Second-Generation

TMS320
User’s Guide

- Digital Signal Processing
Products |

4 *p
TeEXAS
INSTRUMENTS

Ipmo) s 38N X7DOZESILL

Second-Generation
TMS320

User’s Guide

*ip
TExas
INSTRUMENTS

IMPORTANT NOTICE

Texas Instruments (Tl) reserves the right to make changes to or to
discontinue any semiconductor product or service identified in this
publication without notice. Tl advises its customers to obtain the latest
version of the relevant information to verify, before placing orders,
that the information being relied upon is current.

Tl warrants performance of its semiconductor products to current
specifications in accordance with Tl's standard warranty. Testing and
other quality control techniques are utilized to the extent Tl deems
necessary to support this warranty. Unless mandated by government
requirements, specific testing of all parameters of each device is not
necessarily performed.

T1 assumes no liability for Tl applications assistance, customer product
design, software performance, or infringement of patents or services
described herein. Nor does Tl warrant or represent that any license,
either express or implied, is granted under any patent right, copyright,
mask work right, or other intellectual property right of Tl covering or
relating to any combination, machine, or process in which such
semiconductor products or services might be or are used.

Copyright © 1987, Texas Instruments Incorporated

__Manual Update

Document Title: Second-Generation TMS320 Users Guide

Document Number: SPRU014 ECN Number: 526628

The following are changes to the Second-Generation TMS320 User's Guide. These changes will
be incorporated in the next revision of the manual. Bars in the right margin indicate .changes or
additions to the manual.

Page Change or Add .
3-25 On the top line following the words “which do not affect the accumulator” add a

footnote flag (T)and, on the bottom of the page, add the following footnote:

tBIT instruction may affect the accumulator on the TMS32020 under certain I
circumstances. Refer to Section 4.3, Page 4-45.

4-45 Under the Execution heading, following the words “Affects TC", add the following
warning:

Caution: See note on next page concerning execution by TMS$32020.

@ TeExas
INSTRUMENTS

SPRZ047

Change or Add

Under the example given for the Test Bit instruction add the following note:

Note:

This instruction may affect the contents of the accumulator on the TMS32020
if the following conditions occur:

1) Overflow mode set (OVM status register bit is set).

2) Two LSBs of BIT instruction opcode (bits 8 and 9 of the instruction word)
are zero.

3) Addition of accumulator contents with contents of addressed memory
would cause accumulator overflow.

If all of the above conditions are met, the contents of the accumulator will be
replaced by the positive or negative saturation value, depending on the polarity
of the overflow.

This situation can be avoided by any one of the following means:
° Precede BIT instruction with ROVM, and follow BIT with SOVM instruction.

[If direct addressing is being used, reorganize memory so that page relative
locations 0, 4, 8, C, and 10 are not used.

e If indirect addressing is used, select new ARP that is not ARO or AR4, and
restore code later (if necessary) with LARP AR0O/4.

] Use BITT instead of BIT. BITT does not affect accumulator under any
circumstances.

° Use TMS320C25 (pin and object code compatible) instead.

This situation occurs only when the BIT instruction is executed by a TMS32020
that is in the saturation mode.

Change or Add

Following the last paragraph of section 5.5.2 (under the words “past processing”)
add the following note:

Note:

Under certain circumstances, executing the BIT instruction may affect the
contents of the accumulator on the TMS32020 device. For more information, refer
to the instruction definition in Section 4.3 Page 4-45.

Contents

Section

1 Introduction

1.1 General Description
1.2 Key Features e
1.3 Typical Applications
1.4 How To Use This Manual,
1.5 References
2 Pinouts and Signal Descriptions

21 TMS320C2x Pinouts e e
2.2 TMS320C2x Signal Descriptions oL
3 Architecture

3.1 Architectural Overviewo
3.2 Functional Block Diagram oo
3.3 Internal Hardware Summary L.
3.4 Memory Organization e e e e
3.4.1 Data Memory L
3.4.2 Program Memory e
34.3 Memory Maps e
344 Memory-Mapped Registers
345 Auxiliary Registers e
3.4.6 Memory Addressing Modeso Lo L
3.4.7 Memory-to-Memory Moveso
3.5 Central Arithmetic Logic Unit (CALU)
3.5.1 Scaling Shifter L
3.5.2 ALU and Accumulatoro
353 Multiplier, Tand P Registers
36 SystemControl
3.6.1 Program Counter and Stack
3.6.2 Pipeline Operation
3.6.3 Reset e
364 Status Registers L
3.656 Timer Operation e
3.6.6 Repeat Counter e
3.6.7 Powerdown Mode (TMS320C25)
3.7 External Memory and I/O Interface
3.71 Memory Combinations
3.7.2 Internal Clock Timing Relationships
3.7.3 General-Purpose 1/O Pins (BlIOand XF)
3.8 Interrupts S
3.81 Interrupt Operation L
382 External Interrupt Interface
3.9 Serial Port e
3.91 Transmit and Receive Operations
3.9.2 Timing and Framing Control
393 Burst-Mode Operation
394 Continuous Operation Using Frame Sync Pulses (TMS320C25)
395 Continuous Operation Without Frame Sync Pulses (TMS320C25)

3.9.6

3.10 Multiprocessing and Direct Memory Access (DMA)
3.10.1 Synchronization e
3.10.2 Global Memory e e
3.10.3 The Hold Function e
4 Assembly Language instructions

41 Memory Addressing Modes Lo Lo o oL
411 Direct Addressing Mode
4.1.2 Indirect Addressing Modeo
4.1.3 Immediate AddressingModeo,
4.2 Instruction Set L L. e
4.2.1 Symbols and Abbreviations
4.2.2 Instruction Set Summaryo oo
4.3 Individual Instruction Descriptions
5 Software Applications

5.1 Processor Initialization Lo o
5.2 Program Control
5.2.1 Subroutines L L .
5.2.2 Software Stack
5.2.3 Timer Operation e e
5.2.4 Single-Instruction Loops oL Lo oL
5.2.5 Computed GOTOs o e
5.3 Interrupt Service Routine
5.3.1 Context Switchingo
5.3.2 Interrupt Priority
5.4 Memory Management Lo
5.4.1 Block Moves
542 Configuring On-Chip RAM
5.4.3 Using On-Chip RAM for Program Execution
5.6 Fundamental Logical and Arithmetic Operations
5.5.1 Status Register Effect on Data Processing
5.5.2 Bit Manipulationo Lo e
5.6 Advanced Arithmetic Operations
5.6.1 Overflow Managemento
5.6.2 Scaling e e e e
5.6.3 Moving Data e e e e
5.6.4 Multiplication
5.6.5 Division L L e e e e e
5.6.6 Floating-Point Arithmetic
5.6.7 Indexed Addressing
5.6.8 Extended-Precision Arithmetic
5.7 Application-Oriented Operations
5.7.1 Companding L
5.7.2 FIR/HUR Filtering
5.7.3 Adaptive Filtering
5.7.4 Fast Fourier Transforms (FFT)
5.7.5 PID Control

Initialization of Continuous Operation Without Frame Sync Pulses
(TMS320C25) o e e e e e e e

wiv =

[NERY R

POPPPDODNDDNNDNDIDDONNDDDO®
AP WN =

coooooonnnnnRRWNNNNNN S

DT WN =

IOMmMQoO®WP»

Hardware Applications

System Control Circuitry
Powerup Reset Circuit
Crystal Oscillator Circuit

User Target Design Considerations When Using the XDS

Interfacing Memories
Interfacing PROMs
Wait-State Generator
Interfacing EPROMs
Interfacing Static RAMs
Interface Timing Analysis

Direct Memory Access (DMA)

Global Memory

Interfacing Peripherals
Combo-Codec Interface
AIC Interface
Digital-to-Analog (D/A) Interface
Analog-to-Digital (A/D) Interface
1/0 Ports

System Applications
Echo Cancellation
High-Speed Modem
Voice Coding
Graphics and Image Processing
High-Speed Control

Instrumentation and Numeric Processing

TMS320 Second-Generation Digital Signal Processors Data Sheet

SMJ32020 Data Sheet
TMS320C2x System Migration
Instruction Cycle Timings

Development Support/Part Order Information
Memories, Analog Converters, Sockets, and Crystals

ROM Codes
Quality and Reliability

IOTmOOwWm>
—I-A-Idnlﬂ-d—l-l

R R R I I T IR I T e e e

i

NORN S AR R REWNOWRRWWRWNRRNRNRNRNORNNON 223 sLbLLLh0ouodbhoos s
DR CORARNPRON IO ORIOTRINCOEIDADWN = O

lllustrations

Figure Page
TMS320 Device Evolution 1-1
TMS320C2x Pin Assignments, 2-2
TMS320C2x Simplified Block Diagram u.n. 3-2
TMS320C2x Block Diagram 3-6
On-Chip Data Memory e 3-12
Memory Maps ... e 3-15
Indirect Auxiliary Register Addressing Example 3-17
Auxiliary Register File 3-18
Methods of Instruction Operand Addressing 3-20
Central Arithmetic Logic Unit (CALU) 3-23
Examples of TMS320C25 Carry Bit Operation 3-25
Program Counter, Stack, and Related Hardware 3-28
Three-Level Pipeline Operation (TMS320C25) 3-30
Two-Level Pipeline Operation 3-31
TMS320C25 Standard Pipeline Operation 3-32
Pipeline Operation of ADD Followed by SACL 3-34
Pipeline Operation with Wait States 3-35
Pipeline with External Data Bus Conflict 3-36
Pipeline Operation of Branch to On-Chip RAM 3-37
Pipeline Operation of RET from On-Chip RAM 3-38
Status Register Organization i 3-42
Timer Block Diagram 3-45
Four-Phase Clock 3-49
BIO Timing Diagram e 3-50
External Flag Timing Diagramt 3-51
Interrupt Mask Register (IMR) 3-53
Internal Interrupt Logic Diagram 3-54
Interrupt Timing Diagram (TMS320C25), 3-55
The DRR and DXR Registerst 3-57
Serial Port Block Diagram 3-58
Serial Port Transmit Timing Diagram 3-59
Serial Port Receive Timing Diagram oo . 3-60
Burst-Mode Serial Port Transmit Operation 3-61
Burst-Mode Serial Port Receive Operation 3-61
Byte-Mode DRR Operationttt 3-62
Serial Port Transmit Continuous Operation (FSM =1) 3-63
Serial Port Receive Continuous Operation (FSM=1) 3-63
Serial Port Transmit Continuous Operation (FSM =0) 3-65
Serial Port Receive Continuous Operation (FSM=0) 3-65
Continuous Transmit Operation Initialization 3-67
Continuous Receive Operation Initialization 3-67
Synchronization Timing Diagram (TMS32020) 3-68
Synchronization Timing Diagram (TMS320C25) 3-69
Global Memory Access Timing i 3-70
TMS320C25 Hold Timing Diagram oo, 3-72
Direct Addressing Block Diagram 4-3
Indirect Addressing Block Diagram o ... 4-4
On-Chip RAM Configurations 5-26
MACD Operation e 5-36

0101h»wwwwwwwwwwwwwwwwwwwwr.:owwwwwwwwwwwwwwwwwwwwwww-—a

I N A A I R N A R I A A A I e A e A e A A S e A A A S A T A S A A A S A R |

[«> N >N e e e e We N Ne N N e lo Ne e Ne N Ne N e Mo > N e Ner e e Mo Ne e N N e e R el Mo R e B S IO IS IS, NS

[R]
DO PAPWN_LOO0ONOOOPRPWN_,POOONOOIA~AWN=O

ommmmmmQEO

-

Execution Time vs. Number of Multiply-Accumulates (TMS32020) 5-39

Execution Time vs. Number of Multiply-Accumulates (TMS320C25) 5-40
Program Memory vs. Number of Multiply-Accumulates 5-41
An In-Place DIT FFT with In-Order Outputs and Bit-Reversed Inputs 5-68
An In-Place DIT FFT with In-Order Inputs but Bit-Reversed Qutputs 5-69
Powerup Reset Circuitttt iieeee e 6-3

Voltage on TMS320C25 Reset Pin, 6-4

Crystal Oscillator Circuit e 6-5

Magnitude of Impedance of Oscillator LC Network 6-6

Direct Interface of TBP38L165-35 to TMS320C25 6-12
Interface Timing of TBP38L165-35 to TMS320C25 6-13
Interface of TBP38L165-35 to TMS320C25 6-14
Interface Timing of TBP38L165-35 to TMS320C25 (Address Decodmg) . 6-15
One Wait-State Memory Access Timing 6-17
Wait-State Generator Design i, 6-18
Wait-State Generator Timingu ittt i 6-19
Interface of WS57C65F-12 to TMS320C25 6-20
Interface Timing of WS57C65F-12 to TMS320C25 6-21
Interface of TMS27C64-20 to TMS320C25 6-22
Interface Timing of TMS27C64-20 to TMS320C25 6-23
Interface of CY7C169-25 to TMS320C25, 6-25
Interface Timing of CY7C169-25 to TMS320C25 6-26
Direct Memory Access Using a Master-Slave Configuration 6-30
Direct Memory Access in a PC Environment 6-31
Global Memory Communication t truniininanann.n 6-33
Interface of TMS320C25 to TCM29C16 Codec 6-35
Interface of TLC32040 to TMS320C2xttt iiiiiiineen.. 6-38
Synchronous Timing of TLC32040 to TMS320C2x 6-38
Asynchronous Timing of TLC32040 to TMS320C2x 6-38
Interface of TLC7524 to TMS32020t 6-39
Interface Timing of TLC7524 to TMS32020 6-40
Interface of TLC0820 to TMS32020 P 6-41
Interface Timing of TLC0820 to TMS32020 6-42
I/0 Port Addressing i e 6-43
1/0 Port Processor-to-Processor Communication 6-44
Echo Canceller e 6-45
High-Speed Modem i 6-46
Voice Coding System e 6-46
Graphics System e e 6-47
Robot Axis Controller Subsystem 6-48
Instrumentation System e e e 6-48
Serial Port System Migration, ... C-8

TMS320C2x Development Tools E-1

TMS320C2x XDS/22 System Configuration E-6

TMS320 AIB System Configuration ciiuinenn.. E-8

TMS320 Device Nomenclature, E-13
TMS320 Development Tool Nomenclature E-14
Crystal ConNnection ittt et e F-33
TMS320C2x ROM Code Flowchart cueo... G-2

vii

Tables

Table

TMS320C2x Processors Qverview
Typical Applications of the TMS320 Family
TMS320C2x Signal Descriptions it
TMS320C2x Internal Hardwaret
Memory-Mapped Registers i e
PM Shift Modes e e
Instruction Pipeline Sequence
Status Register Field Definitions
Interrupt Locations and Priorities i
Serial Port Bits, Pins, and Registers 00t
Global Data Memory Configurations,
Indirect Addressing Arithmetic Operations e
Bit Fields for Indirect Addressing
Instruction Symbols L e
Instruction Set Summary e
Program Space and Time Requirements for p-/A-Law Companding
256-Tap Adaptive Filtering Memory Space and Time Requirements
Bit-Reversal Algorithm for an 8-Point Radix-2 DIT FFT
FFT Memory Space and Time Requirements
Timing Parameters of TBP38L165-35 Direct Interface to TMS320C25 ..

Timing Parameters of TBP38L165-35 to TMS320C25 (Address Decoding)

Wait States Required for Memory/Peripheral Access
Timing Parameters of WS57C64F-12 Interface to TMS320C256
Timing Parameters of TMS27C64-20 Interface to TMS320C25
Timing Parameters of CY7C169-25 Interface to TMS320C25
TMS32020 Instructions by Cycle Class
TMS32020 Instruction Cycle Timings
TMS320C25 Instructions by Cycle Class
Cycle Timings for Cycle Classes When Not in Repeat Mode
Cycle Timings for Cycle Classes When in Repeat Mode
TMS320C2x Digital Signal Processor Part Numbers
TMS320C2x Support Tool Part Numbers
Development Tool Connections to a Target System
Commonly Used Crystal Frequenciesciiiuin...
Microprocessor and Microcontroller Tests
TMS320C2x Transistors . ..o vttt ettt ettt

R R

DONDONUCITNPRBPPWWRWRWWWN ==
R /
LOMMBRWN_DRON=_BWN=0NOOTRWN = =N =

Nl iviviviv]
apwWN -

oy

TITmmm
I{J_I

viii

Page

1. Introduction

The TMS320 family of 16/32-bit single-chip digital signal processors com-
bines the flexibility of a high-speed controller with the numerical capability of
an array processor, offering an inexpensive alternative to custom VLS| and
multichip bit-slice processors for signal processing.

The TMS32010, the first digital signal processor in the TMS320 family, was
introduced in 1983. Since that time, the TMS320 family has established itself
as the industry standard for digital signal processing. The powerful instruction
set, inherent flexibility, high-speed number-crunching capabilities, and inno-
vative architecture have made the high-performance, cost-effective processors
in the TMS320 family the ideal solution to many telecommunications, com-
puter, commercial, industrial, and military applications.

The TMS320 family has now expanded into three generations of processors:
TMS320C1x, TMS320C2x, and TMS320C3x (see Figure 1-1). Many features
are common among these generations. Some specific features are added in
each processor to provide different cost/performance tradeoffs. Software
compatibility is maintained throughout the family to protect the user's invest-
ment in architecture. Each processor has software and hardware tools to
facilitate rapid design.

1982

1985

/
TMS320C3x
320C30 © 32-bit fioat-pt CPU
® 60-ns instr cycle
TMS320C2x | 2 WrRam
® 4K W ROM
32020 e 16/32-bit CPU ® 64 W instr cache
w 320C25 @ 100-ns instr cycle ® 16M W total mem
g ® 544 W data RAM ® 32x ?2-40-bnt mult
< TMS320C1x ® 4K W prog ROM ® 2 serial ports
g ® 128K W total mem | ® 2 timers
2 32010 ® 16/32-bit CPU ® 16x16=32-bit muit | ® DMA
& 32011 ® 160-ns instr cycle ® Serial port and timer
& 320C10 ® 256 W data RAM ® Block move/repeat
320C15 ® 4K W ROM/EPROM ® Multiprocessor I/F
320E15 @ 4K W ext prog mem
320C17 ® 16 x 16 =32-bit mult
320E17 @ 2 serial ports
® Companding H/W
® Coprocessor |/F
1987

Figure 1-1. TMS320 Device Evolution

1-1

Introduction

1-2

This document discusses the second-generation devices (TMS320C2x)
within the TMS320 family. The specific members of the second-generation
TMS320 include:

° TMS32020, an NMOS 20-MHz digital signal processor capable of twice
the performance of the TMS320C1x devices, and

[} TMS320C25, a CMOS 40-MHz version of the TMS32020 with twice
the performance of the TMS32020.

Plans for expansion of the TMS320 family include more spinoffs of the exist-
ing generations as well as more powerful future generations of digital signal
processors.

The TMS320 family combines the high performance and specialized features
necessary in digital signal processing (DSP) applications with an extensive
program of development support, including hardware and software develop-
ment tools, product documentation, textbooks, newsletters, DSP design
workshops, and a variety of application reports. See Appendix D for a dis-
cussion of the wide range of development tools available.

Introduction - General Description

1.1 General Description

The combination of the TMS320’s Harvard-type architecture (separate pro-
gram and data buses) and its special digital signal processing (DSP) instruc-
tion set provide speed and flexibility to produce a microprocessor family
capable of executing 10 MIPS (million instructions per second). The TMS320
family optimizes speed by implementing functions in hardware that other
processors implement through software or microcode. This hardware-inten-
sive approach provides the design engineer with power previously unavailable
on a single chip.

The second generation of the TMS320 family includes two members, the
TMS32020 and the TMS320C25. The architecture of these devices is based
upon that of the TMS32010. Table 1-1 provides an overview of the
TMS320C2x group of processors with comparisons of technology, memory,
1/0, cycle timing, and package type.

Table 1-1. TMS320C2x Processors Overview

MEMORY /ot CYCLE | PACKAGE
DEVICE TECH ON-CHIP OFF-CHIP TIME TYPE
RAM ROM PROG DATA|SER PAR DMA| (ns) |PGA PLCC
TMS32020% | NMOS | 544 - 64K 64K | YES 16x16 YES 200 68 -
TMS320C258 | CMOS | 544 4K 64K 64K | YES 16x16 CON 100 68 68

tSER = serial; PAR = parallel; DMA = direct memory access; CON = concurrent DMA.
¥Military version available; contact nearest Tl sales office for details.
§Military version planned; contact nearest TI sales office for availability.

The TMS32020, processed in NMOS technology, is source-code upward
compatible with the TMS32010 and in many applications is capable of two
times the throughput of the TMS320C1x devices. It provides an enhanced
instruction set (109 instructions), large on-chip data memory (544 words),
large memory spaces, on-chip serial port, and a hardware timer.

The TMS320C25, the newest member of the TMS320 second generation, is
processed in CMOS technology. The TMS320C25 is capable of executing
many instructions in a 100-ns cycle time. It is pin-for-pin and object-code
upward compatible with the TMS32020. The TMS320C25’s enhanced fea-
ture set greatly increases the functionality of the device over the TMS32020.
Enhancements include 24 additional instructions (133 total), eight auxiliary
registers, an eight-level hardware stack, 4K words of on-chip program ROM,
a bit-reversed indexed-addressing mode, and the low-power dissipation in-
herent to the CMOS process.

1-3

Introduction - Key Features

1.2 Key Features

1-4

Some of the key features of the TMS320C2x devices are listed below. Features
specific to a particular device are noted by enclosing the device name in pa-
rentheses.

Instruction cycle timing:
- 100 ns (TMS320C25)
- 200 ns (TMS32020)

544-word programmable on-chip data RAM
4K-word on-chip program ROM (TMS320C25)
128K-word total data/program memory space
32-bit ALU/accumulator

16 x 16-bit parallel multiplier with a 32-bit product
Single-cycle multiply/accumulate instructions

Repeat instructions for efficient use of program space and enhanced
execution

Block moves for data/program management

On-chip timer for control operations

Up to eight auxiliary registers with dedicated arithmetic unit

Up to eight-level hardware stack

Sixteen input and sixteen output channels

16-bit parallel shifter

Wait states for communication to slower off-chip memories/peripherals
Serial port for direct codec interface

Synchronization input for synchronous multiprocessor configurations
Global data memory interface

TMS320C1 x source-code upward compatibility

Concurrent DMA using an extended hold operation (TMS320C25)

Instructions for adaptive filtering, FFTs, and extended-precision arith-
metic (TMS320C25)

Bit-reversed indexed-addressing mode for radix-2 FFTs (TMS320C25)
On-chip clock generator

Single 5-V supply

Device packaging:

- 68-pin PGA

- 68-lead PLCC (TMS320C25)

Technology:
- NMOS (TMS32020)
- CMOS (TMS320C25)

Commercial and military versions available.

Introduction - Typical Applications

1.3 Typical Applications

The TMS320 family’s unique versatility and realtime performance offer flexible
design approaches in a variety of applications. In addition, TMS320 devices
can simultaneously provide the multiple functions often required in those

complex applications. Table 1-2 lists typical TMS320 family applications.

Table 1-2. Typical Applications of the TMS320 Family

GENERAL-PURPOSE DSP

GRAPHICS/IMAGING

INSTRUMENTATION

Digital Filtering
Convolution
Correlation

Hilbert Transforms

Fast Fourier Transforms
Adaptive Filtering
Windowing

3-D Rotation

Robot Vision

Image Transmission/
Compression

Pattern Recognition
Image Enhancement
Homomorphic Processing

Spectrum Analysis
Function Generation
Pattern Matching
Seismic Processing
Transient Analysis
Digital Filtering
Phase-Locked Loops

Speech Vocoding
Speech Recognition
Speaker Verification
Speech Enhancement
Speech Synthesis
Text-to-Speech

Waveform Generation Workstations
Animation/Digital Map
VOICE/SPEECH CONTROL MILITARY
Voice Mail Disk Control Secure Communications

Servo Control
Robot Control

Laser Printer Control
Engine Control
Motor Control

Radar Processing

Sonar Processing

Image Processing
Navigation

Missile Guidance

Radio Frequency Modems

TELECOMMUNICATIONS

AUTOMOTIVE

Echo Cancellation
ADPCM Transcoders
Digital PBXs

Line Repeaters
Channel Multiplexing

FAX

Cellular Telephones
Speaker Phones
Digital Speech
Interpolation (DSI)

Engine Control
Vibration Analysis
Antiskid Brakes
Adaptive Ride Control
Global Positioning

Power Tools

Digital Audio/TV
Music Synthesizer

Toys and Games
Solid-State Answering
Machines

1200 to 19200-bps Modems X.25 Packet Switching Navigation

Adaptive Equalizers Video Conferencing Voice Commands

DTMF Encoding/Decoding Spread Spectrum Digital Radio

Data Encryption Communications Cellular Telephones
CONSUMER INDUSTRIAL MEDICAL

Radar Detectors Robotics Hearing Aids

Numeric Control
Security Access
Power Line Monitors

Patient Monitoring
Ultrasound Equipment
Diagnostic Tools
Prosthetics

Fetal Monitors

Many of the TMS320C2x features, such as single-cycle multiply/accumulate
instructions, 32-bit arithmetic unit, large auxiliary register file with a separate
arithmetic unit, and large on-chip RAM and ROM, make the device particularly
applicable in digital signal processing systems. At the same time, general-
purpose applications are greatly enhanced by the large address spaces, on-
chip timer, serial port, multiple interrupt structure, provision for external wait
states, and capability for multiprocessor interface and direct memory access.

1-56

Introduction - Typical Applications

1-6

The TMS320C2x provides the flexibility to be configured to satisfy a wide
range of system requirements. This allows the device to be applied in systems
currently using costly bit-slice processors or custom ICs. Some of the system:
configurations are:

[A standalone system using on-chip memory,
® Parallel multiprocessing systems with shared glcbal data memory, or
(] Host/peripheral coprocessing using interface control signals.

Introduction - How To Use This Manual

1.4 How To Use This Manual

The purpose of this user’s guide is to serve as a reference book for the
TMS320C2x digital signal processors. Sections 2 through 6 provide specific
information about the architecture and operation of the device. Electrical
specifications and mechanical data can be found in the data sheet (Appendix

A).

The following table lists each section and briefly describes the section con-

tents.

Section 2.

Section 3.

Section 4.

Section 5.

Section 6.

Pinouts and Signal Descriptions. Drawings of the PGA and

PLCC packages for TMS320C2x devices. Functional list-
ings of the signals, their pin locations, and descriptions.

Architecture. TMS320C2x design description, hardware
components, and device operation. Functional block dia-
gram and internal hardware summary table.

Assembly Language Instructions. Addressing modes and

format descriptions. Instruction set summary listed ac-
cording to function. Alphabetized individual instruction
descriptions with examples.

Software Applications. Software application examples for
the use of various TMS320C2x instruction set features.

Hardware Applications. Hardware design techniques and
application examples for interfacing to memories, periph-
erals, or other microcomputers/microprocessors. XDS de-
sign considerations. System applications.

Eight appendices are included to provide additional information.

Appendix A.

Appendix. B.

Appendix C.

Appendix D.

Appendix E.

Second-Generation TMS320 Data Sheet. Electrical spec-
ifications, timing, and mechanical data for the TMS320C2x
devices.

SMJ32020 Data Sheet. Electrical specifications, timing,
and mechanical data for this military devices.

TMS320C2x System Migration. Information for upgrading
a TMS320C1x to a TMS32020-based system and a
TMS32020 to a TMS320C25-based system.

TMS320C2x Instruction Cycle Timings. Listings of the
number of cycles for an instruction to execute in a given
memory configuration on the TMS32020 and the
TMS320C25.

Development Support/Part Order Information. Listings of
the hardware and software available to support the
TMS320C2x devices.

1-7

Introduction - How To Use This Manual

Appendix F. Memories, Analog Converters, Sockets, and Crystals.
Listings of the Tl memories, analog conversion devices,
and sockets available to support the TMS320C2x devices
in DSP applications. Crystal specifications and vendors.

Appendix G. ROM Codes. Discussion of ROM codes (mask options)
and the procedure for implementation.

Appendix H. Quality and Reliability. Discussion of Texas Instruments
quality and reliability criteria for evaluating performance.

1-8

Introduction - References

1.5 References

The following reference list contains useful information regarding functions,
operations, and applications of digital signal processing. These books also
provide other references to many useful technical papers. The reference list is
organized into categories of general DSP, speech, image processing, and di-
gital control theory, and alphabetized by author.

General Digital Signal Processing:

Antoniou, Andreas, Digital Filters: Analysis and Design. New York, NY:
McGraw-Hill Company, Inc., 1979.

Brigham, E. Oran, The Fast Fourier Transform. Englewood Cliffs, NJ:
Prentice-Hall, Inc., 1974.

Burrus, C.S. and Parks, T.W., DFT/FFT and Convolution Algorithms.
New York, NY: John Wiley and Sons, Inc., 1984.

Digital Signal Processing Applications with the TMS320 Family, Texas
Instruments, 1986; Prentice-Hall, Inc., 1987.

Gold, Bernard and Rabiner, Lawrence R., Theory and Application of
Digital Signal Processing. 'Englewood Cliffs, NJ: Prentice-Hall, Inc.,
1975.

Gold, Bernard and Rader, C.M., Digital Processing of Signals. New
York, NY: McGraw-Hill Company, Inc., 1969.

Hamming, R.W., Digital Filters. Englewood Cliffs, NJ: Prentice-Hall,
Inc., 1977.

|EEE ASSP DSP Committee (Editor), Programs for Digital Signal Pro-
cessing. New York, NY: IEEE Press, 1979.

Jackson, Leland B., Digital Filters and Signal Processing. Hingham, MA:
Kluwer Academic Publishers, 1986.

Jones, D.L. and Parks, T.W., A Digital Signal Processing Laboratory
Using the TMS32070. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1987.

Morris, L. Robert, Digital Signal Processing Software. Ottawa, Canada:
Carieton University, 1983.

Oppenheim, Alan V. (Editor), Applications of Digital Signal Processing.
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1978.

Oppenheim, Alan V. and Schafer, R.W., Digital Signal Processing. En-
glewood Cliffs, NJ: Prentice-Hall, Inc., 1975.

Oppenheim, Alan V. and Willsky, A.N. with Young, |L.T., Signals and
Systems. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1983.

Parks, T.W. and Burrus, C.S., Digital Filter Design. New York, NY: John
Wiley and Sons, Inc., 1987.

1-9

Introduction - References

Speech:

Gray, A.H. and Markel, J.D., Linear Prediction of Speech. New York,
NY: Springer-Verlag, 1976.

Jayant, N.S. and Noll, Peter, Digital Coding of Wéveforms. Englewood
Cliffs, NJ: Prentice-Hall, Inc., 1984.

Papamichalis, Panos, Practical Approaches to Speech Coding. Engle-
wood Cliffs, NJ: Prentice-Hall, Inc., 1987.

Rabiner, Lawrence R. and Schafer, R.\W., Digital Processing of Speech
Signals. Englewocd Cliffs, NJ: Prentice-Hall, Inc., 1978.

Image Processing:

Andrews, H.C. and Hunt, B.R., Digital Image Restoration. Englewood
Cliffs, NJ: Prentice-Hall, Inc., 1977.

Gonzales, Rafael C. and Wintz, Paul, Digital Image Processing. Reading,
MA: Addison-Wesley Publishing Company, Inc., 1977.

Pratt, William K., Digital Image Processing. New York, NY: John Wiley
and Sons, 1978.

Digital Control Theory:

Jacquot, R., Modern Digital Control Systems. New York, NY: Marcel
Dekker, inc., 1981.

Katz, P., Digital Control Using Microprocessors. Englewood Cliffs, NJ:
Prentice-Hall, Inc., 1981.

Kuo, B.C., Digital Controf Systems. New York, NY: Holt, Reinholt and
Winston, Inc., 1980.

Moroney, P., Issues in the Implementation of Digital Feedback Com-
pensators. Cambridge, MA: The MIT Press, 1983.

Phillips, C. and Nagle, H., Digital Contro/ System Analysis and Design.
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1984.

2. Pinouts and Signal Descriptions

The TMS320C2x (second-generation TMS320) digital signal processors are
available in a 68-pin grid array (PGA) package. The TMS320C25 is alsc
packaged in a 68-pin plastic-leaded chip carrier (PLCC).

Adaptor sockets are commercially available to convert a TMS320C25 PLCC
package to a TMS32020-like 68-pin grid array (PGA) footprint, thus main-
taining plug-in compatibility.

When using the XDS emulator, refer to Section 6.1.3 for user target design
considerations

This section provides the pinouts and signal definitions in the following sub-
sections:

° TMS320C2x Pinouts (Section 2.1 on page 2-2)
L) TMS320C2x Signal Descriptions (Section 2.2 on page 2-3)

Electrical spécifications and mechanical data are given in Appendix A, the
Second-Generation TMS320 Data Sheet.

2-1

Pinouts - TMS320C2x

2.1 TMS320C2x Pinouts

Figure 2-1 shows pinouts of the PGA packages for the TMS320C2x devices
and the PLCC package for the TMS320C25. Refer to Section 6.1.3 for user

target system design considerations when using the XDS.

68-PIN GB
PIN GRID-ARRAY CERAMIC PACKAGE
(TOP VIEW)
1 2 344 5 6 7 8 9 10 11
A o 60600 0 0 0 0
B|l o @ o 0o e 00 0 0 @ e
c [N) [)
D o e []
E [3} [3]
F [3 L]
G| @ @ o o
H| o @ o0
J o e [I]
K| o@ e e 0o 0o 0o 0 0@ 6
L o e o o 6 ® 0 0 o
68-PIN FN
PLASTIC LEADED CHIP CARRIER PACKAGE
(TOP VIEW)
B prd «x
oransezolds, £L g3
gg‘ooconoﬁlﬁg'&'@ddgg
9 87 654 3 2 16867666564636261
vgsfio 60[TACK
D71 59 (| MSC
D612 58{] CLKOUT1
D5Y13 57} CLKOUT2
D414 56 || XF
D3|j1s 55 (| HOLDA
D2{j16 54] DX
D1jj17 53 FSX
poflis 52 (] x2/CLKIN
SYNC fJ19 51(x1
iNTo []20 50 [| BR
INT1 |21 49| STRB
INT2 {22 48 (| R/W
vee fi23 47(}Ps
DR [J24 a6lis
FSR {]25 45(1 DS
A0 []26 44[lvgs
2728293031323334353637383940414243
Lo Lo
BI¥232238%22:-323°
> > L CC LK
Figure 2-1. TMS320C2x Pin Assignments

2-2

Signal Descriptions - TMS320C2x

2.2 TMS320C2x Signal Descriptions

The signal descriptions for the TMS320C2x devices are provided in this sec-
tion. Table 2-1 lists each signal, its pin location (PGA/PLCC), function, and
operating mode(s), i.e., input, output, or high-impedance state as indicated

by I, O, or Z. The signals in Table 2-1 are grouped according to function and
alphabetized within that grouping.

2-3

Signal Descriptions - TMS320C2x

Table 2-1. TMS320C2x Signal Descriptions

SIGNAL PIN 1/0/zt DESCRIPTION
(PGA/PLCC)
ADDRESS/DATA BUSES

A15 MSB 110/43 0/2 Parallel address bus A15 (MSB) through A0 (LSB).

Al4 K9/42 Multiplexed to address external data/program memory or

A13 L9/41 1/0. Placed in high-impedance state in the hold mode.

A12 K8/40 .

A11 L8/39

A10 K7/38

A9 L7/37

A8 K6/36

A7 K5/34

A6 L5/33

Ab K4/32

A4 L4/31

A3 K3/30

A2 L3/29

A1l K2/28

A0 LSB K1/26

D15 MSB B6/2 1/0/2 Parallel data bus D15 (MSB) through DO (LSB).

D14 A5/3 Multiplexed to transfer data between the TMS320C2x and

D13 B5/4 external data/program memory or 1/O devices. Placed in_

D12 A4/5 high-impedance state when not outputting or when RS or

D11 B4/6 HOLD is asserted.

D10 A3/7

D9 B3/8

D8 A2/9

D7 B2/11

D6 C1/12

D5 C2/13

D4 D1/14

D3 D2/15

D2 E1/16

D1 E2/17

DO LSB F1/18

INTERFACE CONTROL SIGNALS

E K10/45 0/z Data, program, and 1/0 space select signals. Always high

PS J10/47 unless low level asserted for communicating to a

s J11/46 particular external space. Placed in high-impedance
state in the hold mode.

READY B8/66 1 Data ready input. Indicates that an external device is pre-
pared for the bus transaction to be completed. If the device
is not ready (READY = 0), the TMS320C2x waits one cycle
and checks READY again. READY also indicates a bus grant
to an external device after a BR (bus request) signal.

R/W H11/48 0/z Read/write signal. Indicates transfer direction when com-
municating to an external device. Normally in read mode
(high), unless low level asserted for performing a write op-
eration. Placed in high-impedance state in the hold mode.

STRB H10/49 0/Z Strobe signal. Always high unless asserted low to indicate

an external bus cycle. Placed in high-impedance state in the
hold mode.

T Input/Output/High-impedance state

2-4

Signal Descriptions - TMS§320C2x

Table 2-1

TMS320C2x Signal Descriptions (Continued)

SIGNAL

PIN

(PGA/PLCC)

/072t

DESCRIPTION

MULTIPROCESSING SIGNALS

G11/50

0

Bus request signal. Asserted when the TMS320C2x requires
access to an external global data memory space. READY is
asserted to the device when the bus is available and the
global data memory is available for the bus transaction.

A7/67

Hold input. When asserted, the TMS320C2x places the data,
address, and control lines in the high-impedance state.

E10/55

Hold acknowledge signal. Indicates that the TMS320C2x
has gone into the hold mode and that an external processor
may access the local external memory of the TMS320C2x.

F2/19

Synchronization input. Allows clock synchronization of two
or more TMS320C2x’s. SYNC is an active-low signal and
must be asserted on the rising edge of CLKIN.

INTERRUPT

AND MISCELLANEQUS SIGNALS

e
O

B7/68

Branch control input. Polled by BIOZ instruction. If low, the
TMS320C2x executes a branch. This signal must be active
during the BIOZ instruction fetch.

B11/60

Interrupt acknowledge signal. Output is only valid while
CLKOUT1 is low. Indicates receipt of an interrupt and that
the program is branching to the interrupt-vector location
indicated by A15-A0.

H1/22
G2/21
G1/20

External user interrupt inputs. Prioritized and maskable
by the interrupt mask register and the interrupt mode bit.

A6/1

Microprocessor/microcomputer mode select pin for the
TMS320C25 only. When asserted low (microcomputer
mode), the pin causes the internal ROM to be mapped into
the lower 4K words of the program memory map. In the
microprocessor mode, the lower 4K words of program me-
mory are external. On the TMS32020, MP/MC must be
connected to V.

£
)
Ol

C10/59

Microstate complete signal. Asserted low and valid only
during CLKOUT1 low when the TMS320C2x has just com-
pleted a memory operation, such as an instruction fetch or
a data memory read/write. MSC can be used to generate a
one wait-state READY signal for slow memory.

A8/65

Reset input. Causes the TMS320C2x to terminate execution
and forces the program counter to zero. When brought to a
high level, execution begins at location zero of program
memory. RS affects various registers and status bits.

XF

D11/56

o

External flag output (latched software-programmable sig-
nal). Used for signalling other processors in multiprocessor
configurations or as a general-purpose output pin.

t Input/Output/High-impedance state

2-5

Signal Descriptions - TMS320C2x

Table 2-1. TMS320C2x Signal Descriptions (Concluded)

SIGNAL PIN 1/0/Zt DESCRIPTION
(PGA/PLCC)
: SUPPLY/OSCILLATOR SIGNALS
CLKOUT1 C11/58 (o} Master clock output signal (CLKIN frequency/4). In this
document {and on the TMS320C25), CLKOUT1 rises at the
beginning of quarter-phase 3 (Q3) and falls at the begin-
ning of quarter-phase 1 (Q1). See Appendix C for device
phase definitions.
CLKOUT2 D10/57 (o} A second clock output signal. In this document (and on the
TMS320C25), CLKOUT? rises at the beginning of quar-
ter-phase 2 (Q2) and falls at beginning of quarter-phase 4
(Q4). See Appendix C for device phase definitions.
Vee A10/61 | Four 5-V supply pins, tied together externally. On the
: B10/62 TMS32020, pin A6 is also a supply pin.
H2/23
L6/35
Vss B1/10 I Three ground pins, tied together externally.
K11/44
L2/27
X1 G10/51 (0] Qutput pin from the internal oscillator for the crystal. If a
crystal is not used, this pin should be left unconnected.
X2/CLKIN F11/62 | Input pin to the internal oscillator from the crystal. If a
crystal is not used, a clock may be input to the device on this
pin.
SERIAL PORT SIGNALS
CLKR B9/64 | Receive clock input. External clock signal for clocking data
from the DR (data receive) pin into the RSR (serial port re-
ceive shift register). Must be present during serial port
transfers.
CLKX A9/63 1 Transmit clock input. External clock signal for clocking data
from the XSR (serial port transmit shift register) to the DX
(data transmit) pin. Must be present during serial port
transfers.
DR J1/24 I Serial data receive input. Serial data is received in the RSR
(serial port receive shift register) via the DR pin.
DX E11/54 0/2 Serial data transmit output. Serial data transmitted from the
XSR (serial port transmit shift register) via the DX pin.
Placed in high-impedance state when not transmitting.
FSR J2/25 1 Frame synchronization pulse for receive input. The falling
edge of the FSR pulse initiates the data-receive process,
beginning the clocking of the RSR.
FSX F10/53 1/0 Frame synchronization pulse for transmit input/output. The

falling edge of the FSX pulse initiates the data-transmit
process, beginning the clocking of the XSR. Following re-
set, the default operating condition of FSX is as an input.
This pin may be selected by software to be an output when
the TXM bit in the status register is set to 1.

T Input/Output/High-impedance state

2-6

3. Architecture

The architectural design of the TMS320C2x (second-generation TMS320)
emphasizes overall system speed, communication, and flexibility in processor
configuration. Control signails and instructions provide block memory trans-
fers, communication to slower off-chip devices, and multiprocessing imple-
mentations. Increased throughput for many DSP applications is accomplished
by single-cycle multiply/accumulate instructions, two large on-chip RAM
blocks, eight auxiliary registers with a dedicated arithmetic unit, a serial port,
hardware timer, faster 1/0 for data-intensive signal processing, and other fea-
tures.

Major topics discussed in this section are listed below.

® Architectural Overview (Section 3.1 on page 3-2)
Functional Block Diagram (Section 3.2 on page 3-5)
Internal Hardware Summary (Section 3.3 on page 3-7)

Memory Organization (Section 3.4 on page 3-11)
Data memory and program memory
Memory maps and memory-mapped registers
Auxiliary registers
Memory addressing modes
Memory-to-memory moves

® Central Arithmetic Logic Unit (CALU) (Section 3.5 on page 3-22)
Scaling shifter, ALU, and accumulator
Multiplier, T and P registers

® System Control (Section 3.6 on page 3-28)
Program counter and stack
Pipeline operation
Reset
Status registers
Timer operation
Repeat counter
Powerdown mode

® External Memory and 1/0 Interface (Section 3.7 on page 3-39)
Memory combinations
Internal clock timing relationships
External read and write cycles
General-purpose 1/0 pins (BIO and XF)

L] Interrupts (Section 3.8 on page 3-47)
Interrupt operation
External interrupt interface

® Serial Port (Section 3.9 on page 3-51)
Transmit and receive operations
Timing and framing control
Burst mode and continuous mode operation

® Multiprocessing and Direct Memory Access (Section 3.10 on page
3-63)
Synchronization
Global memory
The hold function

3-1

Architecture - Overview

3.1 Architectural Overview

3-2

The TMS320C2x high-performance digital signal processors, like the
TMS320C1x devices, implement a Harvard-type architecture that maximizes
processing power by maintaining two separate memory bus structures, pro-
gram and data, for full-speed execution. Instructions are included to provide
data transfers between the two spaces. Externally, the program and data
memory can be multiplexed over the same bus so as to maximize the address
range for both spaces while minimizing the pin count of the device.

Increased flexibility in system design is provided by two large on-chip data
RAM blocks (a total of 544 16-bit words), one of which is configurable either
as program or data memory (see Figure 3-1). An off-chip 64K-word directly
addressable data memory address space is included to facilitate implementa-
tions of DSP algorithms.

The large on-chip 4K-word masked ROM on the TMS320C25 can be used to
cost-reduce systems, thus providing for a true single-chip DSP solution (see
Figure 3-1). Programs of up to 4K words can be masked into the internal
program ROM. The remainder of the 64K-word program memory space is lo-
cated externally. Large programs can execute at full speed from this memory
space. Programs may also be downloaded from slow external memory to on-
chip RAM for full-speed operation.

+5V GND
1 DATA (16)
INTERRUPTS 256-WORD | 288-WORD
——— »| |DATA/PROG | DATA (>
rRaM | RAm N v
I MULTIPROCESSOR
4K-WORDS ROM INTERFACE
(TMS320C25) - -
MULTIPLIER

SERIAL INTERFACE
32-BIT ALU/ACC - -

SHIFTERS ADDRESS (16)

]

TIMER

Figure 3-1. TMS320C2x Simplified Block Diagram

The TMS320C2x performs two’s-complement arithmetic using the 32-bit ALU
and accumulator. The ALU is a general-purpose arithmetic unit that operates
using 16-bit words taken from data RAM or derived from immediate in-
structions or using the 32-bit result of the multiplier's product register. In

Architecture - Overview

addition to the usual arithmetic instructions, the ALU can perform Boolean
operations, providing the bit manipulation ability required of a high-speed
controller. The accumulator stores the output from the ALU and is the second
input to the ALU. The accumulator is 32 bits in length and is divided into a
high-order word (bits 31 through 16) and a low-order word (bits 15 through
0). Instructions are provided for storing the high- and low-order accumulator
words in memory.

The multiplier performs a 16 x 16-bit two’s-complement multiplication with a
32-bit result in a single instruction cycle. The multiplier consists of three ele-
ments: the T Register, P Register, and multiplier array. The 16-bit T Register
temporarily stores the multiplicand; the P Register stores the 32-bit product.
Multiplier values either come from data memory, from program memory when
using the MAC/MACD instructions, or are derived immediately from the
MPYK (multiply immediate) instruction word. The fast on-chip multiplier al-
lows the device to efficiently perform fundamental DSP operations such as
convolution, correlation, and filtering.

The TMS320C2x scaling shifter has a 16-bit input connected to the data bus
and a 32-bit output connected to the ALU. The scaling shifter produces a
left-shift of O to 16 bits on the input data, as programmed in the instruction.
The LSBs of the output are filled with zeros, and the MSBs may be either filled
with zeros or sign-extended, depending upon the state of the sign-extension
mode bit of status register ST1. Additional shift capabilities enable the pro-
cessor to perform numerical scaling, bit extraction, extended arithmetic, and
overflow prevention.

The TMS320C2x local memory interface consists of a 16-bit parallel data bus
(D15-D0), a 16-bit address bus (A15-A0), three pins for data/program me-
mory or |/O space select (DS, PS, and IS), and various system control signals.
The R/W signal controls the direction of a data transfer, and the STRB signal
provides a timing signal to control the transfer. When using on-chip program
RAM, ROM, or high-speed external program memory, the TMS320C2x runs
at full speed without wait states. The use of a READY signal allows wait-state
generation for communicating with slower off-chip memories.

Up to eight levels of hardware stack are provided for saving the contents of
the program counter during interrupts and subroutine calls. Instructions are
available for saving the device’s complete context. PUSH and POP in-
structions permit a level of nesting restricted only by the amount of available
RAM. The interrupts used in these devices are maskable.

Control operations are supported on the TMS320C2x by an on-chip memo-
ry-mapped 16-bit timer, a repeat counter, three external maskable user inter-
rupts, and internal interrupts generated by serial port operations or by the
timer. A built-in mechanism protects from those instructions that are repeated
or become multicycle due to the READY signal and from holds and interrupts.

An on-chip full-duplex serial port provides direct communication with serial
devices such as codecs, serial A/D converters, and other serial systems. The
interface signals are compatible with codecs and many other serial devices
with a minimum of external hardware. The two serial port memory-mapped
registers (the data transmit/receive registers) may be operated in either an
8-bit byte or 16-bit word mode. Each register has an external clock input, a
framing synchronization input, and associated shift registers.

3-3

Architecture - Overview

3-4

Serial communication can be used between processors in multiprocessing
applications. The TMS320C2x has the capability of allocating global data
memory space and communicating with that space via the BR (bus request)
and READY control signals. The 8-bit memory-mapped global memory allo-
cation register (GREG) specifies up to 32K words of the TMS320C2x data
memory as global external memory. The contents of the register determine the
size of the global memory space. if the current instruction addresses an oper-
and within that space, BR is asserted to request control of the bus. The length
of the memory cycle is controlled by the READY line.

The TMS320C2x supports Direct Memory Access (DMA) to its external
program/data memory using the HOLD and HOLDA signals. Another processor
can take complete control of the TMS320C2x external memory by asserting
HOLD low. This causes the TMS320C2x to place its address, data, and control
lines in the high-impedance state. Signaling between the external processor
and the TMS320C2x can be periormed using interrupts. On the TMS320C25,
two modes are available: a TMS32020-like mode in which execution is sus-
pended during assertion of HOLD, and a concurrent DMA mode in which the
TMS320C25 continues to execute its program while operating from internal
RAM or ROM, thus greatly increasing throughput in data-intensive applica-
tions.

Architecture - Block Diagram

3.2 Functional Block Diagram

The functional block diagram shown in Figure 3-2 outlines the principal
blocks and data paths within the TMS320C2x processors. Further details of
the functional blocks are provided in the succeeding sections. Refer to Section
3.3, the internal hardware summary, for definitions of the symbols used in
Figure 3-2. The block diagram also shows all of the TMS320C2x interface
pins. Note that the shaded areas on the block diagram indicate enhancements
provided on the TMS320C25.

The TMS320C2x architecture is built around two major buses: the program
bus and the data bus. The program bus carries the instruction code and im-
mediate operands from program memory. The data bus interconnects various
elements, such as the Central Arithmetic Logic Unit (CALU) and the auxiliary
register file, to the data RAM. Together, the program and data buses can carry
data from on-chip data RAM and internal or external program memory to the
multiplier in a single cycle for multiply/accumulate operations.

The TMS320C2x has a high degree of parallelism; e.g., while the data is being
operated upon by the CALU, arithmetic operations may also be implemented
in the Auxiliary Register Arithmetic Unit (ARAU). Such parallelism results in
a powerful set of arithmetic, logic, and bit-manipulation operations that may
all be performed in a single machine cycle.

3-5

Architecture - Block Diagram

2N
55
E 8¢
RBek x%33 S
U |
RIW —— V///, aric6 ////
STRE ——— IR(16)
READY ——p—1 STO(16)
BR——— & }—— n
XF | 2 ST1(16)
Wom—— 2 RPTCIB)
=3
HODA—e—o/ 2 p IFR(6)
" MSC—e—o 9 OR
B0 CLKR
RS —e— r FSR
16 ————DX
ACK —a— CLKX
AT, STACK ¥, '_F—st
/ADDRESS 16
MPIW——T} /‘7"" > ,/ @ x 16) /ILTTIMAGS
N¥(2-0)——rt——— b/ SROGRAM V'// ,XSR(161,47¥)
//nom / 16
b V14096 x 16) o DRR(16)
A15-A0 16| p29%5 5 A V7777, ,—-ﬁ—":e DXR(16)
INSTRUCTION,
P i ADD '//// /7?-— ::;(:2),
A6 // y. Ve [{
7/7/// | —et IMR(6)
@ AL A /—3/— GREG(8)
o 2 Y.
015-D0 2 16 16 116
7 . -:.:.:.'.':':Pw::-h::,-,..., 381
H3E3 RERHHE 4
fie {16 1
AROI16) | swiFTerio-16) | TR(16) MUX
AR1(16) 6 i
AR2(16) 71s8 MULTIPLIER
ARG oP9) | |rROM IR
AR4(16) L PR(32)
1 1o 132
432
fre
| ARB(3) I =
i [
H MUX 7
H ARAU(16) 16
| 3 I_.__J L b
716
Y fey
MUX !
16
B DATA/PROG :
:;;.:cx - RAM (256 x 16)
q e BLOCK BO
: DATA RAM H
BLOCK B1 16 :
(256 x 16) :
[“swFtersio-nt | :
" :
216 1 v §
16 7 ;
AN

TShifters on TMS3!

2020 (0,.1, 4)

NOTE: Shaded areas are for TMS320C25 only.

Figure 3-2. TMS320C2x Block Diagram

Architecture - Internal Hardware Summary

3.3 internal Hardware Summary

The TMS320C2x internal hardware implements functions that other process-
ors typically perform in software or microcode. For example, the device con-
tains hardware for single-cycle 16 x 16-bit multiplication, data shifting, and
address manipulation. This hardware-intensive approach provides computing
power previously unavailable on a single chip.

Table 3-1 presents a summary of the TMS320C2x internal hardware. This
summary table, which includes the internal processing elements, registers, and
buses, is alphabetized within each functional grouping. All of the symbols
used in this table correspond to the symbols used in the block diagram of
Section 3.2, the succeeding block diagrams in this section, and the text
throughout this document.

3-7

Architecture - Internal Hardware Summary

Table 3-1. TMS320C2x Internal Hardware

UNIT SYMBOL FUNCTION
Accumulator ACC (31-0) | A 32-bit accumulator split in two halves: ACCH (accu-
ACCH(31-16)| mulator high) and ACCL (accumulator low). Used for
ACCL(15-0) | storage of ALU output.

Arithmetic Logic Unit ALU A 32-bit two’s-complement arithmetic logic unit having
two 32-bit input ports and one 32-bit output port feeding
the accumulator.

Auxiliary Register ARAU A 16-bit unsigned arithmetic unit used to perform oper-

Arithmetic Unit ations on auxiliary register data.

Auxiliary Register File ARO-AR7 A register file containing five/eight 16-bit auxiliary

(15-0) registers (ARO-AR7), used for addressing data memory,
temporary storage, or integer arithmetic processing
through the ARAU.

Auxiliary Register File AFB(15-0) A 16-bit bus that carries data from the AR pointed to by

Bus the ARP.

Auxiliary Register Pointer | ARP(2-0) A 3-bit register used to select one of five/eight auxiliary
registers.

Auxiliary Register Pointer | ARB(2-0) A 3-bit register used to buffer the ARP. Each time the

Buffer ARP is loaded, the old value is written to the ARB, except
during an LST (load status register) instruction. When the
ARB is loaded with an LST1, the same value is also copied
into ARP.

Central Arithmetic Logic CALU The grouping of the ALU, multiplier, accumulator, and

Unit scaling shifter.

Data Bus D(15-0) A 16-bit bus used to route data.

Data Memory Address DAB(15-0) | A 16-bit bus that carries the data- memory address.:

Bus

Data Memory Page DP(8-0) A 9-bit register pointing to the address of the current

Pointer page. Data pages are 128 words each, resulting in 512
pages of addressable data memory space (some locations
are reserved).

Direct Data Memory DRB(15-0) | A 16-bit bus that carries the 'direct’ address for the data

Address Bus memory, which is the concatenation of the DP register
with the seven LSBs of the instruction.

Global Memory GREG(7-0) | An 8-bit memory-mapped register for allocating the size

Allocation Register of the global memory space.

Instruction Register IR(15-0) A 16-bit register used to store the currently executing in-

! struction.

Interrupt Flag Register IFR(5-0) A 6-bit flag register used to latch the active-low external
user interrupts INT(2-0) and the internal interrupts
XINT/RINT {serial port transmit/receive) and TINT (timer)
interrupts. The {FR is not accessible through software.

Interrupt Mask Register IMR({5-0) A 6-bit memory-mapped register used to mask interrupts.

tTMS320C25 only.

3-8

Architecture - Internal Hardware Summary

Table 3-1. TMS320C2x Internal Hardware (Continued)

Shift Registert

UNIT SYMBOL FUNCTION

Microcall Stackt MCS (15-0) | A single-word stack that temporarily stores the contents
of the PFC while the PFC is being used to address data
memory with the block move (BLKD/BLKP), multiply-ac-
cumulate (MAC/MACD), and table read/write
(TBLR/TBLW) instructions.

Muttiplier MULT A 16 x 16-bit parallel multiplier.

Period Register PRD (15-0) | A 16-bit memory-mapped register used to reload the timer.

Prefetch Countert PFC (15-0) | A 16-bit counter used to prefetch program instructions.
The PFC contains the address of the instruction currently
being prefetched. It is updated when a new prefetch is
initiated. The PFC is also used to address data memory
when using the block move (BLKD/BLKP), multiply-ac-
cumulate (MAC/MACD), and table read/write
(TBLR/TBLW) instructions.

Product Register PR(31-0) A 32-bit product register used to hold the multiplier pro-
duct. The PR on the TMS320C25 can also be accessed as
the most or least significant words using the SPH/SPL
(store P register high/low) instructions.

Program Bus P(15-0) A 16-bit bus used to route instructions (and data for the
MAC and MACD instructions).

Program Counter PC (15-0) A 16-bit program counter used to address program mem-
ory. The PC always contains the address of the next in-
struction to be executed. The PC contents are updated
following each instruction decode operation. On the
TMS32020, the operations of the TMS320C25 prefetch
counter are performed by the program counter.

Program Memory Address| PAB(15-0) | A 16-bit bus that carries the program memory address.

Bus

Queue Instruction QIR(15-0) A 16-bit register used to store prefetched instructions.

Registert

Random Access Memory RAM (BO) A RAM block with 256 x 16 locations configured either

(data or program) as data or program memory.

Random Access Memory RAM (B1) A data RAM block, organized as 256 x 16 locations.

(data only)

Random Access Memory RAM (B2) A data RAM block, organized as 32 x 16 locations.

(data only)

Repeat Counter RPTC (7-0) | An 8-bit counter to control the repeated execution of a
single instruction.

Serial Port Data DRR(15-0) | A 16-bit memory-mapped serial port data receive

Receive Register register. Only the eight LSBs are used in the byte mode.

Serial Port Data DXR(15-0) | A 18-bit memory-mapped serial port data transmit

Transmit Register register. Only the eight LSBs are used in the byte mode.

Serial Port Receive RSR(15-0) | A 16-bit register used to shift in serial port data from the

RX pin. RSR contents are sent to the DRR after a serial
transfer is completed. RSR is not directly accessible
through software.

TTMS320C25 only.

3-9

Architecture - Internal Hardware Summary

Table 3-1 TMS320C2x Internal Hardware (Concluded)
UNIT SYMBOL FUNCTION
Serial Port Transmit XSR(15-0) | A 16-bit register used to shift out serial port data onto

Shift Registert

the DX pin. XSR contents are loaded from DXR at the be-
ginning of a serial port transmit operation. XSR is not di-

Shifters - Shifters are located at the ALU input, the accumulator
output, and the product register output. An in-place shifter
is also located within the accumulator.

Stack Stack(15-0) | A 4/8 x 16 hardware stack used to store the PC during

interrupts or calls. The ACCL and data memory values may
also be pushed onto and popped from the stack.

Status Registers STO,ST1 Two 16-bit status registers that contain status and
(15-0) control bits.
Temporary Register TR(15-0) A 16-bit register that holds either an operand for the mul-
tiplier or a shift code for the scaling shifter.
Timer TIM (15-0) | A 16-bit memory-mapped timer (counter) for timing con-

trol.

tTMS320C25 only.

3-10

Architecture - Memory Organization

3.4 Memory Organization

3.4.1 Data

The TMS320C2x provides a total of 544 16-bit words of on-chip data RAM,
of which 288 words are always data memory and the remaining 256 words
may be configured as either program or data memory. The TMS320C25 also
provides 4K words of maskable program ROM. This section explains memory
management using the on-chip data and program memory, memory maps,
memory-mapped registers, auxiliary registers, memory addressing modes, and
memory-to-memory moves.

Memory

The 544 words of on-chip data RAM are divided into three separate blocks
(BO, B1, and B2), as shown in Figure 3-3. Of the 544 words, 256 words
(block BO) are configurable as either data or program memory by instructions
provided for that purpose; 288 words (blocks B1 and B2) are always data
memory. A data memory size of 544 words allows the TMS320C2x to handie
a data array of 512 words (256 words if on-chip RAM is used for program
memory), while still leaving 32 locations for intermediate storage. See Section
3.4.3 for memory map configurations.

The TMS320C2x can address a total of 64K words of data memory. The on-
chip data memory and internally reserved locations are mapped into the lower
1K words of the data memory space. Data memory is directly expandable up
to 64K words while still maintaining full-speed operation. A READY line is
provided for interface to slower, less-expensive memories, such as DRAMs.

Architecture - Memory Organization

FROM
PROGRAM
COUNTER?
OR
FROM
COUNTERE
FROM
AUXlLlARYOEEGISTERS
DATA PAGE POINTER
AND
DIRECT MEMORY ADDRESS
v A4)
16 16 /16
v A4
MUX MUX
16
16
BLOCK B2
(32 x 16)
DATA RAM DATA/PROG
BLOCK Bt RAM (256 x 16)
(256 x 16) BLOCK BO

TO
16 , PROGRAM
BUS

Imsszozo specific.
TMS320C25 specific.

Figure 3-3. On-Chip Data Memory

3.4.2 Program Memory

On-chip program RAM, ROM, or high-speed external program memory can
be used at full speed with no wait states. Alternatively, the READY line can
interface the TMS320C2x to slower, less-expensive external memory. A total
of 64K words of memory space is available. Internal RAM block BO can be
configured as program memory using instructions for that purpose. Execution
from this block can be initiated after the memory space has been reconfigured.
See Section 3.7.1 for a description of instruction execution using various
memory configurations.

In addition, the TMS320C25 is equipped with 4K words of on-chip program
ROM that can be mask-programmed at the factory with a customer’s program.
The on-chip ROM allows program execution at full speed without the need
for high-speed external program memory. The use of this memory also allows
the external data bus to be freed for access of external data memory.

Architecture - Memory Organization

Mapping of the first 4K-word block of off-chip/on-chip program memory is
user-selectable by means of the MP/MC (microprocessor/microcomputer) pin
on the TMS320C25. This permits the designer to accelerate time-to-market
with a TMS320C25-based product by using external ROM, and cost-reducing
it later with the 4K internal ROM without any PC-board redesign. Setting
MP/MC high maps in the block of off-chip memory; holding the pin low maps
in the block of on-chip ROM. The XF (external flag) pin can be used to toggle
the MP/MC pin to dynamically enable or disable the on-chip ROM. Note that
care must be taken and instruction pipeline operation (see Section 3.6.2) un-
derstood when using bank switching.

The MP/MC pin on the TMS320C25 is a V¢ pin on the TMS32020. This
allows substitution of a TMS320C25 for a TMS32020 since the TMS320C25
automatically operates in the microprocessor mode and therefore is plug-in
compatible in the system. See Section 2 for pinouts and signal descriptions.

3.4.3 Memory Maps

The TMS320C2x provides three separate address spaces for program memory,
data memory, and 1/0, as shown in Figure 3-4. These spaces are distin-
guished externally by means of the PS, DS, and 1S (program, data, and 1/0
space select) signals. The PS, DS, TS, and STRB signals are only active when
external memory is being addressed. During an internal addressing cycle, these
signals remain inactive high, thus preventing conflicts in memory addressing,

e.g., when block BO is configured as program memory.

The on-chip memory blocks BO, B1, and B2 are comprised of a total of 544
words of RAM. Program/data RAM block BO (256 words) resides in pages 4
and 5 of the data memory map when configured as data RAM and at ad-
dresses >FF00 to >FFFF when configured as program RAM. Block B1 (al-
ways data RAM) resides in pages 6 and 7, while block B2 resides in the upper
32 words of page 0. Note that the remainder of page 0 is composed of the
memory-mapped registers and internally reserved locations, and pages 1-3 of
the data memory map consist of internally reserved locations. The internally
reserved locations may not be used for storage, and their contents are unde-
fined when read. See Section 3.4.4 for further information on the memory-
mapped registers.

The on-chip RAM is mapped into either the 64K-word data memory or pro-
gram memory space, depending on the memory configuration (see Figure
3-4). The CNFD/CNFP instructions are used to configure block BO as either
data or program memory, respectively. The BLKP (block move from program
memory to data memory) instruction may be used to download program in-
formation to block BO when it is configured as data RAM. Then a CNFP
(configure block as program memory) instruction may be used to convert it
to program RAM (see the code example in Section 5.4.2). Regardless of the
configuration, the user may still execute from external program memory. Note
that when accessing internal program memory, external control lines remain
inactive.

Reset configures block BO as data RAM. Note that, due to internal pipelining,
when the CNFD or CNFP instruction is used to remap RAM block BO, there
is a delay before the new configuration becomes effective. This delay is one
fetch cycle if execution is from internal program RAM. On the TMS32020, a
delay of one fetch cycle occurs if execution is from external program memory.
On the TMS320C25, there is a delay of two fetch cycles if execution is from

3-13

Architecture - Memory Organization

ROM or external program memory. This is particularly important if program
execution is from the locations around >FF00. Accordingly, a CNFP instruc-
tion must be placed at location >FEFD in external memory if execution is to
continue from the first location in block BO. If a CNFP is placed at location
>FEFD, and the instruction at location >FEFF is a two-word instruction, the
second word of the instruction will be fetched from the first location in block
BO. If execution is from above location >FFQ0 and block BO is reconfigured,
care must be taken to assure that execution resumes at the appropriate point
in a new configuration.

On-chip program ROM on the TMS320C25 is located in the lower 4K words
of program memory when selected by setting MP/MC = 0. When MP/MC =
1, the lower 4K words of program memory are external.

Architecture - Memory Organization

PROGRAM
01>0000) |\ rERRUPTS
AND RESERVED
(EXTERNAL)
31(>001F)
32(>0020)
EXTERNAL
65,535(>FFFF)
IF MP/MC = 1

(MICROPROCESSOR MODE)

PROGRAM
0i>0000) | \\repRUPTS
AND RESERVED
(EXTERNAL)
31(>001F)
32(>0020)
EXTERNAL
66,279(>FEFF)
65,280(>FF00) ON-CHIP
BLOCK BO
66,535(>FFFF)
IF MP/MC = 1

(MICROPROCESSOR MODE)

PROGRAM
0(>0000) INTERRUPTS
AND RESERVED
(ON-CHIP ROM)
31(>001F)
32(>0020) ON-CHIP
ROM
4015(>0FAF)
4016(>0FBO)
RESERVED
4095(> OFFF)
4096(>1000)
EXTERNAL
65,535(>FFFF)
IF MP/MC = 0

(MICROCOMPUTER MODE
ON TMS320C25 ONLY)

0(>0000)

5(>0005)
6(>0006)

95(>005F)
96(>0060)

127(>007F)
128(>0080)

511(>01FF)
512(>0200)

767(>02FF)
768(>0300)

1023(>03FF)
1024(>0400)

65,535(> FFFF).

(a) MEMORY MAPS AFTER A CNFD INSTRUCTION

PROGRAM
0(>0000)| \\reppupTS
AND RESERVED
(ON-CHIP ROM)
31(>001F)
32(>0020) ON-CHIP
ROM
4015(>0FAF)
4016(>0FB0)
RESERVED
4095(> OFFF)
4096(>1000)
EXTERNAL
65,279(>FEFF)
65,280(>FF00) ON-CHIP
BLOCK BO
65,535(> FFFF)
IF MP/MC = 0

(MICROCOMPUTER MODE.
ON TMS320C25 ONLY)

0(>0000)

5(>0005)
6(>0006)

95(>005F)
96(>0060)

127(>007F)
128(>0080)

511(>01FF)
512(>0200)

767(>02FF)
768(>0300)

1023(>03FF)
1024(>0400)

65,535(> FFFF)

(b) MEMORY MAPS AFTER A CNFP INSTRUCTION

DATA

ON-CHIP
MEMORY-MAPPED
REGISTERS

RESERVED

ON-CHIP
BLOCK B2

RESERVED

ON-CHIP
BLOCK BO

ON-CHIP
BLOCK B1

EXTERNAL

DATA

ON-CHIP
MEMORY-MAPPED
REGISTERS

RESERVED

ON-CHIP
BLOCK B2

RESERVED

DOES NOT
EXIST

ON-CHIP
BLOCK B1

EXTERNAL

Figure 3-4. Memory Maps

PAGE 0

PAGES 1-3

PAGES 4-5

PAGES 6-7

PAGES 8-511

PAGE 0

PAGES 1-3

PAGES 4-5

PAGES 6-7

PAGES 8-511

Architecture - Memory Organization

3.4.4 Memory-Mapped Registers

The six registers mapped into the data memory space are listed in Table 3-2

. and are shown in the block diagram of Figure 3-2.

The memory-mapped registers may be accessed in the same manner as any
other data memory location, with the exception that block moves using the
BLKD (block move from data memory to data memory) instruction cannot be
performed from the memory-mapped registers.

Table 3-2. Memory-Mapped Registers

REGISTER ADDRESS

NAME LOCATION DEFINITION
DRR(15-0) 0 Serial port data receive register
DXR(15-0) 1 Serial port data transmit register
TIM(15-0) 2 Timer register
PRD(15-0) 3 Period register
IMR (5-0) 4 Interrupt mask register
GREG(7-0) 5 Global memory allocation register

3.4.5 Auxiliary Registers

The TMS320C2x provides a register file containing up to eight auxiliary reg-
isters (ARO-AR7). The TMS32020 has five auxiliary registers, and the
TMS320C25 has eight. This section discusses each register’'s function and
how an auxiliary register is selected and stored.

The auxiliary registers may be used for indirect addressing of data memory or
for temporary data storage. Indirect auxiliary register addressing (see Figure
3-5) allows placement of the data memory address of an instruction operand
into one of the auxiliary registers. These registers are pointed to by a three-bit
auxiliary register pointer (ARP) that is loaded with a value from O through 7,
designating ARO through AR7, respectively. The auxiliary registers and the
ARP may be loaded either from data memory or by an immediate operand de-
fined in the instruction. The contents of these registers may also be stored in
data memory. (Section 4 describes the programming of the indirect address-
ing mode.)

Architecture - Memory Organization

AUXILIARY REGISTER FILE DATA
MEMORY
MAP
AROL> 0 5 3 7 LOCATION
>0000
AR1[5 5 1 5 0
AUXILIARY INTERNAL
REGISTER >03FF
POINTER AR5 E § FC >0400
(N §T0) EXTERNAL

ARP [O0]1][1]—>»AR3 —» >FF3A[33121

AR4 1> 1 0 3 B >FFFF

ARST[3 2 8 B 1
AR6t[> 0 0 0 8
AR7TI[5 B8 4 3 D

tTMS320C25 specific.

Figure 3-5. Indirect Auxiliary Register Addressing Example

The aucxiliary register file (ARO-AR4 on the TMS32020 and ARO-AR7 on the
TMS320C25) is connected to the Auxiliary Register Arithmetic Unit (ARAU),
shown in Figure 3-6. The ARAU may autoindex the current auxiliary register
while the data memory location is being addressed. Indexing by either +1 or
by the contents of ARO may be performed. As a result, accessing tables of
information does not require the Central Arithmetic Logic Unit (CALU) for
address manipulation, thus freeing it for other operations.

3-17

Architecture - Memory Organization

—»IAUXILIARY REGISTER 7 (AR7) (16)7
|—»-{ AUXILIARY REGISTER 6 (AR6) (16) T
\—-| AUXILIARY REGISTER 5 (AR5) (16)7
\— AUXILIARY REGISTER 4 (AR4) (16)
] AUXILIARY AUXILIARY
AUXILIARY REGISTER 3 (AR3) (16) a REGISTER | ,3 | REGISTER
> AUXILIARY REGISTER 2 (AR2) (168) [« T=x POINTER >l BUFFER
\—»- AUXILIARY REGISTER 1 (AR1) (16) 6 OF IRt (ARP) (3) (ARB) (3)
|—-{ AUXILIARY REGISTER O (ARO) (18) |4~ ¥
6 MUX %
A } ,/16 3
INB ouT INA
16 AUXILIARY REGISTER ARITHMETIC UNIT g
(ARAU) (16)
3LSB
OF R
AUXILIARY REGISTER FILE BUS (AFB) 8, 3

T TM8320C25 specific.

Figure 3-6. Auxiliary Register File

As shown in Figure 3-6, auxiliary register 0 (ARO) or the eight LSBs of the
instruction registers can be connected to one of the inputs of the ARAU. The
other input is fed by the current AR (being pointed to by ARP). AR(ARP) re-
fers to the contents of the current AR pointed to by ARP. The ARAU performs

the following functions:

AR(ARP) + ARO - AR(ARP)
AR(ARP) - ARO - AR(ARP)
AR(ARP) + 1 - AR(ARP)

AR(ARP) - 1 - AR(ARP)
AR(ARP) - AR(ARP)

Index the current AR by adding a 16-bit

‘integer contained in ARO.

Index the current AR by subtracting a
16-bit integer contained in ARO.
Increment the current AR by one.
Decrement the current AR by one.
AR(ARP) is unchanged.

Architecture - Memory Organization

In addition to the above functions, the ARAU on the TMS320C25 performs
functions as follows:

AR(ARP) + IR(7-0) - AR(ARP) Add 8-bit immediate value to the cur-
rent AR.

AR(ARP) - IR(7-0) - AR(ARP) Subtract 8-bit immediate value from
the current AR.

AR(ARP) + rcARO — AR(ARP) Bit-reversed indexing, add ARO with
reverse-carry (rc) propagation (see
Section 4.1.2).

AR(ARP) - rcARO — AR(ARP) Bit-reversed indexing, subtract ARO
with reverse-carry (rc) propagation
(see Section 4.1.2).

Although the ARAU is useful for address manipulation in parallel with other
operations, it may also serve as an additional general-purpose arithmetic unit
since the auxiliary register file can directly communicate with data memory.
The ARAU implements 16-bit unsigned arithmetic, whereas the CALU imple-
ments 32-bit two’s-complement arithmetic. Instructions provide branches de-
pendent on the comparison of the auxiliary register pointed to by ARP with
ARO. The BANZ instruction permits the auxiliary registers to also be used as
loop counters.

The three-bit auxiliary register pointer buffer (ARB), shown in Figure 3-6,
provides storage for the ARP on subroutine calls and interrupts.

3.4.6 Memory Addressing Modes

The TMS320C2x can address a total of 64K words of program memory and
64K words of data memory. The on-chip data memory is mapped into the
64K-word data memory space. The on-chip ROM in the TMS320C25 is
mapped into the program memory space when in the microcomputer mode.
The memory maps, which change with the configuration of block BO, are de-
scribed in detail in Section 3.4.4.

The 16-bit data address bus (DAB) addresses data memory in one of the fol-
lowing two ways:

1) By the direct address bus (DRB) using the direct addressing mode (e.g.,
ADD >10), or

2) By the auxiliary register file bus (AFB) using the indirect addressing
mode (e.g., ADD *)

Operands are also addressed by the contents of the program counter in the
immediate addressing mode.

Figure 3-7 illustrates operand addressing in the direct, indirect, and immediate
addressing modes.

Architecture - Memory Organization

INSTRUCTION

DIRECT ADDRESSING [OPCODE | dma | DP

{9

2 16 OPERAND
INSTRUCTION
INDIRECT ADDRESSING | OPCODE
3 AR (ARP) 16 OPERAND
INSTRUCTION

IMMEDIATE OPERAND OPCODE |OPERAND (P)g —» INSTRUCTION

PC+1 — ¥ OPERAND

Figure 3-7. Methods of Instruction Operand Addressing

In the direct addressing mode, the 9-bit data memory page pointer (DP)
points to one of 512 pages, each page consisting of 128 words. The data
memory address (dma), specified by the seven LSBs of the instruction, points
to the desired word within the page. The address on the direct address bus
(DRB) is formed by concatenating the 9-bit DP with the 7-bit dma.

In the indirect addressing mode, the currently selected 16-bit auxiliary register
AR(ARP) addresses the data memory through the auxiliary register file bus
(AFB). While the selected auxiliary register provides the data memory address
and the data is being manipulated by the CALU, the contents of the auxiliary
register may be manipulated through the ARAU. See Figure 3-5 for an ex-
ample of indirect auxiliary register addressing. The direct and indirect ad-
dressing modes are described in detail in Section 4.1.

When an immediate operand is used, it is either contained within the instruc-
tion word itself or, in the case of 16-bit immediate operands, the word fol-
lowing the instruction opcode.

3.4.7 Memory-to-Memory Moves

3-20

The TMS320C2x provides instructions for data and program block moves and
for data move functions that efficiently utilize the configurable on-chip RAM.

The BLKD instruction moves a block within data memory, and the BLKP in-
struction moves a block from program memory to data memory. When used
with the repeat instructions (RPT/RPTK), the BLKD/BLKP instructions effi-
ciently perform block moves from on- or off-chip memory.

Implemented in on-chip RAM, the DMOV (data move) function on the
TMS320C2x is equivalent to that of the TMS320C1x. DMOV allows a word
to be copied from the currently addressed data memory location in on-chip
RAM to the next higher location while the data from the addressed location
is being operated upon in the same cycle (e.g., by the CALU). An ARAU
operation may also be performed in the same cycle when using the indirect
addressing mode. The DMOYV function is useful for implementing algorithms
that use the z°! delay operation, such as convolutions and digital filtering

Architecture - Memory Organization

where data is being passed through a time window. The data move function
can be used anywhere within blocks B0, B1, or B2. It is continuous across the
boundary of blocks BO and B1 but cannot be used with off-chip data memory.
The MACD (multiply and accumulate with data move) and the LTD (load T
register, accumulate previous product, and move data) instructions use the
data move function.

The TBLR/TBLW (table read/write) instructions allow words to be transferred
between program and data spaces. TBLR is used to read words from on-chip
ROM or off-chip program ROM/RAM into the data RAM. TBLW is used to
write words from on-chip data RAM to off-chip program RAM.

3-21

Architecture - Central Arithmetic Logic Unit

3.5 Central Arithmetic Logic Unit (CALU)

3-22

The TMS320C2x Central Arithmetic Logic Unit (CALU) contains a 16-bit
scaling shifter, a 16 x 16-bit parallel multiplier, a 32-bit Arithmetic Logic Unit
(ALU), a 32-bit accumulator (ACC), and additional shifters at the outputs of
both the accumulator and the multiplier. This section describes the CALU
components and their functions. Figure 3-8 is a block diagram showing the
components of the CALU. In the figure, note that SFL and SFR indicate shifts
to the left or right, respectively.

The following steps occur in the implementation of a typical ALU instruction:

1) Data is fetched from the RAM on the data bus,

2) Data is passed through the scaling shifter and the ALU where the arith-
metic is performed, and

3) The result is moved into the accumulator

One input to the ALU is always provided from the accumulator, and the other
input may be transferred from the Product Register (PR) of the multiplier or
from the scaling shifter that is loaded from data memory.

Architecture - Central Arithmetic Logic Unit

PROGRAM BUS

b16 V16
DATA BUS
16 16 16 |
SCALING 16 TR(16) MUX
oaXo—+| SHFTER e 0 MULTIPLIER ‘_bs
SFL(0-16) PR3]
32 32
y
SX— SFR(6) {32 SFL(1,4) }¢«— 0
32 32
A
32 MUX
7 1 32
MUX
32
32 SX
OR 0 A B

| ALU(32

432
32
v
ACCH(16) | AccCL(16) 0

7% e
[sr-nt | [__sFlo-Nt }¢—o0
{16 16 6 116

I TMS320C25 specific.
shifters on the TMS32020 of 0, 1, or 4.

Figure 3-8. Central Arithmetic Logic Unit (CALU)

3.5.1 Scaling Shifter

The TMS320C2x provides a scaling shifter that has a 16-bit input connected
to the data bus and a 32-bit output connected to the ALU (see Figure 3-8).
The scaling shifter produces a left shift of O to 16 bits on the input data, as
programmed in the instruction. The LSBs of the output are filled with zeros,
and the MSBs may be either filled with zeros or sign-extended, depending
upon the status programmed into the SXM (sign-extension mode) bit of sta-
tus register ST1.

The TMS320C2x also contains several other shifters, which allow it to perform
numerical scaling, bit extraction, extended-precision arithmetic, and overflow
prevention. These shifters are connected to the output of the multiplier and the
accumulator.

3-23

Architecture - Central Arithmetic Logic Unit

3.5.2 ALU and Accumulator

3-24

The TMS320C2x 32-bit ALU and accumulator implement a wide range of
arithmetic 'and logical functions, the majority of which execute in a single
clock cycle. Once an operation is performed in the ALU, the result is trans-
ferred to the accumulator where additional operations such as shifting may
occur. Data that is input to the ALU may be scaled by the scaling shifter.

The ALU is a general-purpose arithmetic unit that operates on 16-bit words
taken from data RAM or derived from immediate instructions. In addition to
the usual arithmetic instructions, the ALU can perform Boolean operations,
providing the bit manipulation ability required of a high-speed controller. One
input to the ALU is always provided from the accumulator, and the other input
may be provided from the Product Register (PR) of the multiplier or the input
scaling shifter that has fetched data from the RAM on the data bus. After the
ALU has performed the arithmetic or logical operations, the result is stored in
the accumulator.

The 32-bit accumulator (see Figure 3-8) is split into two 16-bit segments for
storage in data memory: ACCH (accumulator high) and ACCL (accumulator
low). Shifters at the output of the accumulator provide a left-shift of 0 to 7
places on the TMS320C25 and of 0, 1, or 4 places on the TMS32020. This
shift is performed while the data is being transferred to the data bus for stor-
age. The contents of the accumulator remain unchanged. When the ACCH
data is shifted left, the LSBs are transferred from the ACCL, and the MSBs are
lost. When ACCL is shifted left, the LSBs are zero-filled, and the MSBs are
lost.

The TMS320C2x supports floating-point operations for applications requiring
a large dynamic range. The NORM (normalization) instruction is used to nor-
malize fixed-point numbers contained in the accumulator by performing left
shifts. The LACT (load accumulator with shift specified by the T register) in-
struction denormalizes a floating-point number by arithmetically left-shifting
the mantissa through the input scaling shifter. The shift count, in this case, is
the value of the exponent specified by the four low-order bits of the T register
(TR). ADDT and SUBT (add to/subtract from accumulator with shift speci-
fied by the T register) instructions have also been provided to allow additional
arithmetic operations.

The accumulator overflow saturation mode may be programmed through the
SOVM and ROVM (set/reset overflow mode) instructions. When the accu-
mulator is in the overflow saturation mode and an overflow occurs, the over-
flow flag is set and the accumulator is loaded with either the most positive or
the most negative number depending upon the direction of overflow. The
value of the accumulator upon saturation is >7FFFFFFF (positive) or
>80000000 (negative). If the OVM (overflow mode) status register bit is reset
and an overflow occurs, the overflowed results are loaded into the accumula-
tor without modification. (Note that logical operations cannot result in over-
flow.)

The TMS320C2x can execute a variety of branch instructions that depend on
the status of the ALU and accumulator. These instructions include the BV
(branch on overflow) and BZ (branch on accumulator equal to zero). In ad-
dition, the BACC (branch to address in accumulator) instruction provides the
ability to branch to an address specified by the accumulator. Bit test in-

Architecture - Central Arithmetic Logic Unit

structions (BIT and BITT), which do not affect the accumulator, allow the
testing of a specified bit of a word in data memory.

The accumulator on the TMS320C25 also has an associated carry bit that is
set or reset depending on various operations within the device. The carry bit
allows more efficient computation of extended-precision products and addi-
tions or subtractions. It is also useful in overflow management. The carry bit
is affected by most arithmetic instructions as well as the shift and rotate in-
structions. It is not affected by loading the accumulator, logical operations, or
other such nonarithmetic or control instructions. It is also not affected by the
multiply (MPY, MPYK, and MPYU) instructions, but is affected by the accu-
mulation process in the MAC and MACD instructions. Examples of carry bit
operation are shown in Figure 3-9.

C MsB LSB C MsB LsB

X FFFF FFF:ACC X 0000 OOO?ACC
3 -

1 0000 00O0O 0 FFFF FFFF

X 7TFFF FFFF ACC X 8000 0000 ACC
+ 1 (OVM=0) - 1 (OVM=0)

0O 8000 0000 1 TFFF FFFF

1 0000 0000 ACC 0 FFFF FFFF ACC

0

+ (ADDC - 0 (suBB
0O 0000 00O 1 INSTRUCTION) 1 FFFF FFFE INSTRUCTION)

Figure 3-9. Examples of TMS320C25 Carry Bit Operation

The value added to or subtracted from the accumulator, shown in the exam-
ples of Figure 3-9, may come from either the input scaling shifter or the shifter
at the output of the P register. The carry bit is set if the result of an addition
or accumulation process generates a carry, or reset to zero if the result of a
subtraction generates a borrow. Otherwise, it is reset after an addition or set
after a subtraction.

. The ADDC (add to accumulator with carry) and SUBB (subtract from accu-
mulator with borrow) instructions provided on the TMS320C25 use the pre-
vious value of carry in their addition/subtraction operation (see these
instructions in Section 4 for more detailed information).

The one exception to operation of the carry bit, as shown in Figure 3-9, is in
the use of the ADDH (add to high accumulator) and SUBH (subtract from
high accumulator) instructions. The ADDH instruction can only set the carry
bit if a carry is generated, and the SUBH instruction can only reset the carry
bit if a borrow is generated; otherwise, neither instruction can affect it.

Two branch instructions, BC and BNC, have been provided for branching on
the status of the carry bit. The SC, RC, and LST1 instructions can also be used
to load the carry bit. The carry bit is set to one on a hardware reset.

The SFL and SFR (in-place one-bit shift to the left/right) instructions on the
TMS320C2x and the ROL and ROR (rotate to the left/right) instructions on
the TMS320C25 implement shifting or rotating of the contents of the accu-

3-25

~ Architecture - Central Arithmetic Logic Unit

mulator through the carry bit. The SXM bit affects the definition of the SFR
(shift accumulator right) instruction. When SXM = 1, SFR performs an
arithmetic right shift, maintaining the sign of the accumulator data. When
SXM = 0, SFR performs a logical shift, shifting out the LSB and shifting in a
zero for the MSB. The SFL (shift accumulator left) instruction is not affected
by the SXM bit and behaves the same in both cases, shifting out the MSB and
shifting in a zero. Repeat (RPT or RPTK) instructions may be used with the
shift and rotate instructions for multiple shift counts.

-3.6.3 Multiplier, T and P Registers

The TMS320C2x utilizes a 16 x 16-bit hardware multiplier, which is capable

of computing a signed or unsigned 32-bit product in a single machine cycle.

All multiply instructions, except the MPYU (multiply unsigned) instruction on

the TMS320C25, perform a signed multiply operation in the multiplier. That

ok is, the two numbers being multiplied are treated as two’s-complement num-

£y bers, and the result is a 32-bit two’s-complement number. As shown in Figure
‘ 3-8, the following two registers are associated with the multiplier:

° A 16-bit temporary register (TR) that holds one of the operands for the
multiplier, and
° A 32-bit product register (PR) that holds the product.

The output of the product register can be left-shifted 1 or 4 bits. This is useful
for implementing fractional arithmetic or justifying fractional products. The
output of the PR can also be right-shifted 6 bits to enable the execution of
up to 128 consecutive multiply/accumulates without the possibility of over-
flow.

An LT (load T register) instruction normally loads the TR to provide one op-
erand (from the data bus), and the MPY (multiply) instruction provides the
second operand (also from the data bus). A multiplication can also be per-
formed with an immediate operand using the MPYK instruction. In either
case, a product can be obtained every two cycles.

Two multiply/accumulate instructions (MAC and MACD) fully utilize the
computational bandwidth of the multiplier, allowing both operands to be
processed simultaneously. The data for these operations may reside anywhere
in internal or external memory, or can be transferred to the multiplier each cy-
cle via the program and data buses. This provides for single-cycle
multiply/accumulates. when used with repeat (RPT/RPTK) instructions. Note
that the DMOV portion of the MACD instruction will not function with ex-
ternal data memory addresses. On the TMS32020, the multiplier and multi-
plicand must reside in separate on-chip RAM blocks. On the TMS320C25, the
MAC and MACD instructions can be used with both operands in either inter-
nal or external memory or one each in.on-chip RAM. The SQRA (square/add)
and SQRS (square/subtract) instructions pass the same value to both inputs
of the multiplier for squaring a data memory value.

The MPYU instruction on the TMS320C25 performs an unsigned multipli-
cation, which greatly facilitates extended-precision arithmetic operations. The
unsigned contents of the T register are multiplied by the unsigned contents
of the addressed data memory location, with the result placed in the P register.
This allows operands of greater than 16 bits to be broken down into 16-bit
words and processed separately to generate products of greater than 32 bits.

Architecture - Central Arithmetic Logic Unit

After the multiplication of two 16-bit numbers, the 32-bit product is loaded
into the 32-bit Product Register (PR) on the TMS320C2x. The product from
the PR may be transferred to the ALU.

Four product shift modes (PM) are available at the Product Register (PR)
output, which are useful when performing multiply/accumulate operations,
fractional arithmetic, or justifying fractional products. The PM field of status
register ST1 specifies the PM shift mode, as shown in Table 3-3.

Table 3-3. PM Shift Modes

IF PM IS: RESULT
00 No shift
01 Left shift of 1 bit
10 Left shift of 4 bits
11 Right shift of 6 bits

Left shifts specified by the PM value are useful for implementing fractional
arithmetic or justifying fractional products. For example, the product of either
two normalized, 16-bit, two’s-complement numbers or two Q15 numbers
contains two sign bits, one of which is redundant. Q15 format, one of the
various types of Q format, is a number representation commonly used when
performing operations on non-integer numbers (see Section 5.6.6 for an ex-
planation and examples of Q15 representation). The single-bit left-shift
eliminates this extra sign bit from the product when it is transferred to the ac-
cumulator. This results in the accumulator contents being formatted in the
same manner as the multiplicands. Similarly, the product of either a normal-
ized, 16-bit, two's-complement or Q15 number and a 13-bit, two’s-
complement constant contains five sign bits, four of which are redundant.
This is the case, for example, when using the MPYK instruction. Here the
four-bit shift properly aligns the result as it is transferred to the accumulator.

Use of the right-shift PM value allows the execution of up to 128 consecutive |
multiply/accumulate operations without the threat of an arithmetic overflow,
thereby avoiding the overhead of overflow management. The shifter can be
disabled to cause no shift in the product when working with integer or 32-bit
precision operations. This allows compatibility with TMS320C1x code to be’
maintained. Note that the PM right shift is always sign-extended regardless
of the state of SXM.

The four least significant bits of the T register (TR) also define a variable shift
through the scaling shifter for the LACT/ADDT/SUBT (load/add-
to/subtract-from accumulator with shift specified by the TR) instructions.
These instructions are useful in floating-point arithmetic where a number
needs to be denormalized, i.e., floating-point to fixed-point conversion. The
BITT (bit test) instruction allows testing of a single bit of a word in data
memory based on the value contained in the four LSBs of the TR.

3-27

Architecture - System Control

3.6 System Control

System control on the TMS320C2x is provided by the program counter,
hardware stack, PC-related hardware, the external reset signal, interrupts (see
Section 3.8), the status registers, the on-chip timer, and the repeat counter.
The following sections describe the function of each of these components in
system control and pipeline operation.

v

3.6.1 Program Counter and Stack

3-28

The TMS320C2x contains a 16-bit Program Counter (PC) and a hardware
stack of four (TMS32020) or eight (TMS320C25) locations for PC storage
(see Figure 3-10). The program counter addresses internal and external pro-
gram memory in fetching instructions. The stack is used during interrupts and
subroutines.

TO PROGRAM
ADDRESS BUS

1 TMs320C25 specific.
Four-level stack provided on the TMS32020.

Figure 3-10. Program Counter, Stack, and Related Hardware

The program counter addresses program memory, either on-chip or off-chip,
via the Program Address Bus (PAB). Through the PAB, an instruction is
fetched from program memory and loaded into the Instruction Register (IR).
When the IR is loaded, the PC is ready to start the next instruction fetch cycle.
The PC may address on-chip RAM block BO when BO is configured as pro-
gram memory, or the on-chip ROM provided on the TMS320C25. The PC
also addresses off-chip program memory through the external address bus
A15-A0 and the external data bus D15-DO.

Architecture - System Control

Data memory is addressed by the program counter during a BLKD instruction,
which moves data blocks from one section of data memory to another. The
contents of the accumulator may be loaded into the PC in order to implement
"computed GOTO” operations. This can be accomplished using the BACC
(branch to address in accumulator) or CALA (call subroutine indirect) in-
structions.

To start a new fetch cycle, the PC is loaded either with PC+1 or with a branch
address (for instructions such as branches, calls, or interrupts). In the case of
conditional branches where the branch is not taken, the PC is incremented
once more beyond the location of the branch address.

The TMS320C2x also has a feature, which allows the execution of the next
single instruction N+1 times. N is defined by loading an 8-bit counter RPTC
(repeat counter). If this repeat feature is used, the instruction is executed, and
the RPTC is decremented until the RPTC goes to zero. This feature is useful
with many instructions, such as NORM (normalize contents of accumulator),
MACD (multiply and accumulate with data move), and SUBC (conditional
subtract). When used with some multicycle instructions, such as MACD, the
repeat features can result in these instructions effectively executing in a single
cycle.

The stack is 16 bits wide and four (TMS32020) or eight (TMS320C25) levels
deep. The PC stack is accessible through the use of the PUSH and POP in-
structions. Whenever the contents of the PC are pushed onto the top of the
stack, the previous contents of each level are pushed down, and the bottom
(fourth/eighth) location of the stack is lost. Therefore, data will be lost if more
than four/eight successive pushes occur before a pop. The reverse happens
on pop operations. Any pop after three/seven sequential pops yields the value
at the bottom stack level. All of the stack levels then contain the same value.
Two additional instructions, PSHD and POPD, push a data memory value
onto the stack or pop a value from the stack to data memory. These in-
structions allow a stack to be built in data memory for the nesting of
subroutines/interrupts beyond four/eight levels.

Note that on the TMS32020, the TBLR/TBLW, MAC/MACD, and
BLKD/BLKP instructions use one level of the stack. The TMS320C25 contains
a separate stack for use with these instructions, and no level of the PC is used.

3.6.2 Pipeline Operation

Instruction pipelining consists of the sequence of external bus operations that
occurs during instruction execution. The prefetch-decode-execute pipeline is
essentially invisible to the user, except in some cases where the pipeline must
be broken (such as for branch instructions). In the operation of the pipeline,
the prefetch, decode, and execute operations are independent, which allows
instruction executions to overlap. Thus, during any given cycle, two or three
different instructions can be active, each at a different stage of completion,
resulting in the respective two-level pipeline on the TMS32020 or the three-
level pipeline on the TMS320C25.

The difference in pipeline levels does not necessarily affect instruction exe-
cution speed, but merely changes the fetch/decode sequence. Most in-
structions execute in the same number of cycles regardless of whether they
are executed from internal RAM, ROM, or external program memory. The ef-

3-29

Architecture - System Control

3-30

fects of pipelining are included in the instruction cycle timings for the
TMS32020 and TMS320C25 listed in Appendix D.

Additional PC-related hardware (see Figure 3-10) is provided on the
TMS320C25 to allow three-level pipelining for higher performance. Included
in the related hardware are the Prefetch Counter (PFC), the 16-bit MicroCall
Stack (MCS) register, the Instruction Register (IR}, and the Queue instruction
Register (QIR).

In the three-level pipeline on the TMS320C25, the PFC contains the address
of the next instruction to be prefetched. Once an instruction is prefetched, the
instruction is loaded into the IR, unless the IR still contains an instruction
currently executing, in which case the prefetched instruction is stored in the
QIR. The PFC is then incremented, and after the current instruction has
completed execution, the instruction in the QIR is loaded into the IR to be
executed.

The PC contains the address of the next instruction to be executed, and is not
used directly in instruction fetch operations, but merely serves as a reference
pointer to the current position within the program. The PC is incremented as
each instruction is executed. When interrupts or subroutine call instructions
occur, the contents of the PC are pushed onto the stack to preserve return
linkage to the previous program context.

The prefetch, decode, and execute operations of the pipeline are independent,
thus allowing instruction executions to overlap. During any given cycle, three
different instructions can be active, each at a different stage of completion.
Figure 3-11 shows the operation of the three-level pipeline for single-word,
single-cycle instructions executing from elther internal program ROM or ex-
ternal memory with no wait states.

CLKOUT1 ‘ [1 17 L

prefetch “ N »e N+1 »e N+2 e
decode N-1 : N : N+1 :
execute N-2 . N-1 - N

Figure 3-11. Three-Level Pipeline Operation (TMS320C25)

Pipelining is reduced to two levels when execution is from internal program
RAM due to the fact that an instruction in internal RAM can be fetched and
decoded in the same cycle. Thus, separate prefetch and decode operations are
not required, as shown in Figure 3-12.

Architecture - System Control

CLKOUTH1 —m ! I l l_

prefetoh N ' N+1 . N+2
decode N . N+1 . N+2
execute N-1 : N ; N+1

Figure 3-12. Two-Level Pipeline Operation

The following paragraphs describe, in detail, the operation of the TMS320C25
pipeline. This description, in conjunction with Appendix D, gives sufficient
information for predicting the operation of the TMS320C25 for hardware in-
terface optimization, accurate program cycle counting, and simulation model-
ling. Often it is not necessary to understand the intricate detail of the pipeline
to design with the TMS320C25. Therefore, if the user is not specifically in-
terested in these details, it is suggested that this description be skipped.

The TMS320C25 executes most of its instructions in a single cycle, because
all the instructions are straight decodes and highly pipelined as opposed to
microcode. The basic pipeline operation is 3.25 cycles deep where the device
sequence on any given cycle is fetching the third instruction, decoding the
second instruction, and executing the first. Figure 3-13 shows the internal
operation of the TMS320C25 pipeline in reference to quarter phases 1 through
4 (Q1-Q4).

3-31

Architecture - System Control

CLOCK

CLKOUT1

CLKOUT2

STRB

ADDRESS

DATA

DECODE

RAMRD

EXECUTE

STATUS

AUXREG

RAMWR

3-32

CYCLE 1 |

CYCLE 2 |

I | G4 | 01 ! | | I !
| | | | |
e e
|| |l C ll Il | || |I II
| % | } | | : |
| | |
L L
1 ! l l] | 1]
INST1 - INST2 - INST3 =
T T T 1) . 1] T
| | | | | | | |
] eyl] Nnsto | | Minsta | |
: . nus'nl I : ms*rzI | : { INSTS | :
INSTO INST1 " INST2 ,—-——1‘————(:
|
— 5 e
INSTO + INST2
— -
‘ |] I
INST ACC iINsTo H Acc L ll
| : I | ro I
q T INST 1 Ty f i INST1/2
| - | | | |
| 1 4]
-—:———; INSTO ARAU HLOAD INST1 ARAU HLOAD INST2 ARAUHLOAD}—
i P i L l
L 1 { L [inst1 | L L
i 1 i . |

Figure 3-13. TMS320C25 Standard Pipeline Operation

The TMS320C25 machine cycle, externally referenced by the falling edges of
the CLKOUT1 signal, consists of four internal cycles (or CLKIN cycles). This
allows internal operations of the pipeline to execute as fast as 1/4 the machine
cycle. The sequence of a general instruction execution in the pipeline is

shown in Table 3-4.

Architecture - System Control

Table 3-4. Instruction Pipeline Sequence

CYCLE | Q PHASE OPERATION

New PC is output on address bus
External read of instruction
External read of instruction
External read of instruction

Instruction decode
Instruction decode/ARAU execution
On-chip RAM access/ARAU execution

On-chip RAM access/load new AR value/update ARP
ALU execution

ALU execution

Load accumulator

= |1hWUN=2IAON=I_PON=

Load status register

When using an add instruction (e.g., ADD *+,12,AR4), the device fetches the
instruction in cycle 1. During Q2 and Q3 of cycle 2, the instruction is de-
coded. This includes the ALU command decode as well as generation of the
data operand fetch address. In this case, the address comes from an auxiliary
register. During Q4 of cycle 2 and Q1 of cycle 3, the operand is fetched from
the RAM location. The increment of the auxiliary register is performed during
Q3 and Q4 of cycle 2, and the value is loaded into the auxiliary register in Q1
of cycle 3. The ARP is also updated in Q1 of cycle 3. During Q2 and Q3 of
cycle 3, the data is passed through the barrel shifter to execute the 12-bit
left-shift, and the data is added by the ALU to the contents in the accumulator.
In Q4 of the third cycle, the ALU result is loaded into the accumulator. The
status of the ALU operation is loaded into the status register in Q1 of the
fourth cycle. The bits being loaded into the status register at this time consist
of the current ALU status and the ARP associated with the next instruction.

In the case of a store instruction (e.g., SACL *0-,3,AR2), the device operates
the first two cycles in the same manner as the ADD instruction. In Q1 and
Q2 of the third cycle, the data in the accumulator is passed through a barrel
shifter, left-shifted 3 bits, and zero-filled. The lower 16 bits of the shifted
value are written to the address specified by the current auxiliary register.
During Q3 and Q4 of the third cycle, the index register (ARO) is added to the
contents of the current auxiliary register and loaded back into the current
auxiliary register in Q1 of the fourth phase. In Q1 of the fourth cycle, the
auxiliary register pointer is changed to AR2. There is no execution phase of
this instruction. Figure 3-14 shows the ADD and SACL instructions operating
back-to-back in a program sequence. It is assumed that both instructions re-
side in external, zero wait-state memory and that the data resides in on-chip
RAM.

3-33

Architecture - System Control

CLOCK
CLKOUT1
CLKoUT2

STRE
ADDRESS
DATA
DECODE
RAM
EXECUTE

* AUXREG

3-34

CYCLE 1 | CYCLE 2 | CYCLE 3 | CYCLE 4 | CYCLE §

L L L A LT
| | | | J [[1

_ 1 I I | | | [
T | | L J | [

ADD *+12,AR4 |-{ sacL 103082 | : = . =) :
n, =5 — - —L
ADD SACL
ADD READ SACL WRITE
abp Hacc DUMMY
{ arc +1 Jhoao AR4-ARO |{LOAD]

Figure 3-14. Pipeline Operation of ADD Followed by SACL

When the device is reading instructions out of on-chip ROM, the basic inter-
nal operation of the pipeline is the same. The only difference is that the con-
trol lines (i.e., STRB, PS, and R/W) are inactive. [f the device is fetching the
instructions from on-chip RAM, the pipeline is shortened to 2.5 cycles since
the device can fetch the instruction in half a cycle ad opposed to the full cycle
required in an external or on-chip ROM fetch. The instruction is fetched dur-
ing Q4 and Q1, then decoded in Q2 and Q3. The rest of the pipeline tracks
as described above.

Some operations add additional machine cycles to the instruction execution
without damaging the integrity of the program or hardware. External wait
states, multiplexed data bus conflicts, two-word instructions, and program
counter discontinuities are included in these operations, as described in the
following paragraphs.

Wait States. The TMS320C25 is designed to be interfaced to slower ex-
ternal devices through the use of hardware-generated wait states. This applies
to the program, data, and 1/O memory spaces of the Harvard architecture.
Wait states are a direct delay on the instruction pipeline. Each wait state in-
serted during the instruction fetch contributes an additional machine cycle in
the pipeline execution of the instruction. In addition, any wait state incurred
when accessing external data or I/0 space also contributes an additional ma-
chine cycle to the pipeline execution of the instruction. This factor applies to
all instructions. Figure 3-15 describes how the pipeline reacts to wait states
in external program memory. Note that the wait state added in cycle 2 results
in a no-execution operation in cycle 4.

Architecture - System Control

cLock _|

CLKOUT1

CLKOUT2

STRB

ADDRESS

DATA

DECODE

RAM

EXECUTE

AUXREG

CYCLE 1 | CYCLE 2 | CYCLE 3 | CYCLE 4 | CYCLE §
a2 103 las a1l 02}a3l as l @1 l a2z a3 los ja1 a2 03 a4 ol a3l
1 | — | | l | -
1
T 1 I l | | L
1
|
J l : [| [
1
ADD *+,12.AR4 | WAIT STATE SACL *0-,3,AR2 H wairsTate OR *+
| T T
!
ADD SACL }
T |
|
ADD READ ' SACL WRITE
]
ADD ACC DUMMY .l:
| | ! 1
{ arx_+1 Jlloap { : AR4-AR0 HLOAD :

Figure 3-15. Pipeline Operation with Wait States

Multiplexed External Data Bus. The external data bus is multiplexed to
support all three memory spaces of the TMS320C25. Therefore, external
fetches to multiple spaces in the same instruction add additional machine cy-
cles to the pipeline execution of the instruction. This is due to the fact that
the external fetch takes a full cycle whereas the internal equivalent takes two
quarter phases and can be included in the execution stage of the three-deep
pipeline. Accessing the data memory space is controlled by setting of the data
page pointer or the value contained in the auxiliary register used in any in-
struction. Also affecting the pipeline in this manner is the access of the 1/0
bus or the tables in program memory (i.e., IN, OUT, TBLR, and TBLW). Figure
3-16 shows how the pipeline processes an instruction with external program
and data access.

3-35

Architecture - Systém Control

CYCLE 1 | CYCLE 2 | CYCLE 3 | CYCLE 4 | CYCLE 5
S pipligigipNpiplgipipipiplpipipEpiplinly
@z {03 a4 j01 oz (03 laa ;o1 laz (a3 las 01 a2 03 ! 04 01! 02 a3
cLkouT J L1 i 1 | 1] L I
cwourz _JJ j L I L | L
—
sme | | l J [J
s i
55 |
ADDRESS SACL *0-3.AR2 t LAC *+ - DATA sPace — DATA SPACE
1 1 | 1 1
DATA]] Jwarre |- {rean } ‘ =
DECODE SACL LAC
H
EXTRAM SACL WRITE H LAC READ
T
!
EXECUTE DUMMY e
| -
AUXREG AR4-AROD HLO AR2 +1 [{LOAD ! !

3-36

Figure 3-16. Pipeline with External Data Bus Conflict

Two-Word Instructions. All two-word instructions take an additional cy-
cle to fetch the 16-bit immediate operand following the instruction mnemonic.
The first set of instructions for which this applies is the long immediate in-
structions. The instruction mnemonic is followed by a 16-bit immediate op-
erand to be executed upon in the ALU. The second set applies to those
instructions that use the PFC register as a second data addressing unit on
some optimized instructions, e.g., the multiply/accumulate and block move
instructions (MAC, MACD, BLKP, and BLKD). In the second set, the extra
cycle only appears once in a repeat loop. The third set involves conditional
branches not taken.

Architecture - System Control

CLOCK

CLKOUT1

CLKOUT2

STRB

ADDRESS

DATA

DECODE

INSTRAM

DATARAM

STATUS

EXECUTE

AUXREG

Program Counter Discontinuities. Since the TMS320C25 is pipelined, a
change (other than an increment) in the program counter requires that the
pipeline be flushed. This applies to all branches, subroutine calls, software
trap, interrupt traps, and return. The pipeline, being three deep, has the next
instruction already loaded when the branch occurs. At this point, this instruc-
tion will not affect any data or registers, so it is cleared from the pipeline.
Therefore, two dead execution cycles are inserted while waiting for the pipe-
line to reload. The device only takes one additional cycle if the destination of
the branch is in on-chip RAM block 0. The pipeline is only two-deep in this
case and only takes one cycle to reload. Figure 3-17 shows a branch from
normal execution to an address in on-chip RAM, and Figure 3-18 shows an
example of a return executed from on-chip RAM to a location in off-chip
memory.

CYCLE 1 | CYCLE 2 | CYCLE 3 | CYCLE 4 | CYCLE &
Sgligligipgigiipgigigipipigigipipgipipiplinlin
Q2 [03 | Q4 01 02, Q3 ;04 Q [0, G304, Q1 | Q2 0304, Q1 0Q2, Q3

l] | — | |
|
— L | L L | L
i
— I
1 [[| l j
i
BV = >FF00 |{ ADD *+.12.4R4 ;
i i | i
] | i
I 1 S—
I I
BV ' suB ADDH |—
T ! !
suB*-,12.AR4 + ADDH *+
I | I i
+ SUB READ
1 |
1 1
1 [
i
4 BV sus
: | =
L L ARx-1_HioaD)

Figure 3 17. Pipeline Operation of Branch to On-Chip RAM

3-37

Architecture - System Control

CLOCK

CLKouT

CLKOUT2

STRB
ADDRESS

DATA

DECODE

INSTRAM

DATARAM

STATUS

EXECUTE

AUXREG

3-38

CYCLE 1 | CYCLE 2 | CYCLE 3 | CYCLE 4 | CYCLE 5
i I
J l J |] 1 j 1 R
—] L [J 1 | L
L I L |] -

{ “abp *i.12ams { sus ‘0-3.AR2 OR *+

| \ IJ |
H
RET

RET ADD 'E

1 | Arx +1_Hioap

Figure 3-18. Pipeline Operation of RET from On-Chip RAM

Interrupts are hardware-generated discontinuities to the sequential accessing
of the program counter. The interrupt is executed based upon instruction ex-
ecution complete, rather than memory operation complete. The instruction
that is currently executing at the time of an interrupt executes completely. The

“interrupt traps following the completion of that instruction before the start of

the execution of the next instruction. In this case, the repeated instruction is
considered one execution; therefore, the repeat loop finishes before the inter-
rupt trap is taken. This gives priority to the algorithm over the interrupt service.
The interrupt operation in reference to the pipeline execution is illustrated in
the data sheet timing diagrams (see Appendix A). Note that when interrupt
vectors reside in external memory running with one wait state, there are two
interrupt acknowledge (TACK) pulses. If this is a problem, the IACK line should
be gated with READY.

Architecture - System Control

Hardware Aspects of the Pipeline

Viewing these effects on the pipeline at the hardware level requires additional
explanation due to the lack of visibility of on-chip operations or optimization
of the pipeline execution. The following paragraphs describe the effects of
HOLD/HOLDA, RS, interrupts, accumulator store, on-chip program access, ex-.

ternal data access, and repeats as they are visible from the pins of the device.

In the cases of RS, interrupts, and HOLD/HOLDA, the effects on the pipeline

are shown in the data sheet timing diagrams (see Appendix A).

Reset. The reset interrupt is a totally non-maskable interrupt. When exe-
cuted, it stops operation of the pipeline and flushes the unexecuted parts. The'
reset pulse must be at least three CLKOUT cycles wide. After the second,.
CLKOUT cycle has completed (before the third rising edge of CLKOUT1), the:"
device has brought all outputs into a high-impedance state. After the rising: -
edge of RS, the device begins to fetch the reset vector. Since the pipeline is-
empty, it does not execute the reset vector branch until two cycles later. If the
HOLD line is brought low during the active reset, the device does not start the’ .
fetch of the reset vector until after the active HOLD is removed, and the device

deactivates the HOLDA line. When HOLD is activated with RS to allow boot- -
loading of the code, the HOLDA line will go active low in three cycles, regard-' .
less of whether or not the RS line has gone high. This is useful in that the,

HOLDA line can be used to enable the release of the RS line and guarantee the:+

required three-cycle reset.

Interrupts. The effects of an interrupt become apparent on the hardware.
when a interrupt acknowledge (TACK) signal is valid on the rising edge of
CLKOUT2. This signifies the fetch of the first word of the interrupt vector. If °

wait states are generated in the memory segment where the interrupt vector
resides, an additional TACK pulse occurs for each wait state added. If this
causes a problem with the external interface, TACK can be gated with READY -
to only accept the last interrupt acknowledge pulse. Note that the BIOZ in-
struction tests the level of the BIO pin during the instruction fetch phase of the
pipeline.

Hold/Hold Acknowledge. The hold operation, like that of interrupt, takes
second priority to algorithm execution; therefore, the hold will not be ac-
knowledged until after the currently running instruction is completed (a min-
imum of three cycles). This includes repeated instructions. The next .
instruction, after the final instruction executed before HOLDA, is latched into
the pipeline and executed two cycles after the HOLDA line goes inactive high.
The second instruction after the iost instruction executed is fetched two cycles
again after the HOLDA line goes inactive high. [f the HM bit of status register
ST1 is set high, the TMS320C25 stops execution and sits idle until the hold "
is removed. This lowers power consumption by removing the drive of the

memory address and control iines and also stopping major parts of the internal -

CPU circuits from switching and drawing power. This can be used as a

hardware powerdown mode. If the HM bit is low, the TMS320C25 continues

executing any instruction that can be executed with on-chip resources only.

This means both program and data reside in on-chip memory. The device will

continue to operate normally unless an off-chip access is required by an in-

struction, at which time the processor adds wait states until the hold state is

removed. When running from on-chip resources with HM = 0, the processor:
acknowledges HOLD with HOLDA during a multicycle instruction.

3-39.

Architecture - System Control

3-40

On-Chip Program Access. When executing from on-chip resources, the
pipeline is visible only in the MSC line, which signals microstate complete
when active low on the rising edge of CLKOUT2. Note that executing from
on-chip program memory does not allow instruction accessing of external data
memory to run in a single cycle. The normal operation of the instruction takes
only two quarter phases of the execution cycle to fetch the on-chip data me-
mory, whereas off-chip access requires all four quarter phases. The pipeline
is, however, optimized to handle a repeated instruction that accesses external
data memory with only one extra cycle for the first external fetch.

External Program/Data Access. Visibility of the pipeline when using ex-
ternal program and data memory requires a monitoring of the MSC, STRB, PS,
and DS lines. The MSC line indicates at the rising edge of CLKOUT2 whether
or not the cycle is the beginning of a new instruction fetch; i.e., MSC active
low indicates the completion of an instruction and the acquisition of another
instruction. The PS (program select) line indicates that the data bus is cur-
rently being used to fetch an instruction. A step in the pipeline is not indicated
since the PS line remains while the pipeline is fetching instructions externally.
To track the fetches, the STRB line, which frames external accesses, must be
monitored.

The PS line being active low does not necessarily mean that the device is
fetching an instruction. In the cases of table read/write (TBLR/TBLW),
multiply/accumulate (MAC/MACD), and block transfer (BLKP) instructions,
the device uses the PS line active low to access tables.

To monitor external data memory fetches, the user should watch the data se-
lect (DS) line in conjunction with the STRB line. An active low on the DS line
indicates the data bus is currently being used to access data memory space.
This line remains low for two memory fetches in the case of an accumulator
store followed by an ALU instruction, both operating with off-chip memory.
However, two STRB pulses will identify the individual access. Likewise, the
line remains low for many cycles in the case of a repeated instruction. 1/0
space access operates similarily to data space operation with the OUT and IN
instructions replacing the save and ALU instruction.

A clear understanding of this information in conjunction with the data in Ap-
pendix D of the TMS320C2x User's Guide should be sufficient to predict
correctly the operation of the TMS320C25 pipeline.

Architecture - System Control

3.6.3 Reset

Reset (RS) is a non-maskable external interrupt that can be used at any time
to put the TMS320C2x into a known state. Reset is typically applied after
powerup when the machine is in a random state.

Driving the RS signal low causes the TMS320C2x to terminate execution and
forces the program counter to zero. RS affects various registers and status bits.
At powerup, the state of the processor is undefined. For correct system op-
eration after powerup, a reset signal must be asserted low for at least three
clock cycles to guarantee a reset of the device (see Section 5.1 for other im-
portant reset considerations). Processor execution begins at location 0, which
normally contains a B (branch) statement to direct program execution to the
system initialization routine (also see Section 5.1 for an initialization routine
example). Section 6.1 provides system control circuitry design examples.

Upon receiving an RS signal, the following actions take place:

1) A logic O is loaded into the CNF (configuration control) bit in status
register ST1, causing all RAM to be configured as data memory.

2) The Program Counter (PC) is set to O, and the address bus A15-A0 is
driven with all zeroes while RS is low.

3) The data bus D15-DO is placed in the high-impedance state.

4) Al memory and 1/0 space control signals (PS, DS, 1S, R/W, STRB, and
BR) are de-asserted by setting them to high levels while RS is low.

5) All interrupts are disabled by setting the INTM (interrupt mode) bit to
1. (Note that RS is non-maskable.) The interrupt flag register (IFR) is
reset to all zeroes.

6) Status bits:
0 - OV and 1 = XF (TMS32020); in addition, on the TMS320C25,
1-SXM,0->PM,1->HM,0-FO,1~C,and 1 » FSM.
(The remaining status bits on the TMS320C2x are unchanged.)

7) The global memory allocation register (GREG) is cleared to make all
memory local.

8) The RPTC (repeat counter) is cleared.

9) The DX (data transmit) pin is placed in the high-impedance state. Any
transmit/receive operations on the serial port are terminated, and the
TXM (transmit mode) bit is reset to a low level. This configures the FSX
framing pulse to be an input. A transmit/receive operation may be
started by framing pulses only after the removal of RS.

10) The TIM register is set to the maximum value (>FFFF) on reset for both
the TMS32020 and TMS320C25. The PRD register on the TMS320C25
is also initialized by reset to >FFFF. The TMS32020 requires a software
initialization of the PRD register (see Example 5-1). The TIM register
begins decrementing only after RS is de-asserted.

11) The TACK (interrupt acknowledge) signal is generated in the same man-
ner as a maskable interrupt.

3-41

Architecture - System Control

12) The state of the RAM is undefined following RS.

13) The ARB, ARP, DP, IMR, OVM, and TC bits are not initialized by reset.
Therefore, it is critical that these bits be initialized in software by the user
following reset.

Execution starts from location O of program memory when the BS signal is
taken high. Note that if RS is asserted while in the hold mode, normal reset
operation occurs internally, but all buses and control lines remain in the
high-impedance state. Upon release of HOLD and RS, execution starts from
location zero. The TMS320C2x can be held in the reset state indefinitely.

3.6.4 Status Registers

3-42

Two status registers, STO and ST1, contain the status of various conditions
and modes. The status registers can be stored into data memory and loaded
from data memory, thus allowing the status of the machine to be saved and
restored for interrupts and subroutines. All status bits are written to and read
from using LST/LST1 and SST/SST1 instructions, respectively (with the ex-
ception of INTM, which cannot be loaded via an LST instruction).

Figure 3-19 shows the organization of both status registers, indicating all
status bits contained in each. Note that the DP, ARP, and ARB registers are
shown as separate registers in the processor block diagram of Figure 3-2.
Because these registers do not have separate instructions for storing them into
RAM, they are included in the status registers. As shown in Figure 3-19, se-
veral bits in the status registers are reserved and read as logic one’s by the LST
and LST1 instructions.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

sto | ArRp | ov |ovm| 1 |iNTm| DP |

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sT1 | ARB [cNF| Tc [sxm| ct [1 1 [HMmt[Fsmt|xF|Fo|TXM| PM |

tOn the TMS32020, bits 5, 6, and 9 of ST1 are logic one’s.

Figure 3-19. Status Register Organization

Some additional instructions or functions may affect the status bits, as indi-
cated in Table 3-5.

Architecture - System Control

Table 3-5. Status Register Field Definitions

FIELD

FUNCTION

ARB

Auxiliary Register Pointer Buffer. Whenever the ARP is loaded, the oid
ARP value is copied to the ARB except during an LST instruction. When
the ARB is loaded via an LST1 instruction, the same value is also copied
to the ARP.

ARP

Auxiliary Register Pointer. This three-bit field selects the AR to be used in
indirect addressing. When ARP is loaded, the old ARP value is copied to
the ARB register. ARP may be modified by memory-reference instructions
when using indirect addressing, and by the LARP, MAR, and LST in-
structions. ARP is also loaded with the same value as ARB when an LST1
instruction is executed.

ct

Carry bit. This bit is set to 1 if the result of an addition generates a carry,
or reset to O if the result of a subtraction generates a borrow. Otherwise,
it is reset after an addition or set after a subtraction, except if the instruc-
tion is ADDH or SUBH. ADDH can only set and SUBH only reset the carry
bit, but cannot affect it otherwise. The shift and rotate instructions also
affect this bit, as well as the SC, RC, and LST1 instructions. Two branch
instructions, BC and BNC, have been provided to branch on the status of
C. Cissetto 1 on areset.

CNF

On-Chip RAM Configuration Control bit. If set to O, block BO is config-
ured as data memory; otherwise, block BO is configured as program’
memory. The CNF may be modified by the CNFD, CNFP, and LST1 in-
structions. RS resets the CNF to 0.

DP

Data Memory Page Pointer. The 9-bit DP register is concatenated with
the 7 LSBs of an instruction word to form a direct memory address of 16
bits. DP may be modified by the LST, LDP, and LDPK instructions.

FO

Format bit. When set to 0, the serial port registers are configured as 16-bit
registers. When set to 1, the port registers are configured to receive and
transmit eight-bit bytes. FO may be modified by the FORT and LST1 in-
structions. FO is reset to 0.

FSmt

Frame Synchronization Mode bit. This bit indicates whether the serial port
operates with or without frame sync pulses. When FSM = 1, the serial
port operation is initiated following a frame sync pulse on the FSX/FSR
inputs. When FSM = 0, the FSX/FSR inputs are ignored and the serial
port operates continuously with no frame sync pulses required. The bit is
set to 1 by a reset.

HMT

Hold Mode bit. When HM = 1, the processor halts internal execution
when acknowledging an active HOLD. When HM = 0, the processor may
continue execution out of internal program memory but puts its external
interface in a high-impedance state. This bit is set to 1 by a reset. .

INTM

Interrupt Mode bit. When set to 0, all unmasked interrupts are enabled.
When set to 1, all maskable interrupts are disabled. INTM is set and reset
by the DINT and EINT instructions. RS and TACK also set INTM. INTM
has no effect on the unmaskable RS interrupt. Note that INTM is unaf-
fected by the LST instruction.

ov

Overflow Flag bit. As a latched overflow signal, OV is set to 1 when ov-
erflow occurs in the ALU. Once an overflow occurs, the OV remains set
until areset, BV, BNV, or LST instruction clears the OV.

TTMS320C25 only.

3-43

Architecture - System Control

Table 3-5. Status Register Field Definitions (Concluded)

FIELD

FUNCTION

ovM

Overflow Mode bit. When set to 0, overflowed results overflow normally
in the accumulator. When set to 1, the accumulator is set to either its most
positive or negative value upon encountering an overflow. The SOVM and
ROVM instructions set and reset this bit, respectively. LST may also be
used to modify the OVM.

PM

Product Shift Mode. If these two bits are 00, the multiplier's 32-bit prod-
uct is loaded into the ALU with no shift. If PM = 01, the PR output is
left-shifted one place and loaded into the ALU, with the LSBs zero-filled.
If PM = 10, the PR output is left-shifted by four bits and loaded into the
ALU, with the LSBs zero-filled. PM = 11 produces a right shift of six bits,
sign-extended. Note that the PR contents remain unchanged. The shift
takes place when transferring the contents of the PR to the ALU. PM is
loaded by the SPM and LST1 instructions. The PM bits are cleared by
RS.

SXM

Sign-Extension Mode bit. SXM = 1 produces sign extension on data as it
is passed into the accumulator through the scaling shifter. SXM = 0 sup-
presses sign extension. SXM does not affect the definition of certain in-
structions; e.g., the ADDS instruction suppresses sign extension
regardless of SXM. This bit is set and reset by the SSXM and RSXM in-
structions, and may also be loaded by LST1. SXM'is set to 1 by RS.

TC

Test/Control Flag bit. The TC bit is affected by the BIT, BITT, CMPR,
LST1, and NORM instructions. The TC bit is set to a 1 if a bit tested by
BIT or BITT is a 1, if a compare condition tested by CMPR exists between
ARO and another AR pointed to by ARP, or if the exclusive-OR function
of the two MSBs of the accumulator is true when tested by a NORM in-
struction. Two branch instructions, BBZ and BBNZ, provide branching on
the status of the TC.

TXM

Transmit Mode bit. TXM = 1 configures the serial port's FSX pin to be an
output. In this mode, a pulse is produced on FSX when DXR is loaded.
Transmission then starts on the DX pin. TXM = 0 configures the FSX pin
to be an input. TXM is set and reset by the STXM and RTXM instructions
and may also be loaded by LST1. RS resets TXM to 0.

XF

XF pin status bit. This status bit indicates the state of the XF pin, a gen-
eral-purpose output pin. XF is set and reset by the SXF and RXF in-
structions or may be loaded by LST1. XF is set to 1. by RS.

3.6.5 Timer Operation

3-44

The TMS320C2x provides a memory-mapped 16-bit timer (TIM) register and
a 16-bit period (PRD) register, as shown in Figure 3-20. The on-chip timer

is a down counter that is continuously clocked by CLKOUT1 on the

TMS320C25. The timer on the TMS32020 is clocked by a signal whose fre-
quency is CLKOUT1/4 or whose period is 4 x CLKOUT1 cycles.

The TIM register is set to the maximum value (>FFFF) on reset for both the
TMS32020 and TMS320C25. The PRD register on the TMS320C25 is also

initialized by reset to >FFFF. The TMS32020 requires a software initialization
of the PRD register (see Example 5-1). The TIM register begins decrementing

only after RS is de-asserted. Following this, the TIM and PRD registers may

be reloaded under program control. See Section 3.6.3 for reset information.

Architecture - System Control

CRYSTAL Y
DIVIDE | (cLOCK) | DIVIDE (LOAD)
OR ! BY —— 1 BY TIM (16) ZERO
EXTERNAL > DETECT
v FOUR Nt ;
16 TINT
CLKOUT1

1 The divide ratio where N = 4 on the TMS32020 and N = 1 on the TMS320C25.

Figure 3-20. Timer Block Diagram

The TIM register, data memory location 2, holds the current count of the timer.
At every N x CLKOUT1 cycle where N = 4 on the TMS32020 and N = 1 on
the TMS320C25, the TIM register is decremented by one. The PRD register,
data memory location 3, holds the starting count for the timer. A timer inter-
rupt (TINT) is generated every time the timer decrements to zero. The timer
is reloaded with the value contained in the period (PRD) register within the
next cycle after it reaches zero so that interrupts can be programmed to occur
at regular intervals of (PRD + 1) cycles of CLKOUT1 on the TMS320C25 or
(4 x PRD) cycles of CLKOUT1 on the TMS32020. This feature is useful for
control operations and for synchronously sampling or writing to peripherals.
By programming the PRD register from 1 to 65,535 (>FFFF), a TINT can be
_generated every 2 to 65,636 cycles on the TMS320C25. Note that, on the
TMS32020, a TINT can be generated every 4 to 262,140 cycles. A PRD reg-
ister value of zero is not allowed.

The timer and period registers can be read from or written to on-any cycle. The
count can be monitored by reading the TIM register. A new counter period can
be written to the. period register without disturbing the current timer count.
The timer will then start the new period after the current count is complete. If
both the PRD and TIM registers are loaded with a new period, the timer begins
decrementing the new period without generating an interrupt. Thus, the pro-
grammer has complete control of the current and next periods of the timer.

If the timer is not used, TINT should be masked or all maskable interrupts
disabled by a DINT instruction. The PRD register can then be used as a gen-
eral-purpose data memory location. If TINT is used, the PRD and TIM registers
should be programmed before unmasking the TINT.

3-45

Architecture - System Control

3.6.6 Repeat Counter

The repeat counter (RPTC) is an 8-bit counter, which when loaded with a -
number N, causes the next single instruction to be executed N + 1 times. The

RPTC can be loaded with a number from O to 255 using either the RPT (re-

peat) or RPTK (repeat immediate) instructions. This results in a maximum of

256 executions of a given instruction. RPTC is cleared by reset.

The repeat feature can be used with instructions such as multiply/accumulates
(MAC/MACD), block moves (BLKD/BLKP), 1/0 transfers (IN/OUT), and ta-
ble read/writes (TBLR/TBLW). These instructions, which are normally muiti-
cycle, are pipelined when using the repeat feature, and effectively become
single-cycle instructions. For example, the table read instruction may take
three or more cycles to execute, but when repeated, a table location can be
read every cycle. Note that not all instructions can be repeated (see Section
4.3 and Appendix D for more information).

3.6.7 Powerdown Mode (TMS320C25)

3-46

When operated in the powerdown mode, the TMS320C25 enters a dormant
state and requires approximately one-half the power normally needed to sup-
ply the device (see the data sheet, Appendix A). Powerdown mode is invoked
either by executing an IDLE instruction or by driving the HOLD input low while
the HM status bit is set to one.

While in powerdown mode, all of the internal contents of the TMS320C25 are
maintained to allow operation to continue unaltered when powerdown mode
is terminated. During that time, the data and address lines and the control
signals (PS, DS, TS, STRB, and R/W) are all maintained in the high-impedance
state. Powerdown mode is terminated upon receipt of an interrupt when an
IDLE instruction is being executed or by removal of the HOLD input. (Refer to
the IDLE instruction description in Section 4 and the hold function description
in Section 3.10.3 for further information.)

Architecture - External Memory and 1/0 Interface

3.7 External Memory and I/O Interface

The TMS320C2x supports a wide range of system interfacing requirements.
Data, program, and I/0 address spaces provide interfacing to memory and 1/0,
thus maximizing system throughput. The local memory interface consists of:

® A 16-bit parallel data bus (D15-D0),

° A 16-bit address bus (A15-A0),

® Data, program, and 1/0 space select (DS, PS, and 1S) signals, and
® Various system control signals.

1he R/W (read/write) signal countrols the direction of the transfer, and STRB
(strobe) provides a timing signal to control the transfer.

The TMS320C2x 1/0 space consists of 16 input and 16 output ports. These
ports provide the full 16-bit parallel 1/0 interface via the data bus on the de-
vice. A single input or output operation, using the IN or OUT instructions,
typically takes two cycles; however, when used with the repeat counter, the
operation becomes single-cycle.

1/0 design is simplified by having 1/O treated the same way as memory. 1/0
devices are mapped into the |/O address space using the processor’s external
address and data buses in the same manner as memory-mapped devices.
When addressing internal memory, the data bus must be in the high-impe-
dance state and the control signals go to an inactive state (logic high). Refer
to Section 5 for the effect instructions have on |/0.

Interfacing to memory and 1/0 devices of varying speeds is accomplished by
using the READY line. When communicating with slower devices, the
TMS320C2x processor waits until the other device completes its function,
signals the processor via the READY line, and continues execution (see Sec-
tion 6).

3.7.1 Memory Combinations

The exact sequence of operations performed as instructions execute depends
on the areas in memory where the instructions and operands are located. There
are six possible combinations of program and data memory since information
can be located in either internal RAM, external memory, or internal ROM
(available only on the TMS320C25). The six possible combinations are:

[] Program Internal RAM/Data Internal (P1/Dl)

Program Internal RAM/Data External (PI/DE)

Program External/Data Internal (PE/DI)

Program External/Data External (PE/DE)

Program Internal ROM/Data Internal (PR/DI) on the TMS320C25
Program Internal ROM/Data External (PR/DE) on the TMS320C25.

Appendix D provides cycle timings for instructions both when repeated and
when not repeated. The following is a summary of program execution, organ-
ized according to memory configuration.

3-47

Architecture - External Memory and 1/0 Interface

P1/DI or PR/DI When both program and data memory are on-chip,
the processor runs at full speed with no wait
states. Note that IN and OUT instructions have
different cycle timings when program memory is
internal; IN requires two cycles to execute whereas
OUT requires only one cycle.

PE/DI This memory mode can run at full speed if external
program memory is sufficiently fast since internal
data operations can occur coincident with external
program memory accesses. If external program
memory is not fast enough, wait states may be
generated using the READY input.

PI/DE, PE/DE, or PR/DE Additional cycles are required to execute in-
structions that reference an external data memory
space. At least two cycles are required to execute
‘read from external data memory’ instructions such
as ADD, LAR, etc. Further additional cycles may
be required due to wait states if external data
memory is not fast enough to be accessed within
a single cycle. Note, however, that the
TMS320C25 has the capability of executing 'write
to external data memory’ instructions in a single
cycle when program memory is internal (two cy-
cles are required if program memory is also ex-
ternal). Additional cycles are also required in this
case if external data memory is not sufficiently fast.

In all memory configurations where the same bus is used to communicate with
external data, program, or 1/0O space, the number of cycles required to execute
a particular instruction may further vary depending on whether the next in-
struction fetch is from internal or external program memory. Instruction exe-
cution and operation of the pipeline are discussed in Section 3.6.2 and in the
succeeding subsections.

3.7.2 Internal Clock Timing Relationships

3-48

The crystal or external clock source frequency is divided to produce an internal
four-phase clock. The four phases are defined by CLKOUT1 and CLKOUT2,
as shown in Figure 3-21. In this document (and on the TMS320C25), the
start of quarter-phase 3 (Q3) is defined as the rising edge of CLKOUT1. Refer
to Appendix C for device phase definitions.

Architecture - External Memory and 1/0O Interface

Phase #
(Ms32020) | o1 l a2 l a3 | as | a1 | @2 |

Phase #

(twsazoc2s) | a3 | as | a1 | a2 | a3 | as |
CLKOUTH
CLKOUT2

Q1

Q2

Q3

Q4

Figure 3-21. Four-Phase Clock

3.7.3 General-Purpose 1/O Pins (EE) and XF)

The TMS320C2x has two general-purpose pins that are software-controlled.
The BIO pin is a branch control input pin, and the XF pin is an external flag
output pin.

The BIO pin is useful for monitoring peripheral devige status. It is especially
useful as an alternative to using an interrupt when it i1s necessary not to disturb
time-critical loops. When the BIO input pin is active (low), execution of the
BIOZ instruction causes a branch to occur.

In Figure 3-22, BIO is sampled at the end of Q4 (Q2 on the TMS32020). The
timing diagram shown is for a sequence of single-cycle, single-word in-
structions without branches located in external memory. Because of variations
in pipelining due to instructions prior to and following the BIOZ instruction,
this timing may vary. Therefore, it is recommended that several cycles of setup
be provided if BIO is to be recognized on a particular cycle.

3-49

Architecture - External Memory and I/0 Interface

3-50

CLKOUT1

CLKOUT2

STRB
A15-A0 :>®< VALID >@< VALID >®< VALID >®< VALID X
: : (BRANCH (NEXT (NEXT INSTRUCTION)
(BIOZ) : ADDRESS) : INSTRUCTION) N+3 OR BRANCH
N N+1 N+2 ADDRESS

fetch ‘¢ »'e e '

Figure 3-22. BIO Timing Diagram

The XF (external flag) output pin is set to a high level by the SXF (set external
flag) instruction and reset to a low level by the RXF (reset external flag) in-
struction. XF is set high by RS.

The relationship between the time the SXF/RXF instruction is fetched before
the XF pin is set or reset is shown in Figure 3-23. As with BIO, the timing
shown for XF is for a sequence of single-cycle, single-word instructions lo-
cated in external memory. Actual timing may vary with different instruction
sequences.

Architecture - External Memory and 1/0 Interface

won _/ N/
o T\ NN\
A15-A0 :>®< VALID >®< VALID >®< VALID >®< VALID ><:

(SXFORRXF) f :
N+ 1 : N+ 2 - N+ 3

fetch e »e TR N
XF //

(SXF)
XF : \

(RXF)

NOTES: 1. N is the program memory location for the current instruction.
2. This example only shows the execution of single-cycle instructions
fetched from external program memory.

Figure 3-23. External Flag Timing Diagram

3-51

Architecture - Interrupts

3.8 Interrupts

3.8.1

3-52

The TMS320C2x has three external maskable user interrupts (TNT2-TNTO),
available for external devices that interrupt the processor. Internal interrupts
are generated by the serial port (RINT and XINT), by the timer (TINT). and
by the software interrupt (TRAP) instruction. Interrupts are prioritized with
reset (RS) having the highest priority and the serial port transmit interrupt
(XINT) having the lowest priority.

Interrupt Operation

This subsection details interrupt organization and management. Vector lo-
cations and priorities for all internal and external interrupts are shown in Table
3-6. The TRAP instruction, used for software interrupts, is not prioritized but
is included here since it has its own vector location. Each interrupt address
has been spaced apart by two locations so that branch instructions can be
accommodated in those locations if desired.

Table 3-6. Interrupt Locations and Priorities

INTERRUPT MEMORY
NAME LOCATION PRIORITY FUNCTION
RS 0 1 (highest) External reset signal
TNTO 2 2 External user interrupt #0
TNT1 4 3 External user interrupt #1
TNT2 6 4 External user interrupt #2
8-23 Reserved locations
TINT 24 5 Internal timer interrupt
RINT 26 6 Serial port receive interrupt
XINT 28 7 (lowest) Serial port transmit interrupt
TRAP 30 N/A TRAP instruction address

When an interrupt occurs, it is stored in the 6-bit Interrupt Flag Register (IFR).
This register is set by the external user interrupts INT(2-0) and the internal
interrupts RINT, XINT, and TINT. Each interrupt is stored in the IFR until it is
recognized, and then automatically cleared by the TACK (interrupt acknowi-
edge) signal or the RS (reset) signal. The RS signal is not stored in the IFR.
No instructions are provided for reading from or writing to the IFR.

The TMS320C2x has a memory-mapped Interrupt Mask Register (IMR) for
masking external and internal interrupts. The layout of the register is shown
in Figure 3-24. A 1 in bit positions 5 through O of the IMR enables the cor-
responding interrupt, provided that INTM = 0. The IMR is accessible with
both read and write operations but cannot be read using BLKD. When the
IMR is read, the unused bits (15 through 6) are read as one’s. The lower six
bits are used to write to or read from the IMR. Note that RS is not included
in the IMR, and therefore the IMR has no effect on reset.

Architecture - Interrupts

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| RESERVED [xinT[RINT[TINT]INT2]TNT1 [TNTO|

Figure 3-24. Interrupt Mask Register (IMR)

The INTM (interrupt mode) bit, which is bit 9 of status register STO, enables
or disables all maskable interrupts. INTM = 0 enables all the unmasked in-
terrupts, and INTM = 1 disables these interrupts. The INTM is set to 1 by the
TACK (interrupt acknowledge) signal, the DINT instruction, or a reset. This bit
is reset to 0 by the EINT instruction. Note that the INTM does not actually
modify the IMR or IFR.

The TMS320C2x has a built-in mechanism for protecting multicycle in-
structions from interrupts. If an interrupt occurs during a multicycle instruc-
tion, the interrupt is not processed until the instruction is completed. This
mechanism also applies to instructions that become multicycle due to the
READY signal.

In addition, the device does not allow interrupts to be processed when an in-
struction is being repeated via the RPT or RPTK instructions. The interrupt is
stored in the IFR until the repeat counter (RPTC) decrements to zero, and then
the interrupt is processed. Even if the interrupt is de-asserted while the
TMS320C2x is processing the RPT or RPTK, the interrupt will still be latched
by IFR and pending until RPTC decrements to zero.

If both the HOLD line and an interrupt go active during a multicycle instruction
or a repeat loop, the HOLD takes control of the processor at the end of the in-
struction or loop. When HOLD is released, the interrupt is acknowledged.

Interrupts cannot be processed between EINT and the next instruction in a
program sequence. For example, if an interrupt occurs during an EINT in-
struction execution, the device always completes EINT as well as the following
instruction before the pending interrupt is processed. This insures that a RET
can be executed before the next interrupt is processed, assuming that a RET
instruction follows the EINT. The state of the machine, upon receiving an in-
terrupt, may be saved and restored (see Section 5.3.1).

3.8.2 External Interrupt Interface

Interrupts may be asynchronously edge- or level-triggered. In the functional
logic organization for INT(2-0), shown in Figure 3-25, the external interrupt
TNTO is connected to an edge-triggered flip-flop. The INTO signal is ORed with
the interrupt edge flip-flop Q output and synchronized with internal quarter-
phases 1 and 2 to produce an interrupt signal (see Appendix B for phase re-
lationships on the TMS32020). In this way, the device can handle both
edge-triggered and level-triggered interrupts.

Due to the level sensitivity of the external interrupts and the synchronization
of the interrupts (first on Q2, then on Q1 of the following machine cycle), it
is necessary to bring the INT line inactive high at least two cycles before ena-
bling interrupts (EINT). If this criteria is not met, the TMS320C25 will imme-
diately take the interrupt trap following the EINT plus the next instruction.

3-53

Architecture - Interrupts

INT (0, 1, OR 2)

3-54

If the INTM bit and flag register have been properly enabled, the interrupt
signal is accepted by the processor. An IACK (interrupt acknowledge) signal
is then generated. The TACK clears the appropriate interrupt edge flip-flop and
disables the INTM latch. The logic is the same for INT1 and TNT2.

|_IAcK
|
I DINT
| FroM
Q D|————DATA
BUS
wgmer |
INTERRUPT
REGISTER | INTER
u<'| (INTM) a s
| R EINT
|
| iack
| |
| |
| |
| |
| D = ' PRIORITY

DECODE 10

: INTEREUPT ! PC
INTERRUPT

| REGISTER | PROCESSOR

| CLK CLK | INTERRUPT]

ACTIVE. | ¢ MACHINE
| I STATE
| |
l Qy Q4 l T
| |
| | W
! LOGIC FOR EACH EXTERNAL INTERRUPT _ | INTERRUPTS

Figure 3-25. Internal Interrupt Logic Diagram

In a typical interrupt (TNT2-INTO) operation, the interrupt is generated by a
negative-going edge and the IFR bit is set. Since INTM is disabled when the
interrupt is acknowledged, the level may continue to be present on the TNT
input without generating further interrupts. If the level is removed before an
EINT instruction is executed, no further interrupts are generated. If a low level
continues to be present after the EINT, another interrupt is generated after the
EINT/next instruction sequence. In addition, if the INT pin is pulsed between
the previous TIACK and EINT, another interrupt is generated after EINT/RET,
because the corresponding IFR bit is again set.

Figure 3-26 shows an interrupt, interrupt acknowledge, and various other
signals for the special case of single-cycle instructions. An interrupt generated
during the current (N) fetch cycle still allows the fetch and execution of that
instruction. The N+1 and N+2 instructions are also fetched, then discarded,
and the address N+1 is pushed onto the top of the stack. The instruction is
fetched again upon a return command from the interrupt routine.

Architecture - Interrupts

CLKOUT1

CLKOUT2

STRB

INT2-INTO

A15-A0

fetch

execute

IACK

Two dummy execute cycles occur on an interrupt, as shown in the timing di-
agram for the TMS320C25 (Figure 3-26). The IACK signal is asserted low
during CLKOUT1 low when the device initiates a fetch from interrupt location
I. Therefore, an external device can determine the interrupt that occurred by
latching the address bus value present on A4-A1 with the rising edge of
CLKOUT2 when IACK is low.

LA WA WA UV an UV AR WV AR

— N e Nel s Ne2 I RO I BT o R
N2 . N1 . N . DUMMY .. DUMMY .. !
: : : TOP OF' :
N+1—>8TACK :

NOTES: 1. N is the program memory location for the current instruction.

2. | is the interrupt vector location in program memory for the active interrupt.
3.

For simplicity, this example only shows the execution of single-cycle instructions
fetched from external program memory, rather than multicycle instructions.

Figure 3-26. Interrupt Timing Diagram (TMS320C25)

3-56

Architecture - Serial Port

3.9 Serial Port

3-56

A full-duplex on-chip serial port provides direct communication with serial
devices such as codecs, serial A/D converters, and other serial systems. The
interface signals are compatible with codecs and many other serial devices
with a minimum of external hardware. The serial port may also be used for
intercommunication between processors in multiprocessing applications.

Both receive and transmit operations are double-buffered on the TMS320C25,

-thus aliowing a continuous bit stream even if FSX is an output. The use of the

frame sync mode (FSM) bit provides continuous operation that once initiated
requires no further frame synchronization pulses. No minimum CLKR/CLKX
frequency (fmin = 0.Hz) is required for serial port operation.

The bits, pins, and registers that control serial port operation are listed in Table
3”—7. Availability of a function on a particular device is also indicated.

Table 3-7. Serial Port Bits, Pins, and Registers

SERIAL PORT BITS/PINS/REGISTERS TMS32020 | TMS320C25
FO Format bit Yes Yes
TXM Transmit mode bit Yes Yes
FSM Frame synchronization mode bit No Yes
CLKX Transmit clock signal Yes Yes
CLKR Receive clock signal Yes Yes
DX Transmitted serial data signal Yes Yes
DR Received serial data signal Yes Yes
FSX Transmit framing synchronization signal Yes Yes
FSR Receive framing synchronization signal Yes Yes
DXR Data transmit register Yes Yes
DRR Data receive register Yes Yes
XSR Transmit shift register No Yes
RSR Receive shift register No Yes

The serial port uses two memory-mapped registers: the data transmit register
(DXR) that holds the data to be transmitted by the serial port, and the data
receive register (DRR) that holds the received data (see Figure 3-27). Both
registers operate in either the 8-bit byte mode or 16-bit word mode, and may
be accessed in the same manner as any other data memory location. Each
register has an external clock, a framing synchronization pulse, and associated
shift registers. Any instruction accessing data memory can be used to read
from or write to these registers; however, the BLKD (block move from data
memory to data memory) instruction cannot be used to read these registers.
The DXR and DRR registers are mapped into locations O and 1 in the data
address space. The XSR and RSR registers are not directly accessible through
software.

Architecture - Serial Port

ADDRESS
MSB LSB
>0000 [DRR |
>0001 | DXR |

Figure 3-27. The DRR and DXR Registers

If the serial port is not being used, the DXR and DRR registers can be used
as general-purpose registers. In this case, the CLKR or FSR should be con-
nected to a logic low to prevent a possible receive operation from being initi-
ated.

Three bits in status register ST1 are used to control the serial port operation:
FO, TXM, and FSM. The FO (format) bit defines whether data to be trans-
mitted and received is an 8-bit byte or a 16-bit word. If FO = 0, the data is
formatted in 16-bit words. If FO = 1, the data is formatted in 8-bit bytes. In
the 8-bit mode, only the eight least-significant bits are used for
transmit/receive operations. The FO bit is loaded by the FORT (format serial
port registers) instruction. On reset, FO is set to 0.

The TXM (transmit mode) bit is used to determine if the frame synchronization
pulse for the transmit operation is generated externally or internally. If TXM
=1, the FSX pin becomes an output pin, and a framing pulse is produced on
the FSX pin every time the DXR register is loaded. This framing pulse is syn-
chronized with the rising edge of CLKX. If TXM = 0, the FSX pin becomes
an input pin. The TMS320C2x then waits for an external synchronization
pulse before beginning transmission. On a reset, TXM is set to zero, config-
uring FSX to be an input. The TXM bit can be loaded by the LST1, STXM,
or RTXM instructions. If DXR on the TMS32020 is loaded before the previous
word is completely sent, the serial port immediately begins transmitting the
new word. The bits of the previous word that have not been sent are lost. If
TXM = 1 on the TMS32020, a new FSX pulse is generated. If TXM = 0O, the
serial port immediately begins transmitting the new word without waiting for
a new external FSX pulse.

The FSM (frame synchronization mode) status register bit is used to select
whether frame sync pulses are required for each serial port transfer. If FSM =
1, frame sync pulses are required; if FSM = 0, they are not required. FSM is
set by the SFSM (set frame synchronization mode) instruction and cleared by
the RFSM (reset frame synchronization mode) instruction. When FSM = 1
and frame sync pulses are required, an FSX pulse will cause the XSR to be
loaded with data from the DXR, and transmission will begin. If an FSX is pre-
sented prior to the last bit of the current transmission, the XSR will be reloaded
from the DXR, thus aborting the current transmission and immediately begin-
ning a new one.

The frame sync mode is useful in communicating to ‘'PCM highways.” For ATT
T1 and CCITT G711/712 lines, the processor can communicate directly in
these formats by counting the transmitted/received bytes in software and
performing SFSM/RFSM instructions as needed to set/reset the FSM bit.

3-57

Architecture - Serial Port

3.9.1 Transmit and Receive Operations

— RSR (16) I— — XSR (16) o

The transmit and receive sections of the serial port are implemented separately
to allow independent transmit and receive operations. Externally, the serial
port interface is implemented using the six serial port pins. Figure 3-28 shows
the registers and pins used in transmit and receive operations. Note that on the
TMS32020, the DXR and XSR are combined as a single register, as well as the
DRR and RSR.

0GIC
DRR (1) |LoADl L L | DXR (16)
] |
(LOAD)
- LOAD L
16 CONTROL 116
LOGIC i

CLEAR) | | (cLEAR
CARRY) | BYTE/WORD COUNTER [(CLOCK (CLOCR%!BYTE/WORD COUNTER-{CARRY)
RINT XINT
FSR| |Fsx v
DR DX
CLKR CLKX

3-58

Figure 3-28. Serial Port Block Diagram

The data on the DX and DR pins is clocked out of or into the XSR or RSR on
the TMS320C25 by the CLKX or CLKR signal, respectively. On the
TMS32020, the data on the pins is clocked directly out of the DXR or into the
DRR. CLKX and CLKR are only required to be present during actual serial port
transfers, and may be stopped when no data is being transferred. Data bits
can be transferred in either 8-bit bytes or 16-bit words. Data is clocked out to
DXR on the rising edges of CLKX, while data is clocked in from DRR on the
falling edges of CLKR. The MSB of the data is transferred first.

The XSR and RSR are connected to the DXR and DRR, respectively. For
transmit operations, the contents of DXR are transferred to XSR when a new
transmission begins. For a receive operation, the contents of RSR are trans-
ferred to DRR when all of the bits have been received. Thus, the serial port is
double-buffered since data may be transferred to or from the DXR or DRR
while another transmit or receive operation is being performed.

Architecture - Serial Port

Serial port transfers on the TMS320C25 are generally initiated by a frame sync
pulse. The exception to this is when the continuous mode of operation is used
with FSM = 0, as described in a subsequent paragraph. Frame sync pulses are
input on FSX for transmit operations and on FSR for receive operations.

The transmit timing diagram is shown in Figure 3-29. The transmit operation
begins when data is written into the data transmit register (DXR). The
TMS320C2x begins transmitting data when the frame synchronization pulse
(FSX) goes low while CLKX is high or going high. The data, starting with the
MSB, is then shifted out via the DX pin with the rising edge of CLKX. When
all bits have been transmitted, an internal transmit interrupt (XINT) is gener-
ated on the falling edge of CLKX. When the serial port is not transmitting,
DX is placed in the high-impedance state.

DX and FSX are unaffected by assertion of the HOLD input. Upon assertion
of HOLD, any serial port transmission in progress on the DX pin is completed
before DX is placed in the high-impedance state. FSX remains configured as
either an input or output, remaining low if it is an output.

: 4——+—i8 OR 16 BITS- i :
XNT j ﬁ : e : /\

Figure 3-29. Serial Port Transmit Timing Diagram

The receive operation is similar to the transmit operation. The receive timing
diagram is shown in Figure 3-30. Reception is initiated by a frame synchro-
nization pulse on the FSR pin. After FSR goes low, data on the DR pin is
clocked into the RSR register on the TMS320C25 (DRR register on the
TMS32020) on every negative-going edge of CLKR. The first data bit is
considered the MSB, and RSR is filled accordingly. After all the bits have
been received, (as specified by FO), an internal receive interrupt (RINT) is
generated on the falling edge of CLKR and the contents of RSR are transferred
to DRR. If DRR is read before an RINT is received, the bits that have not been
clocked in yet at the time of the read will contain the data from a previous
transfer. To prevent a possible overrun of the DRR register, the DRR must be
read before the next FSR.

3-59

Architecture - Serial Port

rR /¢ \ ¢ ; © e : ;
: = . : - 2 . .
DR . {msB e X X LeB)

: €—— 8 OR 16 BT§—————» .

Figure 3-30. Serial Port Receive Timing Diagram

3.9.2 Timing and Framing Control

3-60

Upon completion of a serial port transfer, an internal interrupt is generated.
The RINT interrupt is generated for a receive operation, and XINT is generated
for a transmit operation. RINT and XINT are generated on the rising edge of
CLKR and CLKX, respectively, after the last bit is transferred. Note that if DRR
is read before a RINT is received, it will contain the data from the previous
operation. Similarly, if DXR is loaded more than once after an XINT is gener-
ated (in the continuous transmission mode), only the last value written will
be loaded into XSR for the next transmit operation.

When the TMS320C2x is reset, TXM is cleared to zero, and DX is placed in a
high-impedance state. Any transmit or receive operation that is in progress
when the reset occurs is terminated.

The transmit framing synchronization pulse can be generated internally or ex-
ternally. The maximum speed of the serial port is 5 MHz. The timing of the
serial port signals is compatible with the Tl/Intel 29C1x series codecs. The
timing is also compatible with the AMI S3506 series codecs if the frame syn-
chronization signals are inverted.

Serial port transfers on the TMS320C25 are generally initiated by a frame sync
pulse, except when the continuous mode of operation is used with FSM = 0.
Frame sync pulses are input on FSX for transmit operations and on FSR for
receive operations. If FSM = 1, frame sync pulses are required; if FSM = 0,
they are not required. FSM is set by the SFSM (set frame synchronization
mode) instruction and cleared by the RFSM (reset frame synchronization
mode) instruction.

Architecture - Serial Port

3.9.3 Burst-Mode Operation

In burst-mode serial port operation, transfers are separated in time by periods
of no serial port activity (the serial port does not operate continuously). For
burst-mode operation, FSM must be set to one. Timing of the serial port in
this mode of operation is shown in Figure 3-31 and Figure 3-32.

CLKX / / / , /] / /
FSX f § : i : ;

mxm=n \ : : : . : ‘ : : i \ .

o) —f—————f(§BXA2XA3XA4)KA5)§(AG)Z(A7)§(L§B

: M : : ;
XNT ¢ f f ; f : : ; S \ : f
DXR DXR
LOADED RELOADED
XSR
LOADED
(DURING CLKX LOW)

XSR
RELOADED

Figure 3-31. Burst-Mode Serial Port Transmit Operation

CLKR / / / : / : / : / i
PR /N
w2 ———w (e As Y ae s Y e AT Y e (B)

- L N
U N T
DRR

LOADED
FROM RSR

Figure 3-32. Burst-Mode Serial Port Receive Operation

When TXM = 1 (in the transmit operation) and the serial port register DXR is
loaded, a framing pulse is generated on the next rising edge of CLKX. XSR is
loaded with the current contents of DXR while FSX is high and CLKX is low.
Transmission begins when FSX goes low while CLKX is high or is going high.

3-61

Architecture - Serial Port

Figure 3-31 shows the timing for the byte mode (FO = 1). XINT is generated
on the rising edge of CLKX after all 8 or 16 bits have been transmitted and
DX is placed in the high-impedance state. If DXR is reloaded before the next
rising edge of CLKX after XINT, FSX will again be generated as shown, and
XSR will be reloaded.

The receive operation is similar to the transmit operation. The contents of RSR
are loaded into DRR while CLKR is low, just after reception of the last bit sent
by the transmitting device (see Figure 3-32). RINT is generated on the next
rising edge of CLKR, and DRR may be read at any time before the reception
of the final bit of the next transmission. When operating in the byte mode, the
eight MSBs of the DRR are the contents of the eight LSBs of the DRR prior
to reception of the current byte, as shown in Figure 3-33 for the TMS320C25.
On the TMS32020, the most-significant byte is unaffected by successive 8- blt
receive operations.

MSB LSB
Initial
Conditions X Y
After 1st Receive
(Byte 'A’) Y A
After 2nd Receive
(Byte 'B’) A B

Etc.

Figure 3-33. Byte-Mode DRR Operation (TMS320C25)

3.9.4 Continuous Operation Using Frame Sync Pulses (TMS320C25)

3-62

The TMS320C25 provides two modes of operation that allow the use of a
continuous stream of serial data. When FSM = 1, frame sync pulses are re-
quired. Since DXR is double-buffered, continuous operation is achieved even
if TXM = 1. Writing to DXR during a serial port transmission does not abort
the transmission in progress, but instead DXR stores that data until XSR can
be reloaded. As long as DXR is reloaded before the CLKX rising edge on the
final bit being transmitted, the FSX pulse will go high on the rising edge of
CLKX during the transmission of the final bit and fall on the next rising edge
when transmission of the word just loaded begins. If DXR is not reloaded
within this period and FSM = 1, the DX pin will be placed in a high-impe-

dance state for at least one CLKX cycle until DXR is reloaded (as described in

the previous section). Figure 3-34 and Figure 3-35 show the timing diagrams
for the continuous operation with frame sync pulses.

Architecture - Serial Port

S 03 0 3 &3 3 ED Y) ER D Y 3 8
! !

DXR DXR
LOADED LOADED
WITH B WITH C
X8R XSR
LOADED LOADED

Figure 3-34. Serial Port Transmit Continuous Operation (FSM = 1)

CLKR

Fooy :XA?XAB x;;BXBz Xas Xa4 XBSXBGXN X._::X c1X ch:

RNT : / \ ; f : ; J———____
! | !
READ READ
DRR DRR

DRR DRR
LOADED LOADED
FROM RSR FROM RSR

Figure 3-35. Serial Port Receive Continuous Operation (FSM = 1)

Continuous receive operation with FSM = 1 is identical to that of burst-mode
operation with the exception that FSR is pulsed during reception of the final
bit.

3-63

Architecture - Serial Port

3.9.56 Continuous Operation Without Frame Sync Pulses (TMS320C25)

3-64

The continuous mode of operation on the TMS320C25 allows transmission
and reception of a continuous bit stream without requiring frame sync pulses
every 8 or 16 bits. This mode is selected by setting FSM = 0.

Figure 3-36 and Figure 3-37 show operation of the serial port for both states
of FSM to illustrate differences in operation for each case. FSM is initially set
to one, and frame sync pulses are required to initiate serial transfers. Before the
completion of the transmission (i.e., before the next serial port interrupt), the
FSM but must be reset to zero by means of an RFSM (reset FSM) instruction.
RFSM can occur either before or after the write to DXR or read from DRR.
From this point on, the FSX and FSR inputs are ignored, with transmission
occurring every CLKX cycle and reception occurring every CLKR cycle as long
as those clocks are present.

If FSX is configured as an output, it will remain low until FSM is set back to
one and DXR is reloaded. If DXR is not reloaded with new data every XINT
(every 8 or 16 CLKX cycles depending on FO), the last value loaded will be
transmitted on DX continuously. Note that this is different from the case with
FSM = 1 where DX is placed into a high-impedance state if DXR is not re-
loaded before transmission of the last bit of the current word in XSR. For ex-
ample, if byte C is not loaded into DXR as indicated in Figure 3-36, bits of
byte B (B1-B8) will be retransmitted instead of bits of byte C as shown.

For receive operations, DRR is loaded from RSR (and an RINT is generated)
every 8 or 16 CLKR cycles (depending on FOQ), regardless of whether or not
DRR has been read. An overrun of DRR is also possible with FSM = 1 if DRR
is not read before the next RINT. The only way to stop continuous trans-
mission or reception once started, when FSM = 0, is to either stop CLKX or
CLKR or to perform an SFSM (set FSM) instruction.

Continuous transmission without frame sync pulses is very useful in commu-
nicating directly to telephone system PCM highways. For ATT T1 and CCITT
G711/712 lines, FSX and FSR pulses are generated only every 24 or 32 bytes.
By counting the transmitted and received bytes in software after an initial FSX
or FSR.and performing SFSM and RFSM instructions as required, the
TMS320C25 can easily be made to communicate in these formats.

Architecture - Serial Port

CLKX
FSX (‘;
(TXM=1) : 3 :
FSX */““\
(TXM=0) : .

(F081)§ :X A7 X A8 XMBS18X B2 X B3 X B4 X BS X—BS—X B7 XL:; * c1 x c2 x
1 | ! !

DXR DXR

XSR
LOADED LOADED LOADED
WITH B WITH C

XSR RFSM
LOADED

,,,,,,,,, OSSO S,
A AN
R X A A A

Figure 3-36. Serial Port Transmit Continuous Operation (FSM = 0)

LR RO
" W 0000
RO XXX XXX

CLKR
e

FSR i i / E ~ H . N : . KA OOOCOCRCCOOCOIX X0
o2 X a1 Y ae (81 B2 (B3 Y B4 J &5 | B8 { 87 Y BB Y o x c2 X
Lo M C

; : Lgs :
RNT R f : : i S B
1 ! !
READ READ DRR

DRR DRR LOADED
FROM RSR

"

R RXRRRES
X

DRR RFSM
LOADED
FROM RSR

Figure 3-37. Serial Port Receive Continuous Operation (FSM = 0)

3-65

Architecture - Serial Port

3.9.6

3-66

Initialization of Continuous Operation Without Frame Sync Pulses
(TMS320C25)

FSM is normally initialized during an XINT or RINT service routine to enable
or disable FSX and FSR, respectively, for the next serial port operation. It is
necessary to start this mode with FSM = 1 so that the first data transferred
out of the serial port is the data written to the DXR register. Otherwise, the
serial port starts transmitting the contents of the shift register before loading
it with the value stored in the DXR register. Upon each completion of a data
packet transmission, it loads the data contained in the .DXR register into the
shift register and continues transmitting. After the first frame pulse has been
generated by or sent to the TMS320C25, the FSM bit must be reset to 0 using
the RFSM instruction. This must be done before the next serial port interrupt
to assure continuous transmission. If continuous transmission is stopped via
software, this initiation sequence must be repeated to restart the continuous
mode operation.

As shown in Figure 3-38 and Figure 3-39, RFSM may occur before a write to
DXR, regardless of the state of TXM. If TXM = 1, FSX is generated in a normal
manner on the next rising edge of CLKX, but only once. If TXM = 0, the
TMS320C25 waits to transmit until FSX is pulsed, but from then on, the FSX
input is ignored. Note that just as in the case of continuous-mode operation
without sync pulses described in Section 3.9.5, the first data written to DXR
(byte A) is output twice unless DXR is reloaded before the second trans-

-mission is started. It is important to consider this dummy cycle when using

continuous-mode serial operation.

The receive timings are the same as those for the transmit operations with
TXM = 0. The TMS320C25 waits to receive data until FSR is pulsed, but
thereafter the FSR input is ignored. No dummy cycle is associated with the

'receive operation due to the post-buffering nature of DRR as opposed to the

prebuffering nature of DXR.

Architecture - Serial Port

CLKX

FSX
(TXM=1)

FSX g XXX ';4 ‘o'q R o 'c. o. R 'u o
KX A0 GONN AR

TXM= KRR XXX 0NN R 0
(XM_O) AR .q’y‘«‘b. KRR "f‘ybv.o.s"l»’v' XX vQ‘.'.’w.»'o.o.o....'W.".’.'.‘q'.'p.o‘.‘..W'.'o..'»"...'..'o‘..o.«.c.n.q"‘u.o'o.o‘..‘ XX Nu\'.’n‘q‘o’q 2 .t.o'o‘b.l‘b‘ X

o ~w—-——(A1 XAz X A3 X A4 X A5 X A6 A Y e A1 A2

: MSB : : : : : : : LSB : :

XINT : ;
Tt
RFSM| XSR
LOADED

DXR XSR
LOADED RELOADED

WITH A

Figure 3-38. Continuous Transmit Operation Initialization

SS— AE—— . — —
By
AR RN 2) R

B A A A A AR AR R R P

(Fooh ~§——§—§(M2LXA2);(A3:XA4XASXAS)§(A7)§(Aa)z(mgsz)i(___

: : . : : : : : L8B ¢ :
RNT : : : : : : : Y
1 1

RFSM DRR
LOADED

FROM RSR

Figure 3-39. Continuous Receive Operation Initialization

3-67

Architecture - Multiprocessing and DMA

3.10 Multiprocessing and Direct Memory Access (DMA)

The flexibility of the TMS320C2x allows configurations to satisfy a wide range
of system requirements. Some of the system configurations using the
TMS320C2x are as follows: -

(] A standalone system (single processor),

[A multiprocessor with devices in parallel,

® A host/slave multiprocessor with shared global data memory space, or
®

A peripheral processor interfaced using processor-controlied signals to
another device.

These system configurations are made possible by three specialized features
of the TMS320C2x: the synchronization function utilizing the SYNC input, the
global memory interface, and the hold function implemented with the HOLD
and HOLDA pins. The following sections describe these functions in detail.

3.10.1 Synchronization

3-68

In a multiprocessor environment, the SYNC input can be used to greatly ease
interface between processors. This input is used to cause each TMS320C2x
in the system to synchronize their internal clocks, thereby allowing the pro-
cessors to run in lock-step operation.

Multiple TMS320C2x devices are synchronized by using common SYNC and
external clock inputs. A negative transition on SYNC sets each processor to
internal quarter-phase one (Q1). This transition must occur synchronously
with the rising edge of CLKIN. On the TMS320C25, there is a two CLKIN
cycle delay following the cycle in which SYNC goes low, before the synchro-
nized Q1 occurs. On the TMS32020, there is no delay.

The timing diagrams for the SYNC input are shown in Figure 3-40 and Figure
3-41 for the TMS32020 and TMS320C25, respectively. Note that the internal
clock timing relationships are different in the TMS32020 and TMS320C25
(see Appendix C and Section 3.7.2).

:

CLKIN

SYNC

CLKOUT1

|

CLKOUT2

Figure 3-40. Synchronization Timing Diagram (TMS32020)

Architecture - Multiprocessing and DMA

CLKIN

SYNC

CLKOUT1

CLKOUT2

Figure 3-41. Synchronization Timing Diagram (TMS320C25)

Normally, SYNC is applied while RS is active. If SYNC is asserted after a reset,
the following can occur:

1) The processor machine cycle is reset to Q1, provided that the timing re-
quirements for SYNC are met. If SYNC is asserted at the beginning of Q1,
Q3, or Q4, the current instruction is improperly executed. If SYNC is as-
serted at the beginning of Q2, the current instruction is executed prop-
erly.

2) If SYNC does not meet the timing requirements, unpredictable processor
operation occurs. A reset should then be executed to place the processor
back in a known state.

3.10.2 Global Memory

For multiprocessing applications, the TMS320C2x has the capability of allo-
cating global data memory space and communicating with that space via the
BR (bus request) and READY control signals.

Global memory is memory shared by more than one processor; therefore, ac-
cess to it must be arbitrated. When using global memory, the processor’s ad-
dress space is divided into local and global sections. The local section is used
by the processor to perform its individual function, and the global section is
used to communicate with other processors.

A memory-mapped global memory allocation register (GREG) specifies part
of the TMS320C2x’s data memory as global external memory. GREG, which
is memory-mapped at data memory address location 5, is an eight-bit register
connected to the eight LSBs of the internal D bus. The upper eight bits of lo-
cation 5 are nonexistent and read as one’s.

The contents of GREG determine the size of the global memory space. The
legal values of GREG and corresponding global memory spaces are shown in
Table 3-8. Note that values other than those listed in the table lead to frag-
mented memory maps.

3-69

Architecture - Multiprocessing and DMA

Table 3-8. Global Data Mem>ory Configurations

LOCAL MEMORY GLOBAL MEMORY
GREG VALUE RANGE # WORDS RANGE # WORDS
000000XX >0 - >FFFF 655636 | @ ------------- 0
10000000 >0 - >7FFF 32,768 >8000 - >FFFF 32,768
11000000 >0 - >BFFF 49,152 >C000 - >FFFF 16,384
11100000 >0 - >DFFF 57,344 >EQ00 - >FFFF 8,192
11110000 >0 - >EFFF 61,440 >F000 - >FFFF 4,096
11111000 >0 - >F7FF 63,488 >F800 - >FFFF 2,048
11111100 ‘| >0 - >FBFF 64,5612 >FCO0 - >FFFF 1,024
11111110 >0 - >FDFF 65,024 >FEQO - >FFFF 512
11111111 >0 - >FEFF . 65,280 >FF0O0 - >FFFF 256

When a data memory address, either direct or indirect, corresponds to a global
data memory address (as defined by GREG), BR is asserted low with DS to
indicate that the processor wishes to make a global memory access. External
logic then arbitrates for control of the global memory, asserting READY when
the TMS320C2x has control. The length of the memory cycle is controlled by
the READY line. One wait-state timing is shown in Figure 3-42. Note that all
signals not shown have the same timing as in the normal read or write case.

CLKOUT1

A15-A0 © VALID W
BR, DS W‘

R/W VALnD W
READY Rt S A X 7‘1‘:;2;552;?:;3;:;:;I;:‘?:;:;Z;I‘:;???I:35:‘55?:‘55

ORI 4 - QRO

Figure 3-42. Global Memory Access Timing

3-70

Architecture - Multiprocessing and DMA

3.10.3 The Hold Function

The TMS320C2x supports Direct Memory Access (DMA) to its local (off-
chip) program, data, and I/O spaces. Two signals, HOLD and HOLDA, are
provided to allow another device to take control of the processor's buses.
Upon receiving a HOLD signal from an external device, the processor ac-
knowledges by bringing HOLDA low. The processor then places its address
and'data buses as well as all control signals (PS, DS, 1S, R/W, and STRB) in the
high-impedance state. The serial port output pins, DX and FSX, are not af-
fected by HOLD. Signaling between the external processor and the
TMS320C2x can be performed using interrupts.

The timing for the HOLD and HOLDA signals is shown in Figure 3-43. HOLD
has the same setup time as READY and is sampled at the beginning of quar-
ter-phase 3 (see Appendix C for phase relationships on the TMS32020). If
the setup time is met, it takes three machine cycles before the buses and
control signals go to the high-impedance state. Note that unlike the external
interrupts INT(2-0), HOLD is not a latched input. The external device must keep
HOLD low until it receives a HOLDA from the TMS320C2x.

If the TMS320C2x is in the middie of a multicycle instruction, it will finish the
instruction before entering the hold state. After the instruction is completed,
the buses are placed in the high-impedance state. This also applies to in-
structions that become multicycle due to insertion of wait states or to the use
of RPT/RPTK instructions.

After HOLD is de-asserted, program execution resumes from the same point at
which it was halted. HOLDA is removed synchronously with HOLD, as shown
in Figure 3-43. If the setup time is met, two machine cycles are required be-
fore the buses and control signals become valid.

HOLD is not treated as an interrupt. If the TMS320C2x was executing the IDLE
instruction before entering the hold state, it resumes executing IDLE once it
leaves the hold state.

The hold function on the TMS320C25 has two distinct operating modes:

® A TMS32020-like mode, in which execution is suspended during as-
sertion of HOLD, and

® A TMS320C25 concurrent DMA mode, in which the TMS320C25 con-
tinues to execute its prooram while operating from internal RAM or
ROM, thus greatly increasing throughput in data-intensive applications.

The operating mode is selected by the HM (hold mode) status register bit on
the TMS320C25. The HOLD signal is pulled low, as shown in the first part of
Figure 3-43. When HM = 1, the TMS320C25 halts program execution and
enters the hold state directly. When HM = 0, the processor enters the hoid
state directly, as shown in Figure 3-43, if program execution is from external
memory or if external data memory is being accessed. If program execution is
from internal memory, however, and if no external data memory accesses are
required, the processor enters the hold state externally, but program execution
continues internally. This allows more efficient system operation since a pro-
gram may continue executiiy while an external DMA operation is being per-
formed.

3-71

Architecture - Multiprocessing and DMA

3-72

Program execution ceases until HOLD is removed if the processor is in a hold
state with HM = 0 and an internally executing program requires an external
access, or if the program branches to an external address. Also, if a repeat
instruction that requires the use of the external bus is executing with HM = 0
and a hold occurs, the hold state is entered after the current bus cycle. If this
situation occurs with HM = 1, the hold state will not be entered until the re-
peat count is completed. HM is set and reset by the SHM (set hoid mode)
and RHM (reset hold mode) instructions, respectively.

All interrupts are disabled while HOLD is active with HM = 1. If an interrupt
is received during this period, the interrupt is latched and remains pending.
HOLD itself does not affect any interrupt flags or registers. If HM = 0, inter-
rupts function normally.

CLKOUT1
STRB :
A15-A0 1 N X N+t X N+2 >———

isnhb% :X VALID X VALID >/ ________

D15-DO @ @ ;
fetch < N ;4 Nel ,4 - :: - K

execute 4———"‘—'—2——-)‘._._&1__,‘ N . ‘ -

HOLDA : : : \ :

NOTES: 1. N is the program memory location for the current instruction.
2. This example only shows the execution of single-cycle instructions
fetched from external program memory.

Figure 3-43. TM$320C25 Hold Timing Diagram

Architecture - Multiprocessing and DMA

CLKOUT1

STRB

HOLD

A15-A0

3|

Ps,
ORI

(2]

RW
D15-DO
fetch
execute

HOLDA

N+2 X N+2 X N+3 X

N+4

X

4 \(VALID X VALID X VALID X

4
Yoo

|

4
. SN

'y

r' S
A

v

'y

L

Figure 3-43. TMS320C25 Hold Timing Diagram (Concluded)

3-73

4. Assembly Language Instructions

The TMS320C2x instruction set supports numeric-intensive signal processing
operations as well as general-purpose applications, such as multiprocessing
and high-speed control. TMS320C1x source code is upward-compatible with
TMS320C2x source code. TMS32020 object code is upward-compatible with
TMS320C25 object code.

This section describes the assembly language instructions for the TMS320C2x
inicroprocessor. Included in this section are the following major topics:

(] Memory Addressing Modes (Section 4.1 on page 4-2)
Direct addressing
Indirect addressing (using eight auxiliary registers)
Immediate addressing

® Instruction Set (Section 4.2 on page 4-10)
Symbols and abbreviations used in the instructions
Instruction set summary (listed according to function)

[] Individual Instruction Descriptions (Section 4.3 on page 4-17)
Presented in alphabetical order and providing the following:
- Assembler syntax
- Operands
- Execution
- Encoding
- Description
- Words
- Cycles
- Repeatability
- Example(s)

4-1

Assembly Language Instructions

4.1 Memory Addressing Modes

The TMS320C2x instruction set provides three memory addressing modes:

(] Direct addressing mode
o Indirect addressing mode
[] Immediate addressing mode

Both direct and indirect addressing can be used to access data memory. Direct
addressing concatenates seven bits of the instruction word with the nine bits
of the data memory page pointer to form the 16-bit data memory address.
Indirect addressing accesses data memory through the auxiliary registers. In
immediate addressing, the data is based on a portion of the instruction
word(s). The following sections describe each addressing mode and give the
opcode formats and some examples for each mode.

4.1.1 Direct Addressing Mode

In the direct memory addressing mode, the instruction word contains the
lower seven bits of the data memory address (dma). This field is concatenated
with the nine bits of the data memory page pointer (DP) register to form the
full 16-bit data memory address. Thus, the DP register points to one of 512
possible 128-word data memory pages, and the 7-bit address in the instruc-
tion points to the specific location within that data memory page. The DP
register is loaded through the LDP (load data memory page pointer), LDPK
(load data memory page pointer immediate), or LST (load status register STQ)
instructions.

Note:

The data page pointer is not initialized by reset and is therefore undefined
after powerup. The TMS320C2x development tools, however, utilize de-
fault values for many parameters, including the data page pointer. Because
of this, programs that do not explicitly initialize the data page pointer may
execute improperly, depending on whether they are executed on a
TMS320C2x device or using a development tool. Thus, it is critical that
all programs initialize the data page pointer in software.

Assembly Language Instructions

Figure 4-1 illustrates how the 16-bit data address is formed.

= DATA BUS. (16) & >

7 LSBS FROM
INSTRUCTION ,
REGISTER (IR)

16-BIT DATA ADDRESS

Figure 4-1. Direct Addressing Block Diagram

Direct addressing can be used with all instructions except CALL, the branch
instructions, immediate operand instructions, and instructions with no oper-
ands. The direct addressing format is as follows:

15 14 13 121110 9 8 7 6 5 4 3 2 1 0

[Opcode J 0 l dma l

Bits 15 through 8 contain the opcode. Bit 7 = O defines the addressing mode
as direct, and bits 6 through O contain the data memory address (dma).

Example of Direct Addressing Format:

ADD 9,5 Add to accumulator the contents of data memory location
9 left-shifted 5 bits.

151413121110 9 8 7 6 5 4 3 2 1 0
0000010 1/0f/o0o0 10 01

The opcode of the ADD 9,5 instruction is >05 and appears in bits 15 through
8. The notation >nn indicates nn is a hexadecimal number. The shift count
of >5 appears in bits 11 through 8 of the opcode. The data memory address
>09 appears in bits 6 through 0.

4-3

Assembly Language Instructions

4.1.2 Indirect Addressing Mode

4-4

The auxiliary registers (AR) provide flexible and powerful indirect addressing.
Five auxiliary registers (ARO-AR4) are provided on the TMS32020, and eight
auxiliary registers (ARO-AR7) are available on the TMS320C25. To select a
specific auxiliary register, the Auxiliary Register Pointer (ARP) is loaded with
a value from 0 through 4 or 7, designating ARO through AR4 or AR7, respec-
tively (see Figure 4-2).

AUXILIARY
REGISTERS
ARB (3) ARP (3) ARO (16)
(ARP = 2) 3 AR1 (16)
AR2 (16)
AR3 (16
AR4 (16
AR5 (16) T
AR6 (16)
AR7 (16) T 16

1 {6

ARAU (16)

, 16-BIT DATA ADDRESS
tTMS320C25 specific.

Figure 4-2. Indirect Addressing Block Diagram

The contents of the auxiliary registers may be operated upon by the Auxiliary
Register Arithmetic Unit (ARAU), which implements 16-bit unsigned arith-
metic. The ARAU performs auxiliary register arithmetic operations in the same
cycle as the execution of the instruction. (Note that the increment or decre-
ment of the indicated AR is always executed after the use of that AR in the
instruction.)

In indirect addressing, any location in the 64K data memory space can be ac-
cessed via the 16-bit addresses contained in the auxiliary registers. These may
be loaded by the instructions LAR (load auxiliary register), LARK (load auxil-
iary register immediate), and LRLK (load auxiliary register long immediate).
The auxiliary registers on the TMS320C25 may be modified by ADRK (add to
auxiliary register short immediate) or SBRK (subtract from auxiliary register
short immediate). The TMS320C2x auxiliary registers may also be modified
by the MAR (modify auxiliary register) instruction or, equivalently, by the in-
direct addressing field of any instruction supporting indirect addressing.
AR(ARP) denotes the auxiliary register selected by ARP

Assembly Language Instructions

The following symbols are used in indirect addressing, including bit-reversed
(BR) addressing:

* Contents of AR(ARP) are used as the data memory address.

- Contents of AR(ARP) are used as the data memory address, then
decremented after the access.

*+ Contents of AR(ARP) are used as the data memory address, then
incremented after the access.

*0- Contents of AR(ARP) are used as the data memory address, and the
contents of ARO subtracted from it after the access.

*0+ Contents of AR(ARP) are used as the data memory address, and the
contents of ARO added to it after the access.

*BR0O- Contents of AR(ARP) are used as the data memory address, and the
contents of ARO subtracted from it, with reverse carry (rc) propa-
gation, after the access (TMS320C25 specific).

*BRO+ Contents of AR(ARP) are used as the data memory address, and the
contents of ARO added to it, with reverse carry (rc) propagation, af-
ter the access (TMS320C25 specific).

There are two main types of indirect addressing with indexing:

(] Regular indirect addressing with increment or decrement, and

[] Indirect addressing with indexing based on the value of ARO:
Indexing by adding or subtracting the contents of ARO, or
Indexing by adding or subtracting the contents of ARO with the
carry propagation reversed (for FFTs on the TMS320C25).

In either case, the contents of the auxiliary register pointed to by the ARP re-
gister are used as the address of the data memory operand. Then, the ARAU
performs the specified mathematical operation on the indicated auxiliary reg-
ister. Additionally, the ARP may be loaded with a new value. All indexing op-
erations are performed on the current auxiliary register in the same cycle as the
original instruction.

Indirect auxiliary register addressing allows for post-access adjustments of the
auxiliary register pointed to by the ARP. The adjustment may be an increment
or decrement by one or based upon the contents of ARO.

Bit-reversed addressing modes on the TMS320C25 allow efficient 1/0 to be
performed for the resequencing of data points in a radix-2 FFT program. The
direction of carry propagation in the ARAU is reversed when this mode is se-
lected and ARO is added to/subtracted from the current auxiliary register.
Typical use of this addressing mode requires that ARO first be set to a value
corresponding to one-half of the array size, and AR(ARP) be set to the base
address of the data (the first data point). See Section 5.7.4 for an FFT example
using bit-reversed addressing modes.

4-5

Assembly Language Instructions

4-6

Indirect addressing can be used with all instructions except immediate oper-
and instructions and instructions with no operands. The indirect addressing
format is as follows:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Opcode | 1]iov]inc]|pEc|narR] v]

Bits 15 through 8 contain the opcode, and bit 7 = 1 defines the addressing
mode as indirect. Bits 6 through O contain the indirect addressing control bits.

Bit 6 contains the increment/decrement value (IDV). The IDV determines
whether ARO will be used to increment or decrement the current auxiliary
register. If bit 6 = 0, an increment or decrement (if any) by one occurs to the
current auxiliary register. If bit 6 = 1, ARO may be added to or subtracted from
the current auxiliary register as defined by bits 5 and 4.

Bits 5 and 4 control the arithmetic operation to be performed with AR(ARP)
and ARO. When set, bit 5 indicates that an increment is to be performed. If bit
4 is set, a decrement is to be performed. Table 4-1 shows the correspondence
of bit pattern and arithmetic operation.

Table 4-1. Indirect Addressing Arithmetic Operations

BITS ARITHMETIC OPERATION
6 5 4
0O 0 O No operation on AR(ARP)
0 0 1 AR(ARP) - 1 = AR(ARP)
0O 1 O AR(ARP) + 1 = AR(ARP)
o 1 1 Reserved
1 0 O AR(ARP) - ARO = AR(ARP) [reverse carry propagation]t
1 0 1 AR(ARP) - ARO = AR(ARP)
1 1 0 AR(ARP) + ARO — AR(ARP)
1 1 1 AR(ARP) + ARO — AR(ARP) [reverse carry propagation]t

tTMS320C25 specific.

Bit 3 and bits 2 through O control the Auxiliary Register Pointer (ARP). Bit 3
(NAR) determines if a new value is loaded into the ARP. If bit 3 = 1, the
contents of bits 2 through 0 (Y = next ARP) are loaded into the ARP. If bit
3 = 0, the contents of the ARP remain unchanged.

Table 4-2 shows the bit fields, notation, and operation used for indirect ad-
dressing.

Assembly Language Instructions

Table 4-2. Bit Fields for Indirect Addressing

INSTRUCTION IELD BITS NOTATION OPERATION
15 - 76543210
"‘Opcode—’ 10000«“Y >»>| * No manipulation of ARs/ARP
“Opcode—> 1 0 0 01 <Y - Y Y = ARP
“Opcode—> 1 0 01 0 <Y —~| * AR(ARP)-1 = AR(ARP)
“Opcode—* 1 0 01 1 <Y >| *Y AR(ARP)-1 = AR(ARP)
Y — ARP
“ Opcode— 1 0 1 0 <Y >} *+ AR(ARP)+1 = AR(ARP)
“Opcode—* 1 01 01 €Y >| *+Y AR(ARP)+1 = AR(ARP)
Y = ARP
“Opcode—* 1 100 0 <Y =| *BRO- AR(ARP)-rcARO = AR(ARP)t
“QOpcode—> 1 1 0 01 <Y - *BRO-Y AR(ARP)-rcARO = AR(ARP)
Y - ARP?
“QOpcode—> 1 1 01 0 «<Y > *0- AR(ARP)-ARO = AR(ARP)
“Opcode—= 1 1 01 1 <Y - *0-Y AR(ARP)-ARO = AR(ARP)
Y = ARP
“Opcode—* 1 11 00 “<Y — *0+ AR(ARP)+ARO — AR(ARP)
“Opcode—=> 1 11 01 «Y > *0+Y AR(ARP)+ARO — AR(ARP)
Y — ARP
“~Opcode= 1 11 10<«Y]| *BRO+ AR(ARP) +rcARO = AR(ARP)?
“Opcode—> 11111 «Y > *BRO+,Y AR(ARP)+rcARO = AR(ARP)
Y = ARPt

tBR = bit-reversed addressing mode and rc = reverse carry propagation (TMS320C25).

For some instructions, the notation in Table 4-2 includes a shift code, e.g.,
*0+,8,3 where 8 is the shift code and Y = 3.

The CMPR (compare auxiliary register with ARQ), and BBZ/BBNZ (branch if
TC bit equal/not equal to zero) instructions facilitate conditional branches
based on comparisons between the contents of ARO and the contents of
AR(ARP).

The auxiliary registers may also be used for temporary storage via the load and
store auxiliary register instructions, LAR and SAR, respectively.

The following examples illustrate the indirect addressing format:
Example 1:

ADD *+.,8 Add to the accumulator the contents of the data memory
address defined by the contents of the current auxiliary
register. This data is left-shifted 8 bits before being
added. The current auxiliary register is autoincremented
by one. The opcode is >08A0, as shown below.

151413121110 9 8 7 6 6 4 3 2 1 0
[o oo o1 00 0f1/0 1 00000

4-7

Assembly Language Instructions

Example 2:

ADD *.8 As in Example 1, but with no autoincrement; the opcode
is >0880.

Example 3:

ADD *-.8 As in Example 1, except that the current auxiliary register
is decremented by one; the opcode is >0890.

Example 4:

ADD *0+,8 As in Example 1, except that the contents of auxiliary
register ARO are added to the current auxiliary register;
the opcode is >08EOQ.

Example 5:

ADD *0-,8 As in Example 1, except that the contents of auxiliary
register ARO are subtracted from the current auxiliary re-
gister; the opcode is >08D0.

Example 6:

ADD *+.,8,3 As in Example 1, except that the auxiliary register pointer
(ARP) is loaded with the value 3 for subsequent in-
structions; the opcode is >08AB.

Example 7:

ADD *BRO-,8 The opcode is >08C0. The contents of auxiliary register
ARO are subtracted from the current auxiliary register with
reverse carry propagation (TMS320C25).

Example 8:

ADD *BRO+,8 The opcode is >08F0. The contents of auxiliary register
ARO are added to the current auxiliary register with re-
verse carry propagation (TMS320C25).

Assembly Language Instructions

4.1.3 Immediate Addressing Mode

In immediate addressing, the instruction word(s) contains th~ value of the
immediate operand. The TMS320C2x has both single-word (8-bit and 13-bit
constant) short immediate instructions and two-word (16-bit constant) long
immediate instructions. The immediate operand is contained within the in-
struction word itself in short immediate instructions. In long immediate in-
siructions, the word following the instruction opcode is used as the immediate
operand.

The following short immediate instructions contain the immediate operand in
the instruction word and execute within a single instruction cycle. The length
of the constant operand is instruction-dependent. Note that the ADDK, ADRK,
SBRK, and SUBK instructions are available on the TMS320C25.

ADDK Add to accumulator short immediate (8-bit absolute constant)

ADRK Add to auxiliary register short immediate (8-bit absolute con-
stant)

LACK Load accumulator short immediate (8-bit absolute constant)

LARK Load auxiliary register siiort immediate (8-bit absolute constant)

LARP Load auxiliary register pointer (3-bit constant)

LDPK Load data memory page pointer immediate (9-bit constant)

MPYK Multiply immediate (13-bit two’s-complement constant)

IPTK Repeat instruction as specified by immediate value (8-bit con-
stant)

SBRK Subtract from auxiliary register short immediate (8-bit absolute
constant)

SUBK Subtract from accumulator short immediate (8-bit absolute
constant).

Example of short immediate addressing format:
RPTK 99 Execute the instruction following this instruction 100 times.

With the RPTK instruction, the immediate operand is contained as a part of the
instruction opcode. The instruction format for RPTK is as follows:

151413121110 9 8 7 6 5 4 3 2 1 0
[1 10 01 0 1 1 8-Bit Constant

4-9

Assembly Language Instructions

For long immediate instructions, the constant is a 16-bit value in the word
following the opcode. The 16-bit value can be optionally used as an absolute
constant or as a two’s-complement value.

ADLK Add to accumulator long immediate with shift (absolute or two’s
complement)

ANDK AND immediate with accumulator with shift

LALK Load accumulator long immediate with shift (absolute or two's
complement)

LRLK Load auxiliary register long immediate

ORK OR immediate with accumulator with shift

SBLK Subtract from accumulator long immediate with shift (absolute

or two's complement)

XORK Exclusive-OR immediate with accumulator with shift.

Example of long immediate addressing format:

ADLK 16384,2 Add to the accumulator the value 16384 with a shift to
the left of two, effectively adding 65536 to the contents
of the accumulator.

The ADLK instruction uses the word following the instruction opcode as the

immediate operand. The instruction format for ADLK is as follows:

151413121110 9 8 7 6 5 4 3 2 1 0

1 1 0 1 Shift 0O 0 0 0 00 1 O
16-Bit Constant

4.2 Instruction Set

The following sections list the symbols and abbreviations used in the instruc-
tion set summary and in the instruction descriptions. The complete instruction
set summary is organized according to function. A detailed description of each
instruction is listed in the instruction set summary.

4.2.1 Symbols and Abbreviations

Table 4-3 lists symbols and abbreviations used in the instruction set summary
(Table 4-4) and the individual instruction descriptions.

Assembly Language Instructions

Table 4-3. Instruction Symbols

SYMBOL

MEANING

A
ACC
ARB
ARn
ARP

pma
PRGn

RPTC

Port address

Accumulator

Auxiliary register pointer buffer

Auxiliary register n (ARO, AR1 assembler symbols equal to O or 1)
Auxiliary register pointer

4-bit field specifying a bit code

Branch control input

Carry bit

2-bit field specifying compare mode

On-chip RAM configuration control bit

Data memory address field

Label assigned to data memory location n

Data memory address

Data page pointer

Format status bit

Frame synchronization mode bit

Hold mode bit

Addressing mode bit

Interrupt mode flag bit

Immediate operand field

Microcall stack

nn = hexadecimal number (others are decimal values)
Overflow mode flag bit

Overflow mode bit

Product register

Port address (PAQ-PA15 assembler symbols equal to O through 15)
Program - counter

Prefetch counter

2-bit field specifying P register output shift code
Program memory address

Label assigned to program memory location n
3-bit operand field specifying auxiliary register
Repeat counter

4-bit left-shift code

Status register n (STO or ST1)

Sign-extension mode bit

Temporary register

Test control bit

Top of stack

Transmit mode bit

3-bit accumulator left-shift field

XF pin status bit

Is assigned to

An absolute value

User-defined items

Optional items

Contents of

Alternative items, one of which must be entered

~ Blanks or spaces must be entered where shown.

4-11

Assembly Language Instructions

4.2.2 Instruction Set Summary

Table 4-4 shows the instruction set summary for the TMS320C25 processor,
which is a superset of the TMS320C1x and TMS320C2x instruction sets.
Included in the instruction set are four special groups of instructions to im-
prove overall processor throughput and ease of use.

® Extended-precision arithmetic (ADDC, SUBE, MPYU, BC, BNC, SC,
and RC)

® Adaptive filtering (MPYA, MPYS, and ZALR)
® Control and I/0 (RHM, SHM, RTC, STC, RFSM, and SFSM)

® Accumulator and register (SPH, SPL, ADDK, SUBK, ADRK, SBRK, ROL,
and ROR).

The instruction set summary is arranged according to function and alphabet
ized within each functional grouping. Additional information is presented in
the individual instruction descriptions in the following section. The symbol T
indicates instructions that are specific to the TMS320C2x instruction set. The
symbol ¥ indicates instructions that are specific to the TMS320C25 instruction
set.

Assembly Language Instructions

Table 4-4. Instruction Set Summary

ACCUMULATOR MEMORY REFERENCE INSTRUCTIONS

with sign extension suppressed

Mnemonic and Description Words 16-Bit Opcode
MSB LSB
ABS Absolute value of accumulator 1 1100 1110 0001 1011
ADD Add to accumulator with shift 1 0000 SSSS | bDD DDDD
ADDC*# Add to accumulator with carry 1 0100 0011 | DDD DDDD
ADDH Add to high accumulator 1 0100 1000 | DDD DDDD
ADDK* Add to accumulator short immediate 1 1100 1100 KKKK KKKK
ADDS Add to low accumulator with sign-extension 1 0100 1001 | DDD DDDD
suppressed
ADDT? Add to accumulator with shift specified 1 0100 1010 | DDD DDDD
by T register
ADLKt Add to accumulator long immediate 2 1101 SSSS 0000 0010
with shift
AND AND with accumulator 1 0100 1110 | DDD DDDD
ANDKT AND immediate with accumulator with shift 2 1101 SSSS 0000 0100
CMPLt Complement accumulator 1 1100 1110 0010 0111
LAC Load accumulator with shift 1 0010 SSSS | bDD DDDD
LACK Load accumulator short immediate 1 1100 1010 KKKK KKKK
LACTY Load accumulator with shift specified 1 0100 0010 | DDD DDDD
by T register
LALKT Load accumulator long immediate 2 1101 SSSS 0000 0001
with shift
NEGt Negate accumulator 1 1100 1110 0010 0011
NORM? Normalize contents of accumulator 1 1100 1110 1010 0010
OR OR with accumulator 1 0100 1101 | DDD DDDD
ORKt OR immediate with accumulator with shift 2 1101 SSSS 0000 0101
ROL¥ Rotate accumulator left 1 1100 1110 0011 0100
ROR¥ Rotate accumulator right 1 1100 1110 0011 0101
SACH Store high accumulator with shift 1 0110 1XXX | DDD DDDD
SACL Store low accumulator with shift 1 0110 OXXX | bDD DDDD
SBLKT Subtract from accumulator long immediate 2 1101 SSSS 0000 0011
with shift
SFLT Shift accumulator left 1 1100 1110 0001 1000
SFRt Shift accumulator right 1 1100 1110 0001 1001
SUB Subtract from accumulator with shift 1 0001 SSSS | DbD DDDD
SUBB? Ssubtract from accumulator with borrow 1 0100 1111 | DDD DDDD
SUBC Conditional subtract 1 0100 0111 1 DDD DDDD
SUBH Subtract from high accumulator 1 0100 0100 | DDD DDDD
SUBK* Ssubtract from accumulator short immediate 1 1100 1101 KKKK KKKK
SUBS Subtract from low accumulator with 1 0100 0101 1 DDD DDDD
sign extension suppressed
SUBTt Subtract from accumulator with shift specified 1 0100 0110 | DDD DDDD
by T register
XOR Exclusive-OR with accumulator 1 0100 1100 | DDD DDDD
XORKt Exclusive-OR immediate with accumulator 2 1101 SSSS 0000 0110
with shift
ZAC Zero accumulator 1 1100 1010 0000 0000
ZALH Zero low accumulator and load high accumulator 1 0100 0000 | DDD DDDD
ZALRY Zero low accumulator and load high accumulator 1 0111 1011 | DDD DDDD
with rounding
ZALS Zero accumulator and load low accumulator 1 0100 0001 |1 DDD DDDD

tThese instructions are specific to the TMS320C2x instruction set.
¥These instructions are specific to the TMS320C25 instruction set.

Assembly Language Instructions

Table 4-4. Instruction Set Summary (Continued)

AUXILIARY REGISTERS AND DATA PAGE POINTER INSTRUCTIONS

Mnemonic and Description Words 16-Bit Opcode
MSB LSB
ADRK* Add to auxiliary register short immediate 1 0111 1110 KKKK KKKK
CMPRt Compare auxiliary register with auxiiiary 1 1100 1110 0101 OOKK
register ARO
LAR Load auxiliary register 0011 ORRR | DDD DDDD

1100 ORRR KKKK KKKK
0101 0101 1000 1RRR
0101 0010 | DDD DDDD
1100 100K KKKK KKKK
1101 ORRR 0000 0000
0101 0101 | DDD DDDD

LARK Load auxiliary register short immediate
LARP Load auxiliary register pointer

LDP Load data memory page pointer

LDPK Load data memory page pointer immediate
LRLKT Load auxiliary register long immediate
MAR Modify auxiliary register

SAR Store auxiliary register 0111 ORRR | DDD DDDD
SBRK¥ Subtract from auxiliary register short immediate 0111 1111 KKKK KKKK

-k e) e 2

T REGISTER, P REGISTER, AND MULTIPLY INSTRUCTIONS

Mnemonic and Description Words 16-Bit Opcode
MSB LSB

APAC Add P register to accumulator 1 1100 1110 0001 0101
LPHT Load high P register 1 0101 0011 | DDD DDDD
LT Load T register 1 0011 1100 | DDD DDDD
LTA Load T register and accumulate previous product 1 0011 1101 | DDD DDDD
LTD Load T register, accumulate previous product, 1 0011 1111 | bDD DDDD

and move data
LTPT Load T register and store P register in 1 0011 1110 | DDD DDDD

accumulator ‘
LTSt Load T register and subtract previous 1 0101 1011 | DDD DDDD

product
MACT Multiply and accumulate 2 0101 1101 | DDD DDDD
MACDt Muitiply and accumulate with data move 2 0101 1100 | DDD DDDD
MPY Multiply (with T register, store product in 1 0011 1000 | DDD DDDD

P register)

MPYAt Multiply and accumulate previous product 1 0011 1010 | DDD DDDD
MPYK Muitiply immediate 1 101K KKKK KKKK KKKK
MPYSt Muitiply and subtract previous product 1 0011 1011 | DDD DDDD
MPYUY Multiply unsigned 1 1100 1111 | DDD DDDD
PAC Load accumulator with P register 1 1100 1110 0001 0100
SPAC Subtract P register from accumulator 1 1100 1110 0001 0110
SPH# Store high P register 1 0111 1101 |1 DDD DDDD
SPLY Store low P register 1 0111 1100 | DDD DDDD
SPmt Set P register output shift mode 1 1100 1110 0000 10KK
SQRAT Square and accumulate 1 0011 1001 | DDD DDDD
SQRSt Square and subtract previous product 1 0101 1010 |1 DDD DDDD

tThese instructions are specific to the TMS320C2x instruction set.
1These instructions are specific to the TMS320C25 instruction set.

Assembly Language Instructions

Table 4-4. Instruction Set Summary (Continued)

BRANCH/CALL INSTRUCTIONS
Mnemonic and Description Words 16-Bit Opcode

MSB LSB
B Branch unconditionally 2 1111 1111 1DDD DDDD
BACCtT Branch to address specified by accumulator 1 1100 1110 0010 0101
BANZ Branch on auxiliary register not zero 2 1111 1011 1DDD DDDD
BBNZT Branch if TC bit # 0 2 1111 1001 1DDD DDDD
BBzt Branch if TC bit = 0 2 1111 1000 1DDD DDDD
BCt Branch on carry 2 0101 1110 1DDD DDDD
BGEZ Branch if accumulator > 0 2 1111 0100 1DDD DDDD
BGZ Branch if accumulator > 0 2 1111 0001 1DDD DDDD
BIOZ Branch on /0 status = 0 2 1111 1010 1DDD DDDD
BLEZ Branch if accumulator < C 2 1111 0010 1DDD DDDD
BLZ Branch if accumulator < 0 2 1111 0011 1DDD DDDD
BNC* Branch on no carry 2 0101 1111 1DDD DDDD
BNVT Branch if no overflow 2 1111 0111 1DDD DDDD
BNZ Branch if accumulator # 0 2 1111 0101 1DDD DDDD
BV Branch on overflow 2 1111 0000 1DDD DDDD
BZ Branch if accumulator = 0 2 1111 0110 1DDD DDDD
CALA Call subroutine indirect 1 1100 1110 0010 0100
CALL Call subroutine 2 1111 1110 1DDD DDDD
RET Return from subroutine 1 1100 1110 0010 0110
TRAPT Software interrupt 1 1100 1110 0001 1110

1/0 AND DATA MEMORY OPERATIONS
Mnemonic and Description Words 16-Bit Opcode

MSB LSB
BLKDt Block move from data memory to data memory 2 1111 1101 | DDD DDDD
BLKPT Block move from program memory to data 2 1111 1100 | DDD DDDD

memory

DMOV Data move in data memory 1 0101 0110 | DDD DDDD
FORT? Format serial port registers 1 1100 1110 0000 111K
IN Input data from port 1 1000 AAAA | DDD DDDD
ouT Output data to port 1 1110 AAAA | DDD DDDD
RFSM! Reset serial port frame synchronization mode 1 1100 1110 0011 0110
RTXMT Reset serial port transmit mode 1 1100 1110 0010 0000
RXFt Reset external flag 1 1100 1110 0000 1100
SFSMt Set serial port frame synchronization mode 1 1100 1110 0011 0111
STXMT Set serial port transmit mode 1 1100 1110 0010 0001
SXFt Set external flag 1 1100 1110 0000 1101
TBLR Table read 1 0101 1000 | DDD DDDD
TBLW Table write 1 0101 1001 | DDD DDDD

tThese instructions are specific to the TMS320C2x instruction set.
$These instructions are specific to the TMS320C25 instruction set.

Assembly Language Instructions

Table 4-4. Instruction Set Summary (Concluded)

CONTROL INSTRUCTIONS
Mnemonic and Description Words 16-Bit Opcode

LSB
BITt Test bit 1 BBBB | DDD DDDD
BITTT Test bit specified by T register 1 0111 |1 DDD DDDD
CNFDt Configure block as data memory 1 1110 0000 0100
CNFPt Configure block as program memory 1 11 1110 0000 0101
DINT Disable interrupt 1 11 1110 0000 0001
EINT Enable interrupt 1 11 1110 0000 0000
IDLEt Idle until interrupt 1 11 1110 0001 1111
LST Load status register STO 1 01 0000 | DDD DDDD
LsT1t Load status register ST1 1 01 0001 | bDD DDDD
NOP No operation 1 01 0101 0000 0000
POP Pop top of stack to low accumulator 1 11 1110 0001 1101
POPDt Pop top of stack to data memory 1 0111 1010 | DDD DDDD
PSHDT Push data memory value onto stack 1 0101 0100 | DDD DDDD
PUSH Push low accumulator onto stack 1 1100 1110 0001 1100
RCt Reset carry bit 1 1100 1110 0011 0000
RHM}¥ Reset hold mode 1 1100 1110 0011 1000
ROVM Reset overflow mode 1 1100 1110 0000 0010
RPTT Repeat instruction as specified by data memory 1 0100 1011 | DDD DDDD

value
RPTKT Repeat instruction as specified by immediate 1 1011 KKKK KKKK
value

RSXM? Reset sign-extension mode 1 1100 1110 0000 0110
RTC* Reset test/control flag 1 1100 1110 0011 0010
Sc# Set carry bit 1 1100 1110 0011 0001
SHM?# Set hold mode 1 1100 1110 0011 1001
SOVM Set overflow mode 1 1100 1110 0000 0011
SST Store status register STO 1 0111 1000 | DDD DDDD
SST1t Store status register ST1 1 0111 1001 | DDD DDDD
SSXMtT Set sign-extension mode 1 1100 1110 0000 0111
STC* Set test/control flag 1 1100 1110 0011 0011

tThese instructions are specific to the TMS320C2x instruction set.
IThese instructions are specific to the TMS320C25 instruction set.

Assembly Language Instructions

4.3 Individual Instruction Descriptions

Each instruction in the instruction set summary is described in the following
pages. Instructions are listed in alphabetical order. Information, such as as-
sembler syntax, operands, operation, encoding, description, words, cycles, and
examples, is provided for each instruction. An example instruction is provided
to familiarize the user with the special format used and explain its content.
Refer to Section 4.1 for further information on memory addressing. Code ex-
amples using many of the instructions are given in Section 5 on Software
Applications.

EXAMPLE Example Instruction EXAMPLE

Syntax

Direct: [<label>] EXAMPLE <dma>[,<shift>]
Indirect: [<label>] EXAMPLE {ind}[,<shift>[,<next ARP>]]
Immediate: [<label>] EXAMPLE [<constant>]

Each instruction begins with an assembler syntax expression. The optional
comment field that concludes the syntax is not included in the syntax ex-
pression. Space(s) are required between each field (label, command, op-
erand, and comment fields) as shown in the syntax. The syntax example
illustrates both direct and indirect addressing, as well as immediate ad-
dressing in which the operand field includes <constant>.

The indirect addressing operand options, including bit-reversed (BR) ad-
dressing, are as follows:

TMS32020: 1" +1*-170+|*0-}
TMS320C25: {*|"+|*-|*0+|*0-|*BRO+|*BRO-}

Operands 0 < dma < 127

0 <nextARP < 7
0 < constant < 255

Operands may be constants or assembly-time expressions referring to
memory, 1/0 and register addresses, pointers, shift counts, and a variety of
constants. The operand values used in the example syntax are shown. Note
that the next ARP on the TMS32020 is < 4 for auxiliary registers ARO-AR4.

Execution (PC) +1 - PC

(ACC) + [(dma) x 2shift] - ACC

If SXM = 1:
Then (dma) is sign-extended.
If SXM = 0:
Then (dma) is not sign-extended.

Affects QV; affected by OVM and SXM.
Affects C (TMS320C25).

An example of the instruction operation sequence is provided, describing
the processing that takes place when the instruction is executed. Condi-
tional effects of status register specified modes are also given. Those bits
in the TMS320C2x status registers affected by the instruction are also

listed.
Encoding % 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Direct:/| 0 0 0 0| Shift | of Data Memory Address |
Indirect:| 00 0 0] Shift [1] See Section 4.1 |
Immediate:/| 1 0 o0 | 13-Bit Constant |

Opcode examples are shown of both direct and indirect addressing or of the
use of an immediate operand.

EXAMPLE

Example Instruction EXAMPLE

Description

Words

Cycles

Instruction execution and its effect on the rest of the processor or memory
contents are described. Any constraints on the operands imposed by the
processor or the assembler are discussed. The description parallels and
supplements the information given by the execution block.

1

The digit specifies the number of memory words required to store the in-
struction and its extension words.

Cycle Timings for a Single Instruction

‘20
'C25

‘20
'C25

PI/D! Pi/DE PE/DI PE/DE PR/DI PR/DE
1 1 1+p 1+p - -
1 1 1+p 1+p 1 1
Cycle Timings for a Repeat Execution
n n n+p n+p - -
n n n+p n+p n n

The table shows the number of cycles required for a given TMS320C2x in-
struction to execute in a given memory configuration when executed as a
single instruction or in the repeat mode. The column headings in the tables
indicate the program source location (Pl, PE, or PR) and data destination
or source (DI or DE), defined as follows:

Pi The instruction executes from internal program memory (RAM).
PR The instruction executes from internal program memory (ROM).
PE The instruction executes from external program memory.

Dl The instruction executes using internal data memory.

DE The instruction executes using external data memory.

The number of cycles required for each instruction is given in terms of the
program/data memory and 1I/O access times as defined in the following
listing:

p Program memory wait states. Represents the number of clock cycles
the device waits for external program memory to respond to an ac-
cess. Tgc is the access time, in nanoseconds, (maximum) required
by the TMS320C2x for an external memory access to be made with
no wait states. Tem is the memory device access time, and T, is the
clock period (4/crystal frequency).

P=0; HTmem < Tac

P=1 HTac <Tmem S (Tp + Tyc)

P=2 f(Tp+ Tac)< Tmem S (Tp x 2 + Tye)

p=k, If [Tp x (Kk-1) + Tacl< T mem < (Tp x kK + Tae)

d Data memory wait states. Represents the number of cycles the de-
vice must wait for external data memory to respond to an access.
This number is calculated in the same way as the p number.

i 1/0 memory wait states. Represents the number of cycles the device
must wait for external 1/0 memory to respond to an access. This
number is calculated in the same way as the p number.

EXAMPLE

Example Instruction EXAMPLE

Example

4-20

Other abbreviations used in the tables and their meanings are as follows:

br Branch from ...

int Internal program memory.

INT Interrupt.

ext External program memory.

n The number of times an instruction is executea when using the RPT
or RPTK instruction.

Refer to Appendix D for further information on instruction cycle classifica-
tions and timings

ADD DAT1,3 (DP = 10)
or
ADD *,3 If current auxiliary register contains 1281.

Before Instruction After Instruction
Data Data
1281
@J
C C

The sample code presented in the above format shows the effect of the
code on memory and/or registers. The use of the carry bit (C) provided on
the TMS320C25 is shown in the small box.

ABS Absolute Value of Accumulator ABS
Syntax [<label>] ABS
Operands None
Execution (PC) +1 — PC
|(ACC)| = ACC
Affects OV; affected by OVM.
Affects C (TMS320C25).
Not affected by SXM.
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[t 1+ 0o o 1 1 1 0o o0 0o 0 1 1 0 1 1]
Description If the contents of the accumulator are greater than or equal to zero, the ac-
cumulator is unchanged by the execution of ABS. If the contents of the
accumulator are less than zero, the accumulator is replaced by its two’'s-
complement value.
Note that >80000000 is a special case. When the overflow mode is not set,
the ABS of >80000000 is >80000000. When in the overflow mode, the
ABS of >80000000 is >7FFFFFFF. In either case, the OV status bit is set.
The carry bit (C) on the TMS320C25 is always reset to zero by the exe-
cution of this instruction.
Words 1
Cycles
Cycle Timings for a Single Instruction
P1/Di PI/DE PE/DI PE/DE PR/DI PR/DE
‘20 1 1 1+p 1+p - -
'C25 1 1 1+p 1+p 1 1
Cycle Timings for a Repeat Execution
'20 n n+p n+p - -
'C25 n n+p n+p- n n
Example ABS

After Instruction

e
C

| ——
C

Before Instruction

C
C

4-21

ADD Add to Accumulator with Shift

ADD

Syntax
Direct: [<label>] ADD <dma>[,<shift>]
Indirect: [<label>] ADD {ind}[,<shift>[,<next ARP>]]

Operands 0 <dma < 127
0 < next ARP < 7
0 < shift £ 15 (defaults to 0)
Execution (PC) +1 = PC .
(ACC) + [(dma) x 2shift] - ACC
If SXM = 1:
Then (dma) is sign-extended.
If SXM = 0: -
Then (dma) is not sign-extended.
Affects OV, affected by OVM and SXM.
Affects C (TMS320C25).
Encoding %5 14 13 12 11 10 9 8 7 6 5 2 1 0
Direct: | 0 0 o0 o] Shift] o] Data Memory Address |
Indirect:| 0 0 0 o] Shift JIER| See Section 4.1 |

Description

The contents of the addressed data memory location are left-shifted and

added to the accumulator. During shifting, low-order bits are zero-filled.
High-order bits are sign-extended if SXM =1 and zero-filled if SXM = 0.

The result is stored in the accumulator.

Words 1
Cycles
Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
20 1 2+d 1+p 2+d+p - -
'C25 1 2+d 1+p 2+d+p 1 2+d
) Cycle Timings for a Repeat Execution
‘20 2n+nd n+p 2n+nd+p - -
'C25 1+n+nd n+p 1+n+nd+p n 1+n+nd
Example ADD DAT1,3 (DP = 10)
or
ADD *,3 If current auxiliary register contains 1281.

Before Instruction

Data Data

1281

C

4-22

After Instruction

1281
ce [
C

Add to Accumulator

ADDC with Carry (TMS320C25) ADDC
Syntax
Direct: [<label>] ADDC <dma>
Indirect: [<label>] ADDC {ind}[,<next ARP>]

Operands 0 <dma < 127

0 < nextARP < 7
Execution (PC) +1 — PC

(ACC) + (dma) + (C) = ACC

Affects OV and C; affected by OVM.
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 2 1 0

Direct:tf] 0 1 0 0 0 0 1

1]o |

Data Memory Address |

Indirect| 0 1 0 0 0 0 1

Description

Words
Cycles

1]]

See Section 4.1 I

The contents of the addressed data memory location and the value of the
carry bit are added to the accumulator. The carry bit is then affected in the

normal manner.

The ADDC instruction can be used in performing multiple-precision arith-

'C25

'C25

Example 1

metic.
1
Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 2+d 1+p 2+d+p 1 2+d
Cycle Tinmings for a Repeat Execution
n | 1+n+nd I n+p l 1+n+nd+p[n I 1+n+nd
ADDC DATS (DP = 8)
or
ADDC * If current auxiliary register contains 1029.

Before Instruction

C

Data
Memory

Data
Memory

After Instruction

—
e o ——rn
C

4-23

Add to Accumulator

ADDC with Carry (TMS320C25) ADDC
Example 2 ADDC DATS (DP = 8)
or
ADDC * If current auxiliary register contains 1029.
Before Instruction After Instruction

Data Data
ACC >FFFFFFFF ACC
C c

4-24

ADDH Add to High Accumulator ADDH
Syntax
Direct: [<label>] ADDH <dma>
Indirect: [<label>] ADDH {ind}[,<next ARP>]
Operands 0 < dma < 127
0 < next ARP < 7
Execution (PC) +1 = PC
(ACC) + [(dma) x 216] = ACC
Affects OV, affected by OVM.
Affects C (TMS320C25).
Low-order bits of the ACC not affected.
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Direct:| 0 1 0 0 1 0 0

Indirec:] 0 1 0 0 1 0 0

Description

Words
Cycles

‘20
‘'C25

20
'C25

Example

0] 0 | Data Memory Address I

of+ |

See Section 4.1 I

The contents of the addressed data memory location are added to the upper
half of the accumulator (bits 31 through 16). Low-order bits are unaffected
by ADDH. The carry bit (C) on the TMS320C25 is set if the result of the
addition generates a carry; otherwise, C is unaffected. The carry bit can
only be set, not reset, by the ADDH instruction.

The ADDH instruction may be used in performing 32-bit arithmetic.
1

Cycle Timings for a Single Instruction
Pl/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 2+d 1+p 2+d+p - -
1 2+d 1+p 2+d+p 1 2+d
Cycle Timings for a Repeat Execution
n 2n+nd n+p 2n+nd+p - -
n 1+n+nd n+p 1+n+nd+p n 1+n+nd

ADDH DATS (DP = 8)
or

ADDH * If current auxiliary register contains 1029.

Before Instruction After Instruction

Data Data
1029 10

C C

4-25

Add to Accumulator

Description

Words
Cycles

'C25

'C25

Example

4-26

ADDK Short Immediate (TMS320C25) ADDK
' Syntax [<label>] ADDK <constant>
Operands 0 < constant < 255
Execution (PC) +1 > PC
(ACC) + 8-bit positive constant > ACC
Affects OVM and C; affected by OVM.
Not affected by SXM.
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

8-Bit Constant I

[1 1 0 o 1 1 0o o]

The 8-bit immediate value is added, right-justified, to the accumulator with
the result replacing the accumulator contents. The immediate value is
treated as an 8-bit positive number, regardless of the value of SXM.

1

Cycle Timings for a Single Instruction
P1/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 1 1+p 1+p 1 1
Cycle Timings for a Repeat Execution
not repeatable
ADDK >5

After Instruction

ACC @ >79B2E6
C

Before Instruction

C

ADDS

Add to Accumulator

with Sign-Extension Suppressed ADDS

Syntax

Direct:
Indirect:

Operands

Execution

Encoding

Direct: {0 1 0 0 1 0 0

Indirectt{ 0 1 0 0 1 0 0

Description

Words
Cycles

‘20
'C25

'20
'C25

Example

[<label>] ADDS <dma>
[<label>] ADDS {ind}[,<next ARP>]

0 < dma < 127
0 < next ARP < 7

(PC) +1 —» PC

(ACC) + (dma) = ACC

(dma) is a 16-bit unsigned number.
Affects OV; affected by OVM.

Affects C (TMS320C25).
Not affected by SXM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

1 | 0 | Data Memory Address I

See Section 4.1 l

1]]

The contents of the specified data memory location are added with sign-
extension suppressed. The data is treated as a 16-bit unsigned number,
regardless of SXM. The accumulator behaves as a signed number. Note
that ADDS produces the same results as an ADD instruction with SXM =
0 and a shift count of 0.

1
Cycle Timings for a Single Instruction
Pi/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 2+d 1+p 2+d+p - -
1 2+d 1+p 2+d+p 1 2+d
Cycle Timings for a Repeat Execution
n 2n+nd n+p 2n+nd+p - -
n 1+n+nd n+p 1+n+nd+p n 1+n+nd
ADDS DAT11 (DP = 6)
or
ADDS * If current auxiliary register contains 779.
Before Instruction After Instruction
Data Data
Memory > F006 Memory > F006

see Q53] ace [sroe]
C C

4-27

ADDT

Add to Accumulator

with Shift Specified by T Register ADDT

Syntax

Direct:
Indirect:

Operands

Execution

Encoding

Directt |0 1 0 0 1 0 1

Indirect| 0 1.0 0 1 0 1

Description

Words
Cycles

‘20
'C25

‘20
'C25

Example

4-28

[<label>] ADDT <dma>
[<label>] ADDT {ind}[,<next ARP>]

0 <dma < 127
0 < next ARP < 7

(PC) +1 = PC)
(ACC) + [(dma) x 2T reglster(3-0)] -~ (ACC)
If SXM = 1:
Then (dma) is sign-extended.
If SXM = 0:
Then (dma) is not sign-extended.

Affects OV, affected by SXM and OVM.
Affects C (TMS320C25).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 l 0 l Data Memory Address l

0 l 1 ' Sée Section 4.1 l

The data memory value is left-shifted and added to the accumulator, with
the result replacing the accumulator contents. The left-shift is defined by
the four LSBs of the T register, resuiting in shift options from O to 15 bits.
Sign extension on the data memory value is controlled by SXM.

1

Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 2+d 1+p 2+d+p - -
1 2+d 1+p 2+d+p 1 2+d
Cycle Timings for a Repeat Execution
2n+nd n+p 2n+nd+p - -
1+n+nd n+p 1+n+nd+p n 1+n+nd
ADDT DAT127 (DP = 4)
or
ADDT * If current auxiliary register contains 639.

Add to Accumulator

ADDT with Shift Specified by T Register ADDT
Before Instruction After Instruction
Data Data
T >FF94 T >FF94
ACC >F715 Acc [o] >F7A5
C C

4-29

Add to Accumulator

ADLK Long Immediate with Shift ADLK
Syntax [<label>] ADLK <constant>[,<shift>]
Operands 16-bit constant
0 < shift < 15 (defaults to 0)
Execution (PC) +2—*PC)
(ACC) + [constant x 2shift] - AcC
If SXM = 1:
Then -32768 < constant < 32767.
If SXM = 0:
Then 0 < constant < 65535.
Affects OV, affected by OVM and SXM.
Affects C (TMS320C25).
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1] Shift [o o o o o o 1 o0
16-bit Constant
Description The 16-bit immediate value, left-shifted as specified, is added to the accu-
mulator. The result replaces the accumulator contents. SXM determines
whether the constant is treated as a signed two’s-compiement number or
as an unsigned number. The shift count is optional and defaults to zero.
Words 2
Cycles
Cycle Timings for a Single Instruction
Pl/DI PI/DE PE/DI PE/DE PR/DI PR/DE
20 2 2 2+2p 2+2p - -
'C25 2 2 2+2p 2+2p 2 2
Cycle Timings for a Repeat Execution
'20 not repeatable I - -
'C25 k not repeatable
Example ADLK 5,8

4-30

After Instruction

Acc [o] >15EF
C

Before Instruction

C

Add to Auxiliary Register

ADRK Short Immediate (TMS320C25) ADRK
Syntax [<label>] ADRK <constant>
Operands 0 < constant < 255
Execution (PC) +1 > PC
AR(ARP) + 8-bit positive constant > AR(ARP)
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

Description

Words
Cycles

‘C25

‘C25

Example

[o 1 1 1 1 1 1 o] 8-Bit Constant |

The 8-bit immediate value is added, right-justified, to the currently selected
auxiliary register with the result replacing the auxiliary register contents.
The addition takes place in the ARAU, with the immediate value treated as
an 8-bit positive integer.

1

Cycle Timings for a Single Instruction
P1/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 1 1+p 1+p 1 1
Cycle Timings for a Repeat Execution
not repeatable
ADRK >80 (ARP = 5)
Before Instruction After Instruction
AR5 >4321 AR5 >43A1

4-31

AND AND with Accumulator AND
Syntax
Direct: [<label>] AND <dma>
Indirect: [<label>] AND {ind}[,<next ARP>]
Operands 0 < dma < 127
0 < next ARP < 7
Execution (PC) +1 = PC
(ACC(15-0)).AND.(dma) = ACC(15-0)
0 - ACC(31-16)
Not affected by SXM.
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

Direct:/| 0 1 0 0 1

indirect:{ 0 1 0" 0 1 1 1

Description

1 1 0 ' 0 | Data Memory Address J

o1] See Section 4.1 |

The lower half of the accumulator is ANDed with the contents of the ad-
dressed data memory location. The upper half of the accumulator is ANDed
with all zeroes. Therefore, the upper half of the accumulator is always ze-
roed by the AND instruction.

Words
Cycles
'20
'‘C25
‘20
‘C25
Example

4-32

1

Cycle Timings for a Single Instruction
P1/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 2+d 1+p 2+d+p - -
1 2+d 1+p 2+d+p 1 2+d
Cycle Timings for a Repeat Execution
2n+nd n+p 2n+nd+p - -
1+n+nd n+p 1+n+nd+p n 1+n+nd
AND DAT16 (DP = 4)
or
AND * If current auxiliary register contains 528,
Before Instruction After Instruction
Data Data
Memory [>FF] Mamory [>FF]

C

C

AND Immediate

ANDK with Accumulator with Shift ANDK -
Syntax [<label>] ANDK <constant>[,<shift>]
Operands 16-bit constant
0 < shift £ 15 (defaults to 0)
Execution (PC) +2 > PC .
(ACC(30-0)).AND.[(constant x 2shifty] » ACC(30-0)
0 = ACC(31) and all other bit positions unoccupied by shifted constant.
Not affected by SXM.
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
11 0 1] Shift [o o o o o 1 o0 o0
16-bit Constant
Description The 16-bit immediate constant is left-shifted as specified and ANDed with
the accumulator. The result is left in the accumulator. Low-order bits below
and high-order bits above the shifted value are treated as zeroes, clearing
the corresponding bits in the accumulator. Note that the accumulator’s
most-significant bit is always zeroed regardless of the shift-code value.
Words 2
Cycles
Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
20 2 2 2+2p 2+2p - -
‘C25 2 2 2+2p 2+2p 2 2
Cycle Timings for a Repeat Execution
20 not repeatable | - L -
‘C25 not repeatable
Example ANDK >FFFF,12

Before Instruction After Instruction

C C

4-33

APAC

Add P Register to Accumulator APAC

Syntax

[<label>] APAC

None

(PC) +1 > PC

(ACC) + (shifted P register) = ACC

Affects OV; affected by PM and OVM.
Affects C (TMS320C25).
Not affected by SXM.

15 14 13 12 11 10 9 8 7 6 65 4 3 2 1 O
[+ 1+ o o 1 1 1 0o o o 0 1 0 1 0 1]

The contents of the P register are shifted as defined by the PM status bits
and added to the contents of the accumulator. The result is left in the ac-
cumulator. APAC is not affected by the SXM bit of the status register; the
P register is always sign-extended.

The APAC instruction is a subset of the LTA, LTD, MAC, MACD, MPYA,
and SQRA instructions.

Operands
Execution
Encoding
Description
Words
Cycles
‘20
'C25
'20
'C25
Example

4-34

1
Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 1 1+p 1+p - -
1 1 1+p 1+p 1 1
Cycle Timings for a Repeat Execution
n n+p n+p - -
n n+p n+p n n
APAC (PM = 0)
Before Instruction After Instruction
P >40 P >40

C

[—n
C

B Branch Unconditionally B
Syntax [<label>] B <pma>[,{ind}[,<next ARP>1]]
Operands 0 < pma < 65535
0 <next ARP <7
Execution pma ~ PC
Modify AR(ARP) and ARP as specified.
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Description

Words
Cycles

Example

‘20

‘C25

20
'C25

11 1 1 1 1 1 1 1] See Section 4.1

Program Memory Address

The current auxiliary register and ARP are modified as specified, and control
passes to the designated program memory address (pma). Note that no
AR or ARP modification occurs if nothing is specified in those fields. Pma
can be either a symbolic or a numeric address.

2
Cycle Timings for a Single Instruction
PI/DI | PI/DE PE/DI | PE/DE PR/DI PR/DE
2 (br int-to-int) 2+p (int-to-ext)" - -
2+p (ext-to-int) 2+2p (ext-to-ext) - -
True Conditions:
Destination on-chip RAM:
2 2 2+2p 2+2p 2 2
Destination on-chip ROM:
3 3 3+2p 3+2p 3 3
Destination external memory:
3+p 3+p 3+3p 3+3p 3+p 3+p
False Condition:
Destination anywhere:
2 2 2+2p 2+2p 2 2
Cycle Timings for a Repeat Execution
not repeatable - -
not repeatable
B PRG191 191 is loaded into the program counter, and
the program continues running from that
location.

4-35

BACC Branch to Address Specified by Accumuliator BACC

Syntax
Operands

Execution

Encoding

Description

Words
Cycles

Example

4-36

‘20

'C25

20

'C25

[<label>] BACC
None
(ACC(15-0)) = PC

%5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1+ 1+ o o 1 1 1 0 0 0 1 0 O 1 0 1]

The branch uses the lower half of the accumulator (bits 15-0) for the
branch address.

1

Cycle Timings for a Single Instruction
P1/DI PI/DE PE/DI PE/DE PR/DI PR/DE
2 2 2+p 2+p - -
Destination on-chip RAM:
2 2 2+p 2+p 2 2
Destination on-chip ROM:
3 3+p 3+p 3 3
Destination external memory:
3+p 3+p 3+2p 3+2p 3+p 3+p
Cycle Timings for a Repeat Execution
not repeatable I - [-
not repeatable
BACC

Before Instruction After Instruction

PC >16E4 PC >9545
ACC >F7FF9545 ACC >F7FF9545
C C

BANZ Branch on Auxiliary Register Not Zero BANZ
Syntax [<label>] BANZ <pma>[{ind}[,<next ARP>]]
Operands 0 < pma < 65535
0 < next ARP <7
Execution If AR(ARP) # O:
Then pma — PC;
Else (PC) + 2 = PC.
Modify AR(ARP) as specified.
Encoding 15 14 13 12 11 10 9 8 7 6 65 4 3 2 1 O
1T 1 1 1 1 0 1 1 1] See Section 4.1
Program Memory Address
Description Control is passed to the designated program memory address (pma) if the
current auxiliary register is not equal to zero. Otherwise, control passes to
the next instruction. The current auxiliary register and ARP are also modi-
fied as specified.
The current auxiliary register is either incremented or decremented from zero
when the branch is not taken. Note that the AR modification defaults to
*- (decrement current AR by one) when nothing is specified, making it
compatible with the TMS320C1x. Pma can be either a symbolic or a nu-
meric address.
Words 2
Cycles

20

'C25

20
'C25

Cycle Timings for a Single Instruction

PI/DI I PI/DE PE/DI | PE/DE PR/DI PR/DE
2 (br int-to-int) 2+p (int-to-ext) - -
2+p (ext-to-int) 2+2p (ext-to-ext) - -

True Conditions:

Destination on-chip RAM:

2 2+2p 2+2p 2 2

Destination on-chip ROM:

3 3+2p 3+2p 3 3

Destination external memory:

3+p 3+p 3+3p 3+3p 3+p 3+p

False Condition:

Destination anywhere:

2 2 2+2p 2+2p 2 2

Cycle Timings for a Repeat Execution
not repeatable] - I -
not repeatable

4-37

BANZ

Branch on Auxiliary Register Not Zero BANZ

Example 1

Example 2

4-38

BANZ PRG35, *~

Before Instruction

>
=
@
5
"
::.
Hvl&
—
ole
3

AR AR

PC >46 PC >35
or

PC ~a5 pc
BANZ PRG64, *+

Before Instruction After Instruction

AR > FFFF AR

PC PC
or

AR AR

PC PC
Note:

BANZ is designed for loop control using the auxiliary registers as loop
counters. Using *0+ or *0- allows modification of the loop counter by
a variable step size. Care must be exercised when doing this, however,
because the auxiliary registers behave as modulo 65536 counters, and
zero may be passed without being detected if ARO > 1.

Description

Words
Cycles

Example

20

'C25

20
'C25

BBNZ Branch on Bit Not Equal to Zero BBNZ
Syntax [<label>] BBNZ <pma>[,{ind}[,<next ARP>]]
Operands 0 < pma < 65535
0 < next ARP < 7
Execution If test/control (TC) status bit = 1:
Then pma = PC;
Else (PC) + 2 » PC.
Modify AR (ARP) and ARP as specified.
Affected by TC.
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

1 1 1 1 1 0 0 1 1] See Section 4.1

Program Memory Address

The current auxiliary register and ARP are modified as specified. Control
then passes to the designated program memory address if TC = 1. Other-
wise, control passes to the next instruction. Note that no AR or ARP
modification occurs if nothing is specified in those fields. Pma can be either
a symbolic or a numeric address. Note that the TC bit may be affected by
the BIT, BITT, CMPR, LST1, NORM, RTC, and STC instructions.

2

Cycle Timings for a Single Instruction

Py/DI | PIDE PE/DI | PE/DE PR/DI PR/DE
2 (br int-to-int) 2+p (int-to-ext) - -
2+p (ext-to-int) 2+2p (ext-to-ext) - -

True Conditions:
Destination on-chip RAM:
2 2

2+2p 2+2p 2 2
Destination on-chip ROM: :
3 3 3+2p 3+2p 3 3
Destination external memory:
3+p 3+p 3+3p 3+3p 3+p 3+p
False Condition:
Destination anywhere:
2 2 2+2p 2+2p 2 2
Cycle Timings for a Repeat Execution
not repeatable l - T -

not repeatable

BBNZ PRG650 If TC = 1, 650 is loaded into the program
counter; otherwise, the program counter
is incremented by 2.

4-39

BBZ

Branch on Bit Equal to Zero BBZ

Syntax
Operands
Execution
Encoding
Description
Words
Cycles
'20
'C25
20
'C25
Example

4-40

[<label>] BBZ <pma>[,{ind}[,<next ARP>1]

0 < pma < 65535
0 < nextARP < 7

If test/control (TC) status bit = O:
Then pma - PC;
Else (PC) + 2 =» PC.
Modify AR(ARP) and ARP as specified.

Affected by TC bit.
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1T 1 1 1 1 0 0 0 1] See Section 4.1

Program Memory Address

The current auxiliary register and ARP are modified as specified. Control
then passes to the designated program memory address if TC = 0. Other-
wise, control passes to the next instruction. No AR or ARP modification
occurs if nothing is specified in those fields. Pma can be either a symbolic
or a numeric address. Note that the TC bit is affected by the BIT, BITT,
CMPR, LST1, NORM, RTC, and STC instructions.

2
Cycle Timings for a Single Instruction
P1/DI I PI/DE PE/DI I PE/DE PR/DI PR/DE
2 (br int-to-int) 2+p (int-to-ext) - -
2+p (ext-to-int) 2+2p (ext-to-ext) - -
True Conditions:
Destination on-chip RAM:
2 2 2+2p 2+2p 2 2
Destination on-chip ROM:
3 3 3+2p 3+2p 3 3
Destination external memory:
3+p 3+p 3+3p 3+3p 3+p 3+p
False Condition:
Destination anywhere:
2 2 2+2p 2+2p 2 2
Cycle Timings for a Repeat Execution
not repeatable | - I -
not repeatable
BBZ PRG325 If TC = 0, 325 is loaded into the program

counter; otherwise, the program counter
is incremented by 2.

BC Branch on Carry (TMS320C25) BC

Syntax [<label>] BC <pma>[{ind}[,<next ARP>]]

Operands 0 < pma < 65535
0 < next ARP < 7

Execution If carry bit C = 1:
Then pma — PC;
Else (PC) + 2 - PC.
Modify AR(ARP) and ARP as specified.

Affected by C.
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 0 1 I See Section 4.1
Program Memory Address

Description The current auxiliary register and ARP are modified as specified. Control
then passes to the designated program memory address if the carry bit C
1. Otherwise, control passes to the next instruction. Note that no AR or
ARP modification occurs if nothing is specified in those fields. Pma can
be either a symbolic or a numeric address.

Note that the carry bit C is affected by all add, subtract, and accumulate
instructions as well as the ABS, LST1, NEG, RC, SC, rotate, and shift in-
structions. The carry bit is not affected by execution of BC, BNC, or non-
arithmetic instructions.

Words 2
Cycles
Cycle Timings for a Single Instruction
ppi | pype | pPE/pi | PE/DE | PR/DI | PR/DE
‘C25 | True Conditions:
Destination on-chip RAM:
2 2 2+2p 2+2p 2 2
Destination on-chip ROM:
3 3+2p 3+2p 3 3
Destination external memory:
3+p 3+p 3+3p 3+3p 3+p 3+p
False Condition:
Destination anywhere:
2+2p 2+2p 2 2
Cycle Timings for a Repeat Execution
'C25 not repeatable
Example BC PRG512 If the carry bit C = 1, 512 is loaded into

the program counter; otherwise, the PC is
incremented by 2.

4-41

Branch if Accumulator

BGEZ Greater Than or Equal to Zero BGEZ
Syntax [<label>] BGEZ <pma>[{ind}[,<next ARP>]]
Operands 0 < pma < 65535
0 < next ARP < 7
Execution If (ACC) > O:
Then pma —* PC;
Else (PC) + 2 = PC.
Modify AR (ARP) and ARP as specified.
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
1 1 1 1 0 1 0 0 1| See Section 4.1
Program Memory Address
Description The current auxiliary register and ARP are modified as specified. Control
then passes to the designated program memory address (pma) if the con-
tents of the accumulator are greater than or equal to zero. Otherwise,
control passes to the next instruction. Note that no AR or ARP modification
occurs if nothing is specified in those fields. Pma can be either a symbolic
or a numeric address.
Words 2
Cycles
Cycle Timings for a Single Instruction
Pi1/DI I PI/DE PE/DI | PE/DE PR/DI PR/DE
‘20 2 (br int-to-int) 2+p (int-to-ext) - -
2+p (ext-to-int) 2+2p (ext-to-ext) - -
'C25 | True Conditions:
Destination on-chip RAM:
2 2+2p 2+2p ©2 2
Destination on-chip ROM:
3+2p 3+2p 3 3
Destination external memory:
3+p 3+p 3+3p 3+3p 3+p 3+p
False Condition:
Destination anywhere:
2 2 2+2p 2+2p 2 2
Cycle Timings for a Repeat Execution
20 not repeatable L - -
'C25 not repeatable
Example BGEZ PRG217 217 is loaded into the program counter if

4-42

the accumulator is greater than or equal
to zero.

BGZ Branch if Accumulator Greater Than Zero BGZ
Syntax [<label>] BGZ <pma>[{ind}[,<next ARP>1]
Operands 0 < pma < 65535
0 < nextARP <7
Execution If (ACC) > 0:
Then pma — PC;
Eise (PC) + 2 = PC.
Modify AR(ARP) and ARP as specified.
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Description

Words
Cycles

Example

‘20

'C25

20
'C25

11 1 1 0 0 0 1 1] See Section 4.1

Program Memory Address

The current auxiliary register and ARP are modified as specified. Control
then passes to the designated program memory address (pma) if the con-
tents of the accumulator are greater than zero. Otherwise, control passes
to the next instruction. Note that no AR or ARP modification occurs if
nothing is specified in those fields. Pma can be either a symbolic or a nu-
meric address.

2

Cycle Timings for a Single Instruction

PI/DI | PI/DE PE/DI | PE/DE PR/DI PR/DE
2 (br int-to-int) 2+p (int-to-ext) - -
2+p (ext-to-int) 2+2p (ext-to-ext) - -

True Conditions:
Destination on-chip RAM:
2 2 2+2p 2+2p 2 2
Destination on-chip ROM:
3 3 3+2p 3+2p 3 3
Destination external memory:
3+p 3+p 3+3p 3+3p 3+p 3+p

False Condition:
Destination anywhere:
2 2 2+2p 2+2p 2 2

Cycle Timings for a Repeat Execution
not repeatable I - I -
not repeatabie

BGZ PRG342 342 is loaded into the program counter if
the accumulator is greater than zero.

4-43

BlOZ Branch on 1I/O Status Equal to Zero BiOZz
Syntax [<label>] BIOZ <pma>[{ind}[,<next ARP>]]
Operands 0 < pma < 65535
0 < next ARP < 7
Execution If BIO = O:
Then pma — PC;
Else (PC) + 2 = PC.
Modify AR(ARP) and ARP as specified.
Encoding i5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 1 1 0 1 0 1] See Section 4.1
Program Memory Address
Description The current auxiliary register and ARP are modified as specified. Control
then passes to the designated program memory address (pma) if the BIO
pin is low. Otherwise, control passes to the next instruction. Note that no
AR or ARP modification occurs if nothing is specified in those fields. Pma
can be either a symbolic or a numeric address.
BIOZ in conjunction with the BIO pin can be used to test if a peripheral is
ready to send or receive data. Polling the BIO pin using BIOZ may be pre-
ferable to an interrupt when executing time-critical loops. :
Words 2
Cycles
Cycle Timings for a Single Instruction
P1/DI | PI/DE PE/DI I PE/DE PR/DI PR/DE
'20 2 (br int-to-int) 2+p (int-to-ext) - -
2+p (ext-to-int) 2+2p (ext-to-ext) - -
‘C25 | True Conditions:
Destination on-chip RAM:
2 2+2p 2+2p 2 2
Destination on-chip ROM:
3 3+2p 3+2p 3 3
Destination external memory:
3+p 3+p 3+3p 3+3p 3+p 3+p
False Condition: :
Destination anywhere:
2+2p 2+2p 2 2
Cycle Timings for a Repeat Execution
20 not repeatable l - | -
‘C25 not repeatable
Example BICZ PRG64 If the BIO- pin is active (low), then

4-44

a branch to location 64 occurs.

BIT Test Bit BIT
Syntax
Direct: [<label>] BIT <dma>,<bit code>
Indirect: [<label>] BIT {ind},<bit code>[,<next ARP>]
Operands 0 < dma < 127
0 < next ARP < 7
0 < bitcode < 15
Execution (PC) +1 = PC
(dma bit at bit address (15-bit code)) = TC.
Affects TC.
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 2 1 0
Direct:l 1 0 1 l Bit Code I 0 I Data Memory Address I
Indirect:{ 1 0 1| Bitcode | 1] See Section 4.1 |

Description

Words
Cycles

20
‘'C25

‘20
'C25

The BIT instruction copies the specified bit of the data memory value to the
TC bit of status register ST1. Note that the BITT, CMPR, LST1, and NORM
instructions also affect the TC bit in status register ST1. A bit code value
is specified that corresponds to a certain bit address in the instruction, as
given by the following table:

Bit Code
Bit Address 1110 9 8
(LSB) 0 17111
1 1110
2 1101
3 17100
4 1011
5 1010
6 1001
7 17000
8 0111
9 0110
10 0101
11 0100
12 0011
13 0010
14 0001
(MSB) 15 0000
1
Cycle Timings for a Single Instruction
Pi/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 2+d 1+p 2+d+p - -
1 2+d 1+p 2+d+p 1 2+d
Cycle Timings for a Repeat Execution
2n+nd n+p 2n+nd+p - -
1+n+nd n+p 1+n+nd+p n 1+n+nd

4-45

BIT : Test Bit i BIT

Example BIT >0,>8 (DP = 488)
or)
BIT *,8 If current auxiliary register contains >F400.
Before Instruction After Instruction
Data Data -
Memory >7E98 Memory . >7E98
>F400 >F400
TC ©
L]

4-46 '

BITT Test Bit Specified by T Register BITT
Syntax
Direct: [<label>] BITT <dma>
Indirect: [<label>] BITT {ind}[,<next ARP>]

Operands 0 < dma < 127

0O < next ARP <7
Execution (PC) +1 = PC

(dma bit at bit address (15-T register(3-0))) = TC

Affects TC.
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

Directtfo 1 0 1 0 1 1

Indirectt{| 0 1 0 1 0 1 1

Description

Words
Cycles

‘20
'C25

20
‘C25

1]o]

Data Memory Address I

1]

See Section 4.1]

The BITT instruction copies the specified bit of the data memory value to
the TC bit of status register ST1. Note that the BIT, CMPR, LST1, and
NORM instructions also affect the TC bit in status register ST1. The bit
address is specified by a bit code value contained in the LSBs of the T
register, as given in the following table:

Bit Code

Bit Address 3210
(LSB) 0 17111
1 17110

2 17101

3 1100

4 1011

5 17010

6 1001

7 1000

8 0111

9 0110

10 0101

11 0100
12 0011
13 0010
14 0001
(MSB) 15 0000

Cycle Timings for a Single Instruction
P1/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 2+d 1+p 2+d+p - -
1 2+d 1+p 2+d+p 1 2+d
Cycle Timings for a Repeat Execution
n 2n+nd n+p 2n+nd+p - -
n 1+n+nd n+p 1+n+nd+p n 1+n+nd

4-47

BITT Test Bit Specified by T Register BITT

Example BITT >0 Value in T register points to bit 14 of
data word (DP = 240).
or

BITT * If current auxiliary register contains >7800.
Before Instruction After Instruction
Data Data
Memory >4DC8 Memory >4DC8
>7800 >7800
T Tc

4-48

Branch if Accumulator

BLEZ Less Than or Equal to Zero BLEZ
Syntax [<label>] BLEZ <pma>[{ind}[,<next ARP>]]
Operands 0 < pma < 65535
0 < next ARP < 7
Execution If (ACC) <O
Then pma — PC;
Eilse (PC) + 2 = PC.
Modify AR(ARP) and ARP as specified.
Encoding 1% 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
1 1 1 1 0 0 1 0 1] See Section 4.1
Program Memory Address
Description The current auxiliary register and ARP are modified as specified. Control
then passes to the designated program memory address (pma) if the con-
tents of the accumulator are less than or equal to zero. Otherwise, control
passes to the next instruction. Note that no AR or ARP modification occurs
if nothing is specified in those fields. Pma can be either a symbolic or a
numeric address.
Words 2
Cycles
Cycle Timings for a Single Instruction
Pi/DI | PI/DE PE/DI | PE/DE PR/DI PR/DE
‘20 2 (br int-to-int) 2+p (int-to-ext) - -
2+p (ext-to-int) 2+2p (ext-to-ext) - -
‘C25 | True Conditions:
Destination on-chip RAM:
2 2 2+2p 2+2p 2 2
Destination on-chip ROM:
3 3 3+2p 3+2p 3 3
Destination external memory:
3+p 3+p 3+3p 3+3p 3+p 3+p
False Condition:
Destination anywhere:
2 2 2+2p 2+2p 2 2
Cycle Timings for a Repeat Execution
20 not repeatable l - I -
'C25 not repeatable
Example BLEZ PRG63 63 is loaded into the program counter if

the accumulator is less than or equal to

zZero.

4-49

Block Move

BLKD from Data Memory to Data Memory BLKD
Syntax
Direct: [<label>] BLKD <dma1l>,<dma2>
Indirect: [<label>] BLKD <dma1l>{ind}[,<next ARP>]
Operands 0 < dmal < 65535
0 < dma2 < 127
0 < next ARP <7
Execution TMS32020:
(PC) + 2 > TOS
dmatl = PC
If (repeat counter) # O:
Then (dma1, addressed by PC) > dma2,
Modify AR(ARP) and ARP as specified,
(PC) +1 = PC,
(repeat counter) - 1 — repeat counter.
Else (dma1, addressed by PC) = dma2
Modify AR(ARP) and ARP as specified.
(TOS) = PC
TMS320C25:
(PC) + 2 > PC
(PFC) » MCS
dmal = PFC
If (repeat counter) # O:
Then (dma1, addressed by PFC) — dma2,
Modify AR(ARP) and ARP as specified,
(PFC) + 1 = PFC,
(repeat counter) - 1 = repeat counter.
Else (dma1, addressed by PFC) = dma2
Modify AR(ARP) and ARP as specified.
(MCS) — PFC
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Direct: | 1 1 1 1 1 1 0 1 l 0 I Data Memory Address 2
Data Memory Address 1
Indirect:| 111 1 1 1 0 1|1] See Section 4.1

Description

4-50

Data Memory Address 1

Consecutive memory words are moved from a source data memory block
to a destination data memory block. The starting address (lowest) of the
source block is defined by the second word of the instruction. The starting
address of the destination block is defined by either the dma contained in
the opcode (for direct addressing) or the current AR (for indirect address-
ing). In the indirect addressing mode, both the current AR and ARP may
be modified in the usual manner. In the direct addressing mode, dma2 is
used as the destination address for the block move but is not modified upon

BLKD

Block Move
from Data Memory to Data Memory BLKD

Words
Cycles

20

'C25

‘20

'C25

repeated executions of the instruction. Thus, the contents of memory at the
dma2 address will be the same as the contents of memory at the last dma1
address in a repeat sequence. RPT or RPTK must be used with the BLKD
instruction, in the indirect addressing mode, if more than one word is to be
moved. The number of words to be moved is one greater than the number
contained in the repeat counter RPTC at the beginning of the instruction.
At the end of this instruction, the RPTC contains zero and, if using indirect
addressing, AR(ARP) will be modified to contain the address after the end
of the destination block. Note that the source and destination blocks do
NOT have to be entirely on-chip or off-chip. However, BLKD cannot be
used to transfer data from a memory-mapped register to any other location
in data memory.

The PC points to the instruction following BLKD after execution. Interrupts
are inhibited during a BLKD operation used with RPT or RPTK.

The BLKD instruction on the TMS32020 uses one level of stack. Therefore,
the value on the bottom of the stack is lost since the stack is pushed and
popped during the instruction operation.

2
Cycle Timings for a Single Instruction
pypi | PyDE | PE/DI | PE/DE | PR/DI | PR/DE
Data source internal:T
3+d 3+2p 3+d+2p - -
Data source external:t
3+d 4+2d 3+d+2p 4+2d+2p - -
Source data in on-chip RAM:
3+d 3+2p 3+d+2p 3 3+d
Source data in external memory:
4+d 4+2d 4+d+2p 4+2d+2p 4+d 4+2d

Cycle Timings for a Repeat Execution

Data source internal:t
2+n 2+n+nd 2+n+2p 2+n+nd+2p - -
Data source external:t
2+n+nd 2+2n+2nd 2+n+nd 2+2n+2nd - -
+2p +2p

Source data in on-chip RAM:
2+n 2+n+nd 2+n+2p 2+n+nd+2p 2+n 2+n+nd
Source data in external memory:
3+n+nd 2+2n+2nd 3+n+nd 2+2n+2nd 3+n+nd 2+2n+2nd
+2p +2p

tColumn headings 'DI/DE’ refer to data destination.

4-51

Block Move

1032

BLKD from Data Memory to Data Memory BLKD
Example RPTK 2
BLKD >F400,*+ If current auxiliary register contains 1030.
dma1l
Before Instruction After Instruction
Data Data
Memory >7F98 Memory >7F98
62464 62464
Data Data
Memory >FFE6 Memory >FFE6
62465 62465
Data Data
Memory >9522 Memory >9522
62466 62466
dma2
Before Instruction After Instruction
Data Data
Memory >8DEE Memory >7F98
1030 1030
Data Data
Memory >9315 Memory >FFE6
1031 1031
Data Data
Memory >2531 Memory >9522
1032

4-52

Block Move

BLKP from Program Memory to Data Memory BLKP
Syntax
Direct: [<label>] BLKP <pma>,<dma>
Indirect: [<label>] BLKP <pma>{ind}[,<next ARP>]
Operands 0 < pma < 65535
0 < dma < 127
0 < next ARP < 7
Execution TMS32020:
(PC) + 2 2> TOS
pma ~*> PC
If (repeat counter) # O:
Then (pma, addressed by PC) = dma,
Modify AR(ARP) and ARP as specified,
(PC) +1 = PC,
(repeat counter) - 1 —* repeat counter.
Else (pma, addressed by PC) = dma
Modify AR(ARP) and ARP as specified.
(TOS) — PC
TMS320C25:
(PC) + 2~ PC
(PFC) = MCS
pma = PFC
If (repeat counter) # O:
Then (pma, addressed by PFC) = dma,
Modify AR(ARP) and ARP as specified,
(PFC) + 1 = PFC,
(repeat counter) - 1 = repeat counter.
Else (pma, addressed by PFC) = dma
Modify AR(ARP) and ARP as specified.
(MCS) — PFC
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Direct: |1 1 1 1 1 1 0 o0fo] Data Memory Address
Program Memory Address
Indirect:f 1 1 1 1 1 1 0 o|1 | See Section 4.1
Program Memory Address
Description Consecutive memory words are moved from a source program memory

block to a destination data memory block. The starting address (lowest)
of the source block is defined by the second word of the instruction. The
starting address of the destination block is defined by either the dma con-
tained in the opcode (for direct addressing) or the current AR (for indirect
addressing). In the indirect addressing mode, both the ARP and the current
AR may be modified in the usual manner. In the direct addressing mode,
dma is used as the destination address for the block move but is not modi-

4-53

BLKP

Block Move
from Program Memory to Data Memory BLKP

Words
Cycles

4-54

20

'C25

‘20

'C25

fied by repeated executions of the instruction. Thus, the contents of mem-
ory at the dma address will be the same as the contents of memory at the
last pma address in a repeat sequence. RPT or RPTK must be used with the
BLKP instruction if more than one word is to be moved. The number of
words to be moved is one greater than the number contained in the repeat
counter RPTC at the beginning of the instruction. At the end of this in-
struction, the RPTC contains zero and, if using indirect addressing,
AR(ARP) will be modified to contain the address after the end of the des-
tination block. Note that source and destination blocks do NOT have to
be entirely on-chip or off-chip.

The PC points to the instruction following BLKP after execution. Interrupts
are inhibited during a BLKP operation.

The BLKD instruction on the TMS32020 uses one level of stack. Therefore,
the value on the bottom of the stack is lost since the stack is pushed and
popped during the instruction operation.

If the MP/MC pin on the TMS320C25 is low at the time of execution of this
instruction and the program memory address used is less than 4096, an
on-chip ROM location will be read.

2
Cycle Timings for a Single Instruction
pyol | pybe | Pe/Dl | PE/DE | PR/DI | PR/DE
Program source internal:T
3 3+d 3+2p 3+d+2p - -
Program source external:t
3+p 4+d+p 3+3p 4+d+3p - -
Table in on-chip RAM:
3 3+d 4+2p 4+d+2p 4 4+d
Table in on-chip ROM:
4 4+d 4+2p 4+d+2p 4 4+d
Table in external memory:
4+p 4+d+p 4+3p 4+d+3p 4+p 4+d+p

Cycle Timings for a Repeat Execution

Program source internal:T
2+n 2+n+nd 2+n+2p 2+n+nd+2p - -

Program source external:t
2+n+np 2+2n+nd 2+n+np 2+2n+nd+np - -

+np +2p +2p
Table in on-chip RAM: '
2+n 2+n+nd 3+n+2p 3+n+nd+2p 3+n 3+n+nd
Table in on-chip ROM:
3+n 3+n+nd 3+n+2p 3+n+nd+2p 3+n 3+n+nd

Table in external memory:
3+n+np 2+2n+nd 3+n+np 2+2n+nd+np 3+n+np 2+2n+nd
+np +2p +2p +np

tColumn headings ‘DI/DE’ refer to data destination.

Block Move
BLKP from Program Memory to Data Memory BLKP

Example RPTK 2
BLKP 65120, *+ If current auxiliary register contains 2048.

pma
Before Instruction After Instruction
Program Program
Memory >A089 Memory >A089
65120 65120
Program ‘Program
Memory >2DCE Memory >2DCE
65121 65121
Program Program
Memory >3A9F Memory >3A9F
65122 65122
dma
Before Instruction After Instruction
Data Data
Memory >1234 Memory >A089
2048 2048
Data Data
Memory >2005 Memory >2DCE
2049 2049
Data Data
Memory >E98C Memory >3A9F
2050 2050

4-55

BLZ Branch if Accumulator Less Than Zero BLZ
Syntax [<label>] BLZ <pma>[{ind}[,<next ARP>]]
Operands 0 < pma < 65535
0 < next ARP < 7
Execution If (ACC) <0:
Then pma - PC;
Else (PC) + 2 —» PC.
Modify AR(ARP) and ARP as specified.
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
11 1 1 0 o0 1 1 1] See Section 4.1
Program Memory Address
Description The current auxiliary register and ARP are modified as specified. Control
then passes to the designated program memory address (pma) if the con-
tents of the accumulator are less than zero. Otherwise, control passes to the
next instruction. Note that no AR or ARP modification occurs when no-
thing is specified in those fields. Pma can be either a symbolic or a numeric
address.
Words 2
Cycles
Cycle Timings for a Single Instruction
PI/DI | PI/DE PE/DI | PE/DE PR/DI PR/DE
'20 2 (br int-to-int) 2+p (int-to-ext) - -
2+p (ext-to-int) 2+2p (ext-to-ext) - -
‘C25 | True Conditions:
Destination on-chip RAM:
2 2 2+2p 2+2p 2 2
Destination on-chip ROM:
3 3 3+2p 3+2p 3 3
Destination external memory:
3+p 3+p 3+3p 3+3p 3+p 3+p
False Condition:
Destination anywhere:
2 2 2+2p 2+2p 2 2
Cycle Timings for a Repeat Execution
'20 not repeatable I - T -
'C25 not repeatable
Example BLZ PRG481 481 is loaded into the program counter if

4-56

the accumulator is less than zero.

BNC Branch on No Carry (TMS320C25) BNC
Syntax [<label>] BNC <pma>[{ind}[,<next ARP>]]
Operands 0 < pma < 65535
0 < next ARP <7
Execution If carry bit C = O:
Then pma —> PC;
Else (PC) + 2 — PC.
Modify AR(ARP) and ARP as specified.
Affected by C.
Encoding 15 14 13 12 11 10 9 7 6 5 4 3 2 1 0

Description

Words
Cycles
'C25
'C25
Example

0 1 0 1 1 1 1

1]

See Section 4.1

Program Memory Address

The current auxiliary register and ARP are modified as specified. Control
then passes to the designated program memory address if the carry bit C =

0. Otherwise, control passes to the next instruction.
ARP modification occurs when nothing is specified in those fields.
can be either a symbolic or a numeric address.

Note that no AR or
Pma

Note that the carry bit C is affected by all add, subtract, and accumulate
instructions as well as the ABS, LST1, NEG, RC, SC, rotate, and shift in-
structions. The carry bit is not affected by execution of the BC, BNC, or

nonarithmetic instructions.

2

Cycle Timings for a Single Instruction
P/DI | PY/DE | PE/DI | PE/DE | PR/DI | PR/DE
True Conditions:
Destination on-chip RAM:
2 2 2+2p 2+2p 2 2
Destination on-chip ROM:
3 3 3+2p 3+2p 3 3
Destination external memory:
3+p 3+p 3+3p 3+3p 3+p 3+p
False Condition:
Destination anywhere:
2 2+2p 2+2p 2 2
Cycle Timings for a Repeat Execution
not repeatable
BNC PRG325 If the carry bit C = 0, 325 is loaded into

the program counter. Otherwise, the PC is
incremented by 2.

4-57

BNV Branch if No Overflow BNV
Syntax [<label>] BNV <pma>[{ind}[,<next ARP>]]
Operands 0 < pma < 65535
0 < nextARP <7
Execution If overflow OV status bit = O:
Then pma > PC;
Else (PC) + 2 > PCand 0 — OV.
Modify AR(ARP) and ARP as specified.
Affects OV; affected by OV.
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Description

Words
Cycles
20
'C25
20
'‘C25
Example

4-58

1 1 1 1 0 1

R

See Section 4.1

Program Memory Address

The current auxiliary register and ARP are modified as specified. Control
then passes to the designated program memory address (pma) if the OV
(overflow flag) is clear. Otherwise, the OV is cleared, and control passes
to the next instruction. Note that no AR or ARP modification occurs if
nothing is specified in those fields. Pma can be either a symbolic or a nu-

meric address.

2
Cycle Timings for a Single Instruction
P1/DI T PI/DE PE/DI J PE/DE PR/DI PR/DE
2 (br int-to-int) 2+p (int-to-ext) - -
2+p (ext-to-int) 2+2p (ext-to-ext) - -
True Conditions:
Destination on-chip RAM:
2 2 2+2p 2+2p 2 2
Destination on-chip ROM:
3 3 3+2p 3+2p 3 3
Destination external memory:
3+p 3+p 3+3p 3+3p 3+p 3+p
False Condition:
Destination anywhere:
2 .) 2+2p 2+2p 2 2
Cycle Timings for a Repeat Execution
not repeatable -] -
not repeatable
BNV PRG315 315 is loaded into the program counter
if the overflow flag is clear. OV is
cleared.

BNZ Branch if Accumulator Not Equal to Zero BNZ
Syntax [<label>] BNZ <pma>[{ind}[,<next ARP>]]
Operands 0 < pma < 65535
0 < next ARP < 7
Execution If (ACC) # O:
Then pnia = PC;
Else (PC) + 2 = PC.
Modify AR(ARP) and ARP as specified.
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Description

Words
Cycles

Example

'20

'C25

20
'C25

1 1 1 1 0 1 0 1 1] See Section 4.1

Program Memory Address

The current auxiliary register and ARP are modified as specified. Control
then passes to the designated program memory address (pma) if the con-
tents of the accumulator are not equal to zero. Otherwise, control passes
to the next instruction. Note that no AR or ARP modification occurs if
nothing is specified in those fields. Pma can be either a symbolic or a nu-
meric address.

2
Cycle Timings for a Single Instruction
PI/Di I PI/DE PE/DI I PE/DE PR/DI PR/DE
2 (br int-to-int) 2+p (int-to-ext) - -
2+p (ext-to-int) 2+2p (ext-to-ext) - -
True Conditions:
Destination on-chip RAM: ‘
2 2 2+2p 2+2p 2 2
Destination on-chip ROM:
3 3 3+2p 3+2p 3 3
Destination external memory:
3+p 3+p 3+3p 3+3p 3+p 3+p
False Condition:
Destination anywhere:
2 2 2+2p 2+2p 2 2
Cycle Timings for a Repeat Execution
not repeatable J - J -
not repeatable
BNZ PRG320 320 is loaded into the program counter

if the accumulator does not equal zero.

4-59

BV Branch on Overflow BV
Syntax [<label>] BV <pma>[{ind}[,<next ARP>]]
Operands 0 < pma < 65535
0 < nextARP < 7
Execution If overflow (OV) status bit = 1:
Then pma = PC and 0 — OV;
Eilse (PC) + 2 = PC.
Modify AR(ARP) and ARP as specified.
Affects OV; affected by OV.
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
1 1 1 1 0 0 0 0 1] See Section 4.1
Program Memory Address
Description The current auxiliary register and ARP are modified as specified, and the
overflow flag is cleared. Control passes to the designated program memory
address (pma) if the OV (overflow flag) is set. Otherwise, control passes
to the next instruction. Note that no AR or ARP modification occurs if
nothing is specified in those fields. Pma can be either a symbolic or a nu-
meric address.
Words 2
Cycles
Cycle Timings for a Single Instruction
PI/DI | PI/DE PE/DI | PE/DE PR/DI PR/DE
20 2 (br int-to-int) 2+p (int-to-ext) - -
2+p (ext-to-int) 2+2p (ext-to-ext) - -
'C25 True Conditions:
Destination on-chip RAM:
2 2+2p 2+2p 2 2
Destination on-chip ROM:
3 3 3+2p 3+2p 3 3
Destination external memory:
3+p 3+p 3+3p 3+3p 3+p 3+p
False Condition:
Destination anywhere:
2+2p 2+2p 2 2
Cycle Timings for a Repeat Execution)
'20 not repeatabie] - l -
'‘C25 not repeatable
Example BV PRG610 If an overflow has occurred since the over-

4-60

flow flag was last cleared, then 610 is
loaded in the program counter. OV is
cleared.

BZ Branch if Accumulator Equals Zero BZ
Syntax [<label>] BZ <pma>[{ind}[,<next ARP>]]
Operands 0 < pma < 65535
0 < next ARP < 7
Execution If (ACC) = 0:
Then pma —* PC;
Else (PC) + 2 = PC.
Modify AR(ARP) and ARP as specified.
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

Description

Words
Cycles
‘20
'C25
‘20
'‘C25
Example

1 1 1 1 0 1 1 0 1] See Section 4.1

Program Memory Address

The current auxiliary register and ARP are modified as specified. Control
then passes to the designated program memory address (pma) if the con-
tents of the accumulator are equal to zero. Otherwise, control passes to the
next instruction. Note that no AR or ARP modification occurs if nothing is
specified in those fields. Pma can be either a symbolic or a numeric ad-
dress.

2
Cycle Timings for a Single Instruction
PI/DI | PI/DE PE/DI | PE/DE PR/DI PR/DE
2 (br int-to-int) 2+p (int-to-ext) - -
2+p (ext-to-int) 2+2p (ext-to-ext) - -
True Conditions:
Destination on-chip RAM:
2 2 2+2p 2+2p 2 2
Destination on-chip ROM:
3 3 3+2p 3+2p 3 3
Destination external memory:
3+p 3+p 3+3p 3+3p 3+p 3+p
False Condition:
Destination anywhere:
2 2 2+2p 2+2p 2 2
Cycle Timings for a Repeat Execution
not repeatable l - [-
not repeatable
BZ PRG102 102 is loaded into the program counter if

the accumulator is equal to zero.

4-61

CALA Call Subroutine Indirect CALA
Syntax [<iabel>] CALA
Operands None
Execution (PC) +1 > TOS
(ACC(15-0)) = PC
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 1 0o o 1 1 1 0 0 0 1 0 0 1 0 O]
Description The current program counter is incremented and pushed onto the top of the
stack. Then, the contents of the lower half of the accumulator are loaded
into the PC. The carry bit on the TMS320C25 is unaffected by this in-
struction.
The CALA instruction is used to perform computed subroutine calls.
Words 1
Cycles
Cycle Timings for a Single Instruction
Pl/DI P1/DE PE/DI PE/DE PR/DI PR/DE
20 2 2 2+p 2+p - -
'C25 Destination on-chip RAM:
2 2+p 2+p 2 2
Destination on-chip ROM:
3 3+p 3+p 3 3
Destination external memory:
3+p 3+p 3+2p 3+2p 3+p 3+p
Cycle Timings for a Repeat Execution
20 not repeatable l - l -
'C25 not repeatable
Example CALA

4-62

CALA Call Subroutine Indirect

CALA

PC
ACC

Stack
(20)

Stack
(C25)

Before Instruction

PC
ACC

Stack
(20)

Stack
(C25)

After Instruction

4-63

CALL Call Subroutine CALL
Syntax [<label>] CALL <pma>{[{ind}[,<next ARP>]]
Operands 0 < pma < 65535
0 < next ARP <7
Execution (PC) +2>TOS
pma > PC
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
11 1 1 1 1 1 0 1] See Section 4.1
Program Memory Address
Description The current auxiliary register and ARP are modified as specified, and the
PC (program counter) is incremented by two and pushed onto the top of
the stack. The specified program memory address (pma) is then loaded into
the PC. Note that no AR or ARP modification occurs if nothing is specified
in those fields. Pma can be either a symbolic or a numeric address.
Words 2
Cycles
Cycle Timings for a Single Instruction
PI/DI | PI/DE PE/DI | PE/DE PR/DI PR/DE
'20 2 (br int-to-int) 2+p (int-to-ext) - -
2+p (ext-to-int) 2+2p (ext-to-ext) - -
'C25 True Conditions:
Destination on-chip RAM:
2 2 2+2p 2+2p 2 2
Destination on-chip ROM:
3 3 3+2p 3+2p 3 3
Destination external memory:
3+p 3+p 3+3p 3+3p 3+p 3+p
False Condition:
Destination anywhere:
2 2+2p 2+2p 2 2
Cycle Timings for a Repeat Execution
'20 not repeatable - -
'C25 not repeatable
Example CALL PRG109

4-64

CALL Call Subroutine CALL

Before Instruction After Instruction
PC >33 PC >6D
Stack >71 Stack >35
(20) >48 (20) >71
>16 >48
>80 >16
Stack >71 Stack >35
(C25) >48 (C25) >71
>16 >48
>80 >16
>0 >80
>0 >0
>0 >0
>0 >0

4-65

CMPL Complement Accumulator CMPL
Syntax [<label>] CMPL
Operands None
Execution (PC) +1 = PC
(ACC) - ACC
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
(t 1+ o 0o 1 1 1 0o 0 0 1 0 0 1 1 1]

Description

20
25

20

Words
Cycles
'C
'C
Example

4-66

25

The contents of the accumulator are replaced with its logical inversion
(one’s complement). ‘

1

Cycle Timings for a Single Instruction
P1/DI PI/DE PE/Dl PE/DE PR/DI PR/DE
1 1 1+p 1+p - -
1 1 1+p 1+p 1 : 1
Cycle Timings for a Repeat Execution
n n+p n+p - -
n n+p n+p n n
CMPL

After Instruction

C

Before Instruction

C

Compare Auxiliary Register

CMPR with Auxiliary Register ARO CMPR
Syntax [<label>] CMPR <constant>
Operands 0<CM <3
Execution (PC) +1 — PC
Compare AR(ARP) to ARO, placing result in TC bit of status register ST1.
Affects TC.
Not affected by SXM; does not affect SXM.
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 1 1 1 0 0 1 0 1 0 0| c™m |
Description The CMPR instruction performs the following comparisons dependent on
the value of CM:
If CM = 00, test if AR(ARP) = ARO
If CM = 01, test if AR(ARP) < ARO
If CM = 10, test if AR(ARP) > ARO
If CM = 11, test if AR(ARP) # ARO
If the result of a test is true, a one is loaded into the TC status bit. Other-
wise, TC is loaded with a zero. The auxiliary registers are treated as un-
signed integers in the comparison.
Words 1
Cycles
Cycle Timings for a Single Instruction
P1/DI PI/DE PE/DI PE/DE PR/DI PR/DE
'20 1 1 1+p 1+p - -
'C25 1 1 1+p 1+p 1 1
Cycle Timings for a Repeat Execution
20 n n+p n+p - -
'C25 n n+p n+p n n
Example CMPR 2 (ARP = 4)
Before Instruction After Instruction
ARO >FFFF ARO >FFFF
AR4 >7FFF AR4 >7FFF
T e [0

4-67

CNED

Description

Words
Cycles

‘20
'C25

20
'C25

Example

4-68

CNFD Configure Block as Data Memory
Syntax [<label>] CNFD
Operands None
.Execution (PC) +1 = PC
0 = RAM configuration control (CNF) status bit
Affects CNF. .
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

[+ 1 0 0o 1 1 1 0 0 0 0o 0o 0 1 0 o]

On-chip RAM block 0 is configured as data memory. The block is mapped
to locations 512 through 767 in data memory. This instruction is the
complement of the CNFP instruction and sets the CNF bit in status register
ST1 to a zero. CNF is also loaded by the CNFP and LST1 instructions.

On the TMS32020, the instruction fetch immediately following a CNFD or
CNFP instruction uses the old CNF value. The second fetch uses the new
CNF value, even if it is the fetch of the second word of a two-word in-
struction.

On the TMS320C25, the next two instruction fetches immediately follow-
ing a CNFD or CNFP instruction use the old value of CNF.

1

Cycle Timings for a Single Instruction
Pi/DI PI/DE PE/D! PE/DE PR/DI PR/DE

1 1 1+p 1+p - -

1 1 1+p 1+p 1 1
Cycle Timings for a Repeat Execution
n n+p n+p - -
n n+p n+p n n

CNFD A zero is loaded into the CNF status bit, thus

confiquring block BO as data memory (see
memory maps in Section 3.4).

CNFP Configure Block as Program Memory CNFP
Syntax [<label>] CNFP
Operands None
Execution (PC) +1 = PC
1 = RAM configuration control (CNF) status bit
Affects CNF.
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1+ o 0 1 1 1 0 0 0 0 O O 1 0 1|
Description On-chip RAM block O is configured as program memory. The block is
mapped to locations 65280 through 65535 in program memory space. This
instruction is the complement of the CNFD instruction and sets the CNF
bit in status register ST1 to a one. CNF is also loaded by the CNFD and
LST1 instruction.
Configuring this block as program memory allows the use of the program
counter as an address generator to access data from on-chip RAM. Used
in conjunction with the repeat instructions, this allows two data memory
locations to be addressed simultaneously, one from the auxiliary registers
and one from the program counter. Instructions that take advantage of this
feature are the MAC, MACD, BLKD, and BLKP instructions.
On the TMS32020, the instruction fetch immediately following a CNFD or
CNFP instruction uses the old CNF value. The second fetch uses the new
CNF value, even if it is the fetch of the second word of a two-word in-
struction.
On the TMS320C25, the next two instruction fetches immediately follow-
ing a CNFD or CNFP instruction use the old value of CNF.
Words 1
Cycles
Cycle Timings for a Single Instruction
P1/DI PI/DE PE/DI PE/DE PR/DI PR/DE
20 1 1 1+p 1+p - -
'C25 1 1 1+p 1+p 1 1
Cycle Timings for a Repeat Execution
20 n n+p n+p - -
‘C25 n n+p n+p n n
Example CNFP The CNF bit is set to a logic 1, thus config-

uring block BO as program memory (see memory
maps in Section 3.4)

4-69

DINT

Disable Interrupt DINT

Syntax
Operands

Execution

Encoding

Description

[<label>] DINT
None

(PC) +1 = PC
1 = interrupt mode (INTM) status bit

Affects INTM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
f1r 1 0o o 1 1 1 0o 0 0 0 O 0 O O 1]

The interrupt mode (INTM) status bit is set to logic 1. Maskable interrupts
are disabled immediately after the DINT instruction executes. Note that the
LST instruction does not affect INTM.

The unmaskable interrupt, RS, is not disabled by this instruction, and the
interrupt mask register (IMR) is unaffected. Interrupts are also disabled by
a reset.

Words
Cycles
20
'C25
20
'C25
Example

4-70

[Cycle Timings for a Single Instruction
P1/DI Pi/DE PE/DI PE/DE PR/DI PR/DE
1 1 1+p 1+p - -
1 1 1+p 1+p 1 1
Cycle Timings for a Repeat Execution
n n n+p n+p - -
n n n+p n+p n n
DINT Maskable interrupts are disabled, and INTM is

set to one.

DMOV Data Move in Data Memory DMOV
Syntax
Direct: [<label>] DMOV <dma>
Indirect: [<label>] DMOV {ind}[,<next ARP>]
Operands 0 < dma < 127
0 < next ARP < 7
Execution (PC) +1 = PC
(dma) = dma + 1
Affected by CNF.
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Direct:l o 1 0 1 0 1 1 0 I 0 | Data Memory Address I

Indirect:| 0 1 0 1 0 1 1

Description

Words
Cycles

‘20
‘C25

20
'C25

See Section 4.1 I

o1 |

The contents of the specified data memory address are copied into the
contents of the next higher address. DMOV works only within the on-chip
data RAM blocks BO, B1, and B2. It works within block BO if it is config-
ured as data memory, and the data move function is continuous across the
boundaries of blocks BO and B1; ie., it works for locations 512 to 1023.
The data move function cannot be used on external data memory. If used
on external data memory or memory-mapped registers, DMOV will read the
specified memory location but will perform no other operations.

When data is copied from the addressed location to the next higher lo-
cation, the contents of the addressed location remain unaltered.

The data move function is useful in implementing the z-! delay encountered
in digital signal processing. The DMOQV function is included in the LTD and
MACD instructions (see the LTD and MACD instructions for more infor-
mation).

1
Cycle Timings for a Single Instruction
P1/DI Pi/DE PE/DI PE/DE PR/DI PR/DE
1 2+d 1+p 2+d+p - -
1 2+d 1+p 2+d+p 1 2+d
Cycle Timings for a Repeat Execution
2n+nd n+p 2n+nd+p - -
1+n+nd n+p 1+n+nd+p n 1+n+nd

4-71

DMOV Data Move in Data Memory ~_DMOV

Example DMOV DATS (DP=4)
or
DMOV * If current auxiliary register contains 520.
Before Instruction After Instruction
Data Data
Memory >43 Memory >43
520 520
Data Data
Memory Memory >43
521 521 ,

4-72

EINT Enable Interrupt EINT
Syntax [<label>] EINT
Operands None
Execution (PC) +1 - PC
0 — interrupt-mode (INTM) status bit
Affects INTM.
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

Description

Words
Cycles

20
'C25

20
‘C25

Example

1 1 0o 0 1 1 1 o 0 o0 o o o o0 o OI

The interrupt-mode flag (INTM) in the status register is cleared to logic 0.
Maskable interrupts are enabled after the instruction following EINT exe-
cutes. This allows an interrupt service routine to re-enable interrupts and
execute a RET instruction before any other pending interrupts are pro-
cessed. Note that the LST instruction does not affect INTM. (See the DINT
instruction for further information.)

1
Cycle Timings for a Single Instruction
P1/DI Pi/DE PE/DI PE/DE PR/DI PR/DE
1 1 1+p 1+p - -
1 1 1+p 1+p 1 1
Cycle Timings for a Repeat Execution
n n+p n+p - -
n n+p n+p n n
EINT Unmasked interrupts are enabled, and INTM is

set to zero.

4-73

FORT

Format Serial Port Reqisters FORT

Syntax
Operands
Execution
Encoding
Description
Words
Cycles
20
'C25
20
'C25
Example

4-74

[<label>] FORT <constant>
Constant = 0 or 1

(PC) +1<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>