leftroost bit) 

01: the high order bit is the least significant bit 
(rightmost bit) 

Byte 3: not used 
Byte 4: variable value 

The following words .(if any) contain the consequential 
call address in byte 3 & 4 and its directive in byte 1. 

Byte 1: consequential call type (directives) 

011: calls on any change in the variable 

001: consequential call, only if the variable 
changes from 0 to 1 

010: consequential call, on the change of the 
variable from 1 to 0 

Ixx: consequential call of an entry to a PRO­
GRAM, put a new address on top of 
program stack (operation on the last 2 bits 
same as above). 

One dimension array storage 

In a one dimensional binary array st.orage, the first 
word contains the range and type of the stored variable. 
The following words contain the binary variable and 
then the consequential-calls (if any). 

DCDS Digital Simulating System 713 

Format: 1 2 I 3 

cc directive 

I 

cc address 

" 

" 

" 

4 

variable 

storage 

consequential 

call 

address 

First word: Byte 1: number of consequential calls 
Byte 2: variable dimension, high order 

bit position and variable type 
(same as for bit storage) 

Byte 3: lowest SUbscript of variable 
Byte 4: size of varia.ble. 

The second word through the nth word 

(
word size + 1) 

n = ---3;--- contain the value of the binary 

word. If the variable is a clocked F IF, the amount of 
space for variable storage is doubled and each bit has 
two storage locations, primary and secondary. 

The last set of words contains consequential call 
addresses and their directives. 

Two dimensional binary storage 

1 2 3 4 

5 6 IIIII IIIII 

cc directive cc address 

" 

" 
" 

A two dimensional arrangement contains at least 3 
words. The first 2 words are used for bookkeeping in the 
same format 9S the 1 dimensional arrangement, with 
byte 5 indicating the lowest value of the second 
subscript, and byte 6 indicating the range of the second 
subscript. 



714 Fall Joint Computer' Conference, 1969 

Three dimension· 

1 2 3 4 

5 6 7 8 

cc directive cc address 

" 
" 

" 

In a three dimensional arrangement, byte 7 indicates 
the lowest value of the third variable and byte 8 
indicates the range. 

Arithmetic variable storage 

The third entity stored in pseudo memory is a block 
of 256 arithmetic variables used for indexing and ad­
dress manipUlations. 

Temporary logical variabls 

The memory contains a block of 256 one dimen­
sional logical temporary variables, each one 128 bits 
long. 

Pseudo machine instruction set 

Most of the pseudo machine 'instructions closely 
resemble general purpose computer instruction lists. 
The main exception is that the addresses of logical 
variables contain the variable address as well as bit 
and word indices. 

In--ihe following paragraphs we will discuss spec,ific 
instruction.s which .are unique to the DCDL pseudo 
machine and will give the reader more insight into 
DCDS simulating programs. 

A pseudo machine logic instruction is contained in 
a 64 bit w~rd (eightbyte~). 

As implemented on the SDS ~igma 7, the most 
common format of the pseudo-machine logic instruc­
tion code contains 

a. operation code (one byte) 
h. operation cqde modifiers (one byte) 
c. operand address (two bytes) 

d. three address subscripts and a set of subscript 
tags. 

The actual operand address is a function of the 
main address (i.e., array address), the three sub8cripts, 
and the subscript tags. The main address corresponding 
to the name of the data block (i.e., the name of the 
variable). The subscript tags indicate whether the 
subscripts are to be used direotly, indirectly, or by 
word size. 

Each index byte has a two bit tag. The interpreta.­
tion of the tag is: 

If the tag is 00, this subscript is not currently ej[­
fective. For example, ill A(1, 3), A is a t;w~ di.­
mensional array and the third index is not used. 

If the tag is 01: The subscript is indicated di­
rectly by the numerical content of the cor­
responding subscript byte. 

If the tag is 10: The subscript is given directly; 
i.e., the corresponding number is the locatioJ[l 
of an indexing word in memory. 

If the tag is 11: It is used for ,,::ord v,ariablles and 
the word is the entire range of this subscript. 

The following section contains pseudo machine in­
struction examples from the set of pseudo mL3.chine 
instructions. 

Store with invoked consequential calls 

STDC a): a f- A, Call Stack f- consq (a) 
If there is a difference between (a) and A, all the 
consequential call addresses associated with (a) 
are put into the call stack. To av~id: redundant 
operation, a duplication of the address aJready 
inside the call stack will not be inserted; i.e., when 
two or more successive operations request the 
same consequential call this mechanism s,ets th,e 
operation such that the call will be executed 
only once. When the receiving variable (n) is ::1. 

clocked element (two storage levels) both levels 
change to match the content of A. 

Store in secondary level 

SSEC (a) : (al) f- A. 

Stores into first level of a clocked storage ellemenl~ 
(a clocked element has two storage levels). Thi:~ 
instruction does not initiate conseqJlential., calls. 

Secondary to primary storage level 
transfer, entire array 

TRANS (a): (a2) f- (al) 



Transfers the data from secondary to primary 
level in clocked memory elements. This instruction 
initiates consequential calls if consequential call 
addresses are present and the content of primary 
and secondary differ. 

Secondary to primary transfer, only 
des~nated hit(s) 

BTRANS. (a): (a2) ~ (al) 

Instruction execution same as aboye except 
transfer is performed only on bites) designated by 
the instruction. Note: consequential calls are not 
associated with single bits; a change in a variable 
invokes all consequential calls for the array. 

Delayed storage 

DELAY (a), i: DELAY. TABLE ~ a, i, A 

i, the delay count, is put in the second byte of the 
eight byte instruction (as a modifier). Delayed 
storage invokes consequential calls when they are 
associated with the stored variable. - The conse­
quential calls as well as storage will be activated 
after i time units. 

Instruction format 

'7 C'- -'- -'- -'- -.1- -'- -'- -' 

12345678 

Byte 2: delay count 
Byte 3-8: logical variable address 

Delayed secondary to primary transfer 

CKDLY(a),i: DELAYTABLE~a,i 

This instruction stores the address and time count 
in the Delay Table. The variable value does not 
have to be stored in the Delay Table sinc~ it is 
stored in the secondary register of the variable. 

*p ART entry point 

PARTIN: 

changes the GROUP flag to 1. As long as the 
GROUP flag is not equal to zero (GROUP ~ 0) 
the operative address does not change due to the 
placement of an address in the call stack. 

*p ART exit point 

PARTOUT: 

Turns the GROUP flag to "0" thereby releasing 

DCDS Digital Simulating System 715 

the consequential calls mechanism. Thus, if 
consequential c!111s have been involved, within 
PART this instruction causes the effective address 
to be the top of the stack and execution of con­
sequential calls to begin. 

*GROUP entry point 

GRUPIN, KI, XR: 

Loads the value K1\ into the arithmetic variable 
serving as index register (XR). 
Increments the GROUP flag by one (GIl-0UP = 
GROUP + 1). 

Format 

, E 2'X X'X X'- -'X X'X X'- -'- -' 
1 2 345 6 7 8 

Byte 4: arithmetic variable serving as index 
register (XR). 

7&8: Humber (1<0 loaded into the index 
register (XR). 

*GROUP exit point 

GROUP, K2, i, n, XR: 

(1) Compares K2 with the v~lue stored in the 
appropriate index register (XR). 
If the values are equal: 
Decrements the GROUP flag (GROUP = 
GROUP - 1) and proceeds w:th tne execution of 
next instruction. Note that if GROUP flag is 
decremented to zero (GROUP = 0) the stack 
pointer is moved to the highest occupied position 
POINT-TOP and stored consequential calls are 
executed. 
If the values are not equal: 
The index register variable XR is changed by 1 
or by -1. 
The operative address (next instru~tion address) 
is changed to the value n. 

Byte 

'E 3'- _'X X'- -'- -'- -'- .,;.'- _, 
12345678 

2: (i) Incrementing or decrementing value 
(1 or -1) 

4 (XR) Address of index register 
5&6: (n) Label of the instruction at the 

top of th3 *GROUP loop 
7 &8: (K2) upper limit of index register. 



71ti Fall Joint Computer Conference, 1969 

The operative address cannot, change as long as 
execution is within a *PART OF *GROUP 
(GROUP ~ 0). The consequential calls will be 
stored in the call stack and' evaluated onc the 
program exists all the nesting of *G RO UP and 
*PART. 

Unconditional branch 

GOTOn; 
Unconditional branch to n: the vnlue n replaces 
the operative address. 

Conditional branch 

GaTe (k)n: 

Branch is taken if the logical accumulator A = 0 
and k = 0 or A ~ 0 and k = 1. When the branch 
is taken, n replaces the operative address in the 
CALL or PROG RAlVI Stack. 

Call 

CALLn: 

Control transfer. The label n is put on top of the 
call stack making it the new current operative 
address. 

Return from a substructure 

RETURN: 

The instruction causes the call stack to pop making 
the next label in the stack the operative address. 

Call microprogram controller 

CALI> (n): 

puts (n) on top of the program stack 

Return from a microprogram 

RETRNP: 

Pop the program stack 

Check bit 

CHECK (a) 

The instruction contains a bit indicator (byte 2). 
The bit indicator is compared with a bit in memory 
addressed by bytes three-eight. If the bits are the 
same, the result is no operation; if the bits are 
different, the i.ru!truction executes a RETURN. 

Count time 

TIME, n: (TimeI') --- (Timer) + n, Evaluate de­
lay table. 

Counts n time units; note that with each count 
the delay table will be reevaluated and the in­
struction will activate delayed storage. 

Store timer 

TIMS (n): (n) +- (Timer) 

Stores the content of the t~mer in n 

Return to time count routine 

TRET: 

This instruction pops the call stack then returns 
control to the timer control subroutine. 

Bring timer 

TIMI (n): (Timer) +- (n) 

Sets the timer according to the value stored in n. 

Set timer 

TIMO n, m, k·: (Timer) +- n, (timer subroutine) 
+-m,k. 

The instruction contains a new initial value fOlr 
the timer. 

Gather point for parallel branches in a 
microprogram 

GATHER (b),j,k: 

This instruction appears at the glther point of 
parallel operation. The instruction contains two 
numbers, j and k, each stored in a two bytH loca·· 
tion and used for parallel branch count. k contaiml 
the total number of parallel branches coming in 
to the gather point; j contains the number of 
branches not yet executed. The arithmetic varia-· 
ble b is used to store the maximum operation time 
on the parallel branches. 

operation: if j ~ 0 

a. j +- j - 1 
b. (b) +- MAX «b), (timer» 
c. Pop the call stack 

if j = 0 
a. j +- k 
b. (timer) +- MAX «b), (timer» 



c. (b) +- 0 
d. go to next instruction (past parallel gather) 

'D 4'X X'X X'- -'- -'- -'- -'- -' 
12345678 

Byte 4: Arithmetic variable storing time count 
5&6: value of k, total number of parallel 

paths 
7 &8: value of j, number of parallel paths 

to be executed 

Logical to numedcal variable transfer, 
first word 

SINI (n), (v): B ~ (v), (n) +- B(O-31) 

The content of the logical variable v is loaded 
into B accumulator. Wbe.n the rightmost bits of 
B(O-3l) are loaded into the arithmetic variable 
n. This arithmetic variable is to be transferred into 
the simulated section. If the size of B is less than 
32, zeros will -be put into the leftmost bits of the 
word. 

Logical to numerical variable transfer, 
additional words 

SIN2 (n), k: n+-B(32*k to 31+32*k) 

This instruction must follow SINI or another 
SIN2 instruction. The instruction transfers the 
kth word from B to the arithmetic variable n 
to be transferred into the simulation section. 
Format 

'5 I" - -'X X'- -'X X'X X'X X' XX' 
12345678 

Byte 2: contains the address of the arithrrletic 
variable 

4: k, position of the word in B. 

Numerical to logical variable transfer, 
first word 

SOUTl (n), (v): B+-n, (v)+-B, B+-O 

This instruction transfers the bits of an arithmetic 
word n into the rightmost 32 bits of B, then stores 
the content of B in v, and then resets B (the in­
struction may invoke consequential calls if they 
are associated with v). Byte 2 contains the 
arithmetic variable address. 

DeDS Digital Simulating System 717 

Numedcal to logical variable transfer, 
additional words 

SOUT2 (n), k: B(32*k to 31+32*k)+-n. 

Loads the content of (n) into the kth word of B. 
This instruction must be followed by SOUT 1 or 
another SOUT2. 

Call simulation section 

CALSIM, n: B+-O, CALL simulation section. 

Resets B, then activates the FORTRAN or ma­
chine language simulation section. n is the number 
of the subroutine called. 

Error trap 

TRAP: 

This instruction must follow a conditional branch. 
The execution of the instruction consists of print­
ing an error message and then following the branch 
of the previous instruction, even though the branch 
conditions were NOT satisfied. 

The logic design of a serial adder 

Figure 3 gives the block diagram of a design specifi­
cation for a serial adder. The adder contains two clocked 
shift registers, A and B, containing 16 bits each. 'Other 
parts of the adder are a four bit counter COUNT, a 
carry flip flop C, a single bit sum and carry logic, the 
adder controller AUC, and a PANEL section. 

The sum of A and B generated by the adder replaces 
the content of B. A is connected to perform a cyclic 
shift such that at the conclusion of the addition it 

Figure 3-Serial adder 



718 Fall Joint Computer Conference, 1969 

contains its initial value. The sum bit generated at each 
cycle is stored in position B (16) . 

Design Example, Serial Add~r 

Figure 4 contains a DCDL prrigram specifying the 
serial adder. The program starts by declaring a UNIT 
named ADDER at control level # 1. The declaration 
section starting with the key ;word *DECLARE 
specifies that the UNIT ADDER receives three control 
signals (ORDERs) from its sup~rvisor(s). The OR­
DERs are <A + B>, CNT and RESET. The func­
tions controlled by these ORDERs will be specified 
later in the LOGIC part of this UNIT. 

Other parts declared in this DECLARE section are 
t~e 16 bit register A, the 16 bit register B, and the 
flIp flop C. A, B, and C are composed of clocked RS 
flip flops (type *CRS). The next declaration is a four 
bit register COUNT constructed from TRIGGEij. flip 
flops and. a DATA_BUS logic variable TEST. The 
valu~ of the variable TEST will · be specified in the 
LOGIC part as a logical function of memory elements. 

*U~IT AJDER. LEvEL~l 
*OE"CLARE 
*6~~E~ CA+q>,CNT,RESET J 
*CRS A(l~:l) , B~t6:1) , C J 
*TRIG3E~ C~ I~T(4:1) J 
*CA TA sus T::-ST 
*EN!) -
*LeCTC 
*PART: c~, T , 
ceUNT(l)~·'xl' , 

ceU~T(2)~.C'UNT(1) , 
C6U~T(3)x.&(C6U~T(1),ceU~T(2» , 
C5U~T(4)~. ~(ceJ~T(1),C~UNT(2),C~U~T(3» 
*END ' 
-PART: RESET 
c-'xO' 
CSU\T (*) _ 'X' , 
*~N:) . 
.PART:CA+B>. 
A(*)~.'CYCL~(-l)' A(-) , 
~(16)~_I(&(4(1),~(1),C), &(-A(1),-9(1),C), 

~(-A(l),B(ll,-C), &(A(1),-9tl)'-C» 
*GR~UP 1.1,15 *SET, 
~(tlhe(I+11 

*END 
C'_I(&(A(l).~(l»,&(A(l),C), &(8(l):,C» 
-END . 

TEST. s(ceJ~T(1),CeU~T(2),C'~~T(3~ceU~T(4» 
*E~~ ! 

*E"-ID AO!)J;'R 
.U~lT AJC, LEVEL-2 
*OECLAR<: 
*eR~f.R Aen ~ 
*~[gLV ~IN , 
*E''lir.: 
.PRf1GRA:1 
ADD: RESr:T: A1 
Al:<A+~>:A2 , 
A2 :cA+~>,~~T : A3 , 
A3; *C;tl_ T6 TEST: (A4, A,. ) 
A4: *~C;:TlIRJ FI'''' 

-E:'\II) .p.~ AUC 
.PANEL AAA, LEVEL_3 
*~YSTE'1_RE,-::ET: A(*)*'X7~37', B(.lII!'x2EC')'I *TI'1:.*O; 

*AT-:TI""E_r~TERv"L • 2,w~ITr A(.):X,I CI(*):X, CfHl"T,*):x , 
*SlART ADD, *~I~rSH ~JNI *~~o AAA 

Figure 4-Serial adder DCDL program 

The declaration section ends with the key word *END. 
The logical and control relations in the ADDER 

UNIT are specified in the LOGIC section which starts 
with the key word *LOGIC. The LOGIC section con­
tains three PAR T sections and one direct transfer 
statement. 

The first PART section is controlled by the OR­
DER_ VARIABLE CNT. This section contains the 
input statments to the four COUNT flip flops. The 
statements specify that the input to COUNT (1) is 
a "ONE" ('Xl' specifies a one in a hexadecimal format). 
The input to COUNT (2) is the output of COUNT (1). 
Similarly the input to COUNT (3) is the AND Qif 
(COUNT (1), COUNT (2)) and the input to COUNT 
(4) is the AND of (COUNT (1), COUNT (2), COUNT 
(3)). 

The first PAR T section is controlled by CNT 
clocked transfers (%=) which are associated with th«3 
olocked input of the registers' flip flops. The next 
PART section controlled by the ORDER RESET 
specifies a direct connection (=) into the clocked vari­
ables C and COUNT. Therefore, the PART controlled 
by CNT changes the clocked input of the COUNT 
register. The PART controlled by RESET changes 
the content of COUNT and C using direct set (DC set) 
and direct reset (DC reset). 

The last PART section is controlled by the ORDER 
VARIABLE < A + B>. Activated by the < A + B >~ 
control variable are the following transformations: 

a. The content of A is shifted a cyclic shift by ono 
to the right, the result is stored in A(*) ; 

b. B(16) receives the sum function of A(I), B(l);, 
andC; 

c. The GROUP of bits B(l) to B(15) are shiftedl 
by one to the right; 

d. The carry flip flop C receives the carry which is 
a function of A(l), B(l) and C. 

Note the PARTs containing a clocked transfer refer 
to double rank clocked elements. Whenever the con·· 
trolling variable is activated, the specified function 
(to the right of % =) is stored in the secondary rank 
of the variable to the left of % = . In the succeeding time 
Ub.it, a primary secondary transfer is activated. 

The last statement in LOGIC is a dynamic specifi­
cation of the variable TEST as an AND function of the 
bits of COUNT. 

The next UNIT to be specified is the adder controller, 
AUC. AUC introduces two new variables in its declara­
tion section: an ORDER ADD which it receives 
from its supervisors, and a reply FIN which it sends 
back to the supervisors. 



The control function of A UC is specified by a micro­
program in the PROGRAM section of AUC. The in­
terpretation of the microprogram is as follows: 

a. When a controller receives the ORDER ADD, 
it issues the ORDER RESET. After the de­
fault time lapse, two time units, the controller 
switches to state AI. 

b. In state AI, the controller issues the ORDER 
< A + B>. After two time :units, the controller 
movestoA2; 

c. At state A2 the controller issues two ORDERs 
<A + B> and CNT. The next state is A3; 

d. A3 is a conditional branch. If TEST is "ONE", 
the next state is A4. If TEST is "ZERO", the 
next state is A2. The GO_TO line is an internal 
control branch specification which does not 
require any additional cycle. Therefore the 
execution time of this line is zero time units; 

e. The last microprogram line states that when 
the controller is in state A4 it issues the REPLY 
pulse FIN, and r~turns to its zero state. 

The highest controller in the structure is AAA 
PANEL at level 3. The PANEL specifies the system's 
initial conditions (placing initial values in A and B) 
using the SYSTEM RESET statement. The initial 
condition for the timer is specified by the statement 
*TIME = O. The key word *START indicates the 
initiating variable, and the key word *FINISH is 
followed by the variable signaling completion. The 
last statement in PANEL is *END followed by 
PANEL's label AAA. 

More Complex Structures 

The above description has illustrated the use of 
DCDL to design a simple adder. The language and 
system have been used· to design more complex struc­
tures including a multiplier and special purpose logic 
card tester. 1 

CONCLUSION 

The scope of the DCDS study was limited to systems 
for which a set of predefined building blocks and a de­
fined structure are present. A total design automation 
system requires programming tools capable of studying, 
simUlating, and gathering statistics and thereby able 
to evaluate conjectures about the behavior of struc­
tures and sequences of events before the details of 
the structures and events are known. We hope that 
further extension of DCDS and further study in silI).­
ulation and modeling will add the capability to make 

DCDS Digital Simulating System 719 

conjectures based on systems less rigorously defined 
than DCDS presently requires them to be. 

The DCDL implementation by sublanguages which 
are compiled by META5 allows a simple insertion of 
other sublanguages designed to study the architectures 
of systems. The DCDL pseudo machine op~rates as 
a FORTRAN based simulator either to describe the 
simulated system or to augment the pseudo machine 
instruction set. 

BIBLIOGRAPHY 

1 H POTASH 
A digital control design system 
UCLA Dept of Engineering RpT No 69-21 May 1969 
PhD Dissertation 

2 R L MANDELL 
Tools for the construction of design automation system8 
UCLA 1968 PhD Dissertation 

3 R MANDELL G ESTRIN 
A meta-compiler as a tool for design automation 
Proc SHARE Design Automation Workshop 1966 
New Orleans Louisiana 

4 R A RUTMAN 
LOGIK, a syntax-directed compiler for computer bit-time 
simulation 
UCLA Masters Thesis Aug 1964 

5 K P GOSTELOW 
LOGIK, a system for the computer-aided selection and 
assignment of electronic modules 
UCLA Rpt No 68-8 March 1968 

6 D OPPENHEIM 
The MET A 5 language and system 
Tech Memo TM-2396jOOOjOl System Development Corp 
Santa Monica Jan 1966 

7 D OPPENHEIM D HAGGERTY 
MET A 5: A tool to manipulate strings of data 
Proc 21st Nat Conf of Association for Computing 
Machinery 1966 

8 () DAHL K NYGUARD 
SIMULA, a language for programming and description of 
discrete event systems 
Introduction and User's Manual Norwegian Computing 
Center Forskningueien IB Oslo 3 N0:t:way May 1966 

9 P J KIVIAT A COLKER 
GASP-a general activity simulation program 
P2864, RAND Corp Santa Monica 1964 

10 B DIMSDALE H M MARKOWITZ 
A description of the SIMSCRIPT language 
IBM Systems Journal Vol 3 No 11964 

11 M A GEISLER H M· MARKOWITZ 
A brief review of SIMSCRIPT as a simulating technique 
RAND Corp RM-3778-PR Sttnta Monica 1963 

12 B HAUSER H M MARKOWITZ 
Technical appendix on the SIMSCRIPT simulation pro­
gramming language 
RAND Corp RM-2813-PR Santa Monica 1963 

13 H M MARKOWITZ 
SIMSCRIPT, A simulation language 
Prentice-Hall Englewood Cliffs N J 1963 

14 R EFRON G GORDON 



720 Fall Joint Computer Conference, 1969 
r 

A general purpose digital simulator and examples of its 
application: Part 1 -description of tlie simulator 
IBM Systems Journal Vol 3 No 1 1964 

15 L P McNAMEE H POTASH . 
A user's guide and programming manual for N ASAP 
UCLA Dept of Engineering Rpt No! 68-38 Aug 1968 

16 K L DECKERT E T JOHNSON 
User's guick for LISA 360, a program for linear systems 
analysi8 
IBM System Development Division TR 02-432 San Jose 
July 31 1968 

17 M A MARIN 
Applications for tlie Boolean analyzer 

UCLA Dept of Engineering 1968 PhD Dissert.ation 
18 R A RUTMAN 

LOGIK, a syntax-directed compiler for computer bit-time 
simulation 
UCLA Masters The,.;is Aug 1964 

19 Y MINTZ 
Very long term global integration of tlie primitive equ,aUons oj 
atmospheric motion 
Meteorology Monographs Vol 8 No 30 Feb 1968 

20 A F CARDENAS 
A. problem oriented language and a translator for partial 
differential equations 
PhD Dissertation UCLA 1968 



Pattern recognition in speaker verification 

by S. K. DAS and W. S. MOHN 

I BM Corporation 
Research Triangle Park, North Carolina 

INTRODUCTION 

There are many ways in which a pattern recognition 
system may be implemented. In the specific problem of 
speaker verification,l,13 a two-class recognition scheme 
is of interest. A speaker who desired verification of 
his identity based upon some previously stored charac­
teristics of his speech represents one of the two classes 
(real), whereas the other class (impostor) encompasses 
all other speakers. 

In implementing such a system, it is convenient, 
first, to obtain a representation for each of the utter­
ances of interest in the form of a time-frequency-am­
plitude matrix.2,3 The conventional method of deriving 
this representation is by means of a filter-bank ana­
lyzer.2 ,3 Speech signals are inputted to the analyzer 
and the outputs of the various filters are sampled and 
averaged over the appropriate time interval. This proc­
ess generates a set of short-term average spectra with 
which to form the time-frequency-amplitude matrix. 

Normally, only those components of this matrix 
which contain significant speaker characteristics need 
be retained. Identification of such speaker-dependent 
components is somewhat arbitrary although several 
guide lines are available.2,3 

The next step is to regard all the pertinent elements 
of the above-mentioned matrix as constituting a single 
vector. Th~s, the net result of the previous processing 
steps is a vector representation for each utterance. 

At this stage, several mathematical and statistical 
tools may be applied appropriately to the data. For 
example, the vector representation of an utterance may 

exbihit high dimensionality. For further computational 
advantage, it is desirable to reduce this dimensionality 
of the vector. It is also helpful to achieve as much 
intra-class clustering and inter-class separation as 
possible. lVlethods such as analysis of variance,4 dis­
crimina.nt analysis5 and mutual information calcula­
tionlO are available for this purpose. The analysis of 
variance and mutual information methods can be 
conveniently used even if the initial dimensionality of 
the vectors is rather high. The disadvantage of these 
two methods is that each element of the vectors is 
considered independent of the other elements; this is 
not desirable since the interrelationships between the 
elements which may be important for the purpose of 
speaker verification are completely ignored. On ~he 
other hand, while discriminant analysis treats the 
vectors in multi-dimensional space, thereby preserving 
the interrelationships, the computation time required 
may be impractical if the vectors are initially of inap­
propriately high dimensionality. 

Finally, a method for discriminating among t~e 
vectors of the real class and of the impostor class IS 

required. This is usually done by means of a reference 
vector. There are again several alternatives here. For 
example, i't has been pointed out that if a su.itable 
representation for the impostor class is not avaIlable, 
it is possible to derive a reference vector based on t~e 
real class data only.6 But, if the impostor class IS 

properly characterized; Adaline-type linear threshold 
elements,7 which attempt explicit discrimination among 
the real and the impostor classes, may be used to ad­
vantage. 

721 



722 Fall Joint Computer Conference, 1969 

--------------------------------------------------------------------------------,-----
There are many other methods for feature selection 

and reference vector generation. 7 ,8 Each method has 
its particular advantages and shortcomings. In ad­
dressing the speaker verification problem, it is con­
venient to use the analysis of variance technique for 
feature selection and a modified form of the Adaline­
type linear threshold device for deriving a reference 
vector. Previous unreported in-house experimentation 
has indicated that the two techniques, analysis of 
variance and mutual information' calculation, produce 
rather similar sets of features. The rationale for using 
the modified form of the Adeline device will be pre­
sented in the next section. 

Another important aspect of the pattern recognition 
problem is to conduct a significant experiment with 
true data. Too often, for reasons of economy and time 
limitations, artificially generated data or a very limited 
quantity of true data js used to perform experiments. 
Experience has shown that conclusions based on such 
experimentation are often misleading. A primary 
achievement of the present experiments is the use of 
a large true data base. The value of this large data 
base will be further appreciated in the following sections. 

The next section outlines the modification of the 
Adaline-type linear threshold element. The analysis 
of variance technique, being a standard tool in statistics, 
is not treated here. The details of the experimental 
part are listed in the third section. Finally, some con­
clusions and observations regarding the whole pro­
cedure are made. 

Theory 

At first, in this section, a brief description of the 
classical Adeline7 procedure will ,be given and some 
of its shortcomings will be pointed out. Next, a modified 
form of the above procedure will be developed. In the 
standard Adaline technique,7 a reference (or weight) 
vector W is derived by utilizing vectors from both 
of the two classes to be recognized, C and C. The 
vectors in the two classes are assumed to be line<),rly 
separable.7 For convenience in describing the tech­
nique, the negative of the vectors belonging to Care 
assigned to C. Next, denote the vectors that are now 
attributed to C as Y1, ... , Y m, where m is th~ total 
number of vectors. The Adaline pfocedure7 is an itera­
tive method of determining a weight vector, W, such 
that 

Yi' W > ° j=I,2,···,m (1) 

where the operator (.) signifies the inner product oper­
ation of two vectors. The iteration process is described 
by the rule 

Wk+l = Wk 

W k + Y k otherwise. 

Using this weight vector W, a new test vector may be 
classified to C or C depending on whether the inner 
product of the test vector with W is greater than zero 
or not. The drawback of this procedure of decision 
making is that the test pattern vectors belonging to 
C which would normally produce slightly positive 
inner products may, in the presence of some noise, 
lead to negative inner products and be misclassified. 
Similar statements may be made about the patterns 
belonging to C. 

In order to avoid this difficulty, a weight vector lV' 
which satisfies the inequality 

j = 1,2"", m (:2) 

O:::;K< 00,0:::;,,< 00,0:::;0:< 00 

may be tentatively proposed for classification. Clearly, 
the advantage of this inequality is that for non-zero 
K, a dead-zone is created. This zone is symmetric 
about zero and equal in magnitude to the right-hand 
side of equation (2). The dead-zone may be designated 
as an interval of no decision. As a result, some tolerance 
to noise is provided. A noisy test pattern vector whireh 
would otherwise satisfy equation (2) may lead to an 
inner product lying in the dead-zone, but is unlikely to 
to be misclassified. 

However, only some special cases of equation (2) 
will really concern us. The cases which will not be of 
interest are 

j = 1,2,.··, m (3) 

O:::;K< 00,0:::;0:< oo,a~1 

The reason they are not of interest will now he given. 
It will be demostrated that a W' satisfying equation 
(3) may be derived from a W satisfying equation (1) by 
a simple change in magnitude; thus since Wand 117 I 
would differ only in magnitude and not in orientation, 
the classification ability of W' would be identical to that 
of W. (It should be pointed out that if an actual itera­
tion process is carried out to arrive at a weight vector 
W for equation (1) and a weight vector W' for equation 
(3), K~O, the weight vectors are likely to be oriented 
differently in the multi-dimensional space and would 



thus lead to different generalizations. The important 
point to note is the possibility that W' may be oriented 
in the same direction a.s one of the possible W vectors.) 

Assume that a weight vector W has been found by 
some means which satisfies equation (1). Denote the 
minimum of the inner product values indicated in the 
eft-hand side of equation (1) by 5, i.e., 

lVIin Yj'W = 5 > 0 
i 

The postulate will be shown to be true by deriving 
a scalar constant S> 0 such that the weight vector 

W' = 8W 

will satisfy equation (3). Since the above operation on 
W changes its magnitude only and not its direction, the 
minimum of the inner products Yj' W' still occurs at 
the same value of j (more than one value of j may 
produce the minimum value, but this fact is of no 
concern to the present development). Let this value 
of j be designated as j I. Thus, 

Y/·W = 5 

Then multiplying both sides of the above equation by 
S yield 

Y/·SW = S5 

or 

Y/·W' = 85 

In order to achieve equation (3), it is necessary to find 
an S such that 

85 = Klw'la 

= Ksalwla 

Rewriting the above equation, 

s = ( KI:I" r-· 
which is the suitable value for satisfying equation (3). 
Note that S cannot be determined for a = 1. 

If among all possible cases of equation (2) the cases 
given in equation (3) are not considered, the equation 
of interest is either an inequality in the form of equation 
(3) with a = 1, 'Y =0. 

Pattern Recognition in Speaker Verification 7:2:) 

Y r W' > Klw'l j=I,2'''·,m (4) 

O<K< 00 

or, the general equation (2) with"( :;e 0, 

j = 1,2,"" m (5) 

O<K< 00,0<,,« oo,O~a< 00 

Equation (4) has another interpretation. If this equa­
tion is written as 

W' 
Yj' Iw'l > K 

j = 1,2,"', m 
O<K<oo 

it is apparent that the inner products of the weight 
vector, normalized to unity, and the vectors Yare 
computed in this algorithm. This implies that the only 
way the weight vector can affect the value of the inner 
products is by changing its direction in space and not 
by changing its magnitude. This fact is of considerable 
interest since it has already been demonstrated how a 
simple change in magnitude of a weight vector satis­
fying the simple equation (1) can make the new weight 
vector satisfy the more complex equation (3), even 
though the generalization property remains unchanged. 

The use of equation (4) is advocated in this paper. 
In the following paragraphs, however, an approach to 
the more general equation (2) will be considered first. 
Substitution of suitable values for the different param­
eters of equation (2) will then realize the results for 
equation (4). It will be found that a bound for the 
convergence rate may not always be obtained for the 
approach adopted in this paper. 

The procedure parallels the proof for the standard 
Adaline technique.7 The iteration method is defined by 
the equations 

W'j+1 = W',. if Yj' W',. > KIYihIW',.la 

W',. + (~/I y,.I.B)y,. otherwise; 

O<IJ.< 00,0~{3< 00 

where the constants ~ and {3 have been incorporated 
for further generality. 
Followi~ standard convention, a reduced training 

sequence Y I , 92,,,,, Yk , ... and a reduced weight vector 
~,.. -sequence w 11 W 2, ... , W k, ... are formed7 and the follow-

ing discussion is hased on these s~uences. The initial 
gain vector is assumed to be zero, WI = O. Then, 



724 Fall Joint Computer Conference, 1969 

----------------------~---------------------------------------------------,------

(6) 

Taking the dot product of the solution vector W' 
(which is unknown, but is assumed to exist) with both 
sides of the above equation yields 

From equation (2) 

Let 

Then, 

Min A 

Yi·W' 
i = 1, 2" .. , k I Y i I 13 = Am 

But, the Cauchy-Schwarz inequality states that 

Therefore, 

(7) 

."-' 
This is a lower bound for the magnitude of W k+1' 
Another line of reasoning will give an upper bound 
as well. . 
Since 

A 

'" .1\ ~Y i 
W i+1 = Wi+~ 

it follows that 

.A.Ao A A 

Therefore, using Y,.. Wi S KI YJ"Ylwl~' 
A A 

A .A ..... 211KI Y ·1"'lw ·Ia 
Iw· 12 - Iw·12 < 2IY.12(1-i3) +,.. ) ,. J 

)+1 J - ~ ) I Y i I 13 

The above inequality for j = 1, 2" .. , k may be added 
to obtain 

" k A 

IWk +11 2 S ~2 L IYiI2[I-i3] 
i-I 

k.A ...... 

+ 2~K.L: I Y il'Y-i3 lliJ1 ila (8) 
1-2 

From equation (6), 

Hence, 

A i-I A 

1 tv il s ~ 2: I Y,I (1-13) 

~=1 

Let 

Nlax 
B M = i= 1,2,···,j-1 

Then, 

Also, let 

Max 
CM = j = 2, 3,' .. , k 

Therefore, the last term in the right-hand side of 
equation (8) may be written as 

Thus, equation (8) leads to 

Since, 

it follows that 



which gives the upper bound on the magnitude of 
A. 
W HI' Combining equations (7) and (9), 

k2 J.l.2 A2 -"\ 
IW'12

M 
~ IWk+112 ~ J.l.

2
kBit 

2 
+ -- "l+aKBac k1+a 

1 + a"" M M 
(10) 

which must be satisfied if a solution vector exists. 
At this point, it is necessary to substitute suitable 

values of the various parameters to gain further insight 
For example, if the parameters are set as 

{3 = 0, J.I. = 1, and K = ° 
the standard bounds described in the literature7 for 
conventional Adaline-type devices are obtained. For 
the experiments reported in this paper, the parameters 
are 

{3 = 0, J.I. = 1, K > 0, 'Y = 0, a = 1 

Substitution of these parameter values in equation (10) 
leads to 

(11) 

where 

Min 
.A 

Am = j = 1, 2, .... , k Yj'W' 

Max 
and B M = j = 1, 2, .... , k - 1 

Thus, the above inequality leads to 

The left- and right-hand sides of this inequality have 
been plotted in Figure 1. It is clear when the two 
straight lines intersect, as in case (1), 

Pattern Recognition in Speaker Verification 725 

A2 
"'--k-ID... 

1Yr..12 

Figure I-Cases showing presence and absence of upper 
bound 

a definite upper bound on the nu~ber of steps k = k M 

exists, provided, of course, that the solution vector 
exists. On the other hand, for cases (2) and (3) where 

no such upper bound exists and convergence of the 
procedure is not guaranteed. 

As in standard literature,7 the bound is not useful 
in estimating how many steps will be required in a 
given situation, since it depends on the knowledge of 
a solution vector W'. 

It has been shown that the algorithm in equation 
(4) it desirable because it forces the gain vector to 
change its direction in space; a simple change in magni­
tude eannot help in satisfying the inequality of equa­
tion (4). At t~e same time, the possibility of obtaining 
a section in a finite number of steps exists. In the 
next solution, this algorithm is the basis for some 
experiments with real data. 



726' Fall Joint Computer Conference, 1969 

----------~----------------~----------
Experimental results 

The nature of speaker verification allows one to 
perform experiments which are fairly well controlled. 
Since most speaker verification applications provide 
cooperative users-individuals desiring verification­
it is possible to require each user to utter a particular 
phrase. The phrase can be designed to carry a maximum 
of speaker-depende:t:J.t information. The choice" for 
the "experiments being reported here was "Check 
Available Terminals." Each speaker included in the 
test was asked to utter this and four other such phrases 
in a predefined but randomized order, interspersing 
each utterance with an uttertLnce-Iabeling task to 
prevent interaction between adj acent phrases. Re-" 
cordings of these utterances were made in an acoustical­
ly treated room using a wide-band recording system. 
A boom-mounted microphone and headset combination 
assured constant microphone placement. Each subject 
was asked to speak in a normal: voice and a level ad­
justment made to provide approximately the right 
input signal level to the tape recorder. It was felt that 
these rather idealized conditions would allow evalua­
tion of optimum verification performance. In addition 
in certain applicatiop.s the real data may approach thi~ 
idealized high quality. 

TABLE I-Filter bank specifications 

Center 
Filter Frequency ± db 

Number Hz. Bandwidth 

1 188 250 
2 459 250 
3 715 250 
4 969 250 
5 1220 250 
6 1472 250 
7 1725 250 
8 1975 250 
9 2225 250 

10 2475 250 
11 2725 250 
12 2991 290 
13 3300 330 
14 3659 390 
15 4083 460 
16 4586 550 
17 5194 670 
18 5954 860 
19 6932 1110 
20 8203 1450 

In total, utterances from 118 male speakers were 
used. Fifty of these were arbitrarily assigned as "reals" 
and 100 utterances of each phrase were collected from 
each speaker over about a five-to-ten-week period. 
Each of the other speakers was assigned to the "im­
postor" clas~; each uttered each of the five phrases 20 
times, all at one time. 

The analog recordings were digitized using the hard­
war~ shown in Figure 2 and Table I. It consisted pri­
marIly of 20 bandpass filters covering the range of 
center frequencies 188 Hz to eight kHz. The lower 
frequency filters had 250 Hz. bandwidths while the 
higher frequency filters were somewhat broader,. A 
20-ms. sampling interval was employed. The output 
of each filter was rectified and integrated over each 
sampling interval. The value of this integral was <:on­
verted logarithmically into a four-bit value spanning 
a 32-dB. range. Only two other pieces of hardware were 
used-an automatic level control (ALC) and a fun­
damental frequency detector. The former maximized 
use of the full dynamic range of the AID conver8ion 
system. Further, to allow reconstruction of the original 
absolute signal level, the value of the gain of this ALC 
circuit was digitzied for each sampling "interval. ~rhe 
fundamental frequency (pitch) detector also passed a 
digital estimate of the pitch period to the eomputer 
for each sampling interval. Otherwise, this pitch in­
formation would have been unavailable because of 
the width of the bandpass filters. Smith has descri1bed 
the pitch determination method used.15 

The remaining experimental steps were executed 
through programming. It was felt that implementing 
most of the system by software and using a general­
purpose hardware analyzer would maximize the flexi­
bility of the system. Even greater flexibility could be 
obtained by simply sampling the analog speech wave­
form and storing digitized samples, but the quantity 
of the data to be processed would be prohibitive. In 

1~~~ . . . 

VoitugeProportiOl"lClI 

toALCgqin 

Figure 2-Functions of analyzing hardware 

-

To DigitoJ 
COI'IpUhtr 



total, approximately 13 hours of analog recordings of 
the phrase, "Check Available Terminals," were proc­
essed. 

The first step of utterance-processing, segmentation, 
was a speech-recognition process which would operate 
with good reliability over a large population of speakers 
because the phrase to be recognized was known. This 
step automatically eliminated improperly spoken or 
digitized utterances. It also served a time-alignment 
function, allowing comparison of like sounds from ut­
terance to utterance and from speaker to speaker. 

Ten points in time w.ere found for each utterance. 
Each segmentation point was defined by a precise 
set of acoustic rules which will not be given here. The 
points were given the following symbols which cor­
respond roughly to the standard orthography of the 
wordA-' 

checK aVaILaBle TERMinaISl 8'}, 

(~1 = onset of S: 

S'). = end of S.) 

The segmentation rules were determined by the fol­
lowing iterative process. A group of ten speakers was 
selected arbitrarily and programs were designed to 
segment their utterances properly. Accuracy of seg ... 
mentation was verified by studying digital spectrogram 
l!atterns of "each' of the utterances. Once designed, the 
rules were tested on another arbitrary set of ten speak­
ers. The a~curacy of segmentation was improved by 
accoun ting fo'r factors manifested in th~se new speakers. 
Once the rules seemed sufficiently accurate, in terms 
01 testing on new utterances by this combined set of 
20 speakers, these rules were evaluated on an inde­
pendent group of 20 speakers. Performance appeared 
consistent; that is, no significant segmentation prob­
lems were apparent in this new set of speakers and the 
segmentation programs were considered complete. 
Space does not permit detailed description of the final 
segmentation rules. Roughly speaking, they involved 
the following functions: voicing detection, frication 
detection, total signal power, and second formant fre­
quen<;ly. Consideration of these functions and the known 
context of a fixed phrase p~rmitted q,uite accurate 
segmentation over a broad population of speakers. 

As a preliminary rule, all utterances were required 
to have defined locations for all ten segmentation points. 
This restriction resulted in ten percent of the phrases 
being rejected. Phrase rejection which implies no de­
cision by the machine as to speaker identity should 
be contrasted with speaker rejection. Most applications 

Pattern Recognition in Speaker Verification 727 

would be less sensitive to unnecessary phrase rejection 
than speaker misclassification. Furthermore, the phrase­
rejection rate could be reduced substantially if later 
stages of recognition were designed to operate on a 
partially segmented utterance. 

The next phase, feature extraction, used a segmented 
utterance for input and produced a vector of features. 
For this set of experiments, determining the features 
was a two-step process. First, a large set of " proposed" 
features was selected. This choice was based upon pre­
vious research by the authors and their colleagues, as 
well as on published results of experiments involving 
human and automatic speaker identification.l.4.8.9.11 
~~cond, the list of features was shortened for ec~nomy 
~f implementation. The" goodness" criterion used to 
determine whether or not to include a particular featul'f~ 
was the F -ratio of analysis of variance.4 

A detailed list of the proposed features would be 
too lengthy to include here; instead, the general types 
of functions empl~yed will be described. A complete 
description of the features is given elsewhere.I4 The 
most common function Was an integration of the 
power in one or more filters over a number of timp. 
samples. To perform this integration, the log power 
values determined by the hardware were converted 
to a li,near scale, summed, and then reconverted to 
log scale. This had the effect of simulating the same 
type of analyzer with broader filters and longer inte­
gration jntervals. Three "bandwidths" were chosen 
for integration: a single filter, a band of several filters, 
roughly approximating a single formant region, and 
the entire set of filters, corresponding to the power in 
the original signal during the 20-ms sampling interval. 
Three intervals of integration were also used: a short 
period of two to four time samples centered at a seg­
mentation point, medium-length interval~ extending 
from one segmentation point to the next, and long i?-­
tervals encompassing several segmentation poin.ts. 
Most of the combinations of these integration regions 
were employed at each segmentation point. 

In order to detect finer differences between utter­
ances, a section of each utterance was subjected to 
"time normalization." The time-frequency matrix of 
filter values from the sample labeled "V1I.' to that la­
beled "L" was" stretched" ~r "shortened" by linearly 
interpolating the sampled output of each' filter inte­
grator to provide a fixed number of samples. Various 
integrals like those described above were determined 
during this time-normalized section also. 

Programs were written to estimate approximate 
formant frequencies and amplitudes as well. Formants 
are characterized by amplitude maxima in the fre­
quency spectrum and are the result of the transfer 



728 Fall Joint Computer Conference, 1969 

-----------------------------------------------------------------------------------------
function of the vocal tract.2 There is reason to bel ieve 
that consistent differences exist among various speakers 
in absolute formant frequencies and detailed formant 
transitions from sound to sound, even though the ap­
proximate motions are the same from talker to talker. 
These would reflect an interplay between individual 
structural and behavioral differences. 

These various functions resulted in a total of 405 
proposed features. It was obvious by their design that 
they were not independent, neither functionally nor 
statistically, but no logical basis was available to select 
independent features that would be good, a priori, for 
speaker verification. The second step of reducing the 
feature set employed analysis of variance, ranking the 
405 features according to their F-ratio. This measures 
a quantity proportional to the variance of the speakers' 
means divided by the mean of each speaker's variance. 
Such a measure has the desirable properties of invari­
ance to translation and scaling. No -measure of feature 
dependent was calculated. T)le rank orders were tested 
for consistenGY across different speaker populations. 
The rankings' were determined for two different groups 
of 25 speakers each and rank correlation coefficients 
were calculated.12 It was determined that the F-ratio 
was a consistent measure of relative feature worth 
when computed over a set of 25 speakers. All of the 
experiments to be reported used the same feature set, 
the best 200 features being determined by a composite 
ranking based on 50 speakers. Details of the ra,nking 
are given elsewhere.14 

Provision had to be made for features that sometimes 
did not exist or for which an estimate of value did not 
exist. For example, for certain portions of some ut­
terances the system was unable to determine, ade­
quately, pitch frequency or some formant frequency. 
This phenomenon will occur to some degree in all fea­
ture-extraction systems. A missing feature value poses 
interesting theoretical problems in the design of a 
decision method. Should one estimate a value for it 
on the assumption that the feature really did exist but 
the system was not sophisticated enough to determine 
its value? Or should th.e feature really be presumed 
missing in the original signal and the utterance con­
sidered in a special manner indicating that it is not 
like utterances in which the feature appeared to exist? 
Sebestyen8 addressed these questions in relation to 
probablistic decision methods, but another approach 
seemed needed for the non-parametric Adaline tech­
nique used here. One possible good approach would be 
to determine the relative frequency with which each 
feature was missing in both the real speaker training 
data and that of the training impostors. During recog­
nition, a value would be substituted for each missing 

feature which favored neither the real nor the impostor 
class. Such a value could be the mean of the feature 
value averaged over both real and impostors. 'I'he fact 
that it was missing would be realized by chan~:ing the 
a priori probabilities of the two classes in accordance 
with the previously stored relative frequencieB. Thus, 
if a real speaker consistently had a feature missing 
during training, and that same feature 'was missing 
during recognition, the recognition threshold would 
be shifted in favor of accepting the utterance as th,at 
of the real speaker. 

In the experiments reported here a simpler 8trate~~y 
was employed because of the relative infreqUl~ncy of 
missing features. A mean value was retained for eaeh 
feature that was ever missing from the real speaker's 
training data. During recognition, if one of these 
features was missing, the stored mean value was used 
as an estimate of the missing feature. If a feature wa,s 
non-existent dunng recognition but al ways existed 
during training, the utterance was ignored entirely. 
Almost all utterances ignored in this way were impostor 
utterances and recognition performance would probably 
not be degraded significantly if each of these utterances 
was classified as being that of an impostor, but these 
statistics were not calculated. Approximately four 
percent of the recognition impostor set of utterances 
were ignored in this way. 

The adaptive linear decision algorithm described 
earlier was used for all experiments described her'e. 
Preliminary experiments were performed to determine 
a good value for K, the relative training threshold. It 
was determined that K = 5 provided a good trade­
off since convergence was obtained in a reasonable 
amount of time and higher values of K significantly 
increased training time with little improvement in 
generalization performance. 

In order to perform training, the set of real utterances 
was stored in memory. The larger set of impostor data 
resided on direct access storage. The algorithm pro­
ceeded through the data, obtaining utterances alter­
nately from the real and impostor sets. When 1lihe end 
of either set was reached, selection began again at the 
first of the completed set but continued from wherever 
it happened to be in the other set. The method provided 
rapid convergence since the algorithm was always pre­
sented with a member of the "other" class after 
adapting to the first class. A "pass" was defined to be 
one complete loop through the longer of the two list,s 
of utterances-in our case, the impostor set. 

The training data consisted of approximately the 
first 50 utterances of the real speaker being test.ed and 
nine from each of the 29 impostors. These rather ar­
bitrary numbers were the result of practical factors, 



such as program running time, storage space, and the 
total number of speakers and utterances available. 
Further experiments have indicated that generalization 
results do not depend strongly on the exact amount of 
impostor training data unless one significantly reduces 
the number of impostors involved. 

The recognition data consisted of the remaining ut­
terances from the real speaker (about 50) and all avail­
able utternaces (20 or less) from each of 39 other im­
postors, Thus, testing generalization of acceptance of 
the real speaker involved utterances produced by him 
after producing all of the training data, while gener­
alization of impo~tor rejection was tested u3ing entirely 
new people that the training algorithm had never 
processed. 

Computation time on an IBM Sytsem/360 Model 
40 was approximately one minute for both each training 
pass and recognition of 700 utterances. 

Table II lists the results of these experiments. The 
accuracy figure tabulated for each real· speaker is the 

:Pattern Recognition in Speak~r Verification 729 

misclassification rate (impostor as real and real as 
impostor) for the case of the two classes bein~ equally 
likely. In many applications the a priori probabilities' 
would be unequal and the costs associated with the 
two types of errors would be different, thereby m9.king 
a statement of a single mh~classifica.tion probability 
uninformative. Ignoring the question of cost dif­
ferences, the distribution of errors was usually such that 
unequal a priori probabilities should allow reduction, 
or at least no increase, in the probability of system 
misclassification (both types combined). Figure 3 
shows typical distributions of recognition dot products 
for two real speakers. The probability-density function 
of the dot product has been integrated from the left 
for the real speakers and from the right for the set 
of recqgnition impostors. The ordinate valu e corre­
sponding to a particular abscissa value corresponds to 
the percentage error that would be experienced for 
that class (real or impostor) if the recognition threshold 
were placed at that val ue. 

TABLE II-Generalization error over fifty speaker real set (Crossover error rate) 

Speaker Passes * Error (%) Speaker Passes Error (%) 

1 5 .3 26 3 .2 
2 10 .8 27 4 5.1 
3 7 1.2 28 3 1.4 
4 6 .0 29 2 .0 
5 5 1.4 30 9 .0 
6 9 .0 31 2 .6 
7 5 .1 32 14 .0 
8 4 .1 33 2 .3 
9 4 .7 34 2 .0 

10 8 2.--0 35 5 .0 
11 2 .2 36 6 .4 
12 6 .2 37 9 1.3 
13 15** 2.2 38 6 .1 
14 5 .5 39 6 .7 
15 5 .0 40 6 .7 
16 11 1.2 41 8 3.1 
17 9 3.4 42 4 .0 
18 15** 2.3 43 4 .3 
19 11 .2 44 4 2.3 
20 5 .4 45 5 1.2 
21 5 1.8 46 8 .0 
22 3 .0 47 4 1.8 
23 12 7.3 48 3 .2 
24 3 2.1 49 2 .7 
25 4 .3 50 4 .1 

* Number of passes to reach convergence. 
** Convergence not reached by 15 passes, non-converged gain used. 



730 Fall Joint Computer Conference, 1969 

---------------------------------------------------------------------

New 
Impostors 

-6 

Cumulative % 

-4 -3 -2 -I 

Cumulative % 

-I 2' 

Real Speaker 3 
Total Real Utterances = 50 
Total Impostor Utterances = 641 

Training Thresholds 

Y:'!:i 
KI '!:il 

Reo I Spea ker 5 
Total Real Utterances = 50 
Total Impostor Utterances = 642 

Y'w 

~I'!:il 

Figure 3-Typical results of generalization tests 

The training algorithm was designed to produce an 
optimum recognition threshold of zero (positive-dot 
product corresponding to the real speaker, negative to 
impostors), but the resulting decision function was not 
symmetrical about the origin. Thus, the accuracy figures 
in Table II are based upon adjusting the recognition 
threshold to produce equal misclassification probabilities 
on recognition data. To obtain an intercept, the step­
like nature of the cumulative real distribution was 
smoothed by linear interpolation. In practice, the 
recognition threshold must be set in some other way 
since independent data from the real speaker may not 
be immediately available. One method might be to 
set the threshold to produce a fixed rate of impostor 

20 

X 10 

l 

1.0 2.0 4.0 

Mean = 1.0% 
Mode = 0% 
Median = .4% 

6.0 

Crauaver Generalization Errar Rate (%) 

Figure 4-Generalization error histogram 

8.0 

~-------------------------------------~ 0% 
Classification Error 

Figure 5-Probable true distribution of accuracy across 
many real speakers 

acceptance (Type II error in statistical terms) and let 
the real rejection rate be undetermined until the Jreal 
speaker uses the system a number of times. 

Figure 4 shows a histogram of the 50 accuracies in 
Table II. This distribution bears a resemblance to an 
exponential form, as might be expected. One would 
always expect a small percenta.ge of people to have un­
usually high error rates but no one can have negative 
error rates; hence, the skewed distribution. If a Suffi­
cient number of recognition utterances was availa,ble 
from the real speakers to allow accurate estimation of 
very low error rates, the true distribution of error 
would probably look more like Figure 5. This fumdamen­
tally imperfect accuracy would result from the inevit­
able variation in speech patterns with time and be­
cause, in the limit of a large enough recognition impOi)tor 
set, someone would probably be found who is 8imilaJr to 
any given speaker, at least within the precision of the 
features being used. 

CONCLUSIONS AND FURTHER WORK 

A more general technique than the conventional 
Adaline7 approach has been treated in this paper. The 
upper and lower bounds of equation (11), applica,ble 
to the present method, have been derived from the 
general bounds of equation (10). These gener2~1 bounds 
may be exploited for other applications of equation(2). 

In the conventional Adaline method, the iteration 
process guarantees a solution in a finite number of 
steps if a solution exists. In the approach adopted in 
this paper, the iteration process guarantees a solution 
in a finite number of steps if a solution exists and if 
this solution satisfies the condition of equation (11). 



Since in either of the above two cases the solution 
vector is not known beforehand, the difference is only 
a philosophical one. The experiments reported in this 
paper, however, demonstrate that solution vector 
can indeed be found in most cases. 

The value of the large data base is pointed out 
again. First of all, this large data base is directed 
toward an adequate representation for the real and 
the impostor classes. Even after the data base is divided 
to conduct independent design and te stexperiments, 
the above postulate remains largely valid. Also! in 
many phases of the speaker-verification work (e.g., 
feature selection), an iterative method is unavoidabla. 
Thus, once a tentative design is created on some date, 
the design is tested on a different set of data. If the 
design shows faults (large error rate), a new design 
is implemented by using both the former design and 
the former test data. This new design must now be 
tested on an entirely different set of data. This type of 
iterative procedure can only be realized if a large data 
base is available. 

It is felt that the accuracy obtained in the verifica­
tion experiments is good and that enough people were 
involved in the test to produce meaningful results. 
The most comparable previously reported experimental 
resultsl ,l~ state average accuracies of about ten percent 
with no provision fQr "No Decision." Differences in 
data bases prohibit exact comparison of verification 
systems. The authors' results cover a significantly 
larger base of reals than either of the previous experi­
ments. 

The authors feel that much of the improvement in 
ac~uracy is the result of phrase selection and carefully 
designed segmentation algorithms but some of the 
improvement must be attributed to the rather idealized 
conditions under which utterances were gathered. 

However, the procedure was automatic once the 
segmentation prograin was designed. Further work is 
being pursued to determine the effect on current re­
sults of degrading the signal in both bandwidth and 
signal-to~noise ratio. Female speakers will also be con­
sidered. 'improved results are most likely to be ·ob­
tained through improving segmentation accuracy and 
flexibility, and the use of more sophisticated f~atures 
(given better segmentation). It is felt that the present 
accuracy could be attained with fewer than 200 features 
by combining dependent features, if st~rage space 
presented a significant problem. 

ACKNOWLEDGMENTS 

The authors are indebted to their associates in the 

Pattern Recognition in Speaker Verification 731 

Speech Processing and other Advanced Technology 
departments, IBM Systems Development Division 
Laboratory, Research Triangle Park~ -N. C!, and to 
c9nsultants Dr. K. P. Li and Dr. D. F. Stanat for 
invaluable assistance in theory, hardware design and 
co~struction, data gathering and pre-processing, and 
programming. This research is an outgrowth of earlier 
work performed in association with the Advanced 
Analog Products department. 

REPERENCES 

1 K P LI J E DAMMANN W D CHAPMAN 
Experimental studies in speaker verification, using an 
adaptive system 
Journal of the Acoustical Society of America Vol 40 Nov 
1966 966-978 

2 J L FLANAGAN 
Speech analysis, synthesis, and perception 
Academic Press N ew York 1965 

3 C C TAPPERT N R DIXON D H BEETLE JR 
W D CHAPMAN 
A dynamic-segment approach to the recognition of continuous 
speech: an expl&ratory program 
Tech Rpt No RADC-TR-68-177 Rome Air Development 
Center Griffis AFB N Y June 1968 

4 S PRUZANSKY 
Talker-recognition procedure based on analysis oj variance 

:.Journal of the Acoustical Society of America Vol 36 Nov 
19642041-2047 

5 S S WILKS 
Math Statistics John Wiley and Sons Inc N Y 1962 

6 S K DAS 
A method of decision making in pattern recognition 
IEEE Trans on Computers Vol 18 April 1969 329-333 

7 N .J NILSSON 
McGraw-Hill Book Co N Y Learning Machines 1967 

8 G SEBESTYEN 
Decision-Making Processes in Pattern Recognition 
Macmillian Co N Y 1962 

9 G L HOLMGREN 
Speaker recognition, speech characteristics, speech evaluatio~, 
and modification of speech signals-A selected bibliography 
IEEE Trans on Audio and Electroacoustics Vol 14 Marcc, 
196632-29 

10 L A KAMENTSKY C N LIU 
Computer-automated design of multi font print recognition logic 
IBM Journal of Research and Development Vol 7 Jan 
19632-13 

11 J W GLENN N KLEINER 
Speaker identification based on nasal phonation 
Journal of the Acoustical Society of America Vol 43 Feb 
1968 368-372 

12 M G KENDALL 
Rank Correlation Methods Hafner NY 1962 

13 J E LUCK 
A utomatic speaker verification, using Cepstral measurement 
J oumal of the Acoustical Society of America Oct 1969 
to be published 



732 Fall Joint Computer Conference, 1969 

--------------------------~-----------------------------------------------------------,------
14 W S MOHN 

Statistical feature evaluation in speaker identification 
Dept of Electrical Engineering N C State Univ July 1969 
PhD dissertation 

15 C P SMITH 
Speech data reduction 
AD-117-290 Clearinghouse for Federal and Scientific 
Tech Info 1957 



A hybird / digital software package for 

the solution of chemical kinetic 

parameter identification problems 

by ALAN M. CARLSON 

Electronic Associates, Inc. 
Princeton, New Jersey 

INTRODUCTION 

The modern hybrid computer offers many significant 
improvements over first generation hybrid systems 
These improvements include: 

1. The increased speed of digital computers en­
abling programs to be written in hybrid FOR­
TRAN without drastically limiting hybrid 
solution rates. 

2. The development of analog/hybrid software 
(e.g., hybrid simulation languages and analog 
set-up programs). 

The net result of these improvements has been an 
increase in the SCope and complexity of hybrid appli­
cations and a reduction in the effort required to program 
and debug hybrid problems. Unfortunately, the de­
v'elopment of hybrid applications software has not 
kept pace with recent hybrid improvements. 

Applications software for purposes of this discussion 
is defined as an integrated set of digital/hybrid pro­
grams capable of solving the majority of frequently 
occurring problems in a specific applications area. 
Based on this definition, little or no tangible information 
is currently available on the practicality of developing 
hybrid software packages although its benefits are 
obvious. 

In mid-1968, EAT's Princeton Computation Center 
initiated a development project to· determine the 
feasibility of hybrid applications software. The objec­
tives of the project were to select a frequently occurring 

733 

application area, develop general purpose software 
for it, and assess the resultant software based on the 
above definition, computer economics, ease of use, etc. 
The objectives of this paper are to present and illus­
trate the use of the software package developed as a 
result of the above mentioned project. 

The chemical kinetic data analysis problem, which 
is often referred to as the chemical model building or 
parameter identification problem was selected as the 
applications area. Since the software package, which 
will be referred to as the kinetic data analysis or KDA 
package, solves chemical kinetic problems via either 
all-digital or hybird simulations; the question of simu­
lation economics and accuracy was investigated and 
will also be discussed. 

The illustrative problem is the "Monsanto Bench­
mark Problem" which has been welldocumented2,8,6-8 

and typifies the chemical kinetic problems the KDA 
package was designed to solve. This problem requ.ires 
the determination of twenty-two unknown parameters 
using thirteen sets of experimental data and a mathe­
matical model requiring the simultaneous solution of 
seven non-linear differential equations. 

Problem analysis 

Referring to Figure 1 the kinetic data analysis 
problem, which occurs during the initial phases of, say, 
plant design· and economic optimization projects, has 
three essential, related parts. They are: 



7:)..1 Fall Joint Computer Conference, 1969 

DEFINE ClEM ICAl 

ANALYSIS 

TECHNIQ~S 

DESIGN 

lAIORATORY 

E XPER I ME NTS 

DEFINE 

COMPUTATIONAL 

TECHNIQ~S 

DEVELOP MODELS 

FOR PROPOSED 

MECHANISMS 

SET 

STANDARDS 

FOR RESULTS 

PERFORM 

EXPERlftENTS 
~--~~ 

COMPUTER 

EXPER I MENTAL DATA 

I'ROGMMM I NG .....-. ____ ~ 

CIECKOUT 

MOons PERFORM 

KINETIC DATA 

ANALYS IS STUDY 

Figure I-Typical kinetic data 2,nalysis How diagram 

1. Performing kinetic experiments to obtain the 
data necessary to determine the model. 

2. Proposing one or more mathematical models 
representing alternative kinetic mechanisms, 
chemical reactions, etc. 

3. Computational analysis of the proposed models 
by determining values for model parameter 
(e.g., rate constants) that minimize the discrep­
ancy between computed and experimental re­
sults. 

The technology required to design and perform kinetic 
experiments is available and the initial derivation of 
mathematical models to simulate these experiments 
is not generally regarded as a diffiult task. However, 
the applications software required to evaluate these 

. models is either unavailable, restrictive in a physical 
sense, or fails to provide the user with an efficient solu­
tion to his problem. 

The project manager responsible for the solution of 
a kinetic data analysis problem, based on an impromptu 
survey, is not interested in becoming deeply involved in 
programming or underwirting extensive program de­
velopment studies to solve his problem. With the excep­
tion of a few industrial organizations, the computa­
tional alternati.ves at his disposal are not consistent 
with his interests. The computational alternatives are: 

1. Direct Simulation-The classical analog com­
puter or digital simulation language studylO 
where the analyst adjusts model parameters in 
a trial and error fashion. This technique is gener­
ally successful; however, it is very time consum­
ing' susceptible to human error, and inefficient 

except for small problems. The adv2,ntage of 
direct simulation is that it provides the analyst 
with a great deal of knowledge about the physical 
behavior of the system being simulated. 

2. Parameter Estimation-A variety of digital 
computer programs that solve kinetic problems 
using, for example, statistical techniques, line 
and non-linear least squares, etc. Spec:jfic illus­
trations may be found in a recent article by 
Lapidus and Bard.5 Unless the analyst is familiar 
with these programs and is capable of using 
them without making major modifications, their 
utilization creates a number of problems. These 
problems include: 

A. The mathematical techniques restrict the 
form of the data or the model:, thereby 
influencing the design of kinetic experi­
ments' (e.g., batch-isothermal experi­
ments). 

B. The infrequent use of statistical tech­
niques or lack of a working knowledge 
of statistics makes it difficult for the user 
to evaluate program results and equate 
them to the physical problem. 

Parameter estimation programs do, however, 
represent a relatively economical means of 
solving kinetic problems if they can be used 
efficiently and without major revisions. 

3. Parameter Optimization-This technique uses 
general purpose optimization algorithms (e.g., 
gradient search) to automate the above men­
tioned direct simulation technique. Referring 
to Figure 2, the optimization variables, A, 
which are unknown parameters in the kinetic 
model, are varied so as to minimize an objec:tive 
function. The objective function, F, is a sealar 
quantity representing the error between eom­
puted and experimental results which may be 
obtained using a variety of mathematical rela­
tionships (e.g., sum of squares, integral of the 
absolute error, etc.). As shown in Figure 2, the 
best current values of the algorithm variables, 
AB' are those model parameters resulting in the 
"best fit" between experimental and computed 
concentration data, AF, when the algorithm can 
no longer improve the objective function. 'This 
technique is: 

A. Theoretically the most general purpose 
approach to solving kinetic data analysis 
problems. It may be used in either a11-



INPUT/OUTPUT 

PROGRAMS 

ALGORITHM 

6~ J = G :i 
J 

Figure 2-Simplified parameter optimization flow diagram 

digital or hybrid simulation~ and the 
mathematical forms of the kinetic models 
and physical systems that can be inves­
tigated are not restricted. 

B. Not generally used because many organ­
izations do not have access to appropriate 
software and the development of this 
software imposes an intolerable financial 
burden on anyone project. In the past, 
this technique was not widely used due 
to high digital production costs. The 
"Parameter Optimization" technique, re­
quires several hundred simulations of 
individual experiments per optimization 
run. 

The results of the above mentioned survey indicated 
a significant market existed for general purpose kinetic 
data analysis applications software if it could produce 
easily interpretable results, require minimal user partici­
pation, and solve kinetic data analysis problems at a 
reasonable cost using the "Parameter OptimizatioI)." 
technique. These results were used as guidelines for 
the software development project. 

Software description 

The Kinetic Data Analysis package consists of 
several digital/hybrid processors whose individual 
functions and interactions are too complex to describe 
in this paper. However, referring to Figure 3, the cur­
rent version of these processors may be visualized as 
five FORTRAN programs under the control of a Pro­
gram Executive. The Program Executive restores and 
executes programs requested by the user, provides the 

A. Hybrid/Digital Software Package 735 

PROGRAM 

EXECUTI VE 
FORMS G;:J 

t , ~ " ANALOG 
OPTIMIZATION DATA 

SET-UP --- PREPARATION PROGRAMS 
PROGRAM PROCESSOR 

I" 
ALL-DIGITAL STUDIES 

" " • • ANALOG HYBRID 01 FFERENTI AL ALGE BRAI C 
COMPUTER ., - STUDI ES EQUATIONS EQUATIONS 

Figure 3-KDA program organization 

software package with a convenient mechanism to add 
programs, etc. 

The five programs shown in Figure 3 are an Analog 
Set-Up Program, a Data Preparation Processor, and 
three optimization programs. The optimization pro­
grams are identical with the exception of the mathe­
matical form and/or computer used to simulate the 
kinetic model or models. These programs, which have 
identical executive, optimization, and objective func­
tion programs are: 

1. A hybrid optimization program using the analog 
computer to simulate kinetic models. 

2. An all-digital optimization program for kinetic 
models requiring the solution of one or more 
ordinary differential equations. 

3. An all-digital optimization program for kinetic 
models requiring the solution of a set of alge­
braic equations (e.g., continuous stirred-tank 
reactor experiments.) 

The Analog Set-Up Program is an interactive pro­
gram used, for example, to static check analog patch 
panels prior to executive hybrid production runs. Since 
programs of this type are generally part of the operating 
system software for a hybrid computer, a description 
of this program will not be presented in this paper. 
Subsequent discussions will also exclude the Program 
Executive, since its function has, for all practical pur­
poses, already been d·3fined. Therefore, the description 
of the Kinetic Data Analysis package will be limited 
to the Data Preparation Processor and the optimization 
programs. 

A brief description of hmv the user interacts and com­
municates with the software package to solve a kinetics 
problem will be discussed first to clarify later discussions. 



736 Fall Joint Computer Conference, 1969 

TOTAL NUMBER OF CHEMICAL SPECIES, • " ••••••• C1] 
UNKNOWN ARRHENIUS RATE CONSTANTS, ••••• J:L1] 
EXPERIMENTS OR SETS OF DATA, ••••••••••• ~ 
AND UNKNOWN MODEL PARAMETERS •••••••• ~ 

CATALYST VARIABLE TRANSFORMATION? •••••• l::(] 
NON-ISOTHERMAL EXPERIMENTS? ••••••••• ~ 
DIGITAL SOLUTION OF KINETIC MODEL? ••••• ~ 

DATA SET TEMPERATURE DATA IN DEGREES •••••• [£] 
MINIMUM DATA SET TEMPERATURE ••••••••• _I -).-3-P-'J 
MAXIMUM DATA SET TEMPERATURE. •••••••• 1 2, ¢ ti1 

DIAGNOSTIC 

MESSAGES 

CORRECT 10 NS 

Figure 4-Typical KDA data form 

DATA 

PREPARA T 10 N 

PROCESSOR 

HYBRID INTERFACE 

ASSIGNMENTS AND 

SCALE FACTORS 

DATA TAPE WITH 

ALL PROCESSED DATA 

CONCENTRATION 

WEIGHTING 

FACTORS 

DATA TRANSFORMATIONS 

>-__ ~OPTIMIZATION ALGORITHM 

DATA ORGANIZATION 

DATA SUMMARY 

INCLUDING DERIVATIVES 

MATERIAL BALANCE 

ANALYSIS 

Figure 5--Data preparation processor flowchart 

User interaction ,communication 

The user's first contact with the Kinetic Data 
Analysis package is a set of data forms (sec Figure 4) 
that request experimental data and other related infor­
mation in kinetic rather than computer terminology. 
These forms are transformed into a deck of punched 
cards and fed to the Data Preparation Processor. Re­
ferring to Figure 5, if no errors are detected, the data 
is processed and the results are printed out and stored 
on tape. This tape contains all optimization algorithm 
and kinetic information requi~ed for the execution of 
the optimization program. 

To complete the data forms the user is required to 
provide a "yes" or "no" answer to the question, "All­
Digital Solution?" The initia,] answer to this question 

C USER ) 

f + 
DATA INSERT 

PREPARATION KINETIC MODEL 

PROCESSOR IN KDA 

SUIROUTINES 

MODEL 

DATA 

l-----
OPTIMIZATION 

KDA 
PROGRAM 

PROGRAMS 

ESTIMATE 

DIGITAL! 

OF 

HYIRID 

CS ECONOMII --
ANALOG SCALE 

FACTORS, 

AND DYN 

S TAT IC 

AMIC 

LUTION:, CHECK SO --
HYIRID ID 

OPTIMIZA, 

CHECK SO --

IGITAL 

TION 

LUTION 

EXECUTEA, HE PROGRA 

DIGITAL FOR ALL-

SOLUTIOt 

Figure 6-Flowchart for first phase of KDA study 

is "yes" regardless of the user's intention to perform 
a hybrid simulat:on because, referring to Fig:ure 6" the 
all-digital optimization program has a built-in. mechan­
ism for obtaining: 

1. An analog static check and dynamic check solu­
tion. 

2. A cost estimate of th~ all-digital solution versus 
the hybrid solution cost for problems where the 
most economic alternative is questionable. 

3. An accurate estimate for all unknown analog 
scale factors. 

4. An overall dynamic test for hybrid simulations 

which are required to program and debug the analog 
model for hybrid studies. 

For all-digital studies, the Kinetic Data Analysis 
package supplies three partially programmed FOR­
TRAN IV subroutines and a "Block Data" subrou­
tine for kinetic models consisting of either algebraic 
equations (e.g., stirred-tank reactor) or ordinary dif­
ferential equations (e.g., batch or flow reactors). The 
integration package uses a fourth order Rumge-Kutta 
integration algorithm and a readily implemented 
mechanism is available to obtain the classical "error 
versus step size" data to determine the correct and 
most economical step size for the integration process. 
The three subroutines require the user to: 

1. Store initial values of the variables being inte­
grated in an integration initial condition array. 

2. Store computed results in a specified array. 
3. Compute intermediate variables and model 

derivatives or, for example, stage outputs usin~ 
FORTRAN IV statements. 

Items one and two, typically, require two or _three 
statements and the requirements for item three are 
a function of the complexity of the kinotic model. 



The "Block Data" subroutine is used to define total 
number of and names of intermediate and integration 
variables for control and printout purposes. 

These four programs (in object form) are incorporated 
into the Kinetic Data Analysis package to form an 
executable program which, upon request, will read in 
the data prepared by the Data Preparation Processor 
and print out the values of intermediate and dependent 
variables as a function of the independent variable. 
For all-digital studies, the user now has an executable 
optimization program capable of solving his problem. 

For hybrid studies, this program provides static 
check, dynamic check and scale factor information. If 
the user executes one digital solution to his problem 
(this will be clarified later), the results provide the 
information required to test the overall accuracy of a 
hybrid simulation and the running time of the all­
digital model to compare hybrid versus digital eco­
nomics. 

With the exception of reprocessing the card deck 
obtained from the data forms and requesting hybrid 
processing, no digital programming is required for 
hybrid studies. The Data Preparation Processor, in 
the hybrid mode, assigns hybrid interface channels to 
operate in conjunction with preprogrammed hybrid 
interface programs. Since da.ta transferred to and from 
the analog model is done in a predefined sequence, 
the analog logic and interface circuits are also prede­
fined and can be prepatched. Therefore, the additional 
effort required for hybrid studies is limited to the ana­
log programming required to actually simulate the 
kinetic model. 

The Kinetic Data Analysis package has, in effect, 
organized the hybrid study and, with the aid of the 
static check, dynamic check, and scale factors deter­
mined earlier, made programming and debugging the 
analog model a relatively simple task. The aforemen­
tioned card input analog set-up program limits the 
time required to set up and check out analog programs 
to a few minutes. 

At execution time, the user communicates with the 
Data Preparation Processor, the optimization pro­
grams, and the Program Executive through a set of 
predefined user oriented commands. These commands 
can be inputed via cards for batch-unattended runs or 
a console typewriter. Since the Kinetic Data Analysis 
package uses a' "space" as a delimiter, commands are 
entered in "free format." For example, the command 
"INPUT DATA 8", which is used to read in the data 
tape from FORTRAN I/O unit 8, may start at 
any location on a punch card. 

The above mentioned command list, which contains 

A Hybrid/Digital Sottware Packag~ 737 

more than fifty individual commands, is too extensive 
to discuss in detail. The commands can, however, be 
classified into the six areas of control they make avail­
able to the user. 

1. Program ControL .. Select I/O devices, call 
Kinetic Data Analysis Pro­
grams, add to the program 
library, etc. 

2. Kinetic Data 
Handling.. ............. Control I/O options and 

computations performed on 
experimental and computed 
kinetic data. 

3. Optimization Data 
Handling ................. Control I/O options and 

computations associated 
with optimization vari-
abIes. 

4. Objective Function 
ControL ................. Control the mathematical 

form, weighting and the 
components or data sets 
used to compute the ob­
jective function (see later 
discussion) . 

5. Optimization Al-
gorithm ControL ... Select the mode (e.g., 

maximize, minimize) and 
other options (e.g., itera­
tive, cyclic operation) as­
sociated with the optimi­
zation algorithm. 

6. Model Control and 
Diagnostic............. Select hybrid diagnostic op­

tions (e.g., scan for inter­
face error messages) or 
digital model control op­
tions (e.g., set or reset a 
one/zero model switch to 
modify kinetic model). 

The form of the results obtained by the user during 
program execution will be discussed later. 

Data capacity and classification 

The Kinetic Data Analysis package is capable of 
processing up to fifteen sets of experimental kinetic 
data (or data sets) which may contain concentration 
data for a maximum of fifteen chemical species or com­
ponents. Each data set may contain up to ten values 



738 Fall Joint Computer Conference, 1969 

of an independent or sampling variable (e.g., time for 
batch reactor, volume for flow reactor, etc.) and fifteen 
concentration points per sampling variable. These data 
must be common to all data sets and the sampling 
variable must be a monoatonic increasing function 
whose initial value is zero. Howover, equal sampling 
variable increments are not required. Each data set also 
contains provision for a catalyst concentration, a tem­
perature, and an alphanumeric user identifier. The 
purpose and manipulation of the catalyst and tem­
perature data will be discussed later. 

Up to fifteen unknown reaction rate constants, which 
are assumed to obey the Arrhenius equation, can be 
processed. This limit is independent of the thermal 
state of the system (i.e., isothermal or non-isothermal 
data sets). In addition, the Kinetic Data Analysis 
package can process up to fifteen unknown model or 
individual parameters (e.g., reaction orders; heat 
transfer coefficients, etc.). 

The above mentioned limits apply to all-digital 
studies and hybrid systems w:lOse interface contains 
a minimum of sixteen analog to digital and digital to 
analog channels. 

The Data Preparation Processor catagorizes ex­
perimental kinetic data into one of three classes called 
KDA Case Numbers. They are: 

Case # 1.. One or more experiments performed 
under nonisothermal conditions 

Case # 2.. Two or more experiments performed 
under isothermal conditions where 
the difference between the maximum 
and minimum temperature levels is 
greater than 5°C or OF. 

Case # 3.. One or more experiments performed 
under isothermal conditions where 
the temperature range is less than or 
equal to 5°C or OF. 

This data catagorization is one of the key factors re­
quired, for example, to organize optimization algorithm 
input data and the transfer of rate constants to the 
kinetic model. 

Optimization variable transformations 

. Two tranformations, which play an important part 
In the data flow between the various KDA processors, 
are: 

1. The tranformation of rate constants and model 

parameters into optimization algorithm varia­
bles. 

2. The transformation and transfer of these v;a,ri­
abIes to the kinetic model. 

Both transformations are a function of the aforemen­
tioned KDA Case Number and the Arrhenius equation 

where 

K = A·EXP (-B/T) 

K = reaction rate constant 

A, n = Arrhenius coefficients 

T = absolute temperature 

(1) 

The Kinetic Data Analysis package uses an alterna­
tive, but rigorously correct, form of the Arrhenius 
equation whose derivation is shmvn in Appendix A. This 
relationship is 

(2) 

where {3 is defined as 

{3 = (l/TR - l/T)/O/TL - l/TH ) (3) 

In equation 3, TH and '1\ are the maximum Emd 
minimum experimental data temperatures, respectively 
and T R is a mid-range reference temperature defined by 
the equation 

(4) 

In equation 2, KR denotes the reaction rate constant at 
TR and KHL is the ratio of the maximum to minimum 
rate constants (KHL = KH/KrJ. 

For experimental data catagorized as KDA Case :#: 3, 
the optimization variables, Ai, are defined as: 

\vhere 

1 = rate constant index, i = 1,2,"', NRC 

NRC = the total number of rate constants. 

For the two remaining data catagories 

(5) 

(6) 



and 

(7) 

Individual or model parameters specified by the user 
are sequentially added after the last rate constant 
variable. For example, the first parameter, PI, is 
assigned to ;\NRc+I for KDA Case # 3. 

Referring to Figure 7, optimization variables are 
transferred to the kinetic model as a function of the 
KDA Case Number as shO\vn in Table I. For hybrid 
kinetic models, the rate constants are scaled and trans­
ferred to the analog computer in a predefined transfer 
sequence as shown in Table II. Note that for both 
digital and hybrid models concentration initial con­
ditions, sampling points, and a ramp sloape (i.e., 
reciprocal of the last data set sampling point) are also 
transferre4 to the kinetic model. 

N = N + 1 

FRUN
N 

= 0 

N =0 

F = 0 

COMPUTE MODEL 
INPUTS 

---FOR Nth 
DATA SET 

SIMULATE Nth 
---DATASET 

COMPUTE 
DATA SET 

- - - OBJEC TIVE 
FUNCTION 

COMPUTE 
TOTAL 

- - OBJEC T IVE 
FUNCTION 

~ ________ ~ OUT 

Figure 7-Simplified objective function flow diagram 

A Hybrid/Digital Software Package 739 

TABLE I- Items influenced by KDA case number 

KDA CASE NUMBER 

1 2 3 

TOTAL NUMBER OF 
OPTIMIZATION 2 • NRC + NPR 2' NRC +NPR NRC +NPR 

VARIABLES 

FORM ASSIGNED TO 
KR KR OPTIMIZATION 

VARIABLES K 
REPRESENTING KHL KHL 

RATE CONSTANTS 

RATE CONSTANT DATA A, B A, • 
TRANSFERRED TO 
DIGITAL MODEL KR, KHL K K 

RATE CONSTANT DATA LOG (K
HL

) 
TRANSFERRED TO K K 
HYBRID MODEL LOG (K

R
) 

TABLE II-Typical transfer sequence* for KDA case 
#2 

CHANNEL 
NUMBER 

2 

NCS 

NRC 

14 

15 

D/A DEMULTIPLEXING 

ABC 

1 
z 
Q 

...1< 
~o:: - ...... 
!::z zw 
-~ 

o 
u CAT** 

TEMP 

* Channel zero used by prepatched KDA circuits. 

** Transferred when appl icable • 

A/D 

Optimization algorithm and objective function 
options 

The current version of the Kinetic Data Analysis 
package uses a slightly modified version of the P AR­
TAN algorithm described in detail by Harkins4

• Since 
a detailed description of the algorithm is available, 



740 Fall Joint Computer Conference, 1969 

this paper will only consider the mathematical form 
of the objective function. However, it should be noted 
that this algorithm, which can be classified as an "ac­
celerated gradient" algorithm, was selected because of 
its proven effectiveness on a number of all-digital and 
hybrid kinetic studies performed in recent years at 
EAI Computation Centers. The add-on capability of 
the software package makes it possible to add other 
algorithms if the need exists. 

The mathematical form of the objective function 
is specified by the user at execution time. Referring 
to Figure 7, the objective function is based on the 
"total error" or sum of the individual data set errors. 
For example, to compute the objective function for 
a problem consisting of ten components and ten dat.1l 
sets, ten analog runs or one hundred digital integrations 
are required. 

The form of the objective function, its weighting 
factors, the exclusion of a chemical species or data sets 
from the objective function, etc., are defined by the user 
at execution time via the Executive Program. The 
software package provides integral and polynomial 
objective function options to the user based on the fol­
lowing definitions: 

En,m,i = COMPi'ICn,m,i - C~,m.iIEXPN 
COlVIP i = 1.0 or 0 when a chemical species is to 

be excluded 
OMIT n = 1.0 or 0 when a data set is to be 

excluded 
i = index denoting a chemical species, 

l~i~.J 
m = index denoting a sampling point, 

1 ~ In ~ lV1 
n = index denoting a data set or experi­

ment, 1 ~ n ~ N 
Cn,m ,i = computed results (unscaled) array 
C~ ,m, i = experimental results array 

F = total objective function 
FRUNn = data set objective functions 
EXPN = a positive, non-zero constant 

The polynomial option defines individual data set 
objective function as 

M J 

FRUNn = :E WGTn,m L: En,m,i (8) 
i=1 

where the weighting factor (WGT n ,m) is 

WGTn.m = 1 + PWI + PW2 . em em B 
8 

(9) 

In the above relationship (J denotes a positive sampling 
variable ratio whose maximum value is unity: 

em = SVm 

8 SVM 
(10) 

The weighting factor is unity if PWI and PW2 are 
zero. If PWI = 1.0 and PW2 = 0, initial values are 
weighted, and if PW2 = 1.0 and PWI = 0, final 
values are weighted. Note that both PWI and PVv2 
cannot simultaneously be set to one. 

The integral option defines individual data set 
objective functions as 

J 

FRUNn = L WGTn,i 1 En,m,i d(SV) (11) 
i-I 0 

where the integrn.l is computed using a "Trapezoidal 
Rule" approximation and the weighting factor 
(WGTn,i) is defined as 

WG'1\,i = 1 + CWl'Cn,i + CW2· (l-C?I,i) (l:~) 

The control constants CWI and CW2 are identicalllll 
behavior to PWI and PW2. the en ,1 values are con­
c.entration weighting factors computed from experi­
mental data by the Data Preparation Processor. 

If CWI = 1.0 and C\V2 = 0, large concentrations 
are weighted, and if CW2 = 1.0 and CWI = 0, small 
concentrations are ~weighted. This weighting factor 
is useful when, for example, a component whose range 
is 0 - 0.05 in a given experiment is more sensitive to 
an analytical error of, say, ± 0.01 than a component 
whose range is 0.5 - 1.0. 

Referring to Figure 7, the total objective function 
F, is. obtained by summing the individual data set 
errors, FRUN, modified by Ol\1.ITn (1.0 or 0) to control 
the inclusion or exclusion of the various data setH. 

N 

F = L OlVIITn·FRUNN (13) 
n=1 

Note that user commands control the values assigned to 
01\11'1\, C01\IP i , EXPN, PWl, PW2, CWI and CW2. 

In addition to the aforementioned objectivE~ func­
tions, the software package has provision for the user 
to add a digital subroutine to compute the individual 
data set errors if the "built-in" options are not appli­
cable. For example, if the data set errors are computed 
on the analog computer this subroutine can be used 
to transfer them into the digital computer. 



Optimization results include a table containing the 
objective function, its fractional contribution to the 
total objective function, and the average error per 
data point for each data. set. The total absolute error* 
or standard error is included in all results to allow the 
user to compare the relative merits of various objectives 
functions since their magnitudes depend on their 
mathema.tical form. 

Temperature and catalyst data 

Each of the data sets has associated with it a single 
temperature which is sufficient for experiments per­
formed under isothermal conditions (i.e., KDA Case 
#2 and 3.) For non-isothermal situations the data 
set temperature is the initial or feed temperature; 
therefore, the requirements of kinetic models which 
include energy balances (i.e., temperature obtained 
from the solution of a differential equation) are also 
satisfied. 

Studies that require the storage of, say, temperature 
versus time data are simulated by: 

1. Using "Data" statements to include these data 
in the subroutines supplied by the user for all 
digital studies. 

2. Using, say, card programmed diode function 
generators (CPDFG) OD the analog computer 
for hybrid studies. 

The CPDFGs work in conjunction with prepro­
grammed logic that automatically associates each 
function with the appropriate data set during the 
simulation. 

The software package also allows the user to asso­
ciate a catalyst concentration with each data set. The 
catalyst concentration, which is transferred to the 
kinetic model, provides the user with a mechanism for 
simUlating kinetic models involving a non-reactive or 
reactive catalyst. For example, when catalyst concen­
tration data is not available in studies involving re­
active catalysts, the catalyst concentration is the initial 
condition for the catalyst material balance equation. 

Typical application 

The following discussion will be devoted to the 
solution of "Monsanto Benchmark Problem" using 
the Kinetic Data Anaylsis package on a fuJy expanged 
EAI 8900 Hybrid Computer. This discuss:oh will in­
clude a mathematical description of the problem, il­
lustrate the form of the results obtained during the 

... Equation 8 with EXPN and WGT n.m equal to unity. 

A Hybrid/Digital Software Package 741 

preparation and optimization phases of the study, 
and summarize the numerical results obtained from 
the study. Simulation accuracy, errors in results, and 
economics will also be discussed. 

Problem description 

The illustrative problem contains the two essentia, 
ingredients to perform a kinetic data analysis study; 
a proposed kinetic model and experimental data. Re­
ferring to Table III, each of the thirteen available 
data sets contained concentration-time data for seven 
chemical species (i.e., R. S, T, U, W, X, and Y), the 
concentration of a non-reactive catalyst, and a tem­
perature. These data were obtained from experiments 
performed under isothermal conditions over a 133 to 
181°C temperature range which included a threefold 
variation in catalyst concentration, 117 to 368. No 
two data sets had identical initial concentrations and 
the number of non-zero sampling variable (i.e., time) 
p;)ints per data set varied from one to four. 

The proposed kinetic model, which is shown in Table 
IV, is based on the following chemical equations: 

KI K4 
R+S==:;T-~U 

Ks 

K2 
R+S-~U 

Ks 
R+S~W 

K9 

Ko K6 
T + S -~X.==;U + S 

K IO 

The model contained eleven unknown rate constants 
(KI -- Kll) and since this study falls under the KDA 
Case #2 category, there are a total of twenty-two 
optimization variables. Each rate constant has one KR 
and one KHL optimization variable associated with it. 

Data preparation processor results 

Processing the card deck corresponding to the KDA 
Data Forms produced the results indicated in Figure 
5, which are illustrated by Figures 8 through 11. These 



742 Fall Joint Computer Conference, 1969 

TABLE III - Typical data set 

IDENTIFIER: RUN TWO 

TEMPERATURE: 146°C CATALYST CONCENTRATION: 117 

TIME CONCENTRATION IN MASS FRACTION 
HOURS R S T U W X 

0.0 0.425 0.501 0.018 0.005 0.050 --

1.0 0.359 0.465 0.051 0.017 0.106 --

2.0 0'.315 0.442 0.086 0.033 0.120 --

3.0 0.281 0.424 0.123 0.048 0.116 --

........ -- ........ --_ .. -- ------ -_ .......... _ ............... -........ -_ ................. -.... ---
ADC C~ANNEL 

NUMBER 
MAX IMUM 

VALUE 
SCALE 

rACTDII 
.... ------- .. ----------... -_ .... -_ ... ---_ ...... ------------_ .... _ .. _ ... -

COM' " 1.11"" 11 II.Ulle 11 

COM' :1 II.UII.E 11 •• UIIE 11 

COM" '.UIIE Ii I.UI.E .1 

CO"' IJ •• U,.F 11 ,.U"F. 11 

COM' ~ II.,",E I. ..211.E In 

COi'!' ~ •• 51 •• E •• '.ulle 11 

CO"' 'r •• U •• E •• '.U •• E 12 

...... ___ ....... __ ....... _____ .. __ ....... ___ ....... ___ ..... w_ ............ ___ ...... -- .... _._.-

OAe ASSICNMENTS 

Y 

--

0.002 

0.004 

0.008 

ii;c -C~;~;E~ -- ------;;; i ;;~E ------ ---~;; i~~~- ----. -- --·;C~~E-----~~~.-~;~~;;;-
NU.M8EII NAME VALue rACTOli ICAIE 1 DilLY' -_ ...... ----------- --_ .......... --_ ........... -- .. --- .... --_ ....... -.... --- .. _ ... -.. _------ .--_ .. :".- .. --

IIATE CON 1 •. n .. E 12 ••• 66.E-11 

llATE CON 2 I ..... E .1 •• U5IE •• 

IIATE CON 3 ...... E 11 '.l25.E •• 

llATE CO'" • ' •• II,F" ',251.E 11 

llATE CON , •• 1I"E 111 •• UIIE 11 

'UTE CO",· 6 .,U"E Ii .,l".E 11 

llATE CON 7 '.25 .. ., •• ',.11.11 Ii 
FlATE CON a II,II"'E 11 1,12!11E •• 

IIA TE CON 9 II",..E 12 ',U"E-11 

111 FlATE CON 11 l,llllE .1 ',lI •• e .1 

11 UTE CON 11 ,,4111'" III II,25"E •• 

. -_.- .. -................ -- ................... -............... -...... -.. -- .. _ ....... --... --_ ........ -.---_ ....... ---_ ........ ---_ .. 
Figure g.-Hybrid interface ,assignments 

figures omit the first phase of the form processing out­
put. That is, the direct playback of the KDA Data 
Forms with appropriate error messages when errors 
are detected. 

TEMPERATURE IN OEC C MINIMUM 130,11 MAXIMUM 21111,11 

CATALYST (UNKNOWN ) IN UNKNOWN MINIMUM II.117E 113 

SCALED CATALYST-TEMPERATURE DATA 
----------------------------------------------------

DATA SET 
NO, IDENTlrlER 

SCALED 
TEMPERATURE 

SCALED 
CATALYST CONC 

----------------------------------------------------
RUN ONE 11,730" 11,3315 

2 RUN TWO 0.730" ".3179 

3 RUN 3 11.911011 ".6440 

RUN rOUR 0,8U0 0.3288 

5 RUN rIVE 0,8Ue 11',6576 

6 RUN SIX 11,7900 11',6522 

7 RUN 7 11,74110 B,6522 

8 RUN 8 11.83511' 1,6522 

9 RUN NINE 0,85"" 0,6522 

111 RUN TEN 0,890" ",6522 

11 RUN 11 11.6650 11,6739 

12 RUN 12 0,9B51 0,6141 

13 RUN 13 11,8651 1,I0B0 

-------------------------------------------------_ .. 
CAT CONC ANO TEMP XrER ON OAC 14 ANO 15 OURING 'B' PERIOD 

Figure 9-Temperature-catalyst interface data transfer 

Figure 8 illustrates the hybrid interface assignments 
for the eleven reaction rate constants and the seven 
chemical species involved in the mathematical model, 
their maximum values, and their scale factors (i.e., 
reciprocal of maximum value). Figure 9 deta,ils the 
scaled temperatures and catalyst concentrations that 
will be transferred to the analog model during the 
"B" demultiplexing period on D/A-channels 14 and 
15. Note that this problem is in the KDA Case #' 2 
category whose interface transfer sequence has been 
illustrated in r-rable II. 

Referring to Figure 10, the Data Preparation PrQi[~­
essor assigns a number to both the data sets and 
chemical species involved in the study. These numbers 
are required by the user to execute commands that 
manipulate specific chemical components or data sets. 
For example, to exclude the eleventh data set from the 
study, the command is "EXCLUDE II" not "EX­
CLUDE RUN II" where "RUN II" is the data set 
identifier specified by the U!3er. 

The lower half of 1~'igure 10 Hlustrates a typieal data 
set printout containin~ the origi.nl "time" units and 
sc, .led values (i.e., normalized) of the s.vnpling Vltriable. 
The normalized values were obtamt:d by: 



NAME I KOA NUMBER SUMMARY 

KDA NUMBER 

1 
2 
3 
4 
5 
6 
7 
8 
9 

18 
11 
12 
13 

COMP NAME 

COMP R 
COMP S 
COMP T 
COMP U 
COMP W 
COMP ~ 
COMP • 

OAT A SET I DENT 

RUN ONE 
RUN TWO 
RUN 3 
RUN rOUR 
RUN riVE 
RUN SIX 
RUN 7 
RUN 8 
RUN NINE 
RUN TEN 
RUN 11 
RUN 12 
RUN U 

DATA SET NUMBER 2 USER IDENTlqER RUN TWO TEMPERATURE 146. I C 

CATALYST CONce~TRATION 1.1171E n UNMNOWN CATALYST RATIO '.ll1.E 11 

BETA r ACTOR -1.2421 

SAMPLING POINTS 

--; i ~e --------;: I;;; -;; -;: l;;e -; ~ -;: ;;;;-;;: -;: i;;E -;;:-----------------------------------
NORMALIZED I.~ee. 0.3333 0.6667 ,.9999 

c~~;o~e~;' ------------------------------------- --~o~ce~; ;;;j o~ -j ~ -~G; -F;;;C --------------
............................. -........ _ .................................... _ .... --- ...... -...... _--- .. -_ ............. -.... -_ .... ---_ .... --------_ ...... --
COMP R 1.425E U 1.359E 08 8.315E U 1.281E '8 

COMP S 0.5~lE ~. 1.465E ~e 1.442E ee 1.424E ~I 

COMP T '.188E-81 1.5UE-.i I."IE-Il •• 1231 II 

COMP U 1.".E-.2 1.17IE-Il '.33.E-11 1;4I1e-11 

COMP w 

COMP ~ 

I.5IeE-1l •• 1I6E II •• UIE 18 1.116E I, 

•• I8.e 18 I.U'E ~e I.UIE II I.UIE II 

COMP Y .... ee II 1.2eU-82 '.4"E-12 ..... E-12 

------------ ... _--------_ ... -.... -..... ----... _----_ ........ ---------------.. --------------... __ .. _----_. 
CONC SUM •• 999& II • '\IIE 11 1.1I1E 11 1.1I1E 01 

Figure l~KDA number assignments and 
processed data set 

TABLE IV-Mathematical model 

DEFINITION OF TERMS 

Rl =Kl RS 

R2 = K2 RS 

R3 = K3 RS 

R4 = K4 T 

RS =KS TS 

t = time 

R6 =K6 US 

R7 = K7 US 

RS = KS T 

R9 = K9 W 

RlO= K10 X 

CA T = Catalyst Concentratioh 

a =CAT /(CAT)MIN = Catalyst Ratio 

MRT, MSR, MST, etc. = Molecular Weight Ratios; e = a t 

MATERIAL BALANCE EQUATIONS 

~ = ~t = -R12 + (MRT) RS + (MRW) R9 

R11 =K11 Y 

R12 = Rl + R2 

R13 =R
4 + RS 

R14 =R6 + R7 

+ R3 

~ = ~t : -(MSR) R12 - R14 - RS + (MST) RS + (MSW) R9 + (MSX) R10 + (MSY) Rll 

~ = £Xt = (MTR) Rl - R13 - (MTS) RS ; rN = rN ~ (MYS) R - R 
d9 adt 7 11 

~ = ~t = (MUR) R2 + (MUT) R4 + (MUX) R10 + (MUY) Rl1 - (MUS) R14 

A Hybrid/Digital Software Package 743 

OAT A seT '0. 10E,T IF IER 
CWE"leAl S~EC IES 

1-5 I 6-18 I \1-1' ...... --- .. ---------- .... -_ .... -.... -- .. ----_ ........ --- ............. _- ............ -.. -..... 
AUN ONE ~. 5215 0.2410 l.tl30 ~.~3n '.1iIU 

~ .IP'~ 1,115~ 

2 AuN hO 1,3051 •. 4H0 1.16" '.1251 1.'9" 
I.'~IP 0.0035 

3 AuN 3 I.U50 1.31U 1.11123 •. 2ou •• 1191 
0.15" I,IU~ 

PAAll\N OATA SUMMARY 

CONTROl. DATA •••• T't'PE • MI~ NPOI • 1 HE)!:P • ;S I.EYAL.· 2151. 

PAATAt.J COEr •• 1' 8MAI(. Q!.111' 81'41111. I.eel' 'L""X. '.1". 'LMIN. e."ll1 

PARAM~TER DATA ...... -_ ...... __ .. ----- .... -.... _ ......... -..... _ ........... --------- ........ -.... -- .. ----.-_ ........... -.................... -_ .. --
NO. NAME TYPE AANGE VALUt "AXVAl MINVAl 

....... ,-----_ ...... ----_ ......... ----_ ................................ -- ........ _-_ ............... --_ ...... -_ .. -_ .. --_ ..... -.... --
MAIl o .U~IE 01 I. 43~0E 8~ o .10~IE 01 1."leE '1 

WL01 A.1991E .,,3 8.1040E ~3 P. ZleIE ~3 e.1iI1~E 0\ 

MA02 0. 4'~IE 8e •• 148eE It 0.4101E II I.IIIIE II 

Wlel A,3991E 03 1.108eE 13 0.48UE n •• 111IE 81 

OR03 0.UI.e 01 1.1110E II 0.10IIE U '.UI0E 00 

Figure ll-Concentration weighting factors and 
algorithm input data 

1. Performing the catalyst transformation shown 
in Table IV, which was the result of a "yes" 
answer to the question, "CATALYITC RE­
ACTIONS?" (see Figure 4). 

2. Dividing all values by the maximum sampling 
point to form the "normalized" values or s~aled 
sampling points. 

These results also contain concentration and rate 
summations for each time point to assist the user in 

. evaluating the consistency of the data based on ma­
terial balance. The rates, which are not shown in 
Figure 10, were computed numerically by differentiating 
a polynomial whose coefficients are determined by a 
least square fit of the concentration data. 

Figure 11 illustrates the concentration weighting 
factors and the input data to the PARTAN Algorith~. 
Note that the Data Preparation Processor has assigned 
names, for example, "KROl", to the optimization 
variable and placed them in a "type three" category. 
This means they are constrained between an upper and 
lower limit denoted by "MAXV AL" and "MINV AL". 
The initial values of the variables are in the "VALUE" 
column. 

The results of the preprocessing indicated that the 
eleventh data set should be excluded from the study 
because its concentration sums indicated as much as 



744 Fall Joint Computer Conference, 1969 

ten percent error. Therefore, optimization results were 
obtained using twelve, rather than thirteen, data sets. 

Optimization results 

Figures 12 through 15 illustrato the form of some of 
the results obtained from the hybrid solution of the 
problem. Figure 12 illustrates the user commands, 
which are documented as they are processed, and an 
optimization summa~y. The summary is updated every­
time the algorithm detects an improvement in' the 

TYPE 

INPUT OATA ,8 

OPTIMIZATION 

COMPANy ••• •••• • 

LOCH ION •••••• • 

PROJ ENGR •••••• 

:~:--:~~~~:~~:~ 

TAPE UNIT 9 

PROJ NUMBER •••• 

PROJ ENCR •••••• 

CURRENT aAlE ••• 

RESTORE PARTAN PLOT 

nCLuOE 11 

INTEGRAL OBJECTiVE fUNCTION 

wEICHT LARGE CONCE~TRATIONS 

ERROR E XPONEN' 1. 0 

SUMMARY 
.. -------------------

IMP"OVEM<',T O~JECT! VE '0 OF rU"JC. 

~U"1f:1ER Fu,cr I 0' FVALUAT IONS 

----------------- ------------------------
~. A09PF ~ 1 1 
0.671 SE ~1 24 
~. 53~8E H ?5 
~. 5221. ~1 26 
~.5I~~E ~1 29 
~.51e~f PI 3~ 

6 p.50?lE PI 54 

7 0. 4 817F ~1 S6 
S7 8 0.4814E 01 

9 0.4769E 01 59 

1~ 0.4766E 01 62 

11 0.4711E PI 85 
.7 12 0.4694E ~1 

13 0.4667E 01 90 

14 r.4498E 01 118 

IS 0.4479E PI 124 

16 0.4424E ~1 151 

17 0.4415E 01 154 

18 3.4380E 01 155 

19 0.423SE 01 182 

20 0.41HE ~1 183 

21 0.4111E ~1 188 

22 ~.4111E ~1 191 

23 0. 41~4E ~1 192 

24 0.4093E 01 216 

25 ~. 4~69E 01 272 

26 ~. 3963E ~1 298 

27 0.391BF ~1 299 

28 0.3839E ~1 326 

29 0.3832E PI 329 

30 0.3827E 01 330 

MONSANTO COMPANY 

Sf. LOUIS. MO. 

PAUL PA~ISOT 

1006~9 

A. CAR~SON 

sEPT •• 1968 

NO Of GRAn. CURRE~ T 
EVALU.TIO~S ALPHA 

ClJ~RENT 
BETA 

-- ... _--------_ .. _- -- ........ ---------_ ... -_ .. -_ .. _-
~ ~ .1~~0 0.1000 

1 0.1~00 o .100~ 

1 o .10~0 P .1618 

1 ~ .1000 0.2618 
'I J.1000 0.4236 

1 3 .1~0~ 0. 4 236 

2 ~ .1000 ~ .1618 
2 0.1000 0.1618 

2 o .lJ00 0.1618 
~ .1000 0.1618 2 

2 ~ .1000 0.1618 

3 0.1000 e.I618 
3 0.1000 0.2618 
3 0.1~00 0.2618 

0.1000 0.1000 
4 0.1000 0.1000 

5 0.1000 0.0382 
5 0.1000 0.0382 
5 o .10J0 0.0382 
6 0.0362 P.038.2 
6 ~. 0382 ~. ~6111 

6 3. ~382 ~ .1000 
6 0.0382 0.1000 

6 ~. 0382 o .100~ 
7 0.1000 ~. 0382 

9 0.1000 ~. 0382 
0. ~382 ~. 0382 10 

1~ 0. ~382 0. ~618 
0.1000 H ~ .1~00 

11 ~ .100~ 0.1618 

11 0.1000 0.1618 

-- --_ ......... ----_ .. -..... ---- ... -- .................. -- -_ .... -- -- --- ............ -- --_ .. --_ .. -... _ ... --_ ....... ---- -_ .... --

Figure 12-Typical executive program output and 
optimization summary 

DAU SET ABSOLUTE ERAOR AvERACE 
~UM8ER I OENT I r I ER EKHOR rUCT I O~ ERROR 
__ .. J .... __ .............. __ .... _ .................. __ .............. _ .. __ ............................ _ .. _ ...................... _, __ .... .. 

RU~ ONE •• 791~E-11 1.2"3E-01 •• 113IE-'1 

RUN TwO '.2296E II A.5961E-81 •• UUE-I! 

RUN 3 '.4674E •• 1.12I3E 81 1.3339E-'1 

RUN FOUR I.4895E II A.1271e ., ~.23J1E-1I1 

RUN F lyE ,.4.52E II •• ln1E ee '.1929E-.l 

RUN SI X '.1987E •• 1.5158E-01 '.UUE-'2 

RUN 7 '.49UE 18 1.1295E II '.2H6E-11 

RUN • 1.5J3aE Ie 1.1383E II '.1·II3E-.1 

RUN NINE '.160lE II •• 4162E-81 •• ,'I27E-'2 

11 RUN TEN '.14Z4E II e.3697E-e1 '.6'I13E-'2 

'12 RUN 12 '.J96AE .e •• 1021E 10 '.1414£-.1 

13 RUN 13 •• 2517E II •• 6535E-01 II. '1192£-'2 

aAU SET NUMBER 2 USER IDENTlrtER RUN TwO TEMPERATURE 146.' C 

CAULYST CONCENTRATION '.111IE IJ UNKNOWN CATALYST RATIO '.III1E A1 

liEU rACTOR -'.2421 

SAMPLING POINTS 

--;;~; --------;: ;;;; -;; -;: ~ ;;; -;~ -;: i;;; -; ~ -;: ;;;; -;;-----_. ------------- ---------' ---
c~~;~;~;; ---------------------_. -----------------C~~CE;; R~; ~ ~~ -~ ~ -~~; -;;: e -------- '. ---
.. _ .............. _ .... -_ ....................... -_ ................... --_ .. -_ ... _ ............ _ ........ -----_ .......... _ ....... -............................... ' ..... .. 
COMP • '.~25E W. '.3"£ U •• 315£ II e.2UE 0' 

... ---.. _ ............... -- ... -_ ...... _ .... _ .... -.. -......... ----.. -. _ .... --.. -_ ... -_ .. -- -_ ........... -- -- .. ,. _ .. .. 
'.425£ II •• 345E I. ~. 3UE II e. 219E ~. -_ ............. _---- .. -....... _---_ ..... _ .... -... ----- ..... __ .... _- ... _--- .. _ ...... --- ... __ ......... ---_ ........... _-
'.'~IE "-'.131E-I1-'.121£-I1-'.I71E·'2 

-- ......... _ .. _ ... - .. _ .. --- ---_ ......... -- - .. _ ................... ---_ ........ - ......... - - ................. ---_ ..... _ ...... -- -_ •• - - ........ __ ~I- ... .. 

COMP S '.511£ I. '.4655 II •• 442E II •• 424E II 

'.511£ .. '.455E II '.431E .. '.416E II 
_ .... -.. _- _ .... -... _ ... -........ -_ ......................... -................ ---_ ............... --- -_ ........... _ ...... -_ .......... , ..... ... 

• .... £ I.· •• 9I6E-I2-' .1I1E-11-•• 798£"2 

Figure 13-Typical objective function summary 
. and detailed data set results 

'''II ••.••• ,.a • "u, '.UIIII 
'"I .. • •• lIlIll ."1'" •. HII .. 

••••• 4 ...... 

XULUlI '.3I1E'1 

:Ill ,:1""-----------------------------------------------------------------------------!~-" Iii I 
!!:: ::::::::: 
~::: 1,4n, .& 

I "I.. I~ 27., '.'''''1 21.. '.It&IIl It.. 1,'Uri'l 
II.' '.USf fit. 

'.",tItll 

Figure 14-Typicalline printer objective function-­
No. of improvements plot 

objective function during the execution of an optimiza·· 
tion run. It keeps a running record of the total number 
of gradient evaluations and objective function evalu·· 
ations and notes any optimization variables at their 
upper or lower limit (not shown in Figure 12). The 



:A Hybrid/Digital Software Package 745 

Figure I5-Typical concentration reRlllts output 

".. ~ .. .. JI "" 

_.- I J r-- t--f--f--+-{.,L~-l !,!. ~~_.' ... -\I! _I V/[J! I, II' !~--
I--+!t- i-- -Vl+' - jt . -. I f 

=;"t-Jl,,+-I ~~t '-- . - 1- -- V -- - 1 I I I I 
-tiro-Ii -- - - -v t - j i v I - i / ·1 I "i 

+- • t -+------+- -+--.i I+-- +--+-- ~. --1 ·f 

I \ 
i I I I -; i ' j Ij .~ t. ! \ .-- . 1--; L t-- -t- t \ 1 fit . -. - i Ii ii, 

lR :1 1.1 1 1 i ; II I 1 I I ; l I ; , , i i ) i 

-t \-+---+---+ -. "'" t to. _+ • t 

:+11-r-J1 I i 11)! I! II 
-I t , .! I \+ l!t t! ! I, I. ! i-I ' j II t -t 1 1 1 

: iii! -, I : ! 1 I t /.- j I I 
1 1 I .. ' 1.11 i. ! I. I I. I I I I ! ! I 1 ! i !! ti I I J ' j j i I I. 1 j I -\- I I ~ i I 

t Iff Ii II/t I I;!! i ! 
i ; I f- i .i I 1 I j 1 iii, i , i 

il t I-i i 1 11 .'" i fi f- lit ,- i 1- ! i r t 
I- +- 1--+ t -I- --+-~-~ ---~ .• fl. - -+ ------+ - .. + • ~ • ~ -I- .. .• I -+ t t -l- t f -. -f + 

-m~1~r /:-111 t HllIll tt11111 I i III 
- i +t~ 1 .i_ f-- i": -~rll : I ; ;, ~; i: !;I iii ; ; i ; . ; Ii 

j i + i 4 -·-~w, '1,,-1. ~ ll~,' !,.' :. -~. ;,' ~""-~'" ! ...... ~, I,: ... 1 t .. l i l .• ! ; iJ--r 
! r 1 I-I t--->--:-r;il i .....-:--1::,:1 r: r ~ ;~ : V11 
• - \--- --f -I---- + 

1 tJ jJ LLll1 i ~j Ii 

11111 I ] ! I ; 1 ! f- j 
; ",-. 

1 I 
I I 
! ! 

. . 
i t 
I t 

• i I ~. j 
t i 1 i i 

; i 

i • ,'.,ft,' IT \1' j j 
t II i i. i 

; r- ! i i : , 

: i 

j i t 1 
. i 

i2:X: 1 

! i t 

! ' : 1 i '. I, t ; 1 J I ! 
: ! l ! i 

! 

! : ! 

...... 
~ I : j ! i I i 

! ! : ! lIt 
i I I 
t j 

; i ! I \1 iii i! i i ! j '\' I 
~ ~,I.. I,...' I) I,': ·.i, 'I I,. ~I: 1 I I I I . , 1 
~ ___ iliil!!! 

I --i r---t I 

. ~ .. j I i I ; I 
1 !-i·· t 1 1 I I ' 
i f--I- .... \ Ii! t f r 

! j i ! i +( ! I 
: ; -4 _i 'i] ;1; 
I I; f;! f .j i 

i. I' I j ! I 
i i ~ j \ -

, !f i i; 
1- 1 f --1 j : .r-- - ~ 

I; j rl: ! ; 

~ ; f I: 
i if, . : 
i;~ 

\ !, i i ! ! i1i-j 
t t i j-! 1 
~- , t i i ! I t 

i Iii i i f~ iii 

I I I '-t- 1.\, j , ,. I \- I ! , I -1'I~f~ut11i iii t t t i j j Iii 

11 tir-l ·-t Jl 1-11; r II .Lk 
t + tit·· +-

-1-- ~ 

;: I , -- J- .. -
\-

I 

'i~ •• • ~.i ••• ~~ 



746 Fall Joint Computer Conference, 1969 

alpha and beta values pertain to the algorithm pertur­
bations, etc. 

During the optimization process the optimization 
summary is the only output available to the user with 
the exception of a percent improvement indicated on 
the analog computer digital voltmeter. The percent 
improvement is relative to the initial or base valuJ of 
the objective function. 

After the op-timization process has been completed, 
the previously mentioned objective function summary 
is obtained (see Figure 13) which includes a reproduci­
bility error. Referring to Figures 13 and 14, the u,ser 
may also request a detailed comparison of experimental 
to computed results and a line printer plot 01' the ob­
jective function or any of the optimization variables 
as a function of the number of improvements. 

The objective function summary allows the user 
to determine if, for example, anyone data set is making 
an excessively large contribution to the objectIve 
function. The reproducilibity factor, which is typically 
zero for all-digital studies, is obtained by re-evaluating 
the objective function under "best fit" condItions after 
the optimization process has been completed. The per­
cent error between the two objective functions is the 
percent reproducibility error shown in Figure 13. It 
reflects the total error introduced into the objective 
function by the hybrid interface, analog components, 
etc. As shown in Figure 13, this error wa..: typIcally 
less than one percent. 

The objective function plots allow the user to 
graphically follow the path of the optimization proc~ss. 
However, plots of specjfic optimization variables 
versus the number of improvements are more impor­
tant. They indicate the activity or sensitivity of 
variables during optimization and allow the user to 
take appropriate action if, for example, a variable 
always remained essentially constant. 

Figure 15 shows a concise final results plot that can 
be requested via the appropriate user command. This 
plot, which is obtained on the analog strip chart re­
corder, consists of a sample variable ramp (() and 
a set of curves for the computed concentrations. The 
"blips" on the concentration curves represent the 
deviation between the curves and experimental data 
points; therefore, the absence of "blips" represents a 
near perfect or perfect fit. The pulse prior to each ramp 
denotes the data set number. The first data set is 
preceded by a 10 volt pulse, the second by a 20 volt 
pulse, etc. 

Problem solution and results 

To avoid the possiblity of confusing a local minimum 

on the error surface with the true minimum, sets of 
optimization runs were always made starting from four 
points on the error surface. The four sets of starting 
values used were the maximum and minimum values 
of the optimization variables, their arithmetic average 
values, and the initial or "best guess" values. The 
problem was solved using the following iterative process: 

1. Perform four separate, complete optimization 
runs using the maximum, minimum, average, 
and initial values of the optimization variables. 

2. Examine the results and determine if the final 
values of the objective function and optimiza­
tion variables show good agreement. 

3. If the results of step two indicate more runs 
are required, refine the four sets of starting values 
based on their results and repeat the first step. 

This iteration process was repeated three times using 
the integral form of the objective function with large 
concentration weighting and an error exponent· equal 
to unity. Referring to Table V, the values of the ob­
jective function for these three iterations are reported 
in standard error form (i.e., the unweighted sum of 
the absolute concentration errors). After the third itera­
tion, the mathematical form of the objective function 
was changed to the standard form to eliminate the 
effects of the concentration weighting and the results 
of this iteration indicated that for all practical pur­
poses, the "best fit" had been obtained. 

The four sets of optimization variables obtained 
from the fourth iteration showed reasonably good but 
not perfect agreement. The error introduced into 
specific reaction rate constants by differences in the 
final values of the optimization variables were com­
puted using the error form of equation 2; namely, 

~ ~ aK R + fI (aKHL) 
K KR KHL 

(14) 

where .:lKR and .:lKH L are the most probable errors and 
KR and KHL are the average values of the individual 
optimization variables.9 The results of this analysis are 
shown in Table VI. Note that the absolute percent error 
of anyone rate constant is a function of temperature or 
{3 whose range is ±0.5. 

Simulation Accuracy 

Comparisons between equivalent hybrid and all­
digital optimization runs were made to determine how 
analog component or digital integration errors in-



TABLE V-Objective function results 

STARTiNG LOCATION 

INITIAL MAXIMUM MINIMUM AVERAGE 

STARTING VALUES' 8.28 5'.76 25.2 5.65 

ITERATION 1 * 3.76 3.15 3.59 3.65 

ITERATION 2' 3.15 3.08 3.12 3.08 

ITERATION 3' 3.06 3.03 3.11 3.08 

ITERATION 4* 3.00 2.98 2.99 3.01 

'Standard error equivalent of weighted integral objective function. 

TABLE VI-Rate constant error analysis results 

ABSOLUTE PERCENT ERROR 

Ki i K. 
i R KHL I 

MINIMUM ERROR MAXIMUM ERROR 

1 0.32 3.48 2.06 

2 0.44 0.83 0.86 

3 0.26 5.43 2.98 

4 0.30 4.27 2.43 

5 1.06 1.96 2.04 

6 1.60 4.48 3.84 

7 2.05 1.98 3.04 

8 0.59 3.18 2.18 

9 0.23 3.49 1.97 

10 3.22 5.14 5.79 

11 2.46 4.33 4.62 

fluenced results. This comparison was based on the 
standard objective function value obtained after one 
function evaluation. Using both single and double pre­
cision digital integration, a co~parison of objective 
function values showed good agreement between the 
digital and hybrid results. Both the hybrid and single 
precision digital integration results were within approxi­
mately ± 1 % of the results obtained using double pre­
cision integration. These minor differences were traced 
to errors of less than 0.001 in computed concentration 
data points. 

One comparison or equivalent all-digital versus hy­
brid optjmization runs was made. Although both 
solutions differed slightly when their optimization 

A Hybrid/Digital Software Package 747 

CD - ALL-DIGITAL STUDY 

C H - HYBRID STUDY * TOTAL COST ICC~~ ____ -:::;:~::""----~ 
OF STUDY L 

'-T:::O::'T A:-:-L-:-N7':":U~MB::":'E:-R ':":OF:-:O:":P':":T I~M':':IZ~A T~IO~N-R-U-NS-~ NOR 

F'igure 16--Typical hybrid-digital economic plot 

summaries (see Figure 12) were compared, the final 
objec~ive funct.on and optimization var~able results 
obtained were identical for all practical purpose (L.e., 
one or two perc..:nt dtfference). This would seem to 
indicate that the errors associated with experi­
mental data and the mathematical model will 
have a greater influence on results than the relatively 
minor errors introduced by digital integration or ana­
log components. It was also concluded that double 
prec~sion integration accuracy was not worth the ad­
ditional computation time it required compared to 
single precision integration. 

Simulation economics 

The above discussion indicates there is no technical 
advantage to be gained ,by using a hybrid rather than 
an all-digital simulation to so~ve a kinetics problem 
with the KDA package. Therefore, two questions of 
interest are: 

1. Is there an advantage to using )ne type of 
computer? 

2. How does one determine which computer to use 
for specific problems'? 

The answer to the first question ;s there is an economic 
"break-even" point (see Figure 16) that governs the 
selection of a hybrid computer over a digital computer 
or vice versa. This "break-even" point is created when 
the simulation of the kinetic molel requires the solu­
tion of a set of differential equations and the digital 
cost per optimization run is in excess of the equivalent 
hybrid cost. 

A hybrid solution is practical when the hybrid eco­
nomic advantage during the production phase of a 
kinetic study offsets and surpasses the deficit en­
countered during the problem preparation phase. Re­
calling previous discusions to perform a kinetic study 



748 Fall Joint Computer Conference, 1969 

using the Kinetic Data Analysls package the analog 
programming task is superimposed on the normal prep­
arations required for an all-digitaL study. This creates 
an obvious hybrid deficit which combines with hybrld 
cost advantage during the execut.on of the opt.miza­
tion program to create an economic "break-even" pomt. 

The economics associated with the hybrid versus all­
dig~ta, question should be considered care. udy because 
sufficient savings can be reaLzed by making the correct 
decision. For example, a recent hybrid ver;::;us all­
digital economic study for a reactor control problem! 
indicated tpat a large seale hybrid computer had ap­
proximately a 20:1 time and 40:1 cost advantage over 
large scale, third generation digital computers (e.g. 
$1,200 per hour computation center rate), and a 60:1 
hybrid time advantage for the solution of the "lVIon­
santo Benchmark Problem" has been reported in the 
literature.6 

The hybrid cost advantage is directly related to the 
average computation time required to simulate a data 
set or experiment. The analog computer, typica.1y 
requ~res 10-20 milliseconds to simulate one data set, 
which is independent of problem complexity. The time 
required for the equivalent digital simul~tion is a 
function of the speed of the digita computer, the 
number of equations, their degree of nonlinearity, and 
t he integration algorithm. The influence of the digital 
.lltegration algorithm on thiK sitnation is miLor since 
the' analog; compute can be "spel'ded-up" more rea.dily 
t han the algorithm. . 

The answer to the question of how one determines 
t he answer to the all-digital or hybrid question is very 
difficult due to lack of information. However, based on 
information obtained from several hybrid optimization 
studies performed on EAI 8900 Hybrid Computers, it 
was possible to <;lerive some "rules~of-thumb" or guide­
!inef;. These relationships, which are based on a variety 
of studies involving up to twenty-six optimization 
variables, are admittedly crude. 

The time required to execute one hybrid optimiza­
tion run, including detailed printouts and tape manipu­
lation, can be estimated using: 

TH ~ 3·NOV·NDS/I00 (15) 

where 

T H • = time per hybrid optimization run, minutes 

NOV = total number of optimization variables 

NDS = total number of data sets 

An approximate relationship to determine the 
equivalent time, T D, for a digital optimization is: 

TD ~ NOV·NDS·DST/1500 (16) 

where DST is the average number of milliseconds re­
quired to simulate one data set. This relationship does 
not include the time required for on-line I/O operations, 
which are not important if a competitive hybrid/digital 
situation exists. 

A crude economic plot, see Figure 16, may be olb­
tained from the equations: 

and 

CD = CJ; + (RD·'fD + CZ) NOR (18) 

where 

C H , CD = total hybrid and digital simulation costs 
C~, CJ; = estimated hybrid and digital preparation 

costs 
R H , RD = hybrid and digital computer rates 
C~, cZ = engineering costs per optimization run 

NOR = estimated number of optimization runs 

The engineering costs associated with the execution 
and analysis of the optimization runs, cZ and cZ, are 
not necessarily identical. For example, in the illus­
trative problem, four sets of four hybrid optimization 
runs (NOR = 16) were required and the engineering 
effort was four man days. An all-digital study could 
have required as long as, say, sixteen days to execui~e 
on a "slow" digital computer and required, say, eight 
man d-ays of engineering. 

The application of the above mentioned ec:onomic 
analysis to the "Monsanto Benchmark Problem" in­
dicated that the "break-even" point was slightly leBs 
than thirteen optimization runs. Since the problem' 
solution required sixteen optimization runs, the 
economics were only slightly in favor of a hybrid solu­
tion. However, a significant hybrid advantage Wl:~S 

indicated if additional work was required. For example 
investigation of alternative mathematical models or 
analysis of additional experimental data. 

CONCLUSIONS AND COMMENTS 

The present version of the Kinetic Data Analysis 
package has, based on limited customer utilization in 



EAI Computation Centers, proven to be both an effi­
cient and an economic means of performing both hybrid 
und all-digital studies. For example, the time required 
to obtain the all-digital optimization program has been 
one man-day or less for small- to medium-sized Kinetic 
Data Analysis studies. 

Of greater significance, however, is the fact that this 
work has proven the practicality of hybrid applications 
software. It can be used as an effective tool to solve 
frequently oocurring problems on a routine basis with 
significant reductions in cost and problem preparation 
time. Therefore, the development of general purpose 
packages to solve specific classes of problEms on hybrid 
computers would seem to be a fruitful area for future 
work. 

APPEKDIXA 

Derivation of alternative reaction rat.e constant equation 

Defining the Arrhenius equation as: 

K = A·EXP (-B/T) 

and a mid-range absolute temperature as 

l/T~ = (11TH + 1/TL )/2 

where 

A, B = Arrhenius coefficients 
T H = ~laximum absolute temperature 
T L = ::\1inimum absolute temperature 
T R = Reference absolute temperature 
T = Absolute temperature, T L :::; T :::; TH 
K = Reaction rate constant 

one obtains: 

KH = A·EXP (-B/TH ) 

KR = A·EXP (-B/TR) 

(1) 

(2) 

(3) 

(4) 

(5) 

Combining equations 3 and 4 and equations 1 and 5 
yields: 

A Hybrid/Digital Software Package 749 

and 

K 1 1 
LN ( -- ) ~ R ( ~ - - ) 

KR lR T 
(7) 

which can then be combined to obtain 

(8) 

and 

\ 
{3 = (I/TR - 1/T)/(l/TL - 11TH) (9) 

Note that the range of {3, based on equation 2, is 
± 7'2 and the original Arrhenius coefficients in terms 
of KR and KHL are: 

and 

A = KR·EXP (+ B/TR) (11) 

REFERENCES 

A CARLSOK 
Hybrid simulation of an exchanger/reactor controlsY8tem 
Presented at the Tech Conf on Process Control May 1968 
Edmonton Alberta Canada 

2 C GIESE 
Determination of best kinetic coefficients oj a dynamic 
chemical process by on-line digital simulation 
Simulation Vol 20 1967 141 

:3 H II HARA R A NESBIT P E PARISOT 
A hybrid progra'm jor the solution of the Monsanto 
Benchmark problem 
Presented at Nat A I Ch E Meeting Columbus Ohio May 
19(16 

4 A HARKINS 
The use oj parallel tangents in optimization 
Chern Engr Prog Sym Series 60 35 1964 

5 L LAPIDUS Y BARD 
Kinetic analysis by digital parameter estimation 
Catalysis Review Vol 2 67 1968 

6 R A NESBIT H H HARA P E PARISOT 
Experiences with hybrid computer solution for kinetics 
parameters search problem 
Presented at Central States Simulation Council Meeting 
St Louis Missouri Jan 1966 

7 P E PAIUSOT 
Parameter search for kinetic models utili'dng the hybrid 
computers 
Presented at Midwe3t Simulation Council Meeting Aug 
1965 Pittsburgh Pa 

8 P E PARI SOT L E FRANK V ~ SCHRODT 



750 Fall Joint Computer Conference, 1969 

Computer solution of sets of non-linear differential equations 
Presented at ACS Meeting Houston Texas Dec 1963 

9 J B SCARBOROUGH 
Numerical mathematical analysis 

Johns Hopkins Press Balto 1958 4th ed 432-438 
10 T J WILLIAMS 

Computer simulation of chemical reactions 
Chern Engr News Vol 20 1962 88 



The extended space technique for 

hybird computer solution of partial 

differential equations * 

by DONALD J. NE\VIVfAN and JON C. STRAUSS 

Carnegie-Mellon University 
Pittsburgh, Pennsylvania 

INTRODUCTION 

The rapid solution of partial differential equations 
(PDE) has been a subject of increasing interest in 
recent years. This interest in partly due to advances 
in areas of technology which require the solution of 
PDEs, but is primarily due to the need to apply modern 
optimization and identification techniques to the 
spatially continuous systems that are best modeled 
by PDEs. The parallel organization of theana~og 
subsection of a hybrid computer facilitates extremely 
rapid solutions of complicated systems of .ordinary 
differential equations (ODEs). Therefore, techniques 
to find a system of ODEs that can be solved to obtain 
a rapid approximate solution to a PDE on the hybrid 
computer have become the subject of intensive investi­
gation. 

As digital computers have become faster and their 
memories larger, interest in symbol manipulation tech­
niques has also increased, and advances have been made 
in the capabilities of computers to perform manipula­
tive tasks once considered impractically large. The 
Galerkin technique for transforming a PDE into a 
system of ODEs has been known for some time, but 
for more than a crude solution of simple, linear 
problems, the quantity of algebra is so large that until 
recently this method has not been considered as a 

* This work WIl.:5 supported by Nationa,l Science Foundation 
Grant No. GJ-179. This paper W8,S abstracted from the dis-· 
sertation of D. J. Newman,9 submitted in partial fulfillment of 
the requirements for a Ph.D. in Electrical Engineering from 
Carnegie-Mellon University. 

751 

practical technique. However, the technolgoy has 
progressed to the point where the large quantity of 
algebra no longer prevents accurate solutions- of both 
linear and nonlinear problems. 

The GalE!rkin method employs an assumed solution 
consisting of a sum of time weighted spatial funtions; 
this separable form is similar to that used in the analyt­
ical technique for solution of linear PDEs commonly 
known as the separation of variables method. Each 
spatial function in the separable form is called a mode, 
and these modes are assumed to be known functions 
selected to satisfy the boundary conditions. The Galer­
kin method yields one ODE for each mode; the solu­
tion of the resulting system of ODEs yields the time 
varying weighting coefficients of the modes. 

Recent investigation of the errors in assumed many­
mode solutions of PDEs has led to the discovery that, 
while for the first few modes the Galerkin method is 
very effective, its performance for many-mode solutions 
is not satisfactory. The Galerkin method with small 
numbers of modes has been demonstrated to give more 
accurate solutions than other methods for the same 
number of ODEs.1 If even more accurate solutions 
are required, more modes can be introduced into the 
solution, but the Galerkin method fails to produce re­
sults with any significant increase in accuracy for 
these multi-mode solutions. Although the Galerkin 
method has been shown to be convergent,2 advances 
in symbol manipulation capability have shown that 
the method is limited in accuracy in practice by the 
extremely slow rate of convergence. Therefore, a new 



7;"52 Fall Joint Computer Conference, 1969 

--------------------------------------------,--
technique that is effective for multi-mode solution is 
needed. 

In this paper, a technique designed to meet this 
need, the extended space technique, is described and 
demonstrated. After a description of the PDE and 
the notion of assumed modes, a revimv of the Galerkin 
method introduces a thorough tutorial on the nature of 
the approximation errors. The linear problem with 
polynomial modes is used to further explain the slow 
convergence of the Galerkin method and to explain 
how the extended space technique overcomes this 
defect. Formal notation is introduced to make the 
technique applicable to the nonlinear problem. Fi­
nally an example problem is presented \vith compara­
tive results based on an analytic solution. 

A review and comparison of other hybrid methods 
is presented in a previous paper by the authors.3 A 
more thorough explanation of the Galerkin method 
and its relationship to other assumed mode methods 
is available froql. a review article by Finlayson and 
Scriven,4 the Ph.D. dissertation of D. J. Newman,9 and 
a recent tutorial article by R. Vichnevetsky.lO 

Nonlinear partial differential equation 

The form of the PDE of interest is, given in (1) where 
u(x,t) is the dependent function of independent vari­
ables x and t, P is a nonlinear partial differential 
operator with respect to x, and f is a forcing function. 

a 
- u(x, t) = P[u(x, t)] + f(x, t) 
at (1) 

The solution to this problem must satisfy an initial 
condition in t and homogeneous boundary conditions 
in x on the interval [0, 1]. (The [0, 1] interval is chosen 
for notational convenience only; the solution so ob­
tained may be scaled to any other interval. Brackets 
are used to denote "operates on," and parentheses 
are used to denote that the value "depends on.") Thus 
(1) is an initial value problem in t, and retention of 
this initial value character in the system of ODEs to 
be obtained is desirable. The PDE form given in (1) 
appears to include only a limited number of PDEs, 
but through proper problem formulation a wide class 
of problems can be solved by simultaneous solution 

, of PDEs of this form. 

Assumed modes 

An approximate solution v(x,t) to (1) is proposed 
in the separable form of (2). 

n 

vex, t) = L Ci(t) hi(x) (2) 
io=l 

The assumed spatial modes hl") are preselected 
to satisfy the orthogonality conditions of (3) and the 
spatial homogeneous boundary conditions on the so­
lution to (1). 

i ~ j 
(3) 

i = j 

Since the boundary conditions are homogeneous, v(x,t) 
also satisfies the spatial boundary conditions. A pre­
vious paper by the authors3 removes the restriction 
to homogeneous boundary conditions" but it is re­
tained in this paper to simplify the presentation. The 
The Ci(t) functions are weighting functions for the 
assumed modes. 

Subject to the conditions stated above, the selection 
of the modes depends on the problem knowledge of 
the solution, and 'computational convenience. If 
specific regions of the space differ in such a way that 
the solution has different characteristics there or very 
high accuracy is required, the problem should be sub­
divided into regions. The algebra for each region is a 
separate problem, but the resulting ODE systems are 
interdependent. A description of the regionali2;ation 
problem is presented in Reference 9. 

The Ci(t) functions must be determined to give as 
nearly as possible the best solution to the PDE in 
(1) for the given modes of (2). The best approximation 
to the solution is one which matches the modl:L1 ex­
pansion of the exact solution u(x,t) for each mode in 
the approximate solution v(x,t). If u(x,t) is replaced in 
(1) by v(x,t), a residual function R(x,t) must be intro­
duced to preserve the equality as shown in (4). 

(4) 

The approximate solution v(x,t) iA an exact solution 
to equation (4), but the intent is to solve equation (1) 
which differs from (4) by an additional forcing function 
H. Analyzing the difference between u(x,t) and v(x,t) 
is equivalent to analyzing the effect of adding: the 
residual function R to the PDE. 

Galerkin's approach 

The residual R in (4) is determined by the choice 
of the weighting functionsci(t) in the approximate 



solution v(x,t). GalerkiJ} suggE;sted in 19156 an approxi­
mation method based on orthogonalizing the residual 
,",,-ith respect to the assumed modes; this orthogonality 
requirement is described by the n equations in (5). 

/1 R(x, t) hi(x) dx = 0 
o 

i = 1,2 ... n (5) 

Galerkin does not give any justification for this method 
except to say that it is related to the work of Ritz.6 
However, in addition to the strong intuitive appeal, it 
is easily shown that the orthogonality condition of 
(5) can be obtained by minimizin~ the integral of the 
residual squared with respect to the time derivatives 
of the Ci(t). This strong relationship to the variational 
methods of Ritz has led some investigators to refer to 
this method as the Ritz, Galerkin method. 

Substituting (4) into (5) and employing the orthog­
onality conditions in (3) yields the ODEs in clt) given 
by (6). 

In this paper, the Ci(O) are chosen to give a least squares 
fit of v(x,O) in (2) to the initial condition on u(x,t) in 
(1). Thus the Ci(t) functions are determined from ODE 
initial value problems. 

This approach can be generalized to any number of 
spatial variables as shown by Stacey.7 

11/ here does the residua l go? 

To be sure, the residual does not vanish for most 
PDEs and most finite sets of modes. The expressions 
in (5) ensure that the residual is orthogonal to the 
hi(x) functions, hence the residual is not compos~d 
of the modes that are in the approximate solution to 
the problem. However, since the hi(x) must satisfy the 
boundary conditions, they do not form an appropriate 
basis for R and hence determination of Ci(t) as in (6) 
does not minimize the residual in the most appropriate 
subspace. 

A more useful form for investigating the residual is 
easily obtained by solving (4) for R and combining 
with (6) to obtain (7). 

The Extended Space Technique 753 

R(x, t) n 1 11 [n ] !; n:,irfo p !; c,h, 

+ f I h,dx - P [ ~l c,h, ] - f (7) 

An analysis of (7) reveals that the residual must come 
from those parts of P[v(x,t)] and f(x,t) which ~re orthog­
onal to hi (x). The conclusion is that R acts as a 
forcing function composed of components of P[v(x,t)] 
and f(x,t) that are orthogonal to hi(x). 

Is this effect good or bad? 
With respect to f(x,t) even if the effect is Hot good 

at least the effect can be evaluated in terms of the 
physical problem. In short, f(x,t) might a,s well be 
assumed to be a function described by (2), and if certain 
properties of f must be considered in problem, modes 
characterizing these properties may be carried in the 
solution. This is quite tenable if f(x,t) obeys the bound­
ary conditions, and equally impossible if f(x,t) does 
not. 

With respect to P[v(x,t)], the effect is not immedi­
ately clear in terms of the physical problem. For modes 
which are not themselves solutions of the unforced 
problem (not natural modes), the effective forcing 
function contributed by R with components that are 
not in the solution can have effects OIl the solution. 
In the Galerkin method these effects emerge as errors 
in the approximate solution v(x,t) in addition to the 
error due to the omission of modes that are in u(x,t). 
These errors are caused by errors in the c:(t) functions 
and do not disappear very rapidly when more modes are 
added such as may be done for f(x, t). 

Evidently the effects of the residual on the solution 
can be quite pronounced when mode and nonmode 
functions interact as may happen if nonnatural modes 
are employed. 

A spedal case 

The two-point boundary value problem with a 
second order linear PDE is a meaningful case to study. 
Since the object of this section is to examine the na­
ture of the residual generated by the Galerkin method, 
the discussion is made more clear by assuming f(xJt) = 
o and by employing simple polynomial modes. 

The modes for this two-point problem are required 
to satisfy the condition that hi(x) equal zero at the 



754 Fall Joint Computer Conferenc~, 1969 

ends of the solution interval [0,1] for i = 1, 2, 3 ... ,n. 
Actually more general conditions involving derivatives 
of hi(x) can be used as shown later in an example 
problem, and a still wider class of boundary conditions 
can be used as described in Reference 3. However, 
these conditions are simple and serve to demonstrate 
the principles involved. 

The simplest polynomial modes that satisfy these 
boundary conditions are given in (8). 

i=1,2···,n (8) 

The bar on the h.:(x) indicates that these functions are 
not orthogonal, but they are independent. The n 
orthogonal functions hi(x) defined in (3) are readily 
generated from the h ,(x) by the Gram-Schmidt pro­
cedure. 

In order to determine the composition of the re­
sidual, P[h.:(x)] must be examined to determine which 
components are orthogonal to all of the hj(x). For this 
purpose, hi(x) is an adequate substitute for h.:(x) and 
considerably simplifies the discussion. Since P is a 
linear combination of derivative operators, P[hi(x)] 
could not contain any powers of x greater than i + 1 
but could have any lower term ill-cluding a constant 
term. In fact an adequate basis for P[hi(x)] includes 
in addition to the hi(x) functions two functions 1 
and x that do not satisfy the boundary conditions. 
Therefore, the residual must be composed of a linear 
combination of 1 and X, and the Galerkin solution 
for this special case has an effective forcing function 
of the form ax + b. 

Introducing such an extraneous function or al­
ternatively ignoring such a function if it were part of 
f(x,t) does not seem to be reasonable. Ostensibly the 
residual in the PDE is due to the omission of modes of 
higher degree from the approximate solution; however, 
such a residual would not be a function ax + b but 
would contain all modes especially those of the highest 
degree included in the solution. 

The extended space technique for the special cq,se 

This technique extends the space of functions being 
considered for the solution of the second order linear 
PDE to include functions, hn+l(x) and hn+2(x) , which 
are used to absorb the residual and reduce the error 
in the coefficients Ci(t); however, these functions are 
not included in the actual approximate solution vex, t). 
In the extended space technique, the residual is not 
part of P[v(x,t)]; instead, the residual consists of 
functions that are not part of the approximate solu­
tion and cannot be generated in the PDE from the 

approximate solution. The addition of sufficient; 
amounts of ~1 (x) and hn+2(x) to remove the s,x + b 
component from the residual reduces the error in the 
coefficients for the modes. 

The expression given in (9) is substituted into the 
PDE instead of the approximate solution v(x,t) to 
generate the extended space residual R.(x,t). 

n+2 
L h,(x) c,(t) = vex, t) 
~1 + hn+l(X) Cn+l(t) + hn+2(x) Cn+2(t) (9 ) 

Two functions which are orthogonal to the h.:(x), 
i = 1,2, ... , n + 2 can be found from 1 and x and are 
denoted g~(x) and g~(x). These functions with hi(x), 
i = 1, 2 ... n form a basis for P[v(x, t)]. The g~(x) 
functions are employed in (lOa) to give two line2~r 

algebraic equations which when solved simultaneously 
with the n linear ODEs in (lOb) determine the co­
efficients c,(t) in vex, t). 

[1 g~(x) R.(x, t) dx = 0 
o 

j = 1, 2 (lOa) 

11 h,(x) R.(x, t) dx = 0 
o 

i=1,2,···,n (lOb) 

The two equations in (lOa) insure that the residual 
will not have 1 and x as a basis. The equations in. 
(lOb) are essentially the same as those in (5) and insure 
that the residual is orthogonal to the modeB. Th.e 
conditions in (10) are necessary for the minimization 
of the integral R squared in the subspace with basi'g 
g~, gg, hi (i= 1, ... ,n). It has been demonstrated tha't 
this is a more appropriate subspace for the descJription 
of R than that with hi (i= 1, ... ,n) alone as a b9~sis. H 
should therefore be expected that the extended space 
technique give better results than the Galerkin method. 

A close examination of P[u(x,t)l (u(x,t) is the exact, 
solution) compared to P[v(x,t)] indicates why the 
extended space technique does give better re:mlts. 
P[u(x,t)] can be broken into three important parts: 
P[v(x,t)] is one part, a part which has the same basis 
as P[v(x,t)] but is generated by functions in u(x,t) 
that are not in v(x,t) is a second part, and a part 
which has a basis different from P[v(x,t)] is a third .. 
Because the third part has no effect on (10), it eannot, 
cause any error in the coefficients Ci(t), but the secondl 
part can. Because the second part is generated by 
functions not in v(x,t), it does not appear in (4). Ideally 



the residual should be this second part, but since the 
second part is functionally indistinguishable from the 
first part, the ideal residual cannot be produced. The 
extended space technique alleviates the errors caused 
by the absence of the second part for two reasons: 
(1) the extension functions hn+1 (x) and hn+2(x) do 
generate some of the second part; (2) since the residual 
is composed of these extension functions, the effective 
forcing function is not composed of only the g~(x) and 
gg(x) which should have been cancelled out of (4) by 
the second part. Particularly in this special case, linear 
P with polynominal modes where' the greatest inter­
action is between adjacent modes, the majority of the 
effect of the second part of P[u(x,t)] is absorbed by 
these two mechanisms. 

A generalization of the technique 

The extended space technique can be generalized 
to cover a nonlinear PDE with m boundary conditions 
where the solution employs nonpolynomial modes. 
Unfortunately, the effect of the technique on the 
residual and the error in the coefficients cannot be 
readily examined under these general conditions. 

This area DOES 

meet boundary cndt. 

Figure 1-Function spaces 

The Extended Space Technique 755 

In order to proceed with the description, a more 
general notation is required: G is the set of functions 
that are desired as modes and functions to flt the 
forcing function, f(x,t). G has an orthogonal basia of 
n + m functions denoted gi(X). Hn is a subset of G 
such that all functions in Hn satisfy the m boundary 
conditions. H is an extension of lIn outside of G, but 
all of the functions in H also satisfy the boundary 
conditions. H also has an orthogonal basis of n + m 
functions denoted hi(x), and the first n of these fun­
tions are in Hn. In addition m functions denoted g~(x) 
are defined to be orthogonal to all functions in Hand 
along with the hi(x) in Hn form a basis for G. The 
relationship of these sets of functions is shown pic­
torially in Figure 1. 

. The approximate solution retains the form given in 
(2), but the residual Re is given by (11). 

(11) 

The system of equations that are solved to determine 
Ci(t) are given by (12) and are derived from orthogo­
nality conditions as in (10). 

o = { { p [ ~ h,c, ] + f } gj dx 

j = 1, 2,· .. , m (12a) 

Ilh;11 !t C; = { { p [~ c,h, ] + f } hj dx 

j = 1,2···n (12b) 

Equations (12a) are a nonlinear algebraic system and 
(12b) are a nonlinear ODE system. 

A linear PDE problem 

The studv of heat transfer within a solid is an 
interesting problem in connection with this work 
because the surface conditions give rise to a two-point 
boundary value problem. Problems of this nature are 
encountered in heat exchangers where metallic fins 
are cooled by a forced flow of a fluid. In this example 
problem, the linear diffusion equation shown in (13) 
is used to represent one dimensional heat flow within 
the metal fin. 

a2u(x, t) 
k dx2 

au(x, t) 
=JL~ (13) 



756 Fall Joint Computer Conference, 1969 

In (13) u(x,t) is the temperature, k the conductivity 
and J.L the heat capacity of the metal. 

Newton's law of cooling shown in (14) is used for the 
boundary condition at the fin surface cooled with the 
fluid at temperature set). 

au(x, t) 
a(u(x, t) - s(t)) (14) ax 

This problem is a linear PDE problcm \vitlt a linear 
differential boundary condition. 

The problem is chosen as an example bccausc it 
has an analytical solution. Thc solution is evaluated 
and used for comparisons of the accuracy of two, thrcc 
and five mode assumed mode solutions employing the 
Galerkin technique and ,,,ith two and threc mode 
solutions employing the extended space technique. 

A metalfin 

The example problem deals with a fin of mctal 
uniform in thickness which is cooled by water on both 
sides as shown in Figure 2. The initial temperature 
(100°) is uniform throughout the cross section, and 
cooler water (0°) begins to circulate by the fin at time 
zero. The problem has symmetry so that only half 
the fin must be considered in the problem. 

The water-metal surface is assumed to obey Xcw-

FA~ 
X=Q 

WATER 

FLOW 

X=2 

X=I Y X 

Figure 2-Metallic fin 

ton's law of cooling which requires that the rate of 
transfer of energy through a boundary be proportional 
to tbe temperature difference across that boundary. 
The rate of transfer is proportional to tbe derivative 
of tcmperature within the metal at the surface. The 
diffcrcnce in tempcraturc across the boundary is the 
difference between thc temperature within the metal 
at the surface and the water tcmpcrature, a function 
of time set). In (14), the proportionality constant a is 
assumcd to be equal to one for simplicity, and set) 
is aHsumcd to bc the step function given in (15) which 
is choscn so that the problem will have a simple analytic 
solution. 

1

100 

set) = 0 

t = 0 
(15) 

t > 0 

\Vhile the surface provides one boundary condition, 
symmctry provides another since the derivativc of 
temperature must be zero on the axis of symmetry. 
'The complete PDE problem is given in (Hi) where 
k = 1/10 and M = 1. 

1 a2u(x, t) 
10 ax2 

au(x, t) 

ax 
x-I 

( 
au(x, t) _ 

ax 

au(x, t) 

at 

o 

I 
u(x, t))\ 0 

Ix=o 
u(x.O) = 100 

(16) 

The analytical solution to this problem is found by 
classical separation of variables, is quite complicated, 
and is not harmonic in nature. The frequencies of the 
sine components vary according to the solutions of 
w = a cot(w). In a sample problem given by Lebedev, 
Skal'Skaya and Uflyand,8 ::1,Il answer is given which is 
presumably an exact ans\ver for this problem. Aetuu,lly 
their expression is a close approximation to the exact 
solution with an accuracy of better than .01 percent 
fora = 1. 

lVlodes and the ODE system 

'l'he modes for this problem are chosen by application 
of the method for homogeneous differential boundary 
conditions presented in Reference 3. A simple poly-



nomial family gi(X) = ix _. Xi is employed as the set 
G which satisfies g~(l) = O. The modes are integrated 
with the boundary condition at x = 0 applied to deter­
mine the integation constant, and the hi(X) shown in 
(17) are produced. 

hi(x) = (i + 1) (x + 1) - Xi+l i = 1,2 ... n (17) 

The modes hi(x) are obtained by orthogonaliza.tion 
of hi(x) and are shown in Table I. 

TABLE I-Orthogonal modes for linear PDE problem 

hi (x) = - X i 2 + 2X + 2 

h2(x) = - X i 3 + (691/432)X i 2 - (43/216)X 
- (43/216) 

ha(x) = - X i 4 + (7932/3905)X i 3 - (58089/ 
54670)X i 2 + (857/27335)X 

+ (857/27335) 

h4(x) = - X i 5 + (148725/59152)X i 4 
- (30469/14788)X i 3 
+ (200593/354912)X i 2 
- (1129/177456)X 
- (1129/177456) 

hll(x) = - X i 6 + (432358/143745)X i 5 
- (31431/9583)X i 4 
+ (2431444/1581195)X i 3 
- (1266961/4743585)X i 2 
+ (6746/4743585)X 
+ (6746/4743585) 

The ODE systems for two, three and five modes 
employing the Galerkin technique are obtained by the 
application of equation (6). The derivatives of Ci(t) 
are linear functions of the Ci(t), and the coefficient 
matrices of the equations are given in Table II, The 
ODE systems for two and three modes employing the 
extendeg, space technique are obtained by substitution 
of (12a) into (12b) to eliminate the highest two Ci(t) 
Again the derivative functions are linear, and the coef­
ficient matrices are given in Table III. 

The Extended Spa,ce Technique 757 

TABLE III-Coefficient matrices for extended 
space technique 

-.0740726 .000426177 

.142572 -1.174004 

-.0740739 .000427785 

.14311 00 -1.174666 .0741377 

-.301688 .371627 -4.15921 

Numerical results 

The simple boundary condition employed in this 
problem to facilitate obtaining an analytical solution 
presents some severe difficulties in obtaining a good 
fit to the initial condition. The modes must satisfy this 
unrealistic boundary condition which imposes a steep 
slope at x = 0 where the initial condition is flat. 
Figure 3 shows the solution fit to the initial condition 
for two, three and five modes for both techniques. 
Even at five modes the fit is not entirely satisfactory; 
however, for small numbers of modes, the analytical 
solution suffers from the same defect. This is the cost 
that must be paid to obtain an analytical solution for 
comparison. 

Figure 4 shows the solution at times of five, 20 and 
100 seconds for both techniques. The solutions, exact, 
two, three and five mode are indistinguishable on a 
graph of this scale. The hybrid solution also produces 
identical results and the analog block diagram for 
this problem with three modes is shown in Figure 5. 

TABLE II-Coefficient matrices for Galerkin method 

.074074 

.14341 
.30674 
.71994 

-1.8134 

4.286710-4 \ 
-1.1769 1 

.38796 
-5.6258 

2.6283 

1.829210-5 
7.739710-3 

-19.084 
.59565 

-24.223 

1.461010-6 
-3.819210 -3 

.020270 
-9.4932 

.79036 

1.561610 -7 
7.571710- 5 
.034980 
.033540 

-17.439 



758 Fall Joint Computer Conference, 1969 

~---------------------------------------------------------------------------------------------

-._._. 2 MODE 

----.3 MODE 

--5 MODE 

Figure 3-Linear PDE problem T = 0 

100 -------------------------------------------.!.~-Q.--------------. 

t=5 

t=20 

0
0 

.... ______________ ..... X ... =a.,;,;,.5 ___ t_-..;1.;.00 _____ ~x= 1.0 

Figure 4-Linear PDE problem solution 

Figure 5-Linear PDE problem analog diagram 

In order to compare the accuracies of the different 
solutions, errors for cross sections at five seconds are 
chosen because the five second, cross section has the 
greatest error and because at five seconds the analytic 
solution is sufficiently convergent to give an accurate 
basis for comparison. Figure 6 shows the error curves 
on a greatly magnified scale (full scale is .15 to .2 per-

-'-'-2 MODE 

"-'--3 MODE GALERKIN 

C°t-___ ....iIi~---...... X-... -5---.... ,..-_~11.0 

o 
-.05 

'. .",; '._ ...... """ 

/ 
/ 

./ 

.,' 

Figure 6--Galerkin method error T = 5.0 

cent of the solution) for the three assumed mode solu­
tions using the Galerkin method. The improvement 
between the two and three mode solution is substantial 
but the five mode solution is disappointingly similar 
to the three mode solution. The error does not decrea,se 
nor does it change shape. Since in a five mode solution 
only the seventh and higher degree polynomials :~re 
excluded from the solution, the logical conclusion would 
be that the error would have three maxima and three 
minima; but since it does not, possibly an error has 
crept into a lower mode which is not diminishing to 
zero very rapidly. The analysis performed previously 
indicates that this is in fact the case and that eVen 
though this error does slowly diminish as the number 
of modes increases, the Galerkin method on linear 
problems leaves all the error in the modes that are 
part of the solution. 

The extended space technique shows a drama,tic 
improvement in the accuracy of the results' for three 
modes. Figure 7 shows' the error curves for the two 
and three mode solution; the three mode soluti.on 
matches the analytic solution so well that five mode 
solution is not needed. The error shown for the three 
mod~ solution is so small that it is comparahle to the 
errors in numerical integration of the ODE system 
and is only meaningful in the sense that it is a great 
improvement over the Galerkin method. 

Figure 7-Extended space error T = 5.0 



TABLE IV-Comparison of eigenvalues 

Gderkln Extended Space 

Analytic 2-Hode 3-Hode S-Hode 2-Hode 3-Hode 

- .07402 - .07402 - .07403 .07403 - .07402 - .07402 

-1.1734 _1.1770 _1.1768 _1.1742 _1.1741 -1.1738 

_4.1439 _19.084 _9.4916 -4.1601 

-9.0810 -17.028 

-16.000 -19.499 

TABLE V-Comparison of digital computation times 

Algebra 

2-Mode 11 

3-Mode 34 

S-Hode 209 

Galerkin Extended Space 

Integra Hon" Algebra"" 

98 

234 

10 

Times in seconds for IBM-300/6S 

" Does not inc lude the time for the 
compilation of ODE derivative sub­
program requiring about )0 seconds. 

** Values corrected to remove estimated 
program compilation time which was 
not inc luded in other timings., 

Integration" 

The eigenvalues for the various solutions shown in 
Table IV indicate why the extended space technique 
produces such accurate results. For all solutions the 
first two eigenvalues match the eigenvalues obtained 
from the exact solution very well. The third eigenvalue 
for the Galerkin method is never very near the exact 
value even for five modes; however, the extended space 
technique produces an eigenvalue very near the exact 
solution with only three modes. In fact the extended 
space technique produces a much better eigenvalue 
for three modes than the Galerkin method does for 
five modes. Table V presents a comparison of the 
digital computation times to do the algebra necessary 
to prepare the ODE systems and times to do the 
numerical integration of the systems for the Galerkin 
method and the extended space technique. Compu­
tation time on the hybrid computer to solve the ODE 
system is the same for all cases and may be as small 
as 10 milliseconds on the Carnegie-Mellon University 
EAI:.680/PDP-9 hybrid computer depending on the 
I/O device used to monitor the solution. 

The Extended Space Technique 7 5~ 
i 

CONCLUSIONS 

The example problem has demonstrated how much of 
an improvement the extended space technique can 
be over the classical Galerkin method. Both the ac­
curacy of the solution and the eigenvalues of the ODE 
system are better for the three mode extended space 
technique solution. However, this improvement i.s not 
obtained without some increased cost: the quantity of 
algebra that must be performed to deter min ~ the 
three mode extended space solution is about equal to 
the quantity to determine the five mode Galerkin 
solution. Even when this increased cost is considered, 
the extended space technique is superior because the 
three mode solution is better than the Galerkin five 
mode solution. 

This technique is also applicable to nonlinear prob­
lems, but no experimental results are available at 
present. The nonlinear application has an additional 
complication: the simultaneous solution of nonlinear 
algebraic equations and a nonlinear ODE system is 
required. Work on a nonlinear problem is currently 
being done and results are expected to indicate com­
parable superiority over the Galerkin method for 
nonlinear problems. 

REFERENCES 

1 W Z COLLINGS 
The method of undetermined functions as applied to 
nonlinear diffusion problems 
MME thesis Univ of Delaware 1962 

2 M A KRASNOSEL'SKI 
Topological methods in the theory oj nonlinear integral 
equations 
Pergamon-Macmillan 1964 

3 D J NEWMAN J C STRAUSS 
Hybrid assumed mode solution of nonlinear partial 
differential equations 
Proc FJCC Vol 33 1968575 

4 B A FINLAYSON L E SCRIVEN 
The method of weighted residuals-A review 
Applied Mechanics Reviews Vol 19 No 9 Sept 1966735 

5 B G GALERKIN 
Rods and plates 
Vestn Inzhen i Tekh Petro grad 19 897-908 1915 
Translation 63-18924 Clearinghouse Fed Sci-Tech Info 

6 W RITZ 
tJber eine neue Methode zur Losung gevisser Variations 
problem der mathemalischen pl).ysik J f reine u angewandte 
Mathematik, 1909 

7 W M STACEY JR 
Modal approximations 
MIT Press Cambridge 1967 

8 N N LEBEDEV IP SKAL'SKAY A Y S UFLY AND 
Problems in mathematical physics 
Translated by ARM Robson Pergamon Press Oxford 1966 

9 D J NEWMAN 



760 Fall Joint Computer Cpnference, 1969 

--------------------------------------------------------------------------------,------
Hybrid assumed modtl solution of nonlinear partial 
differential equations 
Carnegie-Mellon Univ Pittsburgh Pa 1969 PhD thesis 
Available from Univ MicrofilmS Ann Arbor Michigan 

10 R VICHNEVETSKY 
Use of functional approximation methods in the computer 
solution oj. initial value partial differential equation probkrns 
IEEE Transactions on Computers Vol C-18 June 1969 



Extension and analysis of use of 

derivatives for compensation of hybrid 

solution of linear differential equations 

by NELSON H. 'KEMP 

Wolf Research and Development Corporation 
West' Concord, Massachusetts 

INTRODUCTION 

When compared to continuous (analog) computation, 
hybrid computation is subject to two sources of error 
not associated with hardware, but caused by its 
logical nature. They are often referred to a'5 the time 
(or transport) delay, and the reconstruction errors. 

This time delay error is caused by the time taken for 
the digital computer to process the data sampled from 
the analog computer, before sending the updated 
results back to the analog. The reconstruction error 
results from the hold action of the digital-to-analog 
link: the updated value from the digital is sent to 
the analog and held fixed until the next updating, in­
stead of being updated continuously. 

The effect of these errors on the hybrid solution (as 
compared with a pure analog solution) is twofold. 
First, inaccuracies are introduced. Second, the hybrid 
solution may become instable and grow without bound, 
even though the correct solution is bounded or even 
decreases to zero. 

To prevent instability and minimize error, hybrid 
computations utilize compensation techn:ques. The 
variables processed in the digital computer for use in 
the analog computer are calculated at some future time, 
by an extrapolation scheme, before being sent to the 
analog. Depending on the scheme used, this technique 
can have a beneficial effect on the accuracy and stability 
of the solution, for a given sampling interval. 

There are a number of extrapolation techniques 
commonly used to 'achieve compensation. One such 

technique is that of multistep extrapolation, or digital 
filters, in which values of the variables at earlier time 
are used for extrapolation. A good discussion of this 
method is given by Mitchell. 1 He demonstrates its 
shortcomings for heavily damped systems, caused by 
the instability of the extraneous solutions introduced 
by use of values at earlier times. For each step back 
in time, one extraneous solution is introduced, and 
these solutions are instable for large enough sampling 
intervals. The popular three-step, or parabolic, extrap­
olation introduces two such solutions, and their 
amplitude increases with increasing damping, so that 
heavily damped systems require small sampling inter­
vals for stability. 

Some years ago, Miura and I wata2 suggested another 
technique of extrapolation. For solving differential 
equations, they used the derivative of each variable 
to extrapolate, rather in the manner of a Taylor series. 
The implementation suggested was to add to the out­
put of an integrator a multiple of the input, the sum 
being the extrapolated value of the variable. Further 
use of thi~ scheme, for undamped systems, was made 
by Gilberta and Karplus4 •6 with several implementations 
suggested. Gilbert3 analyzed the undamped system, 
using z-transforms. This extrapolation technique has 
the advantage of requiring either no backward steps, 
or only one, depending on the implementation, thus 
eliminating or reducing the number of extraneous 
solutions introduced. The result is a solution which is 
not only more accurate than the uncompensated 

76] 



762 Fall Joint Computer Conference, 1969 

------------------------------------------------------------------------------------------
hybrid solution, but can be more stable. This is in 
contrast to the use of multi-step methods, which im .. 
prove the accuracy but reduce the stability compared 
to the uncompensated hybrid solution. 

There is apparently only one published reference to 
the use of the method of Miura and Iwata for a damped 
second order system. Bekey and Karplus,6 on pages 
382-383 of Chapter 12, give some results of unpublished * 
work of Howe and Fogarty.6 In this work, theyextrap­
olate x and x by using 1.5 T times x and x respectively, 
where T is the sampling interval. They use an im­
plementation where the extrapolation is performed in 
the analog computerl the extrapolated values are 
sampled by the digital computer, combined to give 
X, and then converted D to A and sent to the analog 
computer for integration. We can call this calcula­
tion of extrapolated values in the analog computer 
analog compensation. The analysis by z-transforms is 
based on a timing sequence in which the A to D sam­
pling occurs before the D to A conversion of x. The 
result of this compensation scheme is two desirable 
solutions which have exponents whose error are of or­
der (wT)2, in contrast to error of order wT for the un­
compensated solution, where w is the natural frequency. 
However, there are two extraneous solutions of the 
order (twT)t, where t is the damping coefficient, in 
contrast to the single extraneous solution of order twT 
for no compensation. Therefore, we see that in this 
case derivative compensation improves the accuracy, 
but it reduces the stability, compared to no compensa­
tion. 

This situation can be improved if we change to 
what might be called digital compensation. Here, we 
sample x and X, and do the extrapolations in the digital 
computer. This is the scheme used in the present re­
port: For' a damped system, it uses no backward time 
steps, instead of the one backward step inherent in 
the Howe-Fogarty implementation. Therefore, it has 
only one extraneous solution, of order twT, and is some­
what more stable than the uncompensated case because 
of a better numerical factor. The accuracy of the two 
desirable solutions is of the same order as those of 
Howe and Fogarty. 

The same scheme as that given for digital compensa­
tion in this report can be obtained by the analog I"om­
pensation method of Howe and Fogarty if they change 
the order of A to D sampling and D to A conversion 
and perform D to A before A to D. This may not be a 

• Prof. ~oga~y kindly sent me a copy of this report, and the 
remarks m thIS paragraph are based on my analysis of Section 5 
of the report. 

desirable implementation because the transients set 
up by D to. A may interfere with the values sampled 
A to D immediately thereafter. 

The purpose of this report' is to extend the use of 
derivatives for extrapolation, to apply the method to a 
damped second order system typical of control prob­
lems I to analyze the system by use of z-transforms, 
and to compare the analys's with hybrid c:alcula,tions 
using both derivative compensation and multi-step 
compensation. 

The extension of the derivative method, which is 
also referred to as Taylor series compens3,tion, is in 
several directions. First, we not only correct x by using 
X, but also by using X, since that derivatiive is also 
available. SecondJ we do not assume an ex1jrapolation 
ahead by 1.5T, but carry along arbitrary constants 
which are then' chosen to give greatest accuracy. The 
first order corrections are indeed found by this method 
to be 1.5T, providing a simple analytical deriv:ation 
of this fact. The second order coefficient of x Illi~y be 
chosen in several ways toenhance accuracy or stability. 

The analy.sis is applied to a linear damped oscillator, 
forced by a control function which is a linear combina­
tion of x and x. The oscillator is implemented on the 
analog computer, the control function on the digital 
computer. 

The z-transform analysis yields formulas which can be 
used to predict the stability of both the compensatedl and 
uncompensated cases for any values of the parameters 
and sampling interval. Similar results are given for the 
three-step compensation scheme, and show it to be 
less stable. 

A numerical test was made by implementing both 
schemes on a Beckman 2,200/SDS 930Q hybrid cOIJl­
puter. The hybrid calculations were compared with 
continuous calculations of the same system made on 
the analog computer. The superior accuracy and sta­
bility of the Taylor series method over the three-step 
method is clearly appar~nt in the strip chart results, 
as well as in the digital printouts. 

Analysis 

Continuous solution 

The forced oscillator analyzed is defined by 

(2.1) 

6 = Kxc - K(TX + x) (2.2) 

where K and T are constant control parameters. The 
command input Xc is taken to be a constant here, for 



Extension and Analysis of Use of.Derivatives 763 

ease .of analysis. Further, .only the, 'simple initial 
c.onditi.ons x(O) = 0, x(O) = 0 are c.onsidered, alth.ough 
.other values bring .only algebraic c.omplicati.on. 

The exact c.ontinu.ous s.oluti.on .of this pr.oblem is 
simply .obtained by transP.osing the variables .on the 
right side and defining t.otal frequency and damping by 

The s.oluti.on with zer.o initial c.onditi.ons is then 

Kxc [ 1 ( irT) 
x = --- 1 - - 1 - - e"XTlt 

1 + K 2 tf. 

where the ATl.2 are the r.o.ots .of the characteristic 
equati.on 

Hybrid difference Equations 

The hybrid implementati.on c.onsiders the ~ term as a 
c.ontr.oI functi.on which is calculated digitally while the 
left side .of (2.1) is calculated continu.ously in the anal.og 
c.omputer. Thus, between the sampling times nT and 
(n + l)T, ~ is held fixed at the value opn supplied t.o the 
anal.og at t = nT. 

Theref.ore during this interval the anal.og s.olves 

(2.6a) 

with initial conditi.ons 

x = Xn (2.6b) 

The s.oluti.on .of (2.6) is 

x= 

X =: Al [ " ] e"Xl Ct-nT) 

+ A2 [ , i ] e"X2-C!nT) (2.7a, b) 

where Al.2 are the r.o.ots .of the free-vibrati.on character­
istic equation 

A2 -+- 2WrA + w2 = 0, 

Al.2 = w( ...... r ± irl) , r l = (1 - r2)1/2 (2.8) 

At t == (n+ I)T these are expressible in rea..l form as 

(2.9a) 

Xn+l = e-wl'T [Xn(C.os wrIT - r/rl sin wrIT) 

- w(x,.. - opn) sin wrlT] (2.9b) 

These tW.o equations are difference relati.ons between 
Xn., Xn and Xn+l, Xn+l' with given opn' Equati.ons (2.7) 
show that the anal.og c.omputer pr.oduces segments .of 
f.orced damped vibrati.ons between sampling times, each 
joined t.o the adjacent segments with cDntinu.ous x and x, 
but disc.ontinuDus x, because 0 Pn changes at each 
sampling time. The hybrid system sDlves the difference 
equati.ons (2.9), as will we, but first opn must be specified 
in terms .of x and x tD mDdel the digital part .of the 
calculatiDn. 

Taylor serIes compensation 

The digital calculati.on .of oPn, the value sent tD the 
anal.og at time nT,can .only depend .on quantities' 
sampled by the digital at previ.ous sampling times. We 
will pr.oject x and x and take opn t.o be given by the 
pr.ojected values acc.ording tD (2.2): 

(2.10) 

The pr.ojecti.ons are acc.omplished frDm Xn-l, Xn-l by a 
Taylor series f.orm 

(2.11a) 

(2.11b) 

We have used as many terms as the available derivatives 
allDw. The quantity Xn-l can be sampled and made 
available in the digital. The sec.ond derivative is 
calculatedfr.om the differential equatiDn (2.6a) 



764 Fall Joint Computer Conference, 1969 

--------------------------------------------------------------------------------------
Equation (2.1.0)-(2.12) are the essence of the Taylor 

series compensation scheme proposed here. In contrast, 
a three-step scheme would project chn from previous D's: 

(2.13a) 

where 

(2.13b) 

and similarly for Dn-2, Dn-s. This scheme goes back to 
(n - 3)T, two steps further than (2.11). 

In both cases the constants t, k, h, or ao, ai, a2 are 
available to help improve the solution. For the three­
step method, it is conventional to project to the time 
(n + 1/2)T, for which the values of the constants are 

al = -21/4, a2 = 15/8, ao = 1 - al - a2 = 35/8 
(2.14) 

If we project (2.11) the same distance, we find 

t = h = 3/2, k = 9/8 (2.15) 

Instead we will carry the constants along, and choose 
their values on the basis of the resulting formulas. 

The final form of Dpn comes by inserting (2.11) and 
(2.12) into (2.10) to obtain 

15 Pn = Kxc - K {Xn-l (1 - hWTwT - kw2T2) 
- 15 P ,n-l (hwTwT + kw2T2) 

+ w-1 Xn-l[WT + (t - 2thwT )wT 
- 2tkw2T2]} (2.16) 

We now have the three difference equations (2.9a) 
(2.9b) and (2.16) for the three unknowns xn, xn and Dpn. 
Their solution win provide the result of our model of the 
hybrid calculation. 

Solution· by zmtransform 

The z-transform provides a simple method of solving 
the difference equations. The definition of the z-trans­
form of the sequence Xn is 

(2.17) 

and for our purposes its important property is 

00 

L.: Xn+1 z-n = z(x* - xo) (2.18) 
n=O 

The inversion of a z'-transform follows easily by 
observing from the definition (2.17) that 

00 

Zk-l X* = 2: X, zk-n-l 
n-O 

If this is looked upon as a Laurent expansion in the 
complex variable z the residue is the coefficient of the 
term for which n = k, which is Xk. Thus the inversion 
of X* to find Xn is accomplished by finding, for each n, 

Residue (zn-l x*) = Xn (2.19) 

The stability of the solution is also indicated by 
(2.19). Stability requires that Xn not grow as n increasles. 
The only factor in the residue which depends on n is zn, 
which grows or decreases with n depending on whether 
the absolute value of z is greater or less than unity. This 
leads to the well-known stability criterion that every 
root of the denominator of x* must have absolute value 
equal to or less than unity. 

The transformation of (2.9) and (2.16) is accomplished 
by mUltiplying by z-n and z-n+I respectively, summing 
and using (2.17) and (2.18), remembering the inHial 
conditions are zero. The result is 

(z - l)x* - x*(e-WST / wtl) sin wtlT 

+ (x*- Dp*) rl - e-WST (cos wtlT 

+ tltl sin wtlT)] = 0 (2.20a) 

x* [z - e-wsT (cos wtlT - tltl sin wtIT)] 

+ (x* - Dp*) wltl e-wsT sin wtlT = 0 (2.20b) 

(z + K)x* + x*Kw-1 [WT + (t - 2thwT )wT 

- 2tkw2T2] - (x* - c5p*) [z + K (hwTwT 

+ kw2T2)] = z2Kxc/(z - 1) (2.20c) 

These equations have been arranged so the variables 
are the z-transforms x*, x*, and x* - op*, and their 
solution gives the z-transforms of the problem v:l:l.riables, 
which must then be inverted to yield formulas for the 
actual solution. 

If the three equations are solved by determinants 
the denominator is given by the determinant of the 
coefficients, 



Extension and Analysis, of Use of Derivatives 765 

~ = - z [(z - 1)2 - 2z(e-wtT cos wtIT - 1) 

+(e-2wtT _ 1)] + K{(z + l)(e-wtTcoswtIT - 1) 

- (e-2wtT - 1) + (z - 1)1 t 1 e-wtT sinwt1T 

[t - WT - (t - thwT)wT + tkw2T2] 

- (z - 1)[(z - 1) - (e-wtT cos wtlT - 1)] 

(2.21) 

This is a cubic in z, whose roots determine the solution 
through their residues, according to (2.19). 

The solution for x* is then 

Z2 Kxc 
x* = [(z + l)(e-wtT cos wtIT ~ 1) 

(z - 1) ~ 

- (e-2wtT - 1) + (z - 1) t It 1 e-wtT sin wtIT] (2.22) 

An additional root at z = 1 is visible here, whose residue 
also makes a contribution. 

Expansion of roots 

The nature of the roots of ~ can be seen by letting T 
approach zero in (2.21). Then all terms approach zero 
except the first, so one root must approach zero, the 
other two approach unity. The exact roots are com­
plicated to find since (2.21) is cubic, but we can be 
satisfied with expansions of the roots in powers of wT. 

Let us first look for a root of the form: 

(2.23) 

If the coefficients of (2.21) are also expanded in powers 
of wT, and (2.23) is inserted, setting the lowest two 
powers of wT to zero yields 

d2 + (2t + KT)d + (1 + K) = 0 (2.24) 

Kd[dwT(h - 3/2) + (t - 3/2)] 
e = % d2 - (2.25) 

2(d + WT tT/W) 

These determine the first two coefficients in (2.23). The 
solution of (2.24) is 

where WT, tT, ~T are defined in (2.3) and (2.4). Thus the 
first coefficient is identical with the exponent of the 
exact solution. 

To see the significance of this, remember that the 
important term in the residue is zn which can be 
written exp(n tn z). But z in the form (2.23) can be 
used to expand tn z to yield 

zn = exp{ndwT + nee - d2/2)w2T2 

+ n[f - d3/6 + dee - d2/2)] w3T3 + ... } (2.27) 

Thus the first term is part of the exact solution at 
t = nT, and subsequent terms are error terms. 

With two roots Zl, Z2 given as a complex conjugate 
pair by (2.23)-(2.26), the third root is simple to find by 
dividing ~ by (z - ZI) (z - Z2). The expanded result is, 
using (2.24) and (2.25), 

Zs :=, (1 - h) KWT wT 

+ K[t - k - 1/2 + tWT(l - 2h) 

+ K (1 - h) w2T2]w2T2 + ... (2.28) 

The solution is usually stable to the roots ZI, Z2 
because the real part of d is negative, so the dominant 
term of zn is a damping. However, it may be unstable to 
Za, an.d will be for large enough wT. 

Before choosing values for the compensation param­
eters, we will look' at the actual solution generated by 
these roots. 

Solution in the physical (time) domain 

The solution is the sum of the residues of (zn-I x*) 
at the poles z = 1, Zl, Z2, Zs, with x* given by (2.22). The 
residue at z = 1 is easily found by putting z = 1 into 
(~ - 1) x*, which yields 

Residue (z = 1) = Kxc/(1 + K) (2.29) 

which is just the constant part of the exact solution 
(2.4) . 

Since Zl and Z2 are complex conjugates, so are their 
residues, and their'sum is twice the real part of either. 
If the expansion (2.23) is put into (2.22) and (2.21), the 
result for Zl to order wT is found to be 

Residue (Zl) = ---

2(1 + K) 

[ _ ( 1 + ill,wT_ ) + ~( 1 _ ll,wT - ) ] 

WTtT/W tIT WTtT/W 

el - d1
2 /2 == (3 r + i(3 i 

(2.30) 



706 Fall Joint Computer Conference, 1969 

--------------------------~-----------------------------------------------------,-----
Finally, the residue at Zs is found similarly using (2.28): 

Residue (za) = 2-1(wT)n+s [KWT(1 - h)]n+l (2.31) 

Choice of compensation constants 

Comparison of (2.27) and (2,29) with the exact 
solution (2.4) shows that the first deviation of both the 
zn factor, and the rest of the expression, depend on 
e - d2/2. If this term is zero, the deviation will then be 
o (w2T2) in both places. And (2.31) shows that the 
contribution of the extraneous solution is of high order 
in U1T and should decrease rapidly as long as ! Z3! < 1. 

These observations lead to the conclusion that we 
should make e - d2/2 vanish, which means, according 
to (2.25), 

h = l = 3/2 (2.32) 

The coefficient k is not determined to this order. 
However, if e - d2/2 = 0 the next term in (2.27) is 
found from the expansion of (2.21) to be 

f - dS/o = 

-Kd{d[k - 13(1 + dWT)/12] - 2KwT(1 + dWT)/3} 

This cannot vanish for any choice of real k. One can 
make either its real part or its imaginary part vanish, 
although k will then depend on t~l.e parameters of the 
problem. One obvious choice which reduces the size 
of f - dS/6 is 

k = 13/12 (2.33) 

and this is the one used in the implementation. Further 
study would be needed to determine if another, more 
complicated, choice were better. 

Notice that the values given in (2.32) are exactly 
those shown in (2.15), which are obtained by projecting 
to (n + 1/2)T, while the k of (2.33) is only 1/24 smaller 
than the corresponding value of k in (2.15). One can 
therefore look upon the analysis as providing a deriva­
tion of the length of the projection interval, in contrast 
with the usual graphical or intuitive arguments. 

Results for three-step compensation 

An entirely analogous solution can be obtained using 
the three-step projection of (2.13). The necessary 
starting values ~-l and ~-2 are taken the same as ~o. 

The determinant of the coefficients is no,,,, fifth degree, 
with five roots. Two are of the form (2.23) with d the 
same, (2.24). The next coefficients are 

Kd(1 + dWT)(al + 23,2 + 3/~~) 
e - Y2 d2 = ------------(2.3·:1:) 

2(d + wTtTlt) 

and, if e - d2/2 = 0, 

f - dS/6 = 

-K(I + dWT)[KdwT/12 + d2(a2 - 22/12)] 
(2.35 ) 

The other three roots are power series in (wT)1/3, given 
in terms of 

r = (- 1 + i31/2)/2, r = (- 1 - i31/2)/~~ 

by 

Za,4,6 = (KwTa2WT)l/S(I, , r) 
+ (KwTa2wT)2/3(al + a2)(I, r, r)/3a2 

+ KWTa2wT /3a2 + ... 

(2.36) 

The residues at z = 1 and z = Zl are the same as for 
Taylor series compensation, (2.29) and (2.30). The first 
terms of the residues of the other three roots are 

Residue (ZS,4,6) = (Kx c/6)(wT)(n+7)/3 

(KwTa2)(n+l)/3 (1, r, r)n+l (2.87) 

To make the o (wT) errors vanish we ma,ke 
e - d2/2 = 0 by taking 

which agrees with (2.14). To determine ai, a2 separately 
one can go to (2.35) and choose a2 = 22/12, which. is 
1/24 less than the value in (2.14). So again we come very 
close to the usual projection distance by an analyti1cal 
derivation. 

The error caused by the extraneous roots should not 
be as small for this type of compensation, since it 
depends on (wT)n/3, and decreases rather slowly, a8 n 
increases. 

The solution is also less stable, because of the 
one-third power dependence of the roots on wT. In fact, 
the absolute values through the first two terms are 



Extension and Analysis of Use of Derivatives 767 

I ZS.4.6\ = (KWTa2WT)l/3 

11 + (1, -Y2, -Y2)(KwTa2WT)I/3 (al + a2)/3a21 

(2.38) 

and since al + a2 is negative, the conjugate pair Z4, Z6 is 
the least stable. This is the pair introduced by going 
back two steps in time, which shows the destabilizing 
influence of that procedure. 

St~bility considerations 

As mentioned already, it is the extraneous roots 
which control the stability of the hybrid calculation. 
For the Taylor series compensation, this root is given 
by (2.28), and is of the order KWTwT, the same as for 
the uncompensated case, which can be obtained from 
(2.28) by putting k = h = C = O. In fact, the com­
pensated root is somewhat smaller (thus more stable) 
since the coefficient of the first term is -1/2 instead 
of 1. Notice that one could improve the stability, 
at some cost in accuracy, by choosing k so that 
the coefficient of the second term in Zs vanishes, al­
though k would then depend on the parameters of the 
problem instead of being constant. 

In contrast, the extraneous roots for three-step 
compensation are given in (2.38) and are of order 
(a2 KWTwT)I/3, considerably larger than the uncom­
pensated or Taylor series cases. Therefore, the three­
step method yields a less stable solution. If a2 = 0, 
we then have a two-step scheme, and there are only 
two extraneous roots, of order (KwTwT) 1/2, more 
stable then the three-step scheme but still less stable 
than the uncompensated or Tay lor series cases. 

If the scheme of Howe and Fogarty, discussed in the 
Introduction, were useq., there would also be two ex­
traneous roots of order (KwTwT)I/2, so the stability 
would be about the same as for a two-step scheme. In 
fact, the two-step and Howe-Fogarty schemes are 
closely related, both going back one step in time. 

Computer implementation 

The Taylor series (or derivative) method of com­
pensation was tested, and compared with the three­
step method, by solving the problem posed by (2.1), 
(2.2) on the hybrid computer of the NASA Electronics 
Research Center. This is a Beckman 2200/SDS 9300 
machine with interface built by Beckman. . 

As described above, integration the of x and x, and 
the combination of x and x on the left side of (2.1) were 
performed in the analog computer. The value of 0 was 
found in the digital computer, by sampling x and x from 

the analog at intervals of T and extrapolating. Then 
op was calculated and sent back to the analog to be 
used to find x. The A to D sampling was accomplished 
first, followed immediately by the D to A updating. 
In order to compare the resulting hybrid solution with 
a continuous solution, the complete equation was also 
solved in the analog simultaneously as an oscillator 
with frequency WT and damping S7' as defined by (2.3). 
The details of the analog circuit, the digital programs, 
the control circuit, the scaling, etc., are given in Ref. 
7, pages 130-141 and Appendix E. 

The output of this calculation was a set of strip­
charts and digital printouts giving the hybrid and pure 
analog values of x, X, x, 0, and the difference between 
the hybrid and analog values, which may be taken as a 
measure of the error of the hybrid solution. 

Runs were made for the parameters 

W = 0.412, S = -0.2425, ST = 0.7 

using the conventional compensation constants 

al = -21/4, a2 = 15/8, ao = 1 -al -a2 = 3,15/8 

for the three-step method, and the set 

t = h = 3/2, k = 13/12 

which we have derived for the Taylor series method. 
The values of WT were varied between 0.5 and 15.0. For 
each such value, the control parameters K and T can 
be calculated from (2.3). Runs were made at several 
sample intervals T in order to study the stability of 
the hybrid calculation. For large enough T is was al­
ways possible to make it unstable. 

The relative merits of the Taylor series and three~ 
step compensation schemes, compared to pure analog 
and uncompensated hybrid results, are strikingly 
illustrated by excerpts from the strip charts drawn 
by the analog computer. The case chosen for illustra­
tion is WT = 15, for which (2.3 gives K ~ 1234, T = 
0.0942. 

Figure 1 shows the strip chart record for x(t) for 
four cases. At the top is the continuous solution pro­
duced by a pure analog calculation. Below follow the 
records for the uncompensated, Taylor series com­
pensated, and three-step compensated hybrid solutions 
all for a sample interval T = 25 milliseconds, which is 
17 samples per cycle based on total frequency. In order 
to bring out the errors more clearly, Figure 2 shows the 
difference signal XH - x ... on a larger scale, where the 
SUbscripts H and A stand for hybrid and analog, re-



768 Fall Joint Computer Conference, 1969 

----------------------------------------------------------------------------,-----

ANALOG 

1/ 

~·',o:L~:t'c ~, =": .. 
~T~,='-"'c .. UNCOMPENSATED 

HYBRID 

~ 3-STEP 

Ilmf-t--g COMPENSATED HYBRID 

Figure I-Strip chart records of x(t) for W = 0.412, 
S = -0.2425, ST = 0.7, WT = 15. The sample 

interval T = 25 ms. 

~1++-+~b'T-~:c UNCOMPENSATED 

HYBRID 

TAYLOR SERIES 

XH-XA ~ lllll~ COMPENSATED 
HYBRID 

3-STEP 

COMPENSATED 

HYBRID 

Figure 2-8trip chart records of Xg (HYBRID) -X,A 

(ANALOG) for W = -0.412 S = 0.2425, 
ST = 0.7, WT = 15. The sample interval 

T = 25 me. 

spectively. The great improvement in accuracy aehieved 
by going from no compensation to Taylor series 1iO 
compensation is apparent. On the other hand, the 
solution· with three-step compensation is unstable and 
saturates the amplifiers. 

The stability properties of these three C3,ses are 
predicted by the formulas we have developed. For 110 
compensation (t = h = k = 0), (2.28) gives I Zal= 
0.736, while for Taylor series compensat:on the saIne 
formula shows Izal = 0.411. On the other hand, for 
three-step compensation, (2.38) gives Izal == 0.578, 
IZ4' z61 = 1.375. Therefore, the part of the 130lutiou 
corresponding to the root Za is stable, but the part 
correspond:ng to the roots Z4! Z6 are unstable, leadi][):g 
to an un table solution, as shown in Figures 1 and 2. 
To stabilize the three-step case, the sample interv'al 
T would have to be reduced to 10 ms, or about ,4:2 
samples per cycle, for which (2.38) shows I z41 == 0.928. 
A case run at this value of T indeed showed three-st,ep 
compensation to yield a stab~e solution. 

To destabilize the uncompensated and Taylor series 
cases, a run was made at T = 50 m3 (8.4 samples per 
cycle), for which (2.28) gives IZal = 1.89 and 1.1.2, 
respectively. The results of the run are shown in Figure 
3, where the rapid increase of x until the amplifie,rs 
saturate is seen for both cases. 

Similar results hold for other values of "'T' In 3,ll casos, 
stability or instability exhibited by the numeri<lal 
calculations could be predicted in advance by use of 
(2.28) or (2.38). Furthermore, the digital printouts 
showed that w:th the same set of parameters and 
sampling interval, the Taylor series method gave more 
accurate results,_ that iSJ results closer to the analog 
(continuous) solution. The improvement in 3,CCUr3.l(}Y 

-

j 

J I 
I 

UNCOMPENSATED 
HYBRID 

TAYLOR SERIES 
COMPENSATED HYBRIID 

Figure 3-8trip chart records of x(t) for W .. 0.412 
S = - 0.2425, ST = 0.7, WT =- 15. The sampl'B 

interval T == 50 me. 



Extension and Analysis of Use of Derivatives 769 

could be quite marked for sample intervals near the 
stability limit of the three-step method. This is in 
accord with the deductions from the extraneous solu­
tions (2.31) and (2.37). 

CONCLUSIONS 

The Taylor ser:es (or derivative) method of compensa­
tion appears to have a number of advantages over the 
three-step method of compensation for the t~me delay 
and D to A hold errors of hybrid computing. For a 
given case, it can be made stable for larger sampling 
intervals than the three-step method, and is more ac­
curate at the same sampling interval. The Taylor 
series method can also be made stable for larger sam­
pling intervals than the uncompensated case for almost 
all values of the parameters, while the three-step 
method may well be unstable when the uncompensated 
calculation is stable. In other words l compensating by 
Taylor series can improve the stability, while com­
pensating by the three-step method destabilizes. 

These stability advantages of the Taylor series 
method depend to a large extent on the particular form 
of implementation used. The crucial point is not to use 
information which goes back in time, since each such 
backward time step introd:uces an extraneou.Q solution 
which is de-stabilizing. The implementation suggested 
here, where the extrapolations are accomplished in the 
digital computer, avoids extra backward time steps 
while still permitting the A to D sampling to be done 
before the D to A transfer. If the extrapolations are 
done in the analog computer, as in the Howe-Fogarty5,6 

implementation, the A to D before D to A sequence of 
operations introduces one backward time step and 
adversely effects the stability. If the sequence is per­
formed in the order D to A followed by A to D, the 
analog extrapolation of Howe and Fogarty would give 
exactly the results of the present analysis. 

The z-transform method of analysis for linear equa­
tions can be carried through with arbitrary coefficients 
in the extrapolation formulas. Then they can be chosen 
to yield the desired improvement in accuracy and/or 
stability. The coefficients of the first power of the sample 
interval T clearly should be chosen to extrapolate by 
1.5T, but the coefficient of T2 in the extrapolation for­
mula for x has some flexibility in the choice, depending 
on whether accuracy or stability is the paramount 
consideration. 

When the derivatives are available, there is no more 
difficulty implement the Taylor series method than 
the three-step method, and there are no starting prob­
lems with the former, as there are with the latter. 

On the basis of the analysis and numerical results 
of this study, the Taylor series method of compensa­
tion seems preferable in all ways to the three-step 
method, and can be recommended whenever the de­
rivatives are available. Whether this conclu~ion also 
will hold for non-linear equations, and for higher order 
systems, depends on the results of applying the Taylor 
series method to those cases. Some preliminary study 
of a linear fourth order system by the present method 
of analysis indicates that the Taylor series method may 
be applicable~ but with d fferent values of the compen­
sation coefficients. 

AC KNOWLEDGMENTS 

This work was performed under Contract No. ~.,. AS-
12-676 with NASA Electronics Research Center, Cam­
bridge, Massachusetts 02139. The collaboration of 
Joseph Krawiec and Albert Shortell in programming 
and running the analog computer is gratefully ac­
knowledged. 

REFERENCES 

1 EEL MITCHELL 
The effect of digital compensation for computation delay in a 
hybrid loop 
Proc FJCC Vol 31 1967 103-108 

2 T MIURA J IWATA 
Effects of digital execution time in a hybrid computer 
Proc FJCC Vol 24 1963251-265 

3 E G GILBERT 
Dynamic error anall/sis of digital and combined analog­
di(JUal computer systems 
Simulation Vol 6 1966241-257 

4 W J KARPLUS 
Error analysis of hybrid computer systems 
Simulation Vol 6 1966 120-136 Reprinted in Mc Leod .J Ed 
Simulation McGraw-Hill Book Co Inc N Y 1968 65-80 

5 G A BEKEY W J KARPLUS 
Hybrid computation 
John Wiley and Sons Inc N Y 1968 Chapt 5 

6 R M HOWE 1. EFOGARTY 
Error anplysis of computer mechanization of airframe 
dynamics 

7 Wolf Research and Development Corporation 
Final Rpt on Contract No 12-676 NASA Electronics 
Research Center Cambridge Mass Dec 1968 





HYP AC-A hybrid-computer circuit 
simulation program 

by PHILIP BALABAN 

Bell Telephone Laboratories 
Holmdel, New Jersey 

INTRODUCTION 

Computer simulation of electronie circuits and systems 
has become an increasingly important tool in circui,t 
and system design. Such simulations enable one to: 

1. Eliminate the necessity of building many bread­
board models in order to evaluate different 
design approaches. 

2. Analyze the performance of the circui t as a 
function of different parameters. 

3. Model semiconductor devices and integra ted 
circuits so that intrinsic parameters become 
accessible. 

4. Perform optimization and tolerance analysis 
of a circuit which requires many evaluations 
of the circuit with different sets of parameters. 

The frequency domain analysis of a linear circuit 
is usually simulated on the digital computer and the 
solutions obtained are accurate and fast. The analysis 
in the. t~me domain is more difficult with both analog 
and dIgItal computers often being used for this pur­
pose. The analog computer simulation technique 
features fast solution times and designer hi:teraction' 
~he digital co~puter simulation programs have th~ 
advantage. of a large dynamic range and very simple 
programmIng. 

Unfortunately, both types of simulations can handle 
?nly relatively small circuits, since the analog computer 
IS hardware limited (a six to eight transistor circuit 
c~~ be patched on a large analog computer) and the 
dIgltal . computer requires an excessive amount of 
computation time, especially when the eigenvalues of 
the system are far apart. 

771 

The HYP AC hybrid computer program was de­
veloped in order to overcome the above-mentioned 
shortcomings for a special class of problems. This 
class includes sy~tems that have a modular structure 
w~ere a few types of a particular subcircuit (amplifier, 
gate,.etc.) are used repetitively. Such systems are very 
common, especially since the advell't of integrated 
circuits. 

The program structure 

The program takes advantage of the speed of the 
analog computer and the possibility of storing in­
formation on the digital computer. The principle 
is the following: 

A whole subcircuit (such as an amplifier or gate) 
is patched on the analog computer and multiplexed 
by the digital computer to form a large system. Thus 
the digital computer regards this one subcircuit a~ 
N distinctsubcircuits. Each subcircuit has its own 
distinct inputs and parameters which the digital 
computer provides sequentially to the analog computer. 
In addition to the interconnection and memory 
capability, it is very convienent for the multiplexer 
to have the capacity to model different circuit ele­
ments~ Therefore, a general purpose1 widely used 
block-oriented digital program called "PACTOLUS"l 
was 'chosen as the vehicle for this hybrid program. 
Hence, the name HYbrid PACTOLUS-HYPAC. 

Description of PACTOLUS 

PACTOLUS. can be described as a block-oriented 
interpretive language. The program incorporates all 



772 Fall Joint Computer Conference, 1969 

-----------------------------------------------------------------,----
standard analog computer elements (integrato'rs, sum­
mers, multipliers, etc.).,In addition, the program allows 
a few special elements of unspecified function. The 
user may write his own subroutine for any function 
he desires. 

We shall consider the computing operation pro­
cedure implied by Figure 1 where 

Xn = the input vector at t = naT 

Yn = the output vector at. t = naT 
I 

Y n = the derivative vector at t = naT 

At time t = 0, all the input vectors [Xo] and the state 
vector [Yo] (the initial conditions of all integrators) nre 
given. From these given conditions, the derivative 
vector fir n] = F([Xn, Y nD can be computed. [Y n+l] is 
computed from fY n] using any integration method. In 
the original PACTOLUS, a second order Runge-Kutta 
method is used. 

Modification of PACTOLUS for HYP AC 

The origin,al PACTOLUS was. supplemented and 
modified in many ways to- convert it into a general 
purpose hybrid program. Some of the added features 
are briefly illustrated below. 

The hybrid element 

The hybrid element was conceived to be a special 
element of the PACTOLUS repertoire. The analog 
sub circuit of the hybrid element is patched on the 
analog computer as in Figure 2. 

The inputs and the initial conditions are supplied 
through D I A converters by the digital computer. 
The outputs of the circuit and the outputs of all the 
integrators are fed back to the digital computer through 
AID converters. 

In HYP AO, the hybrid block is sorted as an inte­
grator, which implies that at time t = 0, the outputs 
of the circuit and the initial conditions' of the inte'-

Figure I-Principle of operation of PACTOLUS 

DIGITAL COMPUTER 

r- - -- ---.., 
I 

I 
I ANALOG COMPUTER L _____________________ .J 

Figure 2-The hybrid element 

grators are known. The inputs to the circuit are then 
evaluated from the given values and applied through 
the D I A conveners to the inputs of the analog block. 
The stored initial conditions (10) for each integrator 
are applied to the appropriate integrators. After the 
integrators have settled to their respective initial 
conditions, the analog computer is switched into the 
operate mode for a time aT.* At the end of this period, 
the outputs of this circuit are sampled and transferred 
to the digital computer. The output.s of the intel~rators 
are' also sampled and stored in the digital computer 
to be used as initial conditions in the next time period. 
If N such circuits are used in the system, the HYP AC 
program regards them as N distinct subcircuits. The 
inputs and outputs are regarded as coming from dis­
tinct blocks and used accordingly. 

The subcircuits must have an identical topology, 
the parameters, however, can be different and can be 
changed before each run using digitally contrJlled 
attenuators. 

The output configuration 

The original PAOTOLUS allows only one output 
per element. Since the hybrid element is actually :1 

complex circuit, it will usually have more than onle 
output. Therefore, another special element "~'" was 
assigned to handle multiple outputs. For each addi­
tional output, one such fictitious output element "q/' 
is assigned. In Figure 3, the second and third outputB 
of the hybrid element No. 1 are read out from output 
elements 1 and 3. 

The output elements simply store the value of the 
output AID converters. The D I A and AID converters 

* In order to operate reasonably efficiently, and accurately, the 
analog computer must have e1ectronic mode control. 



INPI - OUTI 

INP2 H 2 

INP3 -
g OUT2 -

3 

. g OUT3 __ 

Figure 3-The output configuration of the hybrid 
element 

usually come in pairs, therefore, this program is coded 
so that to each input corresponds an output, Le., 
to input No. 1 corresponds output No.1; to input 
No.2, output No.2. This associates each output with 
a corresponding Dj A converter. 

The integration algorithm 

The integration algorithm was changed to the 
simple Euler method since this is closest to the way 
an analog integrator performs in the hybrid element. 
However, a closed loop integration method and a 
variable integration step method are now being studied. 

Detailed operation oj the hybrid program 

As noted before, the hybrid element is sorted as an 
integrator. All inputs [Y n] to the hybrid elements and 
inputs [in] to the integrators at time t = ~T (shown in 
vector form in Figure 4) are computed from the output 
vectors [Zn] and [In] of these elements and the input 
vector [Xn] to the circuit at time t = ~T. The compu­
tation of [In+1] is described in an earlier section. 

The computation of [Zn+l] from [Y n] and the cor­
responding initial conditions can be understood by 
examining the sequence of operations shown in the 
timing diagram in Figure 5. 

All the commands and timing signals of the analog 
computer are generated in the digital computer. First, 
the analog computer is switched into the "Ie" (initial 
condition) mode (1) in Figure 5. Then the parameters 
of the hybrid element are adjusted through the digitally 
controlled attenuators (DCAs) (2). The inputs and 
t~e corresponding initial condition voltages are then 
applied to the hybrid element (3). The hybrid element 
is left in this mode for a constant time necessary for 
the integrators to settle. The analog computer is then 

HYPAC 773 

[ X~] 

[Yn] [Zn] 
----l1lI F ([x n], [In], [Zn]) HYBRID 

ELEMENTS ~ 
r+ 

~ ~ G ([xn],[In],[ZnD 
[ inl [ In] 

~ DIGITAL 
INTEGRATORS 

Figure 4-Principle of operation of HYPAC 

I' IC MODE --_ .... t OPERATE-r-HOLD1 

1. f t 
I 2 3 

SEQUENCE: 

I. ANALOG COMPUTER SWITCHED INTO -IC- MODE. 

2. DIGITALLY CONTROLLED PARAMETERS SET. 

3. INPUTS AND INITIAL CONDITIONS APPLIED. 

4. ANALOG COMPUTER SWITCHED INTO -OPERATE- MODE. 

5. ANALOG COMPUTER SWITCHED INTO -HOLD- MOO! 
AND Zn IS READ INTO DIGITAL COMPUTER. 

Figure 5-Sequence of operation of the hybrid element 

switched into the "OPERATE" mode for the time AT 
which is specified by the user at the beginning of each 
run. At the end of this period, the analog computer 
is switched into the "HOLD" mode for a very short 
time (100usec) long enough for the A/D converters 
to be read out. The outputs of the A/D converters 
are then the outputs of this hybrid element at time 
t = (n + 1) A"T. The analog computer is ready to be 
used as the next hybrid element. 

Selection of the integration interval ~ T 

The overall circuit has to be scaled in the time do­
main to analog computer compatible frequencies, 
usually smaller than 1 kHz. The smallest possible 
AT which is provided in the program is one msec. 
In order for the solution to converge, the ei~euvalue3 
of the circuit should not exceed the value of 2/ AT = 



774 FaIl Joint Computer Conference, 1969 

----------------------------------------------------------------------------------,-------
2X 103• ** (This restriction applies only for hybrid and 
digital loops in the circuit and not to loops confined to 
the analog computer.) Therefore, selection of the time 
scale defines the upper bound· of the integration 
interval. On the other hand, ~ T should be large enough 
in order to minimize the effect of noise and truncation 
by the AID converter. It is, therefore, very important 
to scale the analog computer so, that the integrators 
work at the highest possible level of the voltage range. 

Selection of the initial condUion settling time 

The initial condition settling time is dependent on 
the value of the integrating capacitor and the maximum 
current of the output stage of the operational amplifier 
and is, therefore, dependent on the computer used. 
However, in any analog computer, the IC settling 
time is directly proportional to ~he integrator capaci­
tance. Therefore, the overall co~'puting time is sub­
stantially reduced by choosing a faster integrator mode. 
On the other hand, the impairments introduced into 
the integrators by switching transients and integrator 
drifts are inversely proportional to the value of the 
integrator capacity. 

The experimental example desc~ibed in a later section 
was run both with 1JJF c~pacitcirs with 20 msec IC 
settling time and .01JJF capaci~y with 1 msec IC 
settling time. No noticeable deterioration of accuracy 
was detected .in this example, but this may not be 
generally true and if solution ti;me is not critical, a 
larger integrator capacitor should 1I>e used. 

Accuracy considerations 

HYP AC is both a digital and analog system, 
therefore, all factors that produce errors in digital 
and analog differential analyzers will also produce 
error in this system. These factors are many and are 
extensively covered in literatute.2 •3 •4 They include 
finite sampling, round off and • quantization in the 
digital system and limited bandWidth, noise (limited 
dynamic range), accuracy and linearity of components, 
etc., in the analog system. 

The accuracy consideration which is unique to this 
program is connected to the way the initial conditions 
are set up in the hybrid element. 

1. The initial condition of any particular run has 
come through an Analog to Digital to Analog 
conversion string and was therefore truncated 
by the AID converter. 

** If the circuit is nonlinear, the eigenva.lues should be evaluated 
at the worst possible combination of' parameters and biases. 

2. Switching transients are generated whenever 
the integrators are switched from one operation 
mode to another. These transients are caused 
by charges stored in the parasitic cnpacities 
of the switches, and affect the outputs of the 
integrators. The magnitude and poln.rity of 
these small voltage increments caused by switeh­
ing transients can be regarded as random.6 

The error contributions of these two factors are 
minute for each integration period ~T (a few millli­
volts) but since a s~lution usually consists of a few 
hundred integration periods, the propagation of these 
errors can be very significant. It is the author's feeling 
~that the errors will not build up if the system itself 
and the hybrid element in particular is stable. Although 
our experiments }.lave confirmed this, the above state­
ment is rather intuitive and needs further investiga­
tion. 

Programming of HYPAC 

In order to demonstrate how a' problem is prepared 
for simulation, let us consider a simple example. 

The circuit in Figure 6a is a set-reset flip-flop com­
posed out of two NOR gates, a positive volltage VI 
resets the flip-flop and V2 is the set input. The circuit 
diagram of the NOR gate used is shown in Filgure 6b. 

The complete circuit is depicted in Figure 7. llet 
us assume that it was decided to use the outlined 
subcircuits as the hybrid element in this example . 

. Since this element is not buffered from its input and 
output circuits, some special approach is needed in 

RESET 
A-o 

SET 
A-o 

a 

Figure 6a-Set-reset flip-flop 



2 

R 
INP.I 

R 
I N P.2 \...-.J\F\I\,----' 

R 

b 

Figure 6b-NOR gate 

r-----' 
I HYBRID I 
I ELEMENT I 
I I 
I I 
I I 
I I 
I 

I 
I 
I 

I I 
L __ =- __ ..J 

r------l 
I HYBRID I 
I ELEMENT I 
I EO I 
I I 
I RL I 
I I 
I I 

I 
I 

I _ I 
L __ ~ __ -.J 

Figure 7-Set-reset flip-flop 

OUT 

order to extract this subcircuit from the whole circuit. 
The approach we used is called the partition method 
and is described in the Appendix. 

HYPAC . 775 

Using this method, the circuit can be partitioned 
into blocks as shown in Figure 8. 

This circuit is identical to the one in Figure 7 if 
the relations 

1Bl = iB1 ; V Bl = -VB1; 101 = i01 ; VOl = -VOl 

iB2 = i B2 ; V B2 = -VB2; 102 = i02 ; V02 = -V02 

are satisfied. 
The programming of HYP AC is reduced to writing 

the nodal or loop equations of the circuit. The HYP AC 
block diagram is shown in Figure 9. The blocks HI and 
H2 are hybrid elements, blocks </>1 and </>2 are associated 
with the second outputs of the hybrid element, all 
other blocks are conventional PACTOLUS elements. 

The hybrid element can be patched on the analog 
computer as shown in Figure 10. The transistor model 
used in this simulation is the analog separation modelll 

based on the charge control equations. The input IB 
and 10 and the initial conditions are applied through 
Dj A converters. The outputs of the sub circuit and the 
outputs of each integrator are read out through AID 
converters. The outputs of the integrators are stored 
to be used as the next initial conditions. 

While using this method of programming, one 
should be careful not to introduce hybrid algebraic 
loops, which, of course, can be highly unstable. Such 
loops can be easily spotted by inspection and can usual-

Figure 8-Set-reset flip-flop 



776 Fall Joint Computer Conference, 1969 

I/R 

Figure 9-HYP AC block diagram for set-reset flip-flop 

Figure lO-Analog simulation of a NOR gate 

ly be eliminated by placing them wholly in the hybrid 
element. 

Experimental results 

In order to demonstrate the effectiveness of <the 
program, a more extensive example was programmed.* 
The example consisted of a trigger flip-flop composed 
of four half-nanosecond NOR gates. (Figure 11). 

The flip-flop changes state every time a negative 
(zero) pulse is fed to the input. Since the NOR gates 
are identical, an entire gate was programmed as a 
hybrid element. The schematic of the half nanosecond 
NOR gate is depicted in Figure 12. The outlined part 
was simulated on the analog computer as shown in 
Figure 13. 

• The Hybrid Computer, used in this experiment, consisted of 
an EAI-8800 Analog Computer linked with a CDC-3300 Digital 
Computer 

c 
R 

R 

Figure ll-Trigger flip-flop 

r---------------, 
~~~----._--_.--._~~--.__.~II I 

I I
I I

02 I
I
I
Iv() <

.... -+----+()
I

T3 + I

E~~ _I 1
1

I, I
l ~--~~~-, I
I EI I L ______________ ~

Figure l2-NOR gate

Figure l3-Analog computer simulation of a. NOR ga,te

The transistors and diodes are simulated using th.e
separation technique. Only the relevant rear:tances

for the operation of this gate in the flip-flop circuit
were simulated. The HYPAC, block diagram of ~he
flip-flop is shown in Figure 14. The Rand C elements
at the inputs of the gate were' included in the' digital
simulation of HYPAC in order to reduce the number
of D / A and A/D converters necessary for simulation.

Since the risetime of the circuit is approximately
tr = 0.5 nsec, we assumed that the largest eigenvalues

of the circuit must be around Wmax = 22 tr = 2 X 10.10 To
O.

be on the safe side, we chose a time scale aT = 108 so
that 1 msec machine time = 0.01 nsec real time. The
voltage scale was a v = 10 and the current scale
ar = 1,000.

A typical solution is shown in Figure 15. A is the
waveform applied to the input of the circuit (HYP AC
element No.2 in Figure 14), B is the output waveform
of the NOR gate No. 1 in Figure 11, or HYP AC
element No. 14 in Figure 14. C is the waveform at the
output of NOR gate No.3 in Figure 11 or HYPAC
element No. 24 in Figure 14.

The integration interval for this experiment was
,,;IT = 4 msec corresponding t.o .04 nsec in real time.
The waveforms in Figure 15 represent 16 nsec of the
solution time. These waveforms correspond quite
closely to ones observed in breadboard experiments.

Figure I4-HYPAC diagram of a trigger flip-flop

.......... ~ :
! ~ , : : . :

o

Figure I5-Waveforms of simulated flip-flop

HY:PAC 777

The total computing time was 70 sec for the program
when the hybrid element used 20 msec IC settling
timep er run, corresponding to 1J,LF integrator capacitor
value. The computing time was reduced to 40 sec
when the IC settling time was 1 msec corresponding
to 0.01 J,LF integrator capacitor value.

A simplified problem using two half-nanosecond
NOR gates was run on the digital computer. The
program used was a general purpose circuit analysis
program using the state space approach. The resultant
waveforms had the same general shape as the one
obtained on HYPAC although exact evaluation of
the errors was not possible since the circuits were not
identical. The computing time for a 16 nsec solution
on the digital computer was one hour.

Improvements considered

One of the main difficultIes in using this program
is the selection of the appropriate integration interval
d T. In order to simplify this task two integration
algorithms will be incorporated into the HYP AC
program. The user will have the choice of selection
,of the appropriate algorithm for his problem.

Integration algorithm for stiff differential
equations

As noted earlier the Euler integration method is
stable ~nlY if dT<2/a. where a, is the largest eigen­
value 0 the system. For systems where the frequencies
of inte est are a few orders of magnitude smaller than
the lar est eigenvalue the use of this integration method
will re ult in extremely long computa.tional runs.
As an~xample of such a system we can consider a
1 kHz scillator using "100,MHz" transistors.

A ba kward integration method where the stability
is ind~ endent of the integration interval was recently
prOPOS~bY Sandberg and Shichman.7 This algorithm
uses a ewton-Raphson iteration technique to solve
the im licit algebraic equation resultant from the
backwa d integration method. Preliminary invest­
gations suggest that a simiilar integration method can
be ado;ed for HYPAC .

Let 11 denote the output vector of all the Hybrid
element, digital integrators and other time dependent
elemen~s at time t = n,,;l T

then (1)

where: I Y n is the input vector to the hybrid elements
land digital integrators.

I

'Xn is the initial condition vector of all the
integrators.

778 Fall Joint Computer Conference, 1969

The input vector in turn is computed from the algebraic
equation

where Un is the input vector to the circuit.
Combining equations (1) and (2) we get

(2)

(3)

This is an implicit equation which can be solved for Zn
using the Newton-Raphson method. For the kth
iteration we get

F\,k = Zn,k- f(g(Zn'k' Um), Xn, AT), k = 0 ~ K (4)

and

The equation is considered solved when IIFkl1 < E

where \ IFk\ I is the usual Euclidian norm and E a preset
error criterion.

The Jacobian will be computed. by perturbing each
output Zn, i by AZn , i and computing all the partial
derivatives aF 1Ij/ azn , i·

An additional benefit of this method is that hybrid.
algebraic loops converge to a stable· solution.

Integration algorithm with adaptive
integration interval

In order to increase the accuracy of the Euler in­
tergration method, the error produced at the output
at each intergrator for every intergration step will be
monitored. The integration interval is then adjusted
so that this error remains within prescribed bounds.

The Euler intergration method with a variable in­
tegration interval is given by

The error E is approximated by the second difference
of Y n+1 (second term of the Taylor expansion).

y n+1 - Y n (1 + AT n) + AT n Y n-l
ATn_1 ATn_l

En+l = --------------------------
2

Two error levels will be predetermined Emin and Emax.
Each integration interval will be adjusted through

an iterative routine so that all integration errors will
be smaller than Emax and at least one larger than Emin.

Such an adaptive integration method will keep thle
errors within stable bounds and will reduce the errors
caused by truncation of the A/D converters.

CONCLUSION

A hybrid program has been developed which makes
it possible to analyze a special class of large eircuits
considered untractable by conventional mnthods.
The topology of the circuit has to be modular and
composed of identical subscripts.

Effective use of the program requires a degree of
sophistication since the programmer has to be familiar
with all the intricacies of both analog and digital
simulation such as scaling and selection of the inte­
gration interval. Although the setup of the problem
is relatively time consuming,- the reduction of eompu­
tation time compared to a wholly digital cOInputa­
tion solution is dramatic. This reduction of time makes
it possible to perform optimization and tollerance
analysis.

The program has its most significant value in design
of integrated circuits where modular topology is the
standard design philosophy.

ACKNOWLEDGMENTS

The valuable discussions of this material with J.
Chernak are gratefully acknowledged. The aU1Ghor is
particularly indebted to J. M. Schilling who wrote the
HYP AC program used in this work.

APPENDIX

Partition of circuit for simulation purposes

Simulation of circuits on the analog computer
generally does not preserve the topology of the cir­
cuit. Since every node or branch is described by two
variables, voltage and current, these variabJles are
handled separately on the computer and do not appea,r
at the same place (Figure 16).

Therefore, if a circuit has to be partitioned into
two (or more) parts, both variables, the voltage and
current, have to be matched. The simplest way to do
it is to replace each cut branch by dependent V'oltage
and current sources as shown in Figure 17.

The circuits 17 a and 17b are equivalent when ib == ia and
Vb = -Va' ia ts evaluated from Circuit I and used as
the current source in Circuit II. Vb is evaluated from.
Circuit II and used as the I}egative voltage source in
Circuit I.

CIRCUIT
I

SIMULATED
CIRCUIT I

CIRCUIT
I

CIRCUIT
I

o.

Figure 16a-A circuit,

CIRCUIT
II

~+--.....--------t SIMULATED
I---+=---+------,~----t CIRCUIT II

b.

Figure 16b-Simulation of a circuit

I
I
I

~
a

Figur~ 17 a-Circuit

..... io

b

CIRCUIT
'II

CIRCUIT
'II

Figure 17b-Partitioned circuit

.As an example, let us consider the cir~uit in Figure
18. The circuit hOas to be partitioned along the dotted
line and simulated as two separate interconnected
circuits. The interconnection is replaced by a voltage
source Va and a current source ib as in Figure 18b. In
order for the circuits to be equivalent! Vb = - Vo and
ia = i b•

HYPAC 779

The simulation of Circuit I and Circuit II and the
interc nnection between them is shown in Figure 18c.

The choice of using voltage or current sources as
termi ations of partitioned circuits is sometimes dic­
tated y the topology of the circuits, e.g., a capacitor
instea of the inductor in Circuit I will force one to
choos a current source as a termination otherwise
one st te variable will be eliminated.

c

o. \

Figure I8a-Circuit to be simulated

[D
R I _10+ [}:2

VI L Vo lb. Vb C
- ;./+

b.

Figure I8b-Partitioned circuit

Figure 18c-Simulated circuit

REF:ERENCES

1 RiD BRENNAN H SANO
PACTOLUS-A difJital analog simulator pro(lram
P~oc F JOO Vol 26 1964

2 G:A KORN T M KORN
Electronic analog and hybrid computers
M:cGraw-Hill 1964 Chapt 3

3 P:HERIOI
Efror propagation Jor difference methods
John Wiley 1963

4 G A J3EKEY W J KARPLUS
Hybrid computation
John Wiley 1968

5 LAO' NEI.LL
Adaptive detection and representation

780 Fall Joint Computer Conference, 1969

Johns Hopkins Univ 1966 PhD Thesis
6 P BALABAN J LOGAN

Analog computer simulation oj semiconductDr .circuits
Proc SJCCVo132 1968

7 I W SANDBERG H SHICHMAN
N umeric.al integration oj systems of stiff nonlinear diff'erentia;(
equations
BSTJ Vo~ 47 No 4 April 1968

A time shared 1/0 processor for real­
time hybrid computation

byT.~.STROLLO, R.S. TOMLINSON
and E:R. FIALA

Bolt Beranek and Newman Inc.
Cambridge, Massachusetts

INTRODUCTION

There are economic advantages to time-sharing a fa­
cility with hybrid resources. It is quite unlikely tliat
any single hybrid problem will be able to utilize all of
the system resources 100 percent of the time. This is
the same kind of reasoning that leads one to consider
time-sharing for conventional digital problems. How­
ever, time synchronous real-time hybrid time-sharing
and non-synchronous non-real-time digital time­
sharing are quite different problems, with the former
posing sQme considerable difficulty to· sequential digital
machines.

A sequential machine can perform only one op~ration
at any single instant of time. Time-sharing is thus

, accomplished by dividing the available time amongst
several tasks, and by task switching from one task to
another at judiclous times. Most sequential machines
cannot perform this switch rapidly. Conventional

us a system which can service several, simultaneoy
real-time hybrid problems efficiently and accuratelt
as well as several non-real-time problems concurrent
with the hybrid problems.

H ybrirj,problems

When we speak of real-time demands, we generally
visualize applications where the computer system is
required to interact with an experiment which is being
conducted in the real world in real., time. While these
experiments are certainly examples of real-time de­
mands, we extend the definition to include any external
demands of the computer system where the reaction
time to a demand must be relatively s~ll or where
the timing of events must be precise.

Data genera,tion and acquisition

solutions to real-time problems utilize the central The simplest demand which fits the real-time cate-
processor of the system for both hybrid ,computation gory is the data acquisition or data generation problem.
and I/O; the central processor is usually a sequential Here the computer system is called upon to sample or
machine. These solutions require rapid and frequent generate repetitively an analog signal. Data rates as
switches of the attention of the CPU and, as a conse- high as 20 KHz are typical for speech sampling or
quence, are expensive of machine time' and are in.. generation. Much lower rates are typical in manual
accurate in their timing. control experiments. Sampling or generation is generally

To avoid these disadvantages we have separated the performed periodically at a fixed rate; thus, most of
hybrid I/O from the hybrid computation. The hybrid these problems may be considered synchronous. How-
I/O is handled by a special processor called the Hybrid ever, in some cases the initiation of the sampling is
I/O Processorl while the' hybrid computation is per- not synchroni'zed to the computer system. For example,
formed by the central processor. This separation gives the sampling of a recor ling on an analog magnetic tape

781

782 Fall Joint Computer Conference, 1969

--*-------
may have to start when a cdntrol signal is read off
the tape. The computer system generally has no control
over this start time, and this sampling problem is now
asynchronou8 to the computer system because its initi­
atIon cannot be predicted or prescheduled.

Hybrid simulations

Hybrid simulation problems are also in the real­
time category. Generally an analog computer will per­
form the linear portions of the simulation while the
digital computer will perform the non-linear portions.
The digital portion of the problem is often charac­
terized by the following synchronous behavior:

1. Sampling a set of input values from the analog
computer at a specific time.

2. Performing some digital computation utilizing
these input values.

3. Setting up some output values for the analog
computer at a specific time.

Interactive data generation and/or aequisition

Display generation problems are often in the real­
time category. This is especially true when displays
are used to simulate real world activity ·such as the
view of a runway while landing an aircraft or the
view of the instruments of a control panel. Display
generation problems are much Iikeany waveform gener­
ation problem, but the data rate is generally high, and
display problems often tend to present asynchronous
demands such as the generation of a new display in
response to the changes in a manual control by a
human operator.

These three categories of real-time problems classify
most common real-time demands.

Conventional hybird systhms

Separation of the computation and the I/O

United Aircraft Facility

Time-shared hybrid systems have existed since 1963
when Belluardo et al at United Aircraft Corporation
developed a hybrid computation fiwility2 based on the
DEC PDP-6 computer system. This facility handles
several hybrid problems simultaneously, but the prob­
lems must have very simila.r demands. They must be
synchronous problems with the same base repetition
frequency. The maximum base repetition rate is about
6Hz which is quite slow.

Hybrid I/O is performed by the PDP- 6 arithmetic
processor in response to I/O commands issued directly

by the user programs. These I/O commands are pro­
tected in that they cannot affect other users' hybrid
devices.

Each of the problems being serviced by the system is·
assigned a particular start time, offset from the base
period start time by a fixed number of real-time cloek
ticks, which are 1/60 seconds 9.part. It is assigned;a8
many con'3ecutive "clock tick" slots as needed to 1 UU.

An example of this type of scheduling is shown in
Figure 1.

MIT-ESL-hybrid facility

Connelly developed a hybrid facility3 ,4 at the MIT
Electronic Systems Laboratory on the DEC PDP--1
computer. This facility also time-shares several hybrid
problems 'which are synchronous in their timJng de~
mands. However, the repetition frequencies of these
problems are considerably more flexible. The scheduling
procedure utilizes a time-slot algorithm with the ti'me­
slot duration about 10 times larger than the computer's
switching time or about five milliseconds.

The repetition frequencies of the problems must ~Lll
be members of a "synchronizable set" which means
each element of. the set is a common multiple of nIl
smaller elements. Such a set of periodic proc:esses is
easily scheduled by dividing time up into the highest
common denominator of all the process periods. Like
the United Aircraft scheduler, a process gets its first
time slot at exactly synchronized times, but it mli.Y
get several temporally disjoint slots before it completes
its computation for each basic repetition .. An example
of time slot scheduling is shown in Figure 2.

The hybrid I/O is performed by the PDP-1 central
processor, again in response to protected, direct I/O
commands from the user. It is important to reali:~e
that with this type of scheduling, the I/O commands
must be issued at the start of each repetition period
since this is the only time-slot for which tne user C9~n

111111111111
PROBLEM

A

BASE PERIOD
START I

PROBLEM PROBLEM

B C

Figure 1-United Aircraft scheduling

I
REAL-TIME
CL.OCK TICKS .'

T = PERIOD

P = PROCESSING TIME
NEEDED EACH
PERIOD

TI = 50MSEC

PI 25MSEC

100MSEC

40MSEC

..
II 21 12 21 13

t
msec

o 25 50 75 100
SYNCHRONOUS TI~E-SLOT SCHEDULER

Figure 2-Example of MIT-ESL time-slot scheduling

be guaranteed a specific start time (at the beginning
of his repetition period). The relative placement of the
other time slots is dependent upon the other problems
being serviced by the system.

The conventional hybrid systems to date are repre­
sented by the examples given above. These systems
will not handle either asynchronous or high rate real­
time problems.

Why conventional syste.ms cannot handle
high rate problems

A general purpose digital computer when performing
real-time I/O consumes a great deal of its capacity
since it was not designed for such a task. A general
purpose processor is not well-suited to performing real­
time I/O because it cannot switch its attention between
tasks rapidly enough. Switching times on the order of
a half-millisecond for user processes, and 20 micro­
seconds for servicing interrupt requests are typical of
conventional time-shared general purpose processors.
This means the overhead of performing real-time I/O
with these processors is prohibitive, especially if the
real-time I/O rate is high.

A general purpose processor is also not well-suited
to accurate timing control of relatively high rate of
I/O. Since current central processors are generally
asynchronous machines, it is difficult to time operations
precisely with a central processor. Further timing skew
is introduced by the tendency of general purpose time­
sharing systems to get themselve~ into non-inter­
ruptible states for short periods. These occur when
the interrupt system is disabled, or higher priority

Time Shared I/O Processor 783

interrupts are processed or the user process's run
period is interrupted.

It would seem that processing all real-time I/O on
the highest priority interrupt channel triggered by
real-time clocks would be the most desirable method
for CPU -performed real-time I/O since this seems to
minimize skew and overhead. However, one finds it is
impossible to make every device the "highest priority"
in the interrupt system, and, in fact, there may be
other system constraints which force ~ome real-time
I/O to be on a lower priority interrupt channel.

Another limitation of interrupt driven real-time I/O
is that, in general, one interrupt request will initiate
several real-time I/O data transfers. 'rhis means the
time spent in the interrupt service routine for per­
forming the real-time I/O varies with the number of
data transfers to be performed.

These interrupt requests will tend to queue up unless
their interrupt service routines are scheduled to be
non-overlapping.

The precise scheduling of both interrupt-driven and
user-initiated real-time I/O is very difIicult unless all
of the real-time I/O demands are exactly periodic and
synchronized to the clock system of the CPU. The
source of this difficulty is the inherently slow reaction
time of a general purpose processor to random requests
for service. Only when all requests are guaranteed to
be exactly periodic can they be scheduled in advance,
and only then can the CPU be prepared to process
them.

We conclude that when real-time I/O is to be per­
formed with precise timing, when the degradation of
CPU performance from CPU driven real-time I/O
cannot be tolerated, or when both synchronous and
asynchronous demands must be handled, real-time
I/O should not be performed by the conventional
CPU driven methods.

Separability of real-time I/O and computation

It is clearly possible to design and build a special
purpose processor for performing the I/O, but we must
first show that it is meaningful and useful to do this.
Carefully consider the real-time problem classes pre­
viously mentioned. It is evident that most real-time
problems place very stringent demands on I/O timing,
but less stringent demands on the related CPU com­
putation. That is, the sampling of input data and the
conversion of output data to analog signals must be
done at precise times, whereas the computation may
be done any time after the input operation provided
that the output data is ready before it is converted to
analog signals. In addition, the I/O operations do not

784 Fall Joint Computer Conference, 1969

--------------------------~---
require the full talent of a general purpose CPU, but
do require better timing accuracy than the CPU is
capable of providing. Therefore, it seems feasible and
in fact desirable, to separate the I/O from the com­
putation by providing separate hardware.

The BBN hybrid processor

Our system performs all real-time I/O through a
device which we call a Hybrid Processor. It is a special
purpose processor with the following important charac­
teristics:

1. Real-time I/O is performed directly between
core memory and hybrid devices.

2. The Hybrid Processor is multiplexed among
several (up to four) "processes" thus allowing
several independent, concurrent hybrid inter­
actions.

3. The switching ti..me between processes is very
small (approximately 100 nanoseconds), be­
cause the information ab6ut the state of a
process is small and can be changed rapidly,
and because the scheduling: of which process to
run is perfOt'med by the hardware.

4. The time required to perform a single real-time
I/O transfer is kept very short (approximately
20 ,",sec) because of the special purpose nature
of the processor.

5. All real-time I/O interactions are handled in
a uniform manner, thus requiring no hardware
or software changes to incorporate a new hybrid
I/O device. '

Command and data structure

The Hybrid Processor implemented for an SDS-940
time-sharing system operates on tables of commands
and data. Each command, as shown in Figure 3, is
paired with a data word. The nature of the command
tells the Hybrid Processor whether the data word is
for input or output ..

The device type field specifies the types of devices
to which the Hybrid Processor ·talks. These include
Analog to Digital Converters, Digital to Analog Con­
verters, Digital level Inputs, and Digital level Outputs.
The device number field selects !a particular device
within a type, such as a channel of the Analog to
Digital Converter.

After the command is executed. and the data word
accessed, the command and data: table pointer!3 are
both indexed by one, and the remaining word counts
for the tables are both decremented by one. The com-

BITS cpl2 34 14 15 16 17 18 23

DEVICE DEVICE
R H C E t::. t TYPE NUMBER

\ I

CONTROL TIMING DEVICE SELECTION

R • RESTART IN 1q,}L SEC
INTERVALS

cpcp = AID cp - 127 DEVICES
H = HALT AND

INTERRUPT CPU
C = CYCLE COMMAND

TABLE
E = WAIT FOR EXTERNAL

SIGNAL

cp I = DIA
I cp & DID IN
II • DID OUT

Figure 3-Hybrid processor commands

maud and data table structure and pointers are shown
in Figure 4.

There is no fixed relationship between lengths or
positions of commands and data tables. In fact, most
often the command table is quite short and is recycled
many times repetitively in order to fill up a large' data
table. In order to make this cycling operation efficient,
some of the control bits are used to initiate the exchange
of the cycle pointers with the current pointers. The C
bit is used to specify cycling the command table
pointers while the condition current data word count
= 0 is used to specify cycling the data table pointers.

The At field is used to specify the time, in 10 ,",s,ce
intervals, between the current command and the next
command. This value may be thought of as being
placed into a clock which is a down-counter operating
at 100 KHz. When the counter reaches 0, a request for
service is initiated. It is important to remember thH,t

COMMAND TABLE DATA TABLE:

D C cp 78 (.3 BITS </> 78

CURRENT CURRENT CURRENT CURRENT
COMMAND COMMAND DATA DATA
WORD TABLE

)
WORD TABLE

) COUNT POINTER COUNT POINTER

CYCLE CYCLE CYCLE CYCLE
COMMAND COMMAND DATA DATA
WORD TABLE WORD TABLE
COUNT POINTER COUNT POINTER

Figure 4-0ommand and data table structure

the Hybrid Processor is in general running several
hybrid processes. When a process requests service, it
is quite likely that another request may be in progress
or that a higher priority request may be granted first.
In order to prevent conflicts from introducing cumu·
lative timing skew, the individual process clocks are
designed to count through 0 to negative values, and
the at field is actually added to the contents of the
process clock when the command word is fetched. As
long as the result of this addition results in a positive
quantity, the process will not be subject to cumulative
skew and will be accurately timed on the average. We
do a bit better than this, however, by taking advantage
of the fact that the clock tick frequency is very ac·
curately crystal-controlled and that the clock = 0
pulse is a very precisely timed event at exactly the
Llt intervals. This pulse is amplified and available to
users for patching. It can be used to initiate a sample
and hold gate, for example, or to cause the transfer
between buffers in a double buffered D/A converter.
This means extremely precise timing control with a
resolution of 10 J,&seconds, and crystal accuracy is
achieved.

The remainder of the control bits in a command
word are used to stop (H) or restart (R) a process. An
external signal control bit (E) enables a temporary
stop to wait for a signal external to the computer and
the Hybrid Processor to restart the process.

Connection of hybrid processor to SDS';940

The Hybrid Processor is attached to the SDS-940
via a Data Multiplexor Channel (DMC)& with a modi·
fied Data Sub-Channel II (DSC 11)1, as shown in
Figure 5. The status of a block transfer for a DMC
sub-channel is normally contained in one of two "in·
ternal interlace words" which are located in fixed
adjacent positions in core memory. These interlace
words contain the remaining word count in the left­
most bits and current location of the block transfer in
the rightmost bits. The economy of using core memory
words instead of flip-flop registers is quite important,
and this economy is retained by the Hybrid Processor.
However, the DSC II has been modified so that the
locations of these interlace words are no longer fixed
but are uniquely determined by the particular process
selected for service. That is, the first process (Process
A), uses words n, * n + 1 as interlace words; the second
process (Process B), uses words n+4, n+5, etc. Also
during the command fetch, the even interlace word is

* where n is a memory address which is 0 MOD 4

POTIPIN

Time Shared I/O Processor 785

ACCESS
PORT I CORE

MEMORY
161<

CORE
MEMORY

16K

CORE
MEMORY

16K

CORE
MEMORY

161<

ACCESS
PORT 2

• •• OTHER SYSTEM
DATA CHANNELS

1/0 CONTROL LINES

AID DIA DID DID
CONVERTERS CONVERTERS INPUTS OUTPUTS

Figure 5 -Connection of hybrid processor to SDS-940

used as the current command pointer word, while
during that data fetch or store, the odd interlace word
is used as the current data pointer word. Note, that as
before, the state of the block transfers is completely
contained in the memory interlace words.

Each hybrid process can switch command and data
tables by using the "cycle" interlace words. Every
process actually has four interlace words. Words nand
n + 1 are the current command and data table interlace
words respectively. Words n+2 and n+3 are the cycle
command and data table interlace words. A process
can cause the contents of its cycle interlace words to
be moved into the current interlace words. This ef­
fectively switches the command and/or data tables to
new core areas. This switch is accomplished without
CPU intervention, but the CPU must establish new·
cycle words soon after cycling occurs if the next cycle .
operation is expected to switch tJ yat 1.1)~·.Br C)O

area. In fact, a safety interlock will abort a process
and signal an error interrupt if a cycle attempt is made
before the previous cy.cle operation was properly re·
sponded to by the CPU. More details of the BBN
Hybrid Processor implementation on the SDS-940 are
available in another document. l

Suppose the maximum time to service a hybrid I/O
request were Q!. This time would be measured from the
start of processing of a request by the Hybrid Pro­
cessor to the completion of this request. Then a con-

786 Fall Joint Computer Conference, 1969

--
servative estimate of the bandwidth of the Hybrid
Processor would be l/a. '

A simple scheduling technique ~ould involve selling
fractions of this bandwidth to users. Each user would
buy l/ai of the bandwidth of t~e Hybrid Processor,
such that

L 1/ ai ::; 1/6-
all i

It would now be necessary for t)1e Hybrid Processor
(or whatever controls the Hybrid Processor) to insist
that user 'i never perform hybrid I/O faster than a i
seconds between hybrid interactions. This simple check
could be performed by either hardware or software.
This technique would guarantee that the Hybrid
Processor would never be over-committed.

On the SDS-940 implementa~ion of the Hybrid
Processor, the maximum a is approximately 20 JJ,sec. *
This means the Processor has a guaranteed bandwidth
of 50KHz.

Simultaneous requests for service are resolved by a
simple priority network which selects the highest
priority process currently requesting service to run
(Process A is highest priority, B, C, D are in order of
decreasing priority). This means the higher priority
processes see the least instantaneous skew, but none will
see any cumulative skew if the bandwidth scheduling
rules are adhered to, and none will see instantaneous
skew if the clock := 0 pulse and sample/hold gates are
used correctly.

Device and timing protection

The Hybrid Processor commands reference all
hybrid devices in an unrestricted: manner. If the user
is given direct access to these commands, he could
detrimentally affect another user's experiment by
changing a value on another user's D / A converter,
for example. Also, one user could easily lock out Hybrid
Processor service from another user if he had a higher
priority process and usurped all of the Hybrid Pro­
cessor's capacity. It is therefore not feasible for the
user to construct his own command tables. Instead,
the time-sharing monitor constructs these tables for
the user and keeps them in monitor core. The monitor
makes certain that a user does. not access another
user's devices or usurp all of the: Hybrid Processor's

* for D/ A converiSion. approximately 30 ~3ec for A/D conver­
sions.

time. The data tables are, however, kept in the user's
own address space.

Hybrid processor software

Some very elaborate software (with about 2K words
of machine language code) exists in our time sharing
monitor on the SDS-940 for controlling the Hybrid
Processor. This software locks and unlocks pages of
data tables into core; sets up the transfers of data table
pages from core to drum and vice versa; worries about
anticipating pages before they're needed and getting
the drum requests on a high priority drum queue; and
provides a convenient handle on the hybrid processor
for users.

The user interface to the hybrid processor is pro­
vided by some SYSPOP's,5 which permit the user to
assign and deassign hybrid devices; assign and deassi~~n
hybrid processes; define a sequence of commmid and
data tables to be executed a specified number OIf times;
specify a prototype of the command table which gets
set up in the monitor's address space; speeify the
boundaries of data tables in the user's address spaee;
start and stop processes; and interrogate the status
of assigned processes.

Real-time CPU usage

With a Hybrid Processor I/O system, user programs
or user I/O need not be periodic. The I/O can be
precisely timed using the Hybrid Processor independent
of CPU activity. Therefore, it no longer is necessary
to start CPU computation at exact times.

Suppose that for each process the following para­
meters were specified:6 •7

1. T The period of the process (exact period if
synchronous, minimum period if asynchronous).

2. P The maximum amount of CPU time the
process may require each period.

3. D The maximum tolerable delay between the
moment the process requests service 2md the
time when all servicing has been complet.~d
(most synchronous processes would allow servi,ce
to be completed any time during the period
i.e., D=T).

4. Whether the process is synchronous or asynchro-
nous.

U sing this characterization, the demand of the
process upon the system might be phrased as follow::!:
"When my process requests service it must be ~~ranted
P seconds of CPU time within D seconds of when the
request is made. My process will never request service

more often than T seconds after the previous request."
The parameters P, D, T, and the specification of
whether or not the process is synchronous enables the
system to decide whether the demands of this process
(and all others) can be successfully met. The system
cannot, of course, guarantee service to a set of real­
time processes with arbitrary P's, D's, and T's. In
fact, two restrictions are obvious:

(1)
and

L: (2)
all i

processes

If the sum in (2) were greater than unity, it would
be possible for the real-time processes to require more
than 100 percent of the available CPU time.

The scheduling algorithm used to select which pro­
cess runs at any time is intimately related to the
guarantees which the system can make to a set of
users. It would be desirable to find a scheduling algo­
rithm. which would allow:

L Pi to be close to 1
all i Ti

processes

and would minimize the amount of switching between
processes to reduce overhead. It can be shown that if
switching time is negligible, no algorithm can do a
better job of scheduling for synchronous or asynchro­
nous processes than the following:

Run the proces8 which must be completed 800nest

That is, whenever a process requests service, the
system computes the 'time when the process must
complete service (T i), which is equal to the current
time plus D i • The system then decides to run the pro­
cess with the minimum T ,. Whenever servicing is com­
pleted or aborted (for trying to use more than Pi
CPU time) the system runs next the process with
minimum T i' This algorithm and the necessary and
sufficient conditions under which the system can under­
take to run a set of processes are discussed in detail
by Fiala.6

Costs

The Hybrid Processor is not an inexpensive device.
Approximately $20K of digital hardware components
are necessary for a Hybrid Processor, not including

Tim,e Shared 1/0 Processor 787

any of the analog or hybrid equipment. The labor
involved in designing and implementing the hardware
and software is approximately 172 man-years. We
believe this cost is justified by the utility of the pro­
cessor.

Future work

Future hybrid processor revisions

Several changes will be made in our new hybrid I/O
system for our next research computer (a DEC PDP-
10).8 These changes will increase the total available
bandwidth, improve the command/data flow control
so that even less CPU capacity will be required to
direct the Hybrid Processor, make several improve­
ments to the clock system, etc.

New clock system

A 36-bit time of day clock will be implemented
whIch counts at 100 KHz. It will be possible to read
this time via an I/O input command over the PDP-10
I/O buss. This 36-bit count will recycle approximately
every eight days.

At least two 36-bit "alarm" registers will be used
in conjunction with the clock" These registers will be
compared with the values in the clock after each
"tick" settles down. If a match on any register is
found, the following events will occur:

A. A CPU interrupt request will be generated so
that a new 36-bit value may be placed in the
alarm register and any CPU action which was
to be initiated at this time will be triggered
(such as the scheduling of a new process to
run).

B. Each alarm register will have eight enable bits
whose set output will be gated with the alarm
pulse and this gated result will be buffered and
available for patching to trigger external devices.

The control of the alarm registers will require the
use of a PDP-10 I/O output instruction to the selected
alarm register to set any combination of the eight
enable bits followed by a PDP-10 I/O output in­
struction to the selected alarm register to set up the
36 bits of the register itself.

Hybrid I/O

The hybrid I/O capability will be quite similar to
the capability of our current SDS-940 Hybrid Pro­
cessor. The channel will operate 011 command and data

788 Fall Joint Computer Conference, 1969

--
tables with each command paired with a corresponding
word in the data table.

The command format will also be similar to the
current Hybrid Processor on our SDS-940. However,
the flow through these command and data, tables will
be directed by two new tables per process called the
command and data flow tables. These will replace the
"cycling" operations by "driving" the Hybrid Pro­
cessor through command and data tables a specified
numbers of times. The "cycling" operation had the
disadvantage of putting a large: burden on the CPU
for processes which cycle often (which proved to be
true for many processes).

We will also implement the command and data
table pointer words in hardware to increase Hybrid
Processor bandwidth.

CONCLUSIONS

The use of a Hybrid Processor permits many real­
time experiments which were not possible in the past,
and are not possible on other real-time computer
systems. We are able to handle high speed as well as
asynchronous hybrid interactions. l\10st of this is
made possible by the separation of the real-time I/O
functions from the computation· function. The real­
time I/O functions are performed by a processor
especially designed to handle re~d-time I/O, and the
computations are performed by a general purpose pro­
cessor.

ACKNOWLEDGMENT

This work was supported by the Advanced Research
Projects Agency of the Department of Defense
(F 19628-68-C-O 125) .

REFERENCES

T R STROLLO R S TOMLINSON E R FIALA
I J ELKIND
The hybrid processor
AFCRL-67 -0485 BBN Rpt No 1686

2 R BELLUARDO R E GOCHT G A PAQUETTE
The hybrid computation facility at United A il·crajt
Corporation Laboratories
Proc DECUS 1963 Maynard Mass 261-269 1964

3 M CONNELLY
Preliminary design of a time-shared, real-time, simulation
facility
Memo No 1 MIT ESL-DSR 76259 Dec 19 1966

4 M CONNELLY
Preliminary design of a time-shared, real-t'ime, simulation
facility
Memo No 2 MIT ESL-DSR 76259 Jan 30 1968

5 SDS-940 Reference Manual 900640A
Scientific Data Systems Aug 1966

6 E R FIALA
Scheduling of real-time processes in a time-shared environment
MIT Masters Thesis 1968

7 M S FINEBERG 0 SERLIN
Multiprogramming for hybrid computation
Proc FJCC 1967

8 DEC PDP-I0 System Reference Manual
HGAA-D June 1968

On-line software checkout facility for

special purpose computers *

by J. S. HUGHES

IBM Corporation
Huntsville, Alabama

and

T.H.WITZEL

IBM Corporation
Gaithersburg, Maryland

INTRODUCTION

An on-line software checkout facility for special
purpose computers (referred to as the Flight Software
Development Laboratory) has been created to aid
programmer/engineers in the development of programs
that will operate in a spaceborne computer aboard the
Apollo/Saturn IB and V Launch Vehicles. The Flight
Computer operates as an integral part of various
vehicle subsystems in the Instrument Unit (IU). The
subsystems provide onboard navigation, guidance, con­
trol, sequencing, data compression, and ground 'com­
munications. These functions are illustrated in Figure
1. Continued emphasis is placed on error-free flight
software, since it is an essential element in overall
vehicle performance. No opportunity exists to test or
exercise the flight program in its actual flight en­
vironment prior to a mission. Therefore, to ensure the
inte,grity of the flight program, simulators are used to
accomplish flight testing. The purpose of this paper is
to present the organization of one such simulator that
has been created for the sole purpose of the develop­
ment and checkout of Saturn flight software. The
emphasis throughout the design and implementation
of the Laboratory has been that it must be user-

• This work was performed under contract with NASA's Marshall
Space Flight Center.

789

oriented for program checkout. Before the existence of
the Laboratory, available facilities for checking out
flight programs were oriented to hardware checkout.
Although such facilities can be, and have been, rigged
for program checkout, they have not provided the type
of assistance required to produce the quality of soft­
ware demanded by spaceborne computers. The Labo­
ratory is believed to be unique in the capabilities it
provides to the programmer/engineer in controlling and
affecting the operation of the Flight Computer in a
real-time environment.

Flight software development begins with a set of
explicit engineering requirements: equation and logic
definition, range of variables, and expected performance
data. After an intensive analysis of the requirements,
the flight software is designed and organized to meet
these engineering requirements with minimal flight com­
puter memory and reasonable flexibility. After the
flight program has been flowed, scaled (fixed point
computer), coded, assembled, and checked out by the
program unit or module, the flight phases are integrated
and checked out. This process continues until the entire
flight software has been integrated. The procedure
described above requires that the programmer/engineer
be able to measure and evaluate his progress in an
efficient manner. The purpose of this laboratory facility
is to provide the programmer/engineer with a user-

790 Fall Joint Computer Conference, 1969

--

Figure I-Real and simulated flight equipment

oriented tool by which he is able to test and evaluate
his programs in a simulated flight environment, using
an actual spaceborne computer and interface hardware.
This enables him to measure and evaluate flight soft­
ware performance against the engineering requirements
for the many vehicles and envirpnmental variations.

The Laboratory user must produce quality software
in the shortest possible time fram~. The key objective
in designing the Laboratory was, to provide accurate
simulation models in the form of' user-oriented tools.
Thus, the Laboratory user can s\viftly determine the
progress and results of his work through real-time man­
computer interaction. The co~puter offers data,
counsel, and guidance to the mao;, who in return sup­
plies certain indispensable knowledge of the overall
system. Systems reliability and effective communi­
cations between the Laboratory and user playa major
role in establishing user cOllfiden~e. Operating experi­
ence in the Laboratory has clearly demonstrated that
these objectives have been satisfied.

Hardware configuration

The Laboratory has as its main hardware components
an IBl\1 System/360 l\10deI44, linked through a special
purpose interface to a Saturn Launch Vehicle Digital
Computer and Launch Vehicle Data Adapter. An
IBM 2250 Display Unit is employed as an integral
part of the Laboratory, providing two-way man­
computer communications. Figure 2 illustrates the
organization of the hard~are comp(ments and in general
indicates the basic paths of information flow.

One high speed multiplexer channel has been dedi­
cated to the flight hardware interface. Each of the
subchannels is likewise dedicated,. as shown in Figure
2. The dedicated channel and subchannels minimize

System/360

Madel ""
262,144
Byt.,

Typewriter

Display
Unit

BK Buffer

Figure 2-Flight software development laboratory­
Block diagra.m

interference from other I/O activities and ena,ble the
creation of a special low overhead channel scheduler.
These features incorporated with the 32-level priority
interrupt scheme make the Model 44 highly re~;ponsive
to the real-time interface requirements. The other high
speed multiplexer channel is dedicated to disks that
support real-time data collection and permit fHst
access for the display system.

In this particular application, six of the 32 llevels of
priority interrupt are used by external hardwired equip­
ment. The others are used by internally generated
software functions for scheduling time-dependent soft­
ware functions.

The Launch Vehicle Digital Computer and Launch
Vehicle Data Adapter are the two flight components
that have been integrated into the Laboratory.

The Flight Computer is a general purpose computer
which, under control of a stored program, procesEles
data. serially, using fixed-point 2's complement
ari thmetic.

The Launch Vehicle Data Adapter serves as an
input/ output device for the Flight Computer and the
central station for the signal flow in the Saturn As'tri­
onics System, which is illustrated in Figure 1. The Data
Adapter accepts discrete input signals from the stage
switch selectors, Instrument Unit command receiver,
ground launch computer, telemetry computer inter­
face unit, telemetry data multiplexer, control dis­
tributor, and other vehicle equipment. It has output
registers to provide discrete output signals to the

a.bove-mentioned equipment. It also accepts and pro­
cesses computer interrupt signals from the ground
launch computer and Instrument Unit equipment.

The interface unit provides all the normal ground
and flight communications paths between the flight
hardware and the central processor. However, this
interface was designed to go beyond these requirements.
The interface is unique in that it was designed to place
emphasis on (1) minimizing the central processor inter­
face traffic and (2) maximizing user visibility by giving
the user the control of internal flight hardware oper­
ations and the access to information internal to the
Flight Computer. Also, the unit was designed for ease
of maintainability. Specifically, three major cap.a­
bilities have been incorporated into the interface unit.
First, the interface unit has been designed so that it
can control the internal operation and timing of the
Flight Computer and Data Adapter. Secondly, the
interface contains special hardware, oriented toward
supporting flight program debug as opposed to program
verification, which is an independent program audit
function performed using the debugged programs.
Finally, the interface unit has been designed so that
extensive automatic diagnostics can be run from the
central processor to isolate suspected interface failures.

The IBM 2250 Display Unit is organized around a
cathode ray tube on which computer-programmed
graphic and alphameric information is displayed at
high speeds. This provides visual communication be­
tween the computer and the user. In addition, key­
boards and a light pen provide the user with a versatile
means of entering and modifying computer information.
With the display system, the user has direct and rapid
access to stored data which can be selected, processed,
modified, and displayed in alphameric and graphic
representation. For example, the user can display and
modify memory in both the Model 44 and the Flight
Computer through the display unit.

The display unit was configured to minimize central
processor time and core requirements on the Model 44.
A primary feature of the display unit is a buffer storage
of 8,192 bytes, which is used to store images for display
regeneration purposes. The use of a buffer enables the
display llnit to operate concurrently with the com­
puter system, freeing the main core and the channel
for other functions. Additional features which greatly
compress the image storage requirements are the
absolute vector and character generator features.

Operating system

The operating system for the Laboratory is desig-

Oli-line Software Checkout Facility 791

nated as the Checkout Control System (CCS). It is
the operating system which is furnished with the IBM
System/360 Model 44, with additions and modifi­
cations to convert the system from a sequential batch
job processor to a real-time multiprogramming pro­
cessor. However, all the original functions and features
have been retained. Programs not requiring the ele­
ments of a real-time multiprogramming system may
operate as though the additional facilities were not
present.

The principal area of the Model 44 Programming
System (44PS) in which additions and changes have
been made is the supervisor. The required functions of
CCS include the ability to support various operations
of computing at precise intervals of time. These oper­
ations are selected by a priority scheme which controls
the sequence of execution. Other operations are de­
signed to execute as a result of interrupts induced
outside the central processor. These are generally of
such importance that their priorities are higher than
operations initiated as a result of time. The function
of multiprogramming through a scheme of priority
interrupts and the requirement of real-time operation
are the principal requirements forCCS. To satisfy
these requirements, capabilities in three principal areas
have been added. These are multiprogram scheduling,
real-time input/output scheduling, and application
program phasing control.

A principal element of the program scheduling fa­
cility for CCS is the timer queue (Figure 3). It consists
of a string of items ordered in ascending sequence of
time-.to-execute. Each item of the queue contains a
pointer to the routine to be executed at the correspond­
ing time. When the timer interrupt occurs, the timer
processor routine gains control and the routine corre­
sponding to the timer interrupt is placed into a state
of execution. Its immediate or deferred execution is a
function of priority levels. When a timer interrupt
occurs, a comparison is made between the priority
level of the routine currently in execution and the level
of the routine for which the timer interrupt has oc­
curred. If the level of the current routine is higher
than or equal to the other, it resumes execution while
the execution of the lower priority routine is deferre d.
Conversely, if the priority level of the current routine
is lower, the other is placed immediately into execution,
temporarily suspending the first. This method of
scheduling uses the hardware priority interrupt system
and additional software of COS.

Figure 4 illustrates some of the conditions which
may occur with a typical combination of timer-initiated
priority routines. Notice that the execution priority

792 Fall Joint Computer Conference, 1969

--
Head

I Pointer to First Item ~
Priority

,

Point to First Item
15

~
Time to Execute Program A

24

10

29 Program B ~ 25

38 Progra'!l C ~
20

49 Program 0)
10

56 Program E

Figure 3-Timer queue

~~ ~~
i'rlorlly 10

, __________ E'--___ _

~Iarlty 15

"'Iarll)' 20 :"''' I ~ o L.joll....-__ _

~Iorily 25

Non-~iorily

Inlerrvpt

69 74

Figure 4-Timer-initiated multiprogramming

level of timer interrupts is coincident with the pri­
ority level executing at that time. In addition, the
figure shows how the high priority routine gains control
from a lower priority routine. In this priority system,

low magnitude numbers correspond to high level pri­
ority.

Figure 3 illustrates a timer queue containing several
items which will initiate programs on various levels a1j
different times. These items match the information
illustrated in Figure 4. As each item reaches the top
of the list, the internal interval timer is set 1~o thE~
increment of time from "now" until the program. is to
execute. When the timer expires, a priority leyel re­
quest for the program is set, the item is removed from
the queue, and an interval for the next item is calcu­
lated. The program pointed to by the item which
caused the timer interrupt is attached to its priority
level for execution. When the queue becomes E,mpty,
the non priority level regains control.

The second major feature of program scheduling ilS
the supervision of priority interrupts by the priority
interrupt executive. Gertain 'housekeeping' functions
are performed by this feature, such as register saving
and restoring, as control passes up and down the pri­
ority levels. Control is automatically given to the
priority interrupt executive whenever anyone of the
32 levels is activated. The routine to be given control
is determined, registers are saved as required, and a
pointer to parameters is set. Control is then given to
the priority routine. When the routine concludes its
operation, it returns control to the priority interrupt
executive which restores registers and causes the rou­
tine on the next highest level to resume or be~~in exe­
cution.

Figure 5 illustrates the overall flow of data and
control in CCS. Whereas Figure 4 illustrates the effeet
of program scheduling, this figure illustrates. the me­
chanics involved. A program currently executing ma,y
be interrupted by the timer (1). The timer processor
selects data from the queue (2) and attaches the routine
to execute (3). It sets a new interval in the timer (4)
and initiates -a priority interrupt (5) (assuming the
routine is of a higher priority than the current program).
The priority interrupt executive determines the routine
to execute (6) and gives control to the routine ('7)
which returns control (8) when finished. The executive
then returns control to the interrupted progra.m (9).
At step 5, the condition may exist that the timer­
initiated routine is of lower priority than the current
program. If so, the timer processor returns control
directly to the current program (10).

Both application and system programs. may queue
routines using the timer queue (11). The actual queue­
ing is done by a system routine.

In Figure 5, the dash line connecting "programs"
and "current program" is intended to show that the

<D
Timer 0 Interrupt

rogrom ointerl,
Priorit Etc.

Programl

'------------~
Figure 5-Progrnm scheduling

Priority
Program Attachment
Tabl.

Hardwar.
Priority
Interrupti

20

25

current program is merely one of many which is se­
lected by the priority interrupt executive.

The 44PS I/O channel scheduler was changed to
handle a multi programmed environment. Among the
changes were new real-time, core resident I/O device
routines, a gated front end to the channel scheduler
and I/O termination interrupt routine, and de-queueing
logic at the exit point of the channel scheduler.

Of several options available to modify the channel
scheduler, one was chosen which allows only one trans­
action into the scheduler at a time. The effect of this
method is to allow an I/O request to enter the scheduler
and be serviced only if the scheduler is not currently
processing a previous request. Due to multilevel pro­
gram execution, an 1/0 request being made while
another is being processed can occur only when the
new request is of a higher priority level routine. There­
fore, the request in process when interrupted by a
higher priority level is resumed at its point of interrupt.
The new higher priority level request is serviced im­
mediately thereafter.

A posting function is associated with I/O termination.
I ts purpose is to allow priority level routines to request
I/O, give up control on their level, and then regain
control when the I/O is completed.

To meet the demands of real-time I/O for the Flight
Computer, a special low overhead channel scheduler
is used. The gated channel scheduler using 44PS has

On-line Software Checkout Facility 793

some features neither necessary nor required for the
Flight Computer channel.

The CCS phasing function provides the capability
to load and initialize the required set of application
programs under the control of operations initiated at
the display console. An application core load (phase)
contains all programs required in memory at the same
time to perform one of the major simulation functions.

The phases are resident on the system residence
disk volume and are transferred to the application
program area of central processor memory when re­
queBted by the flight programmer/engineer via the
display console. The transfer is implemented by CCS
through standard 44PS load capabilities. After a phase
has been loaded, the unused portion of memory is
calculated and designated as available work space which
will later be used by the phase programs. The phase is
given program control at its entry point on the non­
priority level of program execution.

Selection of the phase to be loaded and executed is
made from the initial tutorial display, which is setup
by the initial loading of CCS~ The user at the display
console makes his selection of the phase via the light
pen instrument. The selection of a phase initiates CCS
operations which result in a core load of the application
program area. When the user chooses to change from
the execution of one phase to another, he requests the
redisplay of the initial tutorial. Upon this request, CCS
executes an orderly shutdown of the actjvities in pro­
cess for the current phase and then reloads the central
processor memory with the phase requested. Figure 6
illustrates the concept of phased program loads and
the general allocation of core for the application
programs.

A pplication software

Application software in the Laboratory is designed
to perform four basic tasks: (1) hardware diagnostics,
(2) flight simulation initialization, (3) flight simulation
execution, and (4) post-flight data reduction. A self­
contained set of software programs, called a phase,
has been constructed to perform each of these tasks.
A t any given time only one phase resides in core, with
both the communication region and temporary data
set residing on a disk device.

The hardware diagnostics phase contains programs
which perform the power-up and initialization function
for the Flight Computer and its interface unit. The
diagnostic programs are required for maintaining and
servicing the interface unit.

The flight simulation initialization phase consists of
the programs to specify the details and options of the

794 Fall Joint Computer Conference, 1969

Checkout
Control
System

Appl ication
Programs

Free
Space

Figure 6--Phase load core memory map

pa.rticular flight simulation the user wishes to make.
He may specify such items as loading, modifying, and
accessing the flight program; digital command system
orders; computer interface unit measurements; real­
time output quantities; flight pause points; data to be
saved for post-flight analysis; the particular Saturn
vehicle to be simulated; and the type of simulation
run to be made.

The post-flight data reduction phase contains the
software necessary to process data that were collected
during execution of the real-time simulation phase. This
consists of data from the Flight Computer, the 6-DOF
simulator, and the FORTRAN flight program model.
The capability of generating plots on the display unit
is also provided, along with conversion, formatting,
analysis, and outputting of data on the printer.

In these three phases, very little use is made of the
priority interrupt feature on the· Model 44 as an in­
strument of real-time operation. Practically all pro­
grams are initiated by operator action at the display
console, and programs receiving control operate on the
priority level assigned to display control. This same
level is reserved for display control in each phase.
However, the entire real-time simulation phase is built
around and is controlled by the priority interrupt
feature.

The application programs in this phase perform the
following tasks:

.6-degree-of-freedom (6-DOF) launch vehie1e
simulation.

• Digital command system simulation (ground data
link).

• FORTRAN equation and logic model execution
of the flight program.

• Data reduction and analysis.

Figure 7 presents an overview of the major applli­
cation software components required for the real-time
phase and their interrelationships. The operator,
seated at the display control unit, communicates with
the system through preformatted tutorial displays.
Three data sets are used as an input interface betwe4Bn
the display unit and the real-time application software.
The flight and vehicle specifications data set is used to
structure the vehi·cle and flight program skeletons to
any of the many missions under development. Th,is
data set is defined and generated during the initiali­
zation phase. The two remaining data sets (vehide
perturbation and data reduction analysis and control)
are accessible both during the initialization and real­
time simulation phases. The vehicle perturbation
functions allow the operator to specify various vehiele
anomalies such as thrust perturbations, command
receiver failures, staging or event failures, inertial
platform failures, etc., in addition to the start time and
duration for each. The appropriate control information
is ordered by time of occurrence and recorded in a

Figure 7-Application soft.ware functional flow-­
Real-time phase

vehicle sequencing queue until the specified activation
time. A similar procedure is followed in the creation
of the data reduction analysis and control data set.

The FORTRAN flight prog~am model is an engi­
neering representation of the flight program. It serves
as an additional reference to measure and evaluate
actual flight software performance.

The real-time data buffer receives data from the
FORTRAN flight program model and the 6-DOF
vehicle simulator as well as telemetry data from the
flight hardware. This entire set of data is recorded on
tape for the post-flight data reduction phase. Data
selected for real-time observation is organized, for­
matted and recorded on the disk. This particular data
is acce;sible at any time upon request from the display
console as either tabular data or graphic plots. Such
displays may be generated from historical data be­
ginning at some particular point in the past and carried
up through the current values, or it may start with
current values. In both cases, the display is continually
updated from the real-time data buffer. In addition,
the real-time tabular data may be permanently re­
corded on the printer.

The 6-DOF simulator consists of both rotational
and translational dynamics as well as a simulation of
the vehicle subsystems involved in vehicular control,
such as sequencing, digital command system, etc. This
simulator may be driven by either the actual flight
hardware or the FORTRAN flight program model. In
turn, the 6-DOF simulator supplies inputs to both
the flight hardware and the FORTRAN flight program
model.

Each of these real-time application .programs is
assigned a relative priority and an absolute priority
level. Figure 8 shows groups of application programs
and their priority interrupt level assignments used in
this system at the present time. In general, high pri­
ority levels have short execution times. These routines
respond to discrete external events or internal keying
by the interval timer. Routines with longer execution
times are on lower priority levels. Among these routines
are real-time reduction and graphic support. The pri­
ority level assignments, both hardware and software
activated, can be changed easily to optimize system
performance.

The requirements of the real-time application
programs guided the design of the program scheduler
in CCS. As a result, the priority scheduler provides
the real-time application programs with a highly
flexible operating environment, making the following
system attributes possible: First, the System/360
Model 44 and the Flight Computer operate asynchro-

On-line Software Checkout Facility 795

r---·- -- -- -- ----,
Model 44 nter ace UnIt I
CPU Initiated (0 2 5 8 11 13)

I

Display
Cantrol

(23)

-------------., Initiated By
Timer Processor

6-DOF (l0, 20)

I

I Interface
Unit

I

I
I/O
S,h".'fi i

I

I
I

FORTRAN Model I
(17, 22, 24, 25, 26) I

I L ____________ I

I
Spores (1, 3, 6, 7, 9, 1 , I

15, 16, 19, 21, 27, 31) I
'L I Non-PriorIty I I

______ -___ Idl~~ ___ - ____ ..J

Figure 8-Functional groupings of priority interrupt
line assignments (0-31) in real-time phase

nously with respect to one another. This condition
relieves the system of several constraints in its operating
environment, which, if present, tend to constrict the
system. Second, the application programs are very
responsive to the information supplied from the inter­
face unit via the priority interrupt feature. There are
six high priority levels of the thirty-two w~ich a~e
assigned to signals from the interface umt. ThIS
structure permits immediate response to Flight Com­
puter conditions in the Model 44, by interru?ting
programs operating on a lower priorIty level. Th~rd: a
related function to point two is that the low prIOrIty
operations (such as servicing display unit operations)
execute on a noninterference basis with the time
critical functions on higher priority level assignments.
Fourth, with respect to time-slicing, it is a self-ad­
justing system. This means that programs o~ lower
priority levels will automatically give up tIme to
programs operating on higher levels. For example, the
solution rate on vehicle navigation can be changed by
simply altering one constant, which will result in the
self-adjustment of the system to the new solution
rate.

User/system interaction

With reference to user/system interaction, the system
may be said to have two primary objectives: to ~ro­
vide a more detailed and complete checkout of flIght
programs, and to ease the burden and reduce the time

796 Fall Joint ,Computer Conference, 1969

------------------~--
required of a flight programmer to checkout a flight
program. To meet these objectives, the following
system criteria were established:

1. Minimal knowledge of the central processor
required of system users.

2. Minimum number of people required to run a
simulation.

3. Centralized operator control stations.
4. Maximum influence on the flight program by

the user.
5. Minimum time required t~ setup runs.
6. Entire simulations run by nontechnical oper­

ators.

In order to satisfy these criteria, system start-up
procedures were automated, peripheral device manage­
ment routines were written (to allow tapes and disks
to be remounted on arbitrary :drives), direct access
storage was fully utilized, program overlay was used
extensively, and all operator control (after initial setup)
was centralized at the display unit.

The graphic display software provides the interface
between the application programs and the IBM 2250
Display Unit through which the user communicates
with the system. Through this 'software, the display
console operator is in complete: control of the flight
program and has a very wide range of capabilities in
initializing, controlling, monitoring, and analyzing the
flight program performance.

The display program that provides this interface
operates in a real-time enviropment. Therefore, to
reduce the core and time req~irement necessary to
create each individual display, all displays are prefor­
matted by an off-line graphic program. (See Figure 9.)
This program receives card images of the text and
control information associated with each display and
creates a 'book' of displays. This display book resides
on a disk cartridge and is divided into one index and
as many chapters as there are displays. Each display
text is in an 'expanded' format containing embedded
graphic orders and in a format l'eady for transmission
to the display unit buffer. It requires no editing, scan­
ning, or unpacking in real time. 'rhe keyboard and light
pen pages provide control information needed by the
real-time display control program to respond to oper­
ator keyboard and light pen inputs. For each chapter
created by the off-line program, there is a corresponding
entry in the index. Each index entry contains the name
and disk address of its corresponding chapter.

During system initialization, the real-time display
control program reads the index into core and retrieves
the system initial display from the display book. The

Off-line Or~J Graphic Listing
Display Of All

__ --.. P_r_09_ra_m_ .. --. D/

Display Text

Cantrol Infcwmatiolr'l
For CompoS4! Field

Figure 9-Display book generation and organization

initialize phase of the real-time display software is
complete when the initial options are displayed. Light
pen or keyboard inputs from the display console oper­
ator are required to initiate the display of new texts.

The display device routine services the light pen a.nd
keyboard I/O interrupts and schedules the display
control program on the timer queue for immediate
execution on a predetermined priority interrupt level.
When display control gets control on its priority in1Ger­
rupt level, the type of action taken by the operator is
examined. The light pen page and the keyboard page of

I

the current display chapter define all legal light pen
inputs and keyboard entries.

The display control program displays the proper text
in response to the operator's light pen actions, vali­
dates keyboard inputs, and passes control information
specified in the keyboard or light pen page. Response
to the user's inputs appears to be instantaneous to the
operator (500 milliseconds maximum). When a longer
time is needed to process the operator's request, the
program to perform the operation is scheduled to oper­
ate on another priority level and normal display pro­
cessing continues. The operator may initiate several
tasks to be performed simultaneously.

On a light pen detect, the light pen page of th,a current
display chapter is examined for a possible N;EXT
PROGRAM. If one is specified, control is passed to it
and the NEXT DISPLAY is presented when the
program returns control to 'display control. ""hen the

NEXT PROGRAlVI is omitted from the light pen page,
the NEXT DISPLAY is presented immediately and
the display control program priority level is freed for
additional operator inputs.

Display control makes legality checks on all key­
board input against the legal data in the keyboard page
of the display chapter and passes the data to the des­
ignated program. When it is necessary to input a
large amount of data through the display compose
fields, or when many displays and light pen actions are
required to initiate a procedure, the light pen options
and keyboard entries may be predefined on cards or
disk. The display software can initiate one option
after another and each time return to the predefined
option set for another option rather than waiting on
the console operator for further action. This; speeds
the setup for procedures done repetitively and greatly
reduces the possibility of operator errors.

The real-time display control program accepts inputs
from the display console operator and also from the
application programs. While there can be many appli­
cation programs providing input during a small interval
of time, there can b~ only one display being presented to
the operator. The inputs affecting future or past dis­
plays are entered in a queue and may be viewed by the
operator by use of the function keyboard.

Display
Light Pen Software
Detect

Light Pen Detect
L---PI Processor

Figure Io-Display control interface

Chapter

Light
Pen
Page

Keyboard
Page

T~xt
Page

Application
Program
Display
Inputs

On-line Software Checkout Facility 797

An application program on any priority interrupt
level may use the display system to communicate with
the user through previously defined input areas in
the display text. These input areas may be defined
by the user to suit his needs and to present his input
data in an easy-to-read format. For example, if the
input areas in a display are defined in a column format,
the programmer's data will automatically be presented
in a column format when the input areas are filled.

Figure 10 illustrates the display control interface
with the display unit. The control information pages of
a display chapter will remain in memory as long as
the display text is being presented to the operator.
When the operator uses the light pen or keyboard,
display control will use these pages to determine the
NEXT PROGRAM and NEXT DISPLAY. When the
chapter for the next display is retrieved from the
display book, the text page processor merges the display
text with any application program data to be displayed
and transfers the combined text and data to the dis­
play buffer. The new light pen and keyboard pages
will remain in memory to identify the next operator
action.

A function key. must be lit by the function key pro­
cessor before the key becomes active. An application
program can direct display control to activate a function
key and present a given control display when the oper­
ator uses the key.

As the user views the system, the heart is the dis­
play system. The programmed book of tutorial displays
is provided to give him complete control over the
Flight Computer, the interface, and the simulation
itself. The book along with the use of the light pen
and the display keyboard leads the user through the
functions of powering up the Flight Computer and
Data Adapter, loading and accessing the Flight Com­
puter memory and registers, setting up and executing
the simulation, and post~processing simulation data.
Each user option is carefully spelled out, and all user
input is verified before it is accepted by the system.
Should error conditions occur (due to incorrect input,
hardware failure, or flight program failure), error mes­
sages are presented to the user with instructions as
to the recovery action.

A complete history of user actions at the display
unit is logged on the console typewriter for later refer­
ence.

Figures 11 and 12 demonstrate user activity at the
graphic display terminal. By using the light pen, the
user is able to travel through the display structure
illustrated in Figure 11. Figure 12 depicts photographs
of the displays represented by the structure of Figure 11.

798 Fall Joint Computer Conference, 1969

--

I I I I I I I I I I I ~--~--~ ~--~~~ ~--~~~

E"" Foll .. ·~M33A I L.....----r-"-.....;.;.;.;~ L... _____ ----'

r---·-----.·-·-·-.·-·-·l; I

K.y
••••••• Path! ____ Path 2

•• __ Poth'lond2

I Tho-uti Magn;'ude 0..;0';... I e .. h .. Oul; I I Tho-uti MhoUgMMOnt 0 330C I
DM33DA • . DM3301.. M •

·Dhploy ldentificoticn

Figure II-Display structure

Figure 12 shows the top level display (DMOO). When
the light pen is applied to the key~ for path 1, it leads
to a display, DM33DA (Figure 12e), calling for infor­
mation to be entered frQm the keyboard. The keyboard
entry or compose field is defined \?y the legend on the
display. Path 2 shows how the same path may be
entered from the execute flight :simulation display,
real-time phase.

Along with the capability to setup and execute
complete runs through the display system, the user
has the ability to monitor the execution and take re­
start dumps. These, too, are cont~olled from the dis­
play console. A request may be: made to printout
specific quantities on the printer as: they are calculated
in either the Flight Computer or t~e central processor.
At the same time he may request vatious status displays,
tabular displays, or data plots to: appear on the dis­
play unit. Should an irregularity be detected, the oper­
ator has the ability to pause the! simulation, process
all the data acquired thus far, arid make changes or
corrections. He then has the option to continue the
simulation; restart the simulation from various points
where restart information is available, or terminate
the run entirely.

Because of the complexity of ~he flight programs,
the flexibility of the facilities of the Laboratory, and
the desire to ease the burden of job setup as much as
possible, a scheme has been implemented to sequence
automatically from start to finish. The sequencing and
input information can be saved on cards or in data sets
on direct access storage. Through tqe use of this scheme,
it is possible for a flight programm~r to setup complex
runs and submit the job for runn~ng by an operator.

All the pertinent information flowing through the
real-time data buffer is collected and saved on tape
(the 'Post-Processor tape') for later analysis. If the
flight programmer has requested SNAPS and TRACES
of actual Flight Computer memory locations during

---- Pt:Jth 1

----P(]th 2

12a

12b

On-line Software Checkout Facility 799

Figure 12-Tutorial cfuplays

--1,2

12c

12e

:"--1, 2 ---2

12f
12d

800 Fall Joint Computer Conference, 1969

instruction execution, this information is saved on the
Post-Processor tape. The Post-Processor tape may be
processed immediately or at a later date.

When processing the tape, the user has several options
available to him -through use of the:display system. He
may selectively dump any data on the tape and request
that the data be cOllverted to decimal form in specified
units prior to printing. He may have his data printed
in a tabular form or he may plot data on the display
unit. Special calculations may be performed on some
of the data and the results printed or displayed. He
may print or plot errors between various quantities to
verify that the flight program results agree with the
6-DOF simulator.

CONCLUSION

The problem of designing an on-line software check­
out facility and ensuring that the programmer/engineer
has the capabilties he requires is a complex task.
The techniques of simulation, the selection of equip­
ment, and the methods employed for man-computer
and computer-computer interface i must be carefully
weighed. The requirement for pin-point accuracy in the
Laboratory resulted in a real-time multiprogrammed
system which is proving an invaluable tool for assisting
in the development and checkout of the flight programs.
It has made possible the development of flight soft­
ware which can be relied upon to a much greater extent
than before and has reduced the amount of time
necessary to produce it. In effect, the Laboratory pro­
vides the necessary aids toward producing successfu I
flight software.

Some of the software concepts employed in the
Laboratory may certainly be applied in related areas of
simulation technology. The operating system and dis,­
play support software have direct conceptual appli-
cation in airborne and space vehicle simulators. '

BIBLIOGRAPHY

1 L J CAREY W A STURM
Space 80ftware: At the crossroads
Space/Aeronautics Vol 50 No 7 196862-69

2 J L GROSS
Real time hardware-in-the-loop simulation verifies performance
of Gemini computer and operational program
Simulation Vol 9 No 3 1967 141-148

3 E C VAN HORN
Three criteria for designing computing systems to facil'itate
debugging
Coml,llunications 1968 II-5 360-365

4 T H WITZEL J S HUGHES
Flight boftware development laboratory
IBM Corp Huntsville Ala IBM No 68-U60-0022

5 H WYLE G J BURNETT
M an.agement oj periodic operations in a real-time com11)utation
system
ProG FJCC 1967 201-208

6 E YOURDON editor
Real time systems design
Information and Syatem3 Institute Cambridge Mass 1967

7 L L ZIMMERMAN
On-line program debugging-a graphic 9Pproach
Computers and Automation 1967 16.;,11 30-34

8 A sirionics system handbook
Marshall Space Flight Center Huntsville Ala MSFC
No IV-4-401-1

9 LV DC equation defining document for the Saturn V jUght
programs
Marshall Space Flight Center Huntsville Ala MSFC
No 111-4-423-15

A hybrid frequency response techniqu.e
and its application to aircraft Hight Huttel­
testing

by J. M. SIMMONS, J. W. BENSON
and J. P. FIEDLER

Lockheed-Georgia Company
Marietta, Georgia

INTRODUCTION

Large aircraft, such as the Lockheed C-5A, can be
forced to resonate on the ground in a large number of
closely coupled vibration modes which involve the
combined motion of lifting and control surfaces,
fuselage and engines. During flight, atmospheric
disturbances can also excite these vibrational res­
onances, though, under normal conditions, they are
damped to a safe level because the airstream is able
to extract energy from the vibrating structure. How­
ever, there exists the aeroelastic phenomenon called
flutter1-under certain conditions the structure is
able to extract energy from the airstream and the
amplitude of a resonance can very rapidly increase
to a destructive level. Clearly, the damping of all
resonances must remain positive throughout a wide
range of flight conditions. This is verified by flight
Hutter test programs during which aircraft are proven
safe at an airspeed and altitude before proceeding to
a higher airspeed. In one method of flutter testing of
large aircraft, the resonant modes are excited during
flight by oscillatory forces from aerodynamic vanes.2

A frequency sweep technique is used; the frequency
of the oscillatory forces is varied continuously from
about 1 to 30 Hz. Accelerometers or other transducers

not be overemphasized. Data should be gathered in
as short a time as possible in order to relieve the prob­
lems of high speed, low altitude testing. Furthermore,
the analysis should be completed very quickly to
minimize non-productive flight time. A successful
data reduction system reduces the time-consuming
process of record analysis and increases the time a vaila­
ble for engineering interpretations and decisions. This
has been achieved by using the Lockheed-Georgia
Company's hybrid computing system, consisting of
four Ci 5000 analog computers interfaced with a CDC
6400 digital computer, and a new rapid. frequency
response analysis technique.

Theory of flight ftu.Uer testing

The most powerful techniques for system stability
analysis have evolved from the study of sets of simul­
taneous ordinary differential equations.3 As a result,
flutter testing is based on the assumption that the
aircraft in flight can be represented as a linear lumped
parameter system described by the equations:

al1(p)xI + aI2(p)x2 + + a1k(p)xk = fl(t)
a21(p)xI + a22(p)x2 + + a2k(p)xk t = f2(t)
...................................... " .

indicate the response at various locations on the air- akl(p)xl + ak2(p)x2 + + akk(p)xk = fk(t)
craft. After an excitation sweep, the frequencies and
measures of damping of the resonances are determined, Xk are the coordinates of the system, fk(t) are the
anq a decision is made about the safety of a higher exciting forces and ait(p) are quadratic functions of the
airspeed. operator p = d/ dt. Because linear systems obey the

The importance of time in a flight flutter test can- superposition principle, one can, without loss of

801

802 Fall Joint Computer Conference, 1969

generality, excite an aircraft at a s~ngle point; Thus all
inputs, except fi(t) can be made ze~o. Using the Laplace
transform, transfer functions can be formed between
the f. and Xii having the general form

where s is the transform variable.
Although N(s) may change for several input-output

combinations, the denominator polynomial D(s), is
the same. D(s) = 0 is the characteristic equation of
the system and the location of its roots, s= (J + jw, in
the complex plane defines the stability of the system.
Each structural resonance corresJ;onds to a conjugate
pair of roots. A flight flutter testing technique that
is used involves excitation of the aircraft by a sinusoidal
force input which is swept slowly from about 1 to
30 Hz. By measuring the frequency response (both
amplitude and phase) of each transqucer signal Xi to
the exciting force fi' and by applying the frequently

IN MULTIPLEXED FM

GROUND TELEIviETRY STATION

AND FLIGHT MONITORING ROOM

rl2ceiller facsimile

and, I in12 printl2r

ampilfil2rs 8 pagl2s/mi n.

15 KHZ linl<'S
multipll<'XI<'d IRIG subcarr'12r ,'I
signals containing 20 data

)~ signals

rack of ~ rack of 20 facsimill2
2 Hz bandwid th ~ FM scannl1r

tracking filtl<'rs discriminators 8 pages/min.

1 1
Comcor Ci-5000 CDC 6400 linl1

hybrid computing systl2m printl2r

HYBRID COMPUTING AREA

Figure l-The data reduction system

o

POSITI liE ENVELOPE

NEGATIVE

Figure 2-Data. signal showing envelopes and zero
crossings

used' technique of Kennedy and Pancu,4 (J and w can
be found for all lowly damped resonances. The technique
of Kennedy and Pancu is based on a relationship be­
tween the damping and the rate of change of phase
with frequency (of Xi relative to f i) as the frlequenlCY
sweeps through a resonance. The variations olr (J and w
with airspeed and Mach number show the stability
trends of the aircraft. For lowly damped resonances,
(J~-rw, where r is the familiar damping rati03 and
w can be taken as the circular frequency at amplitude
resonance. In this paper the emphasis will be not on
the theory of flight flutter testing, but on the hybrid
technique for measuring the frequency response of
the transducer signals Xi to thl) exciting force f i.

The hybrid frequency response system

The new data reduction system for the C-fiiA flig;ht
flutter test is shown in Figure 1. Twenty of the d2~ta
signals, which are telemetered from the aircra~t to
the ground receiving station, are further trans~ntted
in mUltiplexed frequency modulated form VIa ,15
KHz lines to the hybrid computing area two miles
away. Discriminators restore the twenty signals to

--~-------------------------------------~~ o ___

Figure 3-Typical data signal and the computer
generated envelopes

analog form and nine of these are selected for further
prE>cessing. The first operation is bandpass filtering.
In each of nine heterodyne-type tracking filters, the
center frequency of the 2 Hz passband is continuously
tuned to track the excitation frequency sweep. The
outputs from the tracking filters oscillate about zero
volts and are available in real-time at one of the four
Ci 5000 analog computers. These filter outputs be­
come the data signals for input to the hybrid computer
and· are quite clean sinusoids with slowly varying
frequency (Figures 2 and 3). The one excitation signal
exhibits approximately constant amplitude but the
eight response signals exhibit maxima at the aircraft
structural resonances.

Data compression

The next operation is the storing, in real-time in the
central memory of the CDC 6400 digital computer, the
times at which all zero-crossings occur, and the r:eak
amplitudes of all cycles. The time of a positive- ~oing
zero-crossing, such as ts in Figure 2 is stored with the
amplitude ~ of the previous positive peak. A negative­
going zero-crossing time such as t4 is stored with the
amplitude as of the previous negative peak. This data
compression is possible since the outputs of the tracking
filters are quite clean sinusoids and more frequent
sampling would yield redundant data. If needed for
other applications, further data compression could
be achieved by discarding some amplitudes and zero­
crossing times during parts of the frequency sweep
which contain no structural resonances. The neces­
sary real-time digital computing could be perf L>rmed
if the central processor time allocated to the program
is greater than the ten percent presently used.

The envelope detection circuit

The peak amplitudes are generated by applying each
data signal to one of the nine envelope detection cir­
cuits (Figure 4). Each circuit consists of two nearly
identical circuits; one for the positive side and one
for the negative side of the data signal. Amplifiers A,
B, C, D and E in Figure 4 form a positive envelope
circuit utilizing two mode-controlled integrators (D
and E) as a track/hold pair, and a first order loop
(A, B and C) as a maximum-value circuit. Since the
amplifier A represents a perfect diode, the loop acts
like a high-gain lag when the input is greater than the
output of B and the "diode" A is forward biased. When
the input falls below the output of B, the "diode"
becomes reverse biased and B is forced to hold at its
last value.

As long as the input is positive, comparator output

A Hybrid Frequency Response Technique 803

INPUT

Figure 4-The envelope detection circuit

U is true, B is in the compute mode, D is tracking B,
and E is holding the previous peak. As the input goes
negative, U goes false, B resets to zero, preparing the
maximum-value circuit for the next positive signal,
D holds the last voltage from B, and E tracks the new
peak from D. Thus, with the positive envelope on E
updating on each negative-going zero-crossing of the
input, the envelope has staircase-like discontinuities
as shown in Figure 2, though it is smoother in practice
when more slowly varying frequencies are used. Figure
3 is a segment of typical aircraft data. The second
half of each circuit generates the negative envelope
in a similar manner (Figure 2). All of these envelope
voltages are input continuously to analog-to-digital
converters. A practical upper frequency limit to the
circuit, using the gains in Figure 4, is 120 Hz. With
other gains the useful frequency range could be shifted
so that the upper frequency limit is approximately
2000Hz.

The hybrid interface and data storage

Each analog console, with its associated interface,
contains 32 channels of analog-to-digital conversion.
During real-time, when the hybrid system is sensitive
to interrupts and peripheral processor patterns (pre­
compiled I/O programs stored within and executed
by one of the CDC 64.0~_ peripheral processors), it is

804 Fall Joint Computer Conference, 1969

--~------
possible to transfer nine data words from the sample­
and-hold amplifiers, via the analog;..to-digital converters,
to central memory in less than 300 microseconds.

The actual mechansim of data storage is initiated
by leading edge I/O interrupts which cause the pre­
viously defined patterns (programs) in the peripheral
processor to transfer the data to a temporary buffer
in central memory. No central processor time is re­
quired for this operation. Upon completion of I/O,
the central processor takes the data from the temporary
buffer and packs it in an array with four data words
per central memory word. Here it is stored until the
frequency sweep is completed and the post real-time
processing is begun. The leading edge I/O interrupt
is activated asynchronously by a positive-going zero­
crossing of one of the data channels. This causes the
instantaneous digital value of the corresponding posi­
tive envelope (fro'm the analog-to-digital converter)
to be stored together with the time at which the zero­
crossing occurs. Similarly, negative-going zero-crossings
set interrupts which initiate the storage of negative­
going zero-crossing times and corresponding negative
envelope amplitudes.

During the real-time phase, when timing is most
criticalJ the requirements on the central processor
are reduced to that of transferring and packing data
within central memory. This requires approximately
ten percent of the central processor for nine channels
at signal frequencies of 30 Hz. Thus the central processor
is readily available to service other hybrid programs or
batch digital programs as required.

Using central memory only, data for up to 32,000
signal cycles can be stored. It might be possible to
increase this number greatly by using the disk file
or magnetic tape. However, the Lockheed-Georgia
Company's hybrid computing facility is a time-shared
system and it was necessary to program this problem
for time-sharing compatibility. The system contains
a CDC 6638 disk and four CDC 607 tape drives, and
is strongly file oriented, using the disk for intermediate
file storage during input and output. In a time-critical
problem such as flight flutter testing, the disk might
not be available for mass data storage, since it can be
in use on a non-interruptable channel for several
seconds under certain I/O conditions. When real-time
mass data storage is required, the 607 tape drives are
generally used. These drives can be assigned to a
specific problem and can normally be accessed within
500 milliseconds. However, it is necessary to use a
central memory buffer capable of storing approximately
one second duration of data.

If the restrictions of time-sharing are removed and
if the system can be dedicated to flutter testing, the

disk, as well as the tapes, becomes available for real­
time data storage. The size of the program eould be
increased even further by using mUltiple analog con­
soles and interfaces to achieve parallel data conversion
and transmission.

The hybrid time measurement ciN!uit

A problem arose in the accurate measurement (within
ten microseconds) of the time intervals between the
interrupts on as many as nine channels.

The problem was complicated by the possibility
of virtually simultaneous zero-crossings. Although
the digital computer includes a Precision Interval
Generator, which downcounts at a rate of 500 KHz,
the attempts to use it for accurate timing of events,
external to the digital computer, were unsuccessful.
This was mainly because of the difficulty of handling
simultaneous interrupts and the effect of data-link
delays (including software delays and delays, which
could be of the order of a millisecond, arising when
the computer must finish u. previously initiated or

)I#&UII
"~"JOSfp

flU!U.JeM ,,"unoo lISJeoo pea.J
~unoo &S.Jeoo pliaJ

&U!! uMop/dn dwv peaJ
)lJ6i!OO'cf peaJ

NOllO'1 lV1I910

,,"unoo

1---+----4--.....j~

SIauue40 IlS..aeoo .j.ullwaJOU! __ --1

~."'" ""19"

.j.nd+llo V'dwv

\ A A AA ,0
V V V V V oo~+

~~O~-

A A A oo~­
+~ I '--' '--' \ 0

ftn n n ~oo~-
U U LfLf oo~+

Figure 5-The time measurement circuit

(£ 'EIIJ &&s) -)I#.lU&",&

-OO~+

higher priority task before attending to the next).
These difficulties were avoided by developing a new

hybrid technique to take advantage of the sample/
hold feature of the analog-to-digital converters (ADC).
This time measurement circuit is described with refer­
ence to Figure 5. The basis is the generation of a time­
synchronized voltage waveform which represents the
fine count and is fed into one ADC for each of the
data channels to be monitored. The waveform selected
is a 0-100-0 volt triangular wave with a 20 milli­
second period. It is generated by two complementary
integrators controlled by the analog clock which counts
down frequencies from a mega-Hertz crystal oscillator.
Because one integrator is always in reset while the
other is integrating, the synchronization of the output
at zero volts is assured at the beginning of each new
cycle.

By connecting e~.'ch holding register (which goes
true when an interrupt is set and remains true until
the central processor begins action on the interrupt)
to the sample/hold controller of the corresponding
ADC, this fine count voltage can be held until the
digital computer can read it. The coarse count is
purely digital and is incremented at the beginning of
each cycle by a subroutine which is called from the
highest priority interrupt. A logical signal is required
if the coarse count is incremented during the time
between holding and reading an ADC. This signal
is obtained by "ANDing" the holding registers of
the coarse count and the zero-crossing interrupts. By
using this signal to set a flip-flop which feeds a discrete
control line, and by reading this line at the same time
as the digital computer' reads the ADC, the coarse
count portion of the stored time may be decremented
if necessary.

The triangular wave is an easily synchronized signal
with no discontinuities. For timing purposes, 'however,
it is necessary to know whether the wave is ramping
up or down at the time of reading. This is achieved by
using, for each channel, a flip-flop tied into a discrete
line; The flop-flop normally tracks the analog clock,
but maintains the present state when the holding
register indicates that the interrupt is in progress.
A zero-crossing then triggers an interrupt which simul­
taneously initiates the digital computer, holds the
ADC and the ramp up/down flip-flop, and actuates the
gate of the coarse count warning flip-flop. After recog­
nizing the interrupt, the digital computer simply reads
the ADC and the two discrete lines and stores their
values together with the coarse count. Further action
may be postponed until the post-real-time phase.

With a ten volt per millisecond excursion of the
analog triangular wave, the ADC's are able to resolve

A Hybrid Frequency Response Technique 805

TABLE I-Successive zero crossing times for five
channels interrupted simultaneously at 5
Hz.

.969989 .969990 .96998~ .96~98~ .969991
1.169992 1.169993 1.169992 1.169995 1.169993
1.369cM8 1.369989 1.369988 I.J6998d 1.369989
i;-5'6Q~iH 1.569988 1.569987 1.569987 1.569988
1.769992 1.769993 1.769992 1.7b99~l 1.769'194
1.969989 1.9f)9990 1.9f)9989 1.9b9989 1.969991
2.169989 2.169989 2.169989 2. 169'1t19 2.169989
2.369992 2.3f)9992 2.369991 2.369991 2.369'1'112
2.1';69991 2.569992 2.569991 2.56Ci991 2.569992
";769987 2.7f)'I9~7 2.76991:11. 2.769987 2.76991:19
~.9699cH 2.96999;:? 2.969990 2.969990 2.969992
1.169991 3.169991 3.1"9991 3.169991 3.169992
3.J699A6 3.369987 3.3699d7 3.369987 3.369989
~.5699a9 3.569991 3.';69991 3.569'189 3.569991
3.769991 3.769992 3.7699cH 3.76'1991 3.769'119~
'j";()6Q9M 3.9699A9 3.9699~B J.96'1"'8d 3.96991'19
4.1699149 4.169989 4.1"9989 4.169989 4.169991
•• 369994 4.369994 4.369994 4.369993 4.369995
4.569989 5"991'19 4.5699813 4.56"'98'11 4.56'11991
4.769989 4.769989 4.769989 4.1699a~ 4.769990
4.969992 4.9699~2 4.969993 4.96'199l 4.969994
~.1699H9 5.1(999) 5.16998'11 5.169990 5.169'i92
5.369988 5.369989 5.369988 5.369987 5.369989'
5.569991 S.569<N2 5.569991 5.56'119'111 5.569992
".769991 ~.7699ql 5.769991 5.769990 5.769991
5.969987 5.969987 5.969986 5.969986 5.969988
6.169<:190 6.169991 6.169991 6.169990 6.169991
1,.3'69991 6.)f)~942 b.369991 6.369991 6.369992
6.S6998A 6.569"'~8 6.569988 6.~69"'87 6.Sft99B9
tI.71,99R9 6.7699':10 6.76"'990 6.709'11t19 6.7699"'1
t..96999? 6.9699q2 b.9f1"'~91 6.969991 6."'69993
7.169989 7.1699H9 7.169989 7.169989 7.169989
7.369989 7.369990 7.369989 7.36998'1 7.369991
"-; .569994 7.~69994 7.5f19993 7.569'1'1 .. 7.569995
7.769989 7.7699~n 7.7699119 7.709989 7.769991
7.96~9R9 7.q699M9 7.96998'1 7.969988 7.9699a9
8.1"9997- tI.169992 8.169'191 8.1MI991 8.169'1193
8.369990 1;1.369991 8.3699cH 8.3699911 8.3699'11
A.C;6q9~1l 0.56991-19 8.!:i"996~ 8.~6'198d 8.5699d9
"'.71'\9991 8.71>9941 8.769991 8.76'>1991 8.769'1192

the voltages within 0.1 volts. This is equivalent to a
timing accuracy of ten microseconds. Better accuracy
could be achieved by balancing the integrators and
the ADC's for off-set and drift. Typical results from
a system without special balancing are presented in
Tables I and II. Identical channels were interrupted
simultaneously by an analog clock. Table I contains
interrupt times (zero-crossing times) for successive
interrupts at 5 Hz while Table II contains similar re­
sults for interrupts at 10Q Hz. The times of simul­
taneous events on all channels differ by no more than
three microseconds. Also the periods between succes·
sive interrupts on anyone channel differ by no more
than three microseconds. At zero-crossing frequencies
as high as 100 Hz, the nine channels of the flight
flutter program can be sampled with this same accuracy.
It is possible to read all 32 ADC channels at each a?a­
log console within one millisecond so that, at ~ s~mplmg
rate of 100 Hz, each interface channel IS Idle 90
percent of the time. Thus the data frequency or the
number of channels could be increased significantly
withou t loss of accuracy.

Post real-time processing

With a maximum lag of only a few cycles after
occurrences on the aircraft? a digital description of

806 Fall Joint Computer Conference, 1969

TABLE II-Successive zero crossing times for five
channels interrupted simultaneously at
100 Hz.

cmIDre. L 1

.11Q99Z

.18Q994

.19Q992

.20Q994

.21Q992

.229994

.?399q 3

.2.Q-.}9 ..

.25Q99 3

.1.bqY9..,

.21Q!,J~3

.2AQq9.

.?'194 <.n
• :H\9'1'~4
.'31Q'Nl
.32Q-J'I4
.31Q'N?
• :~4q94"
.~.,q44J

.30'Hq"
• :'Hq'N3
• 1RQ'I44
• 19Q'~9-1
.40'1'144
.41'1997
.4299'14
.43QY Q 3
.44'1":/'14
... 'iQ~'O

• 4'l4-JY4
.47Q99:'
.4AQ!,J44
.4QQ'I4 '3
.tlOqQ'J4
.<;144<»)
• "2YY'~"
.r.;~oCNj

.54Q'J9'->

.r:.,c..,Q44'>

.C;f,09-.}''

ZEROCKOSSING TIMES IN SECONDS

CH"NNEL 2

.119992

.IR9944
• 191i991
.209994
.219942
.2299'~4

.234 917.

.2499'14

.7511942

.2"'19'~4

.~7~9'1~

.21'11i944

.24~947

.3(\':199 •

.H'N4?

.37.9944

.33"'94\
.34<:1'14.
.1.,1i9'·,.
.3649'14
._H'19'1\
.3R99 ...
.lq99l.Jt
,,,(I"'94~

.4149<:'0

.4?1.J91.J.

.43.,,441

.44<19<.14

.4",,9 Q4 1

.4h."Q-';" •

• 4 7"'9'~ 1
• '>t~1199~
.4449"11
.'i()9944
.:, 1 'JQ .. l
.'i?1.J94/+
• "d99<.1?
.... 4"J944
.'J~"'94t'
• "t)-il9 Y4

CHANNEL 3

.11999l

.189994

.199992

.209994

.219992

.729994

.1'39992-

.2.9994

.2C,994;.!

.209994
• 27991.Jt!
.?A9994
."99992
.109994
• 319992
.329994
• 'i399~2
.149Q94
• i5999]
.3t>9994
.379l}92
.lR9994
.3Q99'1t!
•• 0991.J4
.4\1i991
• 479944
.43999t
.1049944
.4,;9991.
.469994
.419991.
.4F199~4
... q99~Z
.C;09c)94
• .,199'.12
.C;2~9C)4
.r.;3999(!
."44944
• .,599'1 i
• "t>999 ..

CHA~NEL 4

.179993

.1~9994

.191i91i1.

.209994

.21999J
• U999':i
.2J999J
.249994
.Z':)9993
.269'19,
.27999Z
.2ij.,,994
.29"'992
.-J0999!:1
.3199q)
.329990
.339992
.34999&
.3';)'N9 40

.J0999&

.379991.

.3ij999~

.J9994.:!

.401.J9~"

.41'1992

.42999 ..

... J'i99.:!

.4 .. 91.J9'3

.4""'9I.Jt

.4b'l996

.471.J9~l

.41:1~944

.41i9.,,91.

.~O.".,,'#:,

.':>19'193
• 'il "I 9Cj 4

- .~3~"I'i3
,"4~'J"":'
• .,~1.J9,,*l
.,b994n

CHANNEL 0;

.119991

.189994

.199992

.201i'i94

.219991

.l21i99 •
• .:!39991
.249994
.259~9Z
.20999,)
.279992
.2f11i994
.2999'.11
.309994
• 3l9.9~2
.329994
• 331i9'o12
.349'194
.3S999?
.3b'i9'i4
.J19 '192
.3f1991.J4
.J99992
.4099"'4
.419991
.4..,99"13
• 43'i'·N7.
,"4'~994
.4"i'l9'1\
.4b9'11.J4
.47'l'J'J?
.4~49':14

.4'19941.

.~099-J4

.~1~91.J?

.'2991.J4

.~]499~

.... 4'l1.J4
• 'j"'i4~]
.Sb9 9'14

nine signals can be stored in the CDC 6400. The com­
puter can be ordered to start or stop accepting real­
time data either at the console or by remote switches
in the flight test monitoring room. After a stop order

-the stored data is immediately processed. Both signal
zero-crossing times and amplitUdes undergo conven­
tional digital smoothing. Next an amplitude-versus­
frequency history is generated for all nine signals
from their peak amplitude values and the time intervals
between zero-crossings of the excitation signal. A
phase-versus-frequency history of each response signal,
relative to the excitation, follows by comparing zero­
crossing times in each response with those in the ex­
citation. Thus the hybrid computer is used as a fre­
quency response (or transfer function) analyzer. By
searching through the values of the response envelopes,
it is able to find the resonances, calculate their fre­
quencies, and normalize their amplitudes by the cor­
responding amplitUdes of the excitation. An increase
with airspeed of the normalized amplitude of a reso­
nance can indicate a decrease in its damping and in

this way the aircraft stability trends can be followed.
If the frequency sweep is sufficiently slow and if the
actual forcing of the aircraft is accurately repl'esent(~d
by the excitation signal, the computer can use the
phase information and the technique of Kennedy and
Pancu4 to separate closely coupled resonances and
calculate their damping. Because these post n~al-tirce
operations involve conventional digital programrr.ing,
details are irrelevant in this presen ta tion .

Typically, the answers, from eight resr-onse signnls
and a sweep from 1 to 30 Hz lasting 120 Beconds,
begin to appear on the line printer approximately
three seconds after the end of the sweep. For its ver­
satility a facsimile machine is used to transmit copiles
of the line printer output at eight pages per minute
to its remote terminal in the flight test monitoring
room. A remote line printer or display scoI.e could
quite easily have been used .

SUlVIMARY

The hybrid frequency response technique has m2~de­

possible very rapid data reduction during aircraft
flight flutter testing when time saving is extremely
important. Previously, such data reduction has been
performed in post real-time, to a large extent by hand,
from chart recordings. The savings in aircraft flight
time, and the increased number of channels VI hich (~an
be Ltnalyzed, fully justify the use of a large corrr-uter .
It is worth comparing this hybrid system with other
systems which were considered.

A different approach could be based on the 13ampling
of the data signals at such a high frequency that p"eak
amplitudes and zero-crossing times could ,be detected
digitally, in post real-time, by interpolation between
the samples. W hen the signals are quite clean sinusoids
of slowly varying frequency, this method leads to much
redundant data and a large storage requirerrent.
Furthermore, it was found that the use of nine data
signals and frequencies up to 30 Hz requires that the
computer accept a prolonged data input rate far
greater than its capability.

Some data compression can be achieved by the use
of the Fast Fourier Transformli which requires a mini­
mum sampling rate of at least twice the hig;hest fre­
quency of interest.6 Thus, a sweep from 1 to 30 Hz
with 120 seconds duration requires at least 7,200
samples per channel. This is approximately twice
the number taken by the hybrid technique ... On the
CDC 6400 a Fast Fourier Transform of 8192: samples
takes approximately sixty seconds per channel using
software. 'This is prohibitively long for flight flutter
testing when compared with the three sec:onds for

nine channels taken by the hybrid technique. A Fast
Fourier Transform using hardware would be much
faster but such a unit was not available. Transform
techniques are more applicable to transient and
random signals than to slow frequency sweeps.

Separate commercial frequency response analyzers
for each data channel could be interfaced with a digital
computer through analog-to-digital converters but
it is extremely difficult to justify the purchase of a
n umber of such units when a very large hybrid com­
puter is available. Certainly a digital computer is
needed to perform the many logical operations which
separate the important resonances and discard less
important ones. To obtain numerical values of
damping, digital operations appear necessary. The
hybrid computer has the. additional advantage of
making possible many convenient forms of system
control and display to further aid in saving aircraft
flight time.

This data reduction system was develoJ:ed for. use
in a flight flutter test program but it should be adapt­
able to other situations calling for very fast reduction
of slow frequency sweeps. The present application
requires only one analog console and about 25 percent
of the available central memory but it could be ex­
panded to use all four analog consoles and interfaces
to give a capability for 40 data channels. Of course,
this would dedicate the system. Some elements, such
as the hybrid time measurement circuit, could find
even wider application.

A Hybrid Frequency Response Technique 807

ACKNOWLEDGMENTS

We wish to acknowledge the valuable help of M. E.
:McCoy, A. Roberts, 11. Elder and J. Hatley of the
Hybrid Computing Department and L. A. Tolve,
S. W. Robinson and W. F. Grosser of the Aeromechanics
Division. We are also grateful to Mrs. Clara Culpepper
for the typing of the manuscript.

REFERENCES

R L BISPLINGHOFF H ASHLEY R L HALFMAN
Ael'oelasiicity
Addison-Wesley Pub Co Inc Cambridge Mass 1955 Chap I

2 G GRIMM J PHILBRICK
Flight flutter testing-Recently developed techniques in
excitation and data reduction
lAS Natl Summer Meeting Los Angeles 1960 No 60-91

3 V V SOLODOVNIKOV
Introduction to the statistical dynamics of automatic control
systems
Dover Pub N Y 1960 Chap 2

4 C C KENNEDY D C P PANCU
Use of vectors in vibration measurements and analysis
Journal of Aeronautical Science Vol 14 1947603-625

5 J W COOLEY J W TUKEY
An algorithm lor the machine calculation of complex fourier
8e1'1;eS
Math of Computation Vol 19 1965297-301

6 C E SHANNON
Communication in the presence of noise
PrQc IRE Vol 37 No 11 1949

AMERICAN FEDERATION OF INFORMATION
PROCESSING SOCIETIES (AFIPS)

OFFICERS and BOARD of DIRECTORS of AFIPS

President

Dr. Richard 1. Tanaka.
Ca1ifornia Computer Products, Inc.
305 North Muller Street
Anaheim, California 92803

Secretary

Mr; R. G. Canning
Canning Publications, Inc.
134 Escondido Avenue
Vista, California 92083

Executive Director

Dr. Bruce Gilchrist
AFIPS Headquarters
210 Summit Avenue
Montvale, New Jersey 07645

Dr. B. A. Galler
Computing Center
University of Michigan
Ann Arbor, Michigan 48104

Mr~ L. C. Hobbs
Hobbs Associates, Inc.
P.O. Box 686
Corona del Mar, California 92625

A CM Directors

Mr. Donn B. Parker
Control Data Corporation
3145 Porter Drive

V ice President

Mr. Keith W. Uncapher
The RAND Corporation
1700 Main Street
Santa Monica, California 90406

Treasurer

Dr. Walter Hoffman
Computing Center
Wayne State University
Detroit, Michigan 48202

Executive Secretary

Mr. H~ G. Asmus
AFIPS Headquarters
210 Summit Avenue
Montvale, l\ew Jersey 07645

Professor Anthony Ralston
State University of New York
Computing Center
4250 Ridge Lea Road
Amherst, New York

Palo Alto, California {}4304

IEEE Directors

-Dr. Robert A. Kudlich.
A C Electronics Division
General Motors
Milwaukee, Wisconsin 53201

Simulation Councils Director
Mr. James E. Wolle
General Electric Company
Missile & Space Division
P.O. Box 8555
Philadelphia, Pennsylvania 19101

Mr. Samuel Levine
Bunker-Ramo Corporation
445 Fairfield Avenue
Stamford, Connecticut 06902

A merican Society for Information Director
Mr. Herbert Koller
Leasco Systems & Research Corporation
4833 Rugby A venue
Bethesda, Maryland 20014

Association for Computational Linguistics Special Libraries Association Observer
Observer

Dr. Donald E. Walker
Head, Language & Text Processing
The Mitre Corporation
Bedford, Massachusett·s 01730

Society for Information Display
Observer

Mr. WHliam Bethke
RADC-(EME, W. Bethke)
Griffis Air Force Base
New York, New York 13440

Mr. Burton E. Lamkin
National Agricultural Library
U.S. Department of Agriculture
BeltsvHle, Maryland

Society for Industrial and Applied
Mathematics Observer

Dr. D. L. Thomsen, Jr.
IBM Corpor9.tion
Armonk, New York 10504

AFIPS Committee Chairmen

Abstracting
Dr. Vincent E. Guiliano
School of Information and Ljbrary Studies
Hayes C, Room 5
State University of New York
Buffalo, New York 14214

Awards
Dr. Arnold A. Cohen
UNIVAC
2276 Highcrest Drive
Roseville, Minnesota 55113

Constitution & Bylaws
Mr. Richard G. Canning
Canning Publications, Inc.
134 Escondido Avenue
Vista, California 92083

Admissions
Dr. Robert W. Rector
Informatics, Inc.
5430 Van N uys Boulevard
Sherman Oaks, California 91401

Ad Hoc Conference Committee
Dr. Barry Boehm
Computer Science Department
The RAND Corporation
1700 Main Street
Santa Monica, California 90406

Education
Dr. Melvin A. Sh~er
CSC-Infonet
650 N. Sepulveda Blvd.
El Segundo, California 90245

1969 FALL JOINT CONFERENCE COMMITTEE

Chairman

Jerry L. Koory
Planning Research COrporation

Vice Chairman

Ted Braun
Applied Computer Technology Corporation

Treasurer

lVlichael Baran
System Development Corporation

Secretary

Robert A. Berman
The RAND Corporation

Education Program

Fred Gruenberger, Chairman
San Fernando Valley State College
Don Kehbiel
Santa Monica City College
Roger Mills
TR W Systems Group
Robert White
Informatics, Inc.

Exhibits

S. F. Needham, Chairman
TRW Systems
R. D. Blosser
Autonetics
L. J. Bouser
Hewlett Packard
R. A. Burks
Scientific Data Systems
C. R. Cornwell
Lockheed Electronics
P. P. Gehl
Scientlfic Timesharing Corporation

R. K. Goran
IBM Corporation
M. C. Rogers
TItW Systems
G. M. Sylvester
Lockheed Electronics
E. G. Walsh
California Computer Products

Ladie8! Program

Ann L. Rataichak, Chairman
IBM Corporation
Mrs. J~mes O. White, Jr.
Mrs. Keith W. Uncapher
Mrs. Fred Gruenberger

Local Arrangements

Al Deutsch, Chairman
Informatics, Inc.
Valerie Maitland
The International Data Exchange
Mel Brown
Compata, Inc.
Les Levitan
The International Data Exchange
Tom Schuman
Informatics, Inc.
Stu Shaffer
System Development Corporation
Jim Smith
Naval Undersea R&D Center
Bob White
Informatics, Inc.

Printing and Mailing

Ed Chappeleas, Chairman
IBM Corporation
Glenn W. Murray, Vice Chairman
Autonetics
Edith Taggart
IBM Corporation
Alex Connolly

IBM Corporation
Charles Adamo
Philco Ford
Robert L. Koppel
Scientific Data Systems
Howard Gorman
Autonetics
Lora Perkins
Autonetics '

Public Relations

Robert B. Forest, Chairman
Datamation
Janet Eyler
Datamation
Santo A.' Lanzarotto
Soientific Data Systems
Dawn Walker
Dawn Walker Public Relations
Mike 1VI urphy
McGraw Hill
Martha Palubniak
McGraw Hill
Mike Creedman

Publications and Technical Program

E. M. Grabbe, Chairman
TRW Systems
Warren E. lVIeyer, Vice Chairman
System Development Corporation
J. W. Redd
TRW Systems
Jack J. PariseI'
Hughes Aircraft Company
Guy H. Dobbs
Isaacs, Dobbs System
John J. Rosati
TRW Systems
Art M. Rosenberg
Informatics, Ino.
Allan N. Wilson
General Dynamios
Char lie D. Coleman
IBM Corporation
Alex Hurwitz
IBM Corporation
Donald, W. Gada
Aerospace Corporation
Robert E. Perry

~ughes Aircraft Company
Esker J. Harris
IBM Corporation

Registration

Frank F. Jurkovich, Chairman
Applied Computer Technology
Patricia M. Riley, Vice Chairman
TRW Systems
Walter L. Dooley
North American Rockwell
Dixie L. Lopez
Precision Data Systems, Inc.
Phyllis W. Yorg
TRW Systems
Irene E. Matthews
TRW Systems
R. A. Hayes
Hughes Ground Systems Support

Special Activities Committee

Smith Dorsey, Chairman
Autonetics
Muriel Gustin
Varian Data Machines
Scott Hillman
Autonetics
Robert McCowan
Scientific Data Systems
Robert Steen
IBM Corporation
Paul Thomas
AutoneticB

Liason

Harry T. Larson
California Computer Products
H. G. AsmuS, AFIPS Headquarters
American Federation of Informatiolil.
Processing' Societies
Richard B. Blue, Sr., ACM
TRW Systems Group
Jerry Baker, SCI
Hughes Aircraft Company
Sei Shoh'ara, IEEE
Scientific Data Systems

Finance
Mr. Walter L. Anderson
General Kinetics, Inc.
11425 Isaac Newton Square So.
Reston, Virg1n;a 22070

IFIP Congress 71
Dr. Herbert Freeman
Professor of Electrical Engineering
New York Universit.y
University Heights
New York, New York 10453

I nformation Dissemination
Mr. Gerhard L. Hollander
Hollander Associ~.tes
P.O. Box 2276
Fullerton, California 92633

1970 SJCC

Mr. Harry L. Cooke
Radio Corporation of America
Princeton, New Jersey

JCC Technical Program

Dr. David R. Brown

Harry Ooode Memorial A ward
Mr. Brian W. Pollard
Radio Corporation of America-ISn
Building 202-2
Cherry H HI, New Jersey 08101

International Relations
Dr. Edwin L. Harder
Westinghouse Electric Corporation
Research & Development Center
Beulah Road, Churchill Borough
Pittsburgh, Penna. 15235

JCC Conference
Dr. A. S. H09.gland
IBM Research Center
P.O. Box 218
Yorktown Heights, New York 10598

Stanford Research Institute
333 Ravenswood Avenue
Menlo Park, California 94025

JCC Ceneral Chairmen

1970 FJCC

lVlr. Robert A. Sibley, Jr.
Department of Computer Science
University of Houston
Cullen Boulevan rd
Houston, Texas 77004

REVIEWERS, PANELISTS, AND SESSION CIIAIRMEN

REVIEWERS

Robert P. Abbott Fra.nk Bequaert Roy B. Carlson
Chacko T. Abraham Paul T. Berning Robert L. Carmichael
Robert M. Aiken lVI. I. Bernstein Chester C. Carroll
Richard M. Alden Paul W. Berthiaume W. C. Carter
Roy P. Allen L9.wrence Beruc Leonard J. Chaitin
Edward B. Altman William P. Bethke James M. Chambers
Saul Amarel L. L. Bewley Stanley K. Chao
L. D. Amdahl Claude D. Birkhead G. G. Chapin
Juan J. Amodei Donald V. Black T. E. Cheatham
Robert H. Anderson James A. Bloomfield H.. C. Cheek
L. V. Anderson Daniel G. Bobrow Li-an L. Chenh
T. C. Anderson Morris J. Bodoia J. Chernak
Frank D. Anzelmo Garret Boer B. F. Cheydleur
Akio Arakawa Gordon R. Bolton G. Chingari
Majid Arbab Harold Borko C. K. Chow
Paul Armer E.1. Bosch W. F. Chow
George N. Arnovick Sherman H. Boyd R. F. Churchhouse
Joel D. Aron A. lVI. Bradley E. H. Clamons
M. M. Astrp.han Robert D. Brands berg W. Douglas Climenson
Pauline A. Atherton Harvoy Bratman Lawrence J. Clingman
Donald C. Augustin E. L. Braun A. Ben Clymer
H. L. Babin Barbara Brawn Edward G. Coffman, Jr.
George F. Badger, Jr. Robert Brennan Dan Cohen
Philip R.. Bagley Melvin A. Breuer Edmund U. Cohler
Jerry H. Baker Carl N. Brooks Walter L. Colby
N. Addison Bal1 Barry W. Brown L. Stephen Coles
lVlichael Ballot J. Reese Brown, Jr. Albert H. Coltin
Robert Balzer G. E. Bryan Steve Condon
Allen E. Barlow Wener Buchholz Thomas J. Condon
Ben B. Barnes T. D. Buettel1 Ralph B. Conn
Robert M. Barnett Leslie L. Burns Michael M. Con nors
James P. Bartlett Warren P. Burrell Barbara Conrad
A. Batenburg C. A. Caceres Robert Constant
Frank Bates l\1yron A. Calhoun Alfred E. Corduan
John A. Bayless Peter Calingaerh J. L. Corbett
W. R. Beam E. David Callender W. A. Cornell
C. K. Bedient Thomas W. Calvert Ira W. Cotton
G. A. Bekey D. J. Campbell George A. Coulman
Robert W. Berner Anthony V. Campi F. C. Cowburn
R. D. Benham Rudd H. Canaday T. D. Cox
Russell Bennett David W. Cardwell Richard L. Crandall

Arthur J. Critchlow
D. L. Critchlow
James J. Croke
Herbert A. Crosby
Joseph D. Crunkleton
Nicholas Cserhalmi
Charles A. Csuri
Joseph F. Cunningham
Alfred G. Dale
Donald A. Darms
C. M. Davis
Kenton S. Day
Stephen Peter de J ong
Peter B. Denes
Peter J. Denning
Weldon C. Dennis
Karl S. Detzer
U. Clarke S. Dilks
Heinz Dinter
Donald L. Dittberner
George G. Dodd
R.ichard K. Dove
John C. Duffendack
Michael A. Duggan
John J. Dulin
Arnold 1. Dumey
T. J. Dylewski
Lester D. Earnest
Lita B. Edwin
C. A. Eggert
Raymond Eisenstark
Robert F. Elfant
Pete England
Warren J. Erikson
F. Dennis Erwin
Ed ward R.. Estes
S. E. Estes
Da vid L. Evans
Carl C. Farrington, Jr.
George A. Fedde
Juli91n Feldman
Fr91nk R. Field, Jr.
Robert T. Filep
T. R. Finch
Ray Fitzgerald
James L. Flanagan
E. Gil Flores
L.E. Fogarty
F. H. Fowler
Margaret R. Fox
Ap:lali.e J . Frank
W. Donald Frazer

Roy N. Freed
I. F. Freibergs
C. V. Freiman
Paul J. Friedl
Joyce Friedman
James P. Fry
Lewis M. Fulton
Adolf Futterweit
L. Gainen
Rodger L. Gamblin
Sherbie G. Gangwere
Manuel G. Garcia
Reed M. Gardner
Clarence Giese
M. C. Gilliland
Michael M. Gold
David G. Gordon
Jerome J. Gordon
Robert M. Gordon
D. F. Gorman
John A. Goaden
Malcolm H. Gotterer
Alan J. Gradwohl
Alonzo G. Grace, Jr.
M. N. Greenfield
Donald W. Grissinger
George F. Frondin
Qab~iel F. Gr~ner
W. Groth
Otto A. Gutwin
Adolfo Guzman
Thomas G. Hagan
Murray J. Haims
John E. S. Hale
Mark I. Halpern
Richard G. Hamlet
Carl Hammer
Frederick M. Haney
A. G ... Hanlon
P. ~. Hanratty
John W. Harbaugh
Philip A. Harding
Donald R. Haring
Esker J. Harris
J. O. Harrison
Harry P. Hartkemeier
Elbert Hartsfield
R. Dean Hartwick
S. L~ Hasin
Theodore :f. Hatch) Jr.
Kenneth E. Haughton

Arthur Hausner
Robert M. Have
Lester C. Hazlett
John Heafner
John D. Heightley
Melvin F. Heilweil
Walter A. Helbig
V. E. Henriques
Paul J. Hermann
Bertram Herzog
G.eOrge E. "Heyliger
John H. JIiestand
A. N. Higgins
Richard H. Hill
Leonard Hirsch
Ha.r.old M. Hite
Elias H. Hochman
Alistair D. C. Holden
G. L. Hollander
Arthur W. Holt
Robert L.; Hooper
James .. A. Howard
David K. Hsiao
Barbara Huberman,
Thomas A. Humphrey
Earl Hunt
Cuthbert C. Hurd
P. J. Hurley
Gilbert P. Hyatt
Manley R. Irwin
Roy A. Ito
Edwin L. Jacks
Albert S. Jackson
Edward A. Jacoby
LeoF. Jarzomb
Ronald J efferiea
Bruce B. Johnson
Edwin G. Johnson
R. E. Johnson
Walter L. Johnson
Edwin R. Jones
Terence G. Jones
Earl C. Joseph
L. E. Justice
Richard Y. Kain
Marvin J. Kaitz
J. F. Kalbach
Ted KaUner
Akira Kasahara
Char les Kellogg
Joseph E. Kernan

C. W. Kessler Carl W. Malstrom Malcolm C. Newey
Wan-Lin Kiang Richard L. Mandelh Fred Newman
Robert E. King Michael Marcotty William M. Newman
E. S. Kinney John Markus C. B. Newport
PlUlip Kiviat M. E. Maron h R. V. Niedrauer
K. E. Knight Irvin Marshall Norman R. Nielsen
Prentiss Knowlton William L. Martin Nils J. Nilsson
Manfred Kochen R. L. Mattison N. Nisenoff
H. R. Koen, Jr. Harold E. Maruer Samuel Nissim
Eldo C. Koenig Lynn H. Maxson J. D. Noe
C. J. Koester C. Hugh Mays Ronald A. Nolby
James S. Koford M. E. McCoy Paul Northrop
Igal Kohavi Andrew J. McGill William A. N otz
Ziv Kohavi J. L .. McKenney D. R. O'Bell
Anthony J. Kolk, Jr. P. T. McKiernan Joseph A. O'Brien
Deena Koniver John McLeod A.Ockene
John O. Kopf M. W. McMurran Cedric F. O'Donnell
G. A. Korn H. W. Margler Ken O'Flaherty
Ladis D.)! ovaoh Michael J. Merritt John T. O'Neil, Jr.
R. L. Kuehn Gene S. Metsker Lubomyr S. Onyshkevych
Carl J. Kuehner Charles S. Meyer G. Oppenheimer
J. H. Kuney James C. Michener Hichard H. Orenstein
Jerome Kurtzberg Bart J. Michielsen Elmer Edwin Osborne
Kenneth C. K wan Kenneth L. Miller J. T. Owens
Dominic A. Laiti Stephen W. Miller Thomas F. Penderghast
Butler W. Lampoon W. F. MiIJer Lysel H. Peterson
Daniel J. Lasser Jack Minker J. G. Petitt
P. Lazarush Gerald. Minton James K. Picciano
Eric G. A. LeBln Baker A. Mitchell Melvin W. Pirtle
Richard C. T. Lee E. E. L. Mitchell Walrren J. Plath
Y. C. Lee Gordon S. Mitchell A. V. Pohm
M. Lehman Benjamin Mittman Robert V. Pole
John Lennie h Owen R. Mock James M. Pomerene
A. S. Lett h Marion F. Moon Sigmund N. Porter
William E. Lewis Dana W. Moore John A. Postley
W. Wayne Lichtenberger Richard Kelly Moore A. W. Potts
Hans P. Lie Richard A. Moran L. K. Pounds
Leonard R. Lindenmeyer Stanley M. Morris M. J. D. Powell
Carroll R. Lindholm George J. Moshos Rebecca C. Prather
Robert K. Lindsay Robert A. Mosier R.. J. Preiss
R.obert N. Linebarger John H. Munson J. Paul Pdtchard, Jr.
Thomas P. Linville John K. Munson 1. C. Pyle
Ho-Nien Liu Anthony W. Muoio Jesse T. Quatse
Kenneth. M. Lochner, Jr. John J. Murray James S. Raby
R. D. Lohman F. W. Murray C. V. R amamoorthy
Henry A. Long Robert P. Myers Bertram Raphael
Fred Luconi h Jan A. Narud M. D. Rapkin
David K. Lynn David Nee A. Karl Rapp
Malcolm Mac21ulay Gary W. Nelson Louis C. Ray
B. E. F. Macefield Richard A.N esbit Stanley.G. Reed
Walter Main Peter G. Neumann Harry C. Reinstein
C. M. MaJoneh Allen N ewelJ Irwin Remson

William T. Rhoades Elmer B. Shapiro W. P. Timlake

Phyllis A. Richmond Jaoke E. Shemer August A. Toda

Frank C. Rieman Paul C. Sheretz Fred M. Tonge

Joseph W. Rigney Jerome S. Shipman Douglas M. Towne

Frank D. Risko Riohard R. Shively George R. Trimble, Jr.

Lawrence G. Roberts Sei Shohara Thomas D. Truitt
R. W. Roberts Paul N. Sholtz H. S. Tsou
D. E. Robison Gerald E. Short Frank Tung
Nathaniel Rochester Richard L. Shuey G. H. Turner, Jr.
Alan E. Rogers George T. Sh,uster, Jr. George J. Turner
R. M. Rojko Edgar H. Sibley G.T.Uber
Michael W. Rolund Roland Silver Leonard Uhr
Jack Roseman Leonard C. Silvern Erwin A. Ulbrich, Jr.
C. A. Rosen Q. W. Simkins Man T. Ung
Morton Rosenberg R. Simmons William R. U ttal
Jack L. Rosenfield W. D. Simpson Richard L. Van Horn
Robert R. Rosin K. D. Sirakides Richard L. Van Tilburg
William Edward Ross Patrick G. Skelly R. Vichnevetsky
R. E. Roundtree, Jr. R. A. Slater Sam S. Viglione
Raymond J. Rubey W. U. Slauk R. Von Buelow
Paul M. Rubin Donald R. Slutz Alfred H. Vorhaus
Morris Rubinoff Terry A. Smay Sigurd Waaben
Seymour Z. Rubenstein Bernard L. Smith Sven E. Wahlstrom
Fred Ruffing Kenneth Creston Smith John V. Wait
Edward C. Russell, Jr. Leland Smith R. V. Wakerling
Roy L. Russo Riohard V. Smith P. Duane Walker
Jerome D. Sable L. A. Smitzer John B. Wallace
Tak Saisho E. W. Snyder Charles J. Walter
Erik Salbu Terry R. Snyder C. A. Walton
Gerard Salton Gerald N. Soma BenC. Wang
John M. Salzer L. M. Spandorfer Gary Y. Wang
P. 1. Sampath Char les F. Spitzer Robert L. Ward
Jere L. Sanborn F. W. Springe LA. Warheit
Wendell Sander Thomas B. Steel, Jr. Homer R. Warner
F .. J. Sansom Howard H. Steenbergen M. Cameron Watson
Lawrence Sashkin John K. Stephens C. W. Watt
Helmut M. Sassenfeld David H. Stewart Vance ,W ea ver
E. S. Savas A. J. Stone M. N. Weindling
Don Savitt Harold S. Stone Leonhard H. Weiner
David B. Saylors Jon C. Strauss Ralph R. Wheeler
W. E. Schiesser Walter A. Sturm

J. J. Whelan
Arthur J. Schneider Maurice E. Suhre, Jr. Malcolm E. White
Larry C. Schooley Roger K. Summit

Gio Wider hold
Ernest J. Schubert William R. Sutherland

Jerome B. Wiener
Melvyn H. Schwartz R. Taylor Ronald L. Wigington
J. E. Schwenker Arth ur Teplitz

Roger C. Wilborn
Sally Y. Sedelow Larry Tesler
Thomas K. Seehuus Alan L. Tharp Lyle C. Wilcox

Warren D. Seider R. E. Thoman M. Wildmann

Robert H. Selzer E. M. Thomas Donald A. Willard

Arnold B. Shafritz Gregory L. Thomas Theodore J. Williams

David Shansky Martin D. Thompson Thomas G. Williams

Carrel A. Wilson Franz Worth Lawrenoe S. Young
N eIa Winkless J. H. Worthington Daniel C. Zatyko
Howard Wishner J. Howard Wright Norman S. Zimbel
Eric W. Wolf Kendall R. Wright Stuart Zimm&man
James E. Woile Ronald E. Wyllys Arthur S. Zukin
John W. Womack J. C: Wyman
Roger C. Wood J. W. Young

PANELISTS

Lynn Abbott Peter P. Harris William H. McKeeman
Paul Armer Joseph O. Harrison D. C. McElroy
L. A. Av~nzino Alan Hecht Carl E. Nelson
Robert Barnett Elias H. Hochman K.Okashima
Robert W. Berner Bernard C. Hogan K. Otten
Sergio Bernstein Joseph Hootman Max Palevsky
Paul Berthiaume John F. Horty Thomas M. Rees
Melvin Breuer Robert Jefferson John S. Saloma III
Alan R. Butcher Stephen J. Kahne Phillip L. Schiedermayer
James C. Castle Dan D. Kassan Kenneth Schurr
Ken Charshaf Al J. Knite Robert J. Seidel
Robert L. Chartrand R. C. Leader John D. Seiley
R. K. Chooljian George F. J. Lelaner John P. Singleton
A. Ben Clymer Roger Levien Thomas B. Steel, Jr.
Aaron H. Coleman Robert W. Lucky Howard Steenbergen
Robert S. Cope Tony Lumpkin Julius T. Tou
Alex d' Agapeyeff ·CarlW. Malstrom John V. T.unney
Roy Davia Michael Marcotty Lawrence Urdang
William E. DeLair John Mayne Willis Ware
Ben Erdman C. W. Medlock Milton W arsha wsky
L. E. Fogarty Mortimer Mendelsohn Lawrence Weed
Les Goldberg K. Stephen Menger John Willner
G. R. J. Grosch Paul Metzelaar Joseph H. Wimbrow
Alexander C. Grove Edward E. L. Mitchell Eric W. Wolf
Stanley D. Halper Jack E. Myers William L. Wooley
John W. Hamblen Thomas J. McConnel, Jr.

SESSION CHAIRMEN

Morton I. Bernstein Martin Greenberger William L. Martin
Leon Blitzer A. H. Halpin Donald A. Meier
David H. Brandin Robert V. Head Robert McClure
Robert R. Brown Richard Johns Bret Nehel
Walter Brunner Kenneth W. Kolence Louis Robinson
James Burrows Walter F. Kosonocky Joseph W. Smith
Michael P. Burwen RQY L. Lawrence Mer lin G. Smith
Paul S. Collins Don Lebell Robert Stuckelman
Francis L. Goff Arthur H. Lipton Robert L.Thaler
Malcolm H. Gotterer Jerome Lobel

BEST PRESENTATION AWARD PANEL

Robert H. Glaser
IBM Corporation

Harry T. Larson
California Computer

Products

Rex Rice

J2.mes H. Bennett
Applied l.ogic Corporation

J. W. Redd
TRW Systems

Fairchild Semiconductor

PRIZE PAPER COMMITTEE MEMBERS

Mr. Paul Armer
Stanford University

Dr. Edwin K. Blum
University of Southern California

Dr. D. W. Gade
The Aerospace Corporation

Mr. Nathaniel Rochester
IBM Corporation

Dr. James A. Ward
The Pentagon

Mr. Jules Schwartz
King Resources, Inc.

Dr. W. A. Sturm
The Aerospace Corporation

1969 FJCC LIST OF EXHIBITORS

Access Systems, Inc.
Adap-e, Inc.
Addison-Wesley Publishing Company, Inc.
Addressograph Multigr9.ph Corporation
Advanced Programming, Inc.
Advanced Systems Inc.
Advanced Terminals, Inc.
AFIPS Press
Airoyal Manufacturing Company
AL/COM Time Sharing Network
Allen Babcock Computing, Inc.
Allied Computer Technology, Inc./Heuristic Systems

Division
Alphameric Data Corporation
American Data Systems
American Telephone & Telegraph Company
AMP, Inc.
Ampex Corporation
Anderson Jacobson, Inc.
APL Computing Services
Applied Data Research, Inc.
Applied Digital Data Systems
Applied Dynamics, Inc.
Applied Magnetics Corporation
Applied Peripheral Systems, Inc.
<A.ssociation for Computing Machinery
Astrocom Corporation
Astrodata, Inc.
Astrosystems, Inc.
Atlantic Research Corporation,

Telecommunication Prod.ucts Dept.
Atlantic Technology Corporation
Audio Devices, Inc.
Auerbach Associates
Auerbach Corporation
Auerbach Info,/Inc.
Automated Business Systems, OEM Products-Div.

of Litton Industries
Auto-trol Corporation

Badger Meter Manufacturing-Systems Div.
Beckman Instruments, Inc.
Beehive Electrotech, Inc.
Bell & Howell, CEC/Data Instruments Div.
Beltronix Systems, Inc.
Berkeley Computer Corporation
Beta Instrumen t Corporation

BIT,Inc.
Boole & Babbage, Inc.
Brogan Associates, Inc.
Bryant Computer Products
BucodeInc.
Bunker-Ramo Corporation, Business & Industry Div.
Business Automation

Caelus Data Products
California Computer Products, Inc. (CALCOlVIP)
California Data Systems Corporation
Call-A-Computer, Inc.
Cambridge Memories, Inc.
Century Data Systems, Inc.
Certex, Inc.
Ciph~r Data Products, Inc.
Clary Datacomp Systems
Clevite Corporation
Codex Corporation
Cogar Corporation-Technology Div.
Cognitronics Corporation
Collins Radio Copmany
Colorado Instruments, Inc.
Comcet, Inc.
Communitype Corporation
Compat Corporation
Compiler Systems, Inc.
CompuSys Inc.
Computek, Inc.
Computer Access Systems, Inc.
Computer Applications Inc.
Computer Automation, Inc.
Computer Communications, Inc.
Computer Corporation of America-Houston, Texas
Computer Design
Computer Displays Inc.
Computer Equipment Corporation
Computer Industries Inc.
Computer Learning Corporation
Computer Link Corporation
Computer Micro-Data Systems, Inc.
Computer Peripherals Corporation
Computer Sciences Corporation
Computer Synetics Inc.
Computer Terminal Corporation
Computer Terminals, Inc.
Computer Test Corporation

Computer Time-Sharing Corpora~ion
Computer Transceiver Systems, Ihc.
Computerworld
Consolidated Computer Services
Consolidated Software, Inc.
Control Data Corporation
Courier Terminal Systems, Inc.
Cummins-Chicago Corporation
Cybernetics International
Cytek Information Systems Corporation

Daedalus Computer Products Inc,
DASA Corporation-Data Products Div.
Data Action Corporation
Data Card Corporation
Data Communications Systems, I~c.
Data Computer Systems '
Datacraft Corporation
Data Disc, Inc.
Data General Corporation
Data-Link Corporation
Datamark, Inc.
DataMate Computer Systems, Inc.
Datamation
Data Packaging Corporation
Data Power, Inc.
Data Printer Corporation
Data Processing lV[agazine
Data Products Corporation
Data Products News
Dataram Corporation
Datascan, Inc.
Data Systems N ewa
Data Technology
Datatype Corporation
Data West Corporation
Datel Corporation
Datran Corporation
Datron Systems Inc.
Delta Data Systems Corporation
DII AN Controls, Inc.
Dighal Development Corporation
Digital Equipment Corporation
Digital Information Devices
Digital Scientific Corporation
Digitronics Corporation
DSI Systems, Inc.
Dura, Div. Intercontinental SysteQ1.s, Inc.
Dynatronics Operation, Electronics Div.,

General Dynami cs
DyneJec Systems Corporation

Eastman Kodak Company, Businesp Systems
Malkets Div.
EDP Central, Inc.
Edutronics, Inc.
Edwin Industries Corporation
EECO
EG & G, Inc., Systems Development Div.
E-H Research Laboratories, Inc.
Electronic Associates, Inc.
Electronic Memories & Magnetics Corporation
Electronic News
EMR Computer
Executive Computer Systems, Inc.

Fabri-Tek, Inc.
Facit-Odhner, Inc.
Factsystem, Inc.
Ferranti Electric, Ine.
Ferroscube Corporation
Ford Industries, Inc.
Foto-Mem, Inc.
Fujitsu Limited

General Automation, Inc.
General Computers, Inc.
GDI Inc.
General Electric Company

Information Devices
Bull Corporation
Custom Power Equipment
Communication Products
Information Systems

General Instrument Corporation, MagneheB~d Div.
General Kinetics Inc.
Gerber Scientific Instruments Company
Graphic Data, Inc.
Graphic Displays Limited (An Electrautom Company)
GRI Computer Corporation

Hayden Publishing Company
Mendrix Electronics
Hewlett-Packard Company
H. F. Image Systems, Inc.
Honeywell-Computer Control Div.

EDP
Houston Instrucment Div. of Bausch & Lomb
Hypertech Corporation

IBM Corporation
IKOR, Inc.
Imlac Corporation

Inforex, Inc.
Information Control Corporation
Information Data Systems, Inc.
Information Displays, Inc.
Information International
Information Research Associates, Inc.
Information Stor2.ge Systems, Inc.
Information Technology & Systems, Inc.
Information Technology, Inc.
Infotec, Inc.
Infotran, Inc.
Institute of Electrical & Electronics Engineers
InterAcc€ ss Corpora tiOll
Interdata, Inc.
Interface Mechanisms, Inc.
Intermac Corporation
International Communications Corporation
International Computer Products, Inc.
International Data Sciences, Inc.
International Timesharing Corporation
Interplex Corporation
Invac Corporation
Iomec, Inc.

Jacobi Systems Corporation
Jonker Corporation

Kennedy Company
Keyboard Training, Inc.
Keymatic Data Systems Corporation
Kleinschmidt Div. of SCM Corporation
KYBE Corporation
KYBE Corporation

Lambda Electronics Corporation
Leasco Computer, Inc.
Leasco Systems & Research Corporation

Computer Service Group
Lenkurt Electric Company, Inc.
Licon Div. of Illinois Tool Works, Inc.
Linnell Electronics, Inc.
Lipps .. Inc.
Litton Datalog, Div. of Litton Industires
Lockheed Electronics Company-Data Products Div
Logic Corporation

The MacMillan Company
Magnafile, Inc.
Magnusonic Devices Inc.
MAl Equipm.ent Corporation
Marshall Communications
Marshall Data Systems

Mastech Computer Systems, Inc.
Mech:' Tronics Corpor~~ion
Memorex Corporation
Memory Technology Inc.
Merlin Systems Corporation
Microform Data Systems, Inc.
Microswitch, A Div. of Honeywell
Micro Systems Inc.
Milgo Electronic Corporation
Miller-Ellis Computer Systems, Inc.
Mini-Comp, Inc.
3M Company, Computer Graphics
Modern Data
Mohawk Data Sciences Corporation
Monitor Systems an Aydin Company
Motorola Instrumentation & Control, Inc.
McGraw-Hill Book Company

The National Cash Register Company
The National Cash Register Compnay-Industrial

Products Dlv.
N ewell Industries, Inc.
Nissei Sangyo America, LTD.
N ortec Computer Devices Inc.
N ovar Corporation
Novation, Inc.

Olivetti Underwood Corporation
Omnitec Corporation, A Div. of N ytronics, Inc.
Oneida Electronics, Inc.

Path Computer Equipment, Inc.
Penril Data Communications, Inc.
Peripheral Data Machines Inc.
Peripheral Equipment Corporation
Philco-Ford Corporation-Western Laboratories Div.
Photon, Inc.
Polaroid Corporation
Potter Instrument Company, Inc;
Prentice lIall, Inc.
Princeton Electronic Products, Inc.

RCA Graphic Systems Div.
RCA Memory Products Div.
Raytheon Company
Raytheon Company, Raytheon Computer Operation
Recortec, Inc.
Redcor Corporation
Remcom Systems, Inc.
Remex Electronics
RFI.J Industries
Rixon Electronics

Rolm Corporation
Royco Instruments, Inc.

Sanders Associates, Inc.
Sangamo Electric Comapny
Scan-Data Corporation
Scientific Control Corporation
Scientific Data Systems
Scientific Resources Corporation
The Service Bureau Corporation
Shepard Div.jVogue Instrument Corporation
Simulators, Inc.
Singer, Advanced Technology
Singer-Tele-Signal Corporation
Spartan Books
Spiras Systems, Inc, (formerly I.R.A. Systems, Inc)
Stromberg Datagraphix, Inc.
Sycor, Inc.
Sykes Datatronics, Inc.
Syner-Data" Inc.
Synergi sties Inc.
Systemlnteraction Corporation
Systems Concepts, Inc.
Systems Engineering Laboratories •

Tally Corporation
TEC, Inc.
Technitrend, Inc.
Tektronix, Inc.
Telematics, Inc.
Teletype Corporation
Telex Computer Products Div.
Tel-Tech Corporation
Tempo Computers In.c.
Terminal Equipment Corporation
Texas Instruments (Indml"trivII & Government Products

Divs.)
Time/Data Corporation
Time Share Peripherals Corporation
Time-Sharing Terminals Inc.
Toko N.Y., Inc.

Tracor Computing Corporation
Transducer Systems, Inc.
Transmission Measurements Inc.
Tri-Data Corporation
Tyco Laboratories, Inc., Digital Devices Div.
Ty-Core, Inc.
Tymshare, Inc.
Typagraph Corporation

Ultronic Systems Corporation
United Computing Systems, Inc.
UNIVAC, Div. of Sperry Rand Corporation
Universal Data Acquisition Company, Inc.
Universal Drafting Machine Corporation
Universal Systems, Inc.
U. S. Time-Sharing, Inc.
UTE (United Telecontrol Electronics)

Vanguard Data Systmes
Varian Data Machines
Vermont Research Corporation
Viatron Computer Systems Corporation
Victor Comptometer Corporation
Video Systems Corporation
Virginia Panel Corporation

Wang Laboratories
Warner Electri c
WCP, Inc.
Wescal Industries, Inc., Data Systems Div.
Western Telematic Inc.
Western Union Telegraph Company
John Wiley & Sons, Inc.
Wilkinson Computer Sciences, Inc.
Worldwide Computer Services Inc.
Wyle Laboratories-Computer Products Div.

Electronic Enclosures Div.

Xerox Corporation
Xynetics, Inc.

AUTHOR INDEX

Allen, D., 707
Avedon, D. M., 613
Balaban, P., 771
Ball, M., 329
Barnett, G. 0., 297
Blanchon, M., 499
Benson, W., 801
Bersoff, E., 337
Bobeck, A. H., 489
Braun, J. E., 51
Brooks,F. P., Jr., 525
Brown, S. A., 625
Burns, J. R., 469
Calhoun, D. F., 99
Carbonel, M., 499
Carlson, A. M., 733
Chang, H. Y., 319
Chapin, N., 413
Chu, W. W., 669
Chubb, B. A., 581
Clark, N. W., 701
Cody, W. J., 701
Comber, E. V., 135
Considine, J. P., 433"
Das, S. K., 721
Dertouzos, M. L., 561
Dietrich, E. J., 347
Di Giulio, H. A., 387
Economides, S. C., 89
Erwin, F. D., 69, 337
Fiala, E. R., 781
Fiedler, J. P., 801
Files, J. R., 423
Fischer, R. F., 487
Fox, C., 39
Franklin, M. A., 275
Freiburghouse, R. A., 187
Gartenhaus, A., 51
Gay, T. W., Jr., 553
Gonzales, M. J., 1
Graves, W. L., 287
Greenes, R. A., 297
Grochow, J. M., 379
Hagamen, W. D., 307
Haney, F. lV£', 575

Hardie, F., 329
Hart, T. W., Jr., 479
Henle, R. A., 61
Heying, D. W., 17
Hillis, D. W.; 479,
Hlady, A. M., 545
Ho, I. T;, 61
Hoffman, C. R., 479
Hughes, S. S., 789
Huskey, H. D., 423
Joseph, S., 707
Josephs, W. H., 179
Kaye, L. C., 347
Kemp, N. H., 761
Kidd, S. W., 453·
Knowlton, P., 169
Koeneman, J. K., 629
Korn, G. A., 247
Lampson, B. W., 27
Linde, R. R., 39
Lorton, P., Jr., .535
Liu, H., 441
Lutz, R. C., 479
Maley, G. A., 61
Marble, C. W., 297
Marley, J., 479
Maurer, H. E., 231
Mayer, D. B., 679
Melliar-Smith, P. M., 201
Merritt, 1"1. J., 255
Micheel, L., 463
Miller, D. S., 255
M~ller, G. M., 399
Mohn, W. S., 721
Morgan, D. W., 505
Murphy, R. W., 219
Myer, T. H., 209
MacDonald, R. A., 287
McCully, J. D., 691
Naito, S., 569
Newman, D. J., 751
Nezu, K., 569
Nisenoff, N., 637
Oliver, P., 525
Orr,W. K., 599

Pappalardo, A. N., 297
Pariser, J. J., 231
Patchen, R. E., 157
Peck, W. S., 441
Perneski, A. J., 489
Pollard, P. T., 441
Potash, H., 207
Prohofsky, L. A., 505
Ramamoorthy, C. V., 1, 89
Robinson, D. M., 515
Rudenberg, H. G., 359
Scanlon, J. M., 319
Schnei.Qer, V., 145
Schwanbeck, J. R., 629
Scott, J. H., 469
Shemer, J. E., 17
Simmons, J. M., 801
Skatrud, R. 0., 111

Slimick, J., 535
Strauss, J. C., 275, 751
Strollo, T. R., 781
Sutherland, I. E., 209
Sykes, J. S., 655
Thornton, C. G., 369
Thurber, K. J., 81
Tomlinson, R. S., 781
Tuan, P. L., 387
Vander Mey, J. E'1 157
Varney, R. C., 157
Vosbury, M. K., 209
Watson, R. W., 209
Waxman, R., 61
Weber, J. C., 307
Weiss, A. H., 433
Weissman, C., 39, 114
Witzel, T. H., 789

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361
	362
	363
	364
	365
	366
	367
	368
	369
	370
	371
	372
	373
	374
	375
	376
	377
	378
	379
	380
	381
	382
	383
	384
	385
	386
	387
	388
	389
	390
	391
	392
	393
	394
	395
	396
	397
	398
	399
	400
	401
	402
	403
	404
	405
	406
	407
	408
	409
	410
	411
	412
	413
	414
	415
	416
	417
	418
	419
	420
	421
	422
	423
	424
	425
	426
	427
	428
	429
	430
	431
	432
	433
	434
	435
	436
	437
	438
	439
	440
	441
	442
	443
	444
	445
	446
	447
	448
	449
	450
	451
	452
	453
	454
	455
	456
	457
	458
	459
	460
	461
	462
	463
	464
	465
	466
	467
	468
	469
	470
	471
	472
	473
	474
	475
	476
	477
	478
	479
	480
	481
	482
	483
	484
	485
	486
	487
	488
	489
	490
	491
	492
	493
	494
	495
	496
	497
	498
	499
	500
	501
	502
	503
	504
	505
	506
	507
	508
	509
	510
	511
	512
	513
	514
	515
	516
	517
	518
	519
	520
	521
	522
	523
	524
	525
	526
	527
	528
	529
	530
	531
	532
	533
	534
	535
	536
	537
	538
	539
	540
	541
	542
	543
	544
	545
	546
	547
	548
	549
	550
	551
	552
	553
	554
	555
	556
	557
	558
	559
	560
	561
	562
	563
	564
	565
	566
	567
	568
	569
	570
	571
	572
	573
	574
	575
	576
	577
	578
	579
	580
	581
	582
	583
	584
	585
	586
	587
	588
	589
	590
	591
	592
	593
	594
	595
	596
	597
	598
	599
	600
	601
	602
	603
	604
	605
	606
	607
	608
	609
	610
	611
	612
	613
	614
	615
	616
	617
	618
	619
	620
	621
	622
	623
	624
	625
	626
	627
	628
	629
	630
	631
	632
	633
	634
	635
	636
	637
	638
	639
	640
	641
	642
	643
	644
	645
	646
	647
	648
	649
	650
	651
	652
	653
	654
	655
	656
	657
	658
	659
	660
	661
	662
	663
	664
	665
	666
	667
	668
	669
	670
	671
	672
	673
	674
	675
	676
	677
	678
	679
	680
	681
	682
	683
	684
	685
	686
	687
	688
	689
	690
	691
	692
	693
	694
	695
	696
	697
	698
	699
	700
	701
	702
	703
	704
	705
	706
	707
	708
	709
	710
	711
	712
	713
	714
	715
	716
	717
	718
	719
	720
	721
	722
	723
	724
	725
	726
	727
	728
	729
	730
	731
	732
	733
	734
	735
	736
	737
	738
	739
	740
	741
	742
	743
	744
	745
	746
	747
	748
	749
	750
	751
	752
	753
	754
	755
	756
	757
	758
	759
	760
	761
	762
	763
	764
	765
	766
	767
	768
	769
	770
	771
	772
	773
	774
	775
	776
	777
	778
	779
	780
	781
	782
	783
	784
	785
	786
	787
	788
	789
	790
	791
	792
	793
	794
	795
	796
	797
	798
	799
	800
	801
	802
	803
	804
	805
	806
	807
	808
	809
	810
	811
	812
	813
	814
	815
	816
	817
	818
	819
	820
	821
	822
	823
	824
	825
	826

