MC68030UM/AD
REV 2

7 &7 2

\
ENHANCED 32-BIT 1
MICROPROCESSOR |
USER’'S MANUAL I
THIRD EDITION

i

(M) MOTOROLA

Introduction

Data Organization and Addressing Capabilities
Instruction Set Summary
Processing States

Signal Description

On-Chip Cache Memories

Bus Operation

Exception Processing

Memory Management Unit
Coprocessor Interface Description
Instruction Execution Timing
Applications Information
Electrical Characteristics

Ordering Information and Mechanical Data

M68000 Family Summary

Index

-t
o

-b
—h

@ MOTOROLA

MC68030

ENHANCED 32-BIT
MICROPROCESSOR USER’'S MANUAL

Third Edition

Motorola reserves the right to make changes without further notice to any products herein
to improve reliability, function or design. Motorola does not assume any liability arising out
of the application or use of any product or circuit described herein; neither does it convey
any license under its patent rights nor the rights of others. Motorola products are not author-
ized for use as components in life support devices or systems intended for surgical implant
into the body or intended to support or sustain life. Buyer agrees to notify Motorola of any
such intended end use whereupon Motorola shall determine availability and suitability of its
product or products for the use intended. Motorola and ® are registered trademarks of
Motorola, Inc. Motorola, Inc. is an Equal Employment Opportunity/Affirmative Action
Employer.

PRENTICE HALL, Englewood Cliffs, N.J. 07632

© 1990 MOTOROLA, INC.

= Published by Prentice-Hall, Inc.
A Division of Simon & Schuster
Englewood Cliffs, New Jersey 07632

The publisher offers discounts on this book when ordered
in bulk quantities. For more information, write:

Special Sales/College Marketing
Prentice-Hall, Inc.

College Technical and Reference Division
Englewood Cliffs, New Jersey 07632

All rights reserved. No part of this book may be
reproduced, in any form or by any means,
without permission in writing from the publisher.

Printed in the United States of America

10 9 87 6 5432

ISBN 0-13-5bb423-3

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Simon & Schuster Asia Pte. Ltd., Singapore

Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

TABLE OF CONTENTS

Paragraph Page
Number Title Number
Section 1
Introduction
1.1 FEAtUIES. . uu it 1-3
1.2 MC68030 Extensions to the M68000 Family..........ocovevvieiinneennnn. 1-4
1.3 Programming Modelcoooveiiiiiiiiiiiii e 1-4
1.4 Data Types and Addressing Modes ... 1-10
1.5 InStruction Set OVEIVIEWc.vviiiiiviieiiiiie e e 1-10
1.6 Virtual Memory and Virtual Machine Conceptscoovvevinnennen 1-12
1.6.1 Virtual MEMOTY v e e e e et eeaeanes 1-12
1.6.2 Virtual Machingec..cooiviiiiiiii e, 1-14
1.7 The Memory Management Unit.........cocoveieiiniiiieeninineeiraienennens 1-15
1.8 Pipelined Architecturecocoviviiiiiiiiiiiiec ey reeens 1-16
1.9 The Cache MEMOTIES ..vuiviiieiiiiiieiiiii e e e 1-16
Section 2
Data Organization and Addressing Capabilities

2.1 INStrUCtioN OPerands......c.cvviiiriiieiieiieieiieir e 2-1
2.2 Organization of Data in Registerscccoveeeeiiiiniiiniiiciiiri e 2-2
2.2.1 Data Registers...........coeevuvennen. L TP 2-2
222 Address RegiSters.......ccvvvviiniiiiiiiiiiiicrriere e riereireerees 2-4
223 Control Registers.......coeouiiiiiiiiniiiiiicei e 2-4
2.3 Organization of Data in MemOry........ccevviiieiiiiniiiieiiecreeiereinens 2-5
24 Addressing MOdES..........c.ueevirieeeerieeieiieeeeeeieeeereeeseeesaeere e e 2-8
2.4.1 Data Register Direct Mode.........coeoviviieiiiinicriniiin e, 2-9
24.2 Address Register Direct Mode.........cvvvvvveniiiieiiiiiiiineeees 2-10
243 Address Register Indirect Mode........c...ccovviviiiiicinnniinninn 2-10
244 Address Register Indirect with Postincrement Mode............. 2-10
245 Address Register Indirect with Predecrement Mode.............. 2-11
2.4.6 Address Register Indirect with Displacement Mode............... 2-12
2.4.7 Address Register Indirect with Index (8-Bit Displacement)

MOGE..ceeiieiee e 2-12
2438 Address Register Indirect with Index (Base Displacement)

MO ...ttt a e e 2-13
249 Memory Indirect Postindexed Mode :...........covvieviiiiiiininnenns 2-14

MOTOROLA MC68030 USER'S MANUAL iii

Paragraph Page
Number Title Number
2.4.10 Memory Indirect Preindexed Mode..........coocevveiinicninnnennnn. 2-15
241 Program Counter Indirect with Displacement Mode.............. 2-16
2412 Program Counter Indirect with Index (8-Bit Displacement)

1Y oY [T PRSPPI 2-16
2.4.13 Program Counter Indirect with Index (Base Displacement)

MOAE. e s 2-17
2.4.14 Program Counter Memory Indirect Postindexed Mode.......... 2-18
2.4.15 Program Counter Memory Indirect Preindexed Mode 2-19
2.4.16 Absolute Short Addressing Mode.........cocovvveiniiniiininnnn, 2-20
2417 Absolute Long Addressing Mode..........c.ccooviiviinniinninn . 2-20
2.4.18 Immediate Data...................... et et e e aa e 2-21
2.5 Effective Address Encoding Summary.........coocovviveininiiininnicnenn, 2-22
2.6 Programmer’s View of Addressing Modes...........ccoeveeeniniiinniienn. 2-24
2.6.1 Addressing Capabilities.........ccoovviiiiivincin e, 2-25
2.6.2 General Addressing Mode Summarycoceoveniiiiiiinnnn 2-31
2.7 M68000 Family Addressing Compatibility.....c.ccoeeiviviiiiinininnennn. 2-36
2.8 Other Data Structures..........covvveiiiiiiiin e, 2-36
2.8.1 SYSTEM STACK ..cvviiiiiiiiii et 2-36
2.8.2 User Program Stacks......ccvvieiieniniiiiennieincenie e 2-38
2.8.3 QUBUES .ttt ettt e e s e et e et et e e s et s ebe s s e ab e en s e saaes 2-39

Section 3
Instruction Set Summary

3.1 Instruction Formatcoovevveniinienciinnnnnn: eerrterrger e e 3-1
3.2 INSTrUCtION SUMMATY. ..ot e e e 3-2
3.21 Data Movement INStructionsccoeevvvnviniiiiiiniienieennes 3-4
3.2.2 Integer Arithmetic Instructionscc..ccovvieviiniiic i 3-5
3.2.3 Logical INStructions.......ocoviiiiiiiiin i e 3-6
3.24 Shift and Rotate Instructions.........ccoocciiviiniinniiiii 3-7
3.25 Bit Manipulation InStructionsc..covvviieieiinininneee e, 3-8
3.2.6 Bit Field INStrucCtionsccovviiiiiiiii e 39
3.2.7 Binary-Coded Decimal Instructionscoccvviiiiieiiieninnnnne 3-10
3.2.8 Program Control INStructionsccoecviiviiiniiiiiniencinieeneenn, 3-11
3.2.9 System Control Instructions.............c...... P 3-12
3.2.10 Memory Management Unit Instructionscc.covveevreviiennenne. 3-13
3.2.11 Multiprocessor INStrUCtioNS. ... ivveiiinviiniiei e 3-13
3.3 Integer Condition COdeS......ccuviiiviiiiiiiinii e 3-14
3.3.1 . Condition Code Computation..........cceeiiveiniiniiiniin i 3-15
v ' MC68030 USER'S MANUAL MOTOROLA

TABLE OF CONTENTS (Continued)

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number
3.3.2 Conditional TESTS..iuuiveieii it et ere et ea e eennaaan 3-17
3.4 Instruction Set Summary.....ccccoeveviiiiiiiinnns e 3-18
3.5 INStrUCtioN EXamMPIeS...uiiviieiiiii i 3-25
3.5.1 Using the CAS and CAS2 INStruCtionsS......ccccvvvriveiciinveneineenncennen. 3-25
3.5.2 Nested Subroutine Calls........covvviiiiiiriiiii e e 3-30
3.5.3 Bit Field Operationscoveuiiiiiiiiiiieie e e ere s 3-31
3.54 Pipeline Synchronization with the NOP Instruction..................... 3-32
Section 4
Processing States
4.1 Privilege LeVEIS ...civeiiiiiiic e 4-2
4.1 Supervisor Privilege Levelocoiviiieiiiiiiiiiicic s 4-2
4.1.2 User Privilege Level ..o, 4-3
4.1.3 Changing Privilege Levelc..ccooiiiiiiiiiiiiiiii e 4-4
4.2 Address SPace TYPES . .uviuiiiiiiiiii i 4-5
4.3 EXCEPHION PrOCESSING «..vvveieieieeiiiirieeeeeseeieeee e e et eae e e e e SO 4-6
4.3.1 o] o) (o] IV A=To1 {o] £ 3N 4-6
4.3.2 Exception Stack Framecoocviiviiiiniiiiiiinn e e 4-7
Section 5
Signal Description

5.1 SIgNal INAEX.u.ieiiii i 5-2
5.2 Function Code Signals (FCO-FC2).......... e e 5-4
5.3 Address Bus ([AD—=A3T) ...t 5-4
5.4 Data Bus (D0-D31)........ PO P O PRPPTPPUPNS 5-4
5.5 Transfer Size Signals (SIZ0, SIZ1) PPN 5-4
5.6 Bus Control Signalsucieeiiiiiiiiie e 5-5
5.6.1 Operand Cycle Start (OCS)........cvvveiieieieiiieieeieeceeceeece e 5-5
5.6.2 External Cycle Start (ECS)......ccccvvvvvieeiiiiiriieeeeeeeeciireieeee e 5-5
5.6.3 Read/WIite (R/W) .eovvieviiiiieiri et 5-5
5.6.4 Read-Modify-Write Cycle (RMC)ccceevviiveeeniiiiiiieeeieinanns 5-5
5.6.5 Address Strobe (AS)ccvvveieiiieieiiiiee e, 5-5
5.6.6 Data Strobe (DS)........ccooveeiieieieeiee e eie e see e 5-6
5.6.7 Data Buffer Enable (DBEN).........cvvviiiiiiiiiciiniieieeas b-6
5.6.8 Data Transfer and Size Acknowledge (DSACKO, DSACKT)..... 5-6
5.6.9 Synchronous Termination (STERM)c.ccooviiiiiiiienniniinnnn. 5-6
5.7 Cache Control Signals.......ccceeiiiiiiiiiii e, 5-7
5.7.1 Cache Inhibit INput (CHN)......eiiiiiiieieiiee e 5-7

MOTOROLA MC68030 USER'S MANUAL \Y

TABLE OF CONTENTS (Continued)

Paragraph

Number Title

57.2 Cache Inhibit Output (CIOUT)........ccoeooiiiiiiiiiiins
5.7.3 Cache Burst Request (CBREQ)........cceeveiereeeeervivenennnnn.
5.7.4 Cache Burst Acknowledge (CBACK)cccevvviiniiinennnnn.
5.8 Interrupt Control Signalscccveviiiieiiiniiiirei e,
5.8.1 Interrupt Priority Level Signals.....c.ccvvvieeinieiiiienennnnnns
5.8.2 Interrupt Pending (IPEND)........cccooociiiviininiiiiinen s
5.8.3 Autovector (AVEC).......ccovviiniii e,
5.9 Bus Arbitration Control Signals.......cccceviiiiiiiieiviiiicinnin,
5.9.1 Bus Request (BR).......covriiiiviieiieieeeeiiieee s
5.9.2 Bus Grant (BG).......eeevvureieiiriiiiiiee et ee e
5.9.3 Bus Grant Acknowledge (BGACK)..........occvevveiniinennnen.
5.10 Bus Exception Control Signalsccoovvviiieciiinnicnnninnnens
5.10.1 Reset (RESET) vovuviiiiiiiiiiiiiiiie et s e
5.10.2 Halt (HALT) coeeee e
5.10.3 Bus Error (BERR) ..covvviiiiiiiiiiii e
5.1 Emulator Support Signals........covevieiiiiiiiiiciie e '
5.11.1 Cache Disable (CDIS)........eceeeivirereeeeiiiinnrieeeeeeeeeeennns
5.11.2 MMU Disable (MMUDIS)c.ccuveiiiiiiiiineiveinees
5.11.3 Pipeline Refill (REFILL)......cccvuviviiiiiiiiniiiecineeieecneen,
5.11.4 Internal Microsequencer Status (STATUS).........cccoeee
5.12 0] o Tod QN (01 I TS
5.13 Power Supply ConnectionS....ccvcovvvieiiiiiiiiien e ceceaenes
5.14 Signal SUMMArY.....ccoiiii s

Section 6
On-Chip Cache Memories

6.1 On-Chip Cache Organization and Operation......................
6.1.1 Instruction Cache......cc..ccovvviiiiiiiiii i
6.1.2 Data Cache...c.c.vveeiiiiiiiie i
6.1.2.1 Write AOCatION.......ciiiiiiieiiiiircin e,
6.1.2.2 . Read-Modify-Write ACCESSES....cuvvreeruiriinieiiinnneen.

-6.1.3 Cache Filling .oocvvveieiiniiire e
6.1.3.1 Single Entry Mode........cooeeviiiiiviiiniiiiecie e,
6.1.3.2 Burst Mode Fillingcccovvviiiiiiiniiciin e,
6.2 Cache RESEL.....iviiiiiiiiiiii e e
6.3 Cache Control......vceviviiiiieri e
6.3.1 Cache Control Register......ccoocveviiiviiiiiiiniiniinneieenn,
6.3.1.1 Write AHOCAtE....vuiirieieiiii e

vi MC68030 USER'S MANUAL

Page
Number

MOTOROLA

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number
6.3.1.2 . Data Burst Enable........ccoocvviiiiiiiiiiiiinnc e 6-21
6.3.1.3 Clear Data Cacheccvvvviniiiiiiiii e 6-21
6.3.1.4 Clear Entry in Data Cache.......ccovviiiiiiiiiiiiiiineiein, 6-21
6.3.1.6 Freeze Data Cacheoccoivviiiiiiiiiiici e, 6-22
6.3.1.6 . Enable Data Cache........coeviiiiiiiiiiiiiiiiii e 6-22
6.3.1.7 Instruction Burst Enableccooeiiiviiiiiiieeanes 6-22
6.3.1.8 Clear Instruction Cache........ccovcevviieiieiiiiiiriinini i, 6-22
6.3.1.9 Clear Entry in Instruction Cachecooviviiiiiniiinnnnnn. 6-22
6.3.1.10 Freeze Instruction Cache..........ccoiviiiiiiiiniiniieceeens 6-23
6.3.1.11 Enable Instruction Cacheccoeviviiiiiiiiiiii e 6-23
6.3.2 Cache Address Register.........ccuvieniiiiiiiiiniiiiieiireieereeeea, 6-23
Section 7
Bus Operation

7.1 Bus Transfer Signals.........ccccoeevieeninnnnnn. Nerearoeerrrrarrrrererrernens 7-1
7.1.1 Bus Control Signalsccovviiviiiiiiiiieiie e 7-3
7.1.2 AdAress BUS.......oiuiiieiiiiiiiiii e 7-4
7.1.3 Address Strobe........cviiiiiiiiii 7-4
7.1.4 Data BUS ...oeuieiiiniiiii ettt e e et as 7-5
7.1.5 Data Strobe......cicuiiii i 7-5
7.1.6 Data Buffer Enable........cccocoviiiiiiiiiiiiinici e, 7-5
7.1.7 Bus Cycle. Termination Signals.......c.cc.cccoiiriiiiniiciiiicinieninnn, 7-5
7.2 Data Transfer Mechanism.........c.coovviiiiiiniiiniiin e, 7-6
7.21 Dynamic BUS SiziNgceoviiiiniiiiiiiiiie e 7-6
7.2.2 Misaligned Operandsccoocevviriiiiiniiiiiiin s 7-13
7.2.3 Effects of Dynamic Bus Sizing and Operand Misalignment.... 7-19
724 Address, Size, and Data Bus Relationships.........c..cccouuueeniee. 7-22
7.25 MC68030 versus MC68020 Dynamlc Bus Sizing........ccoeeeeen. 7-24
7.2.6 Cache FilliNg ..ccuuiieeci e et s e e 7-24
7.2.7 Cache INteractionscceeueiieiiiieiiie e eae e 7-26
7.2.8 Asynchronous Operation.......c..cccevevieeiieeiecenin e ee s 7-27
7.2.9 Synchronous Operation with DSACKX.........c.cceveviiiereininnnenn. 7-28
7.2.10 Synchronous Operation with STERMcoovvviiiiieiiiieinnnns 7-29
7.3 Data Transfer CyCIes ...oiiiiiiiiiii i et inaeens 7-30
7.3.1 Asynchronous Read Cycleccvevvviniiiiiiiniiiiin e, 7-31
7.3.2 Asynchronous Write Cycle........cccvvvviiviiiiiiiiieiiciieinci 7-37
7.3.3 Asynchronous Read-Modify-Write CycIe 7-43
7.3.4 Synchronous Read Cycle....ccuviiiiiiiiiiiniiniic e, 7-48
MOTOROLA MC68030 USER'S MANUAL vii

Paragraph
Number

7.3.5
7.3.6
7.3.7
7.4
7.4.1
7.4.1.1
7.4.1.2
7.4.1.3
7.4.2
7.4.3
7.5
7.5.1
7.5.2
7.5.3
7.5.4
7.6

7.7
7.7.1
7.7.2
7.7.3
7.7.4
7.8

8.1

8.1.1
8.1.2
8.1.3
8.1.4
8.1.5

8.1.6
8.1.7
8.1.8
8.1.9
8.1.10
8.1.11

viii

TABLE OF CONTENTS (Continued)

Page
Title Number
Synchronous Write CycCle........cvviiiiiiiiiiiiicce e 7-51
Synchronous Read-Modify-Write Cyclecooevvviiniieineinnnnnn, 7-54
Burst Operation Cycles......coovvviiiiiiiiiiiicecrin e 7-59
CPU Space CyCIeS...ccuiiiiiiiiiiiiii et eeas veen 7-68
Interrupt Acknowledge Bus CycCles......ccvvveieieiiniiininiinineennns 7-69
Interrupt Acknowledge Cycle — Terminated Normally.... 7-70
Autovector Interrupt Acknowledge Cycle......ccooeevnvennnine. 7-71
Spurious Interrupt CyCle..civviir i 7-74
Breakpoint Acknowledge Cycle.......ccovvviiriiiniieniiniiininnn 7-74
Coprocessor Communication Cycles.....cocceevveiiriiiinineincennen. 7-74
Bus Exception Control CyCles.....covvviiiiiiiiiiiiiiiieenrcirin e, 7-75
Bus Errors.......... PSP 7-82
Retry Operation........... PP 7-89
Halt Operation....oo..iicii e 7-91
Double Bus Fault.......ccooviiviiiiiiiiiiine e e e 7-94
Bus Synchronizationcccocvviiiiiiiii i 7-95
BUS Arbitrationcviiiiiir e e 7-96
BUS REQUESTciiiiiiiiieii e e 7-98
BUS Grantcceeeeieeevinnneneienniinens reeeeerrne e SO 7-99
Bus Grant Acknowledgeccocuiiiiiiiiiiiiiii i 7-100
Bus Arbitration Control........ccovveviviiii i 7-100
Reset Operation........ccocvvvviieeieineninveninnens [S 7-103
Section 8
Exception Processing
Exception Processing SEqUENCEivivviiiiiiiiirenieet e 8-1
Reset EXCEPLiON .. v i e 8-5
Bus Error Exception TP iieeerrerrerereeeertersrans 8-7
Address Error EXCEption......ccvivviiiiiiiiiiienn e nenen s 8-8
Instruction Trap EXCePtioncccuvviviiiiiriiniei v reen s 8-9
Illegal Instruction and Unimplemented Instruction
Exceptionsc.covvvniennns S PP 8-9
Privilege Violation Exception.........cccooeviiiiennninee. PRTPTII 8-11
Trace EXCOPLION . .ciuviniiirieee et en v e e e eie e arenrenns 8-12
Format Error EXCeptioncovveiiiiiiiiiiiiiei st 8-14
Interrupt EXCEPLIONS . .vuviiv it e 8-14
MMU Configuration EXCeptionccvuieeeiiiiniiiiciininnneennns 8-21
Breakpoint Instruction Exception.......ccocoviiveiiiiiniiiniiiinenennn, 8-22
MC68030 USER'S MANUAL MOTOROLA

TABLE OF CONTENTS (Continued)

Paragraph

Number Title

8.1.12 Multiple EXCEPLIONS......veeiiiiiiiiiie e,
8.1.13 Return from EXceptionccoovvvviiiiinivii e, :
8.2 Bus Fault RECOVEIY ...vvniiiiiiiiiiiiii e
8.2.1 Special Status Word (SSW).....ccooiiiiiiiiiniiiiniien,
8.2.2 Using Software To Complete the Bus Cycles
8.2.3 Completing the Bus Cycles with RTEccuvneee.
8.3 Coprocessor ConsiderationsS........oeuvevveiiviiiniensnreneennenes
8.4 Exception Stack Frame Formatscccovvviiiiniiinniinnne,

Section 9
Memory Management Unit

9.1 Translation Table Structure........ocoecviiviiiiiiiiiineeeen,
9.1.1 Translation Controlccovvviiiiiiiiii e,
9.1.2 Translation Table Descriptors........coooeviveviviviiiienennn..
9.2 Address Translationcocoviiiiviniiiii e
9.2.1 General Flow for Address Translation.....................
9.2.2 Effect of RESET on MMU......cocovviiiniiiiiice e
9.2.3 Effect of MMUDIS on Address Translation...............
9.3 Transparent Translation..........ccooiiiiiiiiniiiie e
9.4 Address Translation Cacheccovviiiiiiiiiniiiiieen,
9.5 Translation Table Detailscccovvvviiiiiniinicin e,
9.5.1 Descriptor Detailsvvvveveiiiiiiniiniiieci e e
9.56.1.1 Descriptor Field Definitions..........cocvvveviiiiiiinnnns
9.5.1.2 Root Pointer Descriptorocovvvvveineineinneineenneen.
9.5.1.3 Short-Format Table Descriptor..........cccecvvenninn.
9.5.1.4 Long-Format Table Descriptor........cocvvevvviennane.
9.5.1.6 Short-Format Early Termination Page Descriptor
9.5.1.6 Long-Format Early Termination Page Descriptor
9.56.1.7 Short-Format Page Descriptor...........cccccevviennnes
9.5.1.8 Long-Format Page Descriptor..........covvvvvivnrennen.
9.5.1.9 Short-Format Invalid Descriptor......c..covevvennnenn.
9.5.1.10 Long-Format Invalid Descriptor........cccccevveeneen,
9.5.1.11 Short-Format Indirect Descriptorccecuueenneen.
9.5.1.12 Long-Format Indirect Descriptor................iveee.
9.56.2 General Table Search......c.ccovveiiiiiiniiiiin e,
9.5.3 Variations in Translation Table Structure.................
9.5.3.1 Early Termination and Contiguous Memory.......
9.56.3.2 INAIrECHION. .. uie e
MOTOROLA MC68030 USER'S MANUAL

Page
Number

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number
9.56.3.3 Table Sharing between Tasks........ccoccvvvvvicriiiiiiiiniiinennes 9-37
9.5.3.4 Paging of Tables.......ccocciviiiiiii e 9-37
9.5.3.5 Dynamic Allocation of Tables........ccoccevviiiiiiiiiiininin, 9-40
9.5.4 Detail of Table Search Operationsccocevviiiiviiinnnencnennnns 9-40
9.5.5 Protectionc.cviiiiiiii 9-43
9.5.5.1 Function Code LoOKUP.......cvvvriciiiiiiiiiiciciiirc i 9-45
9.5.5.2 Supervisor Translation Tree......c.covveviiiienveciriniininineannens 9-48
9.55.3 SUPEIVISOr ONlY. i 9-48
9554 Wit Protect.....cvvivieiiireiieiiiiii e eas 9-48
9.6 MC68030 and MC68851 MMU Differencesc.coeeeevvniveiernneennnn. 9-51
9.7 1= Lo 1] (] £ T O PRPP 9-52
9.71 Root Pointer RegisSters......ccvvviiiiiiiiiniiiieie e 9-52
9.7.2 Translation Control Register.........ccvvvveveriiiiiicniii e 9-54
9.7.3 Transparent Translation Registersc.coovviviiniiiiiiiniininenns 9-57
9.7.4 MMU Status Register.........ccoevvviciinceennnenn. ST eerreeree 9-59
9.7.5 Register Programming Considerations........c.cccoovvviieinniennns 9-61
9.7.5.1 Register Side Effectso.vvviiiiiiiiiiniiiieiiecieecinrnennnes 9-61
9.75.2 MMU Status Register Decoding.....ccccvveveverieeriiniinnnennnns 9-61
9.7.5.3 MMU Configuration Exception........... erteererireeeeneeeenarres 9-62
9.8 MMU INSEIUCLIONS covvvvveeiiiiieieee e e evi e e eaaes TP 9-63
9.9 Defining and Using Page Tables in an Operating System............ 9-65
9.9.1 Root Pointer RegiSters........ccvirunviniieiicieinin i eneens 9-65
9.9.2 Task Memory Map Definitionccoooiiiiiiieniiiiiiinn 9-66
9.9.3 Impact of MMU Features on Table Definition............c.ce.enee. 9-68
9.9.3.1- ~Number of Table Levelsccovviiiiiiiii 9-68
9.9.3.2 Initial Shift Count.......ccociviiiiii e, 9-69
9.9.3.3 Limit Fields ..o 9-70
9.9.34 Early Termination Page Descriptors......cccovvvvivviiiicinnnnes 9-70
9.9.35 INAirect DeSCriPlOrS..ouuu e ririeieiii st rereena e e 9-71
9.9.3.6 Using Unused Descriptor Bitsccvovvveeiiiiiiiiiriicennenn, 9-71
9.10 An Example of Paging Implementation in an Operating System.. 9-72
9.10.1 System Description........ceveviieiiiiiiiii i e 9-72
9.10.2 Allocation ROULINESvvuiiniiiiiiiiiciieie e 9-78
9.10.3 Bus Error Handler Routing......ccoovviviiiiiciiiiiece e 9-82
X MC68030 USER'S MANUAL MOTOROLA

TABLE OF CONTENTS (Continued)

Paragraph
Number Title
Section 10
Coprocessor Interface Description

10.1 INtrodUCHION c.uiviii e
10.1.1 Interface FEaturesccovveieieiviieiiiiiiii i
10.1.2 Concurrent Operation SUPpOrt.......ccceviiniiiiiciniiinnin
10.1.3 Coprocessor Instruction Format.........c.ovevvivieininneennnnnes
10.1.4 Coprocessor System Interface........coccovvviiviiniiieincrennnen,
10.1.4.1 Coprocessor Classification........cocceeeviiviniinieneninnenns
10.1.4.2 Processor-Coprocessor Interface........ccccoevvvienvenneee.
10.1.4.3 Coprocessor Interface Register Selection.................
10.2 Coprocessor INStruction TYPES ...vvvvviviiviiviieiiiiereieeereeeenees
10.2.1 Coprocessor General InStructions........c.ooccvvvivineiniiinnns
10.2.1.1 o] 4 0 T | S PO
10.2.1.2 ProtoCol ..o e
10.2.2 Coprocessor Conditional Instructions..........c.oooeveiiiennee
10.2.2.1 Branch On Coprocessor Condition Instruction..........
10.2.2.1.1 FOrmat. .coouiieeiieii e e
10.2.2.1.2 Protocol.....cccoveniiiiiii
10.2.2.2 Set On Coprocessor Condition Instruction...............
10.2.2.2.1 FOrmat. .o
10.2.2.2.2 Protocol. i
10.2.2.3 Test Coprocessor Condition, Decrement and

Branch Instruction............cocoveiiininin i,
10.2.2.3.1 Format. oo
10.2.2.3.2 ProtoCol .. i
10.2.2.4 Trap On Coprocessor Conditioncccecevnieinneinnnn.
10.2.2.4.1 Format.....cocoviinvinnininnnnnndd e tere e et
10.2.2.4.2 Protocol.....oeeeiie e
10.2.3 Coprocessor Save and Restore Instructions........... SUPTIN
10.2.3.1 Coprocessor Internal State Framesocceeuvennnen.
10.2.3.2 Coprocessor Format Wordscccvevveiiieiiinniniinnenns
10.2.3.2.1 Empty/Reset Format Word..........cooeovveiiinnennnnn.
10.2.3.2.2 Not Ready Format Word.........: e
10.2.3.2.3 Invalid Format Wordccooviiiniiiiiniineneen,
10.2.3.2.4 Valid Format Word........cooooiiiiiiiiiinnens
10.2.3.3 Coprocessor Context Save Instruction........c...oeeueenis
10.2.3.3.1 FOrmat. ..o
10.2.3.3.2 - ProtoCol....civ i e
MOTOROLA MC68030 USER'S MANUAL

Xi

TABLE OF CONTENTS (Continued)

Paragraph .Page
Number Title Number
10.2.3.4 Coprocessor Context Restore Instruction....................... 10-27
10.2.3.4.1 FOrmMat. . ..o e 10-27
10.2.3.4.2 Protocol.....cuviiiiiie e 10-28
10.3 . Coprocessor Interface Register Set........oovvvieiiiiiiiiiiiiiis 10-29
10.3.1 Response CIRivriiiiiii i e e 10-29
10.3.2 Control CIR .o e ee e se e e aen s 10-30
10.3.3 SAVE CIR et e e 10-30
10.3.4 ReStore CIRuiiiiiieii i 10-31
10.3.5 Operation Word CIR......cooiiiiiii e, 10-31
10.3.6 Command ClIR.....coiiii e 10-31
10.3.7 Condition CIRc.ccvevveviniinnennene. E N 10-31
10.3.8 Operand CIR......viviiii i ettt ee s e e e e ra e eees 10-32
10.3.9 Register Select CIR..........c.cceeeene. SUTT TSP 10-32
10.3.10 Instruction Address CIRcccoiviiiiiiiiiiiiic e 10-33
10.3.11 Operand Address CIR.......coceviiiiiiiiiiiee e e 10-33
10.4 Coprocessor Response Primitives.......c.covvvvviieiniinineinceiine e, 10-33
10.4.1 SCANPC .. e 10-34 .
10.4.2 Coprocessor Response Primitive General Format................. 10-35
10.4.3 BUSY Primitive ..o e 10-36
10.4.4 NUI PHMItIVE (o e 10-37
10.4.5 Supervisor Check Primitivecoovviiiiciii e 10-40
10.4.6 Transfer Operation Word Primitivecovvvvviviieinniincinee, 10-40
10.4.7 Transfer from Instruction Stream Primitive......cco.ccoevvvniiennnns 10-41
10.4.8 Evaluate and Transfer Effective Address Primitive................ 10-42
10.4.9 Evaluate Effective Address and Transfer Data Primitive 10-43
10.4.10 Write to Previously Evaluated Effective Address Primitive..... 10-46
10.4.11 Take Address and Transfer Data Primitive.......cccoevvvveinninnnnes 10-48
10.4.12 Transfer to/from Top of Stack Primitive..........coceveviiviniannnn. 10-49
10.4.13 Transfer Single Main Processor Register Primitive 10-50
10.4.14 Transfer Main Processor Control Register Primitive.............. 10-50
10.4.15 ‘Transfer Multiple Main Processor Registers Primitive 10-52
10.4.16 Transfer Multiple Coprocessor Registers Primitive................ 10-52
10.4.17 Transfer Status Register and ScanPC Primitive 10-55
10.4.18 Take Pre-Instruction Exception Primitive.........c.occceoiiiiinnnn. 10-56
10.4.19 Take Mid-Instruction Exception Primitive.............c.cccoeeennn. 10-58
10.4.20 Take Post-Instruction Exception Primitive.......cc.covvvevvennennnnn. 10-60
10.5 EXCEPLIONS . oieei e e 10-61
10.5.1 Coprocessor-Detected Exceptions.......cc.cveeiiviiiiiiiiiininencanes 10-61

xii MC68030 USER'S MANUAL MOTOROLA

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number
10.5.1.1 Coprocessor-Detected Protocol Violations 10-62
10.5.1.2 Coprocessor-Detected lllegal Command or Condition

VOIS oviiiiceie e e 10-63
10.5.1.3 Coprocessor Data-Processing Exceptionsc...cceevevneens 10-63
10.5.1.4 Coprocessor System-Related Exceptions.............cooevunee 10-64
10.5.1.5 FOrmat ErrorS..cov i e e e e 10-64
10.5.2 Main-Processor-Detected EXCEPtiONS.....cvuvevvvneeiiiiniiiiiienns 10-65
10.5.2.1 Protocol Violations........oveviiiiiiiiiniice e e 10-65
10.5.2.2 F-Line Emulator EXceptions.......cooviviiiiiiiniininininniennes 10-68
10.5.2.3 Privilege Violationsc..ccciviiiiiiiiiiiii 10-69
10.5.2.4 cpTRAPcc Instruction Trapsc.ccocvvvviiiiiivininiiiiniennnes 10-69
10.5.2.5 Trace EXCEptionSc.cvivviiiiiiiiieiieiiier e reerecnraes 10-70
10.5.2.6 Lo T4 (] o) - PPN 10-71
10.5.2.7 FOrmat Errors...iiiiieiiiii e ea e 10-71
10.6.28 Address and Bus Errors......cccceeveviiincininiinicnen 10-72
10.5.3 CoProcesSOr RESEL . .u.iiiiiiiiiiii et r e e 10-72

10.6 Coprocessor Summary......ccovvveeverenneen. e 10-72

Section 11
Instruction Execution Timing
11.1 Performance Tradeoffs........ccoeeiviieiiiiiiiie e, 1

1-1
11.2 Resource Scheduling.......coviuiiiiiiie i 11-2
11.2.1 MICIOSEOUENCEN . .uiviierierererteiieiiieiseeeetienseerasssesnnerianesnsens 11-2
11.2.2 INSTrUCtiON PIPe .ovviniiiiiii e 11-2
11.2.3 INStruction Cache......couiiiiiiiiiiiii e e 11-4
11.24 Data Cache. . .ciuiiiin i 11-4
11.2.5 Bus Controller ReSoUrces.......o..oviviieiiiiiiieiiiie e vneeneann 11-4
11.2.5.1 Instruction Fetch Pending Buffer...........cccociviniiiinnins 11-5
11.2.5.2 Write Pending Buffer........coooociiiiieiiinnin e 11-5
11.2.5.3 Micro Bus Controller........oviveiiineniiniieniiieincciceeeens 11-5
11.2.6 Memory Management Unit.......c.ocovevienienininienneneiceennieenn, 11-6
11.3 Instruction Execution Timing Calculationsc.ccevvvereerineennenne. 11-6
11.3.1 Instruction-Cache Caseccoeviiiiiiiiiii i 11-6
11.3.2 Overlap and Best Casecvveviiviiieiiiviiiiiiiiieieiee e eeeninennes 11-7
11.3.3 Average NO-Cache Casec.ucevvveuiinienieniiiiieneneneeeesiiaans 11-8
11.34 Actual Instruction-Cache-Case Execution Time Calculations... 11-11
1.4 Effect of Data Cache.....coocveiiiiiiiiiiiii e 11-16
11.5 Effect of Wait States.....oviviiiiiiii i 11-18

MOTOROLA MC68030 USER'S MANUAL xiii

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number
11.6 Instruction Timing Tablescioelovvirieiii e 11-24
11.6.1 . Fetch Effective Address (fea)...:..cooviiereiciiiiiniiiiiinieiis 11-26
11.6.2 Fetch Immediate Effective Address (fiea)........ccoovveviiiiiniinnnes 11-28
11.6.3 Calculate Effective Address (Ca).......uvvverierurrereenieierininiennnn, 11-30
11.6.4 Calculate Immediate Effective Address Mode (ciea).............. 11-32
11.6.5 Jump Effective Address.....ccovvvvireiiinerniniiiniicsi e, 11-35
11.6.6 MOVE INStrUCHION. . ccuiieniiieieii e ins e ere e e a e s 11-37
11.6.7 Special-Purpose MOVE Instruction........c...cceverunieinnniiniienn, 11-39
11.6.8 Arithmetical/Logical Instructions..........covcevviivineiniininnennnnnn, 11-40
11.6.9 Immediate Arithmetical/Logical Instructions..............covcevenns 11-42
11.6.10 Binary-Coded Decimal and Extended Instructions................. 11-43
11.6.11 Single Operand Instructions........c..ccvevvveiiiiiveiinic 11-44
11.6.12 Shift/Rotate INStrUCtIONS ..u.vvueeiiieieiiien e e, 11-45
11.6.13 - Bit Manipulation Instructionsc.cccceeiiiiiiiniiinnia, .. 11-46
11.6.14 Bit Field Manipulation Instructions.....;....cccccvvviiviniinieninneen. 11-47
11.6.15 Conditional Branch Instructions........... e rerereee e 11-48
11.6.16 Control INStrUCHiONS.. v 11-49
11.6.17 Exception-Related Instructions and Operationsc.cceuvnes 11-50
11.6.18 Save and Restore OperationS......ovivevieiiereiineinineieneiearananens 11-561
11.7 Address Translation Tree Search Timing......ccooevvveiviiinieicennnn, 11-51
11.7.1 MMU Effective Address Calculation........coceveeniiiiininiiciinnnns 11-58
11.7.2 MMU [nstruction Timing....cocvveiiiiiieiiiririr e e eenes 11-60
11.8 INLErTUPt LatenCy ovvviniiniiiiiieie et s eresaneana 11-61
11.9 Bus Arbitration Latency......cc.evveveeiiiviriniiininnnnns ierer e 11-62

12.1
12.1.1
12.1.2
12.1.3
12.2
12.3
12.4
12.4.1
12.4.2
12.5
12.5.1

Xiv

Section 12
Applications Information

Adapting the MC68030 to MC68020 Designs.......cceeevvevvvevneerennn. 12-1
Signal ROULING....iuuiieiiiie e e 12-2
Hardware Differences.......ccccoovvviiivenniiciennne. eereerereeaeseeees 12-3
Software DIfferences....covivieeviiiiiiiiie e 12-4 .

Floating-Point Units ettt e e ittt aas 12-5

Byte Select Logic for the MCB8030ccovvevieiiiienieiiiieiiienennes 12-9

Memory INterfacecovvvveviiiii e 12-11
Access Time Calculationscoovviviiiiiiiiieiiice e 12-14
Burst Mode CyClIES . ..oiuiiiiiiii i e e 12-17

Static RAM Memory Banksoceoviiiiiiiiniiieeecincenc e 12-18
A Two Clock Synchronous Memory Bank Using SRAMs........ 12-18

MC68030 USER’S MANUAL MOTOROLA

TABLE OF CONTENTS (Concluded)

Paragraph :

Number Title

12.5.2 A 2-1-1-1 Burst Mode Memory Bank Using SRAMs
12.5.3 A 3-1-1-1 Burst Mode Memory Bank Using SRAMs
12.6 External Caches....coiiiiiiiiiiiiiciii e
12.6.1 Cache Implementation.......cccceeeveiiniiienveneeneereeeeeens,
12.6.2 Instruction-Only External Cache Implementations...........
12.7 Debugging Aids.....viiiiiiiiiiiir e
12.7.1 STATUS and REFILL.......cociiiiiiiiiiii e,
12.7.2 Real-Time Instruction Tracecocvveiviciniiiiciniicennnenenn,
12.8 Power and Ground Considerationsc...ccoveeiernrennernninnns

Section 13
Electrical Characteristics
13.1 Maximum Ratings......coeuviiiiiiieiieeeiene e
13.2 Thermal Characteristics — PGA Packagec.cccooeviviiinnnnnn,
Section 14
Ordering Information and Mechanical Data

14.1 Standard MC68030 Ordering Informationcccceeveniiennnens
14.2 Pin Assignments — Pin Grid Array (RC Suffix).....c....ccoeeveien.
14.3 Pin Assignments — Ceramic Surface Mount (FE Suffix)........
14.4 Package DImensSionsccvviiviiviniinrn e ciersr e

Appendix A
M68000 Family Summary

Index

MOTOROLA MC68030 USER'S MANUAL

Page
Numb

er

XV

LIST OF ILLUSTRATIONS

Figure Page
Number Title Number
1-1 Block Diagram......c.ceeiiiiiiiiiiiiiniiie i 1-2
1-2 User Programming Modelccooovvviiieiiiiiiiiiiinnceicceeeens 1-6
1-3 Supervisor Programming Model Supplement..........ccoceevvunnnens 1-7
1-4 Status ReGISter . .civi i e 1-8
2-1 Memory Operand AdAress........cccoevuiveeneeuieirnreinnreiernsernenns 2-6
2-2 Memory Data Organization.........ccceeueieeniriiieieiniinciin e senenees 2-7
2-3 Single Effective Address Instruction Operation Word............... 2-8
2-4 Effective Address Specification Formats.........ccoevvvviiniennnnennn. 2-23
2-5 Using SIZE in the Index Selection........cccceeiiviiiiviniiinicniinnnen, 2-25
2-6 Using Absolute Address with INdeXes.........cceeviiviiiiiiceeininnnnes 2-26
2-7 Addressing Array HemS......oocuviiiieiiiiiiiiiein e e aia e 2-27
2-8 Using Indirect Absolute Memory Addressing.......ccooeeuevennnneene. 2-28
2-9 Accessing an Item in a Structure Using Pointer......c...ccccccuvuvee. 2-28
2-10 Indirect Addressing, Suppressed Index Register............c......... 2-29
2-11 Preindexed Indirect Addressing...c.ccocviiiiiiiiiiiiiiiieiiiiiieeiieenns 2-29
2-12 Postindexed Indirect Addressingcc.cccvivviriirireiniennineeiininees 2-30
2-13 Preindexed Indirect Addressing with Outer Displacement 2-30
2-14 Postindexed Indirect Addressing with Outer Displacement....... 2-31
2-15 M68000 Family Address Extension Words..........covvvenniiiieennen. 2-37
3-1 Instruction Word General Formatccoovvivvriiiiineiniieienniinnes 3-1
3-2 Linked List INSEItioN......cvviiiiiiiie et ee e e 3-26
3-3 Linked List Deletion.......occuuiieiiiiniiiiinieiion e rerii e 3-27
3-4 Doubly Linked List INSEMION.........ccccovvurrriieeeeeeiiiniiieeeeesreeens 3-29
3-5 Doubly Linked List Deletionccccovevviieiniiiniiiirei e 3-30
4-1 General Exception Stack Frame.........ccovcevviiiiiiniinniiicennnccinnns 4-7
5-1 Functional Signal Groupscoccvviiiiiiiiiiiieee e, 5-1
6-1 Internal Caches and the MCB8030..........ccoovvrcrirernivircrninenns, 6-2
6-2 On-Chip Instruction Cache Organization............cocevvevinieeninnnn. 6-5
6-3 On-Chip Data Cache Organization..........cccoouvvecuivrerinirecnnenennnns 6-7

MOTOROLA MC68030 USER'S MANUAL xvii

LIST OF ILLUSTRATIONS (Continued)

Figure Page
Number Title Number
6-4 No-Write-Allocation and Write-Allocation Mode Examples....... 6-9
6-5 Single Entry Mode Operation — 8-Bit Port......cc..ccocivenennnnnen. 6-11
6-6 Single Entry Mode Operation — 16-Bit Port........cccoovveiernennnns 6-12
6-7 Single Entry Mode Operation — 32-Bit Port........cc.cocoeviiennnnnn. 6-12
6-8 Single Entry Mode Operation — Misaligned Long Word and

S oo T o S P 6-13

6-9 Single Entry Mode Operation — Misaligned Long Word and

TB-Bit POrt...ceniiii et e e 6-14
6-10 Single Entry Mode Operation — Misaligned Long Word and
32-Bit DSACKX POrt....viiicriiniereiiiin s e 6-15

6-11 Burst Operation Cycles and Burst Mode.................. SR 6-17
6-12 Burst Filling Wraparound Exampleccoccivviiiiiniininnn, 6-17
6-13 Deferred Burst Filling Example.........ocvvvvienieiiiniiiiieieeieeen, 6-18
6-14 Cache Control Register........cvvireieiiiiiiieiieiric e 6-21
6-15. Cache Address RegiSter.......ccviveiuiiiieiiiiiiiiiiiie e 6-23
7-1 Relationship Between External and Internal Signals 7-2
7-2 Asynchronous Input Sample Windowcccoevveveviniiicrnnnnn, 7-3
7-3 Internal Operand Representationccoevevveiiienieeciennienninenns 7-8
7-4 MC68030 Interface to Various Port Sizesccoevvveverninrieecnnnnn. 7-9
7-5 Example of Long-Word Transfer to Word Port..........cccoceeeenne. 7-11
7-6 Long-Word Operand Write Timing (16-Bit Data Port) 7-12
7-7 Example of Word Transfer to Byte Port......ccccoovvviiiiieiniiannnns 7-13
7-8 Word Operand Write Timing (8-Bit Data Port)............c....cee.ee. 7-14
7-9 Misaligned Long-Word Transfer to Word Port Example 7-15
7-10 Misaligned Long-Word Transfer to Word Port.................. e 7-16
7-11 Misaligned Cachable Long-Word Transfer from Word Port

Example TP PPPPP POTTPT e 7-17

7-12 Misaligned Word Transfer to Word Port Example.................... 7-17
7-13 Misaligned Word Transfer to Word Port........c.ceeeeeeeeeeiivnnnnnee. 7-18
7-14 Example of Misaligned Cachable Word Transfer from Word

BUS e e 7-20

7-15 Misaligned Long-Word Transfer to Long-Word Port................. 7-20
7-16 Misaligned Write Cycles to Long-Word Port..........ccovvevnvennnnn. 7-21
7-17 Misaligned Cachable Long-Word Transfer from Long-Word

BUS e 7-22

7-18 Byte Data Select Generation for 16- and 32-Bit Ports................ 7-25

7-19 Asynchronous Long-Word Read Cycle Flowchart 7-32

xviii MC68030 USER'S MANUAL MOTOROLA

Figure
Number

7-20
7-21
7-22
7-23
7-24
7-25
7-26
7-27
7-28
7-29
7-30

7-31

7-32
7-33
7-34
7-35
7-36

7-37
7-38

7-39

7-40
7-41

7-42
7-43
7-44
7-45
7-46
7-47
7-48
7-49
7-50
7-51

LIST OF ILLUSTRATIONS (Continued)

Title

Asynchronous Byte Read Cycle Flowchart........cc.cocoeviviinnnnnnis
Asynchronous Byte and Word Read Cycles — 32-Bit Port
Long-Word Read — 8-Bit Port with CIOUT Asserted
Long-Word Read — 16-Bit and 32-Bit Port..........ccoevceviienieennen
Asynchronous Write Cycle Flowchart........ccoovveviiiiiiiiiiiinnnnnns
Asynchronous Read-Write-Read Cycles — 32-Bit Port..............
Asynchronous Byte and Word Write Cycles — 32-Bit Port........
Long-Word Operand Write — 8-Bit Portccovevvvieiniiiiiiiennnnes
Long-Word Operand Write — 16-Bit POrt.......ccvveveeeeiiviveenennn.
Asynchronous Read-Modify-Write Cycle Flowchart..................
Asynchronous Byte Read-Modify-Write Cycle — 32-Bit Port

(TAS Instruction with CIOUT or CIIN Asserted).....................
Synchronous Long-Word Read Cycle Flowchart — No Burst

ANOWEd ... o
Synchronous Read with CIIN Asserted and CBACK Negated.....
Synchronous Write Cycle Flowchart.........ccoovvviiiiiiiniiiieiinnens
Synchronous Write Cycle with Wait States — CIOUT Asserted
Synchronous Read-Modify-Write Cycle Flowchart
Synchronous Read-Modify-Write Cycle Timing — CIIN

ASSEITEA et e e era e nan e
Burst Operation Flowchart — Four Long Words Transferred.....
Long-Word Operand Request from $07 with Burst Request

and Wait CyClES...cuuieriiiitiiii ittt et eee e e
Long-Word Operand Request from $07 with Burst

Request — CBACK Negated Early.......ccoeenveinieriiiinneeinninnns
Long-Word Operand Request from $0E — Burst Fill Deferred...
Long-Word Operand Request from $07 with Burst

Request — CBACK and CIIN Assertedccccocceevvuciiiininnnenns
MC68030 CPU Space Address Encoding........ccovvvviiniiniiciinnenn.
Interrupt Acknowledge Cycle Flowchart..........co.ccovviiiinninnneen.
Interrupt Acknowledge Cycle Timing........ccovvvevieieriiiienncennnns
Autovector Operation Timing.....cc..cccovviiiiiiniiiiniiine
Breakpoint Operation FIOWc.coivivieviiiviiiineie e
Breakpoint Acknowledge Cycle Timing........cocevevieniiviniriineennen.
Breakpoint Acknowledge Cycle Timing (Exception Signaled)....
Bus Error without DSACKXccviiiiiiiiniiicniee e
Late Bus Error with DSACKXc.cviiiiiiiiiieiicircinie e
Late Bus Error with STERM — Exception Takencc.ou...

MOTOROLA MC68030 USER'S MANUAL

XiX

LIST OF ILLUSTRATIONS (Continued)

Figure Page
Number Title Number

7-52 Long-Word Operand Request — Late BERR on Third Access.... 7-87

7-53 Long-Word Operand Request — BERR on Second Access........ 7-88
7-54 Asynchronous Late REtry.....ccocvveviiiiiiviiiiiiic e 7-90
7-55 Synchronous Late Retryoooiiiiiiiiiiiis . 791
7-56 Late Retry Operation for a BUrst........ooveeeiiiiiieneeiievininnennennnnn. 7-92
7-57 Halt Operation Timing.....ccoiveiiiiiiiii e 7-93
7-58 Bus Synchronization Example...... et e e e e 7-96
7-59 Bus Arbitration Flowchart for Single Request.........c..c.coeeiniais 7-98
7-60 Bus Arbitration Operation Timing......ccocveeeviiiiinniiine e, 7-99
7-61 Bus Arbitration State Diagram..........c.cooviviiiiiiiininicas 7-101
7-62 Single-Wire Bus Arbitration Timing Diagramcccvevveniennnn 7-103
7-63 Bus Arbitration Operation (Bus Inactive).......c..occovvernieeniiannnnn. 7-104
7-64 Initial Reset Operation Timing......cccovevuvierinecnnennn. UPTOURT 7-105
7-65 Processor-Generated Reset Operation....c.cocveviiveiiiiieeniceennes 7-106
8-1 Reset Operation FIOWChArt........oviiviveiiiieiiiieiieieeieeieeeeeneenes 8-6
8-2 Interrupt Pending Procedureccooviiiiiiiiniiiiiiiiincnns 8-15
8-3 Interrupt Recognition Examples.................... TP SR 8-17
8-4 Assertion of IPEND ...t 8-18
8-5 Interrupt Exception Processing Flowchart..........cocoeiiiiiiinnnns 8-19
8-6 Examples of Interrupt Recognition and Instruction Boundaries.. 8-20
8-7 Breakpoint Instruction Flowchartcoveeeiiiiiininiiinncnnn, 8-23
8-8 RTE instruction for Throwaway Four-Word Frames 8-26
8-9 Special Status Word (SSW)....c.vveviiiiiiiiiiicc e, 9-28
9-1 MMU Block Diagramoceeireiiiiieiiiieiicc e . 93
9-2 MMU Programming Model..........ccooiniiiiiiiniii s - 94
9-3 Translation Table Tree....ccoviviiiiiiiii e reaee s 9-5
94 Example Translation Table Treeccoccvvevvinieiiiieninciane 9-7
9-5 Example Translation Table Tree Layout in Memory................. 9-8
9-6 Derivation of Table Index Fieldsccoovveiiiiiiiiiiiiiiieeas 9-9
9-7 Example Translation Tree Using Different Format Descriptors.. 9-12
9-8 Address Translation General Flowchart........co.ooovvivieneiiiieenne. 9-14
9-9 Root Pointer Descriptor FOrMat.........cocevvereeriiivivereeeeeeeeieinens 9-23
9-10 Short-Format Table Descriptorcocovvirieiiieein i, 9-24
9-11 Long-Format Table Descriptor......cocevviviiiiiiiinincienns 9-24
9-12 Short-Format Page Descriptor and Short- Format Early

Termination Page Descriplor.........u.erriiesleeeieiiiiirceeiine e 9-25

XX MC68030 USER'S MANUAL MOTOROLA

Figure
Number

9-13
9-14
9-15
9-16
9-17
9-18
9-19
9-20
9-21
9-22
9-23
9-24
9-25
9-26
9-27
9-28
9-29
9-30
9-31
9-32
9-33

9-34

9-36
9-36
9-37
9-38
9-39
9-40

10-1
10-2

10-3
10-4
10-5
10-6

LIST OF ILLUSTRATIONS (Continued)

Title

Long-Format Early Termination Page Descriptorc.........
Long-Format Page Descriptor........ccccovivviiiiniiineiinniiinniiiinnnn.
Short-Format Invalid Descriptor..........ccoevvveiieeinieeiineeieenees
Long-Format Invalid Descriptor.....c..ccoevvviiiineniiivininninnanennes
Short-Format Indirect Descriptorcovvvveveriveiinieiniiceennens
Long-Format Indirect Descriptor.......ccovvveiiiiinineniiniieniinenns
Simplified Table Search Flowchart...........coocivvviiiiiiniiniannnnee.
Five-Level Table Search.......ccccccoeiiiiiiiiiiiiiiiici e,
Example Translation Tree Using Contiguous Memory
Example Translation Tree Using Indirect Descriptors.............
Example Translation Tree Using Shared Tables....................
Example Translation Tree with Nonresident Tables...............
Detailed Flowchart of MMU Table Search Operation
Table Search Initialization Flowchart........ccccovoeeiiiiiiinn,
ATC Entry Creation Flowchartc.coviiiiiininiinenns
Limit Check Procedure Flowchart.........coovevviiininniininncnninnn,
Detailed Flowchart of Descriptor Fetch Operation..................
Logical Address Map Using Function Code Lookup............. .
Example Translation Tree Using-Function Code Lookup.........
Example Translation Tree Structure for Two Tasks................

Example Logical Address Map with Shared Supervisor and

User Address SPaces ii.oivveeeieiveniiieiiiieeniernsniinnss e

Example Translation Tree Using S and WP Bits to Set

Protection (v
Root Pointer Register (CRP, SRP) Format........ccccoveevveeniennnns
Translation Control Register (TC) Format...........ccoevvienvennennn.
Transparent Translation Register (TTO and TT1) Format.........
MMU Status Register (MMUSR) Format.........ccovveveevennennnenn,
MMU Status Interpretation — PTEST Level O....covvvvvvnennnnns
MMU Status Interpretation — PTEST Level 7.....cccoveeeiiiianins

F-Line Coprocessor Instruction Operation Word....................

Asynchronous Non-DMA M68000 Coprocessor Interface

SIgNal USBQE ... iviiiiii i e
MC68030 CPU Space Address Encodingscovevvenvinninnnnn,
Coprocessor Address Map in MC68030 CPU Space................
Coprocessor Interface Register Set Map.........ccocovvivvinicnnennnnns
Coprocessor General Instruction Format (cpGEN)..................

MOTOROLA MC68030 USER'S MANUAL

Page
Number

9-25
9-26
9-26
9-27
9-27
9-28
9-29
9-31
9-35
9-36
9-38
9-39
9-41
9-42
9-42
9-43
9-44
9-45
9-46
9-47

9-49

9-50
9-54
9-54
9-57
9-59
9-62
9-63

10-4

10-6
10-7
10-8
10-9
10-10

XXi

Figure
Number

10-7
10-8

10-9

10-10
10-11
10-12

10-13
10-14
10-15
10-16
10-17
10-18
10-19
10-20
10-21
10-22
10-23
10-24
10-25
10-26
10-27
10-28
10-29
10-30

10-31
10-32
10-33
10-34
10-35
10-36
10-37
10-38
10-39
10-40

xxii

LIST OF ILLUSTRATIONS (Continued)

Page
Title Number

Coprocessor Interface Protocol for General Category :

NS UCHIONS 1eu it it veievt e e vt e e e et e et e e e raear e s anravenannenns 10-11
Coprocessor Interface Protocol for Conditional Category

INSErUCHIONS . eiiii e e e r e r e e raas 10-13
Branch on Coprocessor Condition Instruction (cpBcc.W).......... 10-14
Branch on Coprocessor Condition Instruction (cpBcc.L) 10-14
Set on Coprocessor Condition (cpSce)vvrvmviiiiieiieiiiniiinnn, 10-15
Test Coprocessor Condition, Decrement and Branch Instruction

Format (CPDBCC) .uuiveniiiieii e 10-17
Trap on Coprocessor Condition (cpTRAPCC).....c.ovvvvvvienvinninnnen. 10-18
Coprocessor State Frame Format in Memory........c..ccovvviennneen, 10-21
Coprocessor Context Save Instruction Format (cpSAVE) 10-25
Coprocessor Context Save Instruction Protocol.............cveueenen. 10-26
Coprocesor Context Restore Instruction Format (cpRESTORE).. 10-27
Coprocessor Context Restore Instruction Protocol................... 10-28
Control CIR FOrmMateeniiviiciei et 10-30
Condition CIR FOrmat......civveiiiiiiiiiiiincriinenennesrensenensensesens 10-31
Operand Alignment for Operand CIR Accesses 10-32
Coprocessor Response Primitive Formatocoooveiviiiininnne. 10-35
Busy Primitive FOrmat.....cocoviviinreiiiniie e vneen e 10-36
Null Primitive FOrmMat.......cooiviiiiiiiiiin e i e e e 10-37
Supervisor Check Primitive Format..........cociviiviiiiiininiiveninnnn, 10-40
‘Transfer Operation Word Primitive Format................. PO 10-41
Transfer from Instruction Stream Primitive Format.................. 10-41
Evaluate and Transfer Effective Address Primitive Format........ 10-42

Evaluate Effective Address and Transfer Data Primitive Format 10-43
Write to Previously Evaluated Effective Address Primitive

FOrmat. ... e 10-46
Take Address and Transfer Data Primitive Format................... 10-48
Transfer To/From Top of Stack Primitive Format..................... 10-49
Transfer Single Main Processor Register Primitive Format 10-50
Transfer Main Processor Control Register Primitive Format...... 10-51
Transfer Multiple Main Processor Registers Primitive Format... 10-52
Register Select Mask Format.........cccoviiiiiiiiiinniiieneneen, 10-52
Transfer Multiple Coprocessor Registers Primitive Format 10-53
Operand Format in Memory for Transfer to —(An)...c....cccooeeee 10-54
Transfer Status Register and ScanPC Primitive Format............. 10-55
Take Pre-Instruction Exception Primitive Format 10-56

MC68030 USER'S MANUAL MOTOROLA

Figure
Number

10-41
10-42
10-43
10-44
10-45

12-1

12-2
12-3
12-4
12-5
12-6
12-7
12-8
12-9
12-10
12-11
12-12
12-13

12-14
12-15

12-16
12-17

12-18
12-19
12-20
12-21

MOTOROLA

LIST OF ILLUSTRATIONS (Continued)

Page
Title Number

MC68030 Pre-Instruction Stack Frame........ccc.covvvviieiieiiinninnnnns 10-57
Take Mid-Instruction Exception Primitive Format..................... 10-58
MC68030 Mid-Instruction Stack Frameccoociviviiniinniininns 10-59
Take Post-Instruction Exception Primitive Format.................... 10-60
MC68030 Post-Instruction Stack Frame........cocceivciiviiiniiiiininnn, 10-60
Block Diagram — Eight Independent Resources...........ccocveeunee 11-3
Simultaneous Instruction Execution........cooccvvevviiiiiiiiniiieienen, 11-7
Derivation of Instruction Overlap Time........c.ccoviveiiiniiiniciinnns 11-8
Processor Activity — Even Alignmentcooviiiiiinniiniiinnnnns 11-9
Processor Activity — Odd Alignmentcc.coovevviiiiiniinnienceinnenes 11-10
Signal Routing for Adapting the MC68030 to MC68020

DS IgNS ittt 12-2
32-Bit Data Bus Coprocessor Connection........ccocevuverennenennennnes 12-6
Chip-Select Generation PAL.......cco.ciiiiiiiiiiii e, 12-8
PAL EQUAtIONS .. .iiviiiiiieeiier et ei e rae e e s ns 12-8
Bus Cycle Timing Diagram.......ccoocvviiiiiiiiiiieniennieneeeeeeieen 12-9
Example MC68030 Byte Select PAL System Configuration 12-12
MC68030 Byte Select PAL EQUationS.......ccovvveenvenvienienenneniannn. 12-13
Access Time Computation Diagram.....cc.cocviviiiiiiiinininiinnnenen, 12-15
Example Two-Clock Read, Three-Clock Write Memory Bank..... 12-19
Example PAL Equations for Two-Clock Memory Bank.............. 12-20
Additional Memory Enable Circuits.........coooviviiviiniiiinneennn, 12-21
Example Two-Clock Read and Write Memory Bank................. 12-22
Example PAL Equation for Two-Clock Read and Write Memory

BanK. ..o 12-23
Example 2-1-1-1 Burst Mode Memory Bank at 20 MHz, 256K

B LS e e 12-25
Example 3-1-1-1 Pipelined Burst Mode Memory Bank at 20 MHz,

256K BYES .ttt e 12-28
Additional Memory Enable Circuit.........ccoocovveiiiinineiinineennnen. 12-29
Example MC68030 Hardware Configuration with External

Physical Cachecveviiiiiiiiiiicc e 12-33
Example Early Termination Control Circuit.........ccocceeeviennnennees 12-34
Normal Instruction Boundaries...........ccooveviiieniiiiiiniiiinnneenes 12-37
Trace or Interrupt EXception........cccoveiviiiiiiiiiniiii s 12-38
Other EXCeptionscc.oeveeeeereieeieeviiinennnnn. U .. 12-38

MC68030 USER’S MANUAL xxiii

LIST OF ILLUSTRATIONS (Concluded)

Figure

Number - Title

12-22 Processor Halted.......cooviiviiieiiiiicninr e eans
12-23 Trace Interface CirCUItvvvevieiiieiiii i
12-24 PAL Pin Definitions ...viviieiiiiiie e rere e aeaes
12-25 Logic EQUAtiONS .. cuviii i

XXiv MC68030 USER’S MANUAL

Page
Number

MOTOROLA

LIST OF TABLES

Table Page
Number Title ‘ Number
1-1 Addressing MOdEScuviviiiiniiiiiiiii . 1-11
1-2 INSEFUCHION SEL..iuviiiiiiiei e e es e 1-13
2-1 IS-I/1S Memory Indirection Encodingscooeveriveiiennicincinniennen. 2-22
2-2 Effective Addressing Mode Categories..........cooveevinviiniiniiinnnennen. 2-24
3-1 Data Movement Operationsc.cccvvviiviveniciniiin i 3-5
3-2 Integer Arithmetic Operationscveeeeriiieiiiiciieee s 3-6
3-3 Logical Operations........cceevivuiieiieimnniiiiieneiie e 3-7
3-4 Shift and Rotate OperationsS..........eeeeeeeeeeeiieeeiieeisieeernieeeeeeeess 3-8
3-5 Bit Manipulation Operationsc.ccveiviiiiiiviiieiniiee e eneens 39
3-6 Bit Field Operationscovuvviuiieiiieiice e e 3-9
3-7 BCD OperatioNnS...cuueiiivverieirieeireieiieneeeinraieneaararene e eanaaieenaenaans 3-10
3-8 Program Control Operationscceevivviiiiiiiiinnnnn e 3-11
3-9 System Control OperationS......c.cccvviuieieieiveiiiiie e 3-12
3-10 MMU INStrUCHIONS covuiit it e e e e e s a e 3-13
3-11 Multiprocessor Operations (Read-Modify-Write)........ccocccvcrnnannen. 3-13
3-12 Condition Code Computations..........cvevreniieiiiiniiiiniiciieiiiene, 3-15
3-13 Conditional Tests.......ccoeeervveeinniniennnnes et et e e e tr e 317
3-14 Instruction Set SUMMAryccoiiieiviiiiiii e, 3-20
4-1 Address Space Encodings.......ccovvvvviniiiiiniiniii i 4-5
5-1 SNl INAEX . ciniiiiiiiii e e e 5-2
5-2 Signal SUMMAIY.....ovviriiii e 5-12
7-1 DSACK Codes and ResultS......ccoeiviuveiiiiiiiiiiiiiiineeeeceeas 7-7
7-2 Size Signal ENcodiNg......ccveviiiiiiiiiiiiee e cieeeres e e e 7-9
7-3 Address Offset ENCoOdingS.......uveiveiiiiiiiiiiiiiirciicn e, 7-9
7-4 Data Bus Requirements for Read Cycles...........ccooevviiiiiiinininnnnn, 7-10

7-5 MC68030 Internal to External Data Bus Multiplexer — Write
(08 o3 O P PP PPPPRN 7-11

7-6 Memory Alignment and Port Size Influence on Write Bus Cycles.. 7-19

MOTOROLA MC68030 USER'S MANUAL XXV

LIST OF TABLES (Continued)

Table Page
Number Title Number

7-7 Data Bus Write Enable Signals for Byte, Word, and Long-Word

P OIS et e 7-23
7-8 DSACK, BERR, and HALT Assertion Results......c.cocovvveviveninennnne. 7-79
7-9 STERM, BERR, and HALT Assertion Results.....c...cooeevviriinciinnenn. 7-81
8-1 Exception Vector ASSignmentS........covveeeereerineiunneiienerr e ennnens 8-2
8-2 Microsequencer STATUS Indicationsc..coeevveiinieiviiiniincnennnnnss 8-4
8-3 Tracing Control. ..o e 8-13
8-4 Interrupt Levels and Mask Values ... 8-16
8-5 EXception Priority GroUPS......cviviiieiiieiireiiiin e e e ens 8-24
8-6 Exception Stack Frames........ccooviiieiiiniiiicr e 8-33
9-1 Size ReStHCHIONS 11uvuiiiei vttt 9-10
9-2 Translation Tree Selectioncvvveiiiiiiiiiiciii e 9-30
9-3 MMUSR Bit Definitions......ccccoviiiiiiiiiccie e 9-60
10-1 cpTRAPcc Opmode ENCOAINGS ...vvvivnvinireiiiiiiieiieie e eeneeneinennee 10-19
10-2 Coprocessor Format Word Encodings........c.ccccevviiiniiinnninnniencnnn, 10-22
10-3 Null Coprocessor Response Primitive EncodingS........ccocvvvveenenne. 10-39
10-4 Valid Effective Address Codes......cvivieiiiiininiiniiiiinninineineens 10-43
10-5 Main Processor Control Register Selector Codes.......c...ccoevveeeen. 10-561
10-6 Exceptions Related to Primitive Processing..........coovcevviivniinneann, 10-66
12-1 Data Bus Activity for Byte, Word, and Long-Word Ports.............. 12-11
12-2 Memory Access Time Equations at 20 MHzocccoeiinnnnnne 12-16

12-3 Calculated tayDV Values for Operation at Frequencies
Less Than or Equal to the CPU Maximum Frequency Rating 12-17

12-4 Microsequencer STATUS Indicationscovvvvviiiviniiieineninennannn. 12-36
12-56 List Of Parts......ociiiiiii e e e 12-42
12-6 AS and ECSC INdIiCationS......ccovveeeeeeeeieieeeeeeiieieeeseiiviesseseesennnns 12-43
12-7 VCC and GND Pin AsSignments......c..ovevvieeenieiiirerieneinenieneenenes 12-46

XXVi MC68030 USER'S MANUAL MOTOROLA

PREFACE

The MC68030 User’s Manual describes the capabilities, operation, and pro-
gramming of the MC68030 32-bit second-generation enhanced microproces-
sor. The manual consists of the following sections and appendix. For detailed
information on the MC68030 instruction set refer to M68000PM/AD, M658000
Family Programmer’s Reference Manual.

Section 1. Introduction

Section 2. Data Organization and Addressing Capabilities
Section 3. Instruction Set Summary

Section 4. Processing States

Section 5. Signal Description

Section 6. On-Chip Cache Memories

Section 7. Bus Operation

Section 8. Exception Processing

Section 9. Memory Management Unit

Section 10. Coprocessor Interface Description

Section 11. Instruction Execution Timing

Section 12. Applications Information

Section 13. Electrical Characteristics

Section 14. Ordering Information and Mechanical Data
Appendix A. M68000 Family Summary

Index

NOTE

In this manual, assertion and negation are used to specify forcing a

signal to a particular state. In particular, assertion and assert refer

to a signal that is active or true; negation and negate indicate a

signal that is inactive or false. These terms are used independently

of the voltage level (high or low) that they represent.
The audience of this manual includes systems designers, systems program-
mers, and applications programmers. Systems designers need some knowl-
edge of all sections, with particular emphasis on Sections 1, 5, 6, 7, 13, 14,
and Appendix A. Designers who implement a coprocessor for their system
also need a thorough knowledge of Section 10. Systems programmers should

MOTOROLA MC68030 USER'S MANUAL xxvii

become familiar with Sections 1, 2, 3, 4, 6, 8, 9, 11, and Appendix A. Appli-
cations programmers can find most of the information they need in Sections
1,2,3,4,9, 11, 12, and Appendix A.

From a different viewpoint, the audience for this book consists of users of
other M68000 Family members and those who are not familiar with these
microprocessors. Users of the other family members can find references to
similarities to and differences from the other Motorola microprocessors
throughout the manual. However, Section 1 and Appendix A specifically
identify the MC68030 within the rest of the family and contrast its differences.

Xxviii MC68030 USER’'S MANUAL MOTOROLA

SECTION 1

INTRODUCTION

The MC68030 is a second-generation full 32-bit enhanced microprocessor
from Motorola. The MC68030 is a member of the M68000 Family of devices
that combines a central processing unit (CPU) core, a data cache, an instruc-
tion cache, an enhanced bus controller, and a memory management unit
(MMU) in a single VLSI device. The processor is designed to operate at clock
speeds beyond 20 MHz. The MC68030 is implemented with 32-bit registers
and data paths, 32-bit addresses, a rich instruction set, and versatile ad-
dressing modes.

The MC68030 is upward object code compatible with the earlier members
of the M68000 Family and has the added features of an on-chip MMU, a data
cache, and an improved bus interface. It retains the flexible coprocessor
interface pioneered in the MC68020 and provides full IEEE floating-point
support through this interface with the MC68881 or MC68882 floating-point
coprocessor. Also, the internal functional blocks of this microprocessor are
designed to operate in parallel, allowing instruction execution to be over-
lapped. In addition to instruction execution, the internal caches, the on-chip
MMU, and the external bus controller all operate in parallel.

The MC68030 fully supports the nonmultiplexed bus structure of the MC68020,
with 32 bits of address and 32 bits of data. The MC68030 bus has an enhanced
controller that supports both asynchronous and synchronous bus cycles and
burst data transfers. It also supports the MC68020 dynamic bus sizing mech-
anism that automatically determines device port sizes on a cycle-by-cycle
basis as the processor transfers operands to or from external devices.

A block diagram of the MC68030 is shown in Figure 1-1. The instructions and
data required by the processor are supplied from the internal caches when-
ever possible. The MMU translates the logical address generated by the
processor into a physical address utilizing its address translation cache (ATC).
The bus controller manages the transfer of data between the CPU and mem-
ory or devices at the physical address.

MOTOROLA MC68030 USER'S MANUAL 1-1

¢l

TVNANVIN S.H3SN 00890

V104O10W

ADDRESS
BUS

ADDRESS
PADS

MICROSEQUENCER AND CONTROL

PHYSICAL
ADDRESS

LOGICAL
ADDRESS

(e

INSTRUCTION PIPE
CACHE
CONTROL HOLDING
STORE REGISTER
(caHR) K |
{} i INTERNAL
DATA
CONTROL BUS
LOGIC
INSTRUCTION
CACHE [N—
N
—]
INSTRUCTION EXECUTION UNIT
ADDRESS
BUS
)
X
Z
T:;%%ﬂé': ———] ADDRESS —N] 0ATA Ll\ SIZE ¢> DATA ¢>nm
—| SEcTioN SECTION —/| MULTIPLEXER PADS 8US
SECTION N .
PN

DATA

L N
—V]

BUS CONTROLLER

:

WRITE PENDING

PREFETCH PENDING
BUFFER

BUFFER

MICRO BUS
CONTROLLER -

ADDRESS

: BUS

O

BUS CONTROL
SIGNALS

L N oam

MISAUGNMENT
MULTIPLEXER

CACHE

Figure 1-1. Block Diagram

1.1 FEATURES

The features of the MC68030 microprocessor are:

® Object Code Compatible with the MC68020 and Earlier M68000 Micro-
processors :

e Complete 32-Bit Nonmultiplexed Address and Data Buses
® 16 32-Bit General-Purpose Data and Address Registers

® Two 32-Bit Supervisor Stack Pointers and 10 Special-Purpose Control
Registers

e 256-Byte Instruction Cache and 256-Byte Data Cache Can Be Accessed
Simultaneously

® Paged MMU that Translates Addresses in Parallel with Instruction Exe-
cution and Internal Cache Accesses

® Two Transparent Segments Allow Untranslated Access to Physical Mem-
ory To Be Defined for Systems That Transfer Large Blocks of Data be-
tween Predefined Physical Addresses — e.g., Graphics Applications

® Pipelined Architecture with Increased Parallelism Allows Accesses to
Internal Caches To Occur in Parallel with Bus Transfers and Instruction
Execution To Be Overlapped

o Enhanced Bus Controller Supports Asynchronous Bus Cycles (three clocks
minimum), Synchronous Bus Cycles (two clocks minimum), and Burst
Data Transfers (one clock minimum) all to the Physical Address Space

® Dynamic Bus Sizing Supports 8-, 16-, 32-Bit Memories and Peripherals

e Support for Coprocessors with the M68000 Coprocessor Interface — e.g.,
Full IEEE Floating-Point Support Provided by the MC68881/MC68882
Floating-Point Coprocessors

® 4-Gbyte Logical and Physical Addressing Range

® Implemented in Motorola’s HCMOS Technology That Allows CMOS and
HMOS (High-Density NMOS) Gates to be Combined for Maximum Speed,
Low quer, and Optimum Die Size

e Processor Speeds Beyond 20 MHz

Both improved performance and increased functionality result from the on-
chip implementation of the MMU and the data and instruction caches. The
enhanced bus controller and the internal parallelism also provide increased
system performance. Finally, the improved bus interface, the reduction in
physical size, and the lower power consumption combine to reduce system
costs and satisfy cost/performance goals of the system designer.

MOTOROLA MC68030 USER'S MANUAL 1-3

1.2 MC68030 EXTENSIONS TO THE M68000 FAMILY

In addition to the on-chip instruction cache present in the MC68020, the
MC68030 has an internal data cache. Data that is accessed during read cycles
may be stored in the on-chip cache, where it is available for subsequent
accesses. The data cache reduces the number of external bus cycles when
the data operand required by an instruction is already in the data cache.

Performance is enhanced further because the on-chip caches can be internally
accessed in a single clock cycle. In addition, the bus controller provides a
two-clock cycle synchronous mode and burst mode accesses that can transfer
data in as little as one clock per long word.

The MC68030 enhanced microprocessor contains an on-chip MMU that al-
lows address translation to operate in parallel with the CPU core, the internal
caches, and the bus controller. ~

Additional signals support emulation and system analysis. External debug
equipment can disable the on-chip caches and the MMU to freeze the MC68030
internal state during breakpoint processing. in addition, the MC68030 indi-
cates:

The start of a refill of the instruction pipe
Instruction boundaries

Pending trace or interrupt processing
Exception processing

Halt conditions

agrLOd =

This status and control information allows external debugging equipment to
trace the MC68030 activity and interact nonintrusively with the MC68030 to
effectively reduce system debug effort.

1.3 PROGRAMMING MODEL

14

The programming model of the MC68030 consists of two groups of registers:
the user model and the supervisor model. This corresponds to the user and
supervisor privilege levels. User programs executing at the user privilege
level use the registers of the user model. System software executing at the

“supervisor level uses the control registers of the supervisor level to perform

superwsor functions.

MC68030 USER'S MANUAL MOTOROLA

Figure 1-2 shows the user programming mo'del, consisting of 16 32-bit
general-purpose registers and two control registers:

® General-Purpose 32-Bit Registers (D0-D7, A0-A7) -

® 32-Bit Program Counter (PC)
® 8-Bit Condition Code Register (CCR)

The supervisor programming model consists of the registers available to the
user plus 14 control registers:

® Two 32-Bit Supervisor Stack Pointers (ISP and MSP)

® 16-Bit Status Register (SR)

o 32-Bit Vector Base Register (VBR)

® 32-Bit Alternate Function Code Registers (SFC and DFC)
e 32-Bit Cache Control Register (CACR)

® 32-Bit Cache Address Register (CAAR)

® 64-Bit CPU Root Pointer (CRP)

® 64-Bit Supervisor Root Pointer (SRP)

® 32-Bit Translation Control Register (TC)

® 32-Bit Transparent Translation Registers (TT0 and TT1)
® 16-Bit MMU Status Register (MMUSR)

The user programming model remains unchanged from previous M68000
Family microprocessors. The supervisor programming model supplements
the user programming model and is used exclusively by the MC68030 system
programmers who utilize the supervisor privilege level to implement sen-
sitive operating system functions, /O control, and memory management
subsystems. The supervisor programming model contains all the controls to
access and enable the special features of the MC68030. This segregation was
carefully planned so that all application software is written to run at the
nonprivileged user level and migrates to the MC68030 from any M68000
platform without modification. Since system software is usually modified by
system programmers when ported to a new design, the control features are
properly placed in the supervisor programming model. For example, the
transparenttranslation feature of the MC68030 is new to the family supervisor
programming model for the MC68030 and the two translation registers are

MOTOROLA MC68030 USER'S MANUAL 1-5

new additions to the family supervisor programming model for the MC68030.
Only supervisor code uses this feature, and user application programs remain
unaffected.

Registers D0-D7 are used as data registers for bit and bit field (1 to 32 bits),
byte (8 bit), word (16 bit), long-word (32 bit), and quad-word (64 bit) oper-
ations. Registers AO-A6 and the user, interrupt, and master stack pointers
are address registers that may be used as software stack pointers or base
address registers. Register A7 (shown as A7’ and A7"” in Figure 1-3) is a
register designation that applies to the user stack pointer in the user privilege
level and to either the interrupt or master stack pointer in the supervisor
privilege level. In the supervisor privilege level, the active stack pointer (in-
terrupt or master) is called the supervisor stack pointer (SSP). In addition,

. 16 15 8 7 0

o |
01
D2
03 | Dama
04 REGISTERS
D5
06
07
31 16 15 0 =
AD
Al
A2
PR
Ad
A5
A6
3 16 15 0
- T T e |- e
kil 0
C T oo
15 7 0

_______ CONDITION
I w—

REGISTER

Figure 1-2. User Programming Model

1-6 MC68030 USER'S MANUAL MOTOROLA

the address registers may be used for word and long-word operations. All
of the 16 general-purpose registers (D0-D7, A0-A7) may be used as index
registers.

The program counter (PC) contains the address of the next instruction to be
executed by the MC68030. During instruction execution and exception pro-
cessing, the processor automatically increments the contents of the PC or
places a new value in the PC, as appropriate.

31 16 15

0
INTERRUPT
l l J AT (ISP) STACK
POINTER
0

3 16 15 .
. MASTER STACK
| l]“ MSP) = pOTER
0
STATUS
[CCR) J SR i' REGISTER
0
v VECTOR BASE
L | ver = REGISTER
0

3 2 -
e e e | ALTERNATE
L SIC [runcrion
L DFC [~ CODE REGISTERS
31 ;]
CACHE CONTAOL
L | cacn REGISTER
31 0 —
CACHE
L I CAAR — ADDRESS
REGISTER
63 32 —
CPU ROOT
CRP I— POINTER
REGISTER
63 32 o
SUPERVISOR
SRP |— ROOT POINTER
REGISTER
_
3 0
TRANSLATION
L I 1 CONTROL
REGISTER
3 0
TRANSPARENT
(| m TRANSLATION
REGISTER 0
3 0
TRANSPARENT
L] m TRANSLATION
REGISTER 1
15 0
MMU STATUS
L | s REGISTER

Figure 1-3. Supervisor Programming Model Supplement

MOTOROLA MC68030 USER'S MANUAL 1-7

1-8

The status register, SR, (see Figure 1-4) stores the processor status. It contains
the condition codes that reflect the results of a previous operation and can
be used for conditional instruction execution in a program. The condition
codes are extend (X), negative (N), zero (Z), overflow (V), and carry (C). The
user byte containing the condition codes is the only portion of the status
register information available in the user privilege level, and it is referenced
as the CCRin user programs. In the supervisor privilege level, software can
access the full status register, including the interrupt priority mask (three
bits) as well as additional control bits. These bits indicate whether the pro-
cessor is in:

1. One of two trace modes (T1, T0)

2. Supervisor or user privilege leve! (S)

3. Master or interrupt mode (M)

The vector base register (VBR) contains the base address of the exception
vector table in memory. The displacement of an exception vector is added
to the value in this register to access the vector table.

Alternate function code registers, SFC and DFC, contain 3-bit function codes.
Function codes can be considered extensions of the 32-bit linear address that
optionally provide as many as eight 4-Gbyte address spaces. Function codes
are automatically generated by the processor to select address spaces for
data and program at the user and supervisor privilege levels and a CPU
address space for processor functions (e.g., coprocessor communications).
Registers SFC and DFC are used by certain instructions to explicitly specify
the function codes for operations.

USER BYTE

SYSTEM BYTE (CONDITION CODE REGISTER)
1

[i]

5 14 13 12 1 10 9 8 7 6 5 4 3 2 1.0

mlrofs|{m{of{rz|{n{w|ofojo|x{N|fz]|Vv]cC

L—l——I , CARRY

TRACE INTERRUPT

ENABLE PRIORITY MASK OVERFLOW

. ER

SUPERVISOR/USER ZR0

STATE
NEGATIVE

MASTER/INTERRUPT
STATE

EXTEND

Figure 1-4. Status Register

MC68030 USER'S MANUAL MOTOROLA

The cache control register (CACR) controls the on-chip instruction and data
caches of the MC68030. The cache address register (CAAR) stores an address
for cache control functions.

The CPU root pointer (CRP) contains a pointer to the root of the translation
tree for the currently executing task of the MC68030. This tree contains the
mapping information for the task’s address space. When the MC68030 is
configured to provide a separate address space for supervisor routines, the
supervisor root pointer (SRP) contains a pointer to the root of the translation
tree describing the supervisor’s address space.

The translation control register (TC) consists of several fields that control
address translation. These fields enable and disable address translation, en-
able and disable the use of SRP for the supervisor address space, and select
or ignore the function codes in translating addresses. Other fields define the
size of memory pages, the number of address bits used in translation, and
the translation table structure.

The transparent translation registers, TT0 and TT1, can each specify separate
blocks of memory as directly accessible without address translation. Logical
addresses in these areas become the physical addresses for memory access.
Function codes and the eight most significant bits of the address can be used
to define the area of memory and type of access; either read, write, or both
types of memory access can be directly mapped. The transparent translation
feature allows rapid movement of large blocks of data in memory or 1/O
space without disturbing the context of the on-chip address translation cache
or incurring delays associated with translation table lookups. This feature is
useful to graphics, controller, and real-time applications.

The MMU status register (MMUSR) contains memory management status

information resulting from a search of the address translation cache or the
translation tree for a particular logical address.

MOTOROLA MC68030 USER'S MANUAL 1-9

1.4 DATA TYPES AND ADDRESSING MODES

Seven basic data types are supported:

Bits

Bit Fields (Fields of consecutive bits, 1-32 bits long)

BCD Digits {Packed: 2 digits/byte, Unpacked: 1 digit/byte)
Byte Integers (8 bits) '

Word Integers (16 bits)

Long-Word Integers (32 bits)

Quad-Word Integers (64 bits)

Noo,rwd=

In addition, the instruction set supports operations on other data types such
as memory addresses. The coprocessor mechanism allows direct support of

floating-point operations with the MC68881 and MC68882 floating-point co-

processors as well as specialized user-defined data types and functions.

The 18 addressing modes, shown in Table 1-1, include nine basic types:
Register Direct

Register Indirect

Register Indirect with Index

Memory Indirect

Program Counter Indirect with Displacement

Program Counter Indirect with Index

Program Counter Memory Indirect

Absolute '

Immediate

WoOoNDOP,WNS

The register indirect addressing modes can also postincrement, predecre-
ment, offset, and index addresses. The program counter relative mode also
has index and offset capabilities. As in the MC68020, both .modes are ex-
tended to provide indirect reference through memaory. In addition to these
addressing modes, many instructions implicitly specify the use of the con-
dition code register, stack pointer, and/or program counter.

1.5 INSTRUCTION SET OVERVIEW

1-10

The instructions in the MC68030 instruction set are listed in Table 1-2. The
instruction set has been tailored to support structured high-level languages
and sophisticated operating systems. Many instructions operate on bytes,
words, or long words, and most instructions can use any of the 18 addressing
modes.

MC68030 USER’S MANUAL MOTOROLA

Table 1-1. Addressing Modes

Addressing Modes Syntax

Register Direct

Data Register Direct Dn

Address Register Direct An
Register Indirect

Address Register Indirect (An)

Address Register Indirect with Postincrement {An) +

Address Register Indirect with Predecrement —-(An)

Address Register Indirect with Displacement (d16.An)
Register Indirect with Index

Address Register Indirect with Index (8-Bit Displacement) (dg,An,Xn)

Address Register Indirect with Index (Base Displacement) (bd,An,Xn)
Memory Indirect

Memory Indirect Postindexed ([bd,An],Xn,od)

Memory Indirect Preindexed ([bd,An,Xn],od)
Program Counter Indirect with Displacement (d16.PC)
Program Counter Indirect with Index

PC Indirect with Index (8-Bit Displacement) (dg,PC,Xn)

PC Indirect with Index (Base Displacement) | (bd,PC,Xn)
Program Counter Memory Indirect

PC Memory Indirect Postindexed ([bd,PC],Xn,od)

PC Memory Indirect Preindexed ([bd,PC,Xn],od)
Absolute)

Absolute Short (xxx).W

Absolute Long (xxx).L
Immediate #(data)

NOTES:

Dn = Data Register, D0-D7
An = Address Register, A0-A7
8. d16 = A twos-complement or sign-extended displacement; added as part of the
effective address calculation; size is 8 (dg} or 16 (d1g) bits; when omitted,
assemblers use a value of zero.

Xn = Address or data register used as an index register; form is Xn.SIZE*SCALE,
where SIZE is W or .L {indicates index register size) and SCALE is 1, 2, 4,
or 8 (index register is multiplied by SCALE); use of SIZE and/or SCALE is
optional.

bd = A twos-complement base displacement; when present, size can be 16 or
32 bits.

od = Quter displacement, added as part of effective address calculation after
any memory indirection; use is optional with a size of 16 or 32 bits.

PC = Program Counter

(data) = Immediate value of 8, 16, or 32 bits
() = Effective Address
[1= Use as indirect access to long-word address.

MOTOROLA MC68030 USER’S MANUAL 1-11

1.6 VIRTUAL MEMORY AND VIRTUAL MIACHINE CONCEPTS

The full addressing range of the MC68030 is 4 Gbytes (4,294,967,296 bytes)
in each of eight address spaces. Even though most systems implement a
smaller physical memory, the system can be made to appear to have a full
4 Gbytes of memory available to each user program by using virtual memory
techniques.

In a virtual memory system, a user program can be written as if it has a large
amount of memory available, when the physical memory actually present is
much smaller. Similarly, a system can be designed to allow user programs
to access devices that are not physically present in the system, such as tape
drives, disk drives, printers, terminals, and so forth. With proper software
emulation, a physical system can appear to be any other M68000 computer
system to a user program, and the program can be given full access to all
of the resources of that emulated system. Such an emulated system is called
a virtual machine. ’

1.6.1 Virtual Memory

A system that supports virtual memory has a limited amount of high-speed
physical memory that can be accessed directly by the processor and main-

‘tains an image of a much larger virtual memory on a secondary storage

device such as a large-capacity disk drive. When the processor attempts to
access a location in the virtual memory map that is not resident in physical
memory, a page fault occurs. The access to that location is temporarily sus-
pended while the necessary data is fetched from secondary storage and
placed in physical memory. The suspended access is then either restarted
or continued. ‘ :

The MC68030 uses instruction continuation to support virtual memory. When
a bus cycle is terminated with a bus error, the microprocessor suspends the
current instruction and executes the virtual memory bus error handler. When
the bus error handler has completed execution, it returns control to the
program that was executing when the error was detected, reruns the faulted
bus cycle (when required), and continues the suspended instruction.

MC68030 USER'S MANUAL MOTOROLA

Table 1-2. Instruction Set

Mnemonic Description Mnemonic Description
ABCD Add Decimal with Extend MOVE USP | Move User Stack Pointer
ADD Add MOVEC Move Control Register
ADDA Add Address MOVEM Move Multiple Registers
ADD! Add Immediate MOVEP Move Peripheral
ADDQ Add Quick MOVEQ Move Quick
ADDX Add with Extend MOVES Move Alternate Address Space
AND Logical AND . .
ANDI Logical AND Immediate mgtﬁ ﬁ'r?”ie: “(’j'”h'/:"’li‘/ |
ASL, ASR__| Arithmetic Shift Left and Right Signec LuTeyY.
Bec Branch Conditionally :EED mega:e Decimal with Extend
BCHG Test Bit and Change NEGX Negate ith Extend
BCLR Test Bit and Clear NOP Negg e Wlt. xten
BFCHG Test Bit Field and Change NOT L° ; pf? '°"| .
BFCLR Test Bit Field and Clear 21ce “OMp emen
BFEXTS Signed Bit Field Extract OR Logical Inclusive OR
BFEXTU Unsigned Bit Field Extract ORI Logical Inclusive OR Immediate
BFFFO Bit Field Find First One ORI CCR Logical Inclusive OR Immediate to
BFINS Bit Field Insert Condition Codes
BFSET Test Bit Field and Set ORI SR Logical Inclusive OR immediate to Status
BFTST Test Bit Field Register
EEKT gfeakﬁf""t PACK Pack BCD
ranc PEA Push Effective Add
BSET Test Bit and Set = = n./e - 2SS
BSR Branch to Subroutine PFLUSH FIush'Entry(|e§) in the ATC
BTST Test Bit EEBL/J\%I;A EIUSC:‘EA“ En.trles ;]n t:;:CATC
) t to t
CAS Compare and Swap Operands PLOADW cad Entry info the
CAS2 Compare and Swap Dual Operands PMOVE Move to/from MMU Registers
CHK Check Register Against Bound PMOVEFD [Move to/from MMU Registers with Flush
CHK2 Check Register Against Upper and . Disable
Lower Bounds PTESTR, Test a Logical Address
gk/lRP g'eaf PTESTW
ompare
CMPA Compare Address RESET Reset External Deyices
CcMPI Compare Immediate ROL, ROR Rotate Lgft and Right)
CMPM Compare Memory to Memory ROXL, RQXR Rotate with Extend Left and Right
CMP2 Compare Register Against Upper and RTD Return and Deallocate
Lower Bounds RTE Return from Exception
. RTR Return and Restore Codes
DBcc Test Condition, Decrement and Branch RTS Return from Subroutine
DIVS, DIVSL | Signed Divide R K
DIVU, DIVUL | Unsigned Divide gsco gubtcfamdp?cm}f' with Extend
t tio
EOR Logical Exclusive OR) S?I%P Sfop onditionatly
EORI Logical Exclusive OR Immediate SuUB Subtract
EXG E>.<change Registers SUBA Subtract Address
EXT, EXTB |Sign Extend susl Subtract Immediate
ILLEGAL Take lllegal Instruction Trap susQ Subtract Quick
IMP Jump SuBX Subtract with Extend
JSR Jump to Subroutine SWAP Swap Register Words
LEA Load Effective Address ?I-‘éiP ?”SI Operand and Set
LINK Link and Allocate TRAPec | Trap Conditionally
LSL, LSR Logical Shift Left and Right TRAPV Trap on Overflow
MOVE Move TST Test Operand
MOVEA Move Address f
MOVE CCR [Move Condition Code Register 8:;‘,& Bnlmkk BCD
MOVE SR Move Status Register phac
MOTOROLA MC68030 USER'S MANUAL 1-13

Coprocessor Instructions

Mnemonic Description Mnemonic Description
cpBcc Branch Conditionally cpRESTORE | Restore Internal State of Coprocessor
cpDBcc Test Coprocessor Condition, cpSAVE Save Internal State of Coprocessor
Decrement and Branch cpScc Set Conditionally
cpGEN Coprocessor General Instruction cpTRAPcc Trap Conditionally

1.6.2 Virtual Machine

A typical use for a virtual machine system is the development of software,
such as an operating system, for a new machine also under development
and not yet available for programming use. In a virtual machine system, a
governing operating system emulates the hardware of the new machine and
allows the new software to be executed and debugged as though it were
running on the new hardware. Since the new software is controlled by the
governing operating system, it is executed at a lower privilege level than the
governing operating system. Thus, any attempts by the new software to use
virtual resources that are not physically present (and should be emulated)
are trapped to the governing operating system and performed by its software.

In the MC68030 implementation of a virtual machine, the virtual application
runs at the user privilege level. The governing operating system executes at
the supervisor privilege level and any attempt by the new operating system
“to access supervisor resources or execute privileged instructions causes a
trap to the governing operating system.

Instruction continuation is used to support virtual /O devices in memory-
mapped input/output systems. Control and data registers for the virtual de-
vice are simulated in the memory map. An access to a virtual register causes
a fault and the function of the register is emulated by software.

1-14 MC68030 USER'S MANUAL MOTOROLA

1.7 THE MEMORY MANAGEMENT UNIT

The MMU supports virtual memory systems by translating logical addresses
to physical addresses using translation tables stored in memory. The MMU
stores address mappings in an address translation cache (ATC) that contains
the most recently used translations. When the ATC contains the address for
a bus cycle requested by the CPU, a translation table search is not performed.
Features of the MMU include:

e Multiple Level Translation Tables with Short- and Long-Format Descrip-
tors for Efficient Table Space Usage

® Table Searches Automatically Performed in Microcode
® 22-Entry Fully Associative ATC

® Address Translations and Internal Instruction and Data Cache Accesses
Performed in Parallel

e Eight Page Sizes Available Ranging from 256 to 32K Bytes

® Two Optional Transparent Blocks

® User and Supervisor Root Pointef 'Registers

® Write Protection and Supervisor Protection Attributes

o Translations Enabled/Disabled by Software

e Translations Can Be Disabled with External MMUDIS Signal

e Used and Modified Bits Automatically Maintained in Tables and ATC

® Cache Inhibit Output (CIOUT) Signal Can Be Asserted on a Page-by-Page
Basis

o 32-Bit Internal Logical Address with Capability To Ignore as many as 15
Upper Address Bits

e 3-Bit Function Code Supports Separate Address Spaces
® 32-Bijt Physical Address

The memory management function performed by the MMU is called demand
paged memory management. Since a task specifies the areas of memory it
requires as it executes, memory allocation is supported on a demand basis. .
If a requested access to memory is not currently mapped by the system, then
the access causes a demand for the operating system to load or allocate the
required memory image. The technique used by the MC68030 is paged mem-
ory management because physical memory is managed in blocks of a spec-
ified number of bytes, called page frames. The logical address space is divided

MOTOROLA MC68030 USER'S MANUAL 1-15

into fixed-size pages that contain the same number of bytes as the page
frames. Memory management assigns a physical base address to a logical
page. The system software then transfers data between secondary storage
and memory one or more pages at a time.

1.8 PIPELINED ARCHITECTURE

The MC68030 uses a three-stage pipelined internal architecture to provide
for optimum instruction throughput. The pipeline allows as many as three
words of a single instruction or three consecutive instructions to be decoded
concurrently. ‘

1.9 THE CACHE MEMORIES

Due to locality of reference, instructions and data that are used in a program
have a high probability of being reused within a short time. Additionally,
instructions and data operands that reside in proximity to the instructions
and data currently in use also have a high probability of being utilized within
a short period. To exploit these locality characteristics, the MC68030 contains
two on-chip logical caches, a data cache, and an instruction cache.

Each of the caches stores 256 bytes of information, organized as 16 entries,
each containing a block of four long words (16 bytes). The processor fills the
cache entries either one long word at a time or, during burst mode accesses,
four long words consecutively. The burst mode of operation not only fills
the cache efficiently but also captures adjacent instruction or data items that
are likely to be required in the near future due to locality characteristics of
the executing task.

The caches improve the overall performance of the system by reducing the
number of bus cycles required by the processor to fetch information from
memory and by increasing the bus bandwidth available for other bus masters
in the system. Addition of the data cache in the MC68030 extends the benefits
of cache techniques to all memory accesses. During a write cycle, the data
cache circuitry writes data to a cached data item as well as to the item in

- memory, maintaining consistency between data in the cache and that in

memory. However, writing data that is not in the cache may or may not cause
the data item to be stored in the cache, depending on the write allocation
policy selected in the cache control register (CACR).

MC68030 USER’S MANUAL MOTOROLA

SECTION 2

DATA ORGANIZATION AND ADDRESSING 2
CAPABILITIES

Most external references to memory by a microprocessor are either program
references or data references; they either access instruction words or op-
erands (data items) for an instruction. Program references are references to
the program space, the section of memory that contains the program in-
structions and any immediate data operands that reside in the instruction
stream. Refer to M68000PM/AD, M68000 Programmer’s Reference Manual,
for descriptions of the instructions in the program space. Data references
refer to the data space, the section of memory that contains the program
data. Data items in the instruction stream can be accessed with the program
counter relative addressing modes, and these accesses are classified as pro-
gram references. A third type of external reference used for coprocessor
communications, interrupt acknowledge cycles, and breakpoint acknowledge
cycles is classified as a CPU space reference. The MC68030 automatically
sets the function codes to access the program space, the data space, or the
CPU space for special functions as required. The function codes can be used
by the memory management unit to organize separate program (read only)
and data (read-write) memory areas.

This section describes the data organization and addressing capabilities of
the MC68030. It lists the types of operands used by instructions and describes
the registers and their use as operands. Next, the section describes the or-
ganization of data in memory and the addressing modes available to access

. data in memory. Last, the section describes the system stack and user pro-
gram stacks and queues.

2.1 INSTRUCTION OPERANDS

The MC68030 supports a general-purpose set of operands to serve the re-
guirements of a large range of applications. Operands of MC68030 instruc-
tions may reside in registers, in memory, or within the instructions themselves.
An instruction operand might also reside in a coprocessor. An operand may
be a single bit, a bit field of from 1 to 32 bits in length, a byte (8 bits), a word
(16 bits), a long word (32 bits), or a quad word (64 bits). The operand size
for each instruction is either explicitly encoded in the instruction or implicitly

MOTOROLA MC68030 USER'S MANUAL 2-1

defined by the instruction operation. Coprocessors are designed to support
special computation models that require very specific but widely varying
data operand types and sizes. Hence, coprocessor instructions can specify
operands of any size.

2.2 ORGANIZATION OF DATA IN REGISTERS

The eight data registers can store data operands of 1, 8, 16, 32, and 64 bits,
addresses of 16 or 32 bits, or bit fields of 1 to 32 bits. The seven address
registers and the three stack pointers are used for address operands of 16
or 32 bits. The control registers (SR, VBR, SFC, DFC, CACR, CAAR, CRP, SRP,
TC, TTO, TT1, and MMUSR) vary in size according to function. Coprocessors
may define unique operand sizes and support them with on-chip registers
accordingly.

2.2.1 Data Registers

2-2

Each data register is 32 bits wide. Byte operands occupy the low-order 8 bits,

~ word operands the low-order 16 bits, and long-word operands the entire 32

bits. When a data register is used as either a source or destination operand,
only the appropriate low-order byte or word (in byte or word operations,
respectively) is used or changed; the remaining high-order portion is neither
used nor changed. The least significant bit of a long-word integer is addressed
as bit zero, and the most significant bit is addressed as bit 31. For bit fields,
the most significant bit is addressed as bit zero, and the least significant bit
is addressed as the width of the field minus one. If the width of the field plus
the offset is greater than 32, the bit field wraps around within the register.
The following illustration shows the orgamzatlon of various types of data in
the data reglsters

Quad-word data consists of two long words: for example, the product of 32-
bit multiply or the quotient of 32-bit divide operations {signed and unsigned).
Quad words may be organized in any two data registers without restrictions
on order or pairing. There are no explicit instructions for the management
of this data type, although the MOVEM instruction can be used to move a
quad word into or out of the registers.

Binary-coded decimal (BCD) data represents decimal numbers in binary form.
Although many BCD codes have been devised, the BCD .instructions of the
M68000 Family support formats in which the four least significant bits consist
of a binary number having the numeric value of the corresponding decimal
number. Two BCD formats are used. In the unpacked BCD format, a byte

MC68030 USER'S MANUAL MOTOROLA

Bit (0=Modulo (Offset)<31, Offset of 0=MSB)

3130 29 1 0
[ms| | , | 158 |
Byte

31 %23 6 15 8 1 0
| High-Order Byte I Middle-High Byte Middle-Low Byte Low-Order Byte |
16-Bit Word

31 % 15 I 0
| " High-Order Word Low-Order Word
Long Word

31 : 0
L Long Word
Quad Word

63 62 2
| mss | Any Dx ‘ |

31 1 0
L - Any Dy | 158 |

Bit Field (0=Offset<32, 0<Width=32)
31 | Width | 0

| Offset [mss cee Ls8 |]

Note: If width+ offset<32, bit field wraps around within the register.

Unpacked BCD (a=MSB)
31 8 71 6 5 4 3 2 1 0

L [« [e fxfxfoafo]el]e]

Packed BCD (a=MSB First Digit, e=MSB Second Digit)
31 8 7

| ENEEENEN

Data Organization in Data Registers

@©

e [t]ofn]

MOTOROLA MC68030 USER'S MANUAL 2-3

contains one digit; the four least significant bits contain the binary value and
the four most significant bits are undefined. Each byte of the packed BCD
format contains two digits; the least significant four bits contain the: least
significant digit.

2.2.2 Address Registers

Each address register and stack pointer is 32 bits wide and holds a 32-bit
address. Address registers cannot be used for byte-sized operands. There-
fore, when an address register is used as a source operand, either the low-
order word or the entire long-word operand is used, depending upon the
operation size. When an address register is used as the destination operand,
the entire register is affected, regardless of the operation size. If the source
operand is a word size, it is first sign-extended to 32 bits and then used in
the operation to an address register destination. Address registers are used
primarily for addresses and to support address computation. The instruction
set includes instructions that add to, subtract from, compare, and move the
contents of address registers. The following example shows the organization
of addresses in address registers.

31 16 15 0

Sign-Extended] | 16-Bit Address Operand I

31)) 0

Full 32-Bit Address Operand |

Address Organization in Address Registers

2.2.3 Control Registers

The control registers described in this section contain control information
for supervisor functions and vary in size. With the exception of the user
portion of the status register (CCR), they are accessed only by instructions
at the supervisor privilege level.

The status register (SR), shown in Figure 1-4, is 16 bits wide. Only 12 bits of
the status register are defined; all undefined values are reserved by Motorola
for future definition. The undefined bits are read as zeros and should be
written as zeros for future compatibility. The lower byte of the status register
is the CCR. Operations to the CCR can be performed at the supervisor or user

MC68030 USER'S MANUAL MOTOROLA

privilege level. All operations to the status register and CCR are word-sized
operations, but for all CCR operations, the upper byte is read as aII zeros and
is ignored when written, regardless of pnvnlege level.

The supervisor programming mode! {see Figure 1-3) shows the control reg-
isters. The cache control register (CACR) provides control and status infor-
mation for the on-chip instruction and data caches. The cache address register
{CAAR) contains the address for cache control functions. The vector base
register (VBR) provides the base address of the exception vector table. All
operations involving the CACR, CAAR, and VBR are long-word operations,
whether these registers are used as the source or the destination operand.

- The alternate function code registers (SFC and DFC) are 32-bit registers with
only bits 2:0 implemented that contain the address space values (FCO-FC2)
for the read or write operands of MOVES, PLOAD, PFLUSH, and PTEST in-
structions. The MOVEC instruction is used to transfer values to and from the
alternate function code registers. These are long-word transfers; the upper
29 bits are read as zeros and are ignored when written.

The remaining control registers in the supervisor programming model are
used by the memory management unit (MMU). The CPU root pointer (CRP)
and supervisor root pointer (SRP) contain pointers to the user and supervisor
address translation trees. Transfers of data to and from these 64-bit registers
are quad-word transfers. The translation control register {TC) contains control
information for the MMU. The MC68030 always uses long-word transfers to
access this 32-bit register. The transparent translation registers (TT0 and TT1)
also contain 32 bits each; they identify memory areas for direct addressing
without address translation. Data transfers to and from these registers are
long-word transfers. The MMU status register (MMUSR) stores the status of
the MMU after execution of a PTEST instruction. It is a 16-bit register, and
transfers to and from the MMUSR are word transfers. Refer to SECTION 9
MEMORY MANAGEMENT UNIT for more detail.

2.3 ORGANIZATION OF DATA IN MEMORY

Memory is organized on a byte-addressable basis where lower addresses
correspond to higher order bytes. The address, N, of a long-word data item
corresponds to the address of the most significant byte of the highest order
word. The lower order word is located at address N + 2, leaving the least
significant byte at address N + 3 (refer to Figure 2-1). Notice that the MC68030

MOTOROLA MC68030 USER'S MANUAL 2-5

2-6

does not require data to be aligned on word boundaries (refer to Figure
2-2), but the most efficient data transfers occur when data is aligned on the
same byte boundary as its operand size. However, instruction words must
be aligned on word boundaries.

The data types supported in memory by the MC68030 are bit and bit field
data; integer data of 8, 16, or 32 bits; 32-bit addresses; and BCD data (packed
and unpacked). These data types are organized in memory as shown in Figure
2-2. Note that all of these data types can be accessed at any byte address.

Coprocessors can implement any data types and lengths up to 255 bytes.
For example, the MC68881/MC68882 floating-point coprocessors support
memory accesses for quad-word-sized items (double-precision floating-point
values).

A bit operand is specified by a base address that selects one byte in memory

(the base byte) and a bit number that selects the one bit in this byte. The
most significant bit of the byte is bit 7.

31 23 15 7 0

LONG WORD $00000000
WORD $00000000 WORD $00000002
BYTE $00000000 ‘ BYTE $00000001 BYTE $00000002 I BYTE $00000003
LONG WORD $00000004
WORD $00000004 WORD $00000006
BYTE $00000004 | BYTE $00000005 BYTE $00000006 I BYTE 500000007
L L]
/ : } . }
L] L]
LONG WORD $FFFFFFFC
WORD SFFFFFFFC WORD SFFFFFFFE
BYTE SFFFFFFFC BYTE SFFFFFFFD BYTE SFFFFFFFE | BYTE $FFFFFFFF

Figure 2-1. Memory Operand Address

MC68030 UsER’S MANUAL MOTOROLA

BIT DATA

7 07 07 07 0
BYTE n-1 16543210 BYTE n+1 BYTEn+2
]
BASE ADDRESS BIT NUMBER
BIT FIELD DATA gASE BIT
7 0|7 o7 I’ 07 0
[evEn- BYTEn [or23.... w] |
ft—— OFFSET-— e oo OFFSET ———— | t—— WIDTH ——
S 012,
BASE ADDRESS
BYTE INTEGER DATA
7 0|7 0|7 07 0
. BYTE -1 MSB BYTEn LSB BYTE n+1 BYTE n+2
ADDRESS
WORD INTEGER DATA
7 0|7 0|7 K 0|7 0
BYTEn-1 WORD INTEGER BYTEn+2 BYTEn+3
ADDRESS
LONG WORD INTEGER DATA
7)7 o7 0|7 0|7 0|7 0
BYTE n-1 LONG WORD INTEGER BYTEn+4
]
ADDRESS
ADDRESS QUAD WORD DATA
7 0y7 07 0|7 07 07 0
[eviEn-
QUAD WORD
BYTEn+8 |
PACKED BINARY-CODED DATA
7 0]7 43 0]7 07 0
BYTE n-1 MSD LSD BYTE n+1 BYTE n+2 |
ADDRESS
UNPACKED BINARY-CODED DATA
7 0|7 4]3 0|7 4|3 0}7 0
BYTE n-1 XX MSD XX LSD BYTEn+2
ADDRESS
XX = USER-DEFINED VALUE
Figure 2-2. Memory Data Organization
MOTOROLA MC68030 USER’'S MANUAL 2-7

|
EN

A bit field operand is specified by:
1. A base address that selects one byte in memory,

2. A bit field offset that indicates the leftmost (base) bit of the bit field in
relation to the most significant bit of the base byte, and

3. A bit field width that determines how many bits to the right of the base
bit are in the bit field.

The most significant bit of the base byte is bit field offset 0, the least significant
bit of the base byte is bit field offset 7, and the least significant bit of the
previous byte in memory is bit offset — 1. Bit field offsets may have values
in the range of —231to 2311, and bit field widths may range between 1
and 32 bits. '

2.4 ADDRESSING MODES

2-8

The addressing mode of an instruction can specify the value of an operand
(with an immediate operand), a register that contains the operand (with the
register direct addressing mode), or how the effective address of an operand
in memory is derived. An assembler syntax has been defined for each ad-
dressing mode.

Figure 2-3 shows the general format of the single effective address instruction
operation word. The effective address field specifies the addressing mode
for an operand that can use one of the numerous defined modes. The {ea)
designation is composed of two 3-bit fields: the mode field and the register
field. The value in the mode field selects one or a set of addressing modes.
The register field specifies a register for the mode or a submode for modes
that do not use registers. :

EFFECTIVE ADDRESS
KpXp X x| xpxpxpx|xx MODE |REGISTER

Figure 2-3. Single Effective Address Instruction Operation Word

Mény instructions imply the addressing mode for one of the operands. The
formats of these instructions include appropriate fields for operands that use
only one addressing mode..

MC68030 USER'S MANUAL ‘MOTOROLA

2.4.1

MOTOROLA

The effective address field may require additional information to fully specify
the operand address. This additional information, called the effective address
extension, is contained in an additional word or words and is considered part
of the instruction. Refer to 2.5 EFFECTIVE ADDRESS ENCODING SUMMARY
for a description of the extension word formats.

The notational conventions used in the addressing mode descriptions in this
section are:

EA—Effective address
An—Address register n
Example: A3 is address register 3
Dn—Data register n
Example: D5 is data register 5
Xn.SIZE*SCALE—Denotes index register n (data or address), the index size
(W for word, L for long word), and a scale factor (1, 2, 4,
or 8, for no, word, long-word or 8 for quad-word scaling,
respectively).
PC—The program counter
dn—Displacement value, n bits wide
bd—Base displacement
od—Outer displacement
L—Long-word size
W—Word size
()—Identify an indirect address in a register
[]—Identify an indirect address in memory

When the addressing mode uses a register, the register field of the operation
word specifies the register to be used. Other fields within the instruction
specify whether the register selected is an address or data register and how
the register is to be used.

Data Register Direct Mode

In the data register direct mode, the operand is in the data register specified
by the effective address register field.

GENERATION: EA=Dn

ASSEMBLER SYNTAX: Dn

MODE: 000

REGISTER: n 3 0
DATA REGISTER: Dn :]' OPERAND

NUMBER OF EXTENSION WORDS: 0

MC68030 USER'S MANUAL 2-9

2.4.2 Address Register Direct VMiode

in the address register direct mode, the operand is in the address register
specified by the effective address register field.

GENERATION: EA = An

ASSEMBLER SYNTAX: An

MODE: 001

REGISTER: n 3 0
ADDRESS REGISTER: An >]F OPERAND _l
NUMBER OF EXTENSION WORDS: 0 -

2.4.3 Address Register Indirect Mode

In the address register indirect mode, the operand is in memory, and the
address of the operand is in the address register specified by the register

field.
GENERATION: EA = (An)
ASSEMBLER SYNTAX: {An)
MOOE: 010

N REGISTER: n 3 0
ADDRESS REGISTER: An »] MEMORY ADDRESS |

3 i 0

MEMORY ADDRESS: [OPERAND |
NUMBER OF EXTENSION WORDS: 0

2.4.4 Address Register Indirect with Postincrement Mode

In the address register indirect with postincrement mode, the operand is in
memory, and the address of the operand is in the address register specified
by the register field. After the operand address is used, it is incremented by
one, two, or four depending on the size of the operand: byte, word, or long
word. Coprocessors may support incrementing for any size of operand up
to 255 bytes. If the address register is the stack pointer and the operand size
is byte, the address is incremented by two rather than one to keep the stack
pointer aligned to a word boundary.

MC68030 USER'S MANUAL MOTOROLA

GENERATION: EA = (An)

An = An + SIZE
ASSEMBLER SYNTAX: {An) +
MODE: on
REGISTER: n i 0

ADDRESS REGISTER: An ———»F MEMORY ADDRESS J
»{ +)
-/

MEMORY ADDRESS: r OPERAND l
NUMBER OF EXTENSION WORDS: 0

OPERAND LENGTH (1, 2, OR 4);

2.4.5 Address Register Indirect with Predecrement Mode

In the address register indirect with predecrement mode, the operand is in
memory, and the address of the operand is in the address register specified
by the register field. Before the operand address is used, it is decremented
by one, two, or four depending on the operand size: byte, word, or long
word. Coprocessors may support decrementing for any operand size up to
255 bytes. If the address register is the stack pointer and the operand size is
byte, the address is decremented by two rather than one to keep the stack
pointer aligned to a word boundary.

GENERATION: An = An - SIZE
EA = (An}
ASSEMBLER SYNTAX: - (An}
MODE: 100 31 0
REGISTER: n

ADDRESS REGISTER: An ——————l MEMORY ADDRESS J

OPERAND LENGTH (1, 2, OR 4): -

o

3

MEMORY ADDRESS: | OPERAND]
NUMBER OF EXTENSION WORDS: 0

MOTOROLA MC68030 USER'S MANUAL 2-11

2.4.6 Address Register Indirect with Displacement Mode

2.4.7

2-12

In the address register indirect with displacement mode, the operand is in

.memory. The address of the operand is the sum of the address in the address

register plus the sign-extended 16-bit displacement integer in the extension
word. Displacements are always sign-extended to 32 bits prior to being used
in effective address calculations.

 GENERATION: EA = (An) + dig

ASSEMBLER SYNTAX: {dig.An)

MODE; 100

REGISTER: n 3 0
ADORESS REGISTER: An ={ MEMORY ADDRESS]

3 15 0
S e
DISPLACEMENT: | SIGN EXTENDED _r INTEGER
, 31) 0

MEMORY ADDRESS: | OPERAND |
NUMBER OF EXTENSION WORDS: 1

Address Register Indirect with Index (8-Bit Displacement) Mode

This addressing mode requires one extension word that contains the index
register indicator and an 8-bit displacement. The index register indicator
includes size and scale information. In this mode, the operand is in memory.
The address of the operand is the sum of the contents of the address register,
the sign-extended displacement value in the low-order eight bits of the ex-
tension word, and the sign-extended contents of the index register (possibly
scaled). The user must specify the displacement, the address register, and
the index register in this mode. ’

GENERATION: EA = (An) + {Xn) + dg
ASSEMBLER SYNTAX: (dg.An,Xn.SIZE * SCALE)
MODE: 110 3 0
REGISTER: n T
ADDRESS REGISTER: An > MEMORY ADDRESS
31 7 0

DISPLACEMENT: E SIGN EXTENDED I INTEGER }

0

INDEX REGISTER: |

SIGN EXTENDED VALUE

SCALE:

MEMORY ADDRESS:

NUMBER OF EXTENSION WORDS:

| SCALE VALUE
3

[OPERAND |

o

MC68030 USER'S MANUAL MOTOROLA

2.4.8 Address Register Indirect with Index (Base Displacement) Mode

This addressing mode requires an index register indicator and an optional
16- or 32-bit sign-extended base displacement. The index register indicator
includes size and scaling information. The operand is in memory. The address

of the operand is the sum of the contents of the address register, the scaled n
contents of the sign-extended index register, and the base displacement.

In this mode, the address register, the index register, and the displacement
are all optional. If none is specified, the effective address is zero. This mode
provides a data register indirect address when no address register is specified
and the index register is a data register (Dn).

GENERATION: EA = {An) + (Xn) + bd
ASSEMBLER SYNTAX: {bd,An,Xn.SIZE *SCALE)
MODE: 1o 3
REGISTER: n -

ADDRESS REGISTER: An >]L MEMORY ADDRESS I

31

'BASE DISPLACEMENT: l) SIGN EXTENDED VALUE
31

INDEX REGISTER: I SIGN EXTENDED VALUE

SCALE: [SCALE VALUE
. 3

[OPERAND J

MEMORY ADDRESS: .
NUMBER OF EXTENSION WORDS: 1,2, 0R 3

MOTOROLA MC68030 USER'S MANUAL 2-13

2.4.9 Memory Indirect Postindexed Mode

In this mode, the operand and its address are in memory. The processor
calculates an intermediate indirect memory address using the base register
: (An) and base displacement (bd). The processor accesses a long word at this
n address and adds the index operand (Xn.SIZE*SCALE) and the outer dis-
placement to yield the effective address. Both displacements and the index

register contents are sign-extended to 32 bits.

In the syntax for this mode, brackets enclose the values used to calculate the
intermediate memory address. All four user-specified values are optional.
Both the base and outer displacements may be null, word, or long word.
When a displacement is omitted or an element is suppressed, its value is
taken as zero in the effective address calculation.

GENERATION: EA = {bd + An) + Xn.SIZE*SCALE + od
ASSEMBLER SYNTAX: {[bd, An}, Xn.SIZE * SCALE, od) 3N 0
MODE: 10
ADDRESS REGISTER: An =|[v MEMORY ADDRESS]
3 0
BASE DISPLACEMENT: L SIGN EXTENDED VALUE
31 0
L INDIRECT MEMORY ADDRESS J
a POIN;S T0 0
. l VALUE AT INDIRECT MEMORY ADDRESS l
3
INDEX REGISTER: I SIGN EXTENDED VALUE
SCALE: SCALE VALUE
3
OUTER DISPLACEMENT: l SIGN EXTENDED VALUE
3 0
EFFECTIVE ADDRESS: L OPERAND

NUMBER OF EXTENSION WORDS: 1,2, 3,4, 0R5

2-14 MC68030 USER’'S MANUAL MOTOROLA

2.4.10 Memory Indirect Preindexed Mode

In this mode, the operand and its address are in memory. The processor
calculates an intermediate indirect memory address using the base register
(An), a base displacement (bd), and the index operand (Xn.SIZE * SCALE).
The processor accesses a long word at this address and adds the outer
displacement to yield the effective address. Both displacements and the index
register contents are sign-extended to 32 bits.

In the syntax for this mode, brackets enclose the values used to calculate the
intermediate memory address. All four user-specified values are optional.
Both the base and outer displacements may be null, word, or long word.
When a displacement is omitted or an element is suppressed, its value is
taken as zero in the effective address calculation.

GENERATION: EA = {bd + An + Xn.SIZE*SCALE) + od
ASSEMBLER SYNTAX: {[bdAn.Xn SIZE *SCALE] od)
MODE: 10 a 0
ADDRESS REGISTER: An > MEMORY ADDRESS |
3
BASE DISPLACEMENT: [SIGN EXTENDED VALUE
3
WoEx RegisTeR: | SIGN EXTENDED VALUE
SCALE: r SCALE VALUE
3 0
L INDIRECT MEMORY ADDRESS l
L
POINTS TO
3
| VALUE AT INDIRECT MEMORY ADORESS]
3 0
OUTER DISPLACEMENT: L SIGN EXTENDED VALUE f e
3 0
EFFECTIVE ADDRESS: | OPERAND |

NUMBER OF EXTENSION WORDS: 1,2, 3,4, 0R5

MOTOROLA . MC68030 USER'S MANUAL 2-15

2.4.11 Program Counter Indirect with Displacement Mode

In this - mode, the operand is in memory. The address of the operand is the
sum of the address in the PC and the sign-extended 16-bit displacement
integer in the extension word. The value in the PC is the address of the
extension word. The reference is a program space reference and is only
allowed-for reads (refer to 4.2 ADDRESS SPACE TYPES).

GENERATION; EA = (PC) + dig
ASSEMBLER SYNTAX: d16,PC)
MOOE: _ S
REGISTER: 010 3 0
PROGRAM COUNTER: - :} ADDRESS OF EXTENSION WORD
o 31 15 0
DISPLACEMENT: [SIGN EXTENDE [INTEGER
) 31 0
MEMORY ADDRESS: | OPERAND

NUMBER OF EXTENSION WORDS: 1

2412 Program Counter Indirect with Index (8-Bit Displacement) Mode

2-16

This mode is similar to the address register indirect with index (8-bit dis-
placement) mode described in 2.4.7 Address Register Indirect with Index
(8-Bit Displacement) Mode, but the PC is used as the base register. The
operand is in memory. The address of the operand is the sum of the address
in the PC, the sign-extended displacement integer in the lower eight bits of
the extension word, and the sized, scaled, and sign-extended index operand.
The value in the PC is the address of the extension word. This reference is
a program space reference and is only allowed for reads. The user must
include the displacement, the PC, and the index register when specifying this
addressing mode.

GENERATION: EA='PC) + (Xn) + dg
ASSEMBLER SYNTAX: {dg.PC.Xn.SIZE*SCALE)
MODE: m . 0
REGISTER: o | :
- PROGRAM COUNTER: o ADDRESS OF EXTENSION WORD |
3 7 0
DISPLACEMENT: E SIGN EXTENDED | INTEGER } w(+
n T T 0
WoEX RecisTER: | SIGN EXTENDED VALUE
SCALE: [SCALE VALUE
3 0
MEMORY ADDRESS: | OPERAND |

NUMBER OF EXTENSION WORDS: 1

MC68030 USER'S MANUAL MOTOROLA

2.4.13 Program Counter Indirect with Index (Base Displacement) Mode

This mode is similar to the address register indirect with index (base dis-
placement) mode described in 2.4.8 Address Register Indirect with Index
(Base Displacement) Mode, but the PC is used as the base register. It requires

~ an index register indicator and an optional 16- or 32-bit sign-extended base
displacement. The operand is in memory. The address of the operand is the
sum of the contents of the PC, the scaled contents of the sign-extended index
register, and the base displacement. The value of the PC is the address of
the first extension word. The reference is a program space reference and is
only allowed for reads (refer to 4.2 ADDRESS SPACE TYPES).

In this mode, the PC, the index register, and the displacement are all optional.
However, the user must supply the assembler notation “ZPC" (zero value is
taken for the PC) to indicate that the PC is not used. This allows the user to
access the program space without using the PC in calculating the effective
address. The user can access the program space with a data register indirect
access by placing ZPC in the instruction and specifying a data register (Dn)
as the index register.

GENERATION: EA = (PC) + (Xn) + bd
ASSEMBLER SYNTAX: {bd, PC,Xn SIZE *SCALE)
MODE: m
REGISTER: o
PROGRAM COUNTER: ='L

31

BASE DISPLACEMENT: L SIGN EXTENDED VALUE
31

INDEX REGISTER: l SIGN EXTENDED VALUE

SCALE: r SCALE VALUE
31

MEMORY ADDRESS: ‘ l OPERAND l
NUMBER OF EXTENSION WORDS: 1,2, 0R 3

MOTOROLA MC68030 USER'S MANUAL 2-17

2.4.14 Program Counter Memory Indirect Postindexed Mode

2-18

This mode is similar to the memory indirect postindexed mode described in
2.4.9 Memory Indirect Postindexed Mode, but the PC is used as the base
register. Both the operand and operand address are in memory. The pro-
cessor calculates an intermediate indirect memory address by adding a base
displacement (bd) to the PC contents. The processor accesses a long word
at that address and adds the scaled contents of the index register and the
optional outer displacement (od) to yield the effective address. The value of
the PC used in the calculation is the address of the first extension word. The
reference is a program space reference and’is only allowed for reads (refer
to 4.2 ADDRESS SPACE TYPES).

In the syntax for this mode, brackets enclose the values used to calculate the
intermediate memory address. All four user-specified values are optional.
However, the user must supply the assembler notation ZPC (zero value is
taken for the PC) to indicate that the PC is not used. This aliows the user to
access the program space without using the PC in calculating the effective
address. Both the base and outer displacements may be null, word, or long
word. When a displacement is omitted or an element is suppressed, its value
is taken as zero in the effective address calculation.

GENERATION: EA = {bd + PC) + Xn SIZE*SCALE + od
ASSEMBLER SYNTAX: {Ibd.PC], Xn.SIZE *SCALE od)
MODE: m
3 0
REGISTER FIELD: o1
PROGRAM COUNTER: >|r ADDRESS OF EXTENSION WORD 1
3 0
BASE DISPLACEMENT: SIGN EXTENDED VALUE R } »{+
31 0
| INDIRECT MEMORY ADDRESS
POINTS 70
3
| VALUE AT INDIRECT MEMORY ADDRESS IN PROGRAM SPACE l
3
INDEX REGISTER: l SIGN EXTENDED VALUE
[SCALE VALUE
3
OUTER DISPLACEMENT: SIGN EXTENDED VALUE
3 0
EFFECTIVE ADDRESS: OPERAND |
NUMBER OF EXTENSION WORDS: 1,2.3, 4, OR5

MC68030 USER'S MANUAL MOTOROLA

2.4.15 Program Counter Memory Indirect Preindexed Mode

This mode is similar to the memory indirect preindexed mode described in
2.4.10 Memory Indirect Preindexed Mode, but the PC is used as the base
register. Both the operand and operand address are in memory. The pro-
cessor calculates an intermediate indirect memory address by adding the PC
contents, a base displacement (bd), and the scaled contents of an index
register. The processor accesses a long word at that address and adds the
optional outer displacement (od) to yield the effective address. The value of
the PC is the address of the first extension word. The reference is a program
space reference and is only allowed for reads (refer to 4.2 ADDRESS SPACE
TYPES).

In the syntax for this mode, brackets enclose the values used to calculate the
intermediate memory address. All four user-specified values are optional.
However, the user must supply the assembler notation ZPC (zero value is
taken for the PC) to indicate that the PC is not used. This allows the user to
access the program space without using the PC in calculating the effective
address. Both the base and outer displacements may be null, word, or long
word. When a displacement is omitted or an element is suppressed, its value
is taken as zero in the effective address calculation.

GENERATION: EA = (bd + PC + Xn.SIZE*SCALE) + od

ASSEMBLER SYNTAX: {{bd,PC.Xn.SIZE *SCALE).od}

MODE: m 3 0

REGISTER FIELD: on

PROGRAM COUNTER: —=|L ADDRESS OF EXTENSION WORD l
31 0

BASE DISPLACEMENT: I SIGN EXTENDED VALUE
31 0

INDEX REGISTER: [SIGN EXTENDED VALUE

L SCALE VALUE

3 0
[INDIRECT MEMORY ADDRESS |
POINTS TO
3 * 0
[vawe a7 omect memory aooress v progaam space |
3 0
OUTER DISPLACEMENT: L SIGN EXTENDED VALUE } +
2 0
EFFECTIVE ADDRESS: | OPERAND |

NUMBER OF EXTENSION WORDS: 1,2, 3,4 0R&

MOTOROLA MC68030 USER'S MANUAL 2-19

2.4.16 Absolute Short Addressing Mode

In this addressing mode, the operand is in memory, and the address of the
operand is in the extension word. The 16-bit address is sign-extended to 32
bits before it is used. : '

GENERATION: EA GIVEN

ASSEMBLER SYNTAX: oW

MODE: m a - o

REGISTER: 000 e

EXTENSION WORD: > SGNEEDD MEMORY ADDRESS |
. . 31 1] 0

MEMORY ADDRESS: [OPERAND]

NUMBER OF EXTENSION WORDS: 1

2.4.17 Absolute Long Addressing Mode

In this mode, the operand is in memory, and the address of the operand

-occupies the two extension words following the instruction word in memory.

The first extension word contains the high-order part of the address; the low-
order part of the address is the second extension word.

GENERATION: EA GIVEN
ASSEMBLER SYNTAX: raxl L
MODE: i
0

REGISTER: o0 ;5
FIRST EXTENSION WORD: — »{ aboRess HiGH |

15 0
SECOND EXTENSION WORD: »{ ADDRESS LOW |

¥ 0

CONCATENATION I

31
- L
3) 0
MEMORY ADDRESS: [OPERAND |

NUMBER OF EXTENSION WORDS: 2

MC68030 USER'S MANUAL MOTOROLA

2.4.18 Immediate Data

In this addressing mode, the operand is in one or two extension words:

Byte Operation
Operand is in the low-order byte of the extension word

Word Operation
Operand is in the extension word

Long-Word Operation
The high-order 16 bits of the operand are in the first extension word;
the low-order 16 bits are in the second extension word.

Coprocessor instructions can support immediate data of any size. The in-
struction word is followed by as many extension words as are required.

Generation: Operand given

Assembler Syntax: #xxx

Mode Field: m

Register Field: 100

Number of Extension Words: 1 or 2, except for coprocessor instructions

MOTOROLA MC68030 USER'S MANUAL ‘ 2-21

2.5 EFFECTIVE ADDRESS ENCODING SUMMARY

2-22

Most of the addressing modes use one of the three formats shown in Figure
2-4. The single effective address instruction is in the format of the instruction
word. The encoding of the mode field of this word selects the addressing
mode. The register field contains the general register number or a value that
selects the addressing mode when the mode field contains “111". Table
2-2 shows the encoding of these fields. Some indexed or indirect modes use
the instruction word followed by the brief format extension word. Other
indexed or indirect modes consist of the instruction word and the full format
of extension words. The longest instruction for the MC68030 contains 10
extension words. It is a MOVE instruction with full format extension words
for both the source and destination effective addresses and with 32-bit base
displacements and 32-bit outer displacements for both addresses. However,
coprocessor instructions can have any number of extension words. Refer to
the coprocessor instruction formats in SECTION 10 COPROCESSOR INTER-
FACE DESCRIPTION.

For effective addresses that use the full format, the index suppress (IS) bit
and the index/indirect selection (I/IS) field determine the type of indexing and
indirection. Table 2-1 lists the indexing and indirection operations corre-
sponding to all combinations of IS and /IS values.

Table 2-1. IS-I/IS Memory Indirection Encodings

1S Index/Indirect Operation

0 000 No Memory Indirection

0 001 Indirect Preindexed with Null Outer Displacement

0 010 Indirect Preindexed with Word Outer Displacement
0 011 Indirect Preindexed with Long Outer Displacement
0 100 Reserved

0 101 Indirect Postindexed with Null Outer Displacement
0 110 Indirect Postindexed with Word Outer Displacement
0 111 Indirect Postindexed with Long Quter Displacement
1 000 No Memory Indirection

1 001 Memory indirect with Null Outer Displacement

1 010 Memory Indirect with Word Outer Displacement

1 011 Memory Indirect with Long Outer Displacement

1 100-111 Reserved

MC68030 USER'S MANUAL MOTOROLA

Single Effective Address Instruction Format

15 14 13 12 1" 10 9 8 7 6 5 0
EFFECTIVE ADDRESS
X X X X
X X X X X X MODE REGISTER
Brief Format Extension Word
15 14 12 n 10 9 8 7 0
[oa] reosten Jwe] scae [o] DISPLACEMENT |
Full Format Extension Word(s)
15 14 12 n 10 9 8 7 6 5 4 3 2 0
oA | meesteR Jwe | scae |0 [es s | eosze | o | ns
BASE DISPLACEMENT (0, 1, OR 2 WORDS)
OUTER DISPLACEMENT (0, 1, OR 2 WORDS)
Field Definition Field _ Definition
Instruction: BS Base Register Suppress:
Register ~ General Register Number 0=Base Register Added
Extensions: 1=Base Register Suppressed
Register ’ Index Register Number IS Index Suppress:
g giste 0=Evaluate and Add Index
D/A Index Register Type
: 0=Dn Operand
1 ;An 1'=Suppress Index Operand
WiL Word/Long-Word Index Size BD Size Baosg_Désplacergent Size:
0=Sign-Extended Word =neserve
1=Long Word 01 =Null Displacement
Scal S |_ : ? or 10=Word Displacement
cale cgoe_ 1ac or 11=Long Displacement
01 :2 s Index/Indirect Selection:
10:4 Indirect and Indexing Operand
b ;8 Determined in Conjunction with

Bit 6, Index Suppress

Figure 2-4. Effective Address Specification Formats

Effective address modes are grouped according to the use of the mode. They
can be classified as follows:

Data A data addressing effective address mode is one that refers to
data operands.

Memory A memory addressing effective address mode is one that refers
to memory operands.

Alterable An alterable addressing effective address mode is one that refers
to alterable (writable) operands.

Control A control addressing effective address mode is one that refers
to memory operands without an associated size.

MOTOROLA MC68030 USER’'S MANUAL 2-23

Table 2-2 shows the categories to which each of the effective addressing
modes belong.

Table 2-2. Effective Addressing Mode Categories

Address Modes Mode| Register | Data| Memory | Control | Alterable |Assembler Syntax

Data Register Direct 000 | reg. no. X — — X Dn
Address Register Direct 001 | reg.no. | — - — X An
Address Register Indirect 010 | reg. no. X X X X (An)
Address Register Indirect .

with Postincrement 011 | reg. no. X X — X (An) +
Address Register Indirect . '

with Predecrement 100 | reg.no. | X X — X —(An)
Address Register Indirect)) '

with Displacement 101 | reg. no. X X X X (d16.An)
Address Register Indirect with)

Index (8-Bit Displacement) 110 | reg. no. X X X X (dg,An,Xn)
Address Register Indirect with

Index (Base Displacement) 110 | reg. no. X X X X {bd,An,Xn)
Memory Indirect Postindexed | 110 | reg. no. X X X X ([bd,An],Xn,od)
Memory Indirect Preindexed 110 | reg. no. X X X X ({[bd,An,Xn],od)
Absolute Short 1M1 000 X X X X (xxx).W
Absolute Long m 001 X X X X (xxx}.L
Program Counter Indirect

with Displacement m 010 X X X — (d16,PC)
Program Counter Indirect with

Index (8-Bit) Displacement m 011 X X — (dg,PC,Xn)
Program Counter Indirect with

Index (Base Displacement) m 011 X X X — (bd,PC,Xn)
PC Memory Indirect

Postindexed 111 on X X X —_ {[bd,PC],Xn,od
PC Memory Indirect

Preindexed m 011 X X - {[bd,PC,Xn],od)
Immediate m 100 X — — #(data)

These categories are sometimes combined, forming new categories that are
more restrictive. Two combined classifications are alterable memory or data
alterable. The former refers to those addressing modes that are both alterable
and memory addresses, and the latter refers to addressing modes that are
both data and alterable.

2.6 PROGRAMMER'S VIEW OF ADDRESSING MObES

Extensions to the indexed addressing modes, indirection, and full 32-bit dis-
placements provide additional programming capabilities for both- the MC68020
and the MC68030. This section describes addressing techniques that exploit
these capabilities and summarizes the addressing modes from a program-
ming point of view.

2-24 MC68030 USER'S MANUAL .MOTOROLA

Several of the addressing techniques described in this section use data reg-
isters and address registers interchangeably. While the MC68030 provides
this capability, its performance has been optimized for addressing with ad-
dress registers. The performance of a program that uses address registers
in address calculations is superior to that of a program that similarly uses
data registers. The specification of addresses with data registers should be
used sparingly (if at all), particularly in programs that require maximum
performance.

2.6.1 Addressing Capabilities

In both the MC68020 and the MC68030, setting the base register suppress
(BS) bit in the full format extension word (see Figure 2-4) suppresses use of
the base address register in calculating the effective address. This allows any
index register to be used in place of the base register. Since any of the data
registers can be index registers, this provides a data register indirect form
(Dn). The mode could be called register indirect (Rn) since either a data
register or an address register can be used. This addressing mode is an
extension to the M68000 Family because the MC68030 and MC68020 can use
both the data registers and the address registers to address memory. The
capability of specifying the size and scale of an index register (Xn.SIZE*SCALE)
in these modes provides additional addressing flexibility. Using the SIZE
parameter, either the entire contents of the index register can be used, or
the least significant word can be sign-extended to provide a 32-bit index
value (refer to Figure 2-5).

e VLI e

31 16 15 0

o | v/ /e

m : USED IN ADDRESS CALCULATION

Figure 2-5. Using SIZE in the Index Selection

MOTOROLA MC68030 USER’S MANUAL 2-25

2-26

For both the MC68020 and the MC68030, the register indirect modes can be
extended further. Since displacements can be 32 bits wide, they can represent
absolute addresses or the results of expressions that contain absolute ad-
dresses. This allows the general register indirect form to be (bd,Rn) or
(bd,An,Rn) when the base register is not suppressed. Thus, an absolute ad-
dress can be directly indexed by one or two registers (refer to Figure 2-6).

SYNTAX: (bd,An,Rn)

bd ——»

LI

/ . /

Figure 2-6. Using Absolute Address with Indexes

Scaling provides an optional shifting of the value in an index register to the
left by zero, one, two, or three bits before using it in the effective address
calculation (the actual value in the index register remains unchanged). This
is equivalent to multiplying the register by one, two, four, or eight for direct
subscripting into an array of elements of corresponding size using an arith-
metic value residing in any of the 16 general registers. Scaling does not add
to the effective address calculation time. However, when combined with the
appropriate derived modes, it produces additional capabilities. Arrayed struc-
tures can be addressed absolutely and then subscripted, (bd,Rn*scale), for
example. Optionally, an address register that contains a dynamic displace-
ment can be included in the address calculation (bd,An,Rn*scale). Another
variation that can be derived is (An,Rn*scale). In the first case, the array.
address is the sum of the contents of a register and a displacement, as shown
in Figure 2-7. In the second example, An contains the address of an array
and Rn contains a subscript.

MC68030 USER’S MANUAL MOTOROLA

SYNTAX: MOVE.W (A5,AB.L*SCALE).(A7)
WHERE:

A5 = ADDRESS OF ARRAY STRUCTURE
A6 = INDEX NUMBER OF ARRAY ITEM
A7 = STACK POINTER

RECORD OF 2 WORDS
(SCALE = 2)

0

i

SIMPLE ARRAY
(SCALE = 1)
15 0
2 =\ —— 777777777777 26 = 1 ——»
2 —=A NNV
33— 2 ——
4 ——»

AN

/

RECORD OF 4 WORDS
(SCALE = 4)

/

/

/

RECORD OF 8 WORDS
(SCALE = 8)

A6 = 1 ——» AB = 1| ——»

W
\

22—

/ /

-
.

/

NOTE: Regardless of array structure, software increments index by the
appropriate amount to point to next record.

Figure 2-7. Addressing Array |

/

tems

The memory indirect addressing modes use a long-word pointer in memory
to access an operand. Any of the modes previously described can be used
to address the memory pointer. Because the base and index registers can
both be suppressed, the displacement acts as an absolute address, providing
indirect absolute memory addressing (refer to Figure 2-8).

MOTOROLA MC68030 USER’S MANUAL

2-27

2-28

The outer displacement (od) available in the memory indirect modes is added
to the pointer in memory. The syntax for these modes is {[bd,An],Xn,od) and
([bd,An,Xn],od). When the pointer is the address of a structure in memory
and the outer displacement is the offset of an item in the structure, the
memory indirect modes can access the item efficiently (refer to Figure 2-9).

Memory indirect addressing modes are used with a base displacement in
five basic forms:

. [bd,An] — Indirect, suppressed index register

. {[bd,An,Xn]) — Preindexed indirect

. {[bd,An],Xn) — Postindexed indirect

. ([bd,An,Xn],od) — Preindexed indirect with outer displacement

. {[bd,An],Xn,od) — Postindexed indirect with outer displacement

ST WN =

SYNTAX: ([bd])

bd ———»] POINTER L DATA ITEM

/ / / /

Figure 2-8. Using Indirect Absolute Memory Addressing

SYNTAX: {[An].od)

MEMORY STRUCTURE

An ————» POINTER >

Y
_DATA ITEM

/ / /

Figure 2-9. Accessing an Item in a Structure Using Pointer

MC68030 USER'S MANUAL MOTOROLA

The indirect, suppressed index register mode (see Figure 2-10) uses the con-
tents of register An as an index to the pointer located at the address specified

by the displacement. The actual data item is at the address in the selected
pointer.

SYNTAX: {[bd.An])

POINTER LIST

POINTER DATA ITEM

/ / / /

Figure 2-10. Indirect Addressing, Suppressed Index Register

The preindexed indirect mode (see Figure 2-11) uses the contents of An as
an index to the pointer list structure at the displacement. Register Xn is the
index to the pointer, which contains the address of the data item.

SYNTAX: {[bd,An Xn])

POINTER LIST

bi ———— I,

An

l

I DATA ITEM
Xn

|

/ / / /

Figure 2-11. Preindexed Indirect Addressing

MOTOROLA MC68030 USER'S MANUAL 2-29

2-30

The postindexed indirect mode (see Figure 2-12) uses the contents of An as
an index to the pointer list at the displacement. Register Xn is used as an
index to the structure of data items located at the address specified by the

pointer. Figure 2-13 shows the preindexed indirect addressing with outer
displacement mode.

SYNTAX: ([bd.An].Xn)

POINTER LIST POST-INDEXED STRUCTURE
bd ————»{
An
Xn
POINTER DATA ITEM

/ / / /

Figure 2-12. Postindexed Indirect Addressing

SYNTAX: {[bd,An,Xn},od)

POINTER LIST STRUCTURE
bd ————— |
An
{ od
Xn
l Y
POINTER DATA ITEM

'/ / / /

Figure 2-13. Preindexed Indirect Addressing with Outer Displacement

MC68030 USER'S MANUAL MOTOROLA

The postindexed indirect mode with outer displacement (see Figure 2-14)
uses the contents of An as an index to the pointer list at the displacement.
Register Xn is used as an index to the structure of data structures at the
address in the pointer. The outer displacement (od) is the displacement of
the data item within the selected data structure.

SYNTAX: {[bd.An].Xn,od)

POST-INDEXED STRUCTURE
POINTER LIST WITH OUTER DISPLACEMENT

bd ——

POINTER DATA ITEM

/ / / /

Figure 2-14. Postindexed Indirect Addressing with'Outer Displacement

2.6.2 General Addressing Mode Summary

The addressing modes described in the previous section are derived from
specific combinations of options in the indexing mode or a selection of two
alternate addressing modes. For example, the addressing mode called reg-
ister indirect (Rn) assembles as the address register indirect if the register is
an address register. If Rn is a data register, the assembler uses the address
register indirect with index mode using the data register as the indirect reg-
ister and suppresses the address register by setting the base suppress bit in
the effective address specification. Assigning an address register as Rn pro-
vides higher performance than using a data register as Rn. Another case is
{bd,An), which selects an addressing mode depending on the size of the
displacement. If the displacement is 16 bits or less, the address register
indirect with displacement mode (d16,An) is used. When a 32-bit displace-
ment is required, the address register indirect with index (bd,An,Xn) is used
with the index register suppressed.

MOTOROLA MC68030 USER'S MANUAL 2-31

It is useful to examine the derived addressing modes available to a pro-
grammer (without regard to the MC68030 effective addressing mode actually
encoded) because the programmer need not be concerned about these de-
cisions. The assembler can choose the more efficient addressing mode to
encode.

In the list of derived addressing modes that follows, common programming
terms are used. The following definitions apply:

pointer — Long-word value in a register or in memory which rep-
resents an address.

base — A pointer combined with a displacement to represent
an address.
index — A constant or variable value added into an effective

address calculation. A constantindex is a displacement.
A variable index is always represented by a register
containing the value.

disp — Displacement, a constant index.

subscript — The use of any of the data or address registers as a
variable index subscript into arrays of items 1, 2, 4, or
8 bytes in size.

relative — An address calculated from the program counter con-
tents. The address is position independent and is in
program space. All other addresses but psaddr are in

data space.
addr — An absolute address.
psaddr — An absolute address in program space. All other ad-

dresses but PC relative are in data space.

preindexed — All modes from absolute address through program
counter relative.

2-32 MC68030 USER'S MANUAL MOTOROLA

postindexed — Any of the following modes:

addr — Absolute address in data space

psaddr,ZPC — Absolute address in program space

An — Register pointer

disp,An — Register pointer with constant dis-
placement

addr,An — Absolute address with single variable
name

disp,PC — Simple PC relative

The addressing modes defined in programming terms, which are derivations
of the addressing modes provided by the MC68030 architecture, are as fol-
lows:

Immediate Data — #data:
The data is a constant located in the instruction stream.

Register Direct — Rn:
The contents of a register contain the operand.

Scanning Modes:
(An)+
Address register pointer automatically incremented after use.
—(An)
Address register pointer automatically decremented before use.

Absolute Address:
(addr)
Absolute address in data space.

(psaddr,ZPC)
Absolute address in program space. Symbol ZPC suppresses the PC,
but retains PC relative mode to directly access the program space.

Register Pointer:
(Rn)
Register as a pointer.

(disp,Rn)
Register as a pointer with constant index (or base address).

MOTOROLA MC68030 USER'S MANUAL 2-33

Indexing:
(An,Rn)
Register pointer An with variable index Rn.
{disp,An,Rn)
Register pointer with constant and variable index (or a base address
with a variable index).

(addr,Rn)
Absolute address with variable index.

{addr,An,Rn)
Absolute address with two variable indexes.

Subscripting:
(An,Rn*scale)
Address register pointer subscript.
(disp,An,Rn*scale)
Address register pointer subscript with constant displacement (or base
address with subscript).

(addr, Rn*scale)
Absolute address with subscript.

(addr,An,Rn*scale)
Absolute address subscript with variable index.

Program Relative:
(disp,PC)
Simple PC relative.

{disp,PC,Rn)
PC relative with variable index.

(disp,PC,Rn*scale)
PC relative with subscript.

2-34 _ MC68030 USER’'S MANUAL MOTOROLA

Memory Pointer:
([preindexed])
Memory pointer directly to data operand.

([preindexed],disp) ,
Memory pointer as base with displacement to data operand.

([postindexed],Rn)
Memory pointer with variable index.

([postindexed],disp,Rn)
Memory pointer with constant and variable index.

([postindexed],Rn*scale)
Memory pointer subscripted.

([postindexed], disp, Rn*scale)
Memory pointer subscripted with constant index.

MOTOROLA MC68030 USER'S MANUAL 2-35

2.7 M68000 FAMILY ADDRESSING COMPATIBILITY

Programs can be easily transported from one member of the M68000 Family
to another in an upward compatible fashion. The user object code of each
early member of the family is upward compatible with newer members and
can be executed on the newer microprocessor without change. The address
extension word(s) are encoded with the information that allows the MC68020/
MC68030 to distinguish the new address extensions to the basic M68000
Family architecture. The address extension words for the early MC68000/
MC68008/MC68010 microprocessors and for the newer 32-bit MC68020/
MC68030 microprocessors are shown in Figure 2-15. Notice the encoding for
SCALE used by the MC68020/MC68030 is a compatible extension of the
M68000 architecture. A value of zero for SCALE is the same encoding for
both extension words; hence, software that uses this encoding is both up-
ward and downward compatible across all processors in the product line.
However, the other values of SCALE are not found in both extension formats;
thus, while software can be easily migrated in an upward compatible direc-
tion, only nonscaled addressing is supported in a downward fashion. If the
MC68000 were to execute an instruction that encoded a scaling factor, the
scaling factor would be ignored and not access the desired memory address.
The earlier microprocessors have no knowledge of the extension word for-
mats implemented by newer processors; while they do detect illegal instruc-
tions, they do not decode invalid encodings of the extension words as
exceptions.

2.8 OTHER DATA STRUCTURES

Stacks and queues are widely used data structures. The MC68030 implements
a system stack and also provides instructions that support the use of user
stacks and queues.

2.8.1 System Stack

2-36

Address register seven (A7) is used as the system stack pointer (SP). Any of
the three system stack registers is active at any one time. The M and S bits
of the status register determine which stack pointer is used. When S=0
indicating user mode (user privilege level), the user stack pointer (USP) is
the active system stack pointer, and the master and interrupt stack pointers
cannot be referenced. When S =1 indicating supervisor mode (at supervisor
privilege level) and M =1, the master stack pointer (MSP) is the active system
stack pointer. When S=1 and M =0, the interrupt stack pointer (ISP) is the
active system stack pointer. This mode is the MC68030 default mode after
reset and corresponds to the MC68000, MC68008, and MC68010 supervisor

MC68030 USER'S MANUAL MOTOROLA

MC68000/MC68008/MC68010 Address
Extension Word

5 14 2 un 1w 9 8 7 0
|0/A| REGISTER |W/L| 0 | 0 | 0 | DISPLACEMENT INTEGER |

D/A: 0 = Data Register Select

1 = Address Register Select
W/L: 0 = Word-Sized Operation

1 = Long-Word-Sized Operation

[}

MC68020/MC68030 Address
Extension Word

5 14 2 1109 8 7 0
[om | recisteR [wi | scae | o | DISPLACEMENT INTEGER

D/A: Data Register Select

0=
1= Address Register Select
WiL: 0 = Word-Sized Operation
1 = Long-Word-Sized Operation
SCALE: 00 = Scale Factor 1 (Compatible with MC68000)
01 = Scale Factor 2 (Extension to MC68000)
10 = Scale Factor 4 (Extension to MC68000)
11 = Scale Factor 8 (Extension to MC68000)

Figure 2-15. M68000 Family Address Extension Words

mode. The term supervisor stack pointer (SSP) refers to the master or inter-
rupt stack pointers, depending on the state of the M bit. When M=1, the
term SSP (or A7) refers to the MSP address register. When M=0, the term
SSP (or A7) refers to the ISP address register. The active system stack pointer
is implicitly referenced by all instructions that use the system stack. Each
system stack fills from high to low memory.

A subroutine call saves the program counter on the active system stack, and
the return restores it from the active system stack. During the processing of
traps and interrupts, both the program counter and the status register are
saved on the supervisor stack (either master or interrupt). Thus, the execution
of supervisor code is independent of user code and the condition of the user
stack; conversely, user programs use the user stack pointer independently
of supervisor stack requirements.

To keep data on the system stack aligned for maximum efficiency, the active

stack pointer is automatically decremented or incremented by two for all
byte-sized operands moved to or from the stack. In long-word-organized

MOTOROLA MC68030 USER'S MANUAL 2-37

memory, aligning the stack pointer on a long-word address significantly
increases the efficiency of stacking exception frames, subroutine calls and
returns, and other stacking operations.

2.8.2 User Program Stacks

The user can implement stacks with the address register indirect with post-
increment and predecrement addressing modes. With address register An
{n=0-6), the user can implement a stack that is filled either from high to low
memory or from low to high memory. Important considerations are:

® Usethe predecrement mode to decrement the register before its contents
are used as the pointer to the stack.

e Use the postincrement mode to increment the register after its contents
are used as the pointer to the stack.

® Maintain the stack pointer correctly when byte, word, and long-word
items are mixed in these stacks.
To implement stack growth from high to low memory, use:
—(An) to push data on the stack,
(An)+ to pull data from the stack.

For this type of stack, after either a push or a pull operation, register An
points to the top item on the stack. This is illustrated as:

LOW MEMORY
(FREE)
N An ——] TOP OF STACK
/ . /
(]
BOTTOM OF STACK
HIGH MEMORY

To implement stack growth from low to high memory, use:
{An) + to push data on the stack,
—(An) to pull data from the stack.

. 2-38 MC68030 USER'S MANUAL MOTOROLA

In this case, after either a push or pull operation, register An points to the
next available space on the stack. This is illustrated as:

LOW MEMORY
BOTTOM OF STACK
.

/ .
[
TOP OF STACK

A —— (FREE)
HIGH MEMORY

2.8.3 Queues

The user can implement queues with the address register indirect with post-
increment or predecrement addressing modes. Using a pair of address reg-
isters (two of AO-AB), the user can implement a queue which is filled either
from high to low memory or from low to high memory. Two registers are
used because queues are pushed from one end and pulled from the other.
One register, An, contains the “put” pointer; the other, Am, the ““get” pointer.

To implement growth of the queue from low to high memory, use:
(An)+ to put data into the queue,
(Am)+ to get data from the queue.

After a “put” operation, the “put’” address register points to the next available
space in the queue, and the unchanged ““get” address register points to the
next item to be removed from the queue. After a “‘get”” operation, the “‘get”
address register points to the next item to be removed from the queue, and
the unchanged “‘put’ address register points to the next available space in
the queue. This is illustrated as:

LOW MEMORY
LAST GET (FREE)
GET (Am)+ NEXT GET
S
/ :
[]
LAST PUT
PUT (An)+ ——] (FREE)
HIGH MEMORY

MOTOROLA MC68030 USER'S MANUAL 2-39

To implement the queue as a circular buffer, the relevant address register
should be checked and adjusted, if necessary, before performing the “put”
or "‘get” operation. The address register is adjusted by subtracting the buffer
length (in bytes) from the register.

To implement growth of the queue from high to low memory, use:
—(An) to put data into the queue,

—(Am) to get data from the queue.

After a “put” operation, the “put’ address register points to the last item
placed in the queue, and the unchanged ““get” address register points to the
last item removed from the queue. After a “‘get’” operation, the ““get’’ address
register points to the last item removed from the queue, and the unchanged
"put” address register points to the last item placed in the queue. This is
illustrated as:

LOW MEMORY
(FREE)
PUT -(An) ——>»1 LAST PUT
[
[
L]
NEXT GET
GET -(Am) ———> LAST GET (FREE)
HIGH MEMORY

To implement the queue as a circular buffer, the “get” or “put” operation
should be performed first, and then the relevant address register should be
checked and adjusted, if necessary. The address register is adjusted by adding
the buffer length (in bytes) to the register contents.

2-40 MC68030 USER’'S MANUAL MOTOROLA

SECTION 3
INSTRUCTION SET SUMMARY

This section briefly describes the MC68030 instruction set. Refer to the
MC68000PM/AD, MC68000 Programmer’s Reference Manual, for complete n
details on the MC68030 instruction set.

The following paragraphs include descriptions of the instruction format and

the operands used by instructions, followed by a summary of the instruction
~set. The integer condition codes and floating-point details are discussed.
- Programming examples for selected instructions are also presented.

3.1 INSTRUCTION FORMAT

All MC68030 instructions consist of at least one word; some have as many
as 11 words (see Figure 3-1). The first word of the instruction, called the
operation word, specifies the length of the instruction and the operation to
be performed. The remaining words, called extension words, further specify
the instruction and operands. These words may be floating-point command
words, conditional predicates, immediate operands, extensions to the effec-
tive address mode specified in the operation word, branch displacements,
bit number or bit field specifications, special register specifications, trap op-
erands, pack/unpack constants, or argument counts.

15 0

OPERATION WORD
(ONE WORD, SPECIFIES OPERATION AND MODES)

SPECIAL OPERAND SPECIFIERS
(IF ANY, ONE OR TWO WORDS)

IMMEDIATE OPERAND OR SOURCE EFFECTIVE ADDRESS EXTENSION
{IF ANY, ONE 7O SIX WORDS)

DESTINATION EFFECTIVE ADDRESS EXTENSION
{IF ANY, ONE TO SIX WORDS)

Figure 3-1. Instruction Word General Format

MOTOROLA MC68030 USER'S MANUAL 3-1

Besides the operation code, which specifies the function to be performed,
an instruction defines the location of every operand for the function. Instruc-
tions specify an operand location in one of three ways:

1. Register Specification — A register field of the instruction contains the
number of the register.

2. Effecti\)e Address — An effective address field of the instruction contains

n " address mode information.
3. Implicit Reference — The definition of an instruction implies the use of

specific registers.

The register field within an instruction specifies the register to be used. Other
fields within the instruction specify whether the register selected is an address
or data register and how the register is to be used. SECTION 1 INTRODUC-
TION contains register information.

Effective address information includes the registers, displacements, and ab-
solute addresses for the effective address mode. SECTION 2 DATA ORGANI-
ZATION AND ADDRESSING CAPABILITIES describes the effective address
modes in detail.

Certain instructions operate on specific registers. These instructions imply
" the required registers. :

3.2 INSTRUCTION SUMMARY

The instructions form a set of tools to perform the following operations:

Data Movement Bit Field Manipulation

integer Arithmetic Binary-Coded Decimal Arithmetic
Logical Program Control

Shift and Rotate System Control

Bit Manipulation . Multiprocessor Communications

Each instruction type is described in detail in the following paragraphs.

3-2 MC68030 USER'S MANUAL MOTOROLA

The following notations are used in this section. In the operand syntax state-
ments of the instruction definitions, the operand on the right is the destination
operand.

An=any address register, A7-A0
Dn=any data register, D7-D0
Rn=any address or data register :
CCR=condition code register (lower byte of status register)
cc=condition codes from CCR u
SR =status register
SP =active stack pointer
USP = user stack pointer
ISP =supervisor/interrupt stack pointer
MSP = supervisor/master stack pointer
SSP=supervisor (master or interrupt) stack pointer
DFC =destination function code register
SFC =source function code register
Rc=control register (VBR, SFC, DFC, CACR)
MRc=MMU control register (SRP, URP, TC, DTTO, DTT1, ITTO,
ITT1, MMUSR)
MMUSR = MMU status register
B, W, L=specifies a signed integer data type (twos complement)
of byte, word, or long word
S =single-precision real data format (32 bits)
D =double-precision real data format (64 bits)
X=extended-precision real data format (96 bits, 16 bits
unused)
P =packed BCD real data format (96 bits, 12 bytes)
FPm, FPn=any floating-point data register, FP7-FP0
PFcr=floating-point system control register (FPCR, FPSR, or
FPIAR) '
k=a twos-complement signed integer (—64 to +17) that
specifies the format of a number to be stored in the packed
BCD format
d=displacement; d16 is a 16-bit displacement
<ea> =effective address
list=list of registers, for example D3-D0
#<data>=immediate data; a literal integer
{offset:width} =bit field selection
label = assemble program label
{m]=Dbit m of an operand
[m:n]=bits m through n of operand

MOTOROLA MC68030 USER'S MANUAL 33

X=extend (X) bit in CCR
N=negative (N) bit in CCR
Z=Zero (Z) bit in CCR
V =overflow (V) bit in CCR
C=carry (C) bit in CCR
+ =arithmetic addition or postincrement indicator
— =arithmetic subtraction or predecrement indicator
X =arithmetic multiplication
+ =arithmetic division or conjunction symbol
~=invert; operand is logically complemented
A=logical AND
V=logical OR
®=logical exclusive OR
Dc = data register, D7-D0 used during compare
Du =data register, D7-D0 used during update
Dr, Dg = data registers, remainder or quotient of divide
Dh, DI=data registers, high- or low-order 32 bits of product
MSW =most significant word
LSW = |east significant word
MSB = most significant bit
FC =function code
{R/W}=read or write indicator
[An] = address extensions

3.2.1 Data Movement Instructions

34

The MOVE instructions with their associated addressing modes are the basic
means of transferring and storing addresses and data. MOVE instructions
transfer byte, word, and long-word operands from memory to memory, mem-
ory to register, register to memory, and register to register. Address move-
ment instructions (MOVE or MOVEA) transfer word and long-word operands
and ensure that only valid address manipulations are executed. In addition
to the general MOVE instructions, there are several special data movement
instructions: move multiple registers (MOVEM), move peripheral data
(MOVEP), move quick (MOVEQ), exchange registers (EXG), load effective
address {LEA), push effective address (PEA), link stack (LINK), and unlink
stack (UNLK).

MC68030 USER'S MANUAL MOTOROLA

Table 3-1 is a summary of the integer and floating-point data movement

operations.
Table 3-1. Data Movement Operations
Instruction Operand Syntax | Operand Size Operation
EXG Rn, Rn 32 Rn ¢# Rn
LEA <ea>,An 32 <ea> # An
LINK An,#<d> 16,32 Sp—4 # SP; An » (SP); SP % An, SP+D » SP
MOVE <ea>,<ea> 8,16,32 source # destination
MOVEA <ea>,An 16,32 9 32
MOVEM list,<ea> 16,32 listed registers » destination
<ea>,list 16,32 # 32 source # listed registers
MOVEP Dn, {d16,An) 16,32 Dn[31:24] » (An+d); Dn[23:16] » An+d+2);
Dn[15:8] » (An +d+4); Dn[7:0] # (An+d +6)
(d16,An),Dn (An-+d) » Dn[31:24]; (An+d+2) » Dn[23:16];
(An+d+4) » Dn[15:8]; (An+d +6) # Dn[7:0]
MOVEQ #<data>,Dn 8932 immediate data # destination
PEA <ea> 32 SP—-4 » SP; <ea> » (SP)
UNLK An 32 An » SP; (SP) » An; SP+4 » SP

3.2.2 Integer Arithmetic Instructions

The integer arithmetic operations include the four basic operations of add
(ADD), subtract {SUB), multiply (MUL), and divide (DIV) as well as arithmetic
compare (CMP, CMPM, CMP2), clear (CLR), and negate (NEG). The instruction
set includes ADD, CMP, and SUB instructions for both address and data
operations with all operand sizes valid for data operations. Address operands
consist of 16 or 32 bits. The clear and negate instructions apply to all sizes
of data operands.

Signed and unsigned MUL and DIV instructions include:
o Word multiply to produce a long-word product
® Long-word multiply to produce and long-word or quad-word product
o Division of a long word divided by a word divisor {word quotient and
word remainder)
o Division of a long word or quad word dividend by a long-word divisor
(long-word quotient and long-word remainder)

A set of extended instructions provides multiprecision and mixed-size arith-
metic. These instructions are add extended (ADDX), subtract extended (SUBX),
sign extended (EXT), and negate binary with extend (NEGX). Refer to Table
3-2 for a summary of the integer arithmetic operations.

MOTOROLA MIC68030 USER’S MANUAL 3-5

3.23

3-6

Table 3-2. Integer Arithmetic Operations
Instruction Operand Syntax | Operand Size Operation
ADD Dn,(ea) 8, 16, 32 source + destination » destination
{ea),Dn 8, 16, 32
ADDA {ea),An 16, 32
ADDI #(data),(ea) 8, 16, 32 immediate data+ destination # destination
ADDQ #(data),(ea) 8,16, 32
ADDX Dn,Dn 8, 16, 32 source +destination + X # destination
—(An), - (An) 8, 16, 32
CLR (ea) 8, 16, 32 0 # destination
CMmP (ea),Dn 8, 16, 32 destination — source
CMPA {ea),An 16, 32
CMPI #(data),(ea) 8, 16, 32 destination — immediate data
CMPM (An)+,(An) + 8,16, 32 destination — source
CwmP2 {ea),Rn 8, 16, 32 lower bound { = Rn (= upper bound
DIVS/DIVU {ea),Dn 32/16 % 16:16 | destination/source #» destination (signed or unsigned)
({ea),Dr:Dg 64/32 ¢ 32:32
{ea),Dq 32/329 32
DIVSL/DIVUL (ea),Dr:Dg 32/32 ¢ 32:32
EXT Dn” 8916 sign extended destination # destination
Dn 16 % 32
EXTB Dn 832
MULS/MULU {ea),Dn 16x16 » 32 |source x destination # destination {signed or unsigned)
(ea),DI 32x32932
(ea),Dh:DI 32x32 64
NEG (ea) 8, 16, 32 0 — destination # destination
NEGX (ea) 8, 16, 32 0 - destination — X § destination
SuB (ea),Dn 8, 16, 32 destination = source # destination
Dn,(ea) 8, 16,32
SUBA (ea),An 16, 32
SUBI #(data),(ea) 8, 16, 32 destination — immediate data # destination
SUBQ #(data)(ea) 8, 16, 32
SUBX Dn,Dn 8, 16, 32 destination — source — X § destination
—(An),—(An) 8, 16, 32

Logical Instructions

The logical operation instructions (AND, OR, EOR, and NOT) perform logical
operations with all sizes of integer data operands. A similar set of immediate
instructions (ANDI, ORI, and EORI) provide these logical operations with all
sizes of immediate data. The TST instruction compares the operand with zero
arithmetically, placing the result in the condition code register. Table 3-3
summarizes the logical operations.

MC68030 USER'S MANUAL MOTOROLA

Table 3-3. Logical Operations

Instruction Operand Syntax | Operand Size Operation
AND (ea),Dn 8, 16, 32 source A destination # destination
Dn,(ea) 8, 16, 32
ANDI #<data>,<ea> 8, 16,32 immediate data A destination # destination
EOR Dn,<data>,<ea> 8, 16, 32 source @ destination » destination
EORI #(data),(ea) 8, 16, 32 immediate data @ destination # destination
NOT (ea) 8, 16, 32 ~ destination # destination
OR (ea),Dn 8, 16, 32 source V destination # destination
Dn,(ea) 8, 16, 32 .
ORI #(data),(ea) 8, 16, 32 immediate data V destination $ destination
TST (ea) 8, 16, 32 source — 0 to set condition codes

3.2.4 Shift and Rotate Instructions

The arithmetic shift instructions (ASR and ASL) and logical shift instructions
(LSR and LSL) provide shift operations in both directions. The ROR, ROL,
ROXR, and ROXL instructions perform rotate (circular shift) operations, with
and without the extend bit. All shift and rotate operations can be performed
on either registers or memory.

Register shift and rotate operations shift all operand sizes. The shift count
may be specified in the instruction operation word (to shift from 1-8 places)
or in a register (modulo 64 shift count). ~

Memory shift and rotate operations shift word-length operands one bit po-
sition only. The SWAP instruction exchanges the 16-bit halves of a register.
Performance of shift/rotate instructions is enhanced so that use of the ROR
and ROL instructions with a shift count of eight allows fast byte swapping.
Table 3-4 is a summary of the shift and rotate operations.

MOTOROLA MC68030 USER'S MANUAL 3-7

3.2.5 Bit Manipulation Instructions

Table 3-4. Shift and Rotate Operations

Instruction | Operand Syntax | Operand Size Operation
ASL Dn,Dn 8, 16, 32
#(data),Dn 8, 16, 32 l] l i‘
<
(ea) 16 rxm 0
ASR Dn,Dn 8, 16, 32
#(data),Dn 8, 16, 32 |j —_— }—-)i XC
(ea) .16) J
LSL Dn,Dn 8, 16, 32)
#(data),Dn 8,16, 32 I xc |< l -— I< 0
(ea) .16 I
LSR Dn,Dn 8, 16, 32 :
#(data),Dn 8, 16, 32
(ea) 16 0—-" _— }——){ XC l
ROL Dn,Dn 8, 16, 32)
#(data),Dn 8, 16, 32 .
(ea) 16 I C <
ROR Dn,Dn 8, 16, 32
#(data),Dn " 8, 16, 32 -
(ea) 16 —> }J*I C |
ROXL Dn,Dn 8, 16, 32
#(data),Dn 8, 16, 32 -
(ea) 16 | ¢ |<—l-| <~ | x |<_,
ROXR Dn,Dn 8, 16, 32
#(data),Dn 8, 16, 32
(ea) 16 L>l X o ———> }—J—ﬂ c |
SWAP Dn 32 [y
| [v [wow |
S

Bit manipulation operations are accomplished using the following instruc-
tions: bit test (BTST}, bit test and set (BSET), bit test and clear (BCLR), and
bit test and change (BCHG). All bit manipulation operations can be performed
on either registers or memory. The bit number is specified as immediate
data or in a data register. Register operands are 32 bits long, and memory
operands are 8 bits long. In Table 3-5, the summary of the bit manipulation

operations, Z refers to bit 2, the zero bit of the status register.

MC68030 USER'S MANUAL

MOTOROLA

Table 3-5. Bit Manipulation Operations

Instruction Operand Syntax | Operand Size Operation

BCHG Dn.(ea) 8, 32 ~ ((bit number) of destination) » Z # bit of destination
#(data),(ea) 8,32

BCLR Dn,(ea) 8, 32 ~ ((bit number) of destination) » Z;
#(data),(ea) 8, 32 0 » bit of destination

BSET Dn.(ea) 8, 32 ~ ((bit number) of destination) § Z;
#(data),(ea) 8, 32 1 » bit of destination

BTST Dn,(ea) 8, 32 ~ {(bit number) of destination) » 2
#(data),(ea) 8, 32

3.2.6 Bit Field Instructions

The MC68030 supports variable-length bit field operations on fields of up to
32 bits. The bit field insert (BFINS) instruction inserts a value into a bit field.
Bit field extract unsigned (BFEXTU) and bit field extract signed (BFEXTS)
extract a value from the field. Bit field find first one (BFFFO) finds the first
bit that is set in a bit field. Also included are instructions that are analogous
to the bit manipulation operations; bit field test (BFTST), bit field test and
set (BFSET), bit field test and clear (BFCLR), and bit field test and change
(BFCHG). Table 3-6 is a summary of the bit field operations.

Table 3-6. Bit Field Operations

Instruction Operand Syntax Operand Size Operation
BFCHG (ea) {offset:width} 1-32 ~ Field » Field
BFCLR (ea) {offset:width} 1-32 0's § Field
BFEXTS (ea) {offset:width},Dn 1-32 Field » Dn; Sign Extended
BFEXTU (ea) {offset:width},Dn 1-32 Field » Dn; Zero Extended
BFFFQO {ea) {offset:width},Dn 1-32 Scan for first bit set in field; offset # Dn
BFINS Dn (ea) {offset:width} 1-32 Dn » Field
BFSET (ea) {offset:width} 1-32 1's » Field
BFTST (ea) {offset:width} 1-32 Field MSB # N; ~ (OR of all bits in field) » Z

NOTE: All bit field instructions set the N and Z bits as shown for BFTST before performing the specified operation.

MOTOROLA

MC68030 USER'S MANUAL 3-9

3.2.7 Binary-Coded Decimal Instructions

3-10

Five instructions support operations on binary-coded decimal (BCD) num-
bers. The arithmetic operations on packed BCD numbers are add decimal
with extend (ABCD), subtract decimal with extend (SBCD}, and negate dec-
imal with extend (NBCD). PACK and UNPACK instructions aid in the con-
version of byte encoded numeric data, such as ASCIl or EBCDIC strings, to
BCD data and vice versa. Table 3-7 is a summary of the BCD operations.

Table 3-7. BCD Operations

Instruction Operand Syntax | Operand Size Operation
ABCD Dn,Dn 8 sourceqg +destination1g + X # destination
—(An), - {An) 8
NBCD {ea) 8 0 — destination1g — X # destination
PACK —(An), - (An) 1698 unpackaged source + immediate data » packed
#(data) destination
Dn,Dn,#(data) 1698
SBCD Dn,Dn 8 destinationqg — sourcejg — X # destination
—(An),—(An) 8 .
UNPK —(An),—(An) 8916 packed source # unpacked source
#(data) unpacked source +immediate data »
Dn,Dn,#(data) 8916 unpacked destination

MC68030 USER'S MANUAL

MOTOROLA

3.2.8 Program Control Instructions

A set of subroutine call and return instructions and conditional and uncon-
ditional branch instructions perform program control operations. The no
operation instruction (NOP) may be used to force synchronization of the
internal pipelines. Table 3-8 summarizes these instructions.

Table 3-8. Program Control Operations

Instruction [Operand Syntax | Operand Size l Operation
Integer and Floating-Point Conditional

Bce <label> 8,16,32 if condition true, then PC+d » PC
DBcc Dn,<label> 16 if condition false, then Dn~1 # Dn

if Dn+ —1, then PC+d » PC
Scc <ea> 8 if condition true, then 1’s § destination;

else 0’s # destination

Unconditional
BRA <label> 8,16,32 PC+d# PC
BSR <label> 8,16,32 SP—4» SP; PC # (SP); PC+d #» PC
JMP <ea> none destination » PC
JSR <ea> none SP—4 » SP; PC # (SP); destination » PC
NOP none none PC+2 9 PC
Returns

RTD #<d> 16 (SP)# PC; SP+4+d » SP
RTR none none (SP)# CCR; SP+2 9 SP; (SP) » PC; SP+4 » SP
RTS none none (SP) » PC; SP+4 » SP

Letters cc in the integer instruction mnemonics Bee, DBce, and Scc specify testing one of the following conditions:
CC — Carry clear
LS — Lower or same
CS — Carry set
LT —Less than

EQ — Equal
MI — Minus
F —Never true¥®

NE — Not equal
*Not applicable to the Bcc or cpBec instructions.

MOTOROLA

GE — Greater or equal
PL —Plus

GT — Greater than

T — Always true¥*

HI — Higher

VC — Overflow clear
LE — Less or equal
VS — Overfiow set

MC68030 USER'S MANUAL

3.2.9 System Control Instructions

Privileged instructions, trapping instructions, and instructions that use or
modify the condition code register (CCR) provide system control operations.
Table 3-9 summarizes these instructions. The TRAPcc instruction uses the
same conditional tests as the corresponding program control instructions.
All of these instructions cause the processor to flush the instruction pipe.

Table 3-9. System Control Operations

Instruction l Operand Syntax I Operand Sizﬂ Operation
Privileged
ANDI #<data>,SR 16 immediate data A SR # SR
EOR! #<data>,SR 16 immediate data ® SR § SR
MOVE <ea>,SR 16 source » SR
SR,<ea> 16 SR # destination
MOVE USP,An 32 USP » An
An,USP 32 An » USP
MOVEC Re,.Rn 32 Rc # Rn
Rn,Rc 32 Rn # Re
MOVES Rn,<ea> 8,16,32 Rn # destination using DFC
<ea>,Rn source using SFC # Rn
ORI #<data>,SR 16 immediate data V SR # SR
RESET none none assert RESET line
RTE none none (SP) # SR; SP+2 » SP; (SP) # PC; SP+4 » SP;
Restore stack according to format
STOP #<data> 16 immediate data # SR; STOP
Trap Generating
BKPT #<data> none run breakpoint cycle, then trap as illegal instruction
CHK <ea>,Dn 16,32 if Dn<0 or Dn>(ea), then CHK exception
CHK2 <ea>,Rn 8,16,32 if Rn<lower bound or Rn>upper bound, the CHK
. exception
ILLEGAL none none SSP —2 » SSP; Vector Offset # {(SSP);

SSP —4 » SSP; PC # (SSP);

SSP —2 9 SSP; SR # (SSP);

lllegal Instruction Vector Address # PC

TRAP #<data> none SSP -2 » SSP; Format and Vector Offset # (SSP)
SSP —4 9 SSP; PC # (SSP); SSP —2 » SSP;

SR # (SSP); Vector Address # PC

TRAPcc none none if cc true, then TRAP exception
#<data> 16,32

TRAPV none none if V then take overflow TRAP exception

Condition Code Register

ANDI #<data>,CCR 8 immediate data A CCR # CCR

EORI " #<data>,CCR 8 immediate data © CCR » CCR

MOVE <ea>,CCR 16 source » CCR
CCR,<ea> 16 CCR # destination

ORI #<data>,CCR 8 immediate data V CCR » CCR

3-12 MC68030 USER'S MANUAL MOTOROLA

3.2.10 Memory Management Unit Instructions

The PFLUSH instructions flush the address translation caches (ATCs) and
can optionally select only nonglobal entries for flushing. PTEST performs a
search of the address translation tables, storing results in the MMU status
register and loading the entry into the ATC. Table 3-10 summarizes these
instructions.

Table 3-10. MMU Instructions

Instruction Operand Syntax | Operand Size ' Operation
PFLUSHA none none Invalidate all ATC entries
PFLUSHA.N none none Invalidate all nonglobal ATC entries
PFLUSH {An) none Invalidate ATC entries at effective address
PFLUSH.N {An) none Invalidate nonglobal ATC entries at effective address
PTEST (An) none Information about logical address # MMU status register

3.2.11 Multiprocessor Instructions

The TAS, CAS, and CAS2 instructions coordinate the operations of processors
in multiprocessing systems. These instructions use read-modify-write bus
cycles to ensure uninterrupted updating of memory. Coprocessor instructions
control the coprocessor operations. Table 3-11 lists these instructions.

Table 3-11. Multiprocessor Operations (Read-Modify-Write)

Instruction l Operand Syntax l Operand Size | Operation
Read-Modify-Write
CAS Dc,Du,<ea> 8,16,32 destination — Dc # CC; if Z then Du # destination
else destination # Dc

CAS2 Dc1:Dc2, Du1:Du2, 8,16,32 dual operand CAS

(Rn):(Rn)
TAS <ea> 8 destination — 0; set condition codes; 1 # destination [7]

Coprocessor
cpBce (label) 16, 32 if cpcc true then pc + d » PC
cpDBce (label),Dn 16 if cpcc false then Dn — 18 Dn
if Dn # — 1,then PC + d » PC

cpGEN User Defined User Defined |operand # coprocessor
cp RESTORE (ea) none restore coprocessor state from (ea)
cpSAVE (ea) none save coprocessor state at (ea)
cpSce (ea) 8 if cpcc true, then 1's » destination; else 0's # destination
cpTRAPcc none none if cpce true then TRAPcc exception

#(data) 16, 32

MOTOROLA MC68030 USER'S MANUAL 3-13

3.3 INTEGER CONDITION CODES

3-14

The CCR portion of the SR contains five bits which indicate the results of
many integer instructions. Program and system control instructions use cer- -
tain combinations of these bits to control program and system flow.

The first four bits represent a condition resulting from a processor operation.
The X bit is an operand for multiprecision computations; when it is used, it
is set to the value of the C bit. The carry bit and the multiprecision extend
bit are separate in the M68000 Family to simplify programming techniques
that use them (refer to Table 3-8 as an example).

The condition codes were developed to meet two criteria:
® Consistency — across instructions, uses, and instances
® Meaningful Results — no change unless it provides useful information

Consistency across instructions means that all instructions that are special
cases of more general instructions affect the condition codes in the same
way. Consistency across instances means that all instances of an instruction
affect the condition codes in the same way. Consistency across uses means
that conditional instructions test the condition codes similarly and provide
the same results, regardless of whether the condition codes are set by a
compare, test, or move instruction.

In the instruction set definitions, the CCR is shown as follows:

X N Z v C
(I N N

where:
X (extend)
Set to the value of the C bit for arithmetic operations. Otherwise not
affected or set to a specified resulit.

N (negative)
Set if the most significant bit of the result is set. Cleared otherwise.

Z (zero) v
Set if the result equals zero. Cleared otherwise.

V (overflow)
Set if arithmetic overflow occurs. This implies that the result cannot be
represented in the operand size. Cleared otherwise.

C (carry)
Set if a carry out of the most significant bit of the operand occurs for an
addition. Also set if a borrow occurs in a subtraction. Cleared otherwise.

MC68030 USER'S MANUAL MOTOROLA

3.3.1 Condition Code Computation

Most operations take a source operand and a destination operand, compute,
and store the result in the destination location. Single-operand operations
take a destination operand, compute, and store the result in the destination
location. Table 3-12 lists each instruction and how it affects the condition
code bits. ‘

Table 3-12. Condition Code Computations {Sheet 1 of 2)

Operations X N Z \ C Special Definition

ABCD * U ? U C=Decimal Carry __
Z=ZARmA...ARQ

ADD, ADDI, ADDQ x| *] 2] ?|v=5maADmARMmVSmADmARM
C=SmADmVRBmMADmMVSmARmM

ADDX * |+t 2?2 ? [v=SmADmABRmMVSmADmARMm
C =SmADmVRmADmYVSmARmM
Z=ZARmA...ARO

AND, ANDI, EOR, EORI, | — | * * 0 0

MOVEQ, MOVE, OR, ORI,

CLR, EXT, NOT, TAS, TST

CHK — | * U | u U

CHK2, CMP2 —1vu ? u ? |Z=(R=LB)V(R = UB)
C={LB< =UB)A(R<LB)VI(R>UB)

V (UB < LB) A (R > UB) A (R <LB)

SUB, SUBI, SUBQ * |l |2 2?2 [v=SmADmMmARmMVSmADmARm
C=5mADmVRmADmMYVYSmARm

SuBX * [[2 2] ? |v=SmADNnARMVSmADmARmM
C=SmADmMVREmMADmMY SmARm
Z=ZARmA...ARO

CAS, CAS2,CMP,CMPl, | — [* | * | 2 | ? |Vv=SmADmARmYSmADmARm

CMPM C =SmADmVRBmADmMVSmARmM

DIVS, DUVI e * ? V = Division Overflow /

MULS, MULU — * * ? 0 |V = Multiplication Overflow

SBCD, NBCD * U ? u C = Decimal Borrow__
Z=ZARmA...ARo

NEG * * * ? ? |V =DmARm
C = Dm VRm

NEGX * * ? ? ? |V =DmARm
C = DmVRm .
Z=ZARmA...ARO

MOTOROLA MC68030 USER'S MANUAL 3-15

Table 3-12. Condition Code Computations (Sheet 2 of 2)

Operations X N 4 " C Special Definition

BTST, BCHG,BSET,BCLR| — | — | ? | — | — |z=Dn

BFTST, BFCHG, BFSET, o ? ? 0 0 |N=Dm _

BFCLR |Z=DmADM-1A...ADO

BFEXTS, BFEXTU,BFFFO[— | 2 [2 | 0. | 0 |N=85m _
Z=SmASm-1TA...AS0

BFINS — ? ? 0 0 |N=Dm .
Z=DmADM-1\...ADO

ASL * * * ? ? |[V=DmA(Dm=-1V...VDm-r)VDm A

(DM-1V...+Dm-r)

C=Dm-r+1

ASL (R=0) — * * 0 0

LSL, ROXL * * * 0 ? =Dm-r+1

LSR (r=0) — * * 0 0

ROXL (r=0) — * * 0 ?7 |C=X

ROL — * * 0 ? |C=Dm-r+1

ROL (r=0) . * * 0 0

ASR, LSR, ROXR * * * 0 ? |C=Dr-1

ASR, LSR {r=0} _— * * 0 0

ROXR (r=0) — * * 0 ? |C=X

ROR — * * 0 ? |C=Dr-1

ROR (r=0} — * * 0 0

— = Not Affected Rm = Result Operand — Most Significant Bit
U = Undefined, Result Meaningless R = Register Tested
? = Other — See Special Definition n = Bit Number
* = General Case r = Shift Count
X=C LB = Lower Bound
N = Rm UB = Upper Bound

Z=RmA...AR0
~Sm = Source Operand — Most Significant Bit
Dm = Destination Operand — Most Significant Bit

MC68030 USER'S MANUAL

A = Boolean AND
__V = Boolean OR
Rm = NOT Rm

MOTOROLA

3.3.2 Conditional Tests

Table 3-13 lists the condition names, encodings, and tests for the conditional

branch and set instructions. The test associated with each condition is a

logical formula using the current states of the condition codes. If this formula

evaluates to one, the condition is true. If the formula evaluates to zero, the
condition is false. For example, the T condition is always true, and the EQ
condition is true only if the Z bit condition code is currently true.

MOTOROLA

Table 3-13. Conditional Tests

Mnemonic Condition Encoding Test
T* True 0000 1
F* False 0001 0
HI High 0010 (%4
LS Low or Same 0011 C+Z
CC(HS) Carry Clear 0100 ¢
CS(LO) Carry Set 0101 [
NE Not Equal 0110 z
EQ Equal 0111 4
VC Overflow Clear 1000 v
VS Overflow Set 1001 \%
PL Plus 1010 N
Mi Minus 1011 N
GE Greater or Equal 1100 NeV + NV
LT Less Than 1101 NV + NV
GT Greater Than 1110 NeVeZ + NVZ
LE Less or Equal 1 Z+NV+NV
* = Boolean AND
+ = Boolean OR
N = Boolean NOT N

*Not available for the Bcc instruction.

MC68030 USER'S MANUAL

3-17

3.4 INSTRUCTION SET SUMMARY

Table 3-14 provides a alphabetized listing of the MC68030 instruction set
listed by opcode, operation, and syntax.

Table 3-14 use notational conventions for the operands, the subfields and
qualifiers, and the operations performed by the instructions. In the syntax
descriptions, the left operand is the source operand, and the right operand
is the destination operand. The following list contains the notations used in
Table 3-14.

Notation for operands:
PC—Program counter
SR—Status register
V—Overflow condition code
Immediate Data—Immediate data from the instruction
Source—Source contents
Destination—Destination contents
Vector—Location of exception vector
+inf—Positive infinity
—inf—Negative infinity
<fmt>—Operand data format: byte (B}, word (W), long
(L), single (S), double (D), extended (X), or packed
(P).
FPm—One of eight floating-point data registers (always
specifies the source register)
FPn—One of eight floating-point data registers (always
specifies the detination register)

Notation for subfields and qualifiers:
<bit> of <operand>—Selects a single bit of the operand
<ea>{offset:width}—Selects a bit field
{<operand>)}—The contents of the referenced location
<operand>10—The operand is binary coded decimal, operations
are performed in decimal
(<address register>)}—The register indirect operator
—(<address register>)—Indicates that the operand register points to the
memory
(<address register>)+—Location of the instruction operand — the op-
tional mode qualifiers are —, +, (d), and (d,ix)
#xxx or #<data>—Immediate data that follows the instruction
word(s)

3-18 MC68030 USER'S MANUAL MOTOROLA

Notations for operations that have two operands, written <operand> <op>
<operand>, where <op> is one of the following:
#»—The source operand is moved to the destination
operand
4—The two operands are exchanged
+—The operands are added
——The destination operand is subtracted from the
source operand
X —The operands are multiplied
+—The source operand is divided by the destination
operand
<—Relational test, true if source operand is less than
destination operand
>—Relational test, true if source operand is greater
than destination operand
V—Logical OR
®—Logical exclusive OR
A—Logical AND
shifted by, rotated by—The source operand is shifted or rotated by the
number of positions specified by the second
operand

Notation for single-operand operations:
~<operand>—The operand is logically complemented
<operand>sign-extended—The operand is sigh extended; all bits of the upper
portion are made equal to the high-order bit of
the lower portion
<operand>tested—The operand is compared to zero, and the con-
dition codes are set appropriately

Notation for other operations:
TRAP—Equivalent to Format/Offset Word #» (SSP); SSP -2
» SSP; PC » (SSP); SSP—4 » SSP; SR » (SSP);
SSP—2 » SSP; (vector) » PC
STOP—Enter the stopped state, waiting for interrupts
If <condition> then—The condition is tested. If true, the operations
<operations> else after “then” are performed. If the condition is
<operations> false and the optional “else’” clause is present,
the operations after “‘else” are performed. If the
condition is false and else is omitted, the instruc-
tion performs no operation. Refer to the Bcc in-
struction description as an example.

MOTOROLA MC68030 USER’S MANUAL 3-19

Table 3-14. Instruction Set Summary (Sheet 1 of b)

Opcode Operation Syntax
ABCD Sourceg + Destination1g + X # Destination ABCD Dy,Dx
ABCD - (Ay),—(Ax)
ADD Source + Destination » Destination ADD (ea),Dn
ADD Dn,(ea)
ADDA Source + Destination $ Destination ADDA (ea),An
ADDI Immediate Data + Destination # Destination ADDI #(data),(ea)
ADDQ Immediate Data + Destination # Destination ADDQ #(data),(ea)
ADDX Source + Destination + X # Destination ADDX Dy,Dx
. ADDX -{Ay), - (Ax)
AND Source\Destination » Destination AND (ea),Dn
AND Dn,(ea)
ANDI Immediate DataADestination # Destination ANDI #(data),(ea)
ANDI SourceACCR #CCR ANDI #(data),CCR
to CCR
ANDI If supervisor state ANDI #(data),SR
to SR the SourceASR # SR
. else TRAP
ASL,ASR | Destination Shifted by (count) » Destination ASd Dx,Dy
ASd #(data),Dy
ASd (ea)
Bce If {condition true) then PC+d » PC Bec (label)
BCHG ~{(number) of Destination) % Z; BCHG Dn,(ea)
~{{number) of Destination) # (bit number) of Destination BCHG #(data),{ea)
BCLR ~((bit number) of Destination) » Z; BCLR Dn,(ea)
0 » (bit number) of Destination BCLR #({data),(ea)
. BFCHG ~{(bit field) of Destination) # (bit field) of Destination BFCHG (ea){offset:width}
BFCLR 0 # (bit field) of Destination BFCLR (ea){offset:width}
BFEXTS [(bit field) of Source $ Dn BFEXTS (ea){offset:width},Dn
BFEXTU | (bit offset) of Source » Dn BFEXTU (ea){offset:width},Dn
BFFFO (bit offset) of Source Bit Scan » Dn BFFFO (ea){offset:width},Dn
BFINS Dn » (bit field) of Destination BFINS Dnea){offset:width}
BFSET 1s # {bit field) of Destination BFSET (ea){offset:width}
BFTST (bit field) of Destination BFTST (ea)offset:width}
BKPT Run breakpoint acknowledge cycle; BKPT #(data)
TRAP as illegal instruction ’
BRA PC+d#PC BRA (label)
BSET ~((bit number) of Destination) » Z; BSET Dn,{ea)
1 # (bit number) of Destination BSET #(data),(ea)
BSR SP—-4# SP; PC# (SP); PC+d » PC BSR (label)
BTST — {(bit number) of Destination) » Z; BTST Dn,{ea)
BTST #(data),(ea)
3-20 MC68030 USER’'S MANUAL MOTOROLA

Table 3-14. Instruction Set Summary (Sheet 2 of 5)

Opcode Operation Syntax
CAS CAS Destination — Compare Operand # cc; CAS Dc,Du,(ea)
CAS2 if Z, Update Operand # Destination CAS2 Dc1:Dc2,Du1:Du2,{Rn1):(Rn2)
else Destination » Compare Operand
CAS2 Destination 1 — Compare 1 # cc;
if Z, Destination 2 — Compare # cc;
if Z, Update 1 # Destination 1; Update 2 » Destination 2
else Destination 1 # Compare 1; Destination 2 » Compare 2
CHK If Dn < 0 or Dn > Source then TRAP CHK (ea),Dn
CHK2 If Rn < lower bound or CHK2 (ea),Rn
Rn > upper bound
then TRAP
CLR 0 # Destination CLR (ea)
CMP Destination — Source » cc CMP (ea),Dn
CMPA Destination — Source CMPA (ea),An
CMPI Destination — Immediate Data CMPI #(data).(ea)
CMPM Destination — Source #» cc CMPM (Ay) +,(Ax) +
CMP2 Compare Rn < lower-bound or CMP2 (ea),Rn
Rn > upper-bound
and Set Condition Codes
cpBee If cpee true then scanPC+d # PC cpBec (label)
cpDBcc If cpce false then (Dn — 1 # Dn; cpDBcc Dn (label)
IfDn # — 1 then scanPC+d # PC)
cpGEN Pass Command Word to Coprocessor cpGEN (parameters as defined by co-
processor)
cpRESTORE | If supervisor state cpRESTORE (ea)
then Restore Internal State of Coprocessor
else TRAP
cpSAVE | If supervisor state cpSAVE (ea)
then Save Internal State of Coprocessor
else TRAP
cpScc If cpce true then 1s # Destination cpScc (ea)
else Os » Destination
cpTRAPcc | If cpcc true then TRAP cpTRAPcc
cpTRAPcc #(data)
DBcc If condition false then (Dn—1 % Dn; DBcc Dn (label)
If Dn# —1 then PC+d ¢ PC)
DIVS Destination/Source ¢ Destination DIVS.W (ea),Dn 32/16 ¢ 16r:16q
DIVSL DIVS.L (ea),Dq 32/32 9 32q
DIVS.L (ea),Dr:Dg 64/32 » 32r:32q
DIVSL.L (ea),Dr:Dq 32/32 # 32r:32q
DIVU Destination/Source # Destination DIVU.W (ea),Dn 32/16 $ 16r:16q
DIVUL DIVU.L (ea),Dq 32/32 » 32q
DIVU.L (ea),Dr:Dg 64/32 » 32r:32q
DIVUL.L {ea),Dr:Dq 32/32 # 32r:32q
EOR Source @ Destination $ Destination EOR Dn,(ea)
EORI Immediate Data ® Destination # Destination EORI #(data),(ea)
MOTOROLA MC68030 USER'S MANUAL 3-21

Table 3-14. Instruction Set Summary (Sheet 3 of 5)

Opcode Operation Syntax
EORI Source & CCR » CCR EORI #(data),CCR
to CCR
EORI If supervisor state EORI #(data),SR
to SR the Source @ SR » SR
else TRAP
EXG Rx 4% Ry EXG Dx,Dy
EXG Ax,Ay
EXG Dx,Ay
EXG Ay.Dx
EXT Destination Sign-Extended # Destination EXT.W Dn extend byte to word
EXTB EXT.L L Dn extend word to long word
EXTB.L Dn extend byte to long word
ILLEGAL |SSP—2 » SSP; Vector Offset » (SSP); ILLEGAL
SSP—4 9 SSP; PC » (SSP);
SSp—2# SSP; SR # (SSP);
Illegal Instruction Vector Address » PC
JMP Destination Address # PC JMP (ea)
JSR SP -4 # SP; PC » (SP) JSR (ea)
Destination Address # PC
LEA (ea) » An LEA (ea),An
LINK SP—4» SP; An » (SP) LINK An,#(displacement)
SP % An, SP+d » SP
LSL,LSR {Destination Shifted by (count) # Destination LSd5 Dx,Dy
LSd5 #(data),Dy
LSd5 (ea)
MOVE Source » Destination MOVE (ea),(ea)
MOVEA | Source » Destination MOVEA (ea),An
MOVE CCR » Destination MOVE CCR,{ea)
from CCR
MOVE Source # CCR MOVE (ea),CCR
to CCR
MOVE If supervisor state MOVE SR,(ea)
from SR then SR ¢ Destination
else TRAP
MOVE If supervisor state MOVE (ea),SR
to SR then Source » SR
else TRAP
MOVE If supervisor state MOVE USP,An
usp then USP » An or An » USP MOVE An,USP
else TRAP
MOVEC | If supervisor state MOVEC Rc,Rn
then Rc # Rn or Rn # Re MOVEC Rn,Rc
else TRAP
MOVEM | Registers § Destination MOVEM register list,(ea)
Source # Registers MOVEM (ea),register list
MOVEP | Source # Destination MOVEP Dx,(d,Ay)
MOVEP (d,Ay),Dx
MOVEQ [Immediate Data # Destination MOVEQ #(data),Dn
3-22 MC68030 USER’'S MANUAL MOTOROLA

Table 3-14. Instruction Set Summary (Sheet 4 of 5)

Opcode Operation Syntax
MOVES | If supervisor state MOVES Rn,(ea)
then Rn # Destination {DFC] or Source [SFC] » Rn MOVES (ea),Rn
else TRAP
MULS Source x Destination » Destination MULS.W (ea),Dn 16x16 $ 32
MULS.L (ea),D! 32x32 932
MULS.L (ea),Dh:DI 32x32 § 64
MULU Source x Destination # Destination MULU.W (ea),Dn 16x 16 » 32
MULU.L (ea),DI 32x32 932
MULU.L {ea),Dh:DI 32x 32 § 64
NBCD 0 - (Destination1g) — X # Destination NBCD (ea)
NEG 0 - (Destination) » Destination NEG (ea)
NEGX 0 - (Destination) - X # Destination NEGX (ea)
NOP None NOP
NOT ~Destination # Destination NOT (ea)
OR Source V Destination » Destination OR (ea),Dn
OR Dn,{ea)
ORI Immediate Data V Destination » Destination ORI #(data),(ea)
ORI Source V CCR » CCR ORI #(data),CCR
to CCR
ORI If supervisor state ORI #(data),SR
to SR then Source V SR » SR
else TRAP
PACK Source (Unpacked BCD) + adjustment # Destintion (Packed BCD) | PACK —(Ax), - (Ay),#(adjustment)
PACK Dx,Dy,#(adjustment)
PEA Sp—4 # SP; (ea) » (SP) PEA (ea)
PFLUSH | If supervisor state PFLUSH (An)
then invalidate instruction and data ATC entries for destination | PFLUSHN (An)
address PFLUSHA
else TRAP PFLUSHAN
PLOAD [If supervisor state PLOADR (function code),(ea)
then entry » ATC PLOADW (function code),(ea)
else TRAP
PMOVE If supervisor state PMOVE MRn,(ea)
then (Source) MRn or MRn # {Destination) PMOVE (ea),MRn
PMOVEFD (ea),MRn
PTEST If supervisor state PTESTR (An)
then logical address status # MMUSR; entry # ATC PTESTW (An)
else TRAP
RESET If supervisor state RESET
then Assert RSTO Line
else TRAP
ROL,ROR | Destination Rotated by (count) # Destination ROd® Rx,Dy
ROd® #(data),Dy
ROdS (ea)
ROXL,ROXR | Destination Rotated with X by (count) » Destination ROXd5 Dx,Dy
ROXd5 #(data),Dy
ROXdS (ea)
MOTOROLA MC68030 USER’'S MANUAL 3-23

Table 3-14. Instruction Set Summary (Sheet 5 of 5)

Opcode Operation Syntax
RTD (SP)# PC; SP+4+d #» SP RTD #(displacement)
RTE If supervisor state RTE

the (SP) # SR; SP+2 » SP; (SP) ¢ PC;
SP+4 ¢ SP;
restore state and deallocate stack according to {SP)
else TRAP
RTR [{SP)# CCR; SP+2 # SP; RTR
(SP)# PC; SP+4» SP
~ RTS (SP) # PC; SP+4 » SP RTS
SBCD Destination1g - Source1g — X # Destination SBCD Dx,Dy
SBCD -(Ax), —(Ay)
Scc If Condition True Scc (ea)
then 1s # Destination
else Os » Destination
STOP If supervisor state STOP #(data)
then Immediate Data # SR; STOP
else TRAP
SUB Destination — Source # Destination SUB (ea),Dn
. SUB Dn,(ea)
SUBA Destination — Source # Destination SUBA (ea),An
SuBI Destination — Immediate Data » Destination SUBI #(data),(ea)
SuUBQ Destination — Immediate Data # Destination SUBQ #(data),(ea)
SUBX Destination — Source — X # Destination SUBX Dx,Dy
SUBX —{Ax), ~{Ay)

SWAP Register [31:16] 4» Register [15:0] SWAP Dn

TAS Destination Tested # Condition Codes; 1 # bit 7 of Destination TAS (ea)
TRAP SSP—2 ¢ SSP; Format/Offset # (SSP); TRAP #(vector)
SSP—~4 # SSP; PC » (SSP); SSP—2 » SSP;
SR # (SSP); Vector Address # PC
TRAPcc If cc then TRAP TRAPcc
TRAPcc.W #(data)
TRAPcc.L #(data)
TRAPV If V then TRAP TRAPV
TST Destination Tested # Condition Codes TST (ea)
UNLK An # SP; (SP) # An; SP+4 ¢ SP UNLK An
UNPK Source {Packed BCD) + adjustment # Destination {Unpacked BCD) JUNPACK ~ (Ax), - (Ay),#(adjustment)
UNPACK Dx,Dy,#(adjustment)
NOTES:
1. Specifies either the instruction (IC), data (DC), or IC/DC caches.

2. Where r is rounding precision, S or D.

3. Alist of any combination of the eight floating-point data registers, with individual register names separated by a slash
{/); and/or contiguous blocks of registers specified by the first and last register names separated by a dash (-).

4. A list of any combination of the three floating-point system control registers (FPCR, FPSR, and FPIAR) with individual
register names separated by a slash (/).

5. where d is direction, L or R.

3-24

MC68030 USER'S MANUAL

MOTOROLA

3.5 INSTRUCTION EXAMPLES

The following paragraphs provide examples of how to use selected instruc-
tions.

3.5.1 Using the CAS and CAS2 Instructions

The CAS instruction compares the value in a memory location with the value
in a data register, and copies a second data register into the memory location
if the compared values are equal. This provides a means of updating system
counters, history information, and globally shared pointers. The instruction
uses an indivisible read-modify-write cycle; after CAS reads the memory
location, no other instruction can change that location before CAS has written
the new value. This provides security in single-processor systems, in multi-
tasking environments, and in multiprocessor environments. In a single-
processor system, the operation is protected from instructions of an interrupt
routine. In a multitasking environment, no other task can interfere with writing
the new value of a system variable. In a multiprocessor environment, the
other processors must wait until the CAS instruction completes before ac-
cessing a global pointer.

The following code fragment shows a routine to maintain a count, in location
SYS_CNTR, of the executions of an operation that may be performed by any
process or processor in a system. The routine obtains the current value of
the count in register DO and stores the new count value in register D1. The
CAS instruction copies the new count into SYS_CNTR if it is valid. However,
if another user has incremented the counter between the time the count was
stored and the read-modify-write cycle of the CAS instruction, the write por-
tion of the cycle copies the new count in SYS_CNTR into DO, and the routine
branches to repeat the test. The following code sequence guarantees that
SYS-CNTR is correctly incremented.

MOVEW SYS_CNTR,DO get the old value of the counter

INC.LOOP MOVE.W DO,D1 make a copy of it.
ADDQ.W #1,D1 and increment it
CAS.W D0,D1,SYS_CNTR if counter value is still the same, update it
BNE INC_LOOP if not, try again

MOTOROLA MC68030 USER'S MANUAL 3-25

3-26

The CAS and CAS2 instructions together allow safe operations in the ma-
nipulation of system linked lists. Controlling a single location, HEAD in the
example, manages a last-in-first-out linked list {see Figure 3-2). If the list is
empty, HEAD contains the NULL pointer (0); otherwise, HEAD contains the
address of the element most recently added to the list. The code fragment
shown in Figure 3-2 illustrates the code for inserting an element. The MOVE
instructions load the address in location HEAD into DO and into the NEXT
pointer in the element being inserted, and the address of the new element
into D1. The CAS instruction stores the address of the inserted element into
location HEAD if the address in HEAD remains unaltered. If HEAD contains
a new address, the instruction loads the new address into DO and branches
to the second MOVE instruction to try again.

The CAS2 instruction is similar to the CAS instruction except that it performs
two comparisons and updates two variables when the results of the com-
parisons are equal. If the results of both comparisons are equal, CAS2 copies
new values into the destination addresses. If the result of either comparison
is not equal, the instruction copies the values in the destination addresses
into the compare operands.

SINSERT ALLOCATE NEW ENTRY, ADDRESS IN A1
. MOVE.L HEAD,DO MOVE HEAD POINTER VALUE T0 DO
SiLoop MOVE.L DO,(NEXT A1) ESTABLISH FORWARD LINK IN NEW ENTRY
MOVE.L A1LD1 MOVE NEW ENTRY POINTER VALUE TO D1
CAS.L DO,D1,HEAD IF WE STILL PDINT TO TOP OF STACK. UPDATE THE HEAD POINTER
BNE siLoop IF NOT, TRY AGAIN

BEFORE INSERTING AN ELEMENT:
ENTRY ENTRY yad ENTRY
oo
+ NEXT + NEXT / + NEXT
NEW ? HEAD

AFTER INSERTING AN ELEMENT:

ENTRY ENTRY ENTRY

HEAD + NEXT + NEXT + NEXT

NEW I_— I_

Figure 3-2. Linked List Insertion

MC68030 USER'S MANUAL MOTOROLA

The next code (see Figure 3-3) fragment shows the use of a CAS2 instruction
to delete an element from a linked list. The first LEA instruction loads the
effective address of HEAD into AO. The MOVE instruction loads the address
in pointer HEAD into DO. The TST instruction checks for an empty list, and
the BEQ instruction branches to a routine at label SDEMPTY if the list is
empty. Otherwise, a second LEA instruction loads the address of the NEXT
pointer in the newest element on the list into A1, and the following MOVE
instruction loads the pointer contents into D1. The CAS2 instruction compares
the address of the newest structure to the value in HEAD and the address in
D1 to the pointer in the address in A1. If no element has been inserted or
deleted by another routine while this routine has been executing, the results
of these comparisons are equal, and the CAS2 instruction stores the new
value into location HEAD. If an element has been inserted or deleted, the
CAS2 instruction loads the new address in location HEAD into DO, and the
BNE instruction branches to the TST instruction to try again.

SDELETE

LEA HEAD.AD LOAD ADDRESS OF HEAD POINTER INTO AO
MOVE.L (A0).DO MOVE VALUE OF HEAD POINTER INTO DO
soLoop TSTL Do CHECK FOR NULL HEAD POINTER
BEQ SDEMPTY IF EMPTY, NOTHING TO DELETE
LEA (NEXT.D0).A1 LOAD ADDRESS OF FORWARD LINK INTO A1
MOVE.L (A1).D1 PUT FORWARD LINK VALUE IN 01
CAS2.L D0:01.01:D1.{AD):(A1) IF STILL POINT TO ENTRY T0 BE DELETED, THEN UPDATE HEAD AND FORWARD POINTERS
BNE soLoop IF NOT, TRY AGAIN
SDEMPTY SUCCESSFUL DELETION, ADDRESS OF DELETED ENTRY IN DO (MAY BE NULL)

BEFORE DELETING AN ELEMENT:
ENTRY ENTRY 7 ENTRY
LX)
+ NEXT + NEXT / +NEXT
HEAD | |

AFTER DELETING AN ELEMENT:

ENTRY ENTRY ENTRY

+ NEXT +NEXT L/ +NEXT
HEAD l

Figure 3-3. Linked List Deletion

MOTOROLA MC68030 USER'S MANUAL 3-27

3-28

The CAS2 instruction can also be used to correctly maintain a first-in-first-
out doubly linked list. A doubly linked list needs two controlled locations,
LIST-PUT and LIST-GET, which contain pointers to the last element inserted
in the list and the next to be removed, respectively. If the list is empty, both
pointers are NULL (0).

The code fragment shown in Figure 3-4 illustrates the insertion of an element
in a doubly linked list. The first two instructions load the effective addresses
of LIST-PUT and LIST-GET into registers A0 and A1, respectively. The next
instruction moves the address of the new element into register D2. Another
MOVE instruction moves the address in LIST-PUT into register. DO. At label
DILOOP, a TST instruction tests the value in DO, and the BEQ instruction
branches to the MOVE instruction when D0 is equal to zero. Assuming the
list is empty, this MOVE instruction is executed next; it moves the zero in
DO into the NEXT and LAST pointers of the new element., Then the CAS2
instruction moves the address of the new element into both LIST-PUT and
LIST-GET, assuming that both of these pointers still contain zero. If not, the
BNE instruction branches to the TST instruction at label DILOOP to try again.
This time, the BEQ instruction does not branch, and the following MOVE
instruction moves the address in DO to the NEXT pointer of the new element.
The CLR instruction clears. register D1 to zero, and the MOVE instruction
moves the zero into the LAST pointer of the new element. The LEA instruction
loads the address of the LAST pointer of the most recently inserted element
into register A1. Assuming the LIST-PUT pointer and the pointer in A1 have
not been changed, the CAS2 instruction stores the address of the new element
into these pointers.

The code fragment to delete an element from a doubly linked list is similar
(see Figure 3-5). The first two instructions load the effective addresses of
pointers LIST-PUT and LIST_GET into registers A0 and A1, respectively. The
MOVE instruction at label DDLOOP moves the LIST-GET pointer into register
D1. The BEQ instruction that follows branches out of the routine when the
pointer is zero. The MOVE instruction moves the LAST pointer of the element
to be deleted into register D2. Assuming this is not the last element in the
list, the Z condition code is not set, and the branch to label DDEMPTY does
not occur. The LEA instruction loads the address of the NEXT pointer of the
element at the address in D2 into register A2. The next instruction, a CLR
instruction, clears register DO to zero. The CAS2 instruction compares the
address in D1 to the LIST-GET pointer and to the address in register A2. If
the pointers have not been updated, the CAS2 instruction loads the address
in D2 into the LIST-GET pointer and zero into the address in register A2.

MC68030 USER'S MANUAL MOTOROLA

DINSERT
LEA
LEA
MOVE.L
MOVE.L
DILOOP TSTL
BEQ
MOVE.L
CLRL
MOVE.L
LEA
CAS2.L
BNE
BRA
MOVE.L
MOVE.L
CAS2.L
BNE

DIEMPTY

DIDONE

UST_PUTAD
LIST_GET A1

A2,02

{A0),00

00

DIEMPTY

DO,(NEXT A2)

D1

D1,(LAST A2)

(LAST DO).A1
D0:D1,02:02(A0)(A1)
DILOOP

DIDONE

DO,(NEXT A2)
D0.(LASTA2)
D0:00,02:02,{A0}:(A1)
DILOOP

BEFORE INSERTING NEW ENTRY:

+ LAST

ENTRY
+ NEXT

1]

NEW ENTRY —/

AFTER INSERTING NEW ENTRY:

+LAST

ENTRY

+ NEXT

—

K\ LIST_PUT

(ALLOCATE NEW LIST ENTRY. LOAD ADDRESS INTO A2)
LOAD ADDRESS OF HEAD POINTER INTO AD

LOAD ADDRESS OF TAIL POINTER INTO A1

LOAD NEW ENTRY POINTER INTO D2

LOAD POINTER TO HEAD ENTRY INTO DO

IS HEAD POINTER NULL (0 ENTRIES IN LIST)?

IF SO, WE NEED ONLY TO ESTABLISH POINTERS

PUT HEAD POINTER INTO FORWARD POINTER OF NEW ENTRY
PUT NULL POINTER VALUE IN D1

PUT NULL POINTER IN BACKWARD POINTER OF NEW ENTRY
LOAD BACKWARD POINTER OF 0LO HEAD ENTRY INTO A1
IF WE STILL POINT TO OLD HEAD ENTRY, UPDATE POINTERS
IF NOT, TRY AGAIN

PUT NULL POINTER IN FORWARD POINTER OF NEW ENTRY

PUT NULL POINTER IN BACKWARD POINTER OF NEW ENTRY

IF WE STILL HAVE NO ENTRIES, SET BOTH POINTERS TO THIS ENTRY
IF NOT TRY AGAIN

SUCCESSFUL LIST ENTRY INSERTION

ENTRY ENTRY

+ LAST

L]

+LAST + NEXT + NEXT

=

LIST_PUT -/‘ LIST_GET -/‘

ENTRY ENTRY

+LAST + NEXT + LAST

|| [1

+ NEXT

Figure 3-4. Doubly Linked List Insertion

\ LIST_GET

When the list contains only one element, the routine branches to the CAS2
instruction at label DDEMPTY after moving a zero pointer value into D2. This
instruction checks the addresses in LIST-PUT and LIST-GET to verify that
no other routine has inserted another element or deleted the last element.
-Then the instruction moves zero into both pointers, and the list is empty.

MOTOROLA

MC68030 USER'S MANUAL

3-29

DDELETE

0oLooP

BRA
CAS2.L
BNE

DDEMPTY

DDDONE

BEFORE DELETING ENTRY:

LIST_PUT AD
LIST_GET A1

(A1)D1

DDDONE
(LAST.D1).02
DDEMPTY

(NEXT D2)A2

0o
D1:01.02:00.(A1):(A2)
DDLOOP

DDDONE
D1:01.02:02.(A1):(A0)
DDLOOP .

+LAST

ENTRY
+ NEXT

(=

LIST_PUT /‘

AFTER DELETING ENTRY:

+LAST

ENTRY

+ NEXT

=

k UST_PUT

GET ADDRESS OF HEAD POINTER IN AD

GET ADDRESS OF TAIL POINTER IN A1

MOVE TAIL POINTER INTO D1

IF NO LIST, QUIT ¢
PUT BACKWARD POINTER IN 02

IF ONLY ONE ELEMENT, UPDATE POINTERS

PUT ADDRESS OF FORWARD POINTER IN A2

PUT NULL POINTER VALUE IN DO

IF BOTH POINTERS STILL POINT TO THIS ENTRY, UPDATE THEM

IF NOT. TRY AGAIN '

IF STILL FIRST ENTRY, SET HEAD AND TAIL POINTERS TG NULL
IF NOT TRY AGAIN
SUCCESSFUL ENTRY DELETION, ADDRESS OF DELETED ENTRY IN D1 (MAY BE NULL)

ENTRY ENTRY

+1AST + NEXT + LAST

| | | 1
UIST_GET /‘

+ NEXT

ENTRY ENTRY

+LAST +NEXT +LAST

| |
\ LIST_GET

+ NEXT

‘\ DELETED ENTRY

Figure 3-5.'Doubly Linked List Deletion

3.5.2 Nested Subroutine Calls

3-30

MC68030 USER'S MANUAL

The LINK instruction pushes an address onto the stack, saves the stack ad-
dress at which the address is stored, and reserves an area of the stack. Using
this instruction in a series of subroutine calls results in a linked list of stack
frames. ' :

The UNLK instruction removes a stack frame from the end of the list by
loading an address into the stack pointer and pulling the value at that address
from the stack. When the operand of the instruction is the address of the link
address at the bottom of a stack frame, the effect is to remove the stack
frame from the stack and from the linked list.

MOTOROLA

3.5.3 Bit Field Operations

One data type provided by the MC68030 is the bit field, consisting of as many
as 32 consecutive bits. A bit field is defined by an offset from an effective
address and a width value. The offset is a value in the range of —231 through
2311 from the most significant bit (bit 7) at the effective address. The width
is a positive number, 1-32. The most significant bit of a bit field is bit 0; the
bits number in a direction opposite to the bits of an integer.

The instruction set includes eight instructions that have bit field operands.
The insert bit field (BFINS) instruction inserts a bit field stored in a register
into a bit field. The extract bit field signed (BFEXTS) instruction loads a bit
field into the least significant bits of a register and extends the sign to the
left, filling the register. The extract bit field unsigned (BFEXTU) also loads a
bit field, but zero fills the unused portion of the destination register.

The set bit field (BFSET) instruction sets all the bits of a field to ones. The
clear bit field (BFCLR) instruction clears a field. The change bit field (BFCHG)
instruction complements all the bits in a bit field. These three instructions
all test the previous value of the bit field, setting thé condition codes ac-
cordingly. The test bit field (BFTST) instruction tests the value in the field,
setting the condition codes appropriately without altering the bit field. The
find first one in bit field (BFFFO) instruction scans a bit field from bit 0 to the
right until it finds a bit set to one and loads the bit offset of the first set bit
into the specified data register. If no bits in the field are set, the field offset
and the field width is loaded into the register.

An important application of bit field instructions is the manipulation of the
exponent field in a floating-point number. In the IEEE standard format, the
most significant bit is the sign bit of the mantissa. The exponent value begins
at the next most significant bit position; the exponent field does not begin
on a byte boundary. The extract bit field (BFEXTU) instruction and the BFTST
instruction are the most useful for this application, but other bit field instruc-
tions can also be used.

Programming of input and output operations to peripherals requires testing,
setting, and inserting of bit fields in the control registers of the peripherals,
which is another application for bit field instructions. However, control reg-
ister locations are not memory locations; therefore, it is not always possible
to insert or extract bit fields of a register without affecting other fields within
the register.

MOTOROLA MC68030 USER'S MANUAL 3-31

Another widely used application for bit field instructions is bit-mapped graph-
ics. Because byte boundaries are ignored in these areas of memory, the field
definitions used with bit field instructions are very helpful.

3.5.4 Pipeline Synchronization with the NOP Instruction

Although the no operation (NOP) instruction performs no visible operation,
it serves an important purpose. It forces synchronization of the integer unit
pipeline by waiting for all pending bus cycles to complete. All previous integer
instructions and floating-point external operand accesses complete execution
before the NOP begins. The NOP instruction does not synchronize the FPU
pipeline; floating-point instructions with floating-point register operand des-
tinations can be executing when the NOP begins.

3-32 MC68030 USER'S MANUAL MOTOROLA

SECTION 4
PROCESSING STATES

This section describes the processing states of the MC68030. It describes the
functions of the bits in the supervisor portion of the status register and the
actions taken by the processor in response to exception conditions.

Unless the processor has halted, it is always in either the normal or the
exception processing state. Whenever the processor is executing instructions
or fetching instructions or operands, it is in the normal processing state. The
processor is also in the normal processing state while it is storing instruction
results or communicating with a coprocessor.

NOTE

Exception processing refers specifically to the transition from normal
processing of a program to normal processing of system routines,
interrupt routines, and other exception handlers. Exception pro-
cessing includes all stacking operations, the fetch of the exception
vector, and filling of the instruction pipe caused by an exception. It
has completed when execution of the first instruction of the excep-
tion handler routine begins.

The processor enters the exception processing state when an interrupt is
acknowledged, when an instruction is traced or results in a trap, or when
some other exceptional condition arises. Execution of certain instructions or
unusual conditions occurring during the execution of any instructions can
cause exceptions. External conditions, such as interrupts, bus errors, and
some coprocessor responses, also cause exceptions. Exception processing
provides an efficient transfer of control to handlers and routines that process
the exceptions. :

A catastrophic system failure occurs whenever the processor receives a bus
error or generates an address error while in the exception processing state.
This type of failure halts the processor. For example, if during the exception
processing of one bus error another bus error occurs, the MC68030 has not
completed the transition to normal processing and has not completed saving
the internal state of the machine, so the processor assumes that the system
is not operational and halts. Only an external reset can restart a halted pro-

MOTOROLA MC68030 USER'S MANUAL 4-1

cessor. (When the processor executes a STOP instruction, it is in a special
type of normal processing state, one without bus cycles. It is stopped, not
halted.)

4.1 PRIVILEGE LEVELS

The processor operates at one of two levels of privilege: the user level or
the supervisor level. The supervisor level has higher privileges than the user
level. Not all processor or coprocessor instructions are permitted to execute
in the lower privileged user level, but all are available at the supervisor level.
This allows a separation of supervisor and user so the supervisor can protect
system resources from uncontrolled access. The processor uses the privilege
level indicated by the S bit in the status register to select either the user or
supervisor privilege level and either the user stack pointer or:a supervisor
stack pointer for stack operations. The processor identifies a bus access
(supervisor or user mode) via the function codes so that differentiation be-

tween supervisor and user can be maintained. The memory management

unit uses the indication of privilege level to control and translate memory
accesses to protect supervisor code, data, and resources from access by user
programs.

In many systems, the majority of programs execute at the user level. User
programs can access only their own code and data areas and can be restricted
from accessing other information. The operating system typically executes
at the supervisor privilege level. It has access to all resources, performs the
overhead tasks for the user level programs, and coordinates their activities.

4.1.1 Supervisor Privilege Level

The supervisor level is the higher privilege level. The privilege level is de-
termined by the S bit of the status register; if the S bit is set, the supervisor
privilege level applies, and all instructions are executable. The bus cycles for
instructions executed at the supervisor level are normally classified as su-
pervisor references, and the values of the function codes on FCO-FC2 refer
to supervisor address spaces.

In a multitasking operating system, it is more efficient to have a supervisor
stack space associated with each user task and a separate stack space for
interrupt associated tasks. The MC68030 provides two supervisor stacks,
master and interrupt; the M bit of the status register selects which of the
two is active. When the M bit is set to one, supervisor stack pointer references
(either implicit or by specifying address register A7) access the master stack

MC68030 USER'S MANUAL MOTOROLA

pointer (MSP). The operating system sets the MSP for each task to point to
a task-related area of supervisor data space. This separates task-related su-
pervisor activity from asynchronous, I/0-related supervisor tasks that may
be only coincidental to the currently executing task. The master stack (MSP)
can separately maintain task control information for each currently executing
user task, and the software updates the MSP when a task switch is performed,
providing an efficient means for transferring task-related stack items. The
other supervisor stack (ISP) can be used for interrupt control information and
workspace area as interrupt handling routines require.

When the M bit is clear, the MC68030 is in the interrupt mode of the supervisor
privilege level, and operation is the same as in the MC68000, MC68008, and
MC68010 supervisor mode. {The processor is in this mode after a reset op-
eration.) All supervisor stack pointer references access the interrupt stack
pointer {ISP) in this mode.

The value of the M bit in the status register does not affect execution of
privileged instructions; both master and interrupt modes are at the supervisor
privilege level. Instructions that affect the M bit are MOVE to SR, ANDI to
SR, EORI to SR, ORI to SR, and RTE. Also, the processor automatically saves
the M-bit value and clears it in the SR as part of the exceptlon processing
for interrupts.

All exception processing is performed at the supervisor privilege level. All
bus cycles generated during exception processing are supervisor references,
and all stack accesses use the active supervisor stack pointer.

4.1.2 User Privilege Level

The user level is the lower privilege level. The privilege level is determined
by the S bit of the status register; if the S bit is clear, the processor executes
instructions at the user privilege level.

Most instructions execute at either privilege level, but some instructions that
have important system effects are privileged and can only be executed at
the supervisor level. For instance, user programs are not allowed to execute
the STOP instruction or the RESET instruction. To prevent a user program
from entering the supervisor privilege level, except in a controlled manner,
instructions that can alter the S bit in the status register are privileged. The
TRAP #n instruction provides controlled access to operating system services
for user programs.

MOTOROLA : MC68030 USER’S MANUAL 4-3

The bus cycles for an instruction executed at the user privilege level are
classified as user references, and the values of the function codes on FCO-FC2
specify user address spaces. The memory management unit of the processor,
when it is enabled, uses the value of the function codes to distinguish be-
tween user and supervisor activity and to control access to protected portions
of the address space. While the processor is at the user level, references to
the system stack pointer implicitly, or to address register seven {A7) explicitly,
refer to the user stack pointer (USP).

4.1.3 Changing Privilege Level

4-4

To change from the user to the supervisor privilege level, one of the con-
ditions that causes the processor to perform exception processing must oc-
cur. This causes a change from the user level to the supervisor level and can
cause a change from the master mode to the interrupt mode. Exception
processing saves the current values of the S and M bits of the status register
(along with the rest of the status register) on the active supervisor stack, and
then sets the S bit, forcing the processor into the supervisor privilege level.
When the exception being processed is an interrupt and the M bit is set, the
M bit is cleared, putting the processor into the interrupt mode. Execution of
instructions continues at the supervisor level to process the exception con-
dition. : :

To return to the user privilege level, a system routine must execute one of
the following instructions: MOVE to SR, ANDI to SR, EORI to SR, ORI to SR,
or RTE. The MOVE, ANDI, EORI, and ORI to SR and RTE instructions execute
atthe supervisor privilege level and can modify the S bit of the status register.
After these instructions execute, the instruction pipeline is flushed and is
refilled from the appropriate address space. This is indicated externally by
the assertion of the REFILL signal.

The RTE instruction returns to the program that was executing when the
exception occurred. It restores the exception stack frame saved on the su-
pervisor stack. If the frame on top of the stack was generated by an interrupt,
trap, or instruction exception, the RTE instruction restores the status register
and program counter to the values saved on the supervisor stack. The pro-
cessor then continues execution at the restored program counter address
and at the privilege level determined by the S bit of the restored status
register. If the frame on top of the stack was generated by a bus fault (bus
error or address error exception), the RTE instruction restores the entire saved
processor state from the stack.

MC68030 USER'S MANUAL MOTOROLA

4.2 ADDRESS SPACE TYPES

The processor specifies a target address space for every bus cycle with the
function code signals according to the type of access required. In addition
to distinguishing between supervisor/user and program/data, the processor
can identify special processor cycles, such as the interrupt acknowledge cycle,
and the memory management unit can control accesses and translate ad-
dresses appropriately. Table 4-1 lists the types of accesses defined for the
MC68030 and the corresponding values of function codes FCO-FC2.

Table 4-1. Address Space Encodings n
Fc2 | Fc1 | Fco

Address Space
0 0 0 (Undefined, Reserved)*
0 0 1 User Data Space
0 1 0 User Program Space
0 1 1 (Undefined, Reserved)*
1 0 0 (Undefined, Reserved)*
1 0 1 Supervisor Data Space
1 1 0 Supervisor Program Space
1 1 1 CPU Space

*Address space 3 is reserved for user definition, while 0 and 4
are reserved for future use by Motorola.

The memory locations of user program and data accesses are not predefined.
Neither are the locations of supervisor data space. During reset, the first two

~long words beginning at memory location zero in the supervisor program
space are used for processor initialization. No other memory locations are
explicitly defined by the MC68030.

A function code of $7 ([FC2:FCO] = 111) selects the CPU address space. This
is a special address space that does not contain instructions or operands but
is reserved for special processor functions. The processor uses accesses in
this space to communicate with external devices for special purposes. For
example, all M68000 processors use the CPU space for interrupt acknowledge
cycles. The MC68020 and MC68030 also generate CPU space accesses for
breakpoint acknowledge and coprocessor operations.

Supervisor programs can use the MOVES instruction to access all address
spaces, including the user spaces and the CPU address space. Although the
MOVES instruction can be used to generate CPU space cycles, this may
interfere with proper system operation. Thus, the use of MOVES to access
the CPU space should be done with caution.

MOTOROLA MC68030 USER'S MANUAL 4-5

4.3 EXCEPTION PROCESSING

An exception is defined as a special condition that pre-empts normal pro-
cessing. Both internal and external conditions cause exceptions. External
conditions that cause exceptions are interrupts from external devices, bus
errors, coprocessor detected errors, and reset. Instructions, address errors,

‘tracing, and breakpoints are internal conditions that cause exceptions. The
" TRAP, TRAPcc, TRAPV, cpTRAPcc, CHK, CHK2, RTE, and DIV instructions can

all generate exceptions as part of their normal execution. In addition, illegal
instructions, privilege violations, and coprocessor protocol violations cause
exceptions.

Exception processing, which is the transition from the normal processing of
a program to the processing required for the exception condition, involves
the exception vector table and an exception stack frame. The following par-
agraphs describe the vector table and a generalized exception stack frame.
Exception processing is discussed in detail in SECTION 8 EXCEPTION PRO-
CESSING. Coprocessor detected exceptions are discussed in detail in SEC-
TION 10 COPROCESSOR INTERFACE DESCRIPTION.

4.3.1 Exception Vectors

4-6

The vector base register (VBR) contains the base address of the 1024-byte
exception vector table, which consists of 256 exception vectors. Exception
vectors contain the memory addresses of routines that begin execution at
the completion of exception processing. These routines perform a series of
operations appropriate for the corresponding exceptions. Because the ex-
ception vectors contain memory addresses, each consists of one long word,
except for the reset vector. The reset vector consists of two long words: the
address used to initialize the interrupt stack pointer and the address used to
initialize the program counter.

The address of an exception vector is derived from an 8-bit vector number
and the VBR. The vector numbers for some exceptions are obtained from an
external device; others are supplied automatically by the processor. The
processor multiplies the vector number by four to calculate the vector offset,
which it adds to the VBR. The sum is the memory address of the vector. All
exception vectors are located in supervisor data space, except the reset vec-
tor, which is located in supervisor program space. Only the initial reset vector
is fixed in the processor's memory map; once initialization is complete, there
are no fixed assignments. Since the VBR provides the base address of the
vector table, the vector table can be located anywhere in memory; it can

MC68030 USER'S MANUAL MOTOROLA

even be dynamically relocated for each task that is executed by an operating
system. Details of exception processing are provided in SECTION 8 EXCEP-
TION PROCESSING, and Table 8-1 lists the exception vector assignments.

4.3.2 Exception Stack Frame

Exception processing saves the most volatile portion of the current processor
context on the top of the supervisor stack. This context is organized in a
format called the exception stack frame. This information always includes a
copy of the status register, the program counter, the vector offset of the
vector, and the frame format field. The frame format field identifies the type
of stack frame. The RTE instruction uses the value in the format field to
properly restore the information stored in the stack frame and to deallocate
the stack space. The general form of the exception stack frame is illustrated
in Figure 4-1. Refer to SECTION 8 EXCEPTION PROCESSING for a complete
list of exception stack frames.

15 12 0

SP ——>1 STATUS REGISTER

PROGRAM COUNTER

FORMAT VECTOR OFFSET

ADDITIONAL PROCESSOR STATE INFORMATION
(2, 6, 12, OR 42 WORDS, IF NEEDED)

Figure 4-1. General Exception Stack Frame

MOTOROLA MC68030 USER'S MANUAL 4-7

SECTION 5
SIGNAL DESCRIPTION

This section contains brief descriptions of the input and output signals in
their functional groups, as shown in Figure 5-1. Each signal is explained in
a brief paragraph with reference to other sections that contain more detail
about the signal and the related operations.

‘ PG _
FUNCTION CODES FLO-FC2 Sl
iPLI
l——————
P2 INTERRUPT
t———— e
iPEND CONTROL
ADDRESS BUS AD-A31 >
AVEC
DATA BUS 00-D31 - T
BG | BUS ARBITRATION
B BGACK CONTROL
§120 -]
TRANSFER SIZE siz1 —
- RESET —
7 RALT BUS EXCEPTION
— PUELL I
- -BERR CONTROL
TS MC68030 -
R/W
RMC < STERM | SYNCHRONOUS
ASYNCHRONOUS _| i | BUSCONTROL
BUS CONTROL 35
L T ——— REFILL _ T
DBEN e >
DSACKO p— > EMULATOR
—_— —
TSACKT 05 SUPPORT
MMUDIS
L e MUs
— N _
e —— CLK
TIouT IavE—
— _ Vee
CACHE CONTROL ~—{ CBREQ -
— GND
| ceack | -

Figure 5-1. Functional Signal Groups

MOTOROLA MC68030 USER'S MANUAL 5-1

NOTE

In this section and in the remainder of the manual, assertion and
negation are used to specify forcing a signal to a particular state. In
particular, assertion and assert refer to a signal that is active or true;
negation and negate indicate a signal that is inactive or false. These
terms are used independently of the voltage level (high or low) that

they represent.

5.1 SIGNAL INDEX

The input and output signals for the MC68030 are listed in Table 5-1. Both
the names and mnemonics are shown along with brief signal descriptions.
For more detail on each signal, refer to the paragraph in this section named
for the signal and the reference in that paragraph to a description of the

5-2

related operations.

Guaranteed timing specifications for the signals listed in Table 5-1 can be
found in M68030EC/D, MC68030 Electrical Specifications..

Table 5-1. Signal Index (Sheet 1 of 2)

Signal Name Mnemonic Function

Function Codes FCO-FC2 |3-bit function code used to identify the address space of
each bus cycle.

Address Bus A0-A31 32-bit address bus.

Data Bus D0-D31 |32-bit data bus used to transfer 8, 16, 24, or 32 bits of data
per bus cycle.

Size S120/S121 {Indicates the number of bytes remaining to be transferred
for this cycle. These signals, together with A0 and A1, define
the active sections of the data bus.

Operand Cycle Start 0Cs Identical operation to that of ECS exceptthat OCS is asserted
only during the first bus cycle of an operand transfer.

External Cycle Start ECS Provides an indication that a bus cycle is beginning.

" |Read/Write RW Defines the bus transfer as a processor read or write.

Read-Modify-Write Cycle RMC Provides an indicator that the current bus cycle is part of an
indivisible read-modify-write operation.

Address Strobe AS Indicates that a valid address is on the bus.

Data Strobe DS Indicates that valid data is to be placed on the data bus by
an external device or has been placed on the data bus by
the MC68030.

Data Buffer Enable DBEN Provides an enable signal for external data buffers.

MC68030 USER'S MANUAL

MOTOROLA

Table 5-1. Signal Index (Sheet 2 of 2)

MOTOROLA

Signal Name Mnemonic Function
Data Transfer and DSACKO/ |Bus response signals that indicate the requested data trans-
Size Acknowledge DSACK1 [fer operation is completed. In addition, these two lines in-
dicate the size of the external bus port on a cycle-by-cycle
basis and are used for asynchronous transfers.
Synchronous STERM Bus response signal that indicates a port size of 32 bits and
Termination that data may be latched on the next falling clock edge.
Cache Inhibit In CIIN Prevents data from being loaded into the MC68030 instruc-
tion and data caches.
Cache Inhibit Out ClouT Reflects the Cl bit in ATC entries or TTx register; indicates
that external caches should ignore these accesses.
Cache Burst Request CBREQ Indicates a burst request for the instruction or data cache.
Cache Burst CBACK Indicates that the accessed device can operate in burst mode.
Acknowledge
Interrupt Priority Level IPLO-IPL2 [Provides an encoded interrupt level to the processor.
Interrupt Pending IPEND Indicates that an interrupt is pending.
Autovector AVEC Requests an autovector during an interrupt acknowledge
cycle.
Bus Request BR Indicates that an external device requires bus mastership.
Bus Grant BG Indicates that an external device may assume bus master-
ship.
Bus Grant Acknowledge BGACK Indicates that an external device has assumed bus master-
ship.
Reset RESET System reset.
Halt HALT Indicates that the processor should suspend bus activity.
Bus Error BERR Indicates that an erroneous bus operation is being at-
tempted.
Cache Disable CDIS Dynamically disables the on-chip cache to assist emulator
support.
MMU Disable MMUDIS |Dynamically disables the translation mechanism of the MMU.
Pipe Refill REFILL Indicates when the MC68030 is beginning to fill pipeline.
Microsequencer Status STATUS ([Indicates the state of the microsequencer.
Clock CLK Clock input to the processor.
Power Supply Vee Power supply.
Ground GND Ground connection.
MC68030 USER'S MANUAL 5-3

5.2 FUNCTION CODE SIGNALS (FC0-FC2)

These three-state outputs identify the address space of the current bus cycle.
Table 4-1 shows the relationship of the function code signals to the privilege
levels and the address spaces. Refer to 4.2 ADDRESS SPACE TYPES for more
information.

5.3 ADDRESS BUS (A0-A31)

These three-state outputs provide the address for the current bus cycle, ex-
cept in the CPU address space. Refer to 4.2 ADDRESS SPACE TYPES for more
information on the CPU address space. A31 is the most significant address
signal. Refer to 7.1.2 Address Bus for information on the address bus and
its relationship to bus operation.

5.4 DATA BUS (D0-D31)

These three-state bidirectional signals provide the general-purpose data path
between the MC68030 and all other devices. The data bus can transfer 8, 16,
24, or 32 bits of data per bus cycle. D31 is the most significant bit of the data
bus. Refer to 7.1.4 Data Bus for more information on the data bus and its
relationship to bus operation.

5.5 TRANSFER SIZE SIGNALS (S1Z0, S1Z1)

5-4

These three-state outputs indicate the number of bytes remaining to be trans-

“ferred for the current bus cycle. With A0, A1, DSACK0, DSACK1, and STERM,

SIZ0 and SIZ1 define the number of bits transferred on the data bus. Refer
to 7.2.1 Dynamic Bus Sizing for more information on the size signals and

their use in dynamic bus sizing.

MC68030 USER'S MANUAL MOTOROLA

5.6 BUS CONTROL SIGNALS

The following signals control synchronous bus transfer operations for the
MC68030.

5.6.1 Operand Cycle Start (OCS)

This output signal indicates the beginning of the first external bus cycle for
an instruction prefetch or a data operand transfer. OCS is not asserted for
subsequent cycles that are performed due to dynamic bus sizing or operand
misalignment. Refer to 7.1.1 Bus Control Signals for information about the
relationship of OCS to bus operation.

5.6.2 External Cycle Start (ECS)

This output signal indicates the beginning of a bus cycle of any type. Refer
to 7.1.1 Bus Control Signals for information about the relationship of ECS to
bus operation.

5.6.3 Read/Write (R/W)

This three-state output signal defines the type of bus cycle. A high level
indicates a read cycle; a low level indicates a write cycle. Refer to 7.1.1 Bus
Control Signals for information about the relationship of R/W to bus oper-
ation.

5.6.4 Read-Modify-Write Cycle (RMC)

This three-state output signal identifies the current bus cycle as part of an
indivisible read-modify-write operation; it remains asserted during all bus
cycles of the read-modify-write operation. Refer to 7.1.1 Bus Control Signals
for information about the relationship of RMC to bus operation.

5.6.5 Address Strobe (AS)

This three-state output indicates that a valid address is on the address bus.
The function code, size, and read/write signals are also valid when AS is
asserted. Refer to 7.1.3 Address Strobe for information about the relationship
of AS to bus operation.

MOTOROLA MC68030 USER'S MANUAL 5-5

5.6.6 Data Strobe (DS)

During a read cycle, this three-state output indicates that an external device
should place valid data on the data bus. During a write cycle, the data strobe
indicates that the MC68030 has placed valid data on the bus. During two-
clock synchronous write cycles, the MC68030 does not assert DS. Refer to
7.1.5 Data Strobe for more information about the relationship of DS to bus.
operation.

5.6.7 Data Buffer Enable (DBEN)

This output is an enable signal for external data buffers. This signal may not
be required in all systems. The timing of this signal may preclude its use in
a system that supports two-clock synchronous bus cycles. Refer to 7.1.6 Data
Buffer Enable for more information about the relationship of DBEN to bus
operation.

5.6.8 Data Transfer and Size Acknowledge (DSACKO, DSACK1)

These inputs indicate the completion of a requested data transfer operation.
In addition, they indicate the size of the external bus port at the completion
of each cycle. These signals apply only to asynchronous bus cycles. Refer to
7.1.7 Bus Cycle Termination Signals for more information on these signals
and their relationship to dynamic bus sizing.

5.6.9 Synchronous Termination (STERM)

5-6

This input is a bus handshake signal indicating that the addressed port size
is 32 bits and that data is to be latched on the next falling clock edge for a
read cycle. This signal applies only to synchronous operation. Refer to 7.1.7
Bus Cycle Termination Signals for more information about the relationship
of STERM to bus operation. ‘

MC68030 USER'S MANUAL MOTOROLA

5.7 CACHE CONTROL SIGNALS

The following signals relate to the on-chip caches.

5.7.1 Cache Inhibit Input (CIIN)

This input signal prevents data from being loaded into the MC68030 instruc-
tion and data caches. It is a synchronous input signal and is interpreted on
a bus-cycle-by-bus-cycle basis. CIIN is ignored during all write cycles. Refer
to 6.1 ON-CHIP CACHE ORGANIZATION AND OPERATION for information
on the relationship of CIIN to the on-chip caches.

5.7.2 Cache Inhibit Output (CIOUT)

This three-state output signal reflects the state of the Cl bit in the address
translation cache entry for the referenced logical address, indicating that an
external cache should ignore the bus transfer. When the referenced logical
address is within an area specified for transparent translation, the Cl bit of
the appropriate transparent translation register controls the state of CIOUT.
Refer to SECTION 9 MEMORY MANAGEMENT UNIT for more information
about the address translation cache and transparent translation. Also, refer
to SECTION 6 ON-CHIP CACHE MEMORIES for the effect of CIOUT on the
internal caches.

5.7.3 Cache Burst Request (CBREQ)

This three-state output signal requests a burst mode operation to fill a line
in the instruction or data cache. Refer to 6.1.3 Cache Filling for filling infor-
mation and 7.3.7 Burst Operation Cycles for bus cycle information pertaining
to burst mode operations.

5.7.4 Cache Burst Acknowledge (CBACK)

This input signal indicates that the accessed device can operate in the burst
mode and can supply at least one more long word for the instruction or data
cache. Refer to 7.3.7 Burst Operation Cycles for information about burst mode
operation.

MOTOROLA MC68030 USER’'S MANUAL 5-7

5.8 INTERRUPT CONTROL SIGNALS
The following signals are the interrupt control signals for the MC68030.

5.8.1 Interrupt Priority Level Signals

These input signals provide an indication of an interrupt condition and the
encoding of the interrupt level from a peripheral or external prioritizing cir-
cuitry. IPL2 is the most significant bit of the level number. For example, since
the TPLn signals are active low, IPLO-IPL2 equal to $5 corresponds to an
interrupt request at interrupt level 2. Refer to 8.1.9 Interrupt Exceptions for
information on MC68030 interrupts.

5.8.2 Interrupt Pending (IPEND)

This output signal indicates that an interrupt request has been recognized
internally and exceeds the current interrupt priority mask in the status register
{SR). This output is for use by external devices (coprocessors and other bus
masters, for example) to predict processor operation on the following in-
struction boundaries. Refer to 8.1.9 Interrupt Exceptions for interrupt infor-
mation. Also, refer to 7.4.1 Interrupt Acknowledge Bus Cycles for bus
information related to interrupts.

5.8.3 Autovector (AVEC)

This input signal indicates that the MC68030 should generate an automatic
vector during an interrupt acknowledge cycle. Refer to 7.4.1.2 AUTOVECTOR
INTERRUPT ACKNOWLEDGE CYCLE for more information about automatic
vectors. :

5.9 BUS ARBITRATION CONTROL SIGNALS

The following signals are the three bus arbitration control signals used to
determine which device in a system is the bus master.

5.9.1 Bus Request (BR)

This input signal indicates that an external device needs to become the bus
master. This is typically a “wire-ORed” input (but does not need to be con-
structed from open-collector devices). Refer to 7.7 BUS ARBITRATION for
more information.

5-8 MC68030 USER'S MANUAL MOTOROLA

5.9.2 Bus Grant (BG)

This output indicates that the MC68030 will release ownership of the bus
master when the current processor bus cycle completes. Refer to 7.7.2 Bus
Grant for more information.

5.9.3 Bus Grant Acknowledge (BGACK)

This input indicates that an external device has become the bus master. Refer
to 7.7.3 Bus Grant Acknowledge for more information.

5.10 BUS EXCEPTION CONTROL SIGNALS

The following signals are the bus exception control signals for the MC68030.

5.10.1 Reset (RESET)

This bidirectional open-drain signal is used to initiate a system reset. An
external reset signal resets the MC68030 as well as all external devices. A
reset signal from the processor (asserted as part of the RESET instruction)
resets external devices only; the internal state of the processor is not altered.
Refer to 7.8 RESET OPERATION for a description of reset bus operation and
8.1.1 Reset Exception for information about the reset exception.

5.10.2 Halt (HALT)

The halt signal indicates that the processor should suspend bus activity or,
when used with BERR, that the processor should retry the current cycle. Refer
to 7.5 BUS EXCEPTION CONTROL CYCLES for a description of the effects of
HALT on bus operations.

5.10.3 Bus Error (BERR)

The bus error signal indicates that an invalid bus operation is being attempted
or, when used with HALT, that the processor should retry the current cycle.
Refer to 7.5 BUS EXCEPTION CONTROL CYCLES for a description of the
effects of BERR on bus operations.

MOTOROLA MC68030 USER'S MANUAL 5-9

5.11 EMULATOR SUPPORT SIGNALS

The following signals support emulation by providing a means for an em-
ulator to disable the on-chip caches and memory management unit and by
supplying internal status information to an emulator. Refer to SECTION 12
APPLICATIONS INFORMATION for more detailed information on emulation
support.

5.11.1 Cache Disable (CDIS)

The cache disable signal dynamically disables the on-chip caches to assist
emulator support. Refer to 6.1 ON-CHIP CACHE ORGANIZATION AND OP-
ERATION for information about the caches; refer to SECTION 12 APPLICA-
TIONS INFORMATION for a description of the use of this signal by an emulator.
CDIS does not flush the data and instruction caches; entries remain unaltered
and become available again when CDIS is negated.

5.11.2 MMU Disable (MMUDIS)

The MMU disable signal dynamically disables the translation of addresses
by the MMU. Refer to 9.4 ADDRESS TRANSLATION CACHE for a description
of address translation; refer to SECTION 12 APPLICATIONS INFORMATION
for a description of the use of this signal by an emulator. The assertion of
MMUDIS does not flush the address translation cache (ATC); ATC entries
become available again when MMUDIS is negated.

5.11.3 Pipeline Refill (REFILL)

The pipeline refill signal indicates that the MC68030 is beginning to refill the
internal instruction pipeliné. Refer to SECTION 12 APPLICATIONS INFOR-
MATION for a description of the use of this signal by an emulator.

5.11.4 Internal Microsequencer Status (STATUS)

5-10

The microsequencer status signal indicates the state of the internal micro-
sequencer. The varying number of clocks for which this signal is asserted
indicates instruction boundaries, pending exceptions, and the halted con-
dition. Refer to SECTION 12 APPLICATIONS INFORMATION for a description
of the use of this signal by an emulator.

MC68030 USER'S MANUAL MOTOROLA

5.12 CLOCK (CLK)

The clock signal is the clock input to the MC68030. It is a TTL-compatible
signal. Refer to SECTION 12 APPLICATIONS INFORMATION for suggestions
on clock generation.

5.13 POWER SUPPLY CONNECTIONS

The MC68030 requires connection to a Vgc power supply, positive with
respect to ground. The V¢ connections are grouped to supply adequate
current for the various sections of the processor. The ground connections
are similarly grouped. SECTION 14 ORDERING INFORMATION AND ME-
CHANICAL DATA describes the groupings of V¢ and ground connections,
and SECTION 12 APPLICATIONS INFORMATION describes a typical power
supply interface.

5.14 SIGNAL SUMMARY

Table 5-2 provides a summary of the electrical characteristics of the signals
discussed in this section.

MOTOROLA MC68030 USER'S MANUAL 5-11

Table 5-2. Signal Summary

Signal Function Signal Name | Input/Output | Active State | Three-State
Function Codes FCO-FC2 Output High Yes
Address Bus A0-A31 Output High Yes
Data Bus D0-D31 Input/Output High Yes
Transfer Size SI1Z0/S1Z1 Output High Yes
Operand Cycle Start 0ocs Output Low No
External Cycle Start ECS Output Low No
Read/Write RW Output High/Low Yes
Read-Modify-Write Cycle RMC Output Low Yes
Address Strobe - AS Output Low Yes
Data Strobe DS Output Low Yes
Data Buffer Enable DBEN Output Low Yes
Data Transfer and Size Acknowledge DSACK0/ Input Low —
DSACK1
Synchronous Termination STERM Input Low —
Cache Inhibit In CIIN * Input Low —
Cache Inhibit Out CIouT Output Low Yes
Cache Burst Request CBREQ Output Low Yes
Cache Burst Acknowledge CBACK Input Low —
Interrupt Priority Level 1PLO-IPL2 Input Low —
Interrupt Pending TPEND Output Low No
Autovector AVEC Input Low —
Bus Request BR Input Low —_
Bus Grant BG Output Low No
Bus Grant Acknowledge BGACK Input Low —
Reset RESET Input/Output Low No
Halt HALT Input Low —
Bus Error BERR Input Low —
Cache Disable CDIS Input Low —
MMU Disable MMUDIS Input Low —
Pipeline Refill REFILL Output Low No
Microsequencer Status STATUS Output Low No
Clock CLK Input — —
Power Supply vce Input — —
Ground GND Input — —

5-12

MC68030 USER’'S MANUAL

MOTOROLA

SECTION 6
ON-CHIP CACHE MEMORIES

The MC68030 microprocessor includes a 256-byte on-chip instruction cache
and a 256-byte on-chip data cache that are accessed by logical (virtual) ad-
dresses. These caches improve performance by reducing external bus activity
and increasing instruction throughput.

Reduced external bus activity increases overall performance by increasing
the availability of the bus for use by external devices (in systems with more
than one bus master, such as a processor and a DMA device) without de-
grading the performance of the MC68030. An increase in instruction through-
put results when instruction words and data required by a program are
available in the on-chip caches and the time required to access them on the
external bus is eliminated. Additionally, instruction throughput increases when
instruction words and data can be accessed simultaneously.

As shown in Figure 6-1, the instruction cache and the data cache are con-
nected to separate on-chip address and data buses. The address buses are
combined to provide the logical address to the memory management unit
(MMU). The MC68030 initiates an access to the appropriate cache for the
requested instruction.or data operand at the same time that it initiates an
access for the translation of the logical address in the address translation
cache of the MMU. When a hit occurs in the instruction or data cache and
the MMU validates the access on a write, the information is transferred from
the cache (on a read) or to the cache and the bus controller (on a write).
When a hit does not occur, the MMU translation of the address is used for
an external bus cycle to obtain the instruction or operand. Regardless of
whether or not the required operand is located in one of the on-chip caches,
the address translation cache of the MMU performs logical-to-physical ad-
dress translation in parallel with the cache lookup in case an external cycle
is required.

MOTOROLA MC68030 USER'S MANUAL 6-1

<9

IVNNVIN S.4H3SN 0€0890IN

VI104HO10W

ADDRESS
BUS

ADDRESS
PADS

>

MICROSEQUENCER AND CONTROL
INSTRUCTION PIPE
CACHE
CONTROL STAGE] A STAGE | 1—{STAGE HOLDING
STORE D C 8 REGISTER
{CAHR)
(} INTERNAL
DATA
CONTROL BUS
LOGIC
INSTRUCTION EXECUTION UNIT
ADDRESS
BUS T
PHYSICAL g
ADDRESS
MMU LOGICAL
ADDRESS PROGRAM
REGISTERS | | 4 COUNTER aooRess | —N] oama SIZE ¢> DATA
SECTION 1 SECTION SECTION —/| MULTIPLEXER PADS
ATC
Tt 7S

=

BUS CONTROLLER

BUFFER BUFFER

WRITE PENDINGJ l PREFETCH PENDING |

C—

MICRO BUS
CONTROLLER

<

BUS CONTROL
SIGNALS

DATA
ADDRESS
BUS

MISALIGNMENT
MULTIPLEXER

Figure 6-1. Internal Caches and the MC68030

DATA
8US

6.1 ON-CHIP CACHE ORGANIZATION AND OPERATION

Both on-chip caches are 256-byte direct-mapped caches, each organized as
16 lines. Each line consists of four entries, and each entry contains four bytes.
The tag field for each line contains a valid bit for each entry in the line; each
entry is independently replaceable. When appropriate, the bus controller
requests a burst mode operation to replace an entire cache line. The cache
control register (CACR) is accessible by supervisor programs to control the
operation of both caches.

System hardware can assert the cache disable (CDIS) signal to disable both
caches. The assertion of CDIS disables the caches, regardless of the state of
the enable bits in CACR. CDIS is primarily intended for use by in-circuit
emulators.

Another input signal, cache inhibit in (CIIN), inhibits caching of data reads
or instruction prefetches on a bus-cycle by bus-cycle basis. Examples of data
that should not be cached are data for /0O devices and data from memory
devices that cannot supply a full port width of data, regardless of the size of
the required operand.

Subsequent paragraphs describe how CIIN is used during the filling of the
caches.

An output signal, cache inhibit out (CIOUT), reflects the state of the cache
inhibit (CI) bit from the MMU of either the address translation cache entry
that corresponds to a specified logical address or the transparent translation
register that corresponds to that address. Whenever the appropriate Cl bit
is set for either a read or a write access and an external bus cycle is required,
CIOUT is asserted and the instruction and data caches are ignored for the
access. This signal can also be used by external hardware to inhibit caching
in external caches.

Whenever a read access occurs and the required instruction word or data
operand is resident in the appropriate on-chip cache (no external bus cycle
is required), the MMU is completely ignored, unless an invalid translation
resides in the MMU at that time (see next two paragraphs). Therefore, the
state of the corresponding ClI bits in the MMU are also ignored. The MMU
is used to validate all accesses that require external bus cycles; an address
translation must be available and valid, protections are checked, and the
CIOUT signal is asserted appropriately.

MOTOROLA MC68030 USER'S MANUAL 6-3

An external access is defined as ““cachable” for either the instruction or data
cache when all the following conditions apply:

® The cache is enabled with the appropriate bit in the CACR set.
e The CDIS signal is negated.

e The CIIN signal is negated for the access.

® The CIOUT signal is negated for the access.

® The MMU validates the access.

Because both the data and instruction caches are referenced by logical ad-
dresses, they should be flushed during a task switch or at any time the logical-
to-physical address mapping changes, including when the MMU is first en-
abled. In addition, if a page descriptor is currently marked as valid and is
later changed to the invalid type (due to a context switch or a page replace-
ment operation) entries in the on-chip instruction or data cache correspond-
ing to the physical page must be first cleared (invalidated). Otherwise, if on-
chip -.cache entries are valid for pages with descriptors in memory marked
invalid, processor operation is unpredictable.

Data read and write accesses to the same address should also have consistent
cachability status to ensure that the data in the cache remains consistent
with external memory. For example, if CIOUT is negated for read accesses
within a page and the MMU configuration is changed so that CIOUT is sub-
sequently asserted for write accesses within the same page, those write
accesses do not update data in the cache, and stale data may result. Similarly,
when the MMU maps multiple logical addresses to the same physical ad-
dress, all accesses to those logical addresses should have the same cacha-
bility status.

6.1.1 Instruction Cache

6-4

The instruction cache is organized with a line size of four long words, as
shown in Figure 6-2. Each of these long words is considered a separate cache
entry as each has a separate valid bit. All four entries in a line have the same
tag address. Burst filling all four long words can be advantageous when the
time spent in filling the line is not long relative to the equivalent bus-cycle
time for four nonburst long-word accesses, because of the probability that
the contents of memory adjacent to or close to a referenced operand or
instruction is also required by subsequent accesses. Dynamic RAMs sup-
porting fast access modes (page, nibble, or static column) are easily em-
ployed to support the MC68030 burst mode.

MC68030 USER'S MANUAL MOTOROLA

LONG WORD
SELECT

TAG IN[iEX
M i IFL\

FFFlLJAcWWeAAAAAAAAAAAAAAAAAAAAARAAA
ccec 3022221117111 17111000000000°0 ACCESS ADDRESS
210 leee32109876543210987654321°0

TAG VIiV]v]V

10F 16
SELECT . o[ofe
. . .

TAG
REPLACE ? | | T I T T DATA FROM INSTRUCTON
CACHE DATA BUS

DATA TO INSTRUCTION
L] CACHE HOLDING REGISTER

— ENTRY HIT T :
&——» CACHE CONTROL LOGIC

VALID

\

A\

COMPARATOR

LINE HIT

CACHE SIZE = 64 (LONG WORDS)
LINE SIZE = 4 {LONG WORDS)
SET SIZE =1

Figure 6-2. On-Chip Instruction Cache Organization

‘When enabled, the instruction cache is used to store instruction prefetches
(instruction words and extension words) as they are requested by the CPU.
Instruction prefetches are normally requested from sequential memory ad-
dresses except when a change of program flow occurs (e.g., a branch taken)
or when an instruction is executed that can modify the status register, in
which cases the instruction pipe is automatically flushed and refilled. The
output signal REFILL indicates this condition. For more information on the
operation of this signal, refer to SECTION 12 APPLICATIONS INFORMATION.

In the instruction cache, each of the 16 lines has a tag consisting of the 24
most significant logical address bits, the FC2 function code bit (used to dis-
tinguish between user and supervisor accesses), and the four valid bits (one

MOTOROLA MC68030 USER'S MANUAL 6-5

corresponding to each long word). Refer to Figure 6-2 for the instruction
cache organization. Address bits A7-A4 select one of 16 lines and its asso-
ciated tag. The comparator compares the address and function code bits in
the selected tag with address bits A31-A8 and FC2 from the internal prefetch
request to determine if the requested word is in the cache. A cache hit occurs
when there is a tag match and the corresponding valid bit {selected by A3-A2)
is set. On a cache hit, the word selected by address bit A1 is supplied to the
instruction pipe.

When the address and function code bits do not match or the requested entry
is not valid, a miss occurs. The bus controller initiates a long-word prefetch
operation for the required instruction word and loads the cache entry, pro-
vided the entry is cachable. A burst mode operation may be requested to fill
an entire cache line: If the function code and address bits match and the
corresponding long word is not valid (but one or more of the other three
valid bits for that line are set) a single entry fill operation replaces the required
long word only, using a normal prefetch bus cycle or cycles {no burst).

6.1.2 Data Cache

6-6

The data cache stores data references to any address space except CPU space
(FC=$7), including those references made with PC relative addressing modes
and accesses made with the MOVES instruction. Operation of the data cache
is similar to that of the instruction cache, except for the address comparison
and cache filling operations. The tag of each line in the data cache contains
function code bits FCO, FC1, and FC2 in addition to address bits A31-A8. The
cache control circuitry selects the tag using bits A7-A4 and compares it to
the corresponding bits of the access address to determine if a tag match has
occurred. Address bits A3-A2 select the valid bit for the appropriate long
word in the cache to determine if an entry hit has occurred. Misaligned data
transfers may span two data cache entries. In this case, the processor checks
for a hit one entry at a time. Therefore, it is possible that a portion of the
access results in.a hit and a portion results in a miss. The hit and miss are
treated independently. Figure 6-3 illustrates the organization of the data cache.

The operation of the data cache differs for read and write cycles. A data read
cycle operates exactly like an instruction cache read cycle; when a miss
occurs, an external cycle is initiated to obtain the operand from memory,
and the data is loaded into the cache if the access is cachable. In the case of
a misaligned operand that spans two cache entries, two long words are
required from memory. Burst mode operation may also be initiated to fill an
entire line of the data cache. Read accesses from the CPU address space and
address translation table search accesses are not stored in the data cache.

MC68030 USER'S MANUAL MOTOROLA

LONG WORD
SELECT

TAG IN[IJEX
| | IFJ—\

FFF AeeeAAAAAAAAAAAAAAAAAAAAAAAA
ccec Jeee2 2221111711111 10000000000 ACCESS ADDRESS
210 1eee3 21 0987654321098760543210

-

me |v|v|v|v
10F 16
SELECT . o|lo|o|e
L] L] . [] [] L] .
]
REPLACE T | t T t DATA FROM DATA CACHE
DATA BUS
DATA TO
VALID LT execumon uniT

™\ ENTRY HIT T
: - CACHE CONTROL LOGIC

> COMPARATOR

LINE HIT

CACHE SIZE = 64 (LONG WORDS)
LINE SIZE = 4 (LONG WORDS)
SETSIZE=1

Figure 6-3. On-Chip Data Cache Organization

The data cache on the MC68030 is a writethrough cache. When a hit occurs
on a write cycle, the data is written both to the cache and to external memory
(provided the MMU validates the access), regardless of the operand size and
even if the cache is frozen. If the MMU determines that the access is invalid,
the write is aborted, the corresponding entry is invalidated, and a bus error
exception is taken. Since the write to the cache completes before the write
to external memory, the cache contains the new value even if the external
write terminates in a bus error. The value in the data cache might be used
by another instruction before thé external write cycle has completed, al-
though this should not have any adverse consequences. Refer to 7.6 BUS
SYNCHRONIZATION for the details of bus synchronization.

MOTOROLA MC68030 USER'S MANUAL 6-7

6.1.2.1 WRITE ALLOCATION. The supervisor program can configure the data cache

6-8

for either of two types of allocation for data cache entries that miss on write
cycles. The state of the write allocation (WA) bit in the cache control register
specifies either no write allocation or write allocation with partial validation
of the data entries in the cache on writes.

When no write allocation is selected (WA =0), write cycles that miss do not
alter the data cache contents. In this mode, the processor does not replace
entries in the cache during write operations. The cache is updated only during
a write hit.

When write allocation is selected (WA = 1), the processor always updates the
data cache on cachable write cycles, but only validates an updated entry that
hits or an entry that is updated with long-word data that is long-word aligned.
When a tag miss occurs on a write of long-word data that is long-word
aligned, the corresponding tag is replaced, and only the long word being
written is marked as valid. The other three entries in the cache line are
invalidated when a tag miss occurs on a misaligned long-word write or on
a byte or word write, the data is not written in the cache, the tag is unaltered,
and the valid bit(s) are cleared. Thus, an aligned long-word data write may
replace a previously valid entry; whereas, a misaligned data write or a write
of data that is not long word may invalidate a previously valid entry or entries.

Write allocation eliminates stale data that may reside in the cache because
of either of two unique situations: multiple mapping of two or more logical
addresses to one physical address within the same task or allowing the same
physical location to be accessed by both supervisor and user mode cycles.
Stale data conditions can arise when operating in the no-write-allocation
mode and all the following conditions are satisfied:

‘e Multiple mapping (object aliasing) is allowed by the operating system.

® A read cycle loads a value for an “aliased” physical address into the
data cache.

® A write cycle occurs, referencing the same aliased physical object as
above but using a different logical address, causing a cache miss and
no update to the cache (has the same page offset).

e The physical object is then read using the first alias, which provides stale
data from the cache.

MC68030 USER'S MANUAL MOTOROLA

In this case, the data in the cache no longer matches that in physical memory
and is stale. Since the write-allocation mode updates the cache during write
cycles, the data in the cache remains consistent with physical memory. Note
that when CIOUT is asserted, the data cache is completely ignored, even on
write cycles operating in the write-allocation mode. Also note that since the
CIIN signal is ignored on write cycles, cache entries may be created for
noncachable data (when CIIN is asserted on a write) when operating in the
write-allocation mode. Figure 6-4 shows the manner in which each mode
operates in five different situations.

TAG’

I_J_\

LOGICAL ADDRESS = FC2-FCO, A31-AB, A7-A4, A3-A2

| ENTRY SELECT
LINE \J Y l
SELECT —Plr USER DATA, $000010—| I b0-b3, VO=1 l l b4-b7, V1=0] l b8-bB, V2=1 I L bC-bF, V3=1 I
(85)

TAG
NO'WRITE:ALLOCATE WRITE ALLOCATE
EXAMPLE 1:

USER WORD WRITE OF b2"-b3* 70 $00001052 A) START EXTERNALCYCLE A} START EXTERNAL CYCLE

(CACHE HIT, ALWAYS UPDATE CACHE AND MEMORY) B) b2-b3€—b2"b3’ B) b2-b3-a—b2"b3’
EXAMPLE 2:

USER LONG WORD WRITE OF b6"-b9' T0 $00001056 A) START EXTERNALCYCLE A} START EXTERNAL CYCLE
(TAG MATCH, LONG WORD DATA, MISALIGNED, B) b8-b9~&— b8"bY’ B) b8-h9~€— bg"h’
b6-b7 RESULT IN A CACHE MISS,
b8-b9 RESULT IN A CACHE HIT)

EXAMPLE 3:

USER LONG WORD WRITE OF b4"b7’ T0 $00001054 A) START EXTERNALCYCLE A) START EXTERNAL CYCLE
{TAG MATCH, CACHE MISS, LONG WORD DATA, B) b4-b7€—b4 b7’
LONG WORD ALIGNED) C) V11

EXAMPLE 4:

USER LONG WORD WRITE OF b4"h7’ TO $00002054 A) START EXTERNALCYCLE A) START EXTERNAL CYCLE

(ND TAG MATCH, LONG WORD DATA, LONG WORD ALIGNED) B) TAG <&~ TAG"
C) ba-b7 &4 b7’
D) V00
V11
V20
V30
EXAMPLE 5:

USER LONG WORD WRITE OF b6"b9* T0 $00002056 A) START EXTERNALCYCLE A} START EXTERNAL CYCLE

(NO TAG MATCH, LONG WORD DATA, MISALIGNED) B) V20

Figure 6-4. No-Write-Allocation and Write-Allocation Mode Examples

MOTOROLA MC68030 USER'S MANUAL 6-9

6.1.2.2 READ-MODIFY-WRITE ACCESSES. The read portion of a read-modify-write

cycle is always forced to miss in the data cache. However, if the system
allows internal caching of read-modify-write cycle operands (CIOUT and CIIN
both negated), the processor either uses the data read from memory to
update a matching entry in the data cache or creates a new entry with the
read data in the case of no matching entry. The write portion of a read-
modify-write operation also updates a matching entry in the data cache. In
the case of a cache miss on the write, the allocation of a new cache entry
for the data being written is controlled by the WA bit. Table search accesses,
however, are completely ignored by the data cache; it is never updated for
a table search access. \

6.1.3 Cache Filling

The bus controller can load either cache in either of two ways:

.® Single entry mode

o Burst fill mode
In the single entry mode, the bus controlier loads a single long-word entry
of a cache line. In the burst fill mode, an entire line (four long words) can be

filled. Refer to SECTION 7 BUS OPERATION for detailed information about
the bus cycles required for both modes.

6.1.3.1 SINGLE ENTRY MODE. When a cachable access is initiated and a burst

6-10

mode operation is not requested by the MC68030 or is not supported by
external hardware, the bus controller transfers a single long word for the
corresponding cache entry. An entire long word is required. If the port size
of the responding device is smaller than 32 bits, the MC68030 executes all
bus cycles necessary to fill the long word.

When a device cannot supply its entire port width of data, regardless of the
size of the transfer, the responding device must consistently assert the cache
inhibit input (CIIN) signal. For example, a 32-bit port must always supply 32
bits, even for 8- and 16-bit transfers; a 16-bit port must supply 16 bits, even
for 8-bit transfers. The MC68030 assumes that a 32-bit termination signal for
the bus cycle indicates availability of 32 valid data bits, even if only 16 or 8
bits are requested. Similarly, the processor assumes that a 16-bit termination
signal indicates that all 16 bits are valid. If the device cannot supply its full
port width of data, it must assert CIIN for all bus cycles corresponding to a
cache entry.

MC68030 USER'S MANUAL : MOTOROLA

When a cachable read cycle provides data with both CIIN and BERR negated,

the MC68030 attempts to fill the cache entry. Figure 6-5 shows the organi-

zation of a line of data in the caches. The notation b0, b1, b2, and so forth

identifies the bytes within the line. For each entry in the line, a valid bit in

the associated tag corresponds to a long-word entry to be loaded. Since a .
single valid bit applies to an entire long word, a single entry mode operation

must provide a full 32 bits of data. Ports less than 32 bits wide require several

read cycles for each entry.

Figure 6-5 shows an example of a byte data operand read cycle starting at
byte address $03 from an 8-bit port. Provided the data item is cachable, this
operation results in four bus cycles. The first cycle requested by the MC68030
reads a byte from address $03. The 8-bit DSACKx response causes the
MC68030 to fetch the remainder of the long word starting at address $00.
The bytes are latched in the following order: b3, b0, b1, and b2. Note that
during cache loading operations, devices must indicate the same port size
consistently throughout all cycles for that long-word entry in the cache.

Figure 6-6 shows the access of a byte data operand from a 16-bit port. This
operation requires two read cycles. The first cycle requests the byte at address
$03. If the device responds with a 16-bit DSACKx encoding, the word at
address $02 (including the requested byte) is accepted by the MC68030. The
second cycle requests the word at address $00. Since the device again re-
sponds with a 16-bit DSACKx encoding, the remaining two bytes of the long
word are latched, and the cache entry is filled.

$00 $04 $0C

o] FEEE [T (0T [T

CYCLE SIZE ADDRESS COMMENT

1 BYTE $03 - THIS IS THE REQUESTED OPERAND
2 3-BYTE $00 m.. - NEXT BYTE FOR COMPLETING CACHE ENTRY
3 WORD $01 A - NEXT BYTE FOR COMPLETING CACHE ENTRY

4 BYTE $02 - LAST BYTE TO COMPLETE THE LONG WORD

Figure 6-5. Single Entry Mode Operation — 8-Bit Port

MOTOROLA MC68030 USER’'S MANUAL 6-11

$00 $04 : $08 $o0c
Lo [| fofolefel TP ELT T LITT]

CYCLE SIZE ADDRESS COMMENT

1 BYTE $03 - INCLUDES THE REQUESTED OPERAND AND THE PREVIOUS BYTE

2 WORD $00 - THE REMAINING WORD FOR THE LONG WORD CACHE ENTRY

Figure 6-6. Single Entry Mode Operation — 16-Bit Port

With a 32-bit port, the same operation is shown in Figure 6-7. Only one read
cycle is required. All four bytes (including the requested byte) are latched
during the cycle.

$00 $04

$08 $oc
[ve [oow | Qolofels] LITP] DL LLTT]

CYCLE SIZE ADDRESS) COMMENT

1 BYTE $03 mﬂﬂm - THE ENTIRE LONG WORD MUST BE VALID

Figure 6-7. Single Entry Mode Operation — 32-Bit Port

If a requested access is misaligned and spans two cache entries, the bus
controller attempts to fill both associated long-word cache entries. An ex-
ample of thisis an operand request for along word on an odd-word boundary.
The MC68030 first fetches the initial byte(s) of the operand (residing in the
first long word} and then requests the remaining bytes to fill that cache entry
(if the port size is less than 32 bits) before it requests the remainder of the
operand and corresponding long word to fill the second cache entry. If the
port size is 32 bits, the processor performs two accesses, one for each cache
entry.

6-12 MC68030 USER'S MANUAL MOTOROLA

Figure 6-8 shows a misaligned access of a long word at address $06 from
an 8-bit port requiring eight bus cycles to complete. Reading this long-word
operand requires eight read cycles, since accesses to all eight addresses
return 8-bit port-size encodings. These cycles fetch the two cache entries that
the requested long-word spans. The first cycle requests a long word at ad-
dress $06 and accepts the first requested byte (b6). The subsequent transfers
of the first long word are performed in the following order: b7, b4, b5. The
remaining four read cycles transfer the four bytes of the second cache entry.
The sequence of access for the entire operation is b6, b7, b4, b5, b8, b9, bA,

and bB.
$00 $04 $08 $0C
e oo (T CEER BEER (T
CYCLE SIZE ADDRESS COMMENT

1 LONGWORD $08 Dj - FIRST BYTE OF OPERAND LATCHED
2 3-BYTE $07 I:D - SECOND BYTE OF OPERAND
3 WORD $04 - TO FILL THE CACHE ENTRY AT $04

4 BYTE $05 - REMAINDER OF CACHE ENTRY AT $04

— LAST BYTE OF OPERAND

5 WORD $08 o - THIRD BYTE OF OPERAND

6 BYTE $09

7 WORD $0A — TO FILL CACHE ENTRY AT $08
8 BYTE $0B - REMAINDER OF ENTRY AT $08

Figure 6-8. Single Entry Mode Operation —
Misaligned Long Word and 8-Bit Port

MOTOROLA MC68030 USER'S MANUAL 6-13

6-14

The next example, shown in Figure 6-9, is a read of a misaligned long-word
operand from devices that return 16-bit DSACKx encodings. The processor
accepts the first portion of the operand, the word from address $06, and
requests a word from address $04 to fill the cache entry. Next, the processor
reads the word at address $08, the second portion of the operand, and stores
it in the cache also. Finally, the processor accesses the word at $0A to fill
the second long-word cache entry.

$00

= Ton) (10 EEER EEER (111

CYCLE SIZE ADDRESS COMMENT

1

LONG WORD $06 H Dj - FIRST WORD OF OPERAND LATCHED
WORD $04 - TO FILL THE CACHE ENTRY AT $04

WORD $08 b8 I b3 - SECOND WORD OF OPERAND

WORD $0A - TO FILL ENTRY AT $08

Figure 6-9. Single Entry Mode Operation —
Misaligned Long Word and 16-Bit Port

Two read cycles are required for a misaligned long-word operand transfer
from devices that return 32-bit DSACKx encodings. As shown in Figure 6-10,
the first read cycle requests the long word at address $06 and latches the
long word at address $04. The second read cycle requests and latches the
long word corresponding to the second cache entry at address $08. Two read
cycles are also required if STERM is used to indicate a 32-bit port instead of
the 32-bit DSACKx encoding.

MC68030 USER'S MANUAL MOTOROLA

$00

‘ $04 $08 -$0C
e [oe] (11 GEEF BERER (111

CYCLE SIZE ADDRESS COMMENT

- FIRST WORD OF OPERAND PLUS
REST OF ENTRY AT $04

- SECOND WORD OF OPERAND PLUS
2 LONGWORD 508 mmmﬂ REST OF ENTRY AT $08

Figure 6-10. Single Entry Mode Operation —
Misaligned Long Word and 32-Bit DSACKx Port

1 LONG WORD $06 I b4 I b5 I b6 I b7 | | | I

If all bytes of a long word are cachable, CIIN must be negated for all bus
cycles required to fill the entry. If any byte is not cachable, CIIN must be
asserted for all corresponding bus cycles. The assertion of the CIIN signal
prevents the caches from being updated during read cycles. Write cycles
(including the write portion of a read-modify-write cycle) ignore the assertion
of the CIIN signal and may cause the data cache to be altered, depending on
the state of the cache (whether or not the write cycle hits), the state of the
WA bit in the CACR, and the conditions indicated by the MMU.

The occurrence of a bus error while attempting to load a cache entry aborts
the entry fill operation but does not necessarily cause a bus error exception.
If the bus error occurs on a read cycle for a portion of the required operand
(not the remaining bytes of the cache entry) to be loaded into the data cache,
the processor immediately takes a bus error exception. If the read cycle in
error is made only to fill the data cache (the data is not part of the target
operand), no exception occurs, but the corresponding entry is marked invalid.
For the instruction cache, the processor marks the entry as invalid, but only
takes an exception if the execution unit attempts to use the instruction word(s).

6.1.3.2 BURST MODE FILLING. Burst mode filling is enabled by bits in the cache
control register. The data burst enable bit must be set to enable burst filling
of the data cache. Similarly, the instruction burst enable bit must be set to
enable burst filling of the instruction cache. When burst filling is enabled and
the corresponding cache is enabled, the bus controller requests a burst mode
fill operation in either of these cases:

® A read cycle for either the instruction or data cache misses due to the
indexed tag not matching.

® A read cycle tag matches, but all long words in the line are invalid.

MOTOROLA MC68030 USER'S MANUAL 6-15

6-16

The bus controller requests a burst mode fill operation by asserting the cache
burst request signal (CBREQ). The responding device may sequentially supply
one to four long words of cachable data, or it may assert the cache inhibit
input signal (CIIN) when the data in a long word is not cachable. If the
responding device does not support the burst mode and it terminates cycles
with STERM, it should not acknowledge the request with the assertion of the
cache burst acknowledge (CBACK) signal. The MC68030 ignores the assertion
of CBACK during cycles terminated with DSACKx.

The cache burst request signal (CBREQ) requests burst mode operation from
the referenced external device. To operate in the burst mode, the device or
external hardware must be able to increment the low-order address bits if
required, and the current cycle must be a 32-bit synchronous transfer (STERM
must be asserted) as described in SECTION 7 BUS OPERATION. The device
must also assert CBACK (at the same time as STERM) at the end of the cycle
in which the MC68030 asserts CBREQ. CBACK causes the processor to con-
tinue driving the address and bus control signals and to latch a new data
value for the next cache entry at the completion of each subsequent cycle
(as defined by STERM), for a total of up to four cycles (until four long words
have been read). '

When a cache burst is initiated, the first cycle attempts to load the cache
entry corresponding to the instruction word or data item explicitly requested
by the execution unit. The subsequent cycles are for the subsequent entries
in the cache line. In the case of a misaligned transfer when the operand spans
two cache entries within a cache line, the first cycle corresponds to the cache
entry containing the portion of the operand at the lower address.

Figuré 6-11 illustrates the four cycles of a burst operation and shows that
the second, third, and fourth cycles are run in burst mode. A distinction is

‘made between the first cycle of a burst operation and the subsequent cycles

because the first cycle is requested by the microsequencer and the burst fill
cycles are requested by the bus controller. Therefore, when data from the
first cycle is returned, it is immediately available for the execution unit (EU).
However, data from the burst fill cycles is not available to the EU until the
burst operation is complete. Since the microsequencer makes two separate
requests for misaligned data operands, only the first portion of the misaligned
operand returned during a burst operation is available to the EU after the
first cycle is complete. The microsequencer must wait for the burst operation
to complete before requesting the second portion of the operand. Normally,
the request for the second portion results in a data cache hit unless the second
cycle of the burst operation terminates abnormally.

MC68030 USER’'S MANUAL MOTOROLA

i= BURST OPERATION

CYCLE 1 CYCLE 2 CYCLE 3 CYCLE 4

FIRST ACCESS OF BURST OPERATION
X REQUIRED OPERAND OR PREFETCH >< BURST FILL CYCLE X BURST FILL CYCLE X BURST FILL CYCLE

BURST MODE REQUESTED AND
ACKNOWLEDGED —L BURST MODE BEGINS HERE

Figure 6-11. Burst Operation Cycles and Burst Mode

><___J'_

The bursting mechanism allows addresses to wrap around so that the entire
four long words in the cache line can be filled in a single burst operation,
regardless of the initial address and operand alignment. Depending on the
structure of the external memory system, address bits A2 and A3 may have
to be incremented externally to select the long words in the proper order for
loading into the cache. The MC68030 holds the entire address bus constant
for the duration of the burst cycle. Figure 6-12 shows an example of this
address wraparound. The initial cycle is a long-word access from address
$6. Because the responding device returns CBACK and STERM (signaling a
32-bit port), the entire long word at base address $04 is transferred. Since
the initial address is $06 when CBREQ is asserted, the next entry to be burst
filled into the cache should correspond to address $08, then $0C, and last,
$00. This addressing is compatible with existing nibble-mode dynamic RAMs,
and can be supported by page and static column modes with an external
modulo 4 counter for A2 and A3.

$00 $04 $0

8 $oc
LTAG I V0-v3 | I | I | I Ib4|h5|h6lh7l Ih8|b9|hA|bB| I | | I |
L [1 I | 1 I
| I I]
FINAL CACHE ENTRY FIRST LONG WORD SECOND CACHE ENTRY THIRD CACHE ENTRY
TO BE FILLED ACCESS - INCLUDES TO BE FILLED TO BE FILLED
FIRST PART OF
OPERAND REQUIRED

Figure 6-12. Burst Filling Wraparound Example

MOTOROLA MC68030 USER'S MANUAL 6-17

The MC68030 does not assert CBREQ during the first portion of a misaligned
access if the remainder of the access does not correspond to the same cache
line. Figure 6-13 shows an example in which the first portion of a misaligned
access is at address $0F. With a 32-bit port, the first-access corresponds to
the cache entry at address $0C, which is filled using a single-entry load
operation. The second access, at address $10 corresponding to the second
cache line, requests a burst fill and the processor asserts CBREQ. During this
burst operation, long words $10, $14, $18, and $1C are all filled in that order.

$00 $oc

o] (10 (100 (11T EREE
L___‘_J

FIRST LONG WORD CACHED -
NO BURST REQUEST

$10 $14 $18 $iC
L e [| poleoppe] [T [] LT CLTT]
| |1 |
I [
SECOND CYCLE - THE REMAINING CACHE ENTRIES FOR SECOND BLOCK ARE BURSTED

BURST REQUESTED

Figure 6-13. Deferred Burst Filling Example

The proceésor does not assert CBREQ if any of the following conditions exist:

® The appropriate cache is not enabled

Burst filling for the cache is not enabled

The cache freeze bit for the appropriate cache is set

e The current operation is the read portion of a read-modify-write oper-
ation ‘

The MMU has inhibited caching for the current page
® The cycle is for the first access of an operand that spans two cache lines
(crosses a modulo 16 boundary)

Additionally, the assertion of CIIN and BERR and the premature negation of
CBACK affect burst operation as described in the following paragraphs.

6-18 MC68030 USER'S MANUAL MOTOROLA

The assertion of CIIN during the first cycle of a burst operation causes the
data to be latched by the processor, and if the requested operand is aligned
(the entire operand is latched in the first cycle), the data is passed on to the
instruction pipe or execution unit. However, the data is not loaded into its
corresponding cache. In addition, the MC68030 negates CBREQ, and the burst
operation is aborted. If a portion of the requested operand remains to be
read (due to misalignment), a second read cycle is initiated at the appropriate
address with CBREQ negated.

The assertion of CIIN during the second, third, or fourth cycle of a burst
operation prevents the data during that cycle from being loaded into the
appropriate cache and causes CBREQ to negate, aborting the burst operation.
However, if the data for the cycle contains part of the requested operand,
the execution unit uses that data.

The premature negation of the CBACK signal during the burst operation
causes the current cycle to complete normally, loading the data successfully
transferred into the appropriate cache. However, the burst operation aborts
and CBREQ negates.

Abus error occurring during a burst operation also causes the burst operation
to abort. If the bus error occurs during the first cycle of a burst (i.e., before
burst mode is entered), the data read from the bus is ignored, and the entire
associated cache line is marked “invalid”. If the access is a data cycle, ex-
ception processing proceeds immediately. If the cycle is for an instruction
fetch, a bus error exception is made pending. This bus error is processed
only if the execution unit attempts to use either instruction word. Refer to
11.2.2 Instruction Pipe for more information about pipeline operation.

For. either cache, when a bus error occurs after the burst mode has been
entered (that is, on the second cycle or later), the cache entry corresponding
to that cycle is marked invalid, but the processor does not take an exception
(the microsequencer has not yet requested the data). In the case of an in-
struction cache burst, the data from the aborted cycle is completely ignored.
Pending instruction prefetches are still pending and are subsequently run by
the processor. If the second cycle is for a portion of a misaligned data operand
fetch and a bus error occurs, the processor terminates the burst operation
and negates CBREQ. Once the burst terminates, the microsequencer requests
a read cycle for the second portion. Since the burst terminated abnormally
for the second cycle of the burst, the data cache results in a miss, and. a
second external cycle is required. If BERR is again asserted, the MC68030
then takes an exception.

MOTOROLA MC68030 USER'S MANUAL 6-19

On the initial access of a burst operation, a “retry” (indicated by the assertion
of BERR and HALT) causes the processor to retry the bus cycle and assert
CBREQ again. However, signaling a retry with simultaneous BERR and HALT
during the second, third, or fourth cycle of a burst operation does not cause
a retry operation, even if the requested operand is misaligned. Assertion of
BERR and HALT during burst fill cycles of a burst operation causes inde-
pendent bus error and halt operations. The processor remains halted until
HALT is negated, and then handles the bus error as described in the previous
paragraphs.

6.2 CACHE RESET

When a hardware reset of the processor occurs, all valid bits of both caches
are cleared. The cache enable bits, burst enable bits, and the freeze bits in
the cache control register (CACR) for both caches (refer to Figure 6-14) are
also cleared, effectively disabling both caches. The WA bit in the CACR is
also cleared.

6.3 CACHE CONTROL

6.3.1

6-20

Only the MC68030 cache control circuitry can directly access the cache arrays,
but the supervisor program can set bits in the CACR to exercise control over
cache operations. The supervisor also has access to.the cache address reg-
ister (CAAR), which contains the address for a cache entry to be cleared.

Cache Control Register

The CACR, shown in Figure 6-14, is a 32-bit register that can be written or
read by the MOVEC instruction or indirectly modified by a reset. Five of the
bits (4-0) control the instruction cache; six other bits (13-8) control the data
cache. Each cache is controlled independently of the other, although a similar
operation can be performed for both caches by a single MOVEC instruction.
For example, loading a long word in which bits 3 and 11 are set into the
CACR clears both caches. Bits 31-14 and 7-5 are reserved for Motorola
definition. They are currently read as zeros and are ignored when written.
For future compatibility, writes should not set these bits.

MC68030 USER’S MANUAL MOTOROLA

a W 13 12 1 10 9 8 7 6 5 4 3 2 1 0
000000000000000000|WA|DBE|CD|CED| FD|ED| 0 | 0 | 0 IIBEl al |CEI| i l £l |

WA = Write Allocate

DBE = Data Burst Enable

CD = Clear Data Cache

CED = Clear Entry in Data Cache
FD = Freeze Data Cache

ED = Enable Data Cache

IBE = Instruction Burst Enable
Cl = Clear Instruction Cache
CEl = Clear Entry in Instruction Cache
FI = Freeze Instruction Cache
El = Enable Instruction Cache

Figure 6-14. Cache Control Register

6.3.1.1 WRITE ALLOCATE. Bit 13, the WA bit, is set to select the write-allocation
mode (refer to 6.1.2.1 WRITE ALLOCATION) for write cycles. Clearing this bit
selects the no-write-allocation mode. A reset operation clears this bit. The
supervisor should set this bit when it shares data with the user task or when
any task maps multiple logical addresses to one physical address. If the data
cache is disabled or frozen, the WA bit is ignored.

6.3.1.2 DATA BURST ENABLE. Bit 12, the DBE bit, is set to enable burst filling of
the data cache. Operating systems and other software set this bit when burst
filling of the data cache is desired. A reset operation clears the DBE bit.

6.3.1.3 CLEAR DATA CACHE. Bit 11, the CD bit, is set to clear all entries in the
data cache. Operating systems and other software set this bit to clear data
from the cache prior to a context switch. The processor clears all valid bits
in the data cache at the time a MOVEC instruction loads a one into the CD
bit of the CACR. The CD bit is always read as a zero.

6.3.1.4 CLEAR ENTRY IN DATA CACHE. Bit 10, the CED bit, is set to clear an entry
in the data cache. The index field of the CAAR (see Figure 6-15) corresponding
to the index and long-word select portion of an address specifies the entry
to be cleared. The processor clears only the specified long word by clearing
the valid bit for the entry at the time a MOVEC instruction loads a one into
the CED bit of the CACR, regardless of the states of the ED and FD bits. The
CED bit is always read as a zero.

MOTOROLA MC68030 USER'S MANUAL 6-21

6.3.1.5 FREEZE DATA CACHE. Bit 9, the FD bit, is set to freeze the data cache.
When the FD bit is set and a miss occurs during a read or write of the data
cache, the indexed entry is not replaced. However, write cycles that hit in
the data cache cause the entry to be updated even when the cache is frozen.
When the FD bit is clear, a miss in the data cache during a read cycle causes
the entry (or line) to be filled, and the filling of entries on writes that miss
are then controlled by the WA bit. A reset operation clears the FD bit.

6.3.1.6 ENABLE DATA CACHE. Bit 8, the ED bit, is set to enable the data cache.
When it is cleared, the data cache is disabled. A reset operation clears the
ED bit. The supervisor normally enables the data cache, but it can clear ED
for system debugging or emulation, as required. Disabling the data cache
does not flush the entries. If it is enabled again, the previously valid entries
remain valid and can be used.

6.3.1.7 INSTRUCTION BURST ENABLE. Bit 4, the IBE bit, is set to enable burst
filling of the instruction cache. Operating systems and other software set this
bit when burst filling of the instruction cache is desired. A reset operation
clears the IBE bit.

6.3.1.8 CLEAR INSTRUCTION CACHE. Bit 3, the Cl bit, is set to clear all entries in
the instruction cache. Operating systems and other software set this bit to
clear instructions from the cache prior to a context switch. The processor
clears all valid bits in the instruction cache at the time a MOVEC instruction
loads a one into the Cl bit of the CACR. The CI bit is always read as a zero.

6.3.1.9 CLEAR ENTRY IN INSTRUCTION CACHE. Bit 2, the CEl bit, is set to clear
an entry in the instruction cache. The index field of the CAAR (see Figure
6-15) corresponding to the index and long-word select portion of an address
specifies the entry to be cleared. The processor clears only the specified long
word by clearing the valid bit for the entry at the time a MOVEC instruction
loads a one into the CEl bit of the CACR, regardless of the states of the El
and Fl bits. The CEl bit is always read as a zero.

6-22 MC68030 USER'S MANUAL MOTOROLA

6.3.1.10 FREEZE INSTRUCTION CACHE. Bit 1, the Fl bit, is set to freeze the in-
struction cache. When the FI bit is set and a miss occurs in the instruction
cache, the entry (or line) is not replaced. When the Fl bit is cleared to zero,
a miss in the instruction cache causes the entry {or line) to be filled. A reset
operation clears the Fl bit.

6.3.1.11 ENABLE INSTRUCTION CACHE. Bit 0, the El bit, is set to enable the in-
struction cache. When it is cleared, the instruction cache is disabled. A reset
operation clears the El bit. The supervisor normally enables the instruction
cache, but it can clear El for system debugging or emulation, as required.
Disabling the instruction cache does not flush the entries. If it is enabled
again, the previously valid entries remain valid and may be used.

6.3.2 Cache Address Register

The CAAR is a 32-bit register shown in Figure 6-15. The index field (bits 7-2)
contains the address for the ““clear cache entry’” operations. The bits of this
field correspond to bits 7-2 of addresses; they specify the index and a long
word of a cache line. Although only the index field is used currently, all 32
bits of the register are implemented and are reserved for use by Motorola.

31 8 7 2 1 0
| CACHE FUNCTION ADDRESS INDEX | |

Figure 6-15. Cache Address Register

MOTOROLA MC68030 USER'S MANUAL 6-23

SECTION 7
BUS OPERATION

This section provides a functional description of the bus, the signals that
control it, and the bus cycles provided for data transfer operations. It also
describes the error and halt conditions, bus arbitration, and the reset oper-
ation. Operation of the bus is the same whether the processor or an external
device is the bus master; the names and descriptions of bus cycles are from
the point of view of the bus master. For exact timing specifications, refer to
SECTION 13 ELECTRICAL CHARACTERISTICS.

The MC68030 architecture supports byte, word, and long-word operands,
allowing access to 8-, 16-, and 32-bit data ports through the use of asyn-
chronous cycles controlled by the data transfer and size acknowledge inputs
(DSACKO and DSACK1).

Synchronous bus cycles controlled by the synchronous termination signal
(STERM) can only be used to transfer data to and from 32-bit ports.

The MC68030 allows byte, word, and long-word operands to be located in
memory on any byte boundary. For a misaligned transfer, more than one
bus cycle may be required to complete the transfer, regardless of port size.
For a port less than 32 bits wide, multiple bus cycles may be required for an
operand transfer due to either misalignment or a port width smaller than the
operand size. Instruction words and their associated extension words must
be aligned on word boundaries. The user should be aware that misalignment
of word or long-word operands can cause the MC68030 to perform multiple
bus cycles for the operand transfer; therefore, processor performance is
optimized if word and long-word memory operands are aligned on word or
long-word boundaries, respectively.

7.1 BUS TRANSFER SIGNALS

The bus transfers information between the MC68030 and an external mem-
ory, coprocessor, or peripheral device. External devices can accept or provide
8 bits, 16 bits, or 32 bits in parallel and must follow the handshake protocol
described in this section. The maximum number of bits accepted or provided
during a bus transfer is defined as the port width. The MC68030 contains an

MOTOROLA MC68030 USER'S MANUAL 7-1

7-2

address bus that specifies the address for the transfer and a data bus that
transfers the data. Control signals indicate the beginning of the cycle, the
address space and the size of the transfer, and the type of cycle. The selected
device then controls the length of the cycle with the signal(s) used to ter-
minate the cycle. Strobe signals, one for the address bus and another for the
data bus, indicate the validity of the address and provide timing information
for the data.

The bus can operate in an asynchronous mode identical to the MC68020 bus
for any port width. The bus and control input signals used for asynchronous
operation are internally synchronized to the MC68030 clock, introducing a

_delay. This delay is the time period required for the MC68030 to sample an

asynchronous input signal, synchronize the input to the internal clocks of the
processor, and determine whether it is high or low. Figure 7-1 shows the
relationship between the clock signal and the associated internal signal of a
typical asynchronous input.

CIK L

EXT

\|_

SYNC DELAY >

A

Figure 7-1. Relationship between External and Internal Signals

Furthermore, for all asynchronous inputs, the processor latches the level of
the input during a sample window around the falling edge of the clock signal.
This window is illustrated in Figure 7-2. To ensure that an input signal is
recognized on a specific falling edge of the clock, that input must be stable
during the sample window. If an input makes a transition during the window
time period, the level recognized by the processor is not predictable; how-
ever, the processor always resolves the latched level to either a logic high
or low before using it. In addition to meeting input setup and hold times for
deterministic. operation, all input signals must obey the protocols described
in this section.

MC68030 USER'S MANUAL MOTOROLA

tsy —»

CLK

EXT

.

SAMPLE
WINDOW

Figure 7-2. Asynchronous Input Sample Window

A device with a 32-bit port size can also provide a synchronous mode transfer.
In synchronous operation, input signals are externally synchronized to the
processor clock, and the synchronizing delay is not incurred.

Synchronous inputs (STERM, CBACK, and CIIN) must remain stable during
a sample window for all rising edges of the clock during a bus cycle (i.e.,
while address strobe (AS) is asserted), regardless of when the signals are
asserted or negated, to ensure proper operation. This sample window is
defined by the synchronous input setup and hold times (see MC68030EC/D,
MC68030 Electrical Specifications).

7.1.1 Bus Control Signals

The external cycle start (ECS) signal is the earliest indication that the pro-
cessor is initiating a bus cycle. The MC68030 initiates a bus cycle by driving
the address, size, function code, read/write, and cache inhibit-out outputs
and by asserting ECS. However, if the processor finds the required program
or data item in an on-chip cache, if a miss occurs in the address translation
cache (ATC) of the memory management unit (MMU), or if the MMU finds
a fault with the access, the processor aborts the cycle before asserting AS.
ECS can be used to initiate various timing sequences that are eventually
qualified with AS. Qualification with AS may be required since, in the case
of an internal cache hit, an ATC miss, or an MMU fault, a bus cycle may be
aborted after ECS has been asserted. The assertion of AS ensures that the
cycle has not been aborted by these internal conditions.

During the first external bus cycle of an operand transfer, the operand cycle
start (OCS) signal is asserted with ECS. When several bus cycles are required

MOTOROLA MC68030 USER’S MANUAL 7-3

to transfer the entire operand, OCS is asserted only at the beginning of the
first external bus cycle. With respect to OCS, an “operand” is any entity
required by the execution unit, whether a program or data item.

The function code signals (FCO-FC2) are also driven at the beginning of a
bus cycle. These three signals select one of eight address spaces (refer to
Table 4-1) to which the address applies. Five address spaces are presently
defined. Of the remaining three, one is reserved for user definition and two
are reserved by Motorola for future use. The function code signals are valid
while AS is asserted.

At the beginning of a bus cycle, the size signals (SIZ0 and SIZ1) are driven
along with ECS and the FCO-FC2. SI1Z0 and SIZ1 indicate the number of bytes
remaining to be transferred during an operand cycle (consisting of one or
more bus cycles) or during a cache fill operation from a device with a port
size that is less than 32 bits. Table 7-2 shows the encoding of SIZ0 and SIZ1.
These signals are valid while AS is asserted. ‘

The read/write (R/W) signal determines the direction of the transfer during
a bus cycle. This signal changes state, when required, at the beginning of a
bus cycle and is valid while AS is asserted. RW only transitions when a write
cycle is preceded by a read cycle or vice versa. The signal may remain low
for two consecutive write cycles.

The read-modify-write cycle signal (RMC) is asserted at the beginning of the
first bus cycle of a read-modify-write operation and remains asserted until
completion of the final bus cycle of the operation. The RMC signal is guar-
anteed to be negated before the end of state 0 for a bus cycle following a
read-modify-write operation.

7.1.2 Address Bus

The address bus signals (A0-A31) define the address of the byte (or the most
significant byte)} to be transferred during a bus cycle. The processor places
the address on the bus at the beginning of a bus cycle. The address is valid
while AS is asserted.

7.1.3 Address Stfobe

AS is a timing signal that indicates the validity of an address on the address
bus and of many control signals. It is asserted one-half clock after the be-
ginning of a bus cycl‘e.

7-4 MC68030 USER'S MANUAL MOTOROLA

7.1.4 Data Bus

The data bus signals (D0-D31) comprise a bidirectional, nonmultiplexed par-
allel bus that contains the data being transferred to or from the processor.
A read or write operation may transfer 8, 16, 24, or 32 bits of data (one, two,
three, or four bytes) in one bus cycle. During a read cycle, the data is latched
by the processor.on the last falling edge of the clock for that bus cycle. For
a write cycle, all 32 bits of the data bus are driven, regardless of the port
width or operand size. The processor places the data on the data bus one-
half clock cycle after AS is asserted in a write cycle.

7.1.5 Data Strobe

The data strobe (DS) is a timing signal that applies to the data bus. For a
read cycle, the processor asserts DS to signal the external device to place
data on the bus. It is asserted at the same time as AS during a read cycle.
For a write cycle, DS signals to the external device that the data to be written
is valid on the bus. The processor asserts DS one full clock cycle after the
assertion of AS during a write cycle.

7.1.6 Data Buffer Enable

The data buffer enable signal (DBEN) can be used to enable external data
buffers while data is present on the data bus. During a read operation, DBEN
is asserted one clock cycle after the beginning of the bus cycle and is negated
as DS is negated. In a write operation, DBEN is asserted at the time AS is
asserted and is held active for the duration of the cycle. In a synchronous
system supporting two-clock bus cycles, DBEN timing may prevent its use.

7.1.7 Bus Cycle Termination Signals

During asynchronous bus cycles, external devices assert the data transfer
and size acknowledge signals (DSACKO and/or DSACK1) as part of the bus
protocol. During a read cycle, the assertion of DSACKx signals the processor
to terminate the bus cycle and to latch the data. During a write cycle, the
assertion of DSACKx indicates that the external device has successfully stored
the data and that the cycle may terminate. These signals also indicate to the
processor the size of the port for the bus cycle just completed, as shown in
Table 7-1. Refer to 7.3.1 Asynchronous Read Cycle for timing relationships
of DSACKO and DSACK1.

MOTOROLA MC68030 USER'S MANUAL 7-56

For synchronous bus cycles, external devices assert the synchronous ter-
mination signal (STERM) as part of the bus protocol. During a read cycle,
the assertion of STERM causes the processor to latch the data. During a write
cycle, it indicates that the external device has successfully stored the data.
In either case, it terminates the cycle and indicates that the transfer was made
to a 32-bit port. Refer to 7.3.2 Asynchronous Write Cycle for timing relation-
ships of STERM.

The bus error (BERR) signal is also a bus cycle termination indicator and can
be used in the absence of DSACKx or STERM to indicate a bus error condition.
It can also be asserted in conjunction with DSACKx or STERM to indicate a
bus error condition, provided it meets the appropriate timing described in
this section and in MC68030EC/D, MC68030 Electrical Specifications. Addi-
tionally, the BERR and HALT signals can be asserted together to indicate a
retry termination. Again, the BERR and HALT signals can be asserted simul-
taneously in lieu of or in conjunction with the DSACKx or STERM signals.

Finally, the autovector (AVEC) signal can be used to terminate interrupt ac-
knowledge cycles, indicating that the MC68030 should internally generate a
vector number to locate an interrupt handler routine. AVEC is ignored during
all other bus cycles.

7.2 DATA TRANSFER MECHANISM

The MC68030 architecture supports byte, word, and long-word operands
allowing access to 8-, 16-, and 32-bit data ports through the use of asyn-
chronous cycles controlled by DSACKO and DSACK1. It also supports syn-
chronous bus cycles to and from 32-bit ports, terminated by STERM. Byte,
word, and long-word operands can be located on any byte boundary, but
misaligned transfers may require additional bus cycles, regardless of port
size. '

When the processor requests a burst mode fill operation, it asserts the cache
burst request (CBREQ) signal to attempt to fill four entries within a line in
one of the on-chip caches. This mode is compatible with nibble, static column,
or page mode dynamic RAMs. The burst fill operation uses synchronous bus
cycles, each terminated by STERM, to fetch as many as four long words.

7.2.1 Dynamic Bus Sizing

The MC68030 dynamically interprets the port size of the addressed device
during each bus cycle, allowing operand transfers to or from 8-, 16-, and 32-
bit ports. During an asynchronous operand transfer cycle, the slave device

MC68030 USER'S MANUAL MOTOROLA

signals its port size {byte, word, or long word) and indicates completion of
the bus cycle to the processor through the use of the DSACKx inputs. Refer
to Table 7-1 for DSACKx encodings and assertion results.

Table 7-1. DSACK Codes and Results

DSACK1 DSACKO Result
H

Insert Wait States in Current Bus Cycle

Complete Cycle — Data Bus Port Size is 16 Bits

H
H L Complete Cycle — Data Bus Port Size is 8 Bits
L H
L L Complete Cycle — Data Bus Port Size is 32 Bits

For example, if the processor is executing an instruction that reads a long-
word operand from a long-word aligned address, it attempts to read 32 bits
during the first bus cycle. (Refer to 7.2.2 Misaligned Operands for the case
of a word or byte address.) If the port responds that it is 32 bits wide, the
MC68030 latches all 32 bits of data and continues with the next operation. If
the port responds that it is 16 bits wide, the MC68030 latches the 16 bits of
valid data and runs another bus cycle to obtain the other 16 bits. The operation
for an 8-bit port is similar, but requires four read cycles. The addressed device
uses the DSACKXx signals to indicate the port width. For instance, a 32-bit
device always returns DSACKx for a 32-bit port (regardless of whether the
bus cycle is a byte, word, or long-word operation).

Dynamic bus sizing requires that the portion of the data bus used for a transfer
to or from a particular port size be fixed. A 32-bit port must reside on data
bus bits 0-31, a 16-bit port must reside on data bus bits 16-32, and an 8-bit
port must reside on data bus bits 24-31. This requirement minimizes the
number of bus cycles needed to transfer data to 8- and 16-bit ports and
ensures that the MC68030 correctly transfers valid data. The MC68030 always
attempts to transfer the maximum amount of data on all bus cycles; for a
long-word operation, it always assumes that the port is 32 bit wide when
beginning the bus cycle.

The bytes of operands are designated as shown in Figure 7-3. The most
significant byte of a long-word operand is OP0, and OP3 is the least significant
byte. The two bytes of a word-length operand are OP2 (most significant) and
OP3. The single byte of a byte-length operand is OP3. These designations
are used in the figures and descriptions that follow.

MOTOROLA MC68030 USER'S MANUAL 7-7

7-8

3 : 0

LONG WORD OPERAND | 0P0 oP1 | op2 [opa |
15 0
WORD OPERAND | 0P2 | 0P3 |
7 0
BYTE OPERAND 0P3

Figure 7-3. Iinternal Operand Representation

Figure 7-4 shows the required organization of data ports on the MC68030
bus for 8-,'16-, and 32-bit devices. The four bytes shown in Figure 7-4 are
connected through the internal data bus and data multiplexer to the external
data bus. This path is the means through which the MC68030 supports dy-
namic bus sizing and operand misalignment. Refer to 7.2.2 Misaligned Op-
erands for the definition of misaligned operand. The data multiplexer
establishes the necessary connections for different combinations of address
and data sizes.

The multiplexer takes the four bytes of the 32-bit bus and routes them to
their required positions. For example, OP0O can be routed to D24-D31, as
would be the normal case, or it can be routed to any other byte position to
support a misaligned transfer. The same is true for any of the operand bytes.
The positioning of bytes is determined by the size (S1Z0 and SIZ1) and address
(A0 and A1) outputs.

The SIZ0 and SIZ1 outputs indicate the remaining number of bytes to be
transferred during the current bus cycle, as shown in Table 7-2.

The number of bytes transferred during a write or noncachable read bus
cycle is.equal to or less than the size indicated by the SIZ0 and SIZ1 outputs,
depending on port width and operand alignment. For example, during the
first bus cycle of a long-word transfer to a word port, the size outputs indicate
that four bytes are to be transferred, although only two bytes are moved on
that bus cycle. Cachable read cycles must always transfer the number of
bytes indicated by the port size.

A0 and A1 also affect operation of the data multiplexer. During an operand
transfer, A2-A31 indicate the long-word base address of that portion of the
operand to be accessed; A0 and A1 indicate the byte offset from the base.
Table 7-3 shows the encodings of A0 and A1 and the corresponding byte
offsets from the long-word base.

MC68030 USER'S MANUAL MOTOROLA

0P0 oP1 0P2 0P3

REGISTER | 0 | 1 | 2 | 3]
MULTIPLEXER [ROUTING AND DUPLICATION | i
/ / \ \ INTERNAL TO
THE MC68030
————— s —[_osroze 023016 . 01508 000 |-—————————
- EXTERNAL BUS
ADDRESS Y A ‘ i
BYTE 0 BYTE 1 BYTE 2 BYTE 3 32.8IT PORT
INCREASING xooood I I | [I
MEMORY
ADDRESSES y Y
xxxxxxx0 BYTE 0 BYTE 1
16-BIT PORT
2 BYTE 2 BYTE 3
a 1 b
xxxxxxx0 BYTE O
1 BYTE 1
8-BIT PORT
2 | B2
3 BYTE 3

Figure 7-4. MIC68030 Interface to Various Port Sizes

Table 7-4 lists the bytes required on the data bus for read cycles that are
cachable. The entries shown as OPn are portions of the requested operand
that are read or written during that bus cycle and are defined by SIZ0, SIZ1,
A0, and A1 for the bus cycle. The PRn and the Nn bytes correspond to the
previous and next bytes in memory, respectively, that must be valid on the
data bus for the specified port size (long word or word) so that the internal
caches operate correctly. (For cachable accesses, the MC68030 assumes that
all portions of the data bus for a given port size are valid.) This same table
applies to noncachable read cycles except that the bytes labeled PRn and Nn
are not required and can be replaced by “don’t cares’’.

Table 7-2. Size Signal Table 7-3. Address Offset
Encoding Encodings
siz1 sIzo Size A1 A0 Offset
0 1 Byte 0 0 +0 Bytes
1 0 Word 0 1 +1 Byte
1 1 3 Bytes 1 0 +2 Bytes
0 0 Long Word 1 1 +3 Bytes

MOTOROLA MC68030 USER'S MANUAL 7-9

Table 7-4. Data Bus Requirements for Read Cycles

Transfer) ' Long-Word Port Word Port if;r':'oarlt
Size Size Address External Data Bytes Required E"“""F“ae'q?l?:: dBV‘es D;;: l?i:/;:s
siz1 [sizo | A1 [Ao |D31:024 D23:D16 D15:08 D7:00 | D31:024 D23:D16 | D31:D24

Byte o | 1 o [o | [os] N T N [N2]| [oprs [N][[ors]
o | 1 o |+ {[prJors] N [N}t [P | ors || | ors]

o | 1 1o [[erai]erJors] N]| [ors [~ || |ors]

o | 1 1| v [[pre]pPri] er ora]| || PR | opa || | oprs]

Word 1o of o {[or2ora] N [N || [o2 | opa || [or2]
1] o0 o | 1 | [pmlora]ors] ~n || [PR | or2 | [[or]

1] 0 1 | o [[eri] PR JTorz[ors] | [o2] ops || |opr]

1| o 1|1 [[pr2]Pri e [or2] | [PR [o2 || |opr2]

3 Byte 1| o | o | [orrJorafors| N ||] opt | op2]| [or]
1] o | 1 | [e lorrJora]ors]| [PR | orm]| [or]

1] 1 1 1o | [pri [pr JorrJora] | [opt [o2 || [opri]

1| 1|1 { [er2eri] er [ori]| [PR | orr || [oPr]

Long 0| o o | o | [oroJori Joraors] [[oro J opt]| [orol]
Word o | o[o 1 []|. P]oro or [or2]| || Pr | oro || [oro]
o | o 1 o | | rrt] PR JToro|ori| || oro | ort | ' [opo |

o | o 111 [Peralpri [PR Joro] { [PR | oro || [opo]

NOTE: The bytes labeled as Nn (Next n) and PRn {Previous n) are only required to be valid for cachable read cycles. They
can be interpreted as don’t cares for noncachable read cycles.

Table 7-5 lists the combinations of SIZ0, SiZ1, A0, and A1 and the corre-
sponding pattern of the data transfer for write cycles from the internal mul-
tiplexer of the MC68030 to the external data bus.

Figure 7-5 shows the transfer of a long-word operand to a word port. In the
first bus cycle, the MC68030 places the four operand bytes on the external
bus. Since the address is long-word aligned in this example, the multiplexer
follows the pattern in the entry of Table 7-5 corresponding to
SIZ0_SIZ1_A0_A1=0000. The port latches the data on bits D16-D31 of the
data bus, asserts DSACK1 (DSACKO remains negated), and the processor

7-10 MC68030 USER'S MANUAL MOTOROLA

Table 7-5. MC68030 Internal to External Data Bus
Multiplexer — Write Cycles

Transfer Size Address External Data Bus Connection
Size Siz1 | sizo | A1 | Ao [D31:D24 D23:D16 D15:D8 D7:D0
Byte 0 1 X x | [ops [ors] ors | ors]
Word 1 0 X o | [op2] ops | ora| ors |
1 o { «x 1 { [op2] op2 | ors | or2 | '
3 Byte 1 1 o | o | [opi] or2] ops | opor
1 1 0 1 | [opr] op1

]
or2 | ops |
|
|

|
|

1 1 1 o | [op1 T or2] ori [or2
[

1 1 1 1 | [op1] opt | or2x | op1
Long Word o | o o f o | [oro]or [or] ors]|
o | o f o f 1 | [oro]oro] opi| o]
o | o | 1 o | [opo] opt] oro opi]
0| o 1 1 | [oro] opo | ori+] opo |

*Due to the current implementation, this byte is output but never used.

x=don't care

NOTE: The OP tables on the external data bus refer to a particular byte of the operand
that is written on that section of the data bus.

3 LONG WORD OPERAND 0
[opo 0Pt 0P2 o3 |
v
031 DATA BUS 016
WORD MEMORY MC68030 MEMORY CONTROL
MsB 158 szt Sizo Al AO OSACKT DSACKD
0P0 0PI o 0 0 0 L H
0P2 0P3 (R I L H

Figure 7-5. Example of Long-Word Transfer to Word Port

MOTOROLA MC68030 USER’S MANUAL 7-11

[%]
o

S2 S4 S0 §2 S4
CLK

|

A2-A31

Al

N

AD

FCO-FC2

SIZi

\

SI1Z0

!
gl
w

Jégjjjquu

)

:
| ;é

0PO —

0P1 —~ 0p3

[~€——— WORD WRITE —D‘*— WORD WRITE ————»

[<€&————— LONG WORD OPERAND WRITE TO 16-BIT PORT —————3»

0P2

ol

Figure 7-6. Long-Word Operand Write Timing (16-Bit Data Port)

7-12 MC68030 USER'S MANUAL MOTOROLA

terminates the bus cycle. It then starts a new bus cycle with
SIZ0_SIZ1-A0_A1=1010 to transfer the remaining 16 bits. SIZ0 and SIZ1
indicate that a word remains to be transferred; A0 and A1 indicate that the
word corresponds to an offset of two from the base address. The multiplexer
follows the pattern corresponding to this configuration of the size and address
signals and places the two least significant bytes of the long word on the
word portion of the bus (D16-D31). The bus cycle transfers the remaining
bytes to the word-size port. Figure 7-6 shows the timing of the bus transfer
signals for this operation.

Figure 7-7 shows a word transfer to an 8-bit bus port. Like the preceding
example, this example requires two bus cycles. Each bus cycle transfers a
single byte. The size signals for the first cycle specify two bytes; for the
second cycle, one byte. Figure 7-8 shows the associated bus transfer signal
timing.

15 WORD OPERAND 0

[o [o3 |
¢ .

D31 DATABUS D24

l;l

BYTE MEMORY MC68030 MEMORY CONTROL
Siz1 sz A AD DSACK1 DSACKO

0P2 1 0 0 0 H L

0P3 0 1 0 1 - H L

Figure 7-7. Example of Word Transfer to Byte Port

7.2.2 Misaligned Operands

Since operands may reside at any byte boundaries, they may be misaligned.
A byte operand is properly aligned at any address; a word operand is mis-
aligned at an odd address; a long word is misaligned at an address that is
not evenly divisible by four. The MC68000, MC68008, and MC68010 imple-
mentations allow long-word transfers on odd-word boundaries but force
exceptions if word or long-word operand transfers are attempted at odd-byte
addresses. Although the MC68030 does not enforce any alignment restric-
tions for data operands (including PC relative data addresses), some per-
formance degradation occurs when additional bus cycles are required for

MOTOROLA MC68030 USER'S MANUAL 7-13

S0 $2 S4 S0 S2 S4
CLK

o X
m T\
0T\

rorz X
w 7

%

@
N
o

2
=|

s

EE
11 NPy

:
;Lﬁ

OSATKD
= 7\ \

D24-031 D—(op2 D el 0P3

o603 »—I 0p3 > 0P3
osos _ > 0P2 »>— 0P3
o1 — > o S>> o

[<—— BYTE WRITE ‘——447 BYTE WRITE ———»~

[WORD OPERAND WRITf ——————

Figure 7-8. Word Operand Write Timing (8-Bit Data Port)

7-14 MC68030 USER'S MANUAL MOTOROLA

long-word or word operands that are misaligned. For maximum performance,
data items should be aligned on their natural boundaries. All instruction
words and extension words must reside on word boundaries. Attempting to
prefetch an instruction word at an odd address causes an address error
exception.

Figure 7-9 shows the transfer of a long-word operand to an odd address in
word-organized memory, which requires three bus cycles. For the first cycle,
the size signals specify a long-word transfer, and the address offset (A2:A0)
is 001. Since the port width is 16 bits, only the first byte of the long word is
transferred. The slave device latches the byte and acknowledges the data
transfer, indicating that the port is 16 bits wide. When the processor starts
the second cycle, the size signals specify that three bytes remain to be trans-
ferred with an address offset (A2:A0) of 010. The next two bytes are trans-
ferred during this cycle. The processor then initiates the third cycle, with the
size signals indicating one byte remaining to be transferred. The address
offset (A2:A0) is now 100; the port latches the final byte; and the operation
is complete. Figure 7-10 shows the associated bus transfer signal timing.

Figure 7-11 shows the equivalent operation for a cachable data read cycle.

Figures 7-12 and 7-13 show a word transfer to an odd address in word-
organized memory. This example is similar to the one shown in Figures 7-9
and 7-10 except that the operand is word sized and the transfer requires only
two bus cycles.

Figure 7-14 shows the equivalent operation for a cachable data read cycle.

3 _ LONG WORD OPERAND 0
[oeo oP1 [0P2 0p3 |

\)

03l DATA BUS D16
WORD MEMORY MC68030 MEMORY CONTROL
MSB LSB SiZI SIZ0 A2 Al A DSACKI DSACKD
XXX 0P0 0 0 o 0 1 L H
0Pl op2 1 1 0 10 L H
oP3 XXX 0 1 1 0 o L H

Figure 7-9. Misaligned Long-Word Transfer to Word Port Example

MOTOROLA MC68030 USER'S MANUAL 7-15

s s s s s s s s s
s X X X

SN / \

w] \
o Y X X

sat __\ / \

s\ /

AW\

= _/ _/ _/

w - _/

&l

E
(
E

)
J
)

[&———— BYTE WRITE WORD WRITE BYTE WRITE ———»{

L
Jr

< LONG WORD OPERAND WRITE >

Figure 7-10. Misaligned Long-Word Transfer to Word Port

MC68030 USER'S MANUAL MOTOROLA

31 LONG WORD OPERAND (REGISTER) 0
| oeo 0P1 o2 | o3|
1
3 CACHE ENTRIES 0
l PR | 0P0 0Pl { 0P2 |
3 0
| ors] N N1 [wm
\
031 DATA BUS =
L |
WORD MEMORY MC68030 MEMORY CONTROL
MSB LSB $IZI SIZo0 A2 Al AD DSACKT ~ DSACKO
PR 0P0 0o o o o 1 L H
0Pl oP2 1 1 0 1 0 L H
0p3 N 6 1 1 0 o0 L H
N1 N2 T8 1 10 L H

Figure 7-11. Misaligned Cachable Long-Word Transfer from Word Port Example

15 WORD OPERAND 0
| 0P2 0P3 |
/

031 DATA BUS D16

-

!

WORD MEMORY

MsB LSB
XXX 0P2
0pP3 XXX

MC68030 MEMORY CONTROL

SiZt S1Z0 A2 Al AD DSACK1 DSACKO
1 0 0 0 1 L H
0 1 0 1 0 L H

Figure 7-12. Misaligned Word Transfer to Word Port Example

MOTOROLA

MC68030 USER’S MANUAL

7-17

[%]
o
4
~
w
=
[7]
=]
w
N

S4
ClK

%

A2-A31

~N oS N oS

C

JOPPYuRpL

iﬁﬁ

OSACKT
DSACKD

DBEN 7 \ / \
024031 ————— 0p2 >— 0p3
016-0238 —— 0P2 — 0p3
08015 ——nl 0p3 —< 0P3
0007 ————< 0p2 < 0P3

<—— WORD WRITE ——-\‘— BYTE WRITE ———»

|<&—— WORD OPERAND WRITE T0 A1/AD=01 ————»{

Figure 7-13. Misaligned Word Transfer to Word Port

7-18 MC68030 USER'S MANUAL MOTOROLA

Figures 7-15 and 7-16 show an example of a long-word transfer to an odd
address in long-word-organized memory. In this example, a long-word access
is attempted beginning at the least significant byte of a long-word-organized
memory. Only one byte can be transferred in the first bus cycle. The second
bus cycle then consists of a three-byte access to a long-word boundary. Since
the memory is long-word organized, no further bus cycles are necessary.

Figure 7-17 shows the equivalent operation for a cachable data read cycle.

7.2.3 Effects of Dynamic Bus Sizing and Operand Misalignment

The combination of operand size, operand alignment, and port size deter-
mines the number of bus cycles required to perform a particular memory
access. Table 7-6 shows the number of bus cycles required for different
operand sizes to different port sizes with all possible alignment conditions
for write cycles and noncachable read cycles. :

Table 7-6. Memory Alignment and Port Size Influence
on Write Bus Cycles

Number of Bus Cycles
A1/A0
00 01 10 1
Instruction* 1:2:4 N/A N/A N/A
Byte Operand 1:1:1 1:1:1 1:1:1 1:1:1
Word Operand 1:1:2 1:2:2 1:1:2 2:2:2
Long-Word Operand 1:2:4 2:3:4 2:2:4 2:3:4

Data Port Size — 32 Bits: 16 Bits:8 Bits
*Instruction prefetches are always two words from a long-word boundary.

This table shows that bus cycle throughput is significantly affected by port
size and alignment. The MC68030 system designer and programmer should
be aware of and account for these effects, particularly in time-critical appli-
cations.

MOTOROLA MC68030 USER'S MANUAL 7-19

15 WORD OPERAND (REGISTER) 0 31 CACHE ENTRY 0
| om o3 | PR 0P2 0P3 N
A
031 DATA BUS T
WORD MEMORY MC68030 MEMORY CONTROL
MSB LSB SIZ1 SIZ0 A2 Al AD DSACKT DSACKOD
PR oP2 1 0 0 0 1 L H
0pP3 N 0 1 0 1 0 L H

Figure 7-14. Example of Misaligned Cachable Word Transfer from Word Bus

31 LONG WORD OPERAND

0
| oo | 0Pl 0P2 o3 |
Y
D31 DATA BUS .00
LONG WORD MEMORY MC68030 MEMORY CONTROL
MSB UMB LMB LS8 SIZl SiZ0 A2 Al AD DSACKT DSACKO
XXX XXX XXX 0P0 0 0 0 1 1 L L
oP1 0pP2 0P3 XXX 1 1 1 0 0 L L

Figure 7-15. Misaligned Long-Word Transfer to Long-Word Port

Table 7-6 shows that the processor always prefetches instructions by reading
a long word from a long-word address (A1:A0=00), regardless of port size
or alignment. When the required instruction begins at an odd-word boundary,
the processor attempts to fetch the entire 32 bits and loads both words into
the instruction cache, if possible, although the second one is the required
word. Even if the instruction access is not cached, the entire 32 bits are latched
into an internal cache holding register from which the two instructions words
can subsequently be referenced. Refer to SECTION 11 INSTRUCTION EXE-
CUTION TIMING for a complete description of the cache holding register and

pipeline operation.

7-20

MC68030 USER'S MANUAL

MOTOROLA

D24-D31 H) S>—

D16-D23 QP0 0P2

D8-D15 oP1 0P3

00-07 H 0PO < op1

[<——— BYTE WRITE ‘——.I“ 3-BYTE WRITE ‘—T

[—————————— LONG WORD OPERAND WRITE ————————»

Figure 7-16. Misaligned Write Cycles to Long-Word Port

MOTOROLA MC68030 USER’'S MANUAL

7-21

7-22

31 LONG WORD OPERAND (REGISTER) 0

[o0] om o2 | o3|
1 .
31 CACHE ENTRIES 0
{2 | PRl PR | oo |
3l 0
[o] e o3 | v
A
031 DATA BUS 5
" LONG WORD MEMORY MC68030 MEMORY CONTROL
MsB umB LMB LS8 Szl SiZ0 A2 Al AD DSACKT DSACKO
PR2 PRI PR 0P0 0 0 0 1 1 L L
oP1 op2 0P3 N 1 1 1 0 0 L L

Figure 7-17. Misaligned Cachable Long-Word Transfer from Long-Word Bus

7.2.4 Address, Size, and Data Bus Relationships

The data transfer examples show how the MC68030 drives data onto or
receives data from the correct byte sections of the data bus. Table 7-7 shows
the combinations of the size signals and address signals that are used to
generate byte enable signals for each of the four sections of the data bus for
noncachable read cycles and all write cycles if the addressed device requires
them. The port size also affects the generation of these enable signals as
shown in the table. The four columns on the right correspond to the four
byte enable signals. Letters B, W, and L refer to port sizes: B for 8-bit ports,
W for 16-bit ports, and L for 32-bit ports. The letters B, W, and L imply that
the byte enable signal should be true for that port size. A dash (—) implies
that the byte enable signal does not apply.

The MC68030 always drives all sections of the data bus because, at the start
of a write cycle, the bus controller does not know the port size. The byte
enable signals in the table apply only to read operations that are not to be
internally cached and to write operations. For cachable read cycles, during
which the data is cached, the addressed port must drive all sections of the
bus on which it resides.

MC68030 USER'S MANUAL MOTOROLA

Table 7-7. Data Bus Write Enable Signals for
Byte, Word, and Long-Word Ports

Data Bus Active Sections
Trgpsfer SIZ1 S1Z0 Al A0 Byte (B) - Word (W) - Long-Word (L) Ports
ize
D31:D24 | D23:D16 | D15:D8 D7:D0
Byte 0 1 0 0 BWL — — —
0 1 0 1 B WL — —
0 1 1 0 BW — L —
0 1 1 1 B w — L
Word 1 0 0 0 BWL WL — —
1 0 0 1 B WL L —
1 0 1 0 BW w L L
1 0 1 1 B w — L
3 Byte 1 1 0 0 BWL WL L —
1 1 0 1 B WL L L
1 1 1 0 BW w L L
1 1 1 1 B w — L
Long Word 0 0 0 0 BWL WL L L
0 0 0 1 B WL L L
0 0 1 0 BW w L L
0 0 1 1 B w —_ L

The table shows that the MC68030 transfers the number of bytes specified
by the size signals to or from the specified address unless the operand is
misaligned or the number of bytes is greater than the port width. In these
cases, the device transfers the greatest number of bytes possible for the port.
For example, if the size is four bytes and the address offset (A1:A0) is 01, a
32-bit slave can only receive three bytes in the current bus cycle. A 16- or
8-bit slave can only receive one byte. The table defines the byte enables for
all port sizes. Byte data strobes can be obtained by combining the enable
signals with the data strobe signal. Devices residing on 8-bit ports can use
the data strobe by itself since there is only one valid byte for every transfer.
These enable or strobe signals select only the bytes required for write cycles
or for noncachable read cycles. The other bytes are not selected, which
prevents incorrect accesses in sensitive areas such as I/0.

Figure 7-18 shows a logic diagram for one method for generating byte data

enable signals for 16- and 32-bit ports from the size and address encodings
and the read/write signal.

MOTOROLA MC68030 USER'S MANUAL 7-23

7.2.5 MC68030 versus MIC68020 Dynamic Bus Sizing

The MC68030 supports the dynamic bus sizing mechanism of the MC68020
for asynchronous bus cycles (terminated with DSACKx) with two restrictions.
First, for a cachable access within the boundaries of an aligned long word,
the port size must be consistent throughout the transfer of each long word.
For example, when a byte port resides at address $00, addresses $01, $02,
and $03 must also correspond to byte ports. Second, the port must supply
as much data as it signals as port size, regardless of the transfer size indicated
with the size signals and the address offset indicated by A0 and A1 for
cachable accesses. Otherwise, dynamic bus sizing is identical in the two
processors.

7.2.6 Cache Filling

7-24

The on-chip data and instruction caches, described in SECTION 6 ON-CHIP
CACHE MEMORIES, are each organized as 16 lines of four long-word entries
each. For each line, a tag contains the most significant bits of the logical
address, FC2 (instruction cache) or FCO-FC2 {data cache), and a valid bit for
each entry in the line. An entry fill operation loads an entire long word
accessed from memory into a cache entry. This type of fill operation is per-
formed when one entry of a line is not valid and an access is cachable. A
burst fill operation is requested when a tag miss occurs for the current cycle
or when all four entires in the cache line are invalid (provided the cache is
enabled and burst filling for the cache is enabled). The burst fill operation
attempts to fill all four entries in the line. To support burst filling, the slave
device must have a 32-bit port and must have a burst mode capability; that
is, it must acknowledge a burst request with the cache burst acknowledge
(CBACK) signal. It must also terminate the burst accesses with STERM and
place a long word on the data bus for each transfer. The device may continue
to supply successive long words, asserting STERM with each one, until the
cache line is full. For further information about filling the cache, both entry
fills and burst mode fills, refer to 6.1.3 Cache Filling, 7.3.4 Synchronous Read
Cycle, 7.3.5 Synchronous Write Cycle, and 7.3.7 Burst Operation Cycles, which
discuss in detail the required bus cycles.

MC68030 USER'S MANUAL MOTOROLA

LLD

R —

Al
I DO UUD = UPPER UPPER DATA (32-BIT PORT)
$i20 UMD= UPPER MIDDLE DATA (32-BIT PORT)
T LMD = LOWER MIDDLE DATA (32-BIT PORT)
D" LLD = LOWER LOWER DATA (32-BIT PORT)
Siz1 UD = UPPER DATA (16-BIT PORT)
T Dc LD = LOWER DATA (16-BIT PORT)
R/W

NOTE: These select lines can be combined with the address decode circuitry, or all
can be generated within the same programmed array logic unit.

Figure 7-18. Byte Data Select Generation for 16- and 32-Bit Ports

MOTOROLA MC68030 USER'S MANUAL 7-25

|

7-26

© 7.2.7 Cache Interactions

The organization and requirements of the on-chip instruction and data caches
affect the interpretation of the DSACKx and STERM signals. Since the MC68030
attempts to load all data operands and instructions that are cachable into
the on-chip caches, the bus may operate differently when caching is enabled.
Specifically, on cachable read cycles that terminate normally, the low-order
address signals (A0 and A1) and the size signals do not apply.

The slave device must supply as much aligned data on the data bus as its
port size allows, regardless of the requested operand size. This means that
an 8-bit port must supply a byte, a 16-bit port must supply a word, and a
32-bit port must supply an entire long word. This data is loaded into the
cache. For a 32-bit port, the slave device ignores A0 and A1 and supplies the
long word beginning at the long-word boundary on the data bus. For a
16-bit port, the device ignores A0 and supplies the entire word beginning at
the lower word boundary on D16-D31 of the data bus. For a byte port, the
device supplies the addressed byte on D24-D31.

If the addressed device cannot supply port-sized data or if the data should
not be cached, the device must assert cache inhibit in (CIIN) as it terminates
the read cycle. If the bus cycle terminates abnormally, the MC68030 does not
cache the data. For details of interactions of port sizes, misalignments, and
cache filling, refer to 6.1.3 Cache Filling.

The caches can also affect the assertion of AS and the operation of a read
cycle. The search of the appropriate cache by the processor begins when the
microsequencer requires an instruction or a data item. At this time, the bus
controller may also initiate an external bus cycle in case the requested item
is not resident in the instruction or data cache. If the bus is not occupied with
another read or write cycle, the bus controller asserts the ECS signal (and
the OCS signal, if appropriate). If an internal cache hit occurs, the external
cycle aborts, and AS is not asserted. This makes it possible to have ECS
asserted on multiple consecutive clock cycles. Notice that there is a minimum
time specified from the negation of ECS to the next assertion of ECS (refer
to MC68030EC/D, MC68030 Electrical Specifications.

Instruction prefetches can occur every other clock so that if, after an aborted
cycle due to an instruction cache hit, the bus controller asserts ECS on the
next clock, this second cycle is for a data fetch. However, data accesses that
hit in the data cache can also cause the assertion of ECS and an aborted
cycle. Therefore, since instruction and data accesses are mixed, it is possible
to see multiple successive ECS assertions on the external bus if the processor

MC68030 USER'S MANUAL MOTOROLA

is hitting in both caches and if the bus controller is free. Note that, if the bus
controller is executing other cycles, these aborted cycles due to cache hits
may not be seen externally. Also, OCS is asserted for the first external cycle
of an operand transfer. Therefore, in the case of a misaligned data transfer
where the first portion of the operand results in a cache hit (but the bus
controller did not begin an external cycle and then abort it) and the second
portion in a cache miss, OCS is asserted for the second portion of the operand.

7.2.8 Asynchronous Operation

The MC68030 bus may be used in an asynchonous manner. In that case, the
external devices connected to the bus can operate at clock frequencies dif-
ferent from the clock for the MC68030. Asynchronous operation requires
using only the handshake line (AS, DS, DSACK1, DSACKO, BERR, and HALT)
to control data transfers. Using this method, AS signals the start of a bus
cycle, and DS is used as a condition for valid data on a write cycle. Decoding
the size outputs and lower address lines (A0 and A1) provides strobes that
select the active portion of the data bus. The slave device (memory or pe-
ripheral) then responds by placing the requested data on the correct portion
of the data bus for a read cycle or latching the data on a write cycle, and
asserting the DSACK1/DSACKO combination that corresponds to the port size
to terminate the cycle. If no slave responds or the access is invalid, external
control logic asserts the BERR or BERR and HALT signal(s) to abort or retry
the bus cycle, respectively.

The DSACKx signals can be asserted before the data from a slave device is
valid on a read cycle. The length of time that DSACKx may precede data is
given by parameter #31, and it must be met in any asynchronous system to
insure that valid data is latched into the processor. (Refer to MC68030EC/D,
MC68030 Electrical Specifications for timing parameters.) Notice that no max-
imum time is specified from the assertion of AS to the assertion of DSACKx.
Although the processor can transfer data in a minimum of three clock cycles

“when the cycle is terminated with DSACKX, the processor inserts wait cycles
in clock period increments until DSACKx is recognized.

The BERR and/or HALT signals can be asserted after the DSACKx signal(s)
is asserted. BERR and/or HALT must be asserted within the time given as
parameter #48, after DSACKx is asserted in any asynchronous system. If this
maximum delay time is violated, the processor may exhibit erratic behavior.

MOTOROLA MC68030 USER'S MANUAL 7-27

For asynchronous read cycles, the value of CIIN is internally latched on the
rising edge of bus cycle state 4. Refer to 7.3.1 Asynchronous Read Cycle for
more details on the states for asynchonous read cycles.

During any bus cycle terminated by DSACKx or BERR, the assertion of CBACK
is completely ignored.

7.2.9 Synchronous Operation with DSACKx

7-28

Although cycles terminated with the DSACKx signals are classified as asyn-
chronous and cycles terminated with STERM are classified as synchronous,
cycles terminated with DSACKx can also operate synchronously in that sig-
nals are interpreted relative to clock edges.

The devices that use these cycles must synchronize the responses to the
MC68030 clock to be synchronous. Since they terminate bus cycles with the
DSACKx signals, the dynamic bus sizing capabilities of the MC68030 are
available. In addition, the minimum cycle time for these cycles is also three
clocks. ‘

To support those systems that use the system clock to generate DSACKx and
other asynchronous inputs, the asynchronous input setup time (parameter
#47A) and the asynchronous input hold time (parameter #47B) are given. If
the setup and hold times are met for the assertion or negation of a .signal,
such as DSACKx, the processor can be guaranteed to recognize that signal
level on that specific falling edge of the system clock. If the assertion of
DSACKXx is recognized on a particular falling edge of the clock, valid data is
latched into the processor (for a read cycle) on the next falling clock edge
provided the data meets the data setup time (parameter #27). In this case,
parameter #31 for asynchronous operation can be ignored. The timing pa-
rameters referred to are described in MC68030EC/D, MC68030 Electrical Spec-
ifications. If a system asserts DSACKx for the required window around the
falling edge of S2 and obeys the proper bus protocol by maintaining DSACKx
(and/or BERR/HALT) until and throughout the clock edge that negates AS
{(with the appropriate asynchronous input hold time specified by parameter
#47B), no wait states are inserted. The bus cycle runs at its maximum speed
(three clocks: per cycle) for bus cycles terminated with DSACKXx.

MC68030 USER'S MANUAL MOTOROLA

To assure proper operation in a synchronous system when BERR or BERR
and HALT is asserted after DSACKx, BERR (and HALT) must meet the ap-
propriate setup time (parameter #27A) prior to the falling clock edge one
clock cycle after DSACKXx is recognized. This setup time is critical, and the
MC68030 may exhibit erratic behavior if it is violated.

When operating synchronously, the data-in setup and hold times for syn-
chronous cycles may be used instead of the timing requirements for data
relative to the DS signal. ‘

The value of CIIN is latched on the rising edge of bus cycle state 4 for all
cycles terminated with DSACKx.

7.2.10 Synchronous Operation with STERM

The MC68030 supports synchronous bus cycles terminated with STERM.
These cycles, for 32-bit ports only, are similar to cycles terminated with
DSACKx. The main difference is that STERM can be asserted (and data can
be transferred) earlier than for a cycle terminated with DSACKX, causing the
processor to perform a minimum access time transfer in two clock periods.
However, wait cycles can be inserted by delaying the assertion of STERM
appropriately.

Using STERM instead of DSACKXx in any bus cycle makes the cycle synchron-
ous. Any bus cycle is synchronous if:

1. Neither DSACKx nor AVEC is recognized during the cycle.
2. The port size is 32 bits.

3. Synchronous input setup and hold time requirements (specifications
#60 and #61) for STERM are met.

Burst mode operation requires the use of STERM to terminate each of its
cycles. The first cycle of any burst transfer must be a synchronous cycle as
described in the preceding paragraph. The exact timing of this cycle is con-
trolled by the assertion of STERM, and wait cycles can be inserted as nec-
essary. However, the minimum cycle time is two clocks. If a burst operation
is initiated and allowed to terminate normally, the second, third, and fourth
cycles latch data on successive falling edges of the clock at a minimum.
Again, the exact timing for these subsequent cycles is controlled by the timing
of STERM for each of these cycles, and wait cycles can be inserted as nec-
essary.

MOTOROLA MC68030 USER'S MANUAL 7-29

Although the synchronous input signals (STERM, CIIN, and CBACK) must be
stable for the appropriate_ggtup and hold times relative to every rising edge
of the clock during which AS is asserted, the assertion or negation of CBACK

-and CIIN is internally latched on the rising edge of the clock for which' STERM

is asserted in a synchronous cycle.

The STERM signal can be generated from the address bus and function code
value and does not need to be qualified with the AS signal. If STERM is
asserted and no cycle is in progress (even if the cycle has begun, ECS is
asserted and then the cycle is aborted), STERM is ignored by the MC68030.

Similarly, CBACK can be asserted independently of the assertion of CBREQ.
If a cache burst is not requested, the assertion of CBACK is ignored.

The assertion of CIIN is ignored when the appropriate cache is not enabled
or when cache inhibit out (CIOUT) is asserted. It is also ignored during write
cycles or translation table searches.

" NOTE

STERM and DSACKx should never be asserted durlng the same bus
cycle.

7.3 DATA TRANSFER CYCLES

7-30

The transfer of data between the processor and other devices involves the
following signals:

® Address Bus A0-A31
® Data Bus D0-D31

e Control Signals

The address and data buses are both parallel nonmultiplexed buses. The bus
master moves data on the bus by issuing control signals, and the asynchron-
ous/synchronous bus uses a handshake protocol to insure correct movement
of the data. In all bus cycles, the bus master is responsible for de-skewing
all signals it issues at both the start and the end of the cycle. In addition, the
bus master is responsible for de-skewing the acknowledge and data signals
from the slave devices. The following paragraphs define read, write, and
read-modify-write cycle operations. An additional paragraph describes burst
mode transfers.

MC68030 USER’S MANUAL MOTOROLA

7.3.1

Each of the bus cycles is defined as a succession of states. These states apply
to the bus operation and are different from the processor states described
in SECTION 4 PROCESSING STATES. The clock cycles used in the descrip-
tions and timing diagrams of data transfer cycles are independent of the
clock frequency. Bus operations are described in terms of external bus states.

Asynchronous Read Cycle

During aread cycle, the processor receives data from a memory, coprocessor,
or peripheral device. If the instruction specifies a long-word operation, the
MC68030 attempts to read four bytes at once. For a word operation, it at-
tempts to read two bytes at once, and for a byte operation, one byte. For
some operations, the processor requests a three-byte transfer. The processor
properly positions each byte internally. The section of the data bus from
which each byte is read depends on the operand size, address signals (A0-A1),
CIIN and CIOUT, whether the internal caches are enabled, and the port size.
Refer to 7.2.1 Dynamic Bus Sizing, 7.2.2 Misaligned Operands, and 7.2.6
Cache Filling for more information on dynamic bus sizing, misaligned op-
erands, and cache interactions.

Figure 7-19 is a flowchart of an asynchronous long-word read cycle. Figure
7-20 is a flowchart of a byte read cycle. The following figures show functional
read cycle timing diagrams specified in terms of clock periods. Figure 7-21
corresponds to byte and word read cycles from a 32-bit port. Figure 7-22
corresponds to a long-word read cycle from an 8-bit port. Figure 7-23 also
applies to a long-word read cycle, but from a 16-bit port.

State 0
The read cycle starts in state 0 (S0). The processor drives ECS low, indi-

- cating the beginning of an external cycle. When the cycle is the first external
cycle of a read operand operation, operand cycle start (OCS) is driven low
at the same time. During SO, the processor places a valid address on
A0-A31 and valid function codes on FCO-FC2. The function codes select
the address space for the cycle. The processor drives R/W high for a read
cycle and drives DBEN inactive to disable the data buffers. SIZ0-SIZ1 be-
come valid, indicating the number of bytes requested to be transferred.
CIOUT also becomes valid, indicating the state of the MMU ClI bit in the
address translation descriptor or in the appropriate TTx register.

MOTOROLA MC68030 USER'S MANUAL 7-31

PROCESSOR

ADDRESS DEVICE

1) ASSERT ECS/0CS FOR ONE-HALF CLOCK

2) SET R/W T0 READ

3) DRIVE ADDRESS ON AC-A31

4) DRIVE FUNCTION CODE ON FCO-FC2

5) DRIVE SIZE (S120-51Z1) (FOUR BYTES)

6) CACHE INHIBIT OUT (CIOUT) BECOMES VALID
7) ASSERT ADDRESS STROBE (AS)

8) ASSERT DATA STROBE (DS}

8) ASSERT DATA BUFFER ENABLE (DBEN)

EXTERNAL DEVICE

PRESENT DATA

ACQUIRE DATA

1) DECODE ADDRESS
2) PLACE DATA ON D0-D31
3) ASSERT DATA TRANSFER AND SIZE ACKNOWLEDGE (DSACKx)

1) SAMPLE CACHE INHIBIT IN (CIN)
2) LATCH DATA

3) NEGATE AS AND DS

4) NEGATE DBEN

TERMINATE CYCLE

[

L START NEXT CYCLE

1) REMOVE DATA FROM D0-D31
2) NEGATE DSACKx

Figure 7-19. Asynchronous Long-Word Read Cycle Flowchart

PROCESSOR

ADDRESS DEVICE

1) ASSERT ECS/CS FOR ONE-HALF CLOCK

2) SET R/W TO READ

3) DRIVE ADDRESS ON AD-A31

4) DRIVE FUNCTION CODE ON FC0-FC2

5) DRIVE SIZE (S120-SI21) {ONE BYTE)

6) CACHE INHIBIT OUT (CIOUT) BECOMES VALID
7) ASSERT ADDRESS STROBE (AS)

8) ASSERT DATA STROBE (DS)

9) ASSERT DATA BUFFER ENABLE (DBEN)

EXTERNAL DEVICE

PRESENT DATA

ACQUIRE DATA

1) DECODE ADDRESS
2) PLACE DATA ON D31-D24 OR
D23-D16 OR
015-08 OR
07-00
(BASED ON AD.A1.CACHE, AND BUS WIDTH)
3) ASSERT DATA TRANSFER AND SIZE ACKNOWLEDGE {DSACKx)

1) SAMPLE CACHE INHIBIT IN (CIIN)
2) LATCH DATA
3) NEGATE AS AND DS

" 4) NEGATE DBEN

TERMINATE CYCLE

|

START NEXT CYCLE

1) REMOVE DATA FROM DATA BUS
2) NEGATE DSACKx

Figure 7-20. AsYnchronous Byte Read Cycle Flowchart

7-32

MC68030 USER'S MANUAL

MOTOROLA

S0 §2 S4 S0 S2 sS4 S0 S2 S4

o
-
=

Y

o X -
w7 \
WORD BYTE
s\ ' /
e/
s T\ /" _/
s _/ _/ _/
s T\ I\ N
5 T\ \ \ /- |
DSACKT
DSACKD
DBEN
024031 - 2 H>—
08.015 A o H>—

|—— WORD READ ‘-ld—‘ BYTE READ 44“ BYTE READ 4.'

Figure 7-21. Asynchronous Byte and Word Read Cycles — 32-Bit Port

MOTOROLA MC68030 USER'S MANUAL 7-33

1%
o
%]
~
[’d
-
[73
o
[
~
[
&
[
=]
[’
~
[7d
-
%]
=]
[
)
4
&~

CLK

A2-A31

Al

A0

FCO-FC2

SIiZ1

LONG WORD 3-BYTE WORD BYTE

m|
o
&l

JéngJUJJu
11 I5NSn8! r

al

DRI Rl

BRIl i
RN

LJi

D24-D31 0P0 < o1) 0P2 opP3

D16-023

D8-D1S

00-07

VAVEY

[<€&— BYTE READ > BYTE READ r|~ BYTE READ ‘—“—— BYTE READ ~————=1

LONG WORD OPERAND READ FROM 8-BIT PORT >

A

Figure 7-22. Long-Word Read — 8-Bit Port with CIOUT Asserted

7-34 MC68030 USER'S MANUAL MOTOROLA

SO S2 S4 S0 S2 S4 S0 §2 S4
CLK

2

v T\

0 T\
oz X X X

s T\ S

s T\

v/

~—
Ve

O

~

LONG WORD WORD LONG WORD

=\ W,
e N e \ I
5 —\ —\ \ s
DSACK1
oAk / : \
DBEN
D24-031 0P0 as o

LONG WORD READ
r———— WORD READ 4«— WORD READ ———»>ft— FROM 32-BIT PORT ——»\

lae———— LONG WORD OPERAND READ FROM 16-BIT PORT . gu

Figure 7-23. Long-Word Read — 16-Bit and 32-Bit Port

MOTOROLA MC68030 USER’S MANUAL 7-35

7-36

State 1
One-half clock later in state 1 (S1), the processor asserts AS indicating that
the address on the address bus is valid. The processor also asserts DS also
during S1. In addition, the ECS (and OCS, if asserted) signal is negated
during S1.

State 2

During state 2 (S2), the processor asserts DBEN to enable external data
buffers. The selected device uses R/W, SIZ0-SIZ1, A0-A1, CIOUT, and DS
to place its information on the data bus, and drives CIIN if appropriate.
Any or all of the bytes (D24-D31, D16-D23, D8-D15, and D0-D7) are se-
lected by SIZ0-SIZ1 and A0-A1. Concurrently, the selected device asserts
DSACKXx.

State 3

As long as at least one of the DSACKx signals is recognized by the end of
S2 (meeting the asynchronous input setup time requirement), data is latched
on the next falling edge of the clock, and the cycle terminates. If DSACKx
is not recognized by the start of state 3 (S3), the processor inserts wait
states instead of proceeding to states 4 and 5. To ensure that wait states
are inserted, both DSACKO and DSACK1 must remain negated throughout
the asynchronous input setup and hold times around the end of S2. If wait
states are added, the processor continues to sample the DSACKx signals
on the falling edges of the clock until one is recognized.

State 4

The processor samples CIIN at the beginning of state 4 (S4). Since CIIN is
defined as a synchronous input, whether asserted or negated, it must meet
the appropriate synchronous input setup and hold times on every rising
edge of the clock while AS is asserted. At the end of S4 the processor
latches the incoming data.

State 5

The processor negates AS, DS, and DBEN during state 5 (S5). It holds the
address valid during S5 to provide address hold time for memory systems.
R/W, SIZ0-SIZ1, and FCO-FC2 also remain valid throughout S5.

The external device keeps its data and DSACKx signals asserted until it
detects the negation of AS or DS (whichever it detects first). The device
must remove its data and negate DSACKx within approximately one clock
period after sensing the negation of AS or DS. DSACKXx signals that remain
asserted beyond this limit may be prematurely detected for the next bus
cycle.

MC68030 USER'S MANUAL MOTOROLA

7.3.2 Asynchronous Write Cycle

During a write cycle, the processor transfers data to memory or a peripheral
device. :

Figure 7-24 is a flowchart of a write cycle operation for a long-word transfer.
The following figures show the functional write cycle timing diagrams spec-
ified in terms of clock periods. Figure 7-25 shows two write cycles (between
two read cycles with no idle time) for a 32-bit port. Figure 7-26 shows byte
and word write cycles to a 32-bit port. Figure 7-27 shows a long-word write
cycle to an 8-bit port. Figure 7-28 shows a long-word write cycle to a 16-bit
port.

PROCESSOR EXTERNAL DEVICE

ADDRESS DEVICE

1) ASSERT ECS/0CS FOR ONE-HALF CLOCK

2) DRIVE ADDRESS ON AQ-A31

3) DRIVE FUNCTION CODE ON FCO-FC2

4) DRIVE SIZE ($120-S121) (FOUR BYTES)

5) SET R/W T0 WRITE

6) CACHE INKIBIT OUT (CIOUT) BECOMES VALID
7) ASSERT ADDRESS STROBE (AS)

8) ASSERT DATA BUFFER ENABLE (DBEN)

9) DRIVE DATA LINES DO-D31

10) ASSERT DATA STROBE (DS) - ACCEPT DATA
1) DECODE ADDRESS
2) STORE DATA FROM D0-D31)
TERMINATE OUTPUT TRANSFER - 3) ASSERT DATA TRANSFER AND SIZE ACKNOWLEDGE (DSACKx)

\ 1) NEGATE AS AND DS
2) REMOVE DATA FROM DO0-D31
3) NEGATE DBEN TERMINATE CYCLE

‘ 1) NEGATE DSACKx
l START NEXT CYCLE I

Figure 7-24. Asynchronous Write Cycle Flowchart

MOTOROLA MC68030 USER’S MANUAL 7-37

A2-AT

Al

A0

FCO-FC2

Si

pird]

R/W

7-38

X X X X

—~

~

XZ X X — X

2 .

e

7 \ _/

S _/ /" _/

S _/ —/ T/

—/\ S\ /\ /-

T/ /" /7 \ /[~

—/\ /\ /\ — — /

— L /T \ /N /S —__/

7 /T _ /\ ' /~
_>— D — >— —

'_‘ READ I‘ WRITE ,L - WRITE ,I READ WITH WAIT STATES ——»‘

"l | A

Figure 7-25. Asynchronous Read-Write-Read Cycles — 32-Bit Port

State 0 :

The write cycle starts in S0. The processor drives ECS low, indicating the
beginning of an external cycle. When the cycle is the first external cycle
of a write operation, OCS i driven low at the same time. During S0, the
processor places a valid address on A0-A31 and valid function codes on
FCO-FC2. The function codes select the address space for the cycle. The
processor drives R/W low for.a write cycle. SIZ0-SIZ1 become valid, in-
dicating the number of bytes to be transferred. CIOUT also becomes valid,
indicating the state of the MMU ClI bit in the address translation descriptor
or in the appropriate TTx register.

MC68030 USER'S MANUAL MOTOROLA

S0 §2 S4 S0 §2 S4 S0 S2 S4

A2A31 :X
n T
AT\

réu-rcz :X
sin _/

.
2

WORD BYTE

oass C o > iz
D16.023 A 0p3 ' 0p3
08-D15 (w2 > 0p3 0p3
00-07 s > 0p3 0P3

\1‘ WORD WRITE ‘—.1‘; BYTE WRITE ‘Dl“ BYTE WRITE *—‘

Figure 7-26. Asynchronous Byte and Word Write Cycles — 32-Bit Port

MOTOROLA MC68030 USER'S MANUAL 7-39

s X X X X
NN /
BTN\ / __ /
FCO-FC2 :X X X
siz1
A LONG WORD / 3BYTE WORD BYTE
s\ / \

24031 . op0 oP1 > o - 0P3

016-023 D e G 0p3
sots > 0 >— 2 P2 S>—(s
wor _ >—" m - H>—FX o 0P3 0p3

[&———— BYTE WRITE A—.\k BYTE WRITE ‘44——— BYTE WRITE ——bl‘— BYTE WRITE ———

LONG WORB OPERAND READ TO 8-BIT PORT

Figure 7-27. Long-Word Operand Write — 8-Bit Port

7-40 MC68030 USER'S MANUAL MOTOROLA

ClK

A2-A31

Al

>
o

FCO-FC2

SiZ1

%]
N
S

==l
3
=l

JHHJJJLJJJLJ

-
a
i

MOTOROLA

X
/

o<

(

X
i

LONG WORD WORD LONG WORD

><

~

/ A/
\/

0P3 0P3 0P3

LONG WORD WRITE
[&——— WORD WRITE —DL-‘ WORD WRITE —— - — 10 32-BIT PORT

[&———— LONG WORD OPERAND WRITE TO 16-BIT PORT ————»{

Figure 7-28. Long-Word Operand Write — 16-Bit Port

MC68030 USER'S MANUAL

7-41

7-42

State 1
One-half clock later in S1, the processor asserts AS, indicating that the
address on the address bus is valid. The processor also asserts DBEN
during S1, which can enable external data buffers. In addition, the ECS
(and OCS, if asserted) signal is negated during S1.

State 2

During S2, the.processor places the data to be written onto the D0-D31,
and samples DSACKx at the end of S2.

State 3

The processor asserts DS during S3, indicating that the data is stable on
the data bus. As long as at least one of the DSACKx signals is recognized
by the end of S2 (meeting the asynchronous input setup time requirement),
the cycle terminates one clock later. If DSACKXx is not recognized by the
start of S3, the processor inserts wait states instead of proceeding to S4
and S5. To ensure that wait states are inserted, both DSACKO and DSACK1
must remain negated throughout the asynchronous input setup and hold
times around the end of S2. If wait states are added, the processor con-
tinues to sample the DSACKXx signals on the falling edges of the clock until
one is recognized. The selected device uses R/W, DS, SIZ0-SIZ1, and A0-A1
to latch data from the appropriate byte(s) of the data bus (D24-D31, D16-D23,
D8-D15, and D0-D7). SIZ0-SlZ1 and A0-A1 select the bytes of the data
bus. If it has not already done so, the device asserts DSACKx to signal that
it has successfully stored the data.

State 4

The processor issues no new control signals during S4.

State 5

The processor negates AS and DS during S5. It holds the address and data
valid during S5 to provide address hold time for memory systems. R/W,
SIZ0-SIZ1, FC0-FC2, and DBEN also remain valid throughout S5.

The external device must keep DSACKx asserted until it detects the ne-
gation of AS or DS (whichever it detects first). The device must negate
DSACKx within approximately one clock period after sensing the negation
of AS or DS. DSACKXx signals that remain asserted beyond this limit may
be prematurely detected for the next bus cycle.

MC68030 USER'S MANUAL MOTOROLA

7.3.3 Asynchronous Read-Modify-Write Cycle

The read-modify-write cycle performs a read, conditionally modifies the data
in the arithmetic logic unit, and may write the data out to memory. In the
MC68030 processor, this operation is indivisible, providing semaphore ca-
pabilities for multiprocessor systems. During the entire read-modify-write
sequence, the MC68030 asserts the RMC signal to indicate that an indivisible
operation is occurring. The MC68030 does not issue a bus grant (BG) signal
in response to a bus request (BR) signal during this operation. The read
portion of a read-modify-write operation is forced to miss in the data cache
because the data in the cache would not be valid if another processor had
altered the value being read. However, read-modify-write cycles may alter
the contents of the data cache as described in 6.1.2. Data Cache.

No burst filling of the data cache occurs during a read-modify-write operation.

The test and set (TAS) and compare and swap (CAS and CAS2) instructions

are the only MC68030 instructions that utilize read-modify-write operations.

Depending on the compare results of the CAS and CAS2 instructions, the

write cycle(s) may not occur. Table search accesses required for the MMU
are always read-modify-write cycles to the supervisor data space. During

these cycles, a write does not occur unless a descriptor is updated. No data

is internally cached for table search accesses since the MMU uses physical

addresses to access the tables. Refer to SECTION 9 MEMORY MANAGEMENT

UNIT for information about the MMU.

Figure 7-29 is a flowchart of the asynchronous read-modify-write cycle op-
eration. Figure 7-30 is an example of a functional timing diagram of a TAS
instruction specified in terms of clock periods.

State 0

The processor asserts ECS and OCS in SO to indicate the beginning of an
external operand cycle. The processor also asserts RMC in SO to identify
a read-modify-write cycle. The processor places a valid address on A0-A31
and valid function codes on FCO-FC2. The function codes select the address
space for the operation. SIZ0-SIZ1 become valid in SO to indicate the
operand size. The processor drives RW high for the read cycle and sets
CIOUT according to the value of the MMU CI bit in the address translation
descriptor or in the appropriate TTx register.

State 1
One-half clock later in S1, the processor asserts AS, indicating that the
address on the address bus is valid. The processor asserts DS during S1.
In addition, the ECS (and OCS, if asserted) signal is negated during S1.

MOTOROLA MC68030 USER’S MANUAL 7-43

PROCESSOR

LOCK BUS

1) ASSERT READ-MODIFY-WRITE CYCLE (RMC)

!

ADDRESS DEVICE

1) ASSERT ECS/0SC FOR ONE-HALF CLOCK

2} SET R/W TO READ

3) DRIVE ADDRESS ON A0-A31

4) DRIVE FUNCTION CODE ON FCO-FC2

5) DRIVE SIZE ($120-8121)

6) CACHE INHIBIT OUT (CTOUT) BECOMES VALID
7) ASSERT ADDRESS STROBE (AS)

8) ASSERT DATA STROBE (DS)

9) ASSERT DATA BUFFER ENABLE (DBEN)

EXTERNAL DEVICE

PRESENT DATA

ACQUIRE DATA

1) DECODE ADDRESS
2) PLACE DATA ON D0-D31
3) ASSERT DATA TRANSFER

AND SIZE ACKNOWLEDGE (DSACKx)

1) SAMPLE CACHE INHIBIT IN (CTIN)
2) LATCH DATA

- 3) NEGATE AS AND DS
4) NEGATE DBEN

®

IF CAS2 INSTRUCTION AND
ONLY ONE OPERAND READ,
THEN 60 T0 (&); IF

5} START DATA MODIFICATION TERMINATE CYCLE OPERANDS D0 NOT MATCH,
THEN 60 T0 (C): ELSE
60T0

1) REMOVE DATA FROM D0-D31
START QUTPUT TRANSFER 2) NEGATE DSACKx ©®

1) ASSERT ECS/0CS FOR ONE-HALF CLOCK

2) DRIVE ADDRESS ON AO-A31 {IF DIFFERENT)

3) DRIVE SIZE (8120-8121)

4) SET R/W TO WRITE

5) CIOUT BECOMES VALID

6) ASSERT AS

7) ASSERT DBEN

8) PLACE DATA ON D0-D31

9) ASSERT DS ACCEPT DATA

1) DECODE ADDRESS -
2) STORE DATA FROM DO-D31 O]
TERMINATE OUTPUT TRANSFER 3) ASSERT DSACKx
— IF CAS2 INSTRUCTION AND

1) NEGATE AS AND DS ONLY ONE OPERAND

2) REMOVE DATA FROM DO-D31 WRITTEN, THEN GO T0 (D);

3) NEGATE DBEN TERMINATE CYCLE £LSE 60 10 ()

1) NEGATE DSACKx ®

UNLOCK BUS

1) NEGATE RMC

!

L START NEXT CYCLE

Figure 7-29. Asynchronous Read;Modify-Write Cycle Flowchart

7-44

MC68030 USER'S MANUAL

MOTOROLA

"7 E— ~
T\ — L
FCO-FC2 1 _ :::::::X______
so T\ - L
w __/——___ T\
v] [_/
A\ L ST
= \/ S ~_

a -\ . T
T\ . B
DSACKI / \ / - \ : //""_""
e\ / - N . T
w7\ o
024031 } - < 0 S ————
016023 ___} —_ o e
D815 0P3 - < 3 e —
w1 __ > o e
ws_/ 7/
mr [- T
B / ‘____//

INDIVISIBLE CYCLE =|l : F‘ NEXT CYCLE

Figure 7-30. Asynchronous Byte Read-Modify-Write Cycle — 32-Bit Port
(TAS Instruction with CIOUT or CIIN Asserted)

MOTOROLA

MC68030 USER’S MANUAL 7-45

7-46

State 2
During state 2 (S2), the processor drives DBEN active to enable external
data buffers. The selected device uses R/W, S120-SIZ1, A0-A1, and DS to
place information.on the data bus. Any or all of the bytes (D24-D31, D16-D23,
D8-D15, and D0-D7) are selected by SIZ0-SIZ1 and AQG-AT. Concurrently,
the selected device may assert the DSACKx signals.

State 3

As long as at least one of the DSACKx signals is recognized by the end of
S2 (meeting the asynchronous input setup time requirement), data is latched
on the next falling edge of the clock, and the cycle terminates. If DSACKx
is not recognized by the start of S3, the processor inserts wait states instead
of proceeding to S4 and Sb. To ensure that wait states are inserted, both
DSACKO and DSACK1 must remain negated throughout the asynchronous
input setup and hold times around the end of S2. If wait states are added,
the processor continues to sample the DSACKx signals on the falling edges
of the clock until one is recognized.

State 4

The processor samples the level of CIIN at the beginning of S4. At the end
of S4, the processor latches the incoming data.

State 5

The processor negates AS, DS, and DBEN during S5. If more than one read
cycle is required to read in the operand(s), S0-S5 are repeated for each
read cycle. When finished reading, the processor holds the address, R/W,
and FCO-FC2 valid in preparation for the write portion of the cycle.

The external device keeps its data and DSACKx signals asserted until it
detects the negation of AS or DS (whichever it detects first). The device
must remove the data and negate DSACKx within approximately one clock
period after sensing the negation of AS or DS. DSACKXx signals that remain
asserted beyond this limit may be prematurely detected for the next portion
of the operation.

Idle States

The processor does not assert any new control signals during the idle
states, but it may internally begin the modify portion of the cycle at this
time. S6-S11 are omitted if no write cycle is required. If a write cycle is
required, the R/W signal remains in the read mode until S6 to prevent bus
conflicts with the preceding read portion of the cycle; the data bus is not
driven until S8.

MC68030 USER'S MANUAL MOTOROLA

State 6
The processor asserts ECS and OCS in S6 to indicate that another external
cycle is beginning. The processor drives R'W low for a write cycle. CIOUT
also becomes valid, indicating the state of the MMU ClI bit in the address
translation descriptor or in a relevant TTx register. Depending on the write
" operation to be performed, the address lines may change during S6.

State 7
In S7, the processor asserts AS, indicating that the address on the address
bus is valid. The processor also asserts DBEN, which can be used to enable
data buffers during S7. In addition, the ECS (and OCS, if asserted) signal
is negated during S7.

State 8 ' .
During S8, the processor places the data to be written onto D0-D31.

State 9

The processor asserts DS during S9 indicating that the data is stable on
the data bus. As long as at least one of the DSACKXx signals is recognized
by the end of S8 (meeting the asynchronous input setup time requirement),
the cycle terminates one clock later. If DSACKx is not recognized by the
start of S9, the processor inserts wait states instead of proceeding to S10
and S11. To ensure that wait states are inserted, both DSACKO0 and DSACK1
must remain negated throughout the asynchronous input setup and hold
times around the end of S8. If wait states are added, the processor con-
tinues to sample DSACKx signals on the falling edges of the clock until
one is recognized.

The selected device uses R/W, DS, SIZ0-SIZ1, and A0-A1 to latch data from
the appropriate section(s) of the data bus (D24-D31, D16-D23, D8-D15,
and D0-D7). SIZ0-SIZ1 and A0-A1 select the data bus sections. If it has
not already done so, the device asserts DSACKx when it has successfully
stored the data. '

State 10 v ,
The processor issues no new control signals during S10.

MOTOROLA MC68030 USER'S MANUAL 7-47

State 11
The processor negates AS and DS during S11. It holds the address and
data valid during S11 to provide address hold time for memory systems.
R/W and FCO-FC2 also remain valid throughout S11.

If more than one write cycle is required, S6-S11 are repeated for each write
cycle. ‘

The external device keeps DSACKx asserted until it detects the negation
of AS or DS (whichever it detects first). The device must remove its data
and negate DSACKx within approximately one clock period after sensing
the negation of AS or DS. '

7.3.4 Synchronous Read Cycle

7-48

A synchronous read cycle is terminated differently from an asynchronous
read cycle; otherwise, the cycles assert and respond to the same signals, in
the same sequence. STERM rather than DSACKx is asserted by the addressed
external device to terminate a synchronous read cycle. Since STERM must
meet the synchronous setup and hold times with respect to all rising edges
of the clock while AS is asserted, it does not need to be synchronized by the
processor. Only devices with 32-bit ports may assert STERM. STERM is also
used with the CBREQ and CBACK signals during burst mode operation. It
provides a two-clock {minimum) bus cycle for 32-bit ports and single-clock
{minimum) burst accesses, although wait states can be inserted for these

‘cycles as well. Therefore, a synchronous cycle terminated with STERM with

one wait cycle is a three-clock bus cycle. However, note that STERM is as-
serted one-half clock later than DSACKx would be for a similar asynchronous
cycle with zero wait cycles (also three clocks). Thus, if dynamic bus sizing is
not needed, STERM can be used to provide more decision time in an external
cache design than is available with DSACKx for three-clock accesses.

Figure 7-31 is a flowchart of a synchronous long-word read cycle. Byte and
word operations are similar. Figure 7-32 is a functional timing diagram of a
synchronous long-word read cycle.

MC68030 USER'S MANUAL MOTOROLA

PROCESSOR

ADDRESS DEVICE

1) ASSERT ECS/OCS FOR ONE-HALF CLOCK

2) SET R/W T0 READ

3) DRIVE ADDRESS ON AQ-A31

4) DRIVE FUNCTION CODE ON FCO-FC2

5) DRIVE SIZE (S120-SI21) (FOUR BYTES)

6) CACHE INHIBIT QUT (CIOUT) BECOMES VALID

7) ASSERT ADDRESS STROBE (AS)

8) ASSERT CACHE BURST REQUEST (CBREQ) (IF BURST POSSIBLE)
9) ASSERT DATA STROBE (DS)
10) ASSERT DATA BUFFER ENABLE (DBEN)

EXTERNAL DEVICE

> PRESENT DATA

ACQUIRE DATA

1) DECODE ADDRESS
2) PLACE DATA ON DO0-D31
3) ASSERT SYNCHRONOUS TERMINATION (STERM}

1) SAMPLE CACHE INHIBIT IN (TTIN)
AND CACHE BURST ACKNOWLEDGE (CBACK)
2) LATCH DATA
3) NEGATE AS AND DS
4) NEGATE DBEN

> TERMINATE CYCLE

l 1) REMOVE DATA FROM D0-D3t

2) NEGATE STERM
START NEXT CYCLE

Figure 7-31. Synchronous Long-Word Read Cycle Flowchart —
No Burst Allowed

State 0

The read cycle starts with S0. The processor drives ECS low, indicating the
beginning of an external cycle. When the cycle is the first cycle of a read
operand operation, OCS is driven low at the same time. During SO, the
processor places a valid address on A0—-A31 and valid function codes on
FCO-FC2. The function codes select the address space for the cycle. The
processor drives R/W high for a read cycle and drives DBEN inactive to
disable the data buffers. SIZ1-S1Z0 become valid, indicating the number
of bytes to be transferred. CIOUT also becomes valid, indicating the state
of the MMU Cl bit in the address translation descriptor or in the appropriate
TTx register.

State 1

One-half clock later in S1, the processor asserts AS; indicating that the
address on the address bus is valid. The processor also asserts DS during
S1. If the burst mode is enabled for the appropriate on-chip cache and all
four long words of the cache entry are invalid, (i.e., four long words can
be read in), CBREQ is asserted. In addition, the ECS (and OCS, if asserted)
signal is negated during S1.

MOTOROLA MC68030 USER'S MANUAL 7-49

siz1 j—_
a siz0 - 5

RAW 7_—
=\

(=1
o
1%

Figure 7-32. Synchronous Read with CIIN Asserted and CBACK Negated

7-50 MC68030 USER'S MANUAL MOTOROLA

State 2

The selected device uses R/W, S1Z0-SIZ1, A0-A1, and CIOUT to place its
information on the data bus. Any or all of the byte sections of the data bus
(D24-D31, D16-D23, D8-D15, and D0-D7) are selected by SIZ0-SIZ1 and
A0-A1. During S2, the processor drives DBEN active to enable external
data buffers. In systems that use two-clock synchronous bus cycles, the
timing of DBEN may prevent its use. At the beginning of S2, the processor
samples the level of STERM. If STERM is recognized, the processor latches
the incoming data at the end of S2. If the selected data is not to be cached
for the current cycle or if the device cannot supply 32 bits, CIIN must be
asserted at the same time as STERM. In addition, the state of CBACK is
latched when STERM is recognized.

Since CIIN, CBACK, and STERM are synchronous signals, they must meet
the synchronous input setup and hold times for all rising edges of the clock
while AS is asserted. If STERM is negated at the beginning of S2, wait
states are inserted after S2, and STERM is sampled on every rising edge
thereafter until it is recognized. Once STERM is recognized, data is latched
on the next falling edge of the clock (corresponding to the beginning of

State 3
The processor negates AS, DS, and DBEN during S3. It holds the address
valid during S3 to simplify memory interfaces. R/W, SIZ0-SIZ1, and FCO-FC2
also remain valid throughout S3.

The external device must keep its data asserted throughout the synchron-
ous hold time for data from the beginning of S3. The device must remove
its data within one clock after asserting STERM and negate STERM within
two clocks after asserting STERM; otherwise, the processor may inad-
vertently use STERM for the next bus cycle.

7.3.5 Synchronous Write Cycle

A synchronous write cycle is terminated differently from an asynchronous
write cycle and the data strobe may not be useful. Otherwise, the cycles
assert and respond to the same signal, in the same sequence. STERM is
asserted by the external device to terminate a synchronous write cycle. The
discussion of STERM in the preceding section applies to write cycles as well
as to read cycles. '

DS is not asserted for two-clock synchronous write cycles; therefore, the
clock (CLK) may be used as the timing signal for latching the data. In addition,
there is.no time from the latest assertion of AS and the required assertion

MOTOROLA MC68030 USER'S MANUAL 7-51

7-52

of STERM for any two-clock synchronous bus cycle. The system must qualify
amemory write with the assertion of AS to ensure that the write is not aborted
by internal conditions within the MC68030.

Figure 7-33 is a flowchart of a synchronous write cycle. Figure 7-34 is a
functional timing diagram of this operation with wait states.

PROCESSOR EXTERNAL DEVICE

ADDRESS DEVICE

1) ASSERT ECS/OCS FOR ONE-HALF CLOCK
2) DRIVE ADDRESS ON A0-A31
3) DRIVE FUNCTION CODE ON FCO-FC2
4) DRIVE SIZE (S120-SIZ1) (FOUR BYTES)
5) SET R/W T0 WRITE
6) CACHE INHIBIT OUT (CIOUT) BECOMES VALID
7) ASSERT ADDRESS STROBE (AS)
8) ASSERT DATA BUFFER ENABLE (DBEN)
9) DRIVE DATA LINES DO-D31
10) ASSERT DATA STROBE (DS) (IF WAIT STATES) > ACCEPT DATA

1) DECODE ADDRESS
-2) ‘STORE DATA FROM DO-D31
TERMINATE OUTPUT TRANSFER 3) ASSERT SYNCHRONOUS TERMINATION (STERM)

1) NEGATE AS (AND DS)’
2) REMOVE DATA FROM D0-D31

3) NEGATE DBEN TERMINATE CYCLE

'

START NEXT CYCLE I

1) NEGATE STERM

Figure 7-33. Synchronous Write Cycle Flowchart

State 0

The write cycle starts with SO. The processor drives ECS low, indicating
the beginning of an external cycle. When the cycle is the first cycle of a
write operation, OCS is driven low at the same time. During S0, the pro-
cessor places a valid address on A0-A31 and valid function codes on
FCO-FC2. The function codes select the address space for the cycle. The
processor drives R/W low for a write cycle. SIZ0-SIZ1 become valid, in-
dicating the number of bytes to be transferred. CIOUT also becomes valid,
indicating the state of the MMU Cl bit in the address translation descriptor
or in the appropriate TTx register.

State 1
One-half clock later in S1, the processor asserts AS, indicating that the
address on the address bus is valid. The processor also asserts DBEN
during S1, which may be used to enable the external data buffers. In ad-
dition, the ECS (and OCS, if asserted) signal is negated during S1.

MC68030 USER'S MANUAL MOTOROLA

S0 ST S2 Sw Sw 83

wan X
ok X
so .\
s\
v]\

N
_\—/_______

[=]
o
i

Figure 7-34. Synchronous Write Cycle with Wait States — CIOUT Asserted

MOTOROLA MC68030 USER'S MANUAL 7-53

State 2

During S2, the processor places the data to be written onto D0-D31. The
selected device uses R/W, CLK, S1Z0-SIZ1, and A0-A1 to latch data from
the appropriate section(s) of the data bus (D24-D31, D16-D23, D8-D15,
and D0-D7). SIZ0-SIZ1 and A0-A1 select the data bus sections. The device
asserts STERM when it has successfully stored the data. If the device does
not assert STERM by the rising edge of S2, the processor inserts wait states
until it is recognized. The processor asserts DS at the end of S2 if wait
states are inserted. For zero-wait-state synchronous write cycles, DS is not
asserted.

State 3
The processor negates AS (and DS, if necessary) during S3. It holds the

address and data valid during S3 to simplify memory interfaces. R/W,
SIZ0-S1Z1, FCO-FC2, and DBEN also remain valid throughout S3.

The addressed device must negate STERM within two clock periods after
asserting it, or the processor may use STERM for the next bus cycle.

7.3.6 Synchronous Read-Modify-Write Cycle

7-54

A synchronous read-modify-write operation differs from an asynchronous
read-modify-write operation only in the terminating signal of the read and
write cycles and in the use of CLK instead of DS latching data in the write
cycle. Like the asynchronous operation, the synchronous read-modify-write
operation is indivisible. Although the operation is synchronous, the burst
mode is never used during read-modify-write cycles.

Figure 7-35 is a flowchart of the synchronous read-modify-write operation.
Timing for the cycle is shown in Figure 7-36.

MC68030 USER'S MANUAL MOTOROLA

PROCESSOR

LOCK BUS

1) ASSERT READ-MODIFY-WRITE CYCLE (RMC)

!

START INPUT TRANSFER

1) ASSERT ECS/OCS FOR ONE-HALF CLOCK

2) DRIVE R/W TO READ

3) DRIVE FUNCTION CODE ON FCO-FC2

4) DRIVE ADDRESS ON AG-A31

5) DRIVE SIZE (S120-S121)

6) CACHE INHIBIT OUT {CIOUT) BECOMES VALID
7) ASSERT ADDRESS STROBE (AS)

8) ASSERT DATA STROBE (D3)

9) ASSERT DATA BUFFER ENABLE (DBEN)

EXTERNAL DEVICE

PRESENT DATA

TERMINATE INPUT TRANSFER

1) DECODE ADDRESS

2) PLACE DATA ON DO-D31

3) ASSERT SYNCHRONOUS TERMINATION
(STERM)

1) SAMPLE CACHE INHIBIT IN (CTN)
2) LATCH DATA

3) NEGATE AS AND DS

4) NEGATE DBEN

®

IF CAS2 INSTRUCTION AND
ONLY ONE OPERAND READ,
THEN GO T0 (R): IF

5) START DATA MODIFICATION TERMINATE CYCLE OPERANDS DO NOT MATCH,
THEN GO 70 (©): ELSE
600
1) REMOVE DATA FROM D0-D31
START OUTPUT TRANSFER 2) NEGATE STERM ©
1) ASSERT ECS/0CS FOR ONE-HALF CLOCK
2) SET R/W TO WRITE
3) DRIVE ADDRESS ON AD-A31 (IF DIFFERENT)
4) DRIVE SIZE (S120-S121) l
5) CIOUT BECOMES VALID
6) ASSERT AS
7) ASSERT DBEN
8) PLACE DATA ON DO-D31
9) ASSERT DS (IF WAIT STATES) ACCEPT DATA
1) DECODE ADDRESS
- 2) STORE DATA FROM DO-D31 0)
. TERMINATE QUTPUT TRANSFER 3) ASSERT STERM
— IF CAS2 INSTRUCTION AND
1) NEGATE AS (AND DS) ONLY ONE OPERAND
2) REMOVE DATA FROM DO-D31 WRITTEN, THEN 60 70 ();
3) NEGATE DBEN TERMINATE CYCLE ELSE60T0)
1) NEGATE STERM ®

UNLOCK BUS

1) NEGATE RMC

!

START NEXT CYCLE

. Figure 7-35. Synchronous Read-Modify-Write Cycle Flowchart

MOTOROLA

MC68030 USER'S MANUAL

7-55

80 ST §2 §3 i Si S4 S5 S6 S7

w_ [LT L

cmm_/

terea T

k[T
w7\ T

Figure 7-36. Synchronous Read-Modify-Write Cycle Timing — CIIN Asserted

7-56 MC68030 USER'S MANUAL MOTOROLA

State 0

The processor asserts ECS and OCS in SO to indicate the beginning of an
external operand cycle. The processor also asserts RMC in SO to identify
a read-modify-write cycle. The processor places a valid address on A0-A31
and valid function codes on FCO-FC2. The function codes select the address
space for the operation. SIZ0-SIZ1 become valid in SO to indicate the
operand size. The processor drives R/W high for a read cycle and sets
CIOUT to the value of the MMU CI bit in the address translation descriptor
or in the appropriate TTx register. The processor drives DBEN inactive to
disable the data buffers.

State 1
One-half clock later in S1, the processor asserts AS, indicating that the
address on the address bus is valid. The processor also asserts DS during
S1. In addition, the ECS (and OCS, if asserted) signal is negated during S1.

State 2

The selected device uses R/W, SIZ0-SIZ1, A0-A1, and CIOUT to place its
information on the data bus. Any or all of the byte sections (D24-D31,
D16-D23, D8-D15, and D0-D7) are selected by SIZ0-S1Z1 and A0-A1. Dur-
ing S2, the processor drives DBEN active to enable external data buffers.
In systems that use two-clock synchronous bus cycles, the timing of DBEN
may prevent its use. At the beginning of S2, the processor samples the
level of STERM. If STERM is recognized, the processor latches the incoming
data. If the selected data is not to be cached for the current cycle or if the
device cannot supply 32 bits, CIIN must be asserted at the same time as
STERM.

Since CIIN and STERM are synchronous signals, they must meet the syn-
chronous input setup and hold times for all rising edges of the clock while
AS is asserted. If STERM is negated at the beginning of S2, wait states are
inserted after S2, and STERM is sampled on every rising edge thereafter
until it is recognized. Once STERM is recognized, data is latched on the
next falling edge of the clock (corresponding to the beginning of S3).

MOTOROLA MC68030 USER'S MANUAL 7-57

7-58

State 3
The processor negates AS, DS, and DBEN during S3. If more than one read
cycle is required to read in the operand(s), S0-S3 are repeated accordingly.
When finished with the read cycle, the processor holds the address, R/W,
and FCO-FC2 valid in preparation for the write portion of the cycle.

The external device must keep its data asserted throughout the synchron-
ous hold time for data from the beginning of S3. The device must remove
the data within one-clock cycle after asserting STERM to avoid bus con-
tention. It must also negate STERM within two clocks after asserting STERM;
otherwise, the processor may inadvertently use STERM for the next bus
cycle.

Idle States
The processor does not assert any new control signals during the idle
states, but it may begin the modify portion of the cycle at this time. The
R/W signal remains in the read mode until S4 to prevent bus conflicts with
the preceding read portion of the cycle; the data bus is not driven until S6.

State 4
The processor asserts ECS and OCS in S4 to indicate that an external cycle
is beginning. The processor drives R/W low for a write cycle. CIOUT also
becomes valid, indicating the state of the MMU CI bit in the address trans-
lation descriptor or in the appropriate TTx register. Depending on the write
operation to be performed, the address lines may change during S4.

State 5
In state 5 (S5), the processor asserts AS to indicate that the address on the
address bus is valid. The processor also asserts DBEN during S5, which
can be used to enable external data buffers.

State 6
During ‘S6, the processor places the data to be written onto the D0-D31.

The selected device uses R/W, CLK, SIZ0-SIZ1, and A0-A1 to latch data
from the appropriate byte(s) of the data bus (D24-D31, D16-D23, D8-D15,
and D0-D7). SIZ0-SIZ1 and A0-A1 select the data bus sections. The device
asserts STERM when it has successfully stored the data. If the device does
not assert STERM by the rising edge of S6, the processor inserts wait states
until it is recognized. The processor asserts DS at the end of S6 if wait
states are inserted. Note that for zero-wait-state synchronous write cycles,
DS is not asserted.

MC68030 USER'S MANUAL MOTOROLA

State 7
The processor negates AS (and DS, if necessary) during S7. It holds the
address and data valid during S7 to simplify memory interfaces. R/W and
FCO-FC2 also remain valid throughout S7.

If more than one write cycle is required, S8-S11 are repeated for each write
cycle.

The external device must negate STERM within two clock periods after
asserting it, or the processor may madvertently use STERM for the next
bus cycle.

7.3.7 Burst Operation Cycles

The MC68030 supports a burst mode: for filling the on-chip instruction and
data caches.

The MC68030 provides a set of handshake control signals for the burst mode.
When a miss occurs in one of the caches, the MC68030 initiates a bus cycle
to obtain the required data or instruction stream fetch. If the data or instruc-
tion can be cached, the MC68030 attempts to fill a cache entry. Depending
on the alignment for a data access, the MC68030 may attempt to fill two
cache entries. The processor may also assert CBREQ to request a burst fill
operation. That is, the processor can fill additional entries in the line. The
MC68030 allows a burst of as many as four long words.

The mechanism that asserts the CBREQ signal for burstable cache entries is
enabled by the data burst enable (DBE) and instruction burst enable (IBE)
bits of the cache control register (CACR) for the data and instruction caches,
respectively. Either of the following conditions cause the MC68030-to initiate
a cache burst request (and assert CBREQ) for a cachable read cycle:

® The logical address and function code signals of the current instruction
or data fetch do not match the indexed tag field in the respective in-
struction or data cache.

o All four long words corresponding to the indexed tag in the appropriate
cache are marked invalid.

However, the MC68030 does not assert CBREQ during the first portion of a
misaligned access if the remainder of the access does not correspond to the
same cache line. Refer to 6.1.3.1 SINGLE ENTRY MODE for details.

MOTOROLA MC68030 USER'S MANUAL 7-59

7-60

If the appropriate cache is not enabled or if the cache freeze bit for the cache
is set, the processor does not assert CBREQ. CBREQ is not asserted during
the read or write cycles of any read-modify-write operation. '

The MC68030 allows burst filling only from 32-bit ports that terminate bus
cycles with STERM and respond to CBREQ by asserting CBACK. When the
MC68030 recognizes STERM and CBACK and it has asserted CBREQ, it main-
tains AS, DS, R/W, A0-A31, FCO-FC2, SIZ0-SIZ1 in their current state through-
out the burst operation. The processor continues to accept data on every
clock during which STERM is asserted until the burst is complete or an
abnormal termination occurs.

CBACK indicates that the addressed device can respond to a cache burst
request by supplying one more long word of data in the burst mode. It can
be asserted independently of the CBREQ signal, and burst mode is only
initiated if both of these signals are asserted for a synchronous cycle. If the
MC68030 executes a full burst operation and fetches four long words, CBREQ
is negated after STERM is asserted for the third cycle, indicating that the
MC68030 only requests one more long word (the fourth cycle). CBACK can
then be negated, and the MC68030 latches the data for the fourth cycle and
completes the cache line fill.

The following conditions can abort a burst fill:
o CIIN asserted, ‘
e BERR asserted, or

“® CBACK negated prematurely.

The processing of a bus error during a burst fill operation is described in
7.5.1 Bus Errors.

For the purposes of halting the processor or arbitrating the bus away from
the processor with BR, a burst operation is a single cycle since AS remains
asserted during the entire operation. If the HALT signal is asserted during a
burst operation, the processor halts at the end of the operation. Refer to 7.5.3
Halt Operation for more information about the halt operation. An alternate
bus master requesting the bus with BR may become bus master at the end

- of the operation provided BR is asserted early enough to be internally syn-

chronized before another processor cycle begins. Refer to 7.7 BUS ARBI-
TRATION for more information about bus arbitration.

MC68030 USER'S MANUAL MOTOROLA

The simultaneous assertion of BERR and HALT during a bus cycle normally
indicates that the cycle should be retried. However, during the second, third,
or fourth cycle of a burst operation, this signal combination indicates a bus
error condition, which aborts the burst operation. In addition, the processor
remains in the halted state until HALT is negated. For information about bus
error processing, refer to 7.5.1. Bus Errors.

Figure 7-37 is a flowchart of the burst operation. The following timing dia-
grams show various burst operations. Figure 7-38 shows burst operations
for long-word requests with two wait states inserted in the first access and
one wait cycle inserted in the subsequent accesses. Figure 7-39 shows a burst
operation that fails to complete normally due to CBACK negating prema-
turely. Figure 7-40 shows a burst operation that is deferred because the entire
operand does not correspond to the same cache line. Figure 7-41 shows a
burst operation aborted by CIIN. Because CBACK corresponds to the next
cycle, three long words are transferred even though CBACK is only asserted
for two clock periods.

The burst operation sequence begins with states S0-S3, which are very sim-
ilar to those states for a synchronous read cycle except that CBREQ is as-
serted. S4-S9 perform the final three reads for a complete burst operation.

State 0

The burst operation starts with S0. The processor drives ECS low, indicating
the beginning of an external cycle. When the cycle is the first cycle of a
read operation, OCS is driven low at the same time. During SO, the pro-
cessor places a valid address on A0-A31 and valid function codes on
FC0-FC2. The function codes select the address space for the cycle. The
processor drives R/W high, indicating a read cycle, and drives DBEN in-
active to disable the data buffers. SIZ0-SIZ1 become valid, indicating the
number of operand bytes to be transferred. CIOUT also becomes valid,
indicating the state of the MMU ClI bit in the address translation descriptor
or in the appropriate TTx register.

State 1
One-half clock later in S1, the processor asserts AS to indicate that the
address on the address bus is valid. The processor also asserts DS during
S1. CBREQ is also asserted, indicating that the MC68030 can perform a
burst operation into one of its caches and can read in four long words. In
addition, ECS (and OCS, if asserted) is negated during S1.

MOTOROLA MC68030 USER'S MANUAL 7-61

7-62

PROCESSOR EXTERNAL DEVICE

ADDRESS DEVICE

1) ASSERT ECS/0CS FOR ONE-HALF CLOCK

2) SET R/W TO READ

3) DRIVE ADDRESS ON AQ-A31

4) DRIVE FUNCTION CODE ON FCO-FC2

5) DRIVE SIZE (SIZ0-S1Z1) (FOUR BYTES)

6) CACHE INHIBIT OUT (CIOUT) BECOMES VALID
7) ASSERT ADDRESS STROBE {AS)

8) ASSERT CACHE BURST REQUEST (CBREQ)

9) ASSERT DATA STROBE (DS)

10) ASSERT DATA BUFFER ENABLE (DBEN) > PRESENT DATA [

1) DECODE ADDRESS
2) PLACE DATA ON DO-D31

3) ASSERT SYNCHRONOUS TERMINATION (STERM)
ACQUIRE DATA -t 4) ASSERT CACHE BURST ACKNOWLEDGE (CBACK)

1) SAMPLE CACHE INHIBIT IN (CIIN)
AND CACHE BURST ACKNOWLEDGE (CBACK)
2) LATCH DATA > TERMINATE CYCLE

1) REMOVE DATA FROM D0-D31
2) NEGATE STERM (IF NECESSARY}
3) NEGATE CBACK (IF NECESSARY)

WHEN 4 LONG WORDS TRANSFERRED UNTIL 4 LONG WORDS TRANSFERRED

END OF BURST -

1) NEGATE AS AND DS
2) NEGATE DBEN

!

START NEXT CYCLE I

Figure 7-37. Burst Operation Flowchart — Four Long Words Transferred

State 2

The selected device uses R/W, SIZ0-S1Z1, A0-A1, and CIOUT to place the
data on the data bus. (The first cycle must supply the long word at the
corresponding fong-word boundary.) All of the byte sections (D24-D31,
D16-D23, D8-D15, and D0-D7) of the data bus must be driven since the
burst operation latches 32 bits on every cycle. During S2, the processor
drives DBEN active to enable external data buffers. In systems that use
two-clock synchronous bus cycles, the timing of DBEN may prevent its
use. At the beginning of S2, the processor tests the level of STERM. If
STERM is recognized, the processor latches the incoming data at the end
of S2. For the burst operation to proceed, CBACK must be asserted when
STERM is recognized. If the data for the current cycle is not to be cached,
CIIN must be asserted at the same time as STERM. The assertion of CIIN
also has the effect of aborting the burst operation.

MC68030 USER'S MANUAL MOTOROLA

S0 51 S2 Sw Sw Sw Sw Sw Sw 83 Sw Sw S4 S5 Sw Sw S6 S7 Sw Sw S8 S9

b4-b7 b8-bB bC-bF b0:b3

01 10 00

VALUE OF A3:A2 INCREMENTED BY THE SYSTEM HARDWARE

Figure 7-38. Long-Word Operand Request from $07 with
Burst Request and Wait Cycle

MOTOROLA MC68030 USER'S MANUAL 7-63

[73
=3

S2 S4 S6
CLK

|

A4-A31

A3

AQ-A2

FCO-FC2

$120-8121

=
=2
=|

JjgﬂLJULJu

(=]
o
)l

S

3
.J\\

o
-]
>
o
x|

VALUE OF CBACK
_______ J—— CONTROL NEXT CYCLE

00-03! >—-(b4-b7 ,na-ba:)@-w)-
- o6 ,

01 I 10 l n
VALUE OF A3:A2 INCREMENTED BY THE SYSTEM HARDWARE
NOTES:
1. Assertion of CBACK causes data to be placed on D0-D31.

2. Continued assertion of CBACK causes data to be placed on D0-D31.
3. Negation of CBACK cause AS to be negated.

o
m
=

Figure 7-39. Long-Word Operand Request from $07 with
Burst Request — CBACK Negated Early

7-64 MC68030 USER'S MANUAL MOTOROLA

SO S1 S2 Sw Sw S3 SO SI S2 Sw Sw S3 Sw Sw S4 S5 Sw Sw S6 S7 Sw Sw S8 S9

s X X
w T\ /
wa 7
0 T\

B _____/ \ /~
s\ / \ A
s/ _/ /T / _ / \/
s N\ /S

w7 \ T
C bCHF D - b0-b3 b4-b7 b8b8 D—— bCHF
e/ \ [\ /

PREVIOUS CACHE BLOCK + NEXT CACHE BLOCK - START BURST CYCLE

Figure 7-40. Long-Word Operand Request from $0E — Burst Fill Deferred

MOTOROLA MC68030 USER'S MANUAL 7-65

A0-A31 x
FCO-FC2 x

0

BURST MODE ENDS,
DATA NOT CACHED
10 "

VALUE OF A3:A2 INCREMENTED BY THE SYSTEM HARDWARE

Figure 7-41. Long-Word Operand Request from $07 with
Burst Request — CBACK and CIIN Asserted

7-66 MC68030 USER’S MANUAL MOTOROLA

Since CIIN, CBACK, and STERM are synchronous signals, they must meet
the synchronous input setup and hold times for all rising edges of the clock
while AS is asserted. If STERM is negated at the beginning of S2, wait
states are inserted after S2, and STERM is sampled on every rising edge
of the clock thereafter until it is recognized. Once STERM is recognized,
data is latched on the next falling edge of the clock (corresponding to the
beginning of S3).

State 3
The processor maintains AS, DS, and DBEN asserted during S3. It also
holds the address valid during S3 for continuation of the burst. R/W,
S1Z0-SIZ1, and FCO-FC2 also remain valid throughout S3.

The external device must keep the data driven throughout the synchronous
hold time for data from the beginning of S3. The device must negate STERM
within one clock after asserting STERM; otherwise, the processor may
inadvertently use STERM prematurely for the next burst access. STERM
need not be negated if subsequent accesses do not require wait cycles.

State 4
At the beginning of S4, the processor tests the level of STERM. This state i
signifies the beginning of burst mode, and the remaining states correspond
to burst fill cycles. If STERM is recognized, the processor latches the in-
coming data at the end of S4. This data corresponds to the second long
word of the burst. If STERM is negated at the beginning of S4, wait states
are inserted instead of S4 and S5, and STERM is sampled on every rising
edge of the clock thereafter until it is recognized. As for synchronous cycles,
the states of CBACK and CIIN are latched at the time STERM is recognized.

The assertion of CBACK at this time indicates that the burst operation
should continue, and the assertion of CIIN indicates that the data latched
at the end of S4 should not be cached and that the burst should abort.

State 5
The processor maintains all the signals on the bus driven throughout S5
for continuation of the burst. The same hold times for STERM and data
described for S3 apply here.

State 6
This state is identical to S4 except that once STERM is recognized, the third
long word of data for the burst is latched at the end of S6.

MOTOROLA MC68030 USER'S MANUAL 7-67

State 7
During this state, the processor negates CBREQ, and the memory device
may negate CBACK. Aside from this, all other bus signals driven by the
processor remain driven. The same hold times for STERM and data de-
scribed for S3 apply here.

State 8
This state is identical to S4 except that CBREQ is negated, indicating that
the processor cannot continue to accept more data after this. The data
latched at the end of S8 corresponds to the fourth long word of the burst.

State 9
The processor negates AS, DS, and DBEN during S9. It holds the address,
R/W, SIZ0-SIZ1, and FCO-FC2 valid throughout S9. The same hold times
for data described for S3 apply here.

Note that the address bus of the MC68030 remains driven to a constant value
for the duration of a burst transfer operation (including the first transfer before
burst mode is entered). If an external memory system requires incrementing
of the long-word base address to supply successive long words of infor-
mation, this function must be performed by external hardware. Additionally,
in the case of burst transfers that cross a 16-byte boundary (i.e., the first long
word transferred is not located at A3/A2=00), the external hardware must
correctly control the continuation or termination of the burst transfer as
desired. The burst may be terminated by negating CBACK during the transfer
of the most significant long word of the 16-byte image (A3/A2=11) or may
be continued (with CBACK asserted) by providing the long word located at
A3/A2=00 (i.e., the count sequence wraps back to zero and continues as
necessary). The MC68030 caches assume the higher order address lines

(A4-A31) remain unchanged as the long-word accesses wrap back around

to A3/A2=00.

7.4 CPU SPACE CYCLES

7-68

FCO-FC2 select user and supervisor program and data areas as listed in Table
4-1. The area selected by FCO-FC2=$7 is classified as the CPU space. The
interrupt acknowledge, breakpoint acknowledge, and coprocessor commu-
nication cycles described in the following sections utilize CPU space.

MC68030 USER'S MANUAL MOTOROLA

The CPU space type is encoded on A16-A19 during a CPU space operation
and indicates the function that the processor is performing. On the MC68030,
three of the encodings are implemented as shown in Figure 7-42. All unused
values are reserved by Motorola for future additional CPU space types.

FUNCTION ADDRESS BUS
CODE
2 03 |23 |19 1e| 4 2 0
BREAKPOINT
acevoweose | ' 1] [0 000000000 o00foooolooooooooooofeers{ool
2 0 3 | 5 13 4 0
COPROCESSOR
o [1111 rononnuuouooolooxolcpm [oooooooof crres |
2 0 3 I i 3 10

INTERRUPT

ACKNOMIDLE I1lllIllllllllllIllllll|111111IIIIIIILEVELIII

-

CPU SPACE
TYPE FIELD

Figure 7-42. MC68030 CPU Space Address Encoding

7.4.1 Interrupt Acknowledge Bus Cycles

When a peripheral device signals the processor (with the IPLO-IPL2 signals)
that the device requires service, and the internally synchronized value on
these signals indicates a higher priority than the interrupt mask in the status
register {or that a transition has occurred in the case of a level 7 interrupt),
the processor makes the interrupt a pending interrupt. Refer to 8.1.9 Interrupt
Exceptions for details on the recognition of interrupts.

The MC68030 takes an interrupt exception for a pending interrupt within one
instruction boundary (after processing any other pending exception with a
higher priority). The following paragraphs describe the various kinds of in-
terrupt acknowledge bus cycles that can be executed as part of interrupt
exception processing.

MOTOROLA MC68030 USER’S MANUAL 7-69

7.4.1.1 INTERRUPT ACKNOWLEDGE CYCLE — TERMINATED NORMALLY. When

7-70

the MC68030 processes an interrupt exception, it performs an interrupt ac-
knowledge cycle to obtain the number of the vector that contains the starting
location of the interrupt service routine. :

Some interrupting devices have programmable vector registers that contain
the interrupt vectors for the routines they use. The following paragraphs
describe the interrupt acknowledge cycle for these devices. Other interrupting
conditions or devices cannot supply a vector number and use the autovector
cycle described in 7.4.1.2 AUTOVECTOR INTERRUPT ACKNOWLEDGE CYCLE.

The interrupt acknowledge cycle is a read cycle. It differs from the asyn-
chronous read cycle described in 7.3.1 Asynchronous Read Cycle or the syn-
chronous read cycle described in 7.3.4 Synchronous Read Cycle in that it
accesses the CPU address space. Specifically, the differences are:

1. FCO-FC2 are set to seven (FCO/FC1/FC2=111) for CPU address space.

2. A1, A2, and A3 are set to the interrupt request level (the inverted values
of IPLO, IPL1, and IPL2, respectively).

3. The CPU space type field (A16-A19) is set to $F, the interrupt acknowl-
edge code.

4. A20-A31, A4-A15, and AQ are set to one.

The responding device places the vector number on the data bus during the
interrupt acknowledge cycle. Beyond this, the cycle is terminated normally
with either STERM or DSACKx. Figure 7-43 is the flowchart of the interrupt
acknowledge cycle.

MC68030 USER'S-MANUAL MOTOROLA

PROCESSOR INTERRUPTING DEVICE

ACKNOWLEDGE INTERRUPT <——| REQUEST INTERRUPT J

1) INTERRUPT PENDING (TPEND) RECOGNIZED BY CURRENT INSTRUCTION -
WAIT FOR INSTRUCTION BOUNDARY

2) SET R/W T0 READ

3) SET FUNCTION CODE TO CPU SPACE

4) PLACE INTERRUPT LEVEL ON A1, A2, AND A3,
TYPE FIELD = INTERRUPT ACKNOWLEDGE (IACK)

5) SET SIZE TO BYTE

6) NEGATE iPEND

7) ASSERT ADDRESS STROBE (AS) AND DATA STROBE (DS) > PROVIDE VECTOR INFORMATION

1) PLACE VECTOR NUMBER ON LEAST SIGNIFICANT BYTE
OF DATA PORT (DEPENDS ON PORT SIZE)
2) ASSERT DATA TRANSFER AND SIZE ACKNOWLEDGE {DSACKx)
~0R -
ACQUIRE VECTOR NUMBER -t ASSERT SYNCHRONOUS TERMINATION (STERM)

1) LATCH VECTOR NUMBER
2) NEGATE AS AND DS

RELEASE

Al 1) REMOVE VECTOR NUMBER FROM DATA BUS
CONTINUE INTERRUPT EXCEPTION PROCESSING J 2) NEGATE DSACKx
Figure 7-43. Interrupt Acknowledge Cycle Flowchart

Figure 7-44 shows the timing for an interrupt acknowledge cycle terminated
with DSACKXx.

7.4.1.2 AUTOVECTOR INTERRUPT ACKNOWLEDGE CYCLE. When the interrupt-
ing device cannot supply a vector number, it requests an automatically gen-
erated vector or autovector. Instead of placing a vector number on the data
bus and asserting DSACKx or STERM, the device asserts the autovector signal
(AVEC) to terminate the cycle. Neither STERM nor DSACKx may be asserted
during an interrupt acknowledge cycle terminated by AVEC.

The vector number supplied in an autovector operation is derived from the
interrupt level of the current interrupt. When AVEC is asserted instead of
DSACK or STERM during an interrupt acknowledge cycle, the MC68030 ig-
nores the state of the data bus and internally generates the vector number,
the sum of the interrupt level plus 24 ($18). There are seven distinct auto-
vectors that can be used, corresponding to the seven levels of interrupt
available with signals IPLO-IPL2. Figure 7-45 shows the timing for an auto-
vector operation.

MOTOROLA MC68030 USER'S MANUAL 7-7

WTERRUPTLEVEL X

7
X
/
7
7
\/ |
BT\ /\ e

\
-/
\/
/
_/

02609 o >——Cue08 7 R8T PORD— —-—

- Y Ny
016023 > < S——iEcTor # FRIG BT Ponb———-——C
- / N\ / .
D0-n7 > < >—<ecior s erazaT porp— — -———__

S C——
#PL0-P12 \ - X

) ' INTERRUPT :
\q— READ CYCLE _,+_ ACKNOWLEDGE —-‘ }q— WRITE STACK

Figure 7-44. Interrupt Acknowledge Cycle Timing

7-72 : MC68030 USER'S MANUAL MOTOROLA

w L L L L L LT

A4-A31

Al1-A3

AO

SI1Z1

SI1z0

X
—X=
X
_XZ
XZ
7
_/
_/

INTERRUPT
READ CYCLE ACKNOWLEDGE WRITE STACK
AUTOVECTORED

Figure 7-45. Autovector Operation Timing

MOTOROLA MC68030 USER'S MANUAL 7-73

7.4.1.3 SPURIOUS INTERRUPT CYCLE. When a device does not respond to an

interrupt acknowledge cycle with AVEC, STERM, or DSACKX, the external
logic typically returns BERR. The MC68030 automatically generates the spu-
rious interrupt vector number, 24, instead of the interrupt vector number in
this case. If HALT is also asserted, the processor retries the cycle.

7.4.2 Breakpoint Acknowledge Cycle

The breakpoint acknowledge cycle is generated by the execution of a break-
point instruction {BKPT). The breakpoint acknowledge cycle allows the ex-
ternal hardware to provide an instruction word directly into the instruction
pipeline as the program executes. This cycle accesses the CPU space with a
type field of zero and provides the breakpoint number specified by the in-
struction on address lines A2-Ad4. If the external hardware terminates the
cycle with DSACKx or STERM, the data on the bus (an instruction word) is
inserted into the instruction pipe, replacing the breakpoint opcode, and is
executed after the breakpoint acknowledge cycle completes. The breakpoint
instruction requires a word to be transferred so that if the first bus cycle
accesses an 8-bit port, a second cycle is required. If the external logic ter-
minates the breakpoint acknowledge cycle with BERR (i.e., no instruction
word available), the processor takes an illegal instruction exception. Figure
7-46 is a flowchart of the breakpoint acknowledge cycle. Figure 7-47 shows
the timing for a breakpoint acknowledge cycle that returns an instruction
word. Figure 7-48 shows the timing for a breakpoint acknowledge cycle that
sighals an exception.

7.4.3 Coprocessor Communication Cycles

7-74

The MC68030 coprocessor interface provides instruction-oriented commu-
nication between the processor and as many as seven coprocessors. The bus
communication required to support coprocessor operations uses the MC68030
CPU space with a type field of $2.

Coprocessor accesses use the MC68030 bus protocol except that the address
bus supplies access information rather than a 32-bit address. The CPU space
type field (A16-A19) for a coprocessor operation is $2. A13-A15 contain the
coprocessor identification number (CplD), and A0-A4 specify the coprocessor
interface register to be accessed. Coprocessor accesses to a CplD of zero
correspond to MMU instructions and are not generated by the MC68030 as
a result of the coprocessor interface. These cycles can only be generated by
the MOVES instruction. Refer to SECTION 10 COPROCESSOR INTERFACE
DESCRIPTION for further information.

MC68030 USER'S MANUAL MOTOROLA

PROCESSOR EXTERNAL DEVICE

BREAKPOINT ACKNOWLEDGE

1) SET R/W TO READ

2) SET FUNCTION CODE TO CPU SPACE

3) PLACE CPU SPACE TYPE 0 ON A16-A19

4) PLACE BREAKPOINT NUMBER ON A2-A4

5) SET SIZE TO WORD

6) ASSERT ADDRESS STROBE (AS) AND DATA STROBE (DS) 1) PLACE REPLACEMENT OPCODE ON DATA BUS

2) ASSERT DATA TRANSFER AND SIZE ACKNOWLEDGE (DSACKx)
OR SYNCHRONOUS TERMINATION (STERM)

-0R -
IF DSACKx OR STERM ASSERTED: > 1) ASSERT BUS ERROR (BERR) TO INITIATE EXCEPTION PROCESSING
1) LATCH DATA
2) NEGATE AS AND DS
3 coT0(®)

IF BERR ASSERTED:
1) NEGATE AS AND DS

2 60T0(®) ®

'

1) PLACE LATCHED DATA IN INSTRUCTION PIPELINE
2) CONTINUE PROCESSING

SLAVE NEGATES DSACKx, STERM OR BERR

1) INITIATE ILLEGAL INSTRUCTION PROCESSING][‘f

Figure 7-46. Breakpoint Operation Flow

7.5 BUS EXCEPTION CONTROL CYCLES

The MC68030 bus architecture requires assertion of either DSACKx or STERM
from an external device to signal that a bus cycle is complete. DSACKX,
STERM, or AVEC is not asserted if:

® The external device does not respond..

e No interrupt vector is provided.

® Various other application-dependent errors occur.

External circuitry can provide BERR when no device responds by asserting
DSACKx, STERM, or AVEC within an appropriate period of time after the
processor asserts AS. This allows the cycle to terminate and the processor
to enter exception processing for the error condition.

The MMU can also detect an internal bus error. This occurs when the pro-
cessor attempts to access an address in a protected area of memory (a user
program attempts to access supervisor data, for example) or after the MMU
receives a bus error while searching the address table for an address trans-
lation description.

MOTOROLA MC68030 USER'S MANUAL 7-75

S2 S4 S0 S2 S4 SO S2

[%]
o

|

z
z
L~

0000)
AT6-A19 X \ BREAKPONTENCODNG —— /
A2-ATS X BREAKPOINT NUMBER :::: X
A, AT \ /
FCO-FC2 X 7 CPU SPACE :::: ><
szl x TN
WORD
s X \ Y A
R/W 7 T
= _/ _/ N
s _/ _/ TN

|

o .
DSATKT / \ / \ 7
N/

08-D15 —_—— 2 4

> <>
) N
_/

BREAKPOINT
ACKNOWLEDGE FETCHED INSTRUCTION
READ .CYCLE INSTRUCTION WORD EXECUTION
FETCH

Figure 7-47. Breakpoint Acknowledge Cycle Timing

7-76 MC68030 USER’S MANUAL MOTOROLA

[=]
=
=

SR [N I
X
X
R ¢
TN

e
remn ———

>
e
>
@

FCO-FC2

S1z0-SIz1

T

N/

INTERNAL
READ WITH BUS ERROR ASSERTED ——P‘df PROCESSING ~>4<—f STACK WRITE

Figure 7-48. Breakpoint Acknowledge Cycle Timing (Exception Signaled)

-rk jLéjjggtuu

Another signal that is used for bus exception control is HALT. This signal
can be asserted by an external device for debugging purposes to cause single
bus cycle operation or (in combination with BERR) a retry of a bus cycle in
error.

MOTOROLA MC68030 USER’S MANUAL 7-77

7-78

To properly control termination of a bus cycle for a retry or a bus error
condition, DSACKx, BERR, and HALT can be asserted and negated with the
rising edge of the MC68030 clock. This assures that when two signals are
asserted simultaneously, the required setup time (#47A) and hold time (#478B)
for both of them is met for the same falling edge of the processor clock.
(Refer to MC68030EC/D, MC68030 Electrical Specifications for timing require-
ments.) This or some equivalent precaution should be designed into the
external circuitry that provides these signals.

The acceptable bus cycle terminations for asynchronous cycles are sum-
marized in relation to DSACKx assertion as follows (case numbers refer to
Table 7-8):

Normal Termination:
DSACKXx is asserted; BERR and HALT remain negated (case 1).

Halt Termination:
HALT is asserted at same time or before DSACKx, and BERR remains
negated (case 2).

Bus Error Termination:
BERR is asserted in lieu of, at the same time, or before DSACKx (case
3) or after DSACKx (case 4), and HALT remains negated BERR is
negated at the same time or after DSACKx.

Retry Termination:
HALT and BERR are asserted in lieu of, at the same time, or before
DSACKXx (case 5) or after DSACKx (case 6); BERR is negated at the
same time or after DSACKx; HALT may be negated at the same time
or after BERR.

MC68030 USER'S MANUAL MOTOROLA

Table 7-8. DSACK, BERR, and HALT Assertion Results

Asserted on Rising
Case Control Edge of State Result
No. Signal N N+2
1 DSACKx A S Normal cycle terminate and continue.
BERR NA NA
HALT NA X
2 DSACKx A S Normal cycle terminate and halt. Continue when HALT
BERR NA NA negated.
HALT AS S
3 DSACKx NA/A X Terminate and take bus error exception, possibly
BERR A S deferred.
HALT NA NA
4 DSACKx A X Terminate and take bus error exception, possibly
BERR NA A deferred.
HALT NA NA
5 DSACKx NA/A X Terminate and retry when HALT negated.
BERR A S
HALT A/S S
6 DSACKx A X Terminate and retry when HALT negated.
BERR NA A
HALT NA A
LEGEND:
N — The number of current even bus state (e.g., S2, S4, etc.)
A — Signal is asserted in this bus state
NA — Signal is not asserted in this state
X — Don’t care
S — Signal was asserted in previous state and remains asserted in this state

Table 7-8 shows various combinations of control signal sequences and the
resulting bus cycle terminations. To ensure predictable operation, BERR and
HALT should be negated according to the specifications in MC68030EC/D,
MC68030 Electrical Specifications. DSACKx, BERR, and HALT may be negated
after AS. If DSACKx or BERR remain asserted into S2 of the next bus cycle,
that cycle may be terminated prematurely.

The termination signal for a synchronous cycle is STERM. An analogous set
of bus cycle termination cases exists in relationship to STERM assertion.
Note that STERM and DSACKx must never both be asserted in the same
cycle. STERM has setup time (#60) and hold time (#61) requirements relative
to each rising edge of the processor clock while AS is asserted. Bus error
and retry terminations during burst cycles operate as described in 6.1.3.2
BURST MODE FILLING, 7.5.1 Bus Error, and 7.5.2 Retry Operation.

MOTOROLA MC68030 USER'S MANUAL 7-79

7-80

For STERM, the bus cycle terminations are summarized as follows (case
numbers refer to Table 7-9):

Normal Termination:
STERM is asserted; BERR and HALT remain negated (case 1).

Halt Termination:
HALT is asserted before STERM, and BERR remains negated (case
2).

Bus Error Termination:
BERR is asserted in lieu of, at the same time, or before STERM (case
3) or after STERM (case 4), and HALT remains negated; BERR is
negated at the same time or after STERM.

Retry Termination:
HALT and BERR are asserted in lieu of, at the same time, or before
STERM (case 5) or after STERM (case 6); BERR is negated at the
same time or after STERM; HALT may be negated at the same time
or after BERR.

MC68030 USER'S MANUAL MOTOROLA

Table 7-9. STERM, BERR, and HALT Assertion Results

Asserted on Rising
Case Control Edge of State Result
No. Signal N N+2
1 STERM A —_ Normal cycle terminate and continue.
BERR NA —
HALT NA —
2 STERM NA A Normal cycle terminate and halt. Continue when HALT
BERR NA NA negated.
HALT A/S S
3 STERM NA A Terminate and take bus error exception, possibly
BERR A/S S deferred.
HALT NA NA
4 STERM A — Terminate and take bus error exception, possibly
BERR A — deferred.
HALT NA —
5 STERM NA A Terminate and retry when HALT negated.
BERR A S
HALT A/S S
6 STERM A — Terminate and retry when HALT negated.
BERR A —
HALT A —
LEGEND:
N — The number of current even bus state (e.g., S2, S4, etc.)
A — Signal is asserted in this bus state
NA — Signal is not asserted in this state
X — Don't care
S — Signal was asserted in previous state and remains asserted in this state

— — State N+ 2 not part of bus cycle

EXAMPLE A:
A system uses a watchdog timer to terminate accesses to an unpopulated
address space. The timer asserts BERR after timeout (case 3).

MOTOROLA MC68030 USER'S MANUAL 7-81

EXAMPLE B: :
A system uses error detection and correction on RAM contents. The de-
signer may:
1. Delay DSACKx until data is verified; assert BERR and HALT simul-

taneously to indicate to the processor to automatically retry the
error cycle (case 5) or, if data is valid, assert DSACKx (case 1).

2. Delay DSACKx until data is verified and assert BERR with or without
DSACKXx if data is in error (case 3). This initiates exception pro-
cessing for software handling of the condition.

3. Return DSACKx prior to data verification. If data is invalid, BERR is
asserted on the next clock cycle (case 4). This initiates exception
processing for software handling of the condition.

4. Return DSACKXx prior to data verification; if data is invalid, assert
BERR and HALT on the next clock cycle (case 6). The memory con-
troller can then correct the RAM prior to or during the automatic
retry.

7.5.1 Bus Errors

7-82

The bus error signal can be used to abort the bus cycle and the instruction
being executed. BERR takes precedence over DSACKx or STERM provided
it meets the timing constraints described in MC68030EC/D, MC68030 Elec-
trical Specifications. |If BERR does not meet these constraints, it may cause
unpredictable operation of the MC68030. If BERR remains asserted into the
next bus cycle, it may cause incorrect operation of that cycle.

When the bus error signal is issued to terminate a bus cycle, the MC68030
may enter exception processing immediately following the bus cycle, or it
may defer processing the exception. The instruction prefetch mechanism
requests instruction words from the bus controller and the instruction cache
before it is ready to execute them. If a bus error occurs on an instruction
fetch, the processor does not take the exception until it attempts to use that
instruction word. Should an intervening instruction cause a branch or should
a task switch occur, the bus error exception does not occur.

MC68030 USER’'S MANUAL MOTOROLA

The bus error signal is recognized during a bus cycle in any of the following
cases:

o DSACKx (or STERM) and HALT are negated and BERR is asserted.

o HALT and BERR are negated and DSACKx is asserted. BERR is then
asserted within one clock cycle (HALT remains negated).

® BERR is asserted and recognized on the next falling clock edge following
the rising clock edge on which STERM is asserted and recognized (HALT
remains negated).

When the processor recognizes a bus error condition, it terminates the current
bus cycle in the normal way. Figure 7-49 shows the timing of a bus error for
the case in which neither DSACKx nor STERM is asserted. Figure 7-50 shows
the timing for a bus error that is asserted after DSACKx. Exceptions are taken
in both cases. (Refer to 8.1.2 Bus Error Exception for details of bus error
exception processing.) When BERR is asserted during a read cycle that sup-
plies data to either on-chip cache, the data in the cache is marked invalid.
However, when a write cycle that writes data into the data cache results in
an externally generated bus error, the data in the cache is not marked invalid.

In the second case, where BERR is asserted after DSACKXx is asserted, BERR
must be asserted within specification #48 (refer to MC68030EC/D, MC68030
Electrical Specifications) for purely asynchronous operation, ar it must be
asserted and remain stable during the sample window, defined by specifi-
cations #27A and #47B, around the next falling edge of the clock after DSACKx
is recognized. If BERR is not stable at this time, the processor may exhibit
erratic behavior. BERR has priority over DSACKx. In this case, data may be
present on the bus, but may not be valid. This sequence may be used by
systems that have memory error detection and correction logic and by ex-
ternal cache memories.

The assertion of BERR described in the third case (recognized after STERM)
has requirements similar to those described in the preceding paragraph.
BERR must be stable throughout the sample window for the next falling edge
of the clock, as defined by specifications #27A and #28A. Figure 7-51 shows
the timing for this case.

MOTOROLA MC68030 USER'S MANUAL 7-83

A20-A31 X \

(0000)

s X \ BREAKPOINT ENCODING
azats X X BREAKPOINT NUMBER

A0.A1 \

Fofcz X 7 cPUsPACE
st X_ 7 » T
WoRD

S
[
X
S
X
n_
sz X_ | /

R/AW _/ TTTTTN ‘
S
/S
AN
_
A
A
|
N—
) S
N——
N—

L~

AS \ / \ / —T

e Y
Y Y
o

BERR _/ \ / Y
w7

BREAKPOINT
ACKNOWLEDGE EXCEPTION
READ CYCLE BUS ERROR STACKING
ASSERTED

Figure 7-49. Bus Error without DSACKx

7-84 MC68030 USER'S MANUAL MOTOROLA

S

: INTERNAL
L‘ WRITE WITH BUS ERROR ASSERTED A'-— PROCESSING \-l-‘ STACK WRITE

Figure 7-50. Late Bus Error with DSACKx

A bus error occurring during a burst fill operation is a special case. If a bus
error occurs during the first cycle of a burst, the data is ignored, the entire
cache line is marked invalid, and the burst operation is aborted. If the cycle
is for an instruction fetch, a bus error exception is made pending. This bus
error is processed only if the execution unit attempts to use either of the two

MOTOROLA MC68030 USER'S MANUAL 7-85

7-86

S0 §2 Sw Sw Sw 83 S0 §2

SN [O

sons X D GENED G

oz _ X) CERED G

swsn X XX
RW .\ /T T\

o _/ TN\
T\

[}
[=d
=

w7

INTERNAL
’1— WRITE WITH BUS ERROR ASSERTED ‘P}‘ PROCESSING \D‘df STACK WRITE

Figure 7-51. Late Bus Error with STERM — Exception Taken

words latched during the bus cycle. If the cycle is for a data fetch, the bus
error exception is taken immediately. Refer to SECTION 11 INSTRUCTION
EXECUTION TIMING for more information about pipeline operation.

When a bus error occurs after the burst mode has been entered (that is, on
the second access or later), the processor terminates the burst operation,
and the cache entry corresponding to that cycle is marked invalid, but the
processor does not take an exception (see Figure 7-52). If the second cycle
is for a portion of a misaligned operand fetch, the processor runs another

MC68030 USER'S MANUAL MOTOROLA

1%
=3

§2 S4 S6
CLK

%

A4-A3Y

A3

AD-A2

FCO-FC2

8§120-8121

2
=

JjgiLJULJu

[=]
Py
17

zl

al

RN

g

o
=

3
JJKK
~

=
S|
[==
=i

TBACK
00-031 Cba-67 X b84B

w7 __

HATT /
LATE BERR ENDS BURST;
NO EXCEPTION TAKEN
1000 1100

VALUE OF A3:A0 INCREMENTED BY THE SYSTEM HARDWARE

om

Figure 7-52. Long-Word Operand Request — Late BERR on Third Access

MOTOROLA

MC68030 USER'S MANUAL 7-87

S0 S1 S2 Sw Sw Sw Sw Sw Sw S3 Sw Sw Sw Sw 54 S5 S0 S1 S2 S3 Sw Sw Sw Sw S4 S5

w_ 1L rrirurirgere e rerer e

oan X X X A3A0 = 1000
rofez X X X
szosz —\ A
AW _/
BT\ /T N\
A N /T A\
osaexi / \
s / -
s 7 —_/
=7
mur [
wE _ /
o 7\ T\
wm \ /T
HALT
/ BURST ABORTED INTERNAL RERUN CYCLE TO GET LAST
"‘aus ERROR Assznren PROCESSING 3 BYTES OF OPERAND
o 1000

VALUE OF A3:A0 INCREMENTED BY THE SYSTEM HARDWARE

Figure 7-563. Long-Word Operand Request — BERR on Second Access

read cycle for the second portion with CBREQ negated, as shown in Figure
7-53. If BERR is asserted again, the MC68030 then takes an exception. The
MC68030 supports late bus errors during a burst fill operation; the timing is

the same relative to STERM and the clock as for a late bus error in a normal
synchronous cycle.

7-88 MC68030 USER'S MANUAL MOTOROLA

7.5.2 Retry Operation -

When the BERR and HALT signals are both asserted by an external device
during a bus cycle, the processor enters the retry sequence. A delayed retry,
similar to the delayed bus error signal described previously, can also occur,
both for synchronous and asynchronous cycles.

The processor terminates the bus cycle, places the control signals in their
inactive state, and does not begin another bus cycle until the HALT signal is
negated by external logic. After a synchronization delay, the processor retries
the previous cycle using the same access information (address, function code,
size, etc.) The BERR signal should be negated before S2 of the read cycle to
ensure correct operation of the retried cycle. Figure 7-54 shows a retry op-
eration of an asynchronous cycle, and Figure 7-55 shows a retry operation
of a synchronous cycle.

The processor retries any read or write cycle of a read-modify-write operation
separately; RMC remains asserted during the entire retry sequence.

On the initial access of a burst operation, a retry (indicated by the assertion
of BERR and HALT) causes the processor to retry the bus cycle and assert
CBREQ again. Figure 7-56 shows a late retry operation that causes an initial
burst operation to be repeated. However, signaling a retry with simultaneous
BERR and HALT during the second, third, or fourth cycle of a burst operation
does not cause a retry operation, even if the requested operand is misaligned.
Assertion of BERR and HALT during a subsequent cycle of a burst operation
causes independent BERR and HALT operations. The external bus activity
remains halted until HALT is negated and the processor acts as previously
described for the bus error during a burst operation.

Asserting BR along with BERR and HALT provides a relinquish and retry
operation. The MC68030 does not relinquish the bus during a read-modify-
write operation, except during the first read cycle. Any device that requires
the processor to give up the bus and retry a bus cycle during a read-modify-
write cycle must either assert BERR and BR only (HALT must not be included)
or use the single wire arbitration method discussed in 7.7.4 Bus Arbitration
Control. The bus error handler software should examine the read-modify-
write bit in the special status word (refer to 8.2.1 Special Status Word) and
take the appropriate action to resolve this type of fault when it occurs.

MOTOROLA MC68030 USER'S MANUAL 7-89

SO §1 S2 83 Sw Sw S4 S5 . So

S2 S4

DATA BUS NOT DRIVEN

\
\/
/
N/
_/
|
|

>
>

|
"

Ne—

mr _/ —_ /

Y

Ny

1<— WRITE CYCLE RETRY SIGNALED - rl= HALT

Figure 7-54. Asynchronous Late Retry

7-90 MC68030 USER'S MANUAL

" RETRY CYCLE al

MOTOROLA

S0 §1 §2 83 S0 s1 §2 S3

00-D31

eesh

!

READ CYCLE HALT RETRY CYCLE
RETRY SIGNALED

Figure 7-55. Synchronous Late Retry

7.5.3 Halt Operation

When HALT is asserted and BERR is not asserted, the MC68030 halts external
bus activity at the next bus cycle boundary. HALT by itself does not terminate
a bus cycle. Negating and reasserting HALT in accordance with the correct
timing requirements provides a single-step (bus cycle to bus cycle) operation..-
The HALT signal affects external bus cycles only; thus, a program that resides
in the instruction cache and performs no data writes (or reads that miss in
the data cache) may continue executing, unaffected by the HALT signal.

MOTOROLA MC68030 USER’S MANUAL 7-9N

7-92

S0 S1 S22 83 S0 ST S§2 S3 sS4

i X0)
rofcz X X
T X—
R
w T_/ _/
W\ _/
s TT__/ N
mw__/ ,
| W
|
X

bt

"—* READ r! - - HALT 71= 'RETRY ’4—.

Figure 7-56. Late Retry Operation for a Burst

The single-cycle mode allows the user to proceed through (and debug) ex-
ternal processor operations, one bus cycle at a time. Figure 7-67 shows the
timing requirements for a single-cycle operation. Since the occurrence of a
bus error while HALT is asserted causes a retry operation, the user must
anticipate retry cycles while debugging in the single-cycle mode. The single-

MC68030 USER’S MANUAL MOTOROLA

CLK

A0-A31

FCO-FC2

S$120-8121

- \

] __J

- -\

56 N _/
S -
BGACK \

’1— READ HALT —D} '4— READ a‘
(ARBITRATION PERMITTED

WHILE THE PROCESSOR
IS HALTED)

Figure 7-57. Halt Operation Timing

MOTOROLA MC68030 USER'S MANUAL 7-93

step operation and the software trace capability allow the system debugger
to trace single bus cycles, single instructions, or changes in program flow.
These processor capabilities, along with a software debugging package, give
complete debugging flexibility.

When the processor completes a bus cycle with the HALT signal asserted,
the data bus is placed in the high-impedance state, and bus control signals
are driven inactive (not high-impedance state); the address, function code,
size, and read/write signals remain in the same state. The halt operation has
no effect on bus arbitration (refer to 7.7 BUS ARBITRATION). When bus
arbitration occurs while the MC68030 is halted, the address and control sig-
nals are also placed in the high-impedance state. Once bus mastership is
returned to the MC68030, if HALT is still asserted, the address, function code,
size, and read/write signals are again driven to their previous states. The
processor does not service interrupt requests while it is halted, but it may
assert the IPEND signal as appropriate.

7.5.4 Double Bus Fault

7-94

When a bus error or an address error occurs during the exception processing
sequence for a previous bus error, a previous address error, or a reset ex-
ception, the bus or address error causes a double bus fault. For example,
the processor attempts to stack several words containing information about
the state of the machine while processing a bus error exception. If a bus
error exception occurs during the stacking operation, the second error is
considered a double bus fault. Only an external reset operation can restart
a halted processor. However, bus arbitration can still occur (refer to 7.7 BUS
ARBITRATION).

The MC68030 indicates that a double bus fault condition has occurred by
continuously asserting the STATUS signal until the processor is reset. The
processor asserts STATUS for one, two, or three clock periods to signal other
microsequencer status indications. Refer to SECTION 12 APPLICATIONS IN-
FORMATION for a description of the interpretation of the STATUS signal.

A second bus error or address error that occurs after exception processing
has completed (during the execution of the exception handler routine or later)
does not cause a double bus fault. A bus cycle that is retried does not con-
stitute a bus error or contribute to a double bus fault. The processor continues
to retry the same bus cycle as long as the external hardware requests it.

MC68030 USER’S MANUAL MOTOROLA

7.6 BUS SYNCHRONIZATION

The MC68030 overlaps instruction execution; that is, during bus activity for
one instruction, instructions that do not use the external bus can be executed.
Due to the independent operation of the on-chip caches relative to the op-
eration of the bus controller, many subsequent instructions can be executed,
resulting in seemingly nonsequential instruction execution. When this is not
desired and the system depends on sequential execution following bus ac-
tivity, the NOP instruction can be used. The NOP instruction forces instruction
and bus synchronization in that it freezes instruction execution until all pend-
ing bus cycles have completed.

An example of the use of the NOP instruction for this purpose is the case of

a write operation of control information to an external register, where the

external hardware attempts to control program execution based on the data

that is written with the conditional assertion of BERR. If the data cache is

enabled and the write cycle results in a hit in the data cache, the cache is

updated. That data, in turn, may be used in a subsequent instruction before

the external write cycle completes. Since the MC68030 cannot process the _
bus error until the end of the bus cycle, the external hardware has not suc-
cessfully interrupted program execution. To prevent a subsequent instruction

from executing until the external cycle completes, a NOP instruction can be

inserted after the instruction causing the write. In this case, bus error excep-

tion processing proceeds immediately after the write before subsequent in-

structions are executed. This is an irregular situation, and the use of the NOP

instruction for this purpose is not required by most systems.

Note that even in a system with error detection/correction circuitry, the NOP
is not required for this synchronization. Since the MMU always checks the
validity of write cycles before they proceed to the data cache and are executed
externally, the MC68030 is guaranteed to write correct data to the cache.
Thus, there is no danger in subsequent instructions using erroneous data
from the cache before an external bus error signals an error.

A bus synchronization example is given in Figure 7-58.

MOTOROLA MC68030 USER'S MANUAL 7-95

S0 Sw

EXTERNAL WRITE £
WRITE TO D. CACHE D. CACHE READ x

MOVE.L DO.{AD) MOVE.L (AD),D1

oo e

NOP PREVENTS EXECUTION OF SUBSEQUENT
INSTRUCTIONS UNTIL MOVE.L DO,(AQ)
WRITE CYCLE COMPLETES

Figure 7-58. Bus Synchronization Example

7.7 BUS ARBITRATION

7-96

The bus design of the MC68030 provides for a single bus master at any one
time: either the processor or an external device. One or more of the external
devices on the bus can have the capability of becoming bus master. Bus
arbitration is the protocol by which an external device becomes bus master;
the bus controller in the MC68030 manages the bus arbitration signals so
that the processor has the lowest priority. External devices that need to obtain
the bus must assert the bus arbitration signals in the sequences described
in the following paragraphs. Systems having several devices that can become
bus master require external circuitry to assign priorities to the device so that,
when two or more external devices attempt to become bus master at the
same time, the one having the highest priority becomes bus master first. The
sequence of the protocol is: '

1. An external device asserts the bus request signal.

2. The processor asserts the bus grant signal to indicate that the bus will
become available at the end of the current bus cycle.

3. The external device asserts the bus grant acknowledge signal to indicate
that it has assumed bus mastership.

BR may be issued any time during a.bus cycle or between cycles. BG is
asserted in response to BR; it is usually asserted as soon as BR has been
synchronized and recognized, except when the MC68030 has made an in-
ternal decision to execute a bus cycle. Then, the assertion of BG is deferred
until the bus cycle has begun. Additionally, BG is not asserted until the end
of a read-modify-write operation (when RMC is negated) in response to a BR

MC68030 USER'S MANUAL MOTOROLA

signal. When the requesting device receives BG and more than one external
device can be bus master, the requesting device should begin whatever
arbitration is required. The external device asserts BGACK when it assumes
bus mastership and maintains BGACK during the entire bus cycle (or cycles)
for which it is bus master. The following conditions must be met for an
external device to assume mastership of the bus through the normal bus
arbitration procedure:

® It must have received BG through the arbitration process.

e AS must be negated, indicating that no bus cycle is in progress, and the
external device must ensure that all appropriate processor signals have
been placed in the high-impedance state (by observing specification #7
in MC68030EC/D, MC68030 Electrical Specifications).

® The termination signal (DSACKx or STERM) for the most recent cycle
must have become inactive, indicating that external devices are off the
bus (optional, refer to 7.7.3 Bus Grant Acknowledge).

@ BGACK must be inactive, indicating that no other bus master has claimed
ownership of the bus.

Figure 7-59 is a flowchart showing the detail involved in bus arbitration for
a single device. Figure 7-60 is a timing diagram for the same operation. This
technique allows processing of bus requests during data transfer cycles.

The timing diagram shows that BR is negated at the time that BGACK is
asserted. This type of operation applies to a system consisting of the pro-
cessor and one device capable of bus mastership. In a system having a
number of devices capable of bus mastership, the bus request line from each
device can be wire-ORed to the processor. In such a system, more than one
bus request can be asserted simultaneously. :

The timing diagram in Figure 7-60 shows that BG is negated a few clock
cycles after the transition of the BGACK signal. However, if bus requests are
still pending after the negation of BG, the processor asserts another BG within
a few clock cycles after it was negated. This additional assertion of BG allows
- external arbitration circuitry to select the next bus' master before the current
bus master has finished with the bus. The following paragraphs provide
additional information about the three steps in the arbitration process.

Bus arbitration requests are recognized during normal processing, RESET
assertion, HALT assertion, and even when the processor has halted due to
a double bus fault.

MOTOROLA MC68030 USER'S MANUAL 7-97

PROCESSOR REQUESTING DEVICE

REQUEST THE BUS

GRANT BUS ARBITRATION < 1) ASSERT BUS REQUEST (BR)

1) ASSERT BUS GRANT (BG)

s ACKNOWLEDGE BUS MASTERSHIP *

1) EXTERNAL ARBITRATION DETERMINES NEXT BUS MASTER

2) NEXT BUS MASTER WAITS FOR CURRENT CYCLE TO COMPLETE

3) NEXT BUS MASTER ASSERTS BUS GRANT ACKNOWLEDGE (BGACK)
TO BECOME NEW MASTER

TERMINATE ARBITRATION - 4) BUS MASTER NEGATES BR

1) NEGATE BG AND WAIT FOR BGACK T0 BE NEGATED

L OPERATE AS BUS MASTER

1) PERFORM DATA TRANSFERS (READ AND WRITE CYCLES)

¥

RELEASE BUS MASTERSHIP

RE-ARBITRATE OR RESUME PROCESSOR OPERATION - 1) NEGATE BGACK

Figure 7-59. Bus Arbitration Flowchart for Single Request

7.7.1 Bus Request

External devices capable of becoming bus masters request the bus by as-
serting BR. This can be a wire-ORed signal (although it need not be con-
structed from open-collector devices) that indicates to the processor that
some external device requires control of the bus. The processor is effectively
at a lower bus priority level than the external device and relinquishes the
bus after it has completed the current bus cycle (if one has started).

‘If no acknowledge is received while the BR is active, the processor remains
bus master once BR is negated. This prevents unnecessary interference with
ordinary processing if the arbitration circuitry inadvertently responds to noise
or if an external device determines that it no longer requires use of the bus
before it has been granted mastership.

7-98 MC68030 USER’'S MANUAL MOTOROLA

oan X D <
oz Y S G
smsn X B C——
v f N\ S
= _/ \/
w _/ /T

/ |
/

PROCESSOR ‘-” "——— DMA DEVICE —Pl }‘7 PROCESSOR

Figure 7-60. Bus Arbitration Operation Timing

7.7.2 Bus Grant

The processor asserts BG as soon as possible after receipt of BR. This is
immediately following internal synchronization except during a read-modify-
write cycle or following an internal decision to execute a bus cycle. During
a read-modify-write cycle, the processor does not assert BG until the entire
operation has completed. RMC is asserted to indicate that the bus is locked.
In the case an internal decision to execute another bus cycle, BG is deferred
until the bus cycle has begun.

MOTOROLA MC68030 USER'S MANUAL ©7-99

BG may be routed through a daisy-chained network or through a specific
priority-encoded network. The processor allows any type of external arbitra-
tion that follows the protocol.

7.7.3 Bus Grant Acknowledge

Upon receiving BG, the requesting device waits until AS, DSACKx (or syn-
chronous termination, STERM), and BGACK are negated before asserting its
own BGACK. The negation of the AS indicates that the previous master
releases the bus after specification #7 (refer to MC68030EC/D, MC68030 Elec-
trical Specifications). The negation of DSACKx or STERM indicates that the
previous slave has completed its cycle with the previous master. Note that
in some applications, DSACKx might not be used in this way.

General-purpose devices are then connected to be dependent only on AS.
When BGACK is asserted, the device is the bus master until it negates BGACK.
BGACK should not be negated until all bus cycles required by the alternate
bus master are completed. Bus mastership terminates at the negation of
BGACK. The BR from the granted device should be negated after BGACK is
asserted. If a BR is still pending after the assertion of BGACK, another BG is
asserted within a few clocks of the negation of BG, as described in the 7.7.4
Bus Arbitration Control. Note that the processor does not perform any ex-
ternal bus cycles before it reasserts BG in this case.

7.7.4 Bus Arbitration Control

7-100

The bus arbitration control unit in the MC68030 is implemented with a finite
state machine. As discussed previously, all asynchronous inputs to the
MC68030 are internally synchronized in a maximum of two cycles of the
processor clock.

As shown in Figure 7-61, input signals labeled R and A are internally syn-
chronized versions of the BR and BGACK signals, respectively. The BG output
is labeled G, and the internal high-impedance control signal is labeled T. If
T is true, the address, data, and control buses are placed in the high-
impedance state after the next rising edge following the negation of AS and
RMC. All signals are shown in positive logic (active high), regardless of their
true active voltage level.

MC68030 USER'S MANUAL MOTOROLA

- BUS REQUEST

- BUS GRANT ACKNOWLEDGE

- BUS GRANT

- THREE-STATE CONTROL 7O BUS CONTROL LOGIC
- DON'T CARE

R
A
G
T
X

NOTE: The BG output will not be asserted while RMC is asserted.

Figure 7-61. Bus Arbitration State ‘Diagram

State changes occur on the next rising edge of the clock after the internal
signal is valid. The BG signal transitions on the falling edge of the clock after
a state is reached during which G changes. The bus control signals (controlled
by T) are driven by the processor, immediately following a state change,
when bus mastership is returned to the MC68030.

State 0, at the top center of the diagram, in which G and T are both negated,
is the state of the bus arbiter while the processor is bus master. Request R
and acknowledge A keep the arbiter in state 0 as long as they are both
negated. When a request R is received, both grant G and signal T are asserted
{(in state 1 at the top left). The next clock causes a change to state 2, at the
lower left, in which G and T are held. The bus arbiter remains in that state
until acknowledge A is asserted or request R is negated. Once either occurs,
the arbiter changes to the center state, state 3, and negates grant G. The next
clock takes the arbiter to state 4, at the upper right, in which grant G remains

MOTOROLA MC68030 USER'S MANUAL 7-101

7-102

negated and signal T remains asserted. With acknowledge A asserted, the
arbiter remains in state 4 until A is negated or request R is again asserted.
When A is negated, the arbiter returns to the original state, state 0, and
negates signal T. This sequence of states follows the normal sequence of
signals for relinquishing the bus to an external bus master. Other states apply
to other possible sequences of combinations of R and A. As shown by the
path from state 0 to state 4, BGACK alone can be used to place the processor’s
external bus buffers in the high-impedance state, providing single-wire ar-
bitration capability.

The read-modify-write sequence is normally indivisible to support sema-
phore operations and multiprocessor synchronization. During this indivisible
sequence, the MC68030 asserts the RMC signal and causes the bus arbitration
state machine to ignore bus requests (assertions of BR) that occur after the
first read cycle of the read-modify-write sequence by not issuing bus grants
(asserting BG).

In some cases, however, it may be necessary to force the MC68030 to release
the bus during an read-modify-write sequence. One way for an alternate bus
master to force the MC68030 to release the bus applies only to the first read
cycle of an read-modify-write sequence. The MC68030 allows normal bus
arbitration during this read cycle; a normal relinquish and retry operation
(asserting BERR, HALT, and BR at the same time) is used. Note that this
method applies only to the first read cycle of the read-modify-write sequence,
but this method preserves the integrity of the read-modify-write sequence
without imposing any constraint on the alternate bus master.

A second method is single-wire arbitration, the timing of which is shown in
Figure 7-62. An alternate master forces the-MC68030 to release the bus by
asserting BGACK and waits for AS to negate before taking the bus. It applies
to all bus cycles of a read-modify-write sequence, but can cause system
integrity problems if used improperly. The alternate bus master must guar-
antee the integrity of the read-modify-write sequence by not altering the
contents of memory locations accessed by the read-modify-write sequence.
Note that for the method to operate properly, AS must be observed to be
negated (high) on two consecutive clock edges before the alternate bus mas-
ter takes the bus. Waiting for this condition ensures that any current or
pending bus activity has completed or has been pre-empted.

MC68030 USER'S MANUAL MOTOROLA

< SEE NOTE >

DO NOT
< AKE BUS L TAKE BUS >

LY L N\
@—} Dmnis 12> <16
@

DN
AL

ADDRESS X o—

NOTE: The alternate bus master must sample AS high on two consecutive rising edges of the clock (after BGACK is recognized
low) before taking the bus.

Figure 7-62. Single-Wire Bus Arbitration Timing Diagram

cycle is shown in Figure 7-60. The bus arbitration sequence while the bus is
inactive (i.e., executing internal operations such as a multiply instruction} is
shown in Figure 7-63.

A timing diagram of the bus arbitration sequence during a processor bus -
7

7.8 RESET OPERATION

RESET is a bidirectional signal with which an external device resets the
system or the processor resets external devices. When power is applied to
the system, external circuitry should assert RESET for a minimum of 520
clocks after V¢ is within tolerance. Figure 7-64 is a timing diagram of the
powerup reset operation, showing the relationships between RESET, Vg,
and bus signals. The clock signal is required to be stable by the time V¢
reaches the minimum operating specification. During the reset period, the
entire bus three-states (except for non-three-statable signals, which are dri-
ven to their inactive state). Once RESET negates, all control signals are driven
to their inactive state, the data bus is in read mode, and the address bus is
driven. After this, the first bus cycle for reset exception processing begins.

MOTOROLA MC68030 USER'S MANUAL 7-103

AQ-A31 > <
FC0-FC2 - s
siz0-siz1 > 4
AW \: o
@ _/
= _/
s/ \ —___
5 J . N
DSACTK1
-
OEER l 7 i\ /.
o3t > <
s\ / '

BGACK

. (ARBITRATION PERMITTED WHILE THE

PROCESSOR ———pw»1«¢——————— BUS INACTIVE ——————»tt—— ALTERNATE MASTER —P‘C‘ PROCESSOR

PROCESSOR IS INACTIVE OR HALTED)

Figure 7-63. Bus Arbitration Operation (Bus Inactive)

The external RESET signal resets the processor and the entire system. Except
for the initial reset, RESET should be asserted for at least 520 clock periods
to ensure that the processor resets. Asserting RESET for 10 clock periods is
sufficient for resetting the processor logic; the additional clock periods pre-
vent a reset instruction from overlapping the external RESET signal.

7-104 MC68030 USER'S MANUAL MOTOROLA

vouTS
Vee 1=>520 cwcxs———{

S —I t<4 CLOCKS
|-4——— 4 CI.OCKS
wsrass XXXXKKXKXX XXX XXKXX XK KXXXKKKR) ——
ENTIRE BUS | NEGATED, DATA BUS IN‘—’ ISP

HIGH IMPEDANCE| READ MODE, ADDRESS READ
BUS DRIVEN STARTS

m BUS STATE UNKNOWN

Figure 7-64. Initial Reset Operation Timing

Resetting the processor causes any bus cycle in progress to terminate as if
DSACKx, BERR, or STERM had been asserted. In addition, the processor
initializes registers appropriately for a reset exception. Exception processing
for a reset operation is described in 8.1.1 Reset Exception.

When a reset instruction is executed, the processor drives the RESET signal
for 512 clock cycles. In this case, the processor resets the external devices
of the system, and the internal registers of the processor are unaffected. The
external devices connected to the RESET signal are reset at the completion
of the reset instruction. An external RESET signal that is asserted to the
processor during execution of a reset instruction must extend beyond the
reset period of the instruction by at least eight clock cycles to reset the
processor. Figure 7-65 shows the timing information for the reset instruction.

MOTOROLA MC68030 USER'S MANUAL 7-105

$120-5121 l :: X
R/W _/

.
&)
b=
o)
=
=

=X
=
=

i

|
1)

E!

\ -

T
RESUME NORMAL
READ 4.‘ ‘—.l RESET INTERNAL 512 CLOCKS '17 OPERATION

Figure 7-65. Processor-Generated Reset Operation

N

7-106 MC68030 USER'S MANUAL MOTOROLA

SECTION 8
EXCEPTION PROCESSING

Exception processing is defined as the activities performed by the processor
in preparing to execute a handler routine for any condition that causes an
exception. In particular, exception processing does not include execution of
the handler routine itself. An introduction to exception processing, as one of
the processing states of the MC68030 processor, was given in SECTION 4
PROCESSING LEVELS. This section describes exception processing in detail,
describing the processing for each type of exception. It describes the return
from an exception and bus fault recovery. This section also describes the
formats of the exception stack frames. For details of MMU-related exceptions,
refer to SECTION 9 MEMORY MANAGEMENT UNIT. For more detail on pro-
tocol violation and coprocessor-related exceptions, refer to SECTION 10
COPROCESSOR INTERFACE DESCRIPTION. Also, for more detail on excep-
tions defined for floating-point coprocessors, refer to the user’s manual for
the MC68881/MC68882.

8.1 EXCEPTION PROCESSING SEQUENCE

Exception processing occurs in four functional steps. However, all individual
bus cycles associated with exception processing {vector acquisition, stacking,
etc.) are not guaranteed to occur in the order in which they are described in
this section. Nonetheless, all addresses and offsets from the stack pointer
are guaranteed to be as described.

The first step of exception processing involves the status register. The pro-
cessor makes an internal copy of the status register. Then the processor sets
the S bit, changing to the supervisor privilege level. Next, the processor
inhibits tracing of the exception handler by clearing the T1 and TO bits. For
the reset and interrupt exceptions, the processor also updates the interrupt
priority mask.

In the second step, the processor determines the vector number of the ex-
ception. For interrupts, the processor performs an interrupt acknowledge
cycle (a read from the CPU address space type $F; see Figures 7-45 and
7-46) to obtain the vector number. For coprocessor-detected exceptions, the
vector number is included in the coprocessor exception primitive response.

MOTOROLA MC68030 USER'S MANUAL 8-1

(Refer to SECTION 10 COPROCESSOR INTERFACE DESCRIPTION for a com-
piete discussion of coprocessor exceptions.) For all other exceptions, internal
logic provides the vector number. This vector number is used in the last step
to calculate the address of the exception vector. Throughout this section,
9vector numbers are given in decimal notation.

For all exceptions other than reset, the third step is to save the current
processor context. The processor creates an exception stack frame on the
active supervisor stack and fills it with context information appropriate for
the type of exception. Other information may also be stacked, depending on
which exception is being processed and the state of the processor prior to
the exception. If the exception is an interrupt and the M bit of the status
register is set, the processor clears the M bit in the status register and builds
a second stack frame on the interrupt stack.

The last step initiates execution of the exception handler. The processor
multiplies the vector number by four to determine the exception vector offset.
It adds the offset to the value stored in the vector base register to obtain the
memory address of the exception vector. Next, the processor loads the pro-
gram counter (and the interrupt stack pointer (ISP) for the reset exception)
from the exception vector table in memory. After prefetching the first three
words to fill the instruction pipe, the processor resumes normal processing
at the address in the program counter. Table 8-1 contains a description of
all the exception vector offsets defined for the MC68030..

Table 8-1. Exception Vector Assignments (Sheet 1 of 2)

Vector Vector Offset Assi ¢ STATUS
Number(s) Hex Space ssignmen Asserted
0 000 SP Reset Initial Interrupt Stack Pointer —
1 004 SP Reset Initial Program Counter —
2 008 SD Bus Error . Yes
3 oocC SD |Address Error i Yes
4 010 SD |lllegal Instruction No
5 014 SD Zero Divide No
6 018 SD | CHK, CHK2 Instruction No
7 01C SD {cpTRAPcc, TRAPcc, TRAPV Instructions . No
8 020 SD Privilege Violation No
9 024 SD [Trace Yes
10 028 SD Line 1010 Emulator No
" 02C SD Line 1111 Emulator Yes
12 030 SD [(Unassigned, Reserved) —
13 034 - SD Coprocessor Protocol Violation No
14 038 SD Format Error No
15 03C SD | Uninitialized Interrupt ' Yes

MC68030 USER'S MANUAL MOTOROLA

Table 8-1. Exception Vector Assignments (Sheet 2 of 2)

Vector Vector Offset Assignment STATUS

Number(s} Hex | Space 'gnme Asserted
16 040 SD

Through Unassigned, Reserved —
23 05C SD
24 060 SD |Spurious Interrupt Yes
25 064 SD Level 1 Interrupt Autovector Yes
26 068 SD |Level 2 Interrupt Autovector Yes
27 06C SD Level 3 Interrupt Autovector Yes
28 070 SD Level 4 Interrupt Autovector Yes
29 074 SD Level 5 Interrupt Autovector Yes
30 078 SD Level 6 Interrupt Autovector Yes
31 07C SD Level 7 Interrupt Autovector Yes
32 080 SD

Through TRAP #0-15 Instruction Vectors No
47 0BC SD
48 0co SD FPCP Branch or Set on Unordered Condition No
49 0ca SD FPCP Inexact Result No
50 0cs SD |FPCP Divide by Zero No
51 occ SD |FPCP Underflow No
52 0DO SD FPCP Operand Error No
53 o0D4 SD FPCP Overflow No
54 0D8 SD | FPCP Signaling NAN No
55 oDC SD Unassigned, Reserved No
56 0EO SD | MMU Configuration Error No
57 OE4 SD | Defined for MC68851 not used by MC68030 —
58 0E8 SD | Defined for MC68851 not used by MC68030 —
59 0EC SD

Through Unassigned, Reserved —
63 OFC SD
64 100 SD

Through User Defined Vectors (192) Yes
255 3FC sD

SP = Supervisor Program Space
SD = Supervisor Data Space

As shown in Table 8-1, the first 64 vectors are defined by Motorola and 192
vectors are reserved for interrupt vectors defined by the user. However,
external devices may use vectors reserved for internal purposes at the dis-
cretion of the system designer.

MOTOROLA MC68030 USER’'S MANUAL 8-3

The MC68030 provides the STATUS signal to identify instruction boundaries
and some exceptions. As shown in Table 8-2, STATUS indicates an instruction
boundary and exceptions to be processed, depending on the state of the

internal microsequencer. In addition, STATUS indicates when an MMU ad-

dress translation cache miss has occurred and the processor is about to begin
a table search access for the logical address that caused the miss. Instruction-
related exceptions do not cause the assertion of STATUS as shown in Table
8-1. For STATUS signal timing information, refer to SECTION 12 APPLICA-
TIONS INFORMATION.

Table 8-2. Microsequencer STATUS Indications

Asserted for

Indicates

1 Clock

Sequencer at instruction boundary will begin execution of next instruction.

2 Clocks

Sequencer at instruction boundary but will not begin the next instruction im-
mediately due to:
® pending trace exception
OR
® pending interrupt exception

3 Clocks

MMU address translation cache miss — processor to begin table serach
OR)
Exception processing to begin for:
e reset OR
® bus error OR
® address error OR
® spurious interrupt OR
e autovectored interrupt OR
e F-line instruction (no coprocessor responded)

Continuously

Processor halted due to double bus fault.

MC68030 USER'S MANUAL MOTOROLA

8.1.1 Reset Exception

Assertion by external hardware of the RESET signal causes a reset exception.
For details on the requirements for the assertion of RESET, refer to 7.8 RESET
OPERATION.

The reset exception has the highest priority of any exception; it provides for
system initialization and recovery from catastrophic failure. When reset is
recognized, it aborts any processing in progress, and that processing cannot
be recovered. Figure 8-1 is a flowchart of the reset exception, which performs
the following operations:

1.
2.

Clears both trace bits in the status register to disable tracing.

Places the processor in the interrupt mode of the supervisor privilege
level by setting the supervisor bit and clearing the master bit in the
status register.

Sets the processor interrupt priority mask to the highest priority level
(level 7).

Initializes the vector base register to zero {$00000000).

5. Clears the enable, freeze, and burst enable bits for both on-chip caches

10.

and the write-allocate bit for the data cache in the cache control register.

Invalidates all entries in the instruction and data caches.

. Clears the enable bit in the translation control register and the enable

bits in both transparent translation registers of the MMU.

Generates a vector number to reference the reset exception vector (two
long words) at offset zero in the supervisor program address space.

Loads the first long word of the reset exception vector into the interrupt
stack pointer.

Loads the second long word of the reset exception vector into the
program counter.

After the initial instruction prefetches, program execution begins at the ad-
dress in the program counter. The reset exception does not flush the address
translation cache (ATC), nor does it save the value of either the program
counter or the status register.

MOTOROLA

MC68030 USER'S MANUAL 8-5

8-6

ENTRY

S - 1
M- 0
TOT! --— 0
12:10 --— §7

VBR -=— $0
CACR - $0

INSTRUCTION AND DATA CACHE
ENTRIES INVALIDATED

FETCH VECTOR #0

-

OTHERWISE BUS ERROR
SPp --— (|VECTOH #0) \l (OOUBLE BUS FAULT)
ASSERT STATUS
FETCH VECTOR #1 phslh

7
:

EXIT
OTHERWISE BUS ERROR
PC -— (l\/Ecmn #1) \‘ (DOUBLE BUS FAULT)
ASSERT STATUS
PREFETCH 3 WORDS PO

EXIT

7
J

OTHERWISE BUS ERROR OR ADDRESS ERROR

BEGIN INSTRUCTION EXECUTION (DOUBLE BUS FAULT)

ASSERT STATUS
CONTINUOUSLY

/

EXIT

J

Figure 8-1. Reset Operation Flowchart

MC68030 USER’S MANUAL MOTOROLA

As described in 7.5.4 Double Bus Fault, if bus error or address error occur
during the exception processing sequence for a reset, a: double bus fault
occurs. The processor halts, and the STATUS signal is asserted continuously
to indicate the halted condition.

Execution of the reset instruction does not cause a reset exception, nor does
it affect any internal registers, but it does cause the MC68030 to assert the
RESET signal, resetting all external devices.

8.1.2 Bus Error Exception

A bus error exception occurs when external logic aborts a bus cycle by
asserting the BERR input signal. If the aborted bus cycle is a data access, the
processor immediately begins exception processing. If the aborted bus cycle
is an instruction prefetch, the processor may delay taking the exception until
it attempts to use the prefetched information. The assertion of the BERR
signal during the second, third, or fourth access of a burst operation does
not cause a bus error exception, but the burst is aborted. Refer to 6.1.3.2
BURST MODE FILLING and 7.5.1 Bus Errors for details on the effects of bus
errors during burst operation.

A bus error exception also occurs when the MMU detects that a successful n
address translation is not possible. Furthermore, when an ATC miss occurs
and an external bus cycle is required, the MMU must abort the bus cycle,
search the translation tables in memory for the mapping, and then retry the
bus cycle. If a valid translation for the logical address is not available due to
a problem encountered during the table search (the attempt to access the
appropriate page descriptor in the translation tables for that page), a bus
error exception occurs when the aborted bus cycle is retried.

The problem encountered could be a limit violation, an invalid descriptor, or
the assertion of the BERR signal during a bus cycle used to access the trans-
lation tables. A miss in the ATC causes the processor to automatically initiate
a table search but does not cause a bus error exception unless one of the
specific conditions mentioned above is encountered.

MOTOROLA MC68030 USER'S MANUAL 8-7

The processor begins exception processing for a bus error by making an
internal ‘copy of the current status register. The processor then enters the
supervisor privilege level (by setting the S bit in the status register) and clears
the trace bits. The processor generates exception vector number 2 for the
bus error vector. It saves the vector offset, program counter, and the internal
copy of the status register on the stack. The saved program counter value is
the logical address of the instruction that was executing at the time the fault
was detected. This is not necessarily the instruction that initiated the bus
cycle, since the processor overlaps execution of instructions. The processor
also saves the contents of some of its internal registers. The information
saved on the stack is sufficient to identify the cause of the bus fault and
recover from the error.

For efficiency, the MC68030 uses two different bus error stack frame formats.

When the bus error exception is taken at an instruction boundary, less in-
formation is required to recover from the error, and the processor builds the
short bus. fault stack frame as shown in Table 8-7. When the exception is
taken during the execution of an instruction, the processor must save its
entire state for recovery and uses the long bus fault stack frame shown in
Table 8-7. The format code in the stack frame distinguishes the two stack
frame formats. Stack frame formats are described in detail in 8.4 EXCEPTION
STACK FRAME FORMATS.

If a bus error occurs during the exception processing for a bus error, address
error, or reset or while the processor is loading internal state information
from the stack during the execution of an RTE instruction, a double bus fault
occurs, and the processor enters the halted state as indicated by the contin-
uous assertion of the STATUS signal. In this case, the processor does not
attempt to alter the current state of memory. Only an external RESET can
restart a processor halted by a double bus fault.

8.1.3 Address Error Exception

8-8

An address error exception occurs when the processor attempts to prefetch
an instruction from an odd address. This exception is similar to a bus error
exception, but is internally initiated. A bus cycle is not executed, and the
processor begins exception processing immediately. After exception pro-
cessing commences, the sequence is the same as that for bus error exceptions
described in the preceding paragraphs, except that the vector number is 3
and the vector offset in the stack frame refers to the address error vector.
Either a short or long bus fault stack frame may be generated. If an address
error occurs during the exception processing for a bus error, address error,
or reset, a double bus fault occurs.

MC68030 USER'S MANUAL MOTOROLA

8.1.4 Instruction Trap Exception

Certain instructions are used to explicitly cause trap exceptions. The TRAP
#n instruction always forces an exception and is useful for implementing
system calls in user programs. The TRAPcc, TRAPV, cpTRAPcc, CHK, and
CHK2 instructions force exceptions if the user program detects an error, which
may be an arithmetic overflow or a subscript value that is out of bounds.

The DIVS and DIVU instructions force exceptions if a division operation is
attempted with a divisor of zero.

When a trap exception occurs, the processor copies the status register in-
ternally, enters the supervisor privilege level, and clears the trace bits. If
tracing is enabled for the instruction that caused the trap, a trace exception
is taken after the RTE instruction from the trap handler is executed, and the
trace corresponds to the trap instruction; the trap handler routine is not
traced. The processor generates a vector number according to the instruction
being executed; for the TRAP #n instruction, the vector number is 32 plus
n. The stack frame saves the trap vector offset, the program counter, and the
internal copy of the status register on the supervisor stack. The saved value
of the program counter is the logical address of the instruction following the
instruction that caused the trap. For all instruction traps other than TRAP #n,
a pointer to the instruction that caused the trap is also saved. Instruction
execution resumes at the address in the exception vector after the required
instruction prefetches. ’

8.1.5 lllegal Instruction and Unimplemented Instruction Exceptions

An illegal instruction is an instruction that contains any bit pattern in its first
word that does not correspond to the bit pattern of the first word of a valid
MC68030 instruction or is a MOVEC instruction with an undefined register
specification field in the first extension word. An illegal instruction exception
corresponds to vector number 4 and occurs when the processor attempts to
execute an illegal instruction.

MOTOROLA MC68030 USER'S MANUAL 8-9

8-10

An illegal instruction exception is also taken if a breakpoint acknowledge bus
cycle (see 7.4.2 Breakpoint Acknowledge Cycle) is terminated with the as-
sertion of the bus error signal. This implies that the external circuitry did not
supply an instruction word to replace the BKPT instruction word in the in-
struction pipe.

Instruction word patterns with bits [15:12] equal to $A are referred to as
unimplemented instructions with A-line opcodes. When the processor at-
tempts to execute an unimplemented instruction with an A-line opcode, an
exception is generated with vector number 10, permitting efficient emulation
of unimplemented instructions.

Instructions that have word patterns with bits [15:12] equal to $F, bits [11:9]
equal to $0, and defined word patterns for subsequent words are legal MMU
instructions. Instructions that have bits [15:12] of the first words equal to $F,
bits [11:9] equal to $0, and undefined patterns in subsequent words are
treated as unimplemented instructions with F-line opcodes when execution
is attempted in supervisor mode. When execution of the same instruction is
attempted in user mode, a privilege violation exception is taken. The excep-
tion vector number for an unimplemented instruction with an F-line opcode

is number 11.

The word patterns with bits [15:12] equal to $F and bits [11:9] not equal to
zero are used for coprocessor instructions. When the processor identifies a
coprocessor instruction, it runs a bus cycle referencing CPU space type $2
(refer to 4.2 ADDRESS SPACE TYPES) and addressing one of seven copro-
cessors {1-7, according to bits [11:9]). If the addressed coprocessor is not
included in the system and the cycle terminates with the assertion of the bus
error signal, the instruction takes an unimplemented instruction (F-line op-
code) exception. The system can emulate the functions of the coprocessor
with an F-line exception handler. Refer to SECTION 10 COPROCESSOR
INTERFACE DESCRIPTION for more details.

MC68030 USER’S MANUAL MOTOROLA

Exception processing for illegal and unimplemented instructions is similar
to that for instruction traps. When the processor has identified an illegal or
unimplemented instruction, it initiates exception processing instead of at-
tempting to execute the instruction. The processor copies the status register,
enters the supervisor privilege level, and clears the trace bits, disabling fur-
ther tracing. The processor generates the vector number, either 4, 10, or 11,
according to the exception type. The illegal or unimplemented instruction
vector offset, current program counter, and copy of the status register are
saved on the supervisor stack, with the saved value of the program counter
being the address of the illegal or unimplemented instruction. Instruction
execution resumes at the address contained in the exception vector. It is the
responsibility of the handling routine to adjust the stacked program counter
if the instruction is emulated in software or is to be skipped on return from
the handler.

8.1.6 Privilege Violation Exception

To provide system security, the following instructions are privileged:
ANDI TO SR
EOR to SR
cpRESTORE
cpSAVE
MOVE from SR
MOVE to SR
MOVE USP
MOVEC
MOVES
ORI to SR
PFLUSH
PLOAD
PMOVE
PTEST
RESET
RTE
STOP

An attempt to execute one of the privileged instructions while at the user
privilege level causes a privilege violation exception. Also, a privilege vio-
lation exception occurs if a coprocessor requests a privilege check and the
processor is at the user level.

MOTOROLA MC68030 USER'S MANUAL 8-1

8.1.7

8-12

Exception processing for privilege violations is similar to that for illegal in-
structions. When the processor identifies a privilege violation, it begins ex-
ception processing before executing the instruction. The processor copies
the status register, enters the supervisor privilege level, and clears the trace
bits. The processor generates vector number 8, the privilege violation ex-
ception vector, and saves the privilege violation vector offset, the current
program counter value, and the internal copy of the status register on the
supervisor stack. The saved value of the program counter is the logical ad-
dress of the first word of the instruction that caused the privilege violation.
Instruction execution resumes after the required prefetches from the address
in the privilege violation exception vector.

Trace Exception

To aid in program development, the M68000 processors include instruction-
by-instruction tracing capability. The MC68030 can be programmed to trace
all instructions or only instructions that change program flow. In the trace
mode, an instruction generates a trace exception after it completes execution,
allowing a debugger program to monitor execution of a program.

The T1 and TO bits in the supervisor portion of the status register control
tracing. The state of these bits when an instruction begins execution deter-
mines whether the instruction generates a trace exception after the instruc:,
tion completes. Clearing both T bits disables tracing, and instruction execution
proceeds normally. Clearing the T1 bit and setting the TO bit causes an in-
struction that forces a change of flow to take a trace exception. Instructions
that increment the program counter normally do not take the trace exception.
Instructions that are traced in this mode include all branches, jumps, instruc-
tion traps, returns, and coprocessor instructions that modify the program
counter flow. This mode also includes status register manipulations, because
the processor must re-prefetch instruction words to fill the pipe again any
time an instruction that can modify the status register is executed. The ex-
ecution of the BKPT instruction causes a change of flow if the opcode re-
placing the BKPT is an instruction that causes a change of flow (i.e., a jump,
branch, etc.). Setting the T1 bit and clearing the TO bit causes the execution
of all instructions to force trace exceptions. Table 8-3 shows the trace mode
selected by each combination of T1 and TO.

MC68030 USER'S MANUAL MOTOROLA

Table 8-3. Tracing Control

T TO Tracing Function

0 0 |No Tracing
0 1 Trace on Change of Flow (BRA, JMP, etc.)

1 0 |Trace on Instruction Execution (Any Instruction)

1 1 |Undefined, Reserved

In general terms, a trace exception is an extension to the function of any
traced instruction — that is, the execution of a traced instruction is not com-
plete until the trace exception processing is completed. If an instruction does
not complete due to a bus error or address error exception, trace exception
processing is deferred until after the execution of the suspended instruction
is resumed and the instruction execution completes normally. If an interrupt
is pending at the completion of an instruction, the trace exception processing
occurs before the interrupt exception processing starts. If an instruction forces
an exception as part of its normal execution, the forced exception processing
occurs before the trace exception is processed. See 8.1.12 Multiple Excep-
tions for a more complete discussion of exception priorities.

When the processor is in the trace mode and attempts to execute an illegal
or unimplemented instruction, that instruction does not cause a trace ex-
ception since it is not executed. This is of particular importance to an instruc-
tion emulation routine that performs the instruction function, adjusts the
stacked program counter to skip the unimplemented instruction, and returns.
Before returning, the trace bits of the status register on the stack should be
checked. If tracing is enabled, the trace exception processing should also be
emulated for the trace exception handler to account for the emulated instruc-
tion.

The exception processing for a trace starts at the end of normal processing
for the traced instruction and before the start of the next instruction. The
processor makes an internal copy of the status register and enters the su-
pervisor privilege level. It also clears the TO and T1 bits of the status register,
disabling further tracing. The processor supplies vector number 9 for the
trace exception and saves the trace exception vector offset, program counter
value, and the copy of the status register on the supervisor stack. The saved
value of the program counter is the logical address of the next instruction
to be executed. Instruction execution resumes after the required prefetches
from the address in the trace exception vector.

MOTOROLA MC68030 USER'S MANUAL 8-13

The STOP instruction does not perform its function when it is traced. A STOP
instruction that begins execution with T1=1 and T0=0 forces a trace excep-
tion after it loads the status register. Upon return from the trace handler
routine, execution continues with the instruction following the STOP, and
the processor never enters the stopped condition.

8.1.8 Format Error Exception

Just as the processor checks that prefetched instructions are valid, the pro-
cessor (with the aid of a coprocessor, if needed) also performs some checks
of data values for control operations, including the coprocessor state frame
format word for a cpRESTORE instruction and the stack frame format for an
RTE instruction.

The RTE instruction checks the validity of the stack format code. For long
bus cycle fault format frames, the RTE instruction also compares the internal

_version number of the processor to that contained in the frame at memory

location SP+54 (SP+$36). This check ensures that the processor can cor-
rectly interpret internal state information from the stack frame.

The cpRESTORE instruction passes the format word of the coprocessor state
frame to the coprocessor for validation. If the coprocessor does not recognize
the format value, it signals the MC68030 to take a format error exception.
Refer to SECTION 10 COPROCESSOR INTERFACE DESCRIPTION for details
of coprocessor-related exceptions.

vlf any of the checks previously described determine that the format of the

stacked data is improper, the instruction generates a format error exception.
This exception saves a short format stack frame, generates exception vector
number 14, and continues execution at the address in the format exception
vector. The stacked program counter value is the logical address of the in-
struction that detected the format error.

8.1.9 Interrupt Exceptions

8-14

When a peripheral device requires the services of the MC68030 or is ready
to send information that the processor requires, it may signal the processor
to take an interrupt exception. The interrupt exception transfers control to a
routine that responds appropriately.

MC68030 USER'S MANUAL MOTOROLA

The peripheral device uses the active-low interrupt priority level signals
(IPLO-IPL2) to signal an interrupt condition to the processor and to specify
the priority of that condition. The three signals encode a value of zero through
seven (IPLO is the least significant bit). High levels on all three e signals cor-
respond to no interrupt requested (level 0) and low levels on IPLO-IPL2 cor-
respond to interrupt request level 7. Values 1-7 specify one of seven levels
of prioritized interrupts; level seven has the highest priority. External circuitry
can chain or otherwise merge signals from devices at each level, allowing
an unlimited number of devices to interrupt the processor.

The IPLO-IPL2 interrupt signals must maintain the interrupt request level until
the MC68030 acknowledges the interrupt to guarantee that the interrupt is
recognized. The MC68030 continuously samples the IPLO-IPL2 signals on
consecutive falling edges of the processor clock to synchronize and debounce
these signals. An interrupt request that is the same for two consecutive falling
clock edges is considered a valid input. Although the protocol requires that
the request remain until the processor runs an interrupt acknowledge cycle
for that interrupt value, an interrupt request that is held for as short a period
as two clock cycles could be recognized.

The status register of the MC68030 contains an interrupt priority mask (12,
11, 10, bits 10-8). The value in the interrupt mask is the highest priority level
that the processor ignores. When an interrupt request has a priority higher
than the value in the mask, the processor makes the request a pending
interrupt. Figure 8-2 is a rowchart of the procedure for making an interrupt
pending.

‘ RESET ’

SAMPLE AND SYNCH |
IPL2:IPLO

(COMPARE INTERRUPT LEVEL
WITH STATUS REGISTER MASK)
INTERRUPT LEVEL > 12:10,

OTHERWISE g TRANSITION ON LEVEL 7
|

ASSERT IPEND

Figure 8-2. Interrupt Pending Procedure

MOTOROLA MC68030 USER'S MANUAL 8-15

8-16

When several devices are connected to the same interrupt level, each device
should hold its interrupt priority level constant until its corresponding inter-
rupt acknowledge cycle to ensure that all requests are processed.

Table 8-4 lists the interrupt levels, the states of IPL2-IPLO that define each
level, and the mask value that allows an interrupt at each level.

Table 8-4. Interrupt Levels and Mask Values

Requested _Control l.i_ne Statui Interrupt Mask Level
Interrupt Level P2 1P1 IPO Required for Recognition

0* High High High N/A*

1 High High Low 0

2 High Low High 0-1

3 High Low Low 0-2

4 Low High High 0-3

5 Low High Low 0-4

6 Low Low High 0-5

7 Low Low Low 0-7

*Indicates that no interrupt is requested.

Priority level 7, the nonmaskable interrupt (NMI), is a special case. Level 7
interrupts cannot be masked by the interrupt priority mask, and they are
transition sensitive. The processor recognizes an interrupt request each time
the external interrupt request level changes from some lower level to level
7, regardless of the value in the mask. Figure 8-3 shows two examples of
interrupt recognitions, one for level 6 and one for level 7. When the MC68030
processes a level 6 interrupt, the status register mask is automatically updated
with a value of 6 before entering the handler routine so that subsequent level
6 interrupts are masked. Provided no instruction that lowers the mask value
is executed, the external request can be lowered to level 3 and then raised
back to level 6 and a second level 6 interrupt is not processed. However, if
the MC68030 is handling a level 7 interrupt (status register mask set to 7)
and the external request is lowered to level 3 and than raised back to level
7, a second level 7 interrupt is processed. The second level 7 interrupt is
processed because the level 7 interrupt is transition sensitive. A level 7 in-
terrupt is also generated by a level comparison if the request level and mask
level are at seven and the priority mask is then set to a lower level (with the
MOVE to SR or RTE instruction, for example). As shown in Figure 8-3 for
level 6 interrupt request level and mask level, this is the case for all interrupt
levels.

MC68030 USER’S MANUAL MOTOROLA

LEVEL 6 EXAMPLE:

EXTERNAL IPL2:IPLO

SR MASK (i2:10)

ACTION

100 ($3) 101 (85) INITIAL CONDITIONS
I IF 001 ($6) THEN + 110 ($6) AND LEVEL 6 INTERRUPT
Y
| IF 100 ($3) AND STILL 110 (86) THEN NO ACTION
I IF 001 ($6) AND STI*L 110 ($6) THEN NO ACTION
I IF STILL 001 ($6) AND HTSSU THAT 101 (85) THEN LEVEL 6 INTERRUPT
LEVEL 7 EXAMPLE:
100 (83) 101 (35) INITIAL CONDITIONS
!
I IF 000 (87) THEN 11187) AND LEVEL 7 INTERRUPT
L IF 100 ($3) AND SII%L 111 §7) THEN NO ACTION
I IF 000 {$7) AND STI%L 11 (87) THEN LEVEL 7 INTERRUPT
| IF STILL 000 ($7) AND RT!SO THAT 101 (85) THEN LEVEL 7 INTERRUPT

Figure 8-3. Interrupt Recognition Examplés

(LEVEL COMPARISON)

(LEVEL COMPARISON)

(TRANSITION}

(TRANSITION)

(LEVEL COMPARISON) “

Note that a mask value of 6 and a mask value of 7 both inhibit request levels
1-6 from being recognized. In addition, neither masks a transition to an
interrupt request level of 7. The only difference between mask values of 6
and 7 occurs when the interrupt request level is 7 and the mask value is 7.
If the mask value is lowered to 6, a second level 7 interrupt is recognized.

The MC68030 asserts the interrupt pending signal (IPEND) when it makes an
interrupt request pending. Figure 8-4 shows the assertion of IPEND relative
to the assertion of an interrupt level on the IPL lines. IPEND signals to external
devices that an interrupt exception will be taken at an upcoming instruction
boundary (following any higher priority exception).

MOTOROLA

MC68030 USER'S MANUAL

8-17

8-18

IPLs RECOGNIZED —

PLs
SYNCHRONIZED

COMPARE REQUEST
WITH MASK IN SR]

[— ASSERT IPEND

[—

Figure 8-4. Assertion of IPEND

The state of the IPEND signal is internally checked by the processor once per
instruction, independently of bus operation. In addition, it is checked during
the second instruction prefetch associated with exception processing. Figure
8-5 is a flowchart of the interrupt recognition and associated exception pro-
cessing sequence.

To predict the instruction boundary during which a pending interrupt is pro-
cessed, the timing relationship between the assertion of IPEND for that in-
terrupt and the assertion of STATUS must be examined. Figure 8-6 shows
two examples of interrupt recognition. The first assertion of STATUS after
IPEND is denoted as STATO. The next assertion of STATUS is denoted as
STAT1. If STATO begins on the falling edge of the clockimmediately following
the clock edge that caused IPEND to assert (as shown in example 1), STAT1
is at least two clocks long, and, when there are no other pending exceptions,
the interrupt is acknowledged at the boundary defined by STAT1. If IPEND
is asserted with more setup time to STATO, the interrupt may be acknowl-
edged at the boundary defined by STATO (as shown in example 2). In that
case, STATO is asserted for two clocks, signaling this condition.

If no higher priority interrupt has been synchronized, the IPEND signal is
negated during state 0 {S0) of an interrupt acknowledge cycle (refer to 7.4.1.1
INTERRUPT ACKNOWLEDGE CYCLE — TERMINATED NORMALLY), and the
IPLx signals for the interrupt being acknowledged can be negated at this
time. ‘

MC68030 USER'S MANUAL MOTOROLA

ONCE PER INSTRUCTION

() (CHECK RELATIONSHIP BETWEEN [PEND AND STATUS)

OTHERWISE TPEND BEFORE STATUS
STATO ~€— THIS INSTRUCTION BOUNDARY
EXIT STAT1 ~— NEXT INSTRUCTION BOUNDARY
WAIT FOR STATO OR STAT1* *EXPLAINED FURTHER IN TEXT

INDICATE ‘INTERRUPT TO BE PROCESSED'
(ASSERT STATUS FOR 2 CLOCKS)

NEGATE IPEND
EXECUTE INTERRUPT ACKNOWLEDGE CYCLE

TEMP <€— SR
S - 1
0T -— 20
UPDATE 12:10

- (SP) -— TEMP
- (SP) ~a— PC
- (SP) ~e— FORMAT WORD
- (SP} ~<€— OTHER EXCEPTION DEPENDENT INFORMATION

THESE
INDIVIDUAL
BUS CYCLES —]
MAY OCCUR M=1

IN ANY ORDER mM=0

PC -€— VECTOR TABLE ENTRY

TEMP -— SR
PREFETCH 3 WORDS M -<—0

ROUTINE OR PROCESS A HIGHER PRIORITY

GND OF EXCEPTION PROCESSIN
EXCEPTION

5 BEGIN EXECUTION OF THE INTERRUPT HANDLER
FOR THE INTERRUPT)

Figure 8-5. Interrupt Exception Processing Flowchart

MOTOROLA MC68030 USER'S MANUAL 8-19

8-20

el I N I I

2
J

STATUS l

PROCEED TO INTERRUPT
STATO STAT! . EXCEPTION PROCESSING

EXAMPLE 1: INTERRUPT EXCEPTION SIGNALED DURING STAT1

CLK

STATUS /

PROCEED TO INTERRUPT

STATo EXCEPTION PROCESSING

EXAMPLE 2: INTERRUPT EXCEPTION SIGNALED DURING STATO

Figure 8-6. Examples of Interrupt Recognition and Instruction Boundaries

When processing an interrupt exception, the processor first makes an internal
copy of the status register, sets the privilege level to supervisor, suppresses
tracing, and sets the processor interrupt mask level to the level of the interrupt
being serviced. The processor attempts to obtain a vector number from the
interrupting device using an interrupt acknowledge bus cycle with the inter-
rupt level number output on pins A1-A3 of the address bus. For a device
that cannot supply an interrupt vector, the autovector signal (AVEC) can be
asserted, and the MC68030 uses an internally generated autovector, which
is one of vector numbers 25-31, that corresponds to the interrupt level num-
ber. If external logic indicates a bus error during the interrupt acknowledge
cycle, the interrupt is considered spurious, and the processor generates the
spurious interrupt vector number, 24. Refer to 7.4.1 Interrupt Acknowledge
Bus Cycles for complete interrupt bus cycle information.

MC68030 USER’S MANUAL MOTOROLA

Once the vector number is obtained, the processor saves the exception vector
offset, program counter value, and the internal copy of the status register on
the active supervisor stack. The saved value of the program counter is the
logical address of the instruction that would have been executed had the
interrupt not occurred. If the interrupt was acknowledged during the exe-
cution of a coprocessor instruction, further internal information is saved on
the stack so that the MC68030 can continue executing the coprocessor in-
struction when the interrupt handler completes execution.

If the M bit of the status register is set, the processor clears the M bit and
creates a throwaway exception stack frame on top of the interrupt stack as
part of interrupt exception processing. This second frame contains the same
program counter value and vector offset as the frame created on top of the
master stack, but has a format number of 1 instead of 0 or 9. The copy of
the status register saved on the throwaway frame is exactly the same as that
placed on the master stack except that the S bit is set in the version placed
on the interrupt stack. (It may or may not be set in the copy saved on the
master stack.) The resulting status register (after exception processing) has
the S bit set and the M bit cleared.

The processor loads the address in the exception vector into the program
counter, and normal instruction execution resumes after the required pre-
fetches for the interrupt handler routine.

Most M68000 Family peripherals use programmable interrupt vector num-
bers as part of the interrupt request/acknowledge mechanism of the system.
If this vector number is not initialized after reset and the peripheral must
acknowledge an interrupt request, the peripheral usually returns the vector
number for the uninitialized interrupt vector, 15.

8.1.10 MMU Configuration Exception

When the MC68030 executes a PMOVE instruction that attempts to move
invalid data into the TC, CRP, or SRP register of the MMU, the PMOVE in-
struction causes an MMU configuration exception. The exception is a post-
instruction exception; it is processed after the instruction completes. The
processor generates exception vector number 56 when an MMU configu-
ration exception occurs. Refer to SECTION 9 MEMORY MANAGEMENT UNIT
for a description of the valid configurations for the MMU registers.

MOTOROLA MC68030 USER'S MANUAL 8-21

The processor copies the status register, enters the supervisor privilege level,
and clears the trace bits. The processor saves the vector offset, the scanPC
value (which points to the next instruction), and the copy of the status register
on the supervisor stack. It also saves the logical address of the PMOVE
instruction on the stack. Then the processor resumes normal instruction
execution after the required prefetches from the address in the exception
vector. : ‘

8.1.11 Breakpoint Instruction Exception

8-22

To use the MC68030 in a hardware emulator, it must provide a means of
inserting breakpoints in the emulator code and of performing appropriate
operations at each breakpoint. For the MC68000 and MC68008, this can be
done by inserting an illegal instruction at the breakpoint and detecting the
illegal instruction exception from its vector location. However, since the vec-
tor base register on the MC68010, MC68020, and MC68030 allows arbitrary
relocation of exception vectors, the exception address cannot reliably identify
a breakpoint. The MC68020 and MC68030 processors provide a breakpoint
capability with a set of breakpoint instructions, $4848-$484F, for eight unique
breakpoints. The breakpoint facility also allows external hardware to monitor
the execution of a program residing in the on-chip instruction cache without
severe performance degradation.

When the MC68030 executes a breakpoint instruction, it performs a break-
point acknowledge cycle (read cycle) from CPU space type $0 with address
lines A2-A4 corresponding to the breakpoint number. Refer to Figure 7-44
for the CPU space type $0 addresses and to 7.4.2 Breakpoint Acknowledge
Cycle for a description of the breakpoint acknowledge cycle. The external
hardware can return either BERR, DSACKx, or STERM with an instruction
word on the data bus. If the bus cycle terminates with BERR, the processor
performs illegal instruction exception processing. If the bus cycle terminates
with DSACKx or STERM, the processor uses the data returned to replace the
breakpoint instruction in the internal instruction pipe and begins execution
of that instruction. The remainder of the pipe remains unaltered. In addition,
no stacking or vector fetching is involved with the execution of the instruction.
Figure 8-7 is a flowchart of the breakpoint instruction execution.

MC68030 USER’S MANUAL MOTOROLA

’

ENTRY

A16-A19 -— $0
~ A2-A4 <— BREAKPOINT NUMBER

INITIATE READ BUS CYCLE

CYCLE TERMINATED WITH

DSACKx OR STERM ERR

K

PIPE STAGE D ~&— INSTRUCTION WORD ON DATA BUS
EXECUTE INSTRUCTION WORD

EXIT

Figure 8-7. Breakpoint Instruction Flowchart

TAKE ILLEGAL INSTRUCTION
EXCEPTION

8.1.12 Multiple Exceptions

When several exceptions occur simultaneously, they are processed according
to a fixed priority. Table 8-5 lists the exceptions, grouped by characteristics.
Each group has a priority from 0-4. Priority 0 has the highest priority.

As soon as the MC68030 has completed exception processing for a condition
when another exception is pending, it begins exception processing for the
pending exception instead of executing the exception handler for the original
exception condition: Also, whenever a bus error or address error occurs, its
exception processing takes precedence over lower priority exceptions and
occurs immediately. For example, if a bus error occurs during the exception
processing for a trace condition, the system processes the bus error and
executes its handler before completing the trace exception processing. How-
ever, most exceptions cannot occur during exception processing, and very
few combinations of the exceptions shown in Table 8-5 can be pending
simultaneously.

MOTOROLA MC68030 USER'S MANUAL 8-23

Table 8-5. Exception Priority Groups

Group/ Exception and . e
Priority Relative Priority Characteristics
0 0.0 — Reset Aborts all processing (instruction or ex-
ception) and does not save old context.
1 1.0 — Address Error Suspends processing (instruction or ex-
1.1 — Bus Error ception) and saves internal context.
2 2.0—BKPT #n, CHK, CHK2, cp Mid-Instruc- | Exception processing is part of instruction

tion, cp Protocol Violation, cp-|execution.
TRAPcc, Divide by Zero, RTE, TRAP
#n, TRAPV, MMU Configuration

3 3.0 — lllega! Instruction, Line A, Unimple- | Exception processing begins before in-
mented Line F, Privilege Violation, | struction is executed.
cp Pre-Instruction

4 4.0 — cp Post-Instruction Exception processing begins when current
4.1 — Trace instruction or previous exception process-
4.2 — Interrupt ing is completed.)

0.0 is the highest priority, 4.2 is the lowest.

The priority scheme is very important in determining the order in which
exception handlers execute when several exceptions occur at the same time.
As a general rule, the lower the priority of an exception, the sooner the
handler routine for that exception executes. For example, if simultaneous
trap, trace, and interrupt exceptions are pending, the exception processing
for the trap occurs first, followed immediately by exception processing for
the trace and then for the interrupt. When the processor resumes normal
instruction execution, it is in the interrupt handler, which returns to the trace
handler, which returns to the trap exception handler. This rule does not apply
to the reset exception; its handler is executed first even though it has the
highest priority because the reset operation clears all other exceptions.

8.1.13 Return from Exception

After the processor has completed exception processing for all pending ex-
ceptions, the processor resumes normal instruction execution at the address
in the vector for the last exception processed. Once the exception handler
has completed execution, the processor must return to the system context
prior to the exception (if possible). The RTE instruction returns from the
handler to the previous system context for any exception.

MC68030 USER’'S MANUAL MOTOROLA

When the processor executes an RTE instruction, it examines the stack frame
on top of the active supervisor stack to determine if it is a valid frame and
what type of context restoration it requires. This section describes the pro-
cessing for each of the stack frame types; refer to 8.3 COPROCESSOR CON-
SIDERATIONS for a description of the stack frame type formats.

For a normal four-word frame, the processor updates the status register and
program counter with the data read from the stack, increments the stack
pointer by eight, and resumes normal instruction execution.

For the throwaway four-word stack, the processor reads the status register
value from the frame, increments the active stack pointer by eight, updates
the status register with the value read from the stack, and then begins RTE
processing again, as shown in Figure 8-8. The processor reads a new format
word from the stack frame on top of the active stack (which may or may not
be the same stack used for the previous operation) and performs the proper
operations corresponding to that format. In most cases, the throwaway frame
is on the interrupt stack and when the status register value is read from the
stack, the S and M bits are set. In that case, there is a normal four-word frame
or a ten-word coprocessor mid-instruction frame on the master stack. How-
ever, the second frame may be any format (even another throwaway frame)

and may reside on any of the three system stacks. “

For the six-word stack frame, the processor restores the status register and
program counter values from the stack, increments the active supervisor
stack pointer by 12, and resumes normal instruction execution.

For the coprocessor mid-instruction stack frame, the processor reads the
status register, program counter, instruction address, internal register values,
and the evaluated effective address from the stack, restores these values to
the corresponding internal registers, and increments the stack pointer by 20.
The processor then reads from the response register of the coprocessor that
initiated the exception to determine the next operation to be performed. Refer
to SECTION 10 COPROCESSOR INTERFACE DESCRIPTION for details of
coprocessor-related exceptions.

For both the short and long bus fault stack frames, the processor first checks
the format value on the stack for validity. In addition, for the long stack frame,
the processor compares the version number in the stack with its own version
number. The version number is located in the most significant nibble (bits
15-12) of the word at location SP+$36 in the long stack frame. This validity
check is required in a multiprocessor system to ensure that the data is prop-
erly interpreted by the RTE instruction. The RTE instruction also reads from

MOTOROLA MC68030 USER’S MANUAL 8-25

8-26

TEMP ~€— (SP) +
READ FORMAT WORD

SR -&— TEMP
B SP <&— SP+6

INVALID FORMAT WORD OTHERWISE

' FORMAT CODE = $1
TAKE FORMAT (THROWAWAY FRAME)
ERROR EXCEPTION

OTHERWISE

HM CODE =$0 (4-WORD FRAME)
OTHERWISE \

PC ~<— (SP}+
OTHER FORMATS

SP <€— SP+6
SR - TEMP

Figure 8-8. RTE Instruction for Throwaway Four-Word Frame

both ends of the stack frame to make sure it is accessible. If the frame is
invalid or inaccessible, the processor takes a format error or a bus error
exception, respectively. Otherwise, the processor reads the entire frame into
the proper internal registers, deallocates the stack, and resumes normal pro-
cessing. Once the processor begins to load the frame to restore its internal
state, the assertion of the BERR signal causes the processor to enter the
halted state with the continuous assertion of the STATUS signal. Refer to 8.2
BUS FAULT RECOVERY for a description of the processing that occurs after
the frame is read into the internal registers.

If a format error or bus error exception occurs during the frame validation
sequence of the RTE instruction, either due to any of the errors previously
described or due to an illegal format code, the processor creates a normal

MC68030 USER'S MANUAL MOTOROLA

four-word or a bus fault stack frame below the frame that it was attempting
to use. In this way, the faulty stack frame remains intact. The exception
handler can examine or repair the faulty frame. In a multiprocessor system,
the faulty frame can be left to be used by another processor of a different
type (e.g., an MC68010, MC68020, or a future M68000 processor) when ap-
propriate.

8.2 BUS FAULT RECOVERY

An address error exception or a bus error exception indicates a bus fault.
The saving of the processor state for a bus error or address error is described
in 8.1.2 Bus Error Exception, and the restoring of the processor state by an
RTE instruction is described in 8.1.13 Return from Exception.

Processor accesses of either data items or the instruction stream can result
in bus errors. When a bus error exception occurs while accessing a data item,
the exception is taken immediately after the bus cycle terminates. Bus errors
reported by the on-chip MMU are also processed immediately. A bus error
occurring during an instruction stream access is not processed until the
processor attempts to use the information (if ever) that the access should
have provided. For instruction faults, when the short format frame applies,
the address of the pipe stage B word is the value in the program counter
plus four, and the address of the stage C word is the value in the program
counter plus two. For the long format, the long word at SP+$24 contains
the address of the stage B word; the address of the stage C word is the
address of the stage B word minus two. Address error faults occur only for
instruction stream accesses, and the exceptions are taken before the bus
cycles are attempted.

MOTOROLA MC68030 USER'S MANUAL 8-27

8.2.1 Special Status Word (SSW)

8-28

The internal SSW (see Figure 8-9) is one of several registers saved as part
of the bus fault exception stack frame. Both the short bus cycle fault format
and the long bus cycle fault format include this word at offset $A. The bus
cycle fault stack frame formats are described in detail at the end of this
section. '

15 14 13 12 i1 10 9 8 7 6 5

4 3 2 0
[Fc|FB|Rc|RB]x|x|x|DF|RM|nw| SIZE |x| FC2-FCO

FC — Fault on stage C of the instruction pipe

FB — Fault on stage B of the instruction pipe

RC — Rerun flag for stage C of the instruction pipe*
RB — Rerun flag for stage B of the instruction pipe*
DF — Fault/rerun flag for data cycle*

RM — Read-modify-write on data cycle

RW — Read/write for data cycle — 1=read, 0= write
SIZE — Size code for data cycle

FC2-FCO — Address space for data cycle
*1=Rerun Faulted bus Cycle, or run pending prefetch

0=Do not rerun bus sycle '

X=For internal use only

Figure 8-9. Special Status Word (SSW)

The SSW information indicates whether the fault was caused by an access
to the instruction stream, data stream, or both. The high-order half of the
SSW contains two status bits each for the B and C stages of the instruction
pipe. The fault bits (FB and FC) indicate that the processor attempted to use
a stage (B or C) and found it to be marked invalid due to a bus error on the
prefetch for that stage. The fault bits can be used by a bus error handler to
determine the causel(s) of a bus error exception. The rerun flag bits (RB and
RC) are set to indicate that a fault occurred during a prefetch for the corre-
sponding stage. A rerun bit is always set when the corresponding fault bit
is set. The rerun bits indicate that the word in a stage of the instruction pipe
is invalid, and the state of the bits can be used by a handler to repair the
values in the pipe after an address error or a bus error, if necessary. If a rerun
bit is set when the processor executes an RTE instruction, the processor may
execute a bus cycle to prefetch the instruction word for the corresponding
stage of the pipe {if it is required). If the rerun and fault bits are set for a
stage of the pipe, the RTE instruction automatically reruns the prefetch cycle
for that stage. The address space for the bus cycle is the program space for
the privilege level indicated in the copy of the status register on the stack. If
a rerun bit is cleared, the words on the stack for the corresponding stages

MC68030 USER'S MANUAL MOTOROLA

of the pipe are accepted as valid; the processor assumes that there is no
prefetch pending for the corresponding stage and that software has repaired
or filled the image of the stage, if necessary.

If an address error exception occurs, the fault bits written to the stack frame
are not set ({they are only set due to a bus error, as previously described),
and the rerun bits alone show the cause of the exception. Depending on the
state of the pipeline, either RB and RC are both set, or RC alone is set. To
correct the pipeline contents and continue execution of the suspended in-
struction, software must place the correct instruction stream data in the stage
C and/or stage B images requested by the rerun bits and clear the rerun bits.
The least significant half of the SSW applies to data cycles only. If the DF bit
of the SSW is set, a data fault has occurred and caused the exception. If the
DF bit is set when the processor reads the stack frame, it reruns the faulted
data access; otherwise, it assumes that the data input buffer value on the
stack is valid for a read or that the data has been correctly written to memory
for a write (or that no data fault occurred). The RM bit of the SSW identifies
a read-modify-write operation and the RW bit indicates whether the cycle
was a read or write operation. The SIZE field indicates the size of the operand
access, and the FC field specifies the address space for the data cycle. Data
and instruction stream faults may be pending simultaneously; the fault han-
dler should be able to recognize any combination of the FC, FB, RC, RB, and
DF bits. .

8.2.2 Using Software To Complete the Bus Cycles

One method of completing a faulted bus cycle is to use a software handler
to emulate the cycle. This is the only method for correcting address errors.
The handler should emulate the faulted bus cycle in a manner that is trans-
parent to the instruction that caused the fault. For instruction stream faults,
the handler may need to run bus cycles for both the B and C stages of the
instruction pipe. The RB and RC bits identify the stages that may require a
bus cycle; the FB and FC bits indicate that a stage was invalid when an attempt
was made to use its contents. Those stages must be repaired. For each faulted
stage, the software handler should copy the instruction word from the proper
address space as indicated by the S bit of the copy of the status register
saved on the stack to the image of the appropriate stage in the stack frame.
in addition, the handler must clear the rerun bit associated with the stage
that it has corrected. The handler should not change the fault bits FB and
FC.

MOTOROLA MC68030 USER’S MANUAL 8-29

8-30

To repair data faults (indicated by DF=1), the software should first examine
the RM bit in the SSW to determine if the fault was generated during a read-
modify-write operation. If RM =0, the handler should then check the R/W bit
of the SSW to determine if the fault was caused by a read or a write cycle.
For data write faults, the handler must transfer the properly sized data from
the data output buffer (DOB) on the stack frame to the location indicated by
the data fault address in the address space defined by the SSW. (Both the

. DOB and the data fault address are part of the stack frame at SP+$18 and

SP+$10, respectively.) Data read faults only generate the long bus fault frame
and the handler must transfer properly sized data from the location indicated
by the fault address and address space to the image of the data input buffer
(DIB) at location SP+$2C of the long format stack frame. Byte, word, and
3-byte operands are right-justified in the 4-byte data buffers. In addition, the
software handler must clear the DF bit of the SSW to indicate that the faulted
bus cycle has been corrected.

To emulate a read-modify-write cycle, the exception handler must first read
the operation word at the program counter address (SP + 2 of the stack frame).
This word identifies the CAS, CAS2, or TAS instruction that caused the fault.
Then the handier must emulate this entire instruction (which may consist of
up to four long word transfers) and update the condition code portion of the
status register appropriately, because the RTE instruction expects the entire
operation to have been completed if the RM bit is set and the DF bit is cleared.
This is true even if the fault occurred on the first read cycle.

To emulate the entire instruction, the handler must save the data and address
registers for the instruction (with a MOVEM instruction, for example). Next,
the handler reads and modifies (if necessary) the memory location. It clears
the DF bit in the SSW of the stack frame and modifies the condition codes
in the status register copy and the copies of any data or address registers
required for the CAS and CAS2 instructions. Last, the handler restores the
registers that it saved at the beginning of the emulation. Except for the data
input buffer (DIB), the copy of the status register, and the SSW, the handler
should not modify a bus fault stack frame. The only bits in the SSW that may
be modified are DF, RB, and RC; all other bits, including those defined for
internal use, must remain unchanged.

Address error faults must be repairéd in software. Address error faults can

be distinguished from bus error faults by the value in the vector offset field
of the format word.

MC68030 USER’S MANUAL MOTOROLA

8.2.3 Completing the Bus Cycles with RTE

Another method of completing a faulted bus cycle is to allow the processor
to rerun the bus cycles during execution of the RTE instruction that terminates
the exception handler. This method cannot be used to recover from address
errors. The RTE instruction is always executed. Uniess the handler routine
has corrected the error and cleared the fault (and cleared the rerun and DF
bits of the SSW), the RTE instruction can complete the bus cycle(s). If the DF
bit is still set at the time of the RTE execution, the faulted data cycle is rerun
by the RTE instruction. If the fault bit for a stage of the pipe is set and the
corresponding rerun bit was not cleared by the software, the RTE reruns the
associated instruction prefetch. The fault occurs again unless the cause of
the fault, such as a non-resident page in a virtual memory system, has been
corrected. If the rerun bit is set for a stage of the pipe and the fault bit is
cleared, the associated prefetch cycle may or may not be run by the RTE
instruction {depending on whether the stage is required).

If a fault occurs when the RTE instruction attempts to rerun the bus cycle(s),
the processor creates a new stack frame on the supervisor stack after de-
allocating the previous frame, and address error or bus error exception pro-
cessing starts in the normal manner.

The read-modify-write operations of the MC68030 can also be completed by
the RTE instruction that terminates the handler routine. The rerun operation,
executed by the RTE instruction with the DF bit of the SSW set, reruns the
entire instruction. If the cause of the error has been corrected, the handler
does not need to emulate the instruction but can leave the DF bit set and
execute the RTE instruction.

Systems programmers and designers should be aware that the MMU of the
MC68030 treats any bus cycle with RMC asserted as a write operation for
protection checking, regardless of the state of R/W signal. Otherwise, the
potential for partially destroying system pointers with CAS and CAS2 instruc-
tions exists since one portion of the write operation could take place and the
remainder be aborted by a bus error.

MOTOROLA MC68030 USER'S MANUAL 8-31

8.3 COPROCESSOR CONSIDERATIONS

Exception handler programmers should consider carefully whether to save
and restore the context of a coprocessor at the beginning and end of handler
routines for exceptions that can occur during the execution of a coprocessor
instruction (i.e., bus errors, interrupts, and coprocessor-related exceptions).
The nature of the coprocessor and the exception handler routine determines
whether or not saving the state of one or more coprocessors with the cpSAVE
and cpRESTORE instructions is required. If the coprocessor allows multiple
coprocessor instructions to be executed concurrently, it may require its state
to be saved and restored for all coprocessor-generated exceptions, regardless
of whether or not the coprocessor is accessed during the handler routine.
The MC68882 floating-point coprocessor is an example of this type of co-
processor. On the other hand, the MC68881 floating-point coprocessor re-
quires FSAVE and FRESTORE instructions within an exception handler routine
only if the exception handler itself uses the coprocessor.

8.4 EXCEPTION STACK FRAME FORMATS

8-32

The MC68030 provides six different stack frames for exception processing.
The set of frames includes the normal four- and six-word stack frames, the
four-word throwaway stack frame, the coprocessor mid-instruction stack
frame, and the short and long bus fault stack frames.

When the MC68030 writes or reads a stack frame, it uses long-word operand
transfers wherever possible. Using a long-word-aligned stack pointer with
memory that is on a 32-bit port greatly enhances exception processing per-
formance. The processor does not necessarily read or write the stack frame
data in sequential order.

The system software should not depend on a particular exception generating
a particular stack frame. For compatibility with future devices, the software
should be able to handle any type of stack frame for any type of exception.

Table 8-6 summarizes the stack frames defined for the M68000 Family.

MC68030 USER’S MANUAL MOTOROLA

Table 8-6. Exception Stack Frames (Sheet 1 of 2)

Stack Frames

Exception Types (Stacked PC Points to)

SP —]
+802

STATUS REGISTER

PROGRAM COUNTER

+806 |0 0 0 O VECTOR OFFSET

FOUR WORD STACK FRAME - FORMAT $0

Interrupt [Next instruction]
Format Error [RTE or cpRESTORE instruction]
TRAP #N [Next instruction]

lllegal Instruction [lllegal instruction]

A-Line Instruction [A-line instruction]

F-Line Instruction [F-line instruction)

Privilege Violation [First word of instruction causing
Privilege Violation]

Coprocessor
Pre-Instruction

[Op-Word of instruction that
returned the Take Pre-Instruction
primitive]

SP —ad

+502

STATUS REGISTER

PROGRAM COUNTER

+806 |0 0 0 I[VECTOR OFFSET

THROWAWAY FOUR WORD STACK FRAME - FORMAT S1

Created on Interrupt Stack [Next instruction — same
during interrupt exception as on master stack]
processing when transition
from master state to
interrupt state occurs

' 0 e CHK [Next instruction for all these
P STATUS REGISTER o CHK2 exceptions]
+802 ® cpTRAPcc
PROGRAM COUNTER
e TRAPcc INSTRUCTION ADDRESS
+s06 [0 0 v o VECTOR OFFSET e TRAPV is the address of the
+508 e Trace instruction that caused
INSTRUCTION ADDRESS e Zero Divide the exception
e MMU Configuration
SIX WORD STACK FRAME - FORMAT S2 ® Coprocessor Post-Instruction
15 0
e Coprocessor [Next word to be fetched
—> STATUS REGISTER Mid-Instruction from instruction stream
+502 PROGRAM) COUNTER . M;m.tDet?c\}?dlat'o for all these exceptions]
rotocol Violation
4806 [1 0 0 1] VECTOR OFFSET ® Interrupt Detected |N_S’|;l:‘l:g’(l;lg)glssAD?$EeSS
+508 During Coprocessor ::\ tructi rthato sed the
INSTRUCTION ADDRESS Instruction (supported r scé 8 ion cau
4500 with ‘null come again xception
with interrupts
INTERNAL REGISTERS, a4 R
4 WORDS allowed’ primitive)
+812
COPROCESSOR MID-INSTRUCTION STACK FRAME (10 WORDS) - FORMAT $9
MOTOROLA MC68030 USER'S MANUAL 8-33

Table 8-6. Exception Stack Frames (Sheet 2 of 2)

Stack Frames Exception Types (Stacked PC Points to)
15 0 . .
® Address Error or [Next instruction]
s —1 STATUS REGISTER Bus Error — Execution
+$02 PROGRAM COUNTER Unit at Instruction
Boundary
+06 [1 0 1 0 VECTOR DFFSET
+508 INTERNAL REGISTER
+50A SPECIAL STATUS WORD
+50C INSTRUCTION PIPE STAGE C
+S0E INSTRUCTION PIPE STAGE B
+510
DATA CYCLE FAULT ADDRESS
+812
+$14 INTERNAL REGISTER
+516 INTERNAL REGISTER
+818
| DATA QUTPUT BUFFER
+51A
+81C INTERNAL REGISTER
+31E INTERNAL REGISTER]
SHORT BUS CYCLE FAULT STACK FRAME (16 WORDS) - FORMAT SA
15 0 . Lo
e Address Error or [Address of instruction in
sp STATUS REGISTER Bus Error — Instruction execution when fault
+802 PROGRAM COUNTER Execution in Progress occgrred - may not be
the instruction that
+506 {1 0 1 1 VECTOR OFFSET generated the faulted
+508 INTERNAL REGISTER bus cycle]
+S0A SPECIAL STATUS WORD
+50C INSTRUCTION PIPE STAGE C
+SOE INSTRUCTION PIPE STAGE B
+510
DATA CYCLE FAULT ADDRESS
+512
+$14 INTERNAL REGISTER
+516 INTERNAL REGISTER
+518
DATA DUTPUT BUFFER
+S1A
+81C
INTERNAL REGISTERS, 4 WORDS
+522
+824
STAGE B ADDRESS
+828
INTERNAL REGISTERS, 2 WORDS
+524
+82C
DATA INPUT BUFFER
+830
INTERNAL REGISTERS. 3 WORDS
+834
+$36 | VERSION # INTERNAL INFORMATION
+538
INTERNAL REGISTERS,
18 WORDS
+85A
LONG BUS CYCLE FAULT STACK FRAME (45 WORDS) - FORMAT $8
8-34 MC68030 USER'S MANUAL MOTOROLA

SECTION 9
MEMORY MANAGEMENT UNIT

The MC68030 includes a memory management unit (MMU) that supports a
demand-paged virtual memory environment. The memory management is
““demand” in that programs do not specify required memory areas in ad-
vance, but request them by accessing logical addresses. The physical mem-
ory is paged, meaning that it is divided into blocks of equal size called page
frames. The logical address space is divided into pages of the same size. The
operating system assigns pages to page frames as they are required to meet
the needs of programs.

The principal function of the MMU is the translation of logical addresses to
physical addresses using translation ‘tables stored in memory. The MMU
contains an address translation cache (ATC) in which recently used logical-
to-physical address translations are stored. As the MMU receives each logical
address from the CPU core, it searches the ATC for the corresponding physical
address. When the translation is not in the ATC, the processor searches the
translation tables in memory for the translation information. The address

calculations and bus cycles required for this search are performed by micro- '
code and dedicated logic in the MC68030. In addition, the MMU contains two

transparent translation registers (TT0 and TT1) that identify blocks of memory
that can be accessed without translation. The features of the MMU are:

o 32-Bit Logical Address Translated to 32-Bit Physical Address with 3-Bit
Function Code :

o Supports Two-Clock Cycle Processor Accesses to Physical Address Spaces

o Addresses Translated in Paralle! with Accesses to Data and Instruction
Caches

® On-Chip Fully Associative 22-Entry ATC

® Translation Table Search Controlled by Microcode

e Eight Page Sizes: 256, 512, 1K, 2K, 4K, 8K, 16K and 32K Bytes

o Separate User and Supervisor Translation Table Trees Are Supported
o Two Independent Blocks Can Be Defined as Transparent (Untranslated)

® Multiple Levels of Translation Tables

MOTOROLA MC68030 USER'S MANUAL 9-1

i(D

9-2

® 0-15 Upper Logical Address Bits Can Be Ignored (Using Initial Shift)
e Portions of Tables Can Be Undefined (Using Limits)

e Write Protection and Supervisor Protection

History Bits Automatically Maintained in Page Descriptors
Cache Inhibit Output (CIOUT) Signal Asserted on Page Basis
External Translation Disable Input Signal (MMUDIS)

® Subset of Instruction Set Defined by MC68851

The MMU completely overlaps address translation time with other processing
activity when the translation is resident in the ATC. ATC accesses operate in
parallel with the on-chip instruction and data caches.

Figure 9-1 is a block diagram of the MC68030 showing the relationship of
the MMU to the execution unit and the bus controller. For an instruction or
operand access, the MC68030 simultaneously searches the caches and
searches for a physical address in the ATC. If the translation is available, the
MMU provides the physical address to the bus controller and allows the bus
cycle to continue. When the instruction or operand is in either of the on-chip
caches on a read cycle, the bus controller aborts the bus cycle before address
strobe is asserted. Similarly, the MMU causes a bus cycle to abort before
the assertion of address strobe when a valid translation is not available in
the ATC or when an invalid access is attempted.

An MMU disable input signal (MMUDIS) is provided that dynamically disables
address translation for emulation, diagnostic, or other purposes.

The programming model of the MMU (see Figure 9-2) consists of two root
pointer registers, a control register, two transparent translation registers, and
a status register. These registers can only be accessed by supervisor pro-
grams. The CPU root pointer register points to an address translation tree
structure in memory that describes the logical-to-physical mapping for user
accesses or for both user and supervisor accesses. The supervisor root pointer
register optionally points to an address translation tree structure for super-
visor mappings. The translation control register is comprised of fields that
control the translation operation. Each transparent translation register can
define a block of logical addresses that are used as physical addresses (with-
out translation). The MMU status register contains accumulated status in-
formation from a translation performed as a part of a PTEST instruction.

MC68030 USER'S MANUAL MOTOROLA

VI0HOLOW

TAVANVIN S.H3SN 0£0890N

€6

ADDRESS
BUS

PHYSICAL
ADDRESS

MICROSEQUENCER AND CONTROL

CONTROL
STORE

INSTRUCTION PIPE

N

CONTROL
LoGic

CACHE
HOLDING
REGISTER

(CAHR)

3

INSTRUCTION
CACHE

iy

INSTRUCTION

EXECUTION UNIT

ADDRESS

BUS

lr@&r@%b

LOGICAL
ADDRESS |

PROGRAM
COUNTER
SECTION

ADDRESS

’— SECTION

—N] oana
SECTION

_ fr |

BUS CONTROLLER

WRITE PENDING
BUFFER

PREFETCH PENDING
BUFFER

DATA
ADORESS
BUS

MISALIGNMENT
MULTIPLEXER

DATA
CACHE

DATA
BUS

(X2

INTERNAL

LN} sz
—/| MULTIPLEXER

=

DATA
PADS

ZaN

BUS CONTROL

SIGNALS

Figure 9-1. MMU Block Diagram

DATA
BUS

9-4

63 Y Z—

CPU ROOT
POINTER
31 . 0
63 32
SUPERVISOR ROOT
POINTER
3 ‘ 0 ADDRESS
31 0 | TRANSLATION
CONTROL
| TRANSLATION CONTROL | REGISTERS
31 0
[TRANSPARENT TRANSLATION 0 |
31 : 0
| TRANSPARENT TRANSLATION 1]
" o smus
[MMU STATUS (MMUSR)] wrorwanon
_ REGISTER

Figure 9-2. MMU Programming Model

The ATC in the MMU is a fully associative cache that stores 22 logical-to-
physical address translations and associated page information. It compares
the logical address and function code internally supplied by the processor
with all tag entries in the ATC. When the access address and function code
matches a-tag in the ATC (a hit occurs) and no access violation is detected,
the ATC outputs the corresponding physical address to the bus controller,
which continues the external bus cycle. Function codes are routed to the bus
controller unmodified.

Each ATC entry contains a logical address, a physical address, and status
bits. Among the status bits are the write protect and cache inhibit bits.

When the ATC does not contain the translation for a logical address {a miss
occurs) and an external bus cycle is required, the MMU aborts the access
and causes the processor to initiate bus cycles that search the translation
tables in memory for the correct translation. If the table search completes
without any errors, the MMU stores the translation in the ATC and provides
the physical address for the access, allowing the bus controller to retry the
original bus cycle.

MC68030 USER’S MANUAL MOTOROLA

An MMU translation table has a tree structure with the base of the first table
defined by a root pointer descriptor. The root pointer descriptor of the current
translation table is resident in one of two root pointer registers. The general
tree structure is shown in Figure 9-3. Table entries at the upper levels of a
tree point to other tables. The table leaf entries are page frame addresses.
All addresses stored in the translation tables are physical addresses; the
translation tables reside in the physical address space.

ROOT POINTER ————) —‘

| POINTER
TABLES

I — |__|:| -

| TABLES

Figure 9-3. Translation Table Tree

~ System software selects the parameters for the translation tables by confi-
guring the translation control register (TC) appropriately. The function codes
or a portion of the logical address can be defined as the index into the first
level of lookup in the table. The TC register specifies how many bits of the
logical address are used as the index for each level of the lookup (as many
as 15 bits can be used at a given level).

MOTOROLA MC68030 USER'S MANUAL 9-5

9.1 TRANSLATION TABLE STRUCTURE

9-6

The M68030 uses the ATC and translation tables stored in memory to perform
the translation from a logical to a physical address. Translation tables for a
program are loaded into memory by the operating system.

The general translation table structure supported by the MC68030 is a tree
structure of tables. The pointer tables form the branches of the tree. These
tables contain the base addresses of other tables. Page descriptors can reside
in pointer tables and, in that case, are called early termination descriptors.
The tables at the leaves of the tree are called page tables. Only a portion of
the translation table for the entire logical address space is required to be
resident in memory at any time: specifically, only the portion of the table
that translates the logical addresses that the currently executing process(es)
use(s) must be resident. Portions of translation tables can be dynamically
allocated as the process requires additional memory.

As shown in Figure 9-4, the root pointer for a table is a descriptor that contains
the base address of the top level table for the tree. The pointer tables and
page tables also consist of descriptors. A descriptor in a pointer table typically
contains the base address of a table at the next level of the tree. A table
descriptor can also contain limits for the index into the next table, protection
information, and history information pertaining to the descriptor. Each table
is indexed by a field extracted from the logical address. In the example shown
in Figure 9-4, the A field of the logical address, $00A, is added to the root
pointer value to select a descriptor at the A level of the translation tree. The
selected descriptor points to the base of the appropriate page table, and the
B field of the logical address ($006) is added to this base address to select
a descriptor within the page table. A descriptor in a page table contains the
physical base address of the page, protection information, and history in-
formation for the page. A page descriptor can also reside in a pointer table
or even in a root pointer to define a contiguous block of pages. A two-level
page task is shown. The 32-bit logical address space is divided into 4096
segments of 1024 bytes each.

Figure 9-5 shows a possible layout of this example translation tree in memory.

MC68030 USER'S MANUAL MOTOROLA

A B PS

EXAMPLE ADDRESS $00A01A00 [0 00000001 010J0 000000 11 0fx x x x x x x x xx]

SA $6 X

ROOT POINTER .

ENTRY $00A ENTRY $006 PAGE FRAME
ADDRESS

| TABLESO
8 LEVEL

| TABLE S00A
B LEVEL

A LEVEL TABLES
(4K ENTRIES)

B LEVEL TABLES
- (4K TABLES MAXIMUM, 1X ENTRIES/TABLE)

Figure 9-4. Example Translation Table Tree

MOTOROLA MC68030 USER'S MANUAL

| TABLE SFFF
B LEVEL

A B

PS

‘EXAMPLEAUDRESSSUDAOIAUDl[]00[]00001DIUIOUOUUOUI10|xxxxxxxxx;]

$A $6

. $10000 l
$10028 $37000
L]

$13FFC
ROOT POINTER $14000

810000

$37000

$37018 [FRAME ADDRESS ~ |
(!

X

| ALEVELTABLE
(4-BYTE ENTRIES)

| BLEVEL TABLE §0
(4-BYTE ENTRIES)

| BLEVEL TABLE $00A
(4-BYTE ENTRIES)

Figure 9-5. Example Translation Tree Layout in Memory

9.1.1 Translation Control

The translation control register (TC) defines the size of pages in memory,
selects the root pointer register to be used for supervisor accesses, indicates
whether the top level of the translation tree is indexed by function code, and
specifies the number of logical address bits used to index into the various
levels of the translation tree. The initial shift (IS) field of the TC register defines
the size of the logical address space; it contains the number of most signif-
icant address bits that are ignored in the translation table lookup. For ex-
ample, if the IS field is set to zero, the logical address space is 232 bytes. On
the other hand, if the IS field is set to 15, the logical address space contains

only 232215 pytes.

MC68030 USER’'S MANUAL

MOTOROLA

The page size (PS) field of the TC register specifies the page size for the
system. The number of pages in the system is equal to the logical address
space divided by the page size. The maximum number of pages that can be
defined by a translation tree is greater than 16 million (232/28). The minimum
number is 4 (217/215). The function code can also be used in the table lookup,
defining as many as seven regions of the above size (FC=0-6). The entire
range of the logical address space(s) can be defined by translation tables of
many sizes. The MC68030 provides flexibility that simplifies the implemen-
tation of large translation tables.

The use of a tree structure with as many as five levels of tables provides
granularity in translation table design. The LIMIT field of the root pointer can
limit the value of the first index and limits the actual number of descriptors
required. Optionally, the top level of the structure can be indexed by function
code bits. In this case, the pointer table at this level contains eight descriptors.
The next level of the structure {or the top level when the FCL bit of the TC
register is set to zero) is indexed by the most significant bits of the logical
address (disregarding the number of bits specified by the IS field). The num-
ber of logical address bits used for this index is specified by the TIA field of
the TC register. If, for example, the TIA field contains the value 5, the index
for this level contains five bits, and the pointer table at this level contains at
most 32 descriptors.

Similarly, the TIB, TIC, and TID fields of the TC register define the indexes
for lower levels of the translation table tree. When one of these fields contains
zero, the remaining Tlx fields are ignored; the last nonzero Tix field defines
the index into the lowest level of the tree structure. The tables selected by
the index at this level are page tables; every descriptor in these tables is {(or
represents) a page descriptor. Figure 9-6 shows how the Tlx fields of the TC
register apply to a function code and logical address.

LOGICAL ADDRESS

+TIA +T18 | +TIC

[= [¢ [o

Figure 9-6. Derivation of Table Index Fields

+TID | PS

0
I

A

I OFFSET T

MOTOROLA MC68030 USER'S MANUAL 9-9

For example, a TC register in which the FCL bit is set to one, the TIA field
contains five, the TIB field contains nine, and the TIC and TID fields contain
zero defines a three-level translation tree. The top level is indexed by the
function code, the next level by five logical address bits, and the bottom level
by nine logical address bits. If the TIC field contained nine instead of zero,
the translation tree would have four levels, and the two bottom levels would
each be indexed by 9-bit portions of the logical address.

The following equation for fields in the TC register must be satisfied:
IS+PS+TIA+TIBT+TICT+TID! = 32

That is, every bit of the logical address either addresses a byte wijthin the

page, is part of the index at some level of the address table, or is explicitly

ignored by initial shift.

Table 9-1 lists the valid sizes of the table indexes at each of the levels indexed
by the TIx fields and the position of each table index within the logical ad-
dress. When the function code is also used to select a descriptor, a total of
five levels can be defined by the logical address. The function code lookup
level and levels B, C, and D can be suppressed.

Table 9-1. Size Restrictions

Field Starting Bit Position Size Restrictions
A 31-IS 1-15 (TIA must be greater than zero;
minimum of two if TIB=0)
31-IS-TIA 0-15
31-IS-TIA-TIB 0-15 (ignored if TIB is zero)
31-IS-TIA-TIB-TIC 0-15 (ignored if TIB or TIC is zero)

9.1.2 Translation Table Descrlptors

9-10

The address translation trees consist of tables of descrlptors These descrip-
tors can be one of four basic types: table descriptors, page descriptors (nor-
mal or early termination), invalid descriptors, or indirect descriptors. Each of
these descriptors has both a fong-format and a short-format representation.

A root pointer descriptor defines the root of a tree and can be a table de-
scriptor or an early termination page descriptor. A table descriptor points to
a descriptor table in memory that defines the next lower level in the trans-
lation tree. An early termination page descriptor causes immediate termi-

NOTE 1: If any of these fields are zero, the remaining fields are ignored.

MC68030 USER'S MANUAL MOTOROLA

nation of the table search and contains the physical address of an area in
memory that contains page frames corresponding to contiguous logical ad-
dresses (Refer to 9.5.3.1 EARLY TERMINATION AND CONTIGUOUS MEM-
ORY).

Tables at intermediate levels of a translation tree contain descriptors that are
similar to the root pointer descriptors. They can contain table descriptors or
early termination page descriptors and can also contain invalid descriptors.

The descriptor tables at the lowest level of a translation tree can only contain
page descriptors, indirect descriptors, and invalid descriptors. A page de-
scriptor in the lowest level of a translation tree defines the physical address
of a page frame in memory that corresponds to the logical address of a page.
An indirect descriptor contains a pointer to the actual page descriptor and
can be used when a single page descriptor is accessed by two or more logical
addresses.

To enhance the flexibility of translation table design, descriptors (except for
root pointer descriptors) can be either short or long format. The short-format
descriptors consist of one long word and have no index-limiting capabilities
or supervisor-only protection. The long-format descriptors consist of two long
words and contain all defined descriptor fields for the MC68030. The pointer
and page tables can each contain either short- or long-format descriptors,
but no single table can contain both sizes. Tables at different levels of the
translation tree can contain different formats of descriptors. Tables at the
same level can also contain descriptors of different formats, but all descrip-
tors in a particular pointer table or page table must be of the same format.
Figure 9-7 shows a translation tree that uses several different format de-
scriptors.

All descriptors contain a descriptor type (DT) field, which identifies the de-
scriptor or specifies the size of the descriptors in the table to which the
descriptor points. It is always the two least significant bits of the most sig-
nificant (or only) long word of a descriptor.

Invalid descriptors can be used at.any level of the translation tree except the
root. When a table search for a normal translation encounters an invalid
descriptor, the processor takes a bus error exception. The invalid descriptor
can be used to identify either a page or branch of the tree that has been
stored on an external device and is not resident in memory or a portion of
the translation table that has not yet been defined. In these two cases, the
exception routine can either restore the page from disk or add to the trans-
lation table.

MOTOROLA MC68030 USER'S MANUAL 9-1

A) B PS
EXAMPLE ADDRESS SO0AOTA0D [0 0 0 000 00 101 0J0 000000 11 0)x x x x x x % x x

) SA $6 X

TABLE SO

: | BILEVEL
(SHORT FORMAT

DESCRIPTORS)

ROOT POINTER

DT = "VALID 4 BYTE'
OT = 'INVALID

. .

. . TABLE S00A
ENTRY SODA ENTRY $006 |y PAGE FRAME B LEVEL
DESCRIPTORS)
[]

DT = 'VALID 4 BYTE'

S

A LEVEL TABLES
(4K ENTRIES)

TABLE SFFF
| BILEVEL
{SHORT FORMAT

E e

B LEVEL TABLES
(4K TABLES MAXIMUM, 1K ENTRIES/TABLE}

Figure 9-7. Example Translation Tree Using Different Format Descriptors

9-12 MC68030 USER'S MANUAL MOTOROLA

All long-format descriptors and short-format invalid descriptors include one
or two unused fields. The operating system can use these fields for its own
purposes. For example, the operating system can encode these fields to
specify the type of invalid descriptor. Alternately, the external device address
of a page that is not resident in main memory can be stored in the unused
field.

9.2 ADDRESS TRANSLATION

9.2.1

The function of the MMU is to translate logical addresses to physical ad-
dresses according to control information stored by the system in the MMU
registers and in translation table trees resident in memory.

General Flow for Address Translation

A CPU space address (FCO-FC2=$7) is a special case that is immediately
used as a physical address without translation. For other accesses, the trans-
lation process proceeds as follows:

1. Search the on-chip data and instruction caches for the required instruc-
tion word or operand on read accesses.

2. Compare the logical address and function code to the transparent trans-
lation parameters in the transparent translation registers, and use the
logical address as a physical address for the memory access when one
or both of the registers match.

3. Compare the logical address and function code to the tag portions of
the entries in the ATC and use the corresponding physical address for
the memory access when a match occurs.

4. When no on-chip cache hit occurs (on a read) and no TTx register matches
or valid ATC entry matches, initiate a table search operation to obtain
the corresponding physical address from the corresponding translation
tree, create a valid ATC entry for the logical address, and repeat step 3.

Figure 9-8 is a general flowchart for address translation. The top branch of
the flowchart applies to CPU space accesses (FCO—-FC2 =$7). The next branch
applies to read accesses only. When either of the on-chip caches hits (contains
the required data or instruction), no memory access is necessary. The third
branch applies to transparent translation. The bottom three branches apply
to ATC translation as follows. If the requested access misses in the ATC, the
memory cycle is aborted, and a table search operation proceeds. An ATC
entry is created after the table search, and the access is retried. If an access

MOTOROLA MC68030 USER'S MANUAL 9-13

INSTRUCTION OR
DATA CACHE HIT

CIOUT -«—0

ENTRY

CI TEMP1 -— 0
CI TEMP? <— 0

FC=87

OTHERWISE
PA w— LA

\J

READ ACCESS

WRITE OR RMW ACCESS

OTHERWISE

LA MATCHES WITH TTx

OTHERWISE

LA MATCHED WITH TTO
ATC MISS ATC HIT
/ /(‘) OTHERWISE CI TEMP 1 <e— TTO[CH)
B=1)0R
[(WP = 1) AND
‘/ (WRITE OR RMW CYCLE)]
ABORT CYCLE OTHERWISE
LA MATCHED WITH m
TAKE BUS ERROR OTHERWISE o TEMPZ = il
EXCEPTION /()
(M = 0) AND
(WRITE OR RMW CYCLE) OTHERWISE
PA €— A
PA <€— ATC ENTRY [PA] CIOUT ~a— C1 TEMP1 V i TEMP2
CIOUT ~— ATC ENTRY [CI)
ABORT CYCLE
I EXIT
TABLE SEARCH (EXIT)
OPERATION

Figure 9-8. Address Translation General Flowchart

9-14

MC68030 USER'S MANUAL

MOTOROLA

hits in the ATC but a bus error was detected during the table search that
created the ATC entry, the memory access is aborted, and a bus error ex-
ception is taken.

If an access results in an ATC hit but the access is either a write or read-
modify-write access and the page is write protected, the memory cycle is
also aborted, and a bus error exception is taken. For a write or read-modify-
write access, when the modified bit of the ATC entry is not set, the memory
cycle is aborted, a table search proceeds to set the modified bit in both the
page descriptor in memory and in the ATC, and the access is retried. If the
modified bit of the ATC entry is set and the bus error bit is not, assuming
that neither TTx register matches and the access is not to CPU space, the
ATC provides the address translation to the bus controller under two con-
ditions: 1} if a read access does not hit in either on-chip cache and 2) if a
write or read-modify-write access is not write protected.

The preceding description of the general flowchart specifies several condi-
tions that cause the memory cycle to be aborted. In these cases, the bus
cycle is aborted before the assertion of AS.

9.2.2 Effect of RESET on MMU

When the MC68030 is reset by the assertion of the RESET signal, the E bits
of the TC and TTx registers are cleared, disabling address translation. This
causes logical addresses to be passed through as physical addresses to the
bus controller, allowing an operating system to set up the translation tables
and MMU registers, as required. After it has initialized the translation tables
and registers, the E bit of the TC register can be set, enabling address trans-
lation. A reset of the processor does not invalidate any entries in the ATC.
An MMU instruction (such as PMOVE) that flushes the ATC must be executed
to flush all existing valid entries from the ATC after a reset operation and
before translation is enabled.

9.2.3 Effect of MMUDIS on Address Transiation

The assertion of MMUDIS prevents the MMU from performing searches of
the ATC and the execution unit from performing table searches. With address
translation disabled, logical addresses are used as physical addresses. When
an initial access to a long-word-aligned data operand that is larger than the
addressed port size is performed, the successive bus cycles for additional
portions of the operand always use the same higher order address bits that
were used for the initial bus cycle (changing A0 and A1 appropriately). Thus,

MOTOROLA MC68030 USER’'S MANUAL 9-15

if MMUDIS is asserted during this type of operation, the disabling of address
translation does not become effective until the entire transfer is complete.
Note that the assertion of MMUDIS does not affect the operation of the
transparent translation registers.

9.3 TRANSPARENT TRANSLATION

9-16

Two independent transparent translation registers (TT0 and TT1) in the MMU
optionally define two blocks of the logical address space that are directly
translated to the physical address spaces. The MMU does not explicitly check
write protection for the addresses in these blocks, but a block can be specified
as transparent only for read cycles. The blocks of addresses defined by the
TTx registers include at least 16M bytes of logical address space; the two
blocks can overlap, or they can be separate.

The following description of the address comparison assumes that both TT0
and TT1 are enabled; however, each TTx register can be independently dis-
abled. A disabled TTx register is completely ignored.

When the MMU receives an address to be translated, the function code and
the eight high-order bits of the address are compared to the block of ad-
dresses defined by TTO and TT1. The address space block for each TTx
register is defined by the base function code, the function code mask, the
logical base address, and the logical address mask. When a bit in a mask
field is set, the corresponding bit of the base function code or logical base
address is ignored in the function code and address comparison. Setting
successively higher order bits in the address mask increases the size of the
transparently translated block.

The address for the current bus cycle and a TTx register address match when
the function code bits and address bits (not including masked bits) are equal.
Each TTx register can specify read accesses or write accesses as transparent.
In that case, the internal read/write signal must match the R/W bit in the TTx
register for the match to occur. The selection of the type of access (read or
write) can also be masked. The read/write mask bit (RWM) must be set for
transparent translation of addresses used by instructions that execute read-
modify-write operations. Otherwise, neither the read nor write portions of
read-modify-write operations are mapped transparently with the TTx regis-
ters, regardless of the function code and address bits for the individual cycles
within a read-modify-write operation.

MC68030 USER'S MANUAL MOTOROLA

By appropriately configuring a transparent translation register, flexible trans-
parent mapping can be specified. For instance, to transparently translate user
program space with a TTx register, the RWM bit of the register is set to 1,
the FC BASE is set to $2, and the FC MASK is set to $0. To transparently
translate supervisor data read accesses of addresses $00000000-$0FFFFFFF,
the LOGICAL BASE ADDRESS field is set to $0X, the LOGICAL ADDRESS
MASK is set to $0F, the R/W bit is set to 1, the RWM bit is set to 0, the FC
BASE is set to $5, and the FC MASK field is set to $0. Since only read cycles
are specified by the TTx register for this example, write accesses for this
address range can be translated with the translation tables and write pro-
tection can be implemented as required.

Each TTx register can specify that the contents of logical addresses in its
block should not be stored in either an internal or external cache. The cache
inhibit out signal (CIOUT) is asserted when an address matches the address
specified by a TTx register and the cache inhibit bit in that TTx register is
set. CIOUT is used by the on-chip instruction and data caches to inhibit
caching of data associated with this address. The signal is available to ex-
ternal caches for the same purpose.

For an access, if either of these registers match, the access is transparently
translated. If both registers match, the Cl bits are ORed together to generate
the CIOUT signal.

Transparent translation can also be implemented by the translation tables
of the translation trees if the physical addresses of pages are set equal to
the logical addresses.

9.4 ADDRESS TRANSLATION CACHE

The ATC is a 22-entry fully associative (content addressable) cache that con-
tains address translations in a form similar to the corresponding page de-
scriptors in memory to provide fast address translation of a recently used
logical address.

The MC68030 is organized such that the translation time of the ATC is always
completely overlapped by other operations; thus, no performance penalty is
associated with ATC searches. The address translation occurs in parallel with
on-chip instruction and data cache accesses before an external bus cycle
begins.

MOTOROLA MC68030 USER'S MANUAL 9-17

9-18

If possible, when the ATC stores a new address translation, it replaces an
entry that is no longer valid. When all entries in the ATC are valid, the ATC
selects a valid entry to be replaced, using a pseudo least recently used al-
gorithm. The ATC uses a validity bit and an internal history bit to implement

- this replacement algorithm. ATC hit rates are application dependent, but hit

rates ranging from 98% to greater than 99% can be expected.

Each ATC entry consists of a logical address and information from a corre-
sponding page descriptor that contains the physical address. The 28-bit log-
ical (or tag) portion of each entry consists of three fields:

7 0% U B 0
|v| FC | LOGICAL ADDRESS |

V — VALID
This bit indicates the validity of the entry. If V is set, this entry is valid. This
bit is set when the MC68030 loads an entry. A flush operation clears the
bit. Specifically, any of these operations clear the V bit of an entry:

o A PMOVE instruction with the FD bit equal to zero that loads a value
into the CRP, SRP, TC, TTO, or TT1 register.

® A PFLUSHA instruction.
® A PFLUSH instruction that selects this entry.

o A PLOAD instruction for a logical address and FC that matches the tag
for this entry. The instruction writes a new entry {with the V bit set)
for the specified logical address.

® The selection of this entry for replacement by the replacement algo-
rithm of the ATC.

FC — FUNCTION CODE :
. This 3-bit field contains the function code bits (FCO-FC2) corresponding to
the logical address in this entry.

LOGICAL ADDRESS
This 24-bit field contains the most significant logical address bits for this
entry. All 24 bits of this field are used in the comparison of this entry to
an incoming logical address when the page size is 256 bytes. For larger
page sizes, the appropriate number of least significant bits of this field are
ignored.

MC68030 USER'S MANUAL MOTOROLA

Each logical portion of an entry has a corresponding 28-bit physical (or data)
portion. The physical portion contains these fields:

7 % B ¥ 0B 0
L8 [o[w]wm] PHYSICAL ADDRESS |

B — BUS ERROR
This bit is set for an entry if a bus error, an invalid descriptor, a supervisor
violation, or a limit violation is encountered during the table search cor-
responding to this entry. When B is set, a subsequent access to the logical
address causes the MC68030 to take a bus error exception. Since an ATC
miss causes an immediate retry of the access after the table search op-
eration, the bus error exception is taken on the retry. The B bit remains
set until a PFLUSH instruction or a PLOAD instruction for this entry inval-
idates the entry or until the replacement algorithm for the ATC replaces it.

Cl — CACHE INHIBIT
This bit is set when the cache inhibit bit of the page descriptor correspond-
ing to this entry is set. When the MC68030 accesses the logical address of
an entry with the CI bit set, it asserts the cache inhibit out signal (CIOUT)
during the corresponding bus cycle. This signal inhibits caching in the on-
chip caches and can also be used for external caches.

WP — WRITE PROTECT
This bit is set when a WP bit is set in any of the descriptors encountered
during the table search for this entry. Setting a WP bit in a table descriptor
write protects all pages accessed with that descriptor. When the WP bit is
set, a write access or a read-modify-write access to the logical address
corresponding to this entry causes a bus error exception to be taken im-
mediately.

M — MODIFIED

This bit is set when a valid write access to the logical address corresponding
to the entry occurs. If the M bit is clear and a write access to this logical
address is attempted, the MC68030 aborts the access and initiates a table
search, setting the M bit in the page descriptor, invalidating the old ATC
entry, and creating a new entry with the M bit set. The MMU then allows
the original write access to be performed. This assures that the first write
operation to a page sets the M bit in both the ATC and the page descriptor
in the translation tables even when a previous read operation to the page
had created an entry for that page in the ATC with the M bit clear.

MOTOROLA MC68030 USER’S MANUAL 9-19

PHYSICAL ADDRESS
This 24-bit field contains the physical address bits (A31—A8) from the page
descriptor corresponding to the logical address. When the page size is
larger than 256 bytes, not all bits in the physical address field are used.
All page index bits of the logical address are transferred to the bus con-
troller without translation.

9.5 TRANSLATION TABLE DETAILS

The details of translation tables and their use include detailed descriptions
of the descriptors, table searching, translation table structure variations, and
the protection techniques available with the MC68030 MMU.

9.5.1 Descriptor Details

The descriptor details include detailed descriptions of the short- and long-
format descriptors used in the translation trees. The fields that apply to all
descriptors are described in the first paragraph. .

9.5.1.1 DESCRIPTOR FIELD DEFINITIONS. All descriptor fields are used in more
than one type of descriptor. This section lists these fields and describes the
use of each field.

DT
This 2-bit field contains the descriptor type; the first two types apply to
the descriptor itself. The other two types apply to the descriptors in the
table at the next level of the tree. The values are defined as follows:

- $0 INVALID
This code identifies the current descriptor as an invalid descriptor.
A table search ends when an invalid descriptor is encountered.

$1 PAGE DESCRIPTOR
This code identifies the current descriptor as a page descriptor.
The page descriptor is a normal page descriptor when it resides
in a page table (in the bottom level of the translation tree). A page
descriptor at a higher level is an early termination page descriptor.
A table seargh ends when a page descrlptor of either type is en-
countered.

9-20 : MC68030 USER’S MANUAL MOTOROLA

$2 VALID 4 BYTE
This code specifies that the next table to be accessed contains
short-format descriptors. The MC68030 multiplies the index for the
next table by four to access the next descriptor. (Short-format
descriptors must be long-word aligned.) When used in a page table
(bottom level of an translation tree), this code identifies an indirect
descriptor that points to a short-format page descriptor.

$3 VALID 8 BYTE

This code specifies that the next table to be accessed contains
long-format descriptors. The MC68030 multiplies the index for the
next table by eight to access the next descriptor. (Long-format
descriptors must be quad-word aligned.) When used in a page
table (bottom level of an address translation tree), this code iden-
tifies an indirect descriptor that points to a long-format page de-
scriptor.

This bit is automatically set by the processor when a descriptor is accessed
in which the U bit is clear except after a supervisor violation is detected.
In a page descriptor table, this bit is set to indicate that the page corre-
sponding to the descriptor has been accessed. In a pointer table, this bit
is set to indicate that the pointer has been accessed by the MC68030 as
part of a table search. Note that a pointer may be fetched, and its U bit
set, for an address to which access is denied at another level of the tree.
Updates of the U bit are performed before the MC68030 allows a page to
be accessed. The processor never clears this bit.

wp

This bit provides write protection. The states of all WP bits encountered
during a table search are logically ORed, and the result is copied to the
ATC entry at the end of a table search for a logical address. During a table
search for a PTEST instruction, the processor copies this result into the
MMU status register (MMUSR). When WP is set, the MC68030 does not
allow the logical address space mapped by that descriptor to be written
by any program (i.e., this protection is absolute). If the WP bit is clear, the
MC68030 allows write accesses using this descriptor {unless access is re-
stricted at some other level of the translation tree).

Cl
This bit is set to inhibit caching of items within this page by the on-chip
instruction and data caches and, also, to cause the assertion of the CIOUT
signal by the MC68030 for bus cycles accessing items within this page.

MOTOROLA MC68030 USER'S MANUAL 9-21

9-22

LU

This bit specifies the type of limit in the LIMIT field. When the L/U bit is
set, the LIMIT field contains the unsigned lower limit; the index value for
the next level of the tree must be greater than or equal to the value in the
LIMIT field. When the bit is cleared, the limit is an unsigned upper limit,
and the index value must be less than or equal to the LIMIT. An out-of-
bounds access causes the B bit in the ATC entry for the address to be set
and causes the table search to abort.

LIMIT

This 15-bit field contains a limit to which the index portion of an address
is compared to detect an out-of-bounds index. The limit check applies to
the index into the table at the next lower level of the translation tree. If the
descriptor is an early termination page descriptor, the limit field is still used
as a check on the next index field of the logical address.

This bit identifies a modified page. The MC68030 sets the M bit in the
corresponding page descriptor before a write operation to a page for which
the M bit is zero, except after a descriptor with the WP bit set is encountered,
or after a supervisor violation is encountered. An access is consideredto
be a write for updating purposes if either the R/W or RMC signal is low.
The MC68030 never clears this bit.

PAGE ADDRESS

This 24-bit field contains the physical base address of a page in memory.
The low-order bits of the address are supplied by the logical address. When
the page size is larger than 256 bytes, one or more of the least significant
bits of this field are not used. The number of unused bits is equal to the
PS field value in the TC register minus eight.

This bit identifies a pointer table or a page as a supervisor only table or
page. When the S bit is set, only programs operating at the supervisor
privilege level are allowed to access the portion of the logical address
mapped by this descriptor. If this bit is clear, accesses using this descriptor
are not restricted to supervisor-only unless the access is restricted by some
other level of the translation tree.

TABLE ADDRESS

This 28-bit field contains the physical base addressbofv atable of descriptors.
The low-order bits of the address are supplied by the logical address.

MC68030 USER’S MANUAL . MOTOROLA

DESCRIPTOR ADDRESS
This 30-bit field, which contains the physical address of a page descriptor,
is only used in short- and long-format indirect descriptors.

UNUSED
The bits in this field are not used by the MC68030 and may be used by the
system software.

RESERVED
Descriptor fields designated by a one or a zero are reserved by Motorola
for future definition. These bits should be consistently written as either a
one or azero as appropriate. In the root pointers, these bits are not alterable.
In memory-resident descriptors, the values in these fields are neither
checked nor altered by the MC68030. Use of these bits by system software
for any purpose may not be supported in future products.

9.5.1.2 ROOT POINTER DESCRIPTOR. A root pointer descriptor contains the ad-
dress of the top-level pointer table of a translation tree. This type of descriptor
is loaded into the CRP and SRP registers with the PMOVE instruction. The
field descriptions in the preceding section apply to corresponding fields of
the CRP and SRP with two minor exceptions. A descriptor-type code of $00
(invalid) is not allowed; an attempt to load zero into the DT field of the CRP
or SRP register results in an MMU configuration exception. Also, when the
FCL field of the TC register is set, the L/U and LIMIT fields of the root pointer
registers are unused. Figure 9-9 shows the root pointer descriptor format.

63 48

Ly . umiT

ofofojojojojojofojojojojo]jof| OT

TABLE ADDRESS (PA31-PA16)

TABLE ADDRESS (PA15-PA4) UNUSED

L/U — LOWER OR UPPER PAGE RANGE

DT — DESCRIPTOR TYPE

LIMIT — LIMIT ON TABLE INDEX FOR THIS TABLE ADDRESS

TABLE ADDRESS — ADDRESS OF TABLE AT NEXT LEVEL OR PAGE OFFSET IF OT = 1

Figure 9-9. Root Pointer Descriptor Format

MOTOROLA MC68030 USER'S MANUAL 923

9.5.1.3 SHORT-FORMAT TABLE DESCRIPTOR. The field descriptionsin9.5.1.1 DE-
SCRIPTOR FIELD DEFINITIONS apply to corresponding fields of this descrip-
tor. Figure 9-10 shows the format of the short-format table descriptor.

31 43 .0
TABLE ADDRESS I STATUS l
28 4
3 2 01 0
ulwe| or

Figure 9-10. Short-Format Table Descriptor

9.5.1.4 LONG-FORMAT TABLE DESCRIPTOR. The field descriptions in 9.5.1.1 DE-
SCRIPTOR FIELD DEFINITIONS apply to corresponding fields of this descrip-
tor. During address computations, the MC68030 internally replaces the

UNUSED field with zeros. Figure 9-11 shows the format of the long-format
table descriptor.

3130) 16 15 ; 0 31 4 3 0

U umir ’ STATUS | TABLE ADDRESS ' [UN USED—l

16 | 16 | 32

1% 14 13 12 n w0 9 8 7 6 5 4 3 2 1 D|

1 1 1 1 1ftrjofsj|jofo]o]|0}ju wp oT

Figure 9-11. Long-Format Table Descriptor

9-24 MC68030 USER'S MANUAL MOTOROLA

9.5.1.5 SHORT-FORMAT EARLY TERMINATION PAGE DESCRIPTOR. The short-
format early termination page descriptor contains the page descriptor code
in the DT field but resides in a pointer table. That is, the table in which an
early termination page descriptor is located is not at the bottom level of the
address translation tree. The field descriptions in 9.5.1.1 DESCRIPTOR FIELD
DEFINITIONS apply to corresponding fields of this descriptor. Figure 9-12
shows the format of the short-format early termination page descriptor.

31 8 7 0

I PAGE ADDRESS l STATUS |
2 8
|
7 s s 4 3 2 1 o)

Figure 9-12. Short-Format Page Descriptor and
Short-Format Early Termination Page Descriptor

9.5.1.6 LONG-FORMAT EARLY TERMINATION PAGE DESCRIPTOR. The long-

format early termination page descriptor contains the page descriptor code

in the DT field but resides in a pointer table like the short-format early ter-

mination page descriptor. The field descriptions in 9.5.1.1 DESCRIPTOR FIELD

. DEFINITIONS apply to corresponding fields of this descriptor. Figure 9-13

shows the format of the long-format early termination page descriptor. The

LIMIT field of the long-format descriptor provides a means of limiting the
number of pages to which the descriptor applles

3130 16 15 03 8 7 0

] umiT I STATUS | PAGE ADDRESS unusen |

16 | 16 | 32

5 14 13 12 n 100 9 8 7 6 5 4 3 2 1 0

tfrpryvpryprjosfojcjo|mMm|{u|wpf DT

Figure 9-13. Long-Format Early Termination Page Descriptor

MOTOROLA MC68030 USER'S MANUAL 9-25

9.5.1.7 SHORT-FORMAT PAGE DESCRIPTOR. The short-format page descriptor is

used in the page tables (the bottom level of the address table). The field
descriptions in 9.5.1.1 DESCRIPTOR FIELD DEFINITIONS apply to the corre-
sponding fields of this descriptor. The short-format page descriptor is iden-
tical to of the short-format early termination page descriptor shown in Figure
9-12. '

9.5.1.8 LONG-FORMAT PAGE DESCRIPTOR. The long-format page descriptor is

also used in the page tables. The field descriptions in 9.5.1.1 DESCRIPTOR
FIELD DEFINITIONS apply to the corresponding fields of this descriptor. Fig-
ure 9-14 shows the format of the long-format page descriptor.

3 16 15 o 3 8 7 0
I UNUSED | STATUS | PAGE ADDRESS L UNUSED 1
15 l 16 | 2
| |
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1.0

Tjrfryrjp1rjrjoe}sfjtojcjofmjuwp| DT

Figure 9-14. Long-Format Page Descriptor

9.5.1.9 SHORT-FORMAT INVALID DESCRIPTOR. The short-formatinvalid descrip-

9-26

tor consists of a DT field that contains zeros, identifying it as an invalid
descriptor. It can be used at any level of the address translation tree except
at the root pointer level. The 30-bit unused field is available to the operating
system to identify unallocated portions of the table or portions of the table
that reside on an external device. For example, the disk address of disk-
resident tables or pages can be stored in this field. Figure 9-15 shows the
format of a short-format invalid descriptor.

3 210

[UNUSED for]

Figure 9-15. Short-Format Invalid Descriptor

MC68030 USER'S MANUAL MOTOROLA

9.5.1.10 LONG-FORMAT INVALID DESCRIPTOR. The long-format invalid descrip-
tor is used in pointer and page tables that contain long-format descriptors.
It is used in the same way as the short-format invalid descriptor in the pre-
ceding section. The first long word contains the DT field in the lowest order
bits. The second long word is an unused field, also available to the operating
system. Figure 9-16 shows the format of the long-format invalid descriptor.

31 2103 0

UNUSED]n—rl UNUSED j

Figure 9-16. Long-Format Invalid Descriptor

9.5.1.11 SHORT-FORMAT INDIRECT DESCRIPTOR. The short-format indirect de-
scriptor does not have a unique descriptor-type code. Rather, it resides in a
page table (the bottom level of the address translation tree) that contains
short-format descriptors and is neither a page descriptor nor an invalid de-
scriptor. The descriptor-type field contains either the code for a valid 4-byte
descriptor or for a valid 8-byte descriptor, depending upon the size of the
referenced page descriptor. The field descriptions in 9.5.1.1 DESCRIPTOR
FIELD DEFINITIONS apply to the corresponding fields of this descriptor. Fig-
ure 9-17 shows the format of a short-format indirect descriptor.

31 210

l DESCRIPTOR ADDRESS [oT I

Figure 9-17. Short-Format Indirect Descriptor

MOTOROLA MC68030 USER'S MANUAL 9-27

9.5.1.12 LONG-FORMAT INDIRECT DESCRIPTOR. The long-format indirect de-

31

scriptor has all the attributes of the short-format indirect descriptor described
in the preceding section. The only differences are that it is used in a page
table that contains long-format descriptors and that it has two unused fields.
The field descriptions in 9.5.1.1 DESCRIPTOR FIELD DEFINITIONS apply to
corresponding fields of this descriptor. Figure 9-18 shows the format of a
long-format indirect descriptor.

2103 ‘ 210

UNUSED [o7 | DESCRIPTOR ADDRESS |UN I

Figure 9-18. Long-Format Indirect Descriptor

9.5.2 General Tabl‘e Search

9-28

When the ATC does not contain a descriptor for the logical address of a
processor access and a translation is required, the MC68030 searches the
translation tables in memory and obtains the physical address and status
information for the page corresponding to the logical address. When a table
search is required, the CPU suspends instruction execution activity and, at
the end of a successful table search, stores the address mapping in the ATC
and retries the access. The access then results in a match (it hits) and the
translated address is transferred to the bus controller (provided no exceptions
were encountered).

The table search begins by selecting the translation tree, using function code
bit FC2 and the SRE bit of the TC register, as shown in Table 9-2. SRE is set
to enable the supervisor root pointer, and FC2 is set for supervisor-level
accesses. The translation tree with its root defined by the SRP register is
selected only when SRE and FC2 are both set. Otherwise, the translation table
with its root defined by the CRP register is selected. A simplified flowchart
of the table search procedure is shown in Figure 9-19.

MC68030 USER’S MANUAL ‘ MOTOROLA

ENTRY
|

DETERMINE ROOT POINTER TO BE USED
AND SETx = A

DT # ‘PAGE DESCRIPTOR' DT = "PAGE DESCRIPTOR’

OTHERWISE
FCL SET
1

FETCH DESCRIPTOR AT
TABLE ADORESS + (FC*SIZE)

OTHERWISE -)
0T = ‘INVALID' DT = "PAGE DESCRIPTOR

/

FETCH DESCRIPTOR AT
TABLE ADDRESS + (Tl *SIZE)

/?}’AGEFUESCRIPTOR' ‘
DT ='INVALID' OTHERWISE \

NEXT x
NO MORE Tix FIELDS (=B C.0)
(MUST 8€ INDIRECT) ORE Tix FIELDS

INDIRECT DESCRIPTOR:
FETCH DESCRIPTOR POINTED TO
BY PREVIGUS DESCRIPTOR

OTHERWISE

T/ DT = 'PAGE DESCRIPTOR’

CREATE INVALID

ATC ENTRY (B BIT SET) CREATE VALID ATC ENTRY .

PAGE FRAME ADDRESS = UNUSED LOGICAL PAGE ADDRESS (IF ANY)
+ ADDRESS FIELD FROM LAST DESCRIPTOR FETCHED
(SIGNED ADDITION)

“SIZE” IS THE SIZE (IN BYTES) OF THE DESCRIPTOR
EXIT AT THE PARTICULAR TABLE LEVEL

Figure 9-19. Simplified Table Search Flowchart

MOTOROLA MC68030 USER'S MANUAL 9-29

9-30

Table 9-2. Translation Tree Selection

0 0 CRP
0 1 CRP
1 0 CRP
1 1 SRP

The table search procedure uses physical addresses to access the translation
tables. The read-modify-write (RMC) signal is asserted on the first bus cycle
of the search and remains asserted throughout, ensuring that the entire table
search completes without interruption.

The first bus cycle of the search uses the table address field of the appropriate
root pointer as the base address of the first table. The low-order bits of the
address are supplied by the logical address. The table is indexed by either
the function code or the set of logical address bits defined by the TIA field
of the TC register. The FCL field of the TC register determines whether or
not the function code is used. In either case, the descriptor-type field of the
root pointer selects the scale factor (or multiplier) for the index.

The first access obtains a descriptor. If the descriptor is a table descriptor,
the MC68030 again accesses memory. The next access uses the table address
in the descriptor as the base address for the next table. The low-order bits
of the address are supplied by the logical address. The table is indexed by
a set of bits from the logical address using a scale factor determined by the
descriptor type code in the descriptor. If the first table access used the func-
tion code, the second access uses the bits selected by the TIA field of the TC
register. Otherwise, the second access uses the bits selected by the TIB field.

Additional accesses are performed, using the logical address bits specified
in TIB, TIC, or TID in order, until an access obtains a page descriptor or an
invalid descriptor or until a limit violation occurs. At this point, whether or
not all levels of the address table have been accessed, the table search is
over. The page descriptor contains the physical address and other infor-
mation needed for the ATC entry; the MC68030 creates the ATC entry and
retries the original bus access.

Figure 9-20 shows a table search using the function code and all four Tix
fields.

MC68030 USER'S MANUAL MOTOROLA

FC 1S A B C D PS

(o1 0] [xxxxxxxxfooorforotforaofiooo]sxasxxas]

52 B FREY)
[| l l ’___I f____l
: I il
ROOT POINTER ™
. L] L4 .
L] . . L]

— =5 =5 =

ENTRY : _ . :
#1 . . .
ENTRY [ENTRY
: #5 | | #4 |
L] L] L]
. . L]

—
] PAGE
. | ENTRY FRAME
:] #8 ADDRESS
E- . . .
) . . .

FC LEVEL A LEVEL B LEVEL C LEVEL 0 LEVEL
TABLE TABLES TABLES TABLES TABLES
(8 TABLES {128 TABLES (2K TABLES (32K TABLES
MAXIMUM, MAXIMUM, MAXIMUM, MAXIMUM,
16 ENTRIES/ 16 ENTRIES/ 16 ENTRIES/ 16 ENTRIES/
TABLE) . TABLE) TABLE) TABLE)

Figure 9-20. Five-Level Table Search

MOTOROLA MC68030 USER'S MANUAL 9-31

9-32

The MC68030 enforces a limit on the index value for the next level of a table
search when long-format descriptors are used.

The root pointer includes a limit field that applies when the function code
lookup is not used (the FCL bit of the TC register is zero). The index used to
access the next level table is compared to the contents of the limit field. The
limit field effectively reduces the portion of the address space to which a
descriptor applies and also reduces the size of the translation table. The index
must reside within the range defined by the limit field. The limit can be a
lower limit or an upper limit, according to the L/U bit value. When the L/U
bit is set, the limit is a lower limit, and an index less than the limit is out of
bounds. When the L/U bit is zero, the limit is an upper limit, and an index
greater than the limit is out of bounds. The limit field is effectively disabled
if L/U is set and the limit field contains zero or if L/U is clear and the limit
field contains $7FFF.

During a table search for an normal translation or a PLOAD instruction, if a
limit violation is detected, the ATC is loaded with an entry having the bus
error (B) bit set. If a limit violation is detected during a table search for a
PTEST instruction, the invalid {I) and limit (L) bits are set in the MMUSR.

During a table search, the U bit in each descriptor that is encountered is
checked and set if it is not already set. Similarly, when the table search is
for a write access and the M bit of the page descriptor is clear, the processor
sets the bit if the table search does not encounter a set WP bit or a supervisor
violation. Since the read-modify-write (RMC) signal is asserted throughout
the entire table search operation, the read and write operations to update
the history bits are guaranteed to be uninterrupted.

A table search terminates successfully when a page descriptor is encoun-
tered. The occurrence of an invalid descriptor, a limit violation, or a bus error
also terminates a table search, and the MC68030 takes an exception on the
retry of the cycle because of these conditions. The exception routine should
distinguish between anticipated conditions and true error conditions. The
routine can correct an invalid descriptor that indicates a nonresident page
or one that identifies a portion of the translation table yet to be allocated. A
limit violation or a bus error due to a system malfunction may result in an
error message and termination of the task.

MC68030 USER'S MANUAL MOTOROLA

9.5.3 Variations in Translatioh Table Structure

Many aspects of the MMU translation tree structure are software configur-
able, allowing the system designer flexibility to optimize the performance of
the MMU for a particular system. The following paragraphs discuss the var-
iations of the tree structure from the general structure discussed previously.

9.5.3.1 EARLY TERMINATION AND CONTIGUOUS MEMORY. The MMU provides
the ability to map a contiguous range of the logical address space (an integral
number of logical pages) to an equivalent contiguous physical address range
with a single descriptor. This is done by placing the code for page descriptor
($1) in the descriptor type (DT) field of a descriptor at a level of the tree that
would normally contain a table pointer, thereby deleting a subtree of the
table.

The table search ends when the search encounters a page descriptor, whether
or not the page descriptor is in a page descriptor table at the lowest level of
the translation tree.

Termination of the table search by a page descriptor in a pointer descriptor
table (i.e., the MC68030 has not encountered a Tlx field of zero) is called an
early termination. The terminating page descriptor is called an early termi-
nation page descriptor. ‘

An early termination page descriptor takes the place of many page descriptors n
in a translation table. It applies to all pages that would exist on the branch

on which the descriptor has been placed, and on any branches from that
branch. An early termination page descriptor can be used where contiguous
pages in physical memory correspond to contiguous logical pages. If an early
termination page descriptor is a long format, the limit field is applied to the
next index field of the logical address. This allows the number of pages
mapped contiguously to be restricted. Refer to 9.1.2 Translation Table De-
scriptors for additional information.

If n low-order bits of the logical page address are unused when a page
descriptor encoding is encountered, the single descriptor creates a mapping
of a contiguous region of the logical address space starting at the logical
page address (with n unused bits set to zero) to a contiguous region in the
physical address space starting at the page frame base address with a size
of 2PS+n pytes.

MOTOROLA MC68030 USER'S MANUAL 9-33

When a search is made for a logical address to which an early termination
page descriptor applies, the MC68030 creates an entry in the ATC for the
logical address; the physical address in the ATC entry is the sum of the page
address field in the descriptor plus an offset. The offset is the logical address
with the bits used in the search set to zero.

Although the early termination page descriptor creates a contiguous logical-
to-physical mapping without having to maintain individual descriptors in the
translation tree for each page that is a member of the contiguous region, the
ATC contains one entry for each page mapped. These entries are created
internally each time a page boundary (as determined by the page size) is
crossed in the contiguous region. Figure 8-21 shows an example translation
table with a portion of the logical address space translated as a contiguous
block.

Note that the DT field can be set to page descriptor at any level of the

_-translation tree including the root pointer level. Setting the DT field of a root

pointer to page descriptor creates a direct mapping from the logical to the
physical address space with a constant offset as determined by the value in
the table address field of the root pointer.

9.5.3.2 INDIRECTION. The MC68030 provides the ability to replace an entry in a

9-34

page table with a pointer to an alternate entry. The indirection capability
allows multiple tasks to share a physical page while maintaining only a single
set of history information for the page (i.e., the “modified” indication is
maintained only in the single descriptor). The indirection capability also al-

 lows the page frame to appear at arbitrarily different addresses in the logical

address spaces of each task.

Using the indirection capability, single entries or entire tables can be shared
between multiple tasks. Figure 9-22 shows two tasks sharing a page using
indirect descriptors.

When the MC68030 has completed a normal table search (has exhausted all
index fields of the logical page address), it examines the descriptor-type field
of the last entry fetched from the translation tables. If the DT field contains
a “valid long” ($2) or “valid short” ($3) encoding, this indicates that the
address contained in the highest order 30 bits of the table address field of
the descriptor is a pointer to the page descriptor that is to be used to map
the logical address. The processor then fetches the page descriptor of the

indicated format from this address and uses the page address field of the
page descriptor as the physical mapping for the logical address.

MC68030 USER'S MANUAL MOTOROLA

A B PS
EXAMPLE ADDRESS $00A01A00 {0 0 0 0 0 000 101 0[0 000000 1 1 0x x x x x x x x x s

SA $6 X

| TABLE $0
B LEVEL
ROOT POINTER :
A 8 PS

[000000000000[00000001IOILIJODOUDOOJISUUOOIAOO

+

[tocooooocoooofocoooooooofooooooooao] ssoooooo

ENTRY $00A | $8000000 (DT = §1)

: [tooooooooooofoooooooi1ofiooooooooo] ssoooian

{ [
|
EARLY TERMINATION OF TABLE SEARCH - PAGE DESCRIPTOR ENCOUNTERED
(LOGICAL ADDRESS RANGE $00A00000 TO SOOAFFFFF MAPPED
TO PHYSICAL ADDRESS RANGE $80A00000 TO $80AFFFFF)

A LEVEL TABLES
{4K ENTRIES)

| TABLE SFFF
B LEVEL

B LEVEL TABLES
(4K TABLES MAXIMUM, 1K ENTRIES/TABLE)

Figure 9-21. Example Translation Tree Using Contiguous Memory

MOTOROLA MC68030 USER’'S MANUAL 9:35

A B PS
EXAMPLE ADDRESS $00A01A00 [0 0 00 000010 1 0[0 6000001 10fx x x x x x x x x x|
$A $6 x

ROOT POINTER .o

ENTRY $06 | $10000.{(DT.=83}
L

ENTRY $00A

.
.
.

TASK ‘A’ :
A LEVEL TABLES ABSOLUTE PHYSICAL ADDRESS OF
(4K ENTRIES) PAGE DESCRIPTOR

PAGE FRAME ADDRESS

TASK ‘B
A LEVEL TABLES
(4K ENTRIES)

Figure 9-22. Example Translation Tree Using Indirect Descriptors

9-36 MC68030 USER'S MANUAL MOTOROLA

The page descriptor located at the address given by the indirect descriptor
must not have a DT field with a long or short encoding (it must either be a
page descriptor or invalid). Otherwise, the descriptor is treated as invalid,
and the MC68030 creates an ATC entry with an error condition signaled (bit
set).

9.5.3.3 TABLE SHARING BETWEEN TASKS. A page or pointer table can be shared
between tasks by placing a pointer to the shared table in the address trans-
lation tables of more than one task. The upper {nonshared) tables can contain
different settings of protection bits allowing different tasks to use the area
with different permissions. In Figure 9-23 two tasks share the memory trans-
lated by the table at the B level. Note that task ‘’A” cannot write to the shaded
area. Task “B’, however, has the WP bit clear in its pointer to the shared
table; thus, it can read and write the shared area. Also note that the shared
area appears at different logical addresses for each task.

9.5.3.4 PAGING OF TABLES. It is not required that the entire address translation
tree for an active task be resident in main memory at once. In the same way
that only the working set of pages must reside in main memory, only the
tables that describe the resident set of pages need be available in main
memory. This paging of tables is implemented by placing the “invalid” code
($0) in the DT field of the table descriptor that points to the absent table(s).
When a task attempts to use an address that would be translated by an absent
table, the MC68030 is unable to locate a translation and takes a bus error
exception when the execution unit retries the bus cycle that caused the table
search to be initiated.

It is the responsibility of the system software to determine that the invalid
code in the descriptor corresponds to nonresident tables. This determination
can be facilitated by using the unused bits in the descriptor to store status
information concerning the invalid encoding. When the MC68030 encounters
an invalid descriptor, it makes no interpretation (or modification) of any fields
of this descriptor other than the DT field, allowing the operating system to
store system-defined information in the remaining bits. Typical information
that is stored includes the reason for the invalid encoding (tables paged-out,
region not allocated, . . ., etc.) and possibly the disk address for nonresident
tables.

Figure 9-24 shows an address translation table in which only a single page
table (table n) is resident and all other page tables are not resident.

MOTOROLA MC68030 USER'S MANUAL 9-37

A B PS
EXAMPLE ADDRESS $00A01400 [0 00 0 00 00101 0[0 000000 11 0fx x x x x x x x x x|
$A $6 x

ROOT POINTER .

ENTRY 5004 I WP SET_ i : |

TASK ‘A I
A LEVEL TABLES TASK ‘A

(4K ENTRIES) B LEVEL TABLES
(4K TABLES MAXIMUM. 1K ENTRIES/TABLE)

° PAGE FRAME ADDRESS

WP CLEAR ENTRY $06 (SHARED BY ‘A’ AND 'B)
[] (WRITE-PROTECTED FROM TASK ‘A’)

—

TASK B’ [
A LEVEL TABLES TASK ‘B’

{4K ENTRIES) B LEVEL TABLES
) (4K TABLES MAXIMUM, 1K ENTRIES/TABLE)

Figure 9-23. Example Translation Tree Using Shared Tables

9-38 MC68030 USER'S MANUAL MOTOROLA

A B PS
EXAMPLE ADDRESS $00A01A00 [0 0 00 0 000 101 0[0000000 1 1 0fx x x x x x x x x x]
SA $6 X

. TABLE #0
| BLeveL
{PAGED OUT OR
; NOT ALLOCATED)
ROOT POINTER
> 07 = INVALID" | 7
ENTRY S00A 0T =$2 OR 53 | ENTRY $006 :gg;g:g”‘ | TaBLE#n
DT = ‘INVALID' B LEVEL
DT = INVALID'
|
A LEVEL TABLES
(4K ENTRIES)
-
. . TABLE #m

| BLEVEL
{PAGED OUT OR

NOT ALLOCATED)

B LEVEL TABLES
(4K TABLES MAXIMUM, 1K ENTRIES/TABLE)

Figure 9-24. Example Translation Tree with Nonresident Tables

MOTOROLA MC68030 USER'S MANUAL 9-39

9.5.3.5 DYNAMIC ALLOCATION OF TABLES. Similar to the case of paged tables,

it is not required that a complete translation tree exist for an active task. The
translation tree can be dynamically allocated by the operating system based
on requests for access to particular areas.

As in the case of demand paging, it is difficult, if not impossible, to predict
the areas of memory that are used by a task over any extended period of
time. Instead of attempting to predict the requirements of the task, the op-
erating system performs no action for a task until a demand is made re-
questing access to a previously unused area or an area that is no longer
resident in memory. This same technique can be used to efficiently create a
translation tree for a task.

For example, consider an operating system that is preparing the system to
execute a'previously unexecuted task that has no translation tree. Rather
than guessing what the memory usage requirements of the task are, the
operating system creates a translation tree for the task that maps one page
corresponding to the initial value of the program counter for that task, and
possibly, one page corresponding to the initial stack pointer of the task. All
other branches of the translation tree for this task remain unallocated until
the task requests access to the areas mapped by these branches. This tech-
nique allows the operating system to construct a minimal translation tree
for each task, conserving physical memory utilization and minimizing op-
erating system overhead.

9.5.4 Detail of Table Search Operations

9-40

The table search operations described in this section are shown in detail in
Figures 9-25-9-29.

MC68030 USER'S MANUAL MOTOROLA

INITIALIZE ROOT POINTER SELECTION TRUTH TABLE

DETERMINE ROOT POINTER T0 BE USED 2 SRe | moor
{REFER O TRUTH TABLE AT RIGHT)
x - A 0 0 CRP
y < P 0 1 CRP
(CHECK DESCRIPTOR TYPE OF ROOT POINTER) | 0 CRP
DT = ‘PAGE DESCAIPTOR' 1 1 SRP

" OT=4BYIE R B BYTE

TYPE <e— EARLY' SIZE <t— 4 0R 8
LAST SIZE ~— 8

CREATE ATC ENTRY

(PERFORM FUNCTICON CODE LOOKUP IF REQUIRED}

FCL=1 FCL=0

FETCH DESCRIPTOR

(CHECK DESCRIPTOR TYPE)

DT = "PAGE DESCRIPTOR® DT = INVALID’

/ DT = ‘4 BYTE' OR '8 BYTE'

TYPE <#— ‘EARLY' LAST_SIZE =€~ SIZE . TYPE -— 'INVALID'
SIZE --— 4 0R 8
CREATE ATC ENTRY CREATE ATC ENTRY

(ENTERING A LEVEL TABLE SEARCH)

PERFORM LIMIT CHECK

FETCH DESCRIPTOR .
{REPEAT SEARCH)

{CHECK DESCRIPTOR TYPE)

DT = ‘PAGE DESCRIPTOR' DT =4 BYTE' OR ‘8 BYTE

DT = "INVALID*
TYPE <&~ ‘INVALID" LAST SIZE -— SIZE
SIZE <&— 4 0R 8
x# D x=D x# D

(Yy = X
_ -
x ~<s— NEXT x ‘x =B.C.D) Tvee NORMAL x <&— NEXTx (x =B, C, D)
Te=0 . Thos 0 /O."”‘E
— ~ Th=0
TYPE <€— 'NORMAL TYPE <€— ‘EARLY'

TYPE <&— ‘INDIRECT’

FETCH DESCRIPTOR
O

(CHECK DESCRIPTOR TYPE}
DT = ‘PAGE DESCRIPTOR' OTHERWISE

CREATE ATC ENTRY
TYPE <— 'INVALID'

O
CREATE ATC ENTRY

Figure 9-25. Detailed Flowchart of MMU Table Search Operation

** -—"" IS THE ASSIGNMENT OPERATOR

MOTOROLA MC68030 USER'S MANUAL 9-41

C INITIALIZE FBR TABLE SEARCH ’ (INITIALIZE ACCRUED STATUS)

ACC _STATUS [WP] -— 0
ACC STATUS {S] <-=— 0

‘ RETURN)

Figure 9-26. Table Search Initialization Flowchart

CREATE ATC ENTRY

TYPE = TNVALID TYPE = "EARLY’ TYPE = ‘INDIRECT' TYPE = 'NORMAL'

CREATE ATC ENTRY WITH

8 PERFORM LIMIT CHECK
BIT SET PFA = PAGE ADDRESS FIELD OF PFA = PAGE ADDRESS FIELD OF
DESCRIPTOR FETCHED INDIRECTLY FROM DESCRIPTOR FETCHED AT
PFA = LPA + TA FIELD OF TREE LEVEL x TREE LEVEL x
DESCRIPTOR FETCHED AT
EXIT TABLE SEARCH TREE LEVEL y

CREATE ATC ENTRY USING PFA FROM ABOVE
AND ACCRUED STATUS

ABBREVIATIONS USED:

EXIT TABLE SEARCH

PFA: = PAGE FRAME ADDRESS
LPA: = UNUSED FIELDS OF LOGICAL PAGE ADDRESS
TA: = TABLE ADDRESS FIELD OF A TABLE DESCRIPTOR

Figure 9-27. ATC Entry Creation Flowchart

9-42 MC68030 USER'S MANUAL MOTOROLA

{LIMIT CHECK NOT REQUIRED)

PERFORM LIMIT CHECK

y="RP’ OTHERWISE

FCL=1

OTHERWISE

RETURN
(LIMIT CHECK NOT REQUIRED)

RETURN

LPA[T] S LIMIT . LPA[TIX] > UMIT_LPA[TIX] < UMIT LPA[TIx] == LIMIT

TYPE -€&— ‘INVALID’
RETURN I RETURN

CREATE ATC ENTRY

LAST SIZE = 4 LAST SIZE = 8

(PERFORM LIMIT CHECK}

L/U=0 /=1

Figure 9-28. Limit Check Procedure Flowchart

9.5.5 Protection

M68000 Family processors provide an indication of the context in which they
are operating on a cycle-by-cycle basis by means of the function code signals.
These signals identify accesses to the user program space, the user data
space, the supervisor program space, and the supervisor data space. The
function code signals can be used for protection mechanisms by setting the
function code lookup (FCL) bit in the translation control (TC) register.

The MC68030 MMU provides the capability for separate translation trees for
supervisor and user spaces to be used. When the supervisor root pointer
enable bit (SRE) in the TC register is set, the root pointer register for the
supervisor space translation tree is selected for supervisor program or data
accesses.

The translation table trees contain both mapping and protection information.
Each table and page descriptor includes a write-protect (WP) bit, which can
be set to provide write protection at any level. Each long-format table and
page descriptor also contains a supervisor-only (S) bit, which can limit access
to programs operating at the supervisor privilege level.

MOTOROLA MC68030 USER'S MANUAL 9-43

FETCH DESCRIPTOR &
UPDATE HISTORY AND STATUS
FETCH 4 OR 8 BYTE DESCRIPTOR AT
PA = TA + (INDEX *SIZE)
(INDEX = FC, TIA, TIB, TIC, OR TID)
OR AT

PA = DESCRIPTOR ADDRESS
(INDIRECT DESCRIPTOR)

UTHEHWISE/?

NORMAL TERMINATION OF ALL BUS ACTIVITY

TYPE -s—— "INVALID'
CREATE ATC ENTRY (CHECK DESCRIPTOR TYPE)
DT = "PAGE DESCRIPTOR' DT = "4 BYTE' OR '8 BYTE'

DT = INVALID®
RETURN
U BIT SET U BIT CLEAR

WRITE OPERATION READ OPERATION
M AND: { 1 EXECUTE WRITE CYCLE
U BITS SET M OR U BIT CLEAR U BIT CLEAR U BIT SET U — 1
ﬁ (
EXEC”,\IE W“'TE]CYCLE EXECUTE WRITE CYCLE
U -1 MM
U --—

OTHERWISE
NORMAL TERMINATION OF ALL BUS ACTIVITY
TYPE ~s— 'INVALID’

CREATE ATC £ - .
OTHERWISE NTRY SiZE =47~ SizE = 8
NORMAL TERMINATION OF ALL BUS ACTIVITY
TYPE ~€— "INVALID :
! ACC STATUS[WP] <€— ACC_STATUS[WP) V WP
CREATE ATC ENTRY SZE=4 SIZE-8 . ACC_STATUS(S] <€— ACC_STATUSIS] V
- ~ ACC_STATUS[WP] ~€— ACG STATUS{WP] V WP

ACC STATUS[WP] - ACC STATUS[WP] v WP
ACC STATUS[CI) <-— CI
ACC_STATUS(S} -e— ACC STATUSIS] V §
ACC_STATUS[WP] ~— ACC_STATUS[WP] V WP
ACC_STATUS[CI] ~-&— Ci

RETURN

O) “V" IS THE LOGICAL OR OPERATOR
RETURN

Figure 9-29. Detailed Flowchart of Descriptor Fetch Operation

9-44 MC68030 USER'S MANUAL MOTOROLA

The protection mechanisms can be used individually or in any combination
to protect:

® Supervisor program and data spaces from access by user programs.

e User program and data spaces from access by-other user programs or
supervisor programs (except with the MOVES instruction).

e Supervisor and user program spaces from write accesses (except by the
supervisor using the MOVES instruction).

o One or more pages of memory from write accesses.

9.5.5.1 FUNCTION CODE LOOKUP. One way of protecting supervisor and user
spaces from unauthorized access is to set the FCL bit in the TC register. This
effectively segments the logical address space into a supervisor program
space, a supervisor data space, a user program space, and a user data space,
as shown in Figure 9-30. Each task has an address translation tree with unique
mappings for the logical addresses in its user spaces. The translation tables
for mapping the supervisor spaces can be copied into each task’s translation
tree. Figure 9-31 shows a translation tree using function code lookup, and
Figure 9-32 shows translation trees for two tasks that share common super-
visor spaces.

0 0 0 0
32 32 32 32
2 2 2 2
SUPERVISOR SUPERVISOR USER USER
PROGRAM DATA PROGRAM DATA
SPACE SPACE SPACE SPACE

Figure 9-30. Logical Address Map Using Function Code Lookup

MOTOROLA MC68030 USER'S MANUAL 9-45

USER DATA SPACE BRANCH

- S
L
_>
_>
USER PROGRAM SPACE BRANCH
L E—d
O oo~ TUNDEFINED, RESERVED] _ —
4 USER DATA SPACE
8 USER PROGRAM SPACE
C. [TUSER DEFINED. RESERVED]
$10 | (UNDEFINED, RESERVED) \
$14 SUPERVISOR DATA SPACE
$18 | SUPERVISOR PROGRAM SPACE
$1C |/ CPU SPACE{UNMAPPED) " SUPERVISOR DATA SPACE BRANCH
> >
L | |
ADDRESS OF FIRST TABLE POINTER = :
CPU ROOT POINTER + (FUNCTION CODE *SIZE) .
——»
_—
SUPERVISOR PROGRAM SPACE BRANCH
> [
_>
F——>
—

I i J
TABLE INDEX AT THIS LEVEL USES
LOGICAL ADDRESS FIELD SPECIFIED
BY TIA FIELD OF TRANSLATION CONTROL
REGISTER

Figure 9-31..Example Translation Tree Using Function Code Lookup

9-46 MC68030 USER'S MANUAL MOTOROLA

USER DATA SPACE BRANCH —

: >
-
cPU -
ROOT POINTER .
ot TUNGEFINED, RESERVED) .
4 USER DATA SPACE .
8 [usen ProGRAM sPACE .
$C | {USER DEFINED, RESEAVED) ANSLATON THaLE
$10 | {UNGEFINED, RESERVED) |
FOR TASK ‘A
$14 SUPERVISOR DATA SPACE USER PROGRAM SPACE BRANCH
$18 [SUPERVISOR PROGRAM SFACE > —>
$1C [CPU SPACE (UNMAPPED) —
| | | :
[
ADDRESS OF FIRST TABLE POINTER =
GPU ROOT POINTER + (FUNCTION CODE -SIZE) —
USER DATA SPACE BRANCH _
>
cPU :
ROOT POINTER TONDEFINED, FRESERVED) :
FOR TASK ‘B
s USER DATA SPACE —
8 | Ustr PROGRAM SPACE —
$C | (USER DEFINED, RESERVED) ANSLATION TABLE
$10 | (UNDEFINED, RESERVED) USER PROGRAM SPACE BRANCH | FOR TASK B
$14 [SUPERVISOR 0ATA SPACE
$18 [SUPERVISOR PROGRAM SPACE > —
$1c [CPU SPACE (UNMAPFED) —
——»
——>
SUPERVISOR DATA SPACE BRANCH -
>
——»
S
T
TRANSLATION TABLE
| FOR ALL SUPERVISOR
SUPERVISOR PROGRAM SPACE BRANCH ACCESSES
. -
>
—.—
e

Figure 9-32. Example Translation Tree Structure for Two Tasks

MOTOROLA MC68030 USER'S MANUAL 9-47

9.5.5.2 SUPERVISOR TRANSLATION TREE. A second protection mechanism uses

a supervisor translation tree. A supervisor translation tree protects supervisor
programs and data from access by user programs and user programs and
data from access by supervisor programs. Access is granted to the supervisor
programs which can access any area of memory with the move address
space (MOVES) instruction. When the SRE bit in the TC register is set, the
translation tree pointed to by the SRP is selected for all supervisor level
accesses. This translation tree can be common to all tasks. This technique
segments the logical address space into user and supervisor areas without
adding the function code level to the translation trees.

9.5.5.3 SUPERVISOR ONLY. A third mechanism protects supervisor programs

and data without segmenting the logical address space into supervisor and
user address spaces. The long formats of table descriptors and page de-
scriptors contain S bits to protect areas of memory from access by user
programs. When a table search for a user access encounters an S bit set in
any table or page descriptor, the table search is completed and an ATC
descriptor corresponding to the logical address is created with the B bit set.
The subsequent retry of the user access results in a bus error exception being
taken. The S bit can be used to protect the entire area of memory defined in
a branch of the translation tree or only one or more pages from user program
access.

9.5.5.4 WRITE PROTECT. The MC68030 provides write protection independently

9-48

of the segmented address spaces for programs and data. All table and page
descriptors contain WP bits to protect areas of memory from write accesses
of any kind. When a table search encounters a WP bit set in any table or
page descriptor, the table search is completed and an ATC descriptor cor-
responding to the logical address is created with the WP bit set. The sub-
sequent retry of the write access results in a bus error exception being taken.
The WP bit can be used to protect the entire area of memory defined in a
branch of the translation tree, or only one or more pages from write accesses.
Figure 9-33 shows a memory map of the logical address space organized to
use S and WP bits for protection. Figure 9-34 shows an example translation
tree for this technique.

A

MC68030 USER’'S MANUAL MOTOROLA

32

Figure 9-33. Example Logical Address Map with Shared Supervisor

SUPERVISOR
AND
USER SPACE

THIS AREA SUPERVISOR-ONLY,
READ-ONLY

THIS AREA SUPERVISOR-ONLY,
READ/WRITE

THIS AREA SUPERVISOR OR USER,

READ-ONLY

THIS AREA SUPERVISOR OR USER,

READ/WRITE

and User Address Spaces

MOTOROLA

MC68030 USER'S MANUAL

THIS BRANCH SUPERVISOR-ONLY
READ-ONLY

THIS BRANCH SUPERVISOR-ONLY

READ/WRITE
o
—— -
CPU ROOT —
POINTER S51, weel .
S=1, WP=0 :
. I
pr——
$=0, WP=1
S=0, WP=0 THIS BRANCH SUPERVISOR/USER
READ-ONLY
L | N
| —
TABLE INDEX AT THIS LEVEL USES n
i LOGICAL ADDRESS FIELO SPECIFIED .
i BY TIA FIELD OF TRANSLATION CONTROL .
o REGISTER ——
I
THIS BRANCH SUPERVISOR/USER
READ/WRITE

l

TABLE INDEX AT THIS LEVEL USES
LOGICAL ADDRESS FIELD SPECIFIED
BY TIB FIELD OF TRANSLATION CONTROL
REGISTER

Figure 9-34. Example Translation Tree Using S and WP Bits to Set Protection

/
9-50 MC68030 USER’'S MANUAL MOTOROLA

9.6 MC68030 AND MC68851 MMU DIFFERENCES

The MC68851 paged memory management unit provides memory manage-
ment for the MC68020 as a coprocessor. The on-chip MMU of the MC68030
provides many of the features of the MC68020/MC68851 combination. The
following functions of the MC68851 are not available in the MC68030 MMU:

® Access Levels

® Breakpoint Registers

-® Root Pointer Table

o Aliases for Tasks

o Lockable Entries in the ATC

® ATC Entries Defined as Shared Globally
In additioﬁ, the following features of the MC68030 MMU differ from the
MC68020/MC68851 pair:

® 22-Entry ATC

© Reduced Instruction Set

o Only Control-Alterable Addressing Modes Supported for MMU Instruc-

tions

In general, the MC68030 is program compatible with the MC68020/MC68851
combination. However, in a program for the MC68030, the following instruc-
tions must be avoided or emulated in the exception routine for F-line un-
implemented instructions: PVALID, PFLUSHR, PFLUSHS, PBcc, PDBcc, PScc,
PTRAPcc, PSAVE, PRESTORE, and PMOVE for unsupported registers (CAL,
VAL, SCC, BAD, BACx, DRP, and AC). Additionally, the effective addressing
modes supported on the MC68851 that are not emulated by the MC68030
must be simulated or avoided.

MOTOROLA MC68030 USER'S MANUAL 9-561

9.7 REGISTERS

The registers of the MMU described here are part of the supervisor pro-
gramming model for the MC68030.

" The six registers that control and provide status information for address

translation in the MC68030 are the CPU root pointer register (CRP), the su-
pervisor root pointer register (SRP), the translation control register (TC), two
independent transparent translation control registers (TTO and TT1), and the
MMU status register (MMUSR). These registers can be accessed directly by
programs that execute only at the supervisor level.

9.7.1 Root Pointer Registers

9-62

The supervisor root pointer (SRP), used for supervisor accesses only, is en-
abled or disabled in software. The CPU root pointer (CRP) corresponds to
the current translation table for user space (when the SRP is enabled) or for
both user and supervisor space (when the SRP is disabled). The CRP is a
64-bit register that contains the address and related status information of the
root of the translation table tree for the current task. When a new task begins
execution, the operating system typically writes a new root pointer descriptor
to the CRP. A new translation table address implies that the contents of the
address translation .cache (ATC) may no longer be valid. Therefore, the in-
struction that loads the CRP can optionally flush the ATC.

The SRP is a 64-bit register that optionally contains the address and related
status information of the root of the translation table for supervisor area
accesses. The SRP is used when operating at the supervisor privilege level
only when the supervisor root pointer enable bit (SRE) of the translation
control register (TC) is set. The instruction that loads the SRP can optionally
flush the ATC. The format of the CRP and SRP is shown in Flgure 9-35 and
defines the following fields:

Lower/Upper (L/U)
Specifies that the value contained in the limit field is to be used as the
unsigned lower limit of indexes into the translation tables when this bit is
set. When this bit is cleared, the limit field is the unsigned upper limit of
the translation table indexes.

MC68030 USER'S MANUAL MOTOROLA

Limit
Specifies a maximum or minimum value for the index to be used at the
next level of table search (the function code level cannot be limited). To
suppress the limit function, the L/U bit is cleared and the limit field is set
to ones ($7FFF in the word containing both fields), or the L/U bit is set and
the limit field is cleared {$8000 in that word).

Descriptor Type (DT)
Specifies the type of descriptor contained in either the root pointer or in
the first level of the translation table identified by the root pointer. The
values are:

$0 INVALID
This value is not allowed at the root pointer level. When a root pointer
register is loaded with an invalid root pointer descriptor, an MMU
configuration exception is taken.

$1 PAGE DESCRIPTOR

A translation table for this root pointer does not exist. The MC68030
internally calculates an ATC entry (page descriptor) for accesses using
this root pointer within the current page by adding (unsigned) the value
in the table address field to the incoming logical address. This resuits
in direct mapping with a constant offset (the table address). For this
case, the processor performs a limit check, regardless of the state of
the FCL bit in the TC register.

$2 VALID 4 BYTE
The translation table at the root of the translation tree contains short-
format descriptors. The MC68030 must scale the table index for this
level of the table search by 4 bytes to access the next descriptor.

$3 VALID 8 BYTE
The translation table at the root of the translation tree contains long-
format descriptors. The MC68030 must scale the table index for this
level of the table search by 8 bytes to access the next descriptor.

Table Address
Contains the physical base address (in bits 31-4) of the translation table
at the root pointer level. When the DT field contains $1, the value in the
table address field is the offset used to calculate the physical address for
the page descriptor. The table address field can contain zero (for zero
offset).

Unused

Bits 3-0 of the root pointer are not used and are ignored when written. All
other unused bits must always be zeros.

MOTOROLA MC68030 USER'S MANUAL 9-53

63 48

L/u umIT

gjojojfojojojocjofojojojojojoyg OT

TABLE ADDRESS (PA31-PA16)

TABLE ADDRESS (PA15-PA4) UNUSED

15 , 4 0

L/U — LOWER OR UPPER PAGE RANGE
DT — DESCRIPTOR TYPE
LIMIT — LIMIT ON TABLE INDEX FOR THIS TABLE ADDRESS
_ TABLE ADDRESS — ADDRESS OF TABLE AT NEXT LEVEL OR PAGE OFFSET IF DT =1

Figure 9-35. Root Pointer Register (CRP, SRP) Format

9.7.2 Translation Control Register

The translation control register (TC) is a 32-bit register that contains the
control fields for address translation. All unimplemented fields of this register
are read as zeros and must always be written as zeros.

Writing to this register optionally causes a flush of the entire ATC. When
written with the E bit (bit 31) set (translation enabled), a consistency check
is performed on the values of PS, IS, and Tlx as follows. The TIx fields are
added together until a zero field is reached, and this sum is added to PS and
IS. The total must be 32, or an MMU configuration exception (refer to 9.7.5.3
MMU CONFIGURATON EXCEPTION) is taken. If an MMU configuration ex-
ception occurs, the TC register is updated with the data, and the E bit is
cleared. The translation control register is shown in Figure 9-36.

3 25 24 20 16 .
E{o]Jo|o| oo |see|rcL PS 1S
TIA T8 T TiD
15 12 8 4 0
£ — ENABLE

SRE — SUPERVISOR ROOT POINTER ENABLE
FCL — FUNCTION CODE LOOKUP ENABLE
PS — PAGE SIZE

IS — INITIAL SHIFT

TIA, TIB, TIC, TID — TABLE INDICES

Figure 9-36. Translation Control Register {TC) Format

MC68030 USER'S MANUAL MOTOROLA

The fields of the TC register are:

Enable (E)

This bit enables and disables address translation:

0 — Translation disabled

1 — Translation enabled
A reset operation clears this bit. When translation is disabled, logical ad-
dresses are used as physical addresses. The MMU instructions (PTEST,
PLOAD, PMOVE, PFLUSH) can be executed successfully, regardless of the
state of the E bit. Additionally, even if the E bit is set, the TC register can
be updated with a value whose E bit is set. The state of the E bit does not
affect the use of the transparent translation registers.

Supervisor Root Pointer Enable {SRE)
This bit controls the use of the supervisor root pointer register (SRP):
0 — SRP disabled
1 — SRP enabled
When the SRP is disabled, both user and supervisor accesses use the
translation table defined by the CRP. When the SRP is enabled, user ac-
cesses use the CRP, and supervisor accesses use the SRP.

Function Code Lookup (FCL)

This bit enables the use of function code lookup for searching the address
translation tables:

0 — Function code lookup disabled

1 — Function code lookup enabled
When function code lookup is disabled, the first level of pointer tables
within the translation table structure is indexed by the logical address field
defined by TIA. When function code lookup is enabled, the first table of
the translation table structure is indexed by function code. In this case, the
limit field of CRP or SRP is ignored.

MOTOROLA MC68030 USER'S MANUAL 9-565

9-56

Page Size (PS)

This 4-bit field specifies the system page size:

1000 — 256 bytes

1001 — 512 bytes

1010 — 1K bytes

1011 — 2K bytes

1100 — 4K bytes

1101 — 8K bytes

1110 — 16K bytes

1111 — 32K bytes
All other bit combinations are reserved by Motorola for future use; an
attempt to load other values into this field of the TC register causes an
MMU configuration exception.

Initial Shift (IS) :

This 4-bit field contains the number of high-order bits of the logical address
that are ignored during table search operations. The field contains an in-
teger, 0-15, which sets the effective size of the logical address to 32-17
bits, respectively. Since all 32 bits of the address are compared during
address translation, bits ignored due to initial shift cannot have random
values. They must be specified and be consistent with the translation table
values in order to ensure that subsequent address translations match the
corresponding entries in the ATC.

Table Index (TIA, TIB, TIC, and TID)

These 4-bit fields specify the numbers of logical address bits used as the
indexes for the four possible levels of the translation tables (not including
the optional level indexed by the function codes). The index into the highest
level table (following the function code, when used) is specified by TIA,
and the lowest level, by TID. The fields contain integers, 0-15. When a zero
value in a Tlx field is encountered during a table search operation, the
search is over unless the indexed descriptor is a table (indirect) descriptor.

MC68030 USER'S MANUAL MOTOROLA

9.7.3 Transparent Translation Registers

The transparent translation registers (TT0 and TT1) are 32-bit registers that
define blocks of logical address space that are transparently translated. Log-
ical addresses in a transparently translated block are used as physical ad-
dresses, without modification and without protection checking. The minimum
size block that can be defined by either TTx register is 16 Mbytes of logical
address space. The two TTx registers can specify blocks that overlap. The
TTx registers operate independently of the E bit in the TC register and the
state of the MMUDIS signal. A transparent translation register is shown in
Figure 9-37.

3 24 23 16

LOGICAL ADDRESS BASE LOGICAL ADDRESS MASK

EJOj0]o0|oO]|C [R/WRWM 0 FC BASE 0 FC MASK

15 8 17 0

LOGICAL ADDRESS BASE — VALUE OF A31-A24 THAT DEFINES TRANSPARENT BLOCK
LOGICAL ADDRESS MASK — BITS A31-A24 TO BE IGNORED

E — ENABLE

Cl — CACHE INHIBIT

R/W — READ/WRITE

RWM -— READ WRITE MASK

FC BASE — FUNCTION CODE VALUE FOR TRANSPARENT BLOCK
FC MASK — FUNCTION CODE BITS TO BE IGNORED

Figure 9-37. Transparent Translation Register (TTO and TT1) Format

The fields of the transparent translation register are:

Enable (E)
This bit enables transparent translation of the block defined by this register:
0 — Transparent translation disabled
1 — Transparent translation enabled
A reset operation clears this bit.

MOTOROLA MC68030 USER'S MANUAL 9-57

9-58

Cache Inhibit (Cl)

This bit inhibits caching for the transparent block:

0 — Caching allowed
1 — Caching inhibited
When this bit is set, the contents of a matching address are not stored in
the internal instruction or data cache. Additionally, the cache inhibit out
signal (CIOUT) is asserted when this bit is set, and a matching address is
accessed, signaling external caches to inhibit caching for those accesses.

Read/Write (R/W)
This bit defines the type of access that is transparently translated (for a
matching address):
0 — Write accesses transparent
1 — Read accesses transparent

Read/Write Mask {(RWM)

This bit masks the R/W field:

0 — R/W field used

1 — R/W field ignored
When RWM is set to one, both read and write accesses of a matching
address are transparently translated. For transparent translation of read-
modify-write cycles with matching addresses, RWM must be set to one. If
the RWM bit equals zero, neither the read nor the write of any read-modify-
write cycle is transparently translated with the TTx register.

Function Code Base (FC BASE)
This 3-bit field defines the base function code for accesses to be trans-
parently translated with this register. Addresses with function codes that
match the FC BASE field (and are otherwise eligible) are transparently
translated.

Function Code Mask (FC MASK) ‘
This 3-bit field contains a mask for the FC BASE field. Setting a bit in this
field causes the corresponding bit of the FC BASE field to be ignored.

LOGICAL ADDRESS BASE
This 8-bit field is compared with address bits A31-A24. Addresses that
match in this comparison {and are otherwise eligible) are transparently
translated.

MC68030 USER'S MANUAL MOTOROLA

LOGICAL ADDRESS MASK

This 8-bit field contains a mask for the LOGICAL ADDRESS BASE field.
Setting a bit in this field causes the corresponding bit of the LOGICAL
ADDRESS BASE field to be ignored. Blocks of memory larger than 16
Mbytes can be transparently translated by setting some of the logical ad-
dress mask bits to ones. Normally, the low-order bits of this field are set
to define contiguous blocks larger than 16 Mbytes, although this is not
required.

9.7.4 MMU St_atus Register

The MMU status register (MMUSR) is a 16-bit register that contains the status
information returned by execution of the PTEST instruction. The PTEST in-
struction searches either the ATC (PTEST with level 0) or the translation tables
(PTEST with levels of 1-7) to determine status information about the trans-
fation of a specified logical address. The MMUSR is shown in Figure 9-38.

1B 14 13 12 11 10 9 8 7 6 . 3 0
BlL|S|]o|w]i|mM]JoJo]jT]O]O]O N

8 — BUS ERROR { — INVALID

L — LIMIT VICLATION M — MODIFIED

S — SUPERVISOR-ONLY T —— TRANSPARENT ACCESS

W — WRITE-PROTECTED N — NUMBER OF LEVELS

Figure 9-38. MMU Status Register (MMUSR) Format

MOTOROLA MC68030 USER'S MANUAL © 969

9-60

The bits in the MMUSR have different meanmgs for the two kinds of PTEST
instructions, as shown in.Table 9-3.

Table 9-3. MMUSR Bit Definitions

MMUSR Bit

PTEST, Level 0

PTEST, Level 1-7

Bus Error (B}

This bit is set if the bus error bit
is set in the ATC entry for the
specified logical address.

This bit is set if a bus error is encountered
during the table search for the PTEST instruc-
tion.

Limit (L)

This bit is cleared.

This bitis set if an index exceeds a limit during
the table search.

Supervisor Violation
(S)

This bit is cleared.

- Ithe PTEST instruction is not equal to one. The

This bit is set if the S bit of a long (S) format
table descriptor or long format page descrip-
tor encountered during the search is set, and
the FC2 bit of the function code specified by

S-bit is undefined if the | bit is set.

Write Protected (W)

This bit is set if the WP bit of
the ATC entry is set. It is un-
defined if the | bit is set.

This bitis setif a descriptor or page descriptor
is encountered with the WP bit set during the
table search. The W bit is undefined if the |
bit is set.

Invalid (1)

This bit indicates an invalid
translation. The | bit is set if the
translation for the specified
logical address is not resident
in the ATC or if the B bit of the
corresponding ATC entry is set.

This bit indicates an invalid translation. The |
bit is set if the DT field of a table or a page
descriptor encountered during the serach is
set to invalid or if either the B or L bits of the
MMUSR are set during the table search.

Modified (M)

This bit is set if the ATC entry
corresponding to the specified
address has the modified bit set.
It is undefined if the | bit is set.

This bit is set if the page descriptor for the
specified address has the modified bit set. It
is undefined if | is set.

Transparent (T)

This bit is set if a match oc-
curred in either {or both) of the
transparent translation regis-
ters (TTO or TT1). If the T bit is
set, all remaining MMUSR bits
are undefined.

This bit is set to zero.

Number of Levels (N)

This 3-bit field is cleared to zero.

This 3-bit field contains the actual number of

tables accessed during the search.

MC68030 USER'S MANUAL

MOTOROLA

9.7.5 Register Programming Considerations

If the entries in the address translation cache (ATC) are no longer valid when
a reset operation occurs, an explicit flush operation must be specified by the
software. The assertion of RESET disables translations by clearing the E bits
of the TC and TTx registers, but it does not flush the ATC. Flushing of the
ATC is optional under control of the FD bit of the PMOVE instruction that
loads a new value into the SRP, CRP, TTO, TT1, or TC register.

The programmer of the MMU must be aware of effects resulting from loading
certain registers. A subsequent section describes these effects. The MMUSR
values lend themselves to the use of a case structure for branching to ap-
propriate routines in a bus error handler. An example of a flowchart that
implements this technique is shown in another section. A third section de-
scribes the conditions that result in MMU exceptions.

9.7.5.1 REGISTER SIDE EFFECTS. The PMOVE instruction is used to load or read
any of the MMU registers (CRP, SRP, TC, MMUSR, TT0, and TT1). Since
loading the root pointers, the translation control register, or the transparent
translation registers with new values can cause some or all of the address
translations to change, it may be desired to flush the ATC of its contents any
time these registers are written. The opcodes of the PMOVE instructions that
write to CRP, SRP, TC, TT0, and TT1 contain a flush disable (FD) bit that
optionally flushes the ATC when these instructions are executed. If the FD
bit equals one, the ATC is not flushed when the instruction is executed. If
the FD bit equals zero, the ATC is flushed during the execution of the PMOVE
instruction.

9.7.5.2 MMU STATUS REGISTER DECODING. The seven status bits in the MMU
status register (MMUSR) indicate conditions to which the operating system
should respond. In a typical bus error handler routine, the flows shown in
Figures 9-39 and 9-40 can be used to determine the cause of an MMU fault.
The PTEST instructions set the bits in the MMUSR appropriately, and the
program can branch to the appropriate code segment for the condition. Figure
9-39 shows the flow for a PTEST instruction for the ATC (level 0), and Figure
9-40 shows the flow for a PTEST instruction that accesses an address trans-
lation tree (levels 1-7).

MOTOROLA MIC68030 USER'S MANUAL 9-61

PTEST <fc>, <ea>, 0

T=1
NOT MMU 1=1 l\
B=1 \|
/ © NDATCENTRY

LIMIT VIOLATION
OR WRITE PROTECT VIDLATION
OR INVALID DESCRIPTOR
OR BUS ERROR ON TABLE ACCESS

OTHERWISE

WRITE OR RMW
CYCLE INDICATED IN M=1 M=0

STACK FRAME I/
BRANCH TO WRITE MODIFIED PAGE NOT MMU
VIOLATION CODE |

EXECUTE PTEST
LEVEL 7

NOT MMU

Figure 9-39. MMU Status Interpretation PTEST Level 0

9.7.5.3 MMU CONFIGURATION EXCEPTION. The exception vector table in the

9-62

MC68030 assigns a vector for an MMU configuration error exception. The
configuration exception occurs as the result of loading invalid data into the
TC, SRP, or CRP register.

When the TC register is loaded with the E bit set, the MMU performs a
consistency check of the values in all the four bit fields. The values in the Tlx
fields are added until the first zero is encountered. The values in the PS and
IS fields are added to the sum of the Tix fields. If the sum is not equal to 32,
the PMOVE instruction causes an MMU configuration exception. The instruc-
tion also causes a configuration exception when a reserved value ($0-$7) is
placed in the PS field of the TC register.

A PMOVE instruction that loads either the CRP or the SRP causes an MMU
configuration exception if the new value of the DT field is zero (invalid). In
this case, the register is loaded with the new value before the exception is
taken.

MC68030 USER'S MANUAL MOTOROLA

PTEST <fc>, <ea>, 7

~
B=1 B=0
BRANCH T0 BUS ERROR BRANCH TO PAGE FAULT OR O
DURING TABLE SEARCH CODE INVALID DESCRIPTOR CODE _ -
WP=1 WP=0
’/&omzmsa
WRITE OR RMW .
CYCLE INDICATED IN M=1 M=0
STACK FRAME |/
T MODIFIED PAGE _—
VIOLATION CODE |
NOT MMU

Figure 9-40. MMU Status Interpretation PTEST Level 7.

9.8 MMU INSTRUCTIONS

The MC68030 instruction set includes four privileged instructions that per-

form MMU operations. A brief description of each of these instructions fol-
lows. '

The PMOVE instruction transfers data between a CPU register or memory
location and any one of the six MMU registers. The operating system uses
the PMOVE instruction to control and monitor MMU operation by manipu-
lating and reading these registers. Optionally, a PMOVE instruction flushes
the ATC when it loads a value into the TC, SRP, CRP, TTO, or TT1 register.

MOTOROLA MC68030 USER'S MANUAL 9-63

9-64

The PFLUSH instruction flushes (invalidates) address translation descriptors
in the ATC. PFLUSHA, a version of the PFLUSH instruction, flushes all entries.
The PFLUSH instruction flushes all entries with a specified function code or
the entry with a specified function code and logical address.

The PLOAD instruction performs a table search operation for a specified
function code and logical address and then loads the translation for the
address into the ATC. The operating system can use this instruction to ini-
tialize the ATC to minimize table searching during program execution. Any
existing entry in the ATC that translates the specified address is flushed. The
preload can be executed for either read or write attributes. If the write attribute
is selected (PLOADW), the MC68030 performs the table search and updates
all history information in the translation tables (used and modified bits) as
if a write operation to that address had occurred. Similarly, if the read attribute
is selected (PLOADR), the history information in the translation table (used
bit) is updated as if a read operation had occurred. The PLOAD instruction
does not alter the MMUSR. '

The PTEST instruction either searches the ATC or performs a table search
operation for a specified function code and logical address, and sets the
appropriate bits in the MMUSR to indicate conditions encountered during
the search. The physical address of the last descriptor fetched can be returned
in an address register. The exception routines of the operating system can
use this instruction to identify MMU faults. The PTEST instruction does not
alter the ATC.

This instruction is primarily used in bus error handling routines. For example,
if a bus error has occurred, the handler can execute an instruction such as:
PTESTW #1,([A7, offset]),#7,A0
This instruction requests that the MC68030 search the translation tables for
an address in user data space (#1) and examine protection information. This
particular logical address is obtained from the exception stack frame ([A7,
offset]). The MC68030 is instructed to search to the bottom of the table (#7
— there cannot be more than six levels) and return the physical address of
the last table entry used in register AQ. After executing this instruction, the
handler can examine the MMUSR for the source of the fault and use A0 to
access the last descriptor. Note that the PTESTR and PTESTW instructions
have identical results except for PTESTO when either TTx register matches

the logical address and the R/W bit of that register is not masked.

The MMU instructions use the same opcodes and coprocessor identification

(CplID) as the corresponding instructions of the MC68851. All F-line instruc-
tions with CpID=0 (including MC68851 instructions) that the MC68030 does

MC68030 USER'S MANUAL MOTOROLA

not support automatically cause F-line unimplemented instruction exceptions
when their execution is attempted in the supervise mode. If execution of a
unimplemented F-line instruction with CplD =0 is attempted in the user mode,
the MC68030 takes a privilege violation exception. F-line instructions with a
CplID other than zero are executed as coprocessor instructions by the MC68030.

9.9 DEFINING AND USING PAGE TABLES IN AN OPERATING SYSTEM

Many factors must be considered when determining how to use the MMU
in an operating system. The MC68030 provides the flexibility required to
optimize an operating system for many system implementations. The ex-
ample operating system described in the next section presents one approach
to operating system design, with many of the tradeoffs discussed.

9.9.1 Root Pointer Registers

~ An operating system can use the CPU root pointer (CRP) register alone or
both the CRP and the supervisor root pointer (SRP) registers to point to the
top level address translation table(s). The choice depends on the complexity
of the memory layout for the system. When only the CRP is used, it must
point to a translation table that maps all supervisor and user references.
However, the supervisor and user translation tables can be separate even
when only the CRP register is used. When the index to the top level translation
table is the function code value {FCL in TC register is set), supervisor and
user tables are separate at all lower levels. With proper structuring of the
address tables, both methods can provide the same functionality, but each
has its advantages.

1

When the translation tables use the CRP and function code lookup, supervisor
and user accesses are separate, and each task can have different supervisor
and user mappings. Alternatively, the entries in the function code tables that
correspond to the supervisor spaces for each task can all point to the same
tables to provide a common mapping for all supervisor references.

When the mapping of the supervisor address space is identical for all tasks,
the SRP can be used in conjunction with the CRP to provide a more simple
and efficient way to define the mapping. This technique suppresses the use
of the function code (unless the program and data spaces require distinct
mappings) and separates supervisor and user accesses at the root pointer
level of the translation tables. A single translation table maps all supervisor

MOTOROLA MC68030 USER’'S MANUAL 9-65

accesses without maintaining a large nhumber of supervisor pointers in the
translation tables for each task, resulting in reduced bus activity for table
searches.

9.9.2 Task Memory Map Definition

9-66

The MC68030 provides several different means by which the supervisor can
access the user address spaces. The supervisor can access any user address,
regardless of how the virtual space is partitioned, with the MOVES (move

. space) instruction. Some systems provide a complete 4-Gbyte virtual memory

map for each task. Indeed, an operating system that runs other operating

- systems in a virtual machine environment must provide a complete map to

accurately emulate the full addressing range for the subordinate operating
system.

With the large address space of the MC68030, each individual user task or
all user tasks can share the address space with the operating system. One
method of performing this function is implemented in the example operating
system in the next section. Sharing the address space provides direct access
to user data items by the operating system. Another advantage of this map-
ping method is that tasks can easily share code. Common routines such as
file I/0 handlers and arithmetic conversion packages can be written re-entrantly
and be restricted to read-only access from all user tasks in the system.

The simplest example of a shared virtual address space system is one in
which each user and supervisor process is given a unique virtual address
range within the single 4-Gbyte virtual address space. In other words, the
system has only one linear virtual address space; all processes run some-
where in that space. Only one translation table tree is required for the entire
system, but each task can have individual tables if desired. With the common
tree approach, the operating system can access any item of any task without
modifying the root pointer. Otherwise, only the currently active task is im-
mediately accessible, which often is adequate. To switch tasks, the operating
system only has to update the user program and user data pointers in the
highest level translation table indexed by the function code. This gives each
task access to its own data only. This scheme has the advantages of simple
table management and easy sharing of common items by giving them the
same virtual address for all tasks in the system. This scheme might be ideal
for real-time systems that do not require more complexity in memory man-
agement facilities.

‘MC68030 USER'S MANUAL MOTOROLA

The next logical step toward increased operating system complexity, with
shared user and supervisor virtual memory maps, is to keep the supervisor
addresses separate but to give each user task its own use of the remainder
of the virtual space. For example, each user task could have the virtual mem-
ory space from zero to 512 Mbytes; the operating system programs and data
would occupy the remainder of the space, from 512 Mbytes up to 4 Gbytes.
Each user task has its own set of translation tables. The supervisor root
pointer may or may not be used, depending on whether the user tables also
map the supervisor space. As in the preceding method, the user cannot access
the operating system portion of the address space unless the operating sys-
tem allows it or wishes to share common routines. The advantages of this
scheme are that it provides a much larger virtual address space for each user
task and it avoids virtual memory fragmentation problems. Disadvantages
of this scheme include the requirement for slightly more complex table man-
agement and the restriction of operating system access to only the current
user task.

There are few absolute rules in the use of the MC68030 MMU. In general,
the statement regarding restricting operating system access to only one user
task using the scheme described in the preceding paragraph holds true.
However, by using the entire 4-Gbyte virtual address space and cross map-
ping the address space, the supervisor can access each user task space as
a distinct portion of its own supervisor map. If each user task is limited to a
16-Mbyte virtual address space and the supervisor only requires a 16-Mbyte
address space, 256 such address spaces can be mapped simultaneously. The
supervisor translation tables can include each of these spaces, and the su-
pervisor can access each task using indexed addressing with a register that
contains the proper constant for a particular task. This constant provides a
supervisor-to-user virtual address conversion. A systems programmer can
implement some very sophisticated functions that exploit the flexibility of
the MMU. :

The most complex systems and those that implement virtual machine ca-
pability completely separate the virtual address spaces of the supervisor and
all user tasks, or possibly even those of individual supervisor tasks. Each
user or supervisor task has its own virtual memory space starting at zero
and extending to 4 Gbytes. Using the function code, a 4-Gbyte address space
for the program and another for its data can be provided for each task. Both
the SRP and the CRP are probably used, since nothing is common among
the various spaces. The operating system uses the MOVES instruction to
interact with the user space. The advantages of this implementation are the
maximum availability of the virtual space and a complete logical separation

MOTOROLA MC68030 USER'S MANUAL 967

of addresses. Virtual machine implementations require maximum availability
of virtual space. The disadvantages are the more complex table management
and the more restrictive accesses to other address spaces.

9.9.3 Impact of MIMU Features on Table Definition

The features of the MMU that impact table definition are usually considered
after deciding how to map memory for the tasks. For some systems, these
features can affect the mapping decision and should be considered when
making that decision.

9. 9 3.1 NUMBER OF TABLE LEVELS. The MMU supports from zero to five levels

9-68

{six levels with the use of indirection) in the address translation tables. The
zero-level case is early termination at the root pointer. This provides a limit
check on the range of physical addresses for the system. It is used primarily
in systems that require the limit check on physical addresses.

Systems that support large page sizes or that require only limited amounts
of virtual memory space can use single-level tables. A single-level translation
tree with 32K-byte pages may be the best choice for systems that are primarily
numerically intensive (i.e., the system is involved in arithmetic manipulations
rather than data movement) where the overhead of virtual page faults and
paging /O must be minimized. This type of system can map a 16-Mbyte
address space with only 2K bytes of page table space. With this much mapped
address space, table search time becomes insignificant.

At another extreme is a single-user business system that only needs a
2-Mbyte virtual address space. A 512-byte page size might be best for this
system, because the block size formats of many Winchester hard disk file
systems is 512 bytes. A page table that completely maps the 2-Mbyte space
requires only 16K bytes of memory, and the ATC entries directly map 11K
bytes of virtual space at any one time. The page tables for this system and
the one described in the preceding paragraph are small enough to be per-
manently allocated in the operating system data area. They incur virtually
no management or swapping overhead.

A two-level address translation table provides a lower page level similar to
the page tables in the two preceding paragraphs and additional direction at
a higher level. For example, in a system using 32K-byte pages and 512-entry
page tables, the upper level translation table contains 256 entries of short-
format descriptors, requiring 1K bytes for the table. Each of the upper table

MC68030 USER'S MANUAL MOTOROLA

entries maps a 16-Mbyte region of the virtual address space. The primary
advantage of a two-level table for large ‘number-crunching” system is the
operating system designer’s ability to make a tradeoff between page size
and table size. The system designer may choose a smaller page size to fit
the block sizes on available I/O devices, yet keep the tables manageable.

- However, the designer must also consider the performance penalty associ-
ated with smaller page sizes. Systems with smaller page sizes have a higher
frequency of page faults requiring more table search time and paging I/0.
With the flexibility of the MC68030 MMU, the designer. has enough choices
to optimize table structure design and page size.

Three-level translation tables are useful when the operating system makes
heavy use of shared memory spaces and/or shared page tables. Sophisticated
systems often share translation tables or program and data areas defined at
the page table level. When a table entry can point to a translation table also
used by a different task, sharing memory areas becomes efficient. The direct
access to user address space by the supervisor is an example of sharing
memory.

Some artificial intelligence systems require very large virtual address spaces
with only small fragments of memory allocated among these widely differing
addresses. This fragmentation is due to the complex and recursive actions
the system performs on lists of data. These actions require the system to
constantly allocate and free sophisticated pointers and linked lists in the
memory map. The fragmentation suggests a small page size to utilize mem- n
ory most efficiently. However, small pages in a large virtual memory map
require relatively large translation tables. For example, to map 4 Gbytes of
virtual address space with 256-byte pages, the page tables alone require 64
Mbytes. With a three- or four-level table structure, the number of actual
translation table entries can be drastically reduced. The designer can use
invalid descriptors to represent blocks of unused addresses and the limit
fields in valid descriptors to minimize the sizes of pointer and page tables.
In addition, paging of the address tables themselves reduces memory re-
quirements. '

9.9.3.2 INITIAL SHIFT COUNT. The initial shift field (IS) of the translation control
register (TC) can decrease the size of translation tables. When the required
virtual address space can be addressed with fewer than 32 bits, the IS field
reduces the size of the virtual address space by discarding the appropriate
number of the most significant logical address bits. This technique inhibits

MOTOROLA MC68030 USER'S MANUAL 9-69

the system'’s ability to detect very large illegal (i.e., out-of-bounds) addresses.
Using the full 32-bit address and reducing the table size with invalid descrip-
tors and limited pointer and page table sizes prevents this problem."

9.9.3.3 LIMIT FIELDS Except for a table indexed by function code, every pointer

and page table can have a defined limit on its size. Defining limits provides
flexibility in the operating system and saves memory in the translation tables.
The limit field of a table descriptor limits the size of the table to which it
points. The limit can be either an upper or a lower limit, using either the
lower or higher addresses within the range of the table. Since a task seldom
requires the maximum number of possible virtual pages, this reduction in

" table size is practical.

For example, when an operating system uses 4K-byte pages and runs nu-
merous small tasks that average 80K bytes each in size, each task requires
a 20-entry page table. The system can limit the size of each table to 80 bytes,
or 800 bytes for ten tasks. Without the limit, an operating system running
ten of these tasks would require 40K bytes of space for the page tables alone
(one table per page).

‘Memory savings required for translation tables is especially significant for

artificial intelligence systems these systems tend to require very large mem-
ory maps. By using limit fields, each table is only as large as the number of
active entries within it. This limit can change as the table grows. For higher
level tables, each table only grows as the additional entries require. The use
of three or four levels of tables facilitates the management of these tables.

9.9.3.4 EARLY TERMINATION PAGE DESCRIPTORS. A page descriptor residing

9-70

in a pointer table is an early termination page descriptor mapping an entire
block of pages. That is, it maps a contiguous range of virtual addresses to a
contiguous range of physical addresses. For example, an operating system
could reserve a 32K-byte area for special supervisor I/0 peripheral devices.
This area can be mapped with a single early termination descriptor to save
translation table size and table search overhead. The descriptor can use the
limit field to reduce the size of the contiguous block when the block size is
smaller than the virtual address space that the particular descriptor repre-
sents. The MC68030 creates multiple ATC entries (one for each page) for the
range of virtual addresses represented by the early termination descriptor
as the pages are accessed.

MC68030 USER'S MANUAL MOTOROLA

An operating system can use an early termination page descriptor to map a
contiguous block of memory for each task (both program and data). The tasks
can be relocated by changing the physical address portion of the descriptor.
This scheme is useful when the tasks in a system consist of one or a few
sequential blocks of memory that can be swapped as a group. The operating
system memory map can treat the entire address space within these blocks
as a uniform virtual space available for all tasks. The system only requires
one translation table; by the use of limit fields and early termination page
descriptors, it maps complete segments of memory.

9.9.3.5 INDIRECT DESCRIPTORS. An indirect descriptor is a table descriptor re-
siding in a page table. It points to another page descriptor in the translation
tree. Using an indirect descriptor for a page makes the page common to
several tasks. History information for a common page is maintained in only
one descriptor. Access to the page sets the used (U) bit, and a write operation
tothe page sets the M (modified) bit for that page. When the operating system
is searching for an available page, it simply checks the page table containing
the descriptor for the common page to determine its status. With other meth-
ods of page sharing, the system would have to check page tables for all
sharing tasks to determine the status of the common page.

9.9.3.6 USING UNUSED DESCRIPTOR BITS. In general, the bits in the unused
fields of many types of descriptors are available to the operating system for
its own purposes. The invalid descriptor, in particular, uses only two bits of
the 32 (short) or 64 (long) bits available with that format. An operating system
typically uses these fields for the software flags, indicating whether the virtual
address space is allocated and whether an image resides on the paging
device. Also, these fields often contain the physical address of the image.

The operating system often maintains information in an unused field about
a page resident in memory. This information may be an aging counter or
some other indication of the page’s frequency of use. This information helps
the operating system to identify the pages that are least likely to impact
system performance if they are reallocated. The system should first use
physical page frames that are not allocated to a virtual page. Next it should
use pages with the longest time since the most recent access. Pages that do
not have the M (modified) bit set should be taken first, since they do not
need to be copied to the paging device (the existing image remains valid).

MOTOROLA MC68030 USER'S MANUAL 9-71

An aging counter can be set up in an unused field of a page descriptor. The
system can periodically check the U (used) bit for the page and increment
the count when the page has not been used since the previous check. The
system can identify the least recently used page from the counts in the aging
counter. When the counter for a page overflows, the system can list the page
in a queue of least recently used pages from which it chooses the next page
to be reallocated.

Many schemes afford the operating system designer a variety in selecting a
page to be taken. One operating system scans page tables, starting at the
lowest priority task, looking for aged pages to steal. Another system main-
tains a system-wide list of all page frames as they are used and scans the
list, starting at the oldest, to find a page to steal. A sophisticated system
keeps a working set model of active pages for each individual task. From this
information, it can swap a complete block of pages in and out with a single
I/0 operation. The method chosen can have a dramatic impact on limiting
page fault overhead in a heavily used system.

9.10 AN EXAMPLE OF PAGING IMPLEMENTATION IN AN

OPERATING SYSTEM

This section describes an example operating system design that illustrates
some of the MMU features. The description suggests alternatives to provide
variations of the design. Memory management algorithms that can be im-
plemented to derive the actual code are shown. A bus error handler routine
is shown also. Implementing the algorithms develops the basic code for the
memory management services of an operating system.

9.10.1 System Description

9-72

The example system has the ability to map a large virtual memory task space,

“which is required for execution of predominantly numerically intensive pro-

cessing tasks. Most of these tasks do not need more than 16 Mbytes of
memory, but the system can supply a larger virtual memory space (as large
as 496 Mbytes) to the occasional task that requires more. The system uses
the relatively large page size of 8K bytes to minimize thrashing and translation
table searches. With a larger page size, fewer descriptors can map a large
area of virtual memory. Also, in a given period of time, the MC68030 expe-
riences fewer ATC misses and performs fewer table searches. The larger
page size requires the paging 1/0 operations to transfer larger blocks of data,
and sometimes only a small part of the page is actually used. However,
preliminary software model simulations show that 8K-byte pages provide
optimum performance for this type of processing.

MC68030 USER'S MANUAL MOTOROLA

The average task for this system is a compiler or text editor that requires
only 192K bytes of memory, or 24 8K-byte pages. Using short page descrip-
tors, the page table occupies 96 bytes.

Page tables can reside at any 16-byte boundary; the limit fields of the MMU
can provide the area needed without requiring excess space. This results in
an address table area small enough to be completely resident in physical
memory. The operating system does not need to page the tfzble areas.

The paging hardware of many computer systems requires lower level tables
to reside at page boundaries, effectively using one or more entire pages.
This requires 80K bytes for the page tables for 10 tasks (10 tables, one 8K-
byte page per table). Then, when the memory required for an upper level of
tables is added, at a minimum of 8K bytes per task, the total comes to over
160K bytes. Table base addresses in the MC68030 are zero modulo 16 ad-
dresses. This results in a dramatic savings of memory for address table space;
instead of using 80K bytes for the page tables for 10 tasks, (10 tables, one
8K-byte page per table), the MC68030 needs 960 bytes. Instead of 8K bytes
per task for the upper level of tables, the tables require 2560 bytes in the
MC68030. The fragmentation that may occur in allocating smaller tables could
increase the memory requirement but would still remain less than 160K bytes.

The translation table tree for the example system consists of two levels. The
upper level is a fixed table that contains 32 entries, each of which is a long-
format table descriptor that points to a lower level page table. Each page
table maps as many as 16 Mbytes of virtual address space. Since the upper
level table is small (256 bytes), it can easily fit in the main control block of
the task. When the system dispatches a new task, it loads a pointer to the
upper level table for the task into the CRP register. Each lower level table
consists of 0-2048 short-format page descriptors. The limit entry in the table
descriptor for a page table determines the size of the table. For the average
192K-byte task, the upper level table usually has one valid entry, and this
entry points to a lower level table with an average size of 96 bytes. A task
that requires more than 16 Mbytes uses more than one valid entry in the
higher level table.

MOTOROLA MC68030 USER'S MANUAL 9-73

9-74

in a typical computer system, with 64K bytes of boot and diagnostics ROM,
a 64K /0 area, and 1 Mbyte of RAM, the physical mapping appears as follows:

LOW MEMORY

BOOT AND DIAGNOSTICS ROM

64K

il .
UNMAPPED

HARDWARE I/0

M
SYSTEM RAM

M

The operating system must control memory allocation for physical- memory
(page frames) to hold the pages of virtual memory. All available physical
memory is divided into page frames, each of which can hold a page of virtual
memory. A system with 4 Mbytes of actual memory is divided into 512
8K-byte frames that can theoretically hold 512 pages of active virtual memory
at any one time. Usually, operating system components (exception handlers,
the kernel, private memory pool) permanently reside in some of the memory.
Only the remaining page frames are available for virtual memory pages.

The operating system maintains a linked list of all unallocated page frames.
One simple way to do this is for each unallocated frame to contain a pointer
to the next frame. The operating system takes the first page frame on the
list when a frame is required. An operating system primitive called GetFrame
performs this function and returns the physical address of an available frame.
When all frames are allocated, GetFrame steals a frame from another task.
GetFrame first looks for an unmodified frame to steal. An unmodified frame
could be stolen without waiting for the page to be copied back to the external
storage. device that stores virtual page images. (This device is called the
paging device or the backing store.) If no unmodified page frame is available,
GetFrame must wait while the system copies a modified page to the paging
device, then steals the page frame and returns to the caller with the physical
address.

Next, the operating system needs physical memory management routines

to allocate and free supervisor work memory. The routine must allocate
pieces of memory on boundaries of at least modulo 16, the requirement for

MC68030 USER'S MANUAL MOTOROLA

address translation tables. Typically, this type of routine allocates pieces of
certain sizes. GetReal is the allocation routine; ReturnReal is the return rou-
tine: They use physical addresses.

With physical memory allocation provided for, the operating system must
be able to manage virtual memory for all tasks. To do this, the system must
be aware of the virtual memory map. It must know the total amount of virtual
memory space, how much is allocated, and which areas are available to be
assigned to tasks. The virtual memory map looks like this:

LOW MEMORY
0
0 KERNEL
™
HARDWARE 1/0
™M
DIRECT MAPPED
(LOGICAL = PHYSICAL)
M
L]
UNUSED
L]
16M
USER PROGRAM/DATA/STACK
(496M)
528M

Virtual addresses for this virtual memory are subdivided:

31 0
XXX U uuuu 111 LT Illo 0000 0000 0000

x — Ignored (3 bits)
u — Upper level index (5 bits), maps 32 long-table entries
| — Lower level index (11 bits), maps 2048 short-page entries

MOTOROLA MC68030 USER'S MANUAL 9-75

9-76

The translation table structure consists of:
CRP» upper level table in the task control block, which contains 32 long
pointers: :
[0] » lower level table common to all tasks; maps all operating system
areas (first 4 Mbytes of virtual space). This common table contains
512 short-page entries (2K bytes).
[1] & lower level table for first 16 Mbytes of user program/data/stack area.

[31]» lower level table for last 16 Mbytes (of 496 total) of user program/
data/stack area.

The user program can only access virtual addresses starting at 16 Mbytes
and extending upward to the limit of 512 Mbytes. The code, the data, and
the stacks for user tasks are allocated in this area of virtual memory. Super-
visor programs can access the entire virtual map; they can access addresses
that directly access the I/O ports as well as the entire physical memory at
untranslated addresses. The address tables are set up so that virtual ad-
dresses are equal to the physical addresses for the supervisor between 1 and
3 Mbytes. Folding the physical address space into the virtual space greatly
simplifies operations that use physical addresses. The folding does not nec-
essarily mean that the virtual addresses are the same as the physical ad-
dresses. For example, the boot/diagnostic ROM at physical address zero could
be assigned a virtual address of 3 Mbytes. However, any external bus masters
or circuitry (such as breakpoint registers) resident on the physical side of the
bus must have physical addresses. This requires the overhead of operating
system code to perform address translation.

This virtual memory map provides supervisor addresses that are unique with
respect to user addresses; all supervisor routines can directly access any

- user area without being restricted to certain instructions or addressing modes.

The separate user and supervisor maps suggest that two root pointers should
be used, one for the supervisor map and one for the user map. However,
the supervisor must be able to access user translation tables for proper access
to user data items. With separate root pointers, the supervisor table structure
must be linked to that of the user. To do this requires an additional level of
table lookup (function code level) for the supervisor address table.

This example uses a simpler scheme instead. Only the CPU root pointer is

used, and, for each task, the first entry of the upper level table {for the
supervisor portion, the first 16 Mbytes of virtual address space) points to the
same lower level table. This common lower level table has supervisor pro-

MC68030 USER'S MANUAL MOTOROLA

tection and maps the entire virtual operating system, physical /0, and phys-
ical memory areas. This scheme avoids the requirement for extra lookup
levels or pointer manipulations during a task switch to furnish correct access
across the user/supervisor boundary. All the operating system has to do when
creating the address table for a new task is to set the first upper level table
entry to point to the common page table of the supervisor.

To solve the problem of accounting for virtual memory areas assigned to a
user task, the operating system uses the existing translation tables to identify
these areas. When a valid descriptor points to a given virtual address page,
this 8K-byte page of memory has been allocated. This scheme provides areas
of memory that are multiples of the 8K-byte page size. Due to the 8K gran-
ularity, this scheme would be inadequate for tasks that continually request
and return virtual memory space. As a result, some other technique would
be used (perhaps auxiliary tables to show virtual space availability). The tasks
in this system seldom request additional memory space; any request made
is for a large area. This scheme suffices. The application programs and utilities
that run in the UNIX (r) environment have similar requirements for memory.

The operating system primitive GetVirtual allocates virtual memory space
for tasks. The input parameter is a block size, in bytes; GetVirtual returns the
virtual address for the new block. GetVirtual first checks that the requested
size is not too large. Then it scans the translation tables looking for an un-
allocated virtual memory area large enough to hold the requested block. If
it does not find enough space, GetVirtual attempts to increase the page table
size to its maximum. If this does not provide the space, GetVirtual returns
an error indication. When the routine finds enough virtual space for the block,
it sets the page descriptors for the block to virgin status (invalid, but allo-
cated). When these pages are first used, a page fault is generated. The op-
erating system allocates a page frame for the page and replaces the descriptor
with a valid page descriptor. The status (indicated by a software flag in the
invalid descriptor) tells the operating system that the paging device does not
have a page image for this page; no read operation from the paging device
is required. '

When the status of an invalid descriptor indicates that a page image must
be read in, primitive SwaplnPage, reads in the image. The input parameter
for this routine is the invalid descriptor, which contains the disk address of
the page image. Before returning, SwaplnPage replaces the invalid descriptor |
with a valid page descriptor that contains the page address. The page is now
ready for use.

MOTOROLA MC68030 USER'S MANUAL ' 9-77

These routines provide many of the functions required for the memory man-
agement services of an operating system, but a complete memory manage-
ment system requires a complementary function for each routine. The
complementary function usually performs the same steps in the reverse
order. The complement of GetVirtual could be ReturnVirtual; for SwapinPage,
the complement might be SwapOutPage. These counterparts can be derived
to perform similar steps in the reverse order.

9.10.2 Allocation Routines

9-78

This section describes the central routine Vallocate, which user programs
call to obtain memory. In this section (and the next), a loose high-level lan-
guage syntax is used for the code. The code takes many liberties to enhance
readability. For example, the code assigns descriptive strings for return status
values. These strings typically represent binary values. Also, the code uses
empty brackets to represent obvious subscripts in loops that scan tables. In
such a loop, the subscript on the second line is obvious:

for Upper-Table_Index=1 to 31 do

if Upper—Table [Upper-Table-Index].Status =invalid then ...

In the code shown here, the second line is:

if Upper-Table [].Status=invalid then ...
The code uses flag operations that are assumed to be defined elsewhere in
the system. They may imply more complex operations than bit manipula-
tions. -For example, page table status of invalid virgin can be implemented
with an invalid descriptor instead of the page descriptor, and a software flag
bit in the descriptor that indicates the page is allocated but has never been
used {the paging device has no page image).

Vallocate has a single input parameter, the required memory size in bytes.
It returns status information and the virtual address of the start of the area
(if the memory is allocated). To simplify the routine, it always returns a

“multiple of the system page size and never allocates a block that crosses a

16-Mbyte boundary. It could allocate a portion of a page by implementing a
control structure to subdivide a page, but, if the control structure were within
the allocated page, the user could corrupt it. The block could cross a
16-Mbyte boundary if the routine included code to keep track of consecutive
free blocks when scanning the lower level tables, each of which represents
16 Mbytes of address space. Once the total area is located, Vallocate allocates
the consecutive blocks and returns the address of the fowest block.

The 32 upper level table entries are long pointer types; each represents 16
Mbytes of virtual address space. Each entry is either invalid (has no lower
page tables) or allocated (has lower page tables and a limit field that defines

MC68030 USER'S MANUAL MOTOROLA

the table size). By convention, the first entry maps the supervisor address
space and has supervisor protection. The routine never modifies this first
entry. The 31 entries after the first are available to be allocated as user address
space.

A routine similar to this that linearly extends (grows) a previously allocated
memory block could be written. A stack is a good example. The operating
system can allocate the top of the memory (the thirty-second upper level
table entry) as a stack that grows downward from the highest address. If a
task needs several large stacks, a 16-Mbyte block can be used for each stack,
with a software flag set to indicate growth in a downward direction.

The logic of Vallocate is:

1. Validate the request and calculate number of pages required.

2. Scan each upper table entry's lower page tables (where they exist)
looking for an adequate group of unallocated pages.

3. If no space is found, see if the lower table is less than its maximum size
and if the block can be allocated by expanding it at the end.

4. If still no space is found, use the next free upper table entry and initialize
its new lower level page table to allocate the block here.

5. Set allocated page entries to indicate virgin status (allocated, invalid,
and not swapped out).

6. Return status. If status is OK, also return virtual address.

The code for Vallocate is:

Vallocate (SizelnBytes, VirtualAddressReturned, Status);

/* The following are global to all routines */
/* Symbolicly define the upper level pointer table *
Declare Upper_Table[32] Record of
Status=(unallocated, allocated), /* lower table here or not *
Limit_Field=(0 to 4k), /* limit for lower page table - */
Pointer; [*address of lower page table if allocated */
/* Symbolicly define the lower level page table *
Declare Lower_Table[0 to Limit_Field) Based Record of
Status=(invalid_unallocated, I'not allocated to User *
invalid_paged_out, /*allocated but paged out */
invalid_virgin, /*allocated but not yet used *
valid_in_memory), I*allocated and in memory *
Pointer; *physical address or disk address of page */

MOTOROLA MC68030 USER’S MANUAL 9-79

9-80

Declare Upper_Table_Index, Lower_Level_Index; /*table indexes
Declarg NumPages; » /* number of pages required to hold request
Status = "Out of virtual Memory"; /* default result status to this error
if SizelnBytes > 16 megabytes then exit Vallocate;
NumPages = (SizelnBytes+PageSize-1)/PageSize; /* Pages needed
/* Scan User eligible page tables
for Upper_Table_Index = 1 to 31 do
If Upper_Table[].Status = allocated then call SearchPageTable;

If Status = "OK" then Exit Vallocate;
end;

/* Block not found so find upper level entry unallocated and call SearchPageTable that will ‘expand’ */

/* the null table to hold the block.

for Upper_Table_Index = 1 to 31 ;
If Upper_Table[].Status = unallocated then call SearchPageTable;

*/
*

*

*l

*

!

/* No more virtual space, exit leaving Status = “out of virtual memory" *
exit Vallocate;
Procedure SearchPageTable;
/* Scan table pointed to by upper level index to see if it can hold the block. If not, see if it can be */
/* be expanded. If successful then set flags in the page entries, set status to "OK" and User's */
/* virtual address *
Declare Maxfound; /* Count of consecutive free blocks found */
Maxfound = 0;
For Lower_Level_Index = 0 to Upper_Table[].Limit_Field
/* count consecutive free pages until Maxfound met or not */
If Lower_Table[].Status = invalid_unallocated then.do
Maxfound = Maxfound+1;
if Maxfound >= NumPages then do
MC68030 USER'S MANUAL MOTOROLA

/* Found! Now flag the page entries, update the MC68030 and */
/* return the User's virtual address *
while (Maxfound > 0) do

Lower_Table[].Status = invalid_virgin;

Lower_Level_Index = Lower_Level_Index-1;
end;

Status = "OK";

VirtualAddressReturned =
Upper_Level_Index*16Meg +
Lower_Level_Index*8k;

PLOAD (VirtualAddressReturned);

exit SearchPageTables;

end;

end;

/" allocated page hit so start counting from zero again */
else Maxfound = 0;

" If we get here there was not room. See if we can expand the page table to hold the new block */
/* If so grow it and set the new page entries as virgin */

If Upper_Table[].Limit + NumPages < 4k then do
NewLimit = Upper_Table[].Limit + NumPages;

/* We can grow the page table! First get area for new table *
Call GetReal(4*NewLimit, NewPageTable);

" Now copy the first part of the old table into the new *
for Lower_Table__Index = 0 to Upper_Table[].Limit :
NewPageTable->Lower_Table[] = Lower_Table[]

/* Return the old table and install the new table pointer */
Call ReturnReal(4*Upper_Table[].Limit, Upper_Table[}.Pointer);

Upper_Table[].Pointer = NewPageTable;

/* Set returned virtual address and load it replacing the old *
VirtualAddressReturned = Upper_Level_Index*16Meg + Lower_Level Index*8k;

PLOAD (VirtualAddressReturned) /* refresh MC68030 *
I* Set all the new entries at the end to virgin status *

While (Lower_Table_Index < NewLimit) do
~ Lower_Table_Index = Lower_Table_Index + 1;
Lower_Table[].Status = invalid_virgin;
end;

/* Set OK status and retumn with it */
Status = "OK";

exit SearchPageTables

end;

/* cannot expand the table. return with status unchanged (failed) *
end SearchPageTables;

MOTOROLA MC68030 USER'S MANUAL 9-81

9.10.3 Bus Error Handler Routine

9-82

The routine that processes bus error exceptions is the most critical part of
the memory management services provided by the example operating sys-
tem. This routine must determine the validity of page faults and perform the
necessary processing. It must identify the conditions that aborted the exe-
cuting task. The PTEST instruction can investigate the cause of a bus error
by performing a table search using the address and type of access that
produced the error, accumulating status information during the search.

When the PTEST instruction does not find any error, the bus error was most
likely a malfunction (for example, a transient memory failure). The operating
system must respond appropriately.

The table search performed by the PTEST instruction may end in a bus error
termination. Either the address translation tables are not correctly built or
main memory has failed (either a transient or permanent failure).

A supervisor protection violation or a write protection violation usually in-
dicates that the task generating the exception attempted to access an area.
of the virtual address space that is not part of the task’s address space. The
operating system usually recovers from such an error by terminating (abort-
ing) the task.

When the PTEST instruction returns the invalid status, the bus erroris a page
fault, and the operating system must identify the specific type of page fault.
When the limit violation bit returned by the PTEST instruction is set, the task
that took the exception was trying to access a page that has not been allo-
cated. The example system aborts the task in this case. In other systems,
this is an implicit request for more virtual memory, particularly if the reference
is in a stack area.

When no limit violation occurred, a descriptor is invalid. Typically, the de-
scriptor contains software flags that provide relevant information. The ex-
ample operating system checks to see if the invalid descriptor is in an upper
level or a lower level table. When the descriptor is in the upper level table,
the task was attempting to access unallocated virtual memory, and the system
aborts the task. When the descriptor is in a lower level table, the system
checks software flags to identify the invalid descriptor.

When the software flags indicate that the descriptor corresponds to an un-

allocated page, the system aborts the task. When the descriptor refers to a
virgin page (allocated, but not yet accessed) and the request for the page

MC68030 USER'S MANUAL MOTOROLA

was a read request, the page is actually invalid because the read operation
reads unknown data. However, the example operating system does not con-
sider the type of request, but assigns a physical page frame to the page and
writes the page descriptor to the page table. Some systems clear virgin pages
to zero.

When the software flags indicate that the page is allocated and the image
has been copied to the paging device, the operating system assigns a page
frame, reads the page image into the frame, and writes the page descriptor
to the page table. Another possible type of invalid descriptor is one that
requires special processing, such as one that refers to a virtual I/O device
area in a virtual machine.

Obtaining a page frame for a virtual page may be an obvious operation.

However, when no idle page frame is available, the system must steal one.

If the page in the stolen frame has been modified in memory, the system

must save the page image on the paging device. The system must alter the

translation table of the task that loses the frame to show that the page is

allocated and swapped out. Typically, the translation table entry shows the
~address of the page image on the paging device.

The method a system uses to select a page frame to steal varies a great deal
from system to system. A simple system may just steal a page from the
lowest priority task. More advanced systems select the page frame that has
not been accessed for the longest time. This process, called aging, is done
in several ways. One method uses bits of the page descriptor as an aging
counter. Periodically, the operating system examines the U (used) bits and
increments the count for pages that have not been used. The system main-
tains a list of pages with aging counters that have overflowed. The pages on
this list are available for stealing.

Some systems keep a separate list of pages that have not been modified
since the page image was read from memory. The page frames that contain
these pages can be stolen without swapping out because the existing page
image on the.paging device remains valid.

Page stealing software can involve many dynamics of the system. It can

consider task priority, I/O activity, working-set determinations, the number
of executing tasks, a thrashing level, and other factors.

MOTOROLA MC68030 USER'S MANUAL 9-83

9-84

The example bus error exception routine is called BusErrorHandler. It is more
general than Vallocate because it relies on several operating-system-
dependent items. The variable pointer VictimTask is assumed to point to a
table from a task that is losing a page frame. This assumption is necessary
because control block layout and the method of searching for and finding
other tasks in the example operating system are not defined. The code is
further simplified by omitting the function code value and the read/write

status, which do not affect the basic logic of the program.

1* Paging Bus Error Handler for example O.S.
Procedure BusErrorHandler (BusErrAddress);
I* Global Variables to all code
Declare TableEntry; | ' I*Pointer returned by PTEST instruction
: /* pointing to the lowest level entry in the
I* translation tables.

/* Use MC68030 PTEST instruction to get fault status and table entry
case PTEST (BusErrAddress, TableEntry) of

* Bus Error - translation table is invalid or memory hardware problems. Termnnate the task.

B: AbortTask("Invalid table or memory hardware emor”);

I* Supervisor Violation - task tried accessing restricted memory
S: AbortTask("Attempted access of Supervisor-only memory");

[I* Write Protected - tried writing into read-only memory
W: AbortTask("Attempted write into read-only memory");

I* Limit Violation - tried accessing unmapped virtual space. This happens in our example
/* O.S. when accessing within a 16 megabyte segment in User memory past what is

" currently allocated for the lower page table as determined by the upper level limit field.
L: AbortTask("Invalid address");

[* Invalid - pointer indicates invalid. Must determine status.
1: begin

I If upper level entry then that 16 Meg chunk of the virtual space is unallocated
/* and has no page tables.
If TableEntry is upper level then AbortTask("Invalid address");

I* We are at a page table entry. Look at software flags.

/" If this page unallocated to the User then abort task

If EntryStatus=invalid_unallocated then
AbortTask("Invalid Address");

[* If this page is virgin then assign to it a physical frame
if EntryStatus = invalid_virgin then do

GetFrame(TableEntry); [* address returned in entry
PLOAD (BusErrAddress); * update MC68030 entry
exit BusErrorHandler; I* done so continue task
end do;

!

*/
*/
i
i
*/
*

*

*

*/

*/

‘!

!

MC68030 USER'S MANUAL MOTOROLA

/* If this page is swapped out then read it back in */
if EntryStatus = invalid_swapped_out then do
r* first get a frame to hold the new page */
DiskAddress = TableEntry.Pointer; /* disk location */

GetFrame(TableEntry); /* address returned in entry */

/* Now read in the virtual page image */
call SwapPageln(TableEntry,DiskAddress);

PLOAD (BusErrAddress); /* update MC68851 entry */
exit BusErrorHandler; /* done so continue task */
end do;
end begin;
/" No MC68030 status bits on. Must be memory malfunction or RMW cycle with no */
r* ATC entry *
Otherwise: If Stack_Frame shows RMW instruction (SSW) then
/* ATC did not have descriptor loaded and MC68030 cannot *
" search tables to load it. Explicitly load it and allow the task to */
/* continue normally *
Begin .
PLOAD (BusErrAddress); /* update ATC */
exit BueErrorHandler; /* done so re-execute instruction */
end Begin

Else: AbortTask("Memory Malfunction”);

end case;

Procedure GetFrame(FrameTableEntry);

/* This module returns the address of a physical frame in the passed table entry. It obtains one */
/* fromthe free frame list. If none there it scans a queue pointing to pages that have been */
* recorded as having aged by not being accessed frequently. It first tries to find a read-only ~ */
/* page in the queue but if none it returns the first (oldest) entry after swapping the page out */
/* to disk and altering the translation tables of the owning task. If nothing in the queue it waits */
/* for some other task to free a frame by terminating or deallocating memory */

Restart:

if Free_Frame_Queue NOT null then
Dequeue first entry and return its value.

if Aged_Frame_Queue NOT null then begin
* First try to find a read-only page */
If scanning finds read-only page then use and dequeue it

else dequeue the first entry (which is the oldest);

Find owning task and the frames current page entry;

/* Invalidate owning task's page */
PFLUSH (User_Space,VictimTask.VirtualAddress);

MOTOROLA MC68030 USER’S MANUAL 9-85

I* If modified page swap it out. SwapPageOut either gives control to other tasks */

I* during the 1/0 or copies the page returning immediately. */
If modified then call SwapPageOut(VictimTask.TableEntry);

I* Disk address now in Victim's page entry */
/* Now set the old task's page status and return the frame */

VictimTask.TableEntry.Status = invalid_swapped_out;
return physical frame value;
end do;

/* At this point we can use some other stealing method but we just wait until another task frees */
I* a frame by terminating or freeing memory. *
call wait (Free_Frame);

go to Restart;

end GetFrame;

Procedure SwapPageln (SwapinTableEntry,DiskAddress);
/* This procedure takes the disk address and reads the page from the paging external media */
I* into the physical address residing in the table entry pointer. */
end SwapPageln;

Procedure SwapPageOut(SwapoutTableEntry);

I* This procedure performs output on the external paging device and then replaces the *
I* physical page frame address in the page entry pointer field with the disk address of the *
I* block holding the image of the page. *
end SwapPageOut;

Procedure AbortTask(TerminationMsg);)
I* This procedure terminates the current task and issues a diagnostic message. *

end AbortTask;
n end BusErrorHandler;

9-86 MC68030 USER'S MANUAL MOTOROLA

SEC

10.1

TION 10
COPROCESSOR INTERFACE DESCRIPTION

The M68000 Family of general-purpose microprocessors provides a level of
performance that satisfies a wide range of computer applications. Special-
purpose hardware, however, can often provide a higher level of performance
for a specific application. Thé coprocessor concept allows the capabilities
and performance of a general-purpose processor to be enhanced for a par-
ticular application without encumbering the main processor architecture. A
coprocessor can efficiently meet specific capability requirements that must
typically be implemented in software by a general-purpose processor. With
a general-purpose main processor and the appropriate coprocessor(s), the
processing capabilities of a system can be tailored to a specific application.

The MC68030 supports the M68000 coprocessor interface described in this
section. The section is intended for designers who are implementing copro-
cessors to interface with the MC68030.

The designer of a system that uses one or more Motorola coprocessors (the
MC68881 or MC68882 floating-point coprocessor, for example) does not re-
quire a detailed knowledge of the M68000 coprocessor interface. Motorola
coprocessors conform to the interface described in this section. Typically,
they implement a subset of the interface, and that subset is described in the
coprocessor user's manual. These coprocessors execute Motorola defined
instructions that are described in the user’'s manual for each coprocessor.

INTRODUCTION

The distinction between standard peripheral hardware and a M68000 copro-
cessor is important from a perspective of the programming model. The pro-
gramming model of the main processor consists of the instruction set, register
set, and memory map available to the programmer. An M68000 coprocessor
is a device or set of devices that communicates with the main processor
through the protocol defined as the M68000 coprocessor interface. The pro-
gramming model for a coprocessor is different than that for a peripheral
device. A coprocessor adds additional instructions and generally additional
registers and data types to the programming model that are not directly
supported by the main processor architecture. The additional instructions

MOTOROLA MC68030 USER'S MANUAL 10-1

are dedicated coprocessor instructions that utilize the coprocessor capabil-
ities. The necessary interactions between the main processor and the copro-
cessor that provide a given service are transparent to the programmer. That
is, the programmer does not need to know the specific communication pro-
tocol between the main processor and the coprocessor because this protocol
is implemented in hardware. Thus, the coprocessor can provide capabilities
to the user without appearing separate from the main processor.

In contrast, standard peripheral hardware is generally accessed through in-
terface registers mapped into the memory space of the main processor. To
use the services provided by the peripheral, the programmer accesses the

~ peripheral registers with standard processor instructions. While a peripheral

could conceivably provide capabilities equivalent to a coprocessor for many
applications, the programmer must implement the communication protocol
between the main processor and the peripheral necessary to use the pe-
ripheral hardware.

The communication protocol defined for the M68000 coprocessor interface
is described in 10.2 COPROCESSOR INSTRUCTION TYPES. The algorithms
that implement the M68000 coprocessor interface are provided in the micro-
code of the MC68030 and are completely transparent to the MC68030 pro-
grammer's model. For example, floating-point operations are not implemented
in the MC68030 hardware. In a system utilizing both the MC68030 and the

.MC68881 or MC68882 floating-point coprocessor, a programmer can use any

of the instructions defined for the coprocessor without knowing that the
actual computation is performed by the MC68881 or MC68882 hardware.

n 10.1.1 Interface Features

10-2

The M68000 coprocessor interface design incorporates a number of flexible
capabilities. The physical coprocessor interface uses the main processor ex-
ternal bus, which simplifies the interface since no special-purpose signals
are involved. With the MC68030, a coprocessor can use either the asynchron-
ous or synchronous bus transfer protocol. Since standard bus cycles transfer
information between the main processor and the coprocessor, the copro-
cessor can be implemented in whatever technology is available to the co-
processor designer. A coprocessor can be implemented as a VLSI device, as
a separate system board, or even as a separate computer system.

Since the main processor and a M68000 coprocessor can communicate using

the asynchronous bus, they can operate at different clock frequencies. The
system designer can choose the speeds of a main processor and coprocessor

MC68030 USER'S MANUAL MOTOROLA

that provide the optimum performance for a given system. If the coprocessor
uses the synchronous bus interface all coprocessor signals and data must
be synchronized with the main processor clock. Both the MC68881 and
MC68882 floating-point coprocessors use the asynchronous bus handshake
protocol.

The M68000 coprocessor interface also facilitates the design of coprocessors.
The coprocessor designer must only conform to the coprocessor interface
and does not need an extensive knawledge of the architecture of the main
processor. Also, the main processor can operate with a coprocessor without
having explicit provisions made in the main processor for the capabilities of
that coprocessor. This provides a great deal of freedom in the implementation
of a given coprocessor.

10.1.2 Concurrent Operation Support

The programmer’s model for the M68000 Family of microprocessors is based
on sequential, nonconcurrent instruction execution. This implies that the
instructions in a given sequence must appear to be executed in the order in
which they occur. To maintain a uniform programmer’s model, any copro-
cessor extensions should also maintain the model of sequential, noncon-
current instruction execution at the user level. Consequently, the programmer
can assume that the images of registers and memory affected by a given
instruction have been updated when the next instruction in the sequence
accessing these registers or memory locations is executed.

The M68000 coprocessor interface provides full support of all operations
necessary for nonconcurrent operation of the main processor and its asso-
ciated coprocessors. Although the M68000 coprocessor interface allows con-
currency in coprocessor execution, the coprocessor designer is responsible
for implementing this concurrency while maintaining a programming model
based on sequential nonconcurrent instruction execution.

For example, if the coprocessor determines that instruction “B’’ does not use
or alter resources to be aitered or used by instruction “A”, instruction “B"”
can be executed concurrently (if the execution hardware is also available).
Thus, the required instruction interdependencies and sequences of the pro-
gram are always respected. The MC68882 coprocessor offers concurrent in-
struction execution while the MC68881 coprocessor does not. However, the
MC68030 can execute instructions concurrently with coprocessor instruction
execution in the MC68881.

MOTOROLA MC68030 USER'S MANUAL 10-3

10.1.3 Coprocessor Instruction Format

10-4

The instruction set for a given coprocessor is defined by the design of that
coprocessor. When a coprocessor instruction is encountered in the main
processor instruction stream, the MC68030 hardware initiates communica-
tion with the coprocessor and coordinates any interaction necessary to ex-
ecute the instruction with the coprocessor. A programmer needs to know
only the instruction set and register set defined by the coprocessor in order
to use the functions provided by the coprocessor hardware.

The instruction set of an M68000 coprocessor uses a subset of the F-line
operation words in the M68000 instruction set. The operation word is the
first word of any M68000 Family instruction. The F-line operation word con-
tains ones in bits 15-12 {[156:12]=1111; refer to Figure 10-1); the remaining
bits are coprocessor and instruction dependent. The F-line operation word
may be followed by as many extension words as are required to provide
additional information necessary for the execution of the coprocessor in-
struction.

15 14 13 12 N 9 ‘8 6 5 0
[[] 1] CpiD | TYPE | TYPE DEPENDENT |

Figure 10-1. F-Line Coprocessor Instruction Operation Word

As shown in Figure 10-1, bits 9-11 of the F-line operation word encode the
coprocessor identification code (CplID). The MC68030 uses the coprocessor
identification field to indicate the coprocessor to which the instruction ap-
plies. F-line operation words, in which the CpID is zero, are not coprocessor
instructions for the MC68030. If the CplD (bits 9-11) and the type field (bits
6-8) contain zeros, the instruction accesses the on-chip memory manage-
ment unit of the MC68030. Instructions with a CpID of zero and a nonzero
type field are unimplemented instructions that cause the MC68030 to begin
exception processing. The MC68030 never generates coprocessor interface
bus cycles with the CplD equal to zero {except via the MOVES instruction).

CpID codes of 001-101 are reserved for current and future Motorola copro-
cessors and CplID codes of 110-111 are reserved for user-defined coproces-
sors. The Motorola CpiD code that is currently defined is 001 for the MC68881
or MC68882 floating-point coprocessor. By default, Motorola assemblers will
use CplD code 001 when generating the instruction operation codes for the
MC68881 or MC68882 coprocessor instructions.

MC68030 USER'S MANUAL MOTOROLA

The encoding of bits 0-8 of the coprocessor instruction operation word is
dependent on the particular instruction being |mplemented (see 10.2 CO-
- PROCESSOR INSTRUCTION TYPES).

10.1.4 Coprocessor System Interface

The communication protocol between the main processor and coprocessor
necessary to execute a coprocessor instruction uses a group of interface
registers, called coprocessor interface registers, resident within the copro-
cessor. By accessing one of these interface registers, the MC68030 hardware
initiates coprocessor instructions. The coprocessor uses a set of response
primitive codes and format codes defined for the M68000 coprocessor in-
terface to communicate status and service requests to the main processor
through these registers. The coprocessor interface registers (CIRs) are also
used to pass operands between the main processor and the coprocessor.
The CIR set, response primitives, and format codes are discussed in 10.3
COPROCESSOR INTERFACE REGISTER SET and 10.4 COPROCESSOR RE-
SPONSE PRIMITIVES.

10.1.4.1 COPROCESSOR CLASSIFICATION. M68000 coprocessors can be classi-
fied into two categories depending on their bus interface capabilities. The
first category, non-DMA coprocessors, consists of coprocessors that always
operate as bus slaves. The second category, DMA coprocessors, consists of
coprocessors that operate as bus slaves while communicating with the main
processor across the coprocessor interface, but also have the ability to op-
erate as bus masters, directly controlling the system bus.

If the operation of a coprocessor does not require a large portion of the
available bus bandwidth or has special requirements not directly satisfied
by the main processor, that coprocessor can be efficiently implemented as
a non-DMA coprocessor. Since non-DMA coprocessors always operate as
bus slaves, all external bus-related functions that the coprocessor requires
are performed by the main processor. The main processor transfers operands
from the coprocessor by reading the operand from the appropriate CIR and
then writing the operand to a specified effective address with the appropriate
address space specified on the function code lines. Likewise, the main pro-
cessor transfers operands to the coprocessor by reading the operand from
a specified effective address (and address space) and then writing that op-
erand to the appropriate CIR using the coprocessor interface. The bus inter-
face circuitry of a coprocessor operating as a bus slave is not as complex as
that of a device operating as a bus master.

MOTOROLA MC68030 USER'S MANUAL 10-5

To improve the efficiency of operand transfers between memory and the
coprocessor, a coprocessor that requires a relatively high amount of bus
bandwidth or has special bus requirements can be implemented as a DMA
coprocessor. DMA coprocessors can operate as bus masters. The coproces-
sor provides all control, address, and data signals necessary to request and
obtain the bus and then performs DMA transfers using the bus. DMA copro-
cessors, however, must still act as bus slaves when they require information
or services of the main processor using the M68000 coprocessor interface
protocol.

10.1.4.2 PROCESSOR-COPROCESSOR INTERFACE. Figure 10-2is a block diagram
of the signals involved in an asynchronous non-DMA M68000 coprocessor
interface. The synchronous interface is similar. Since the CplD on signals
A13-A15 of the address bus is used with other address signals to select the
coprocessor, the system designer can use several coprocessors of the same
type and assign a unique CplID to each one.

FCO-FC2
’ COPROCESSOR =
DECODE »| CcOPROCESSOR
AIBAI3 LoGIC*
7/
AS
0§ .
MAI pROCESSOR | R/AW -
MC68030 , OSACKT /0SATKD
AdAl # ASYNCHRONOUS
7 BUS
INTERFACE
LOGIC
031-00 ,
- - >
FCOFCZ=111 ——= CPU SPACE CYCLE

A13-A16 = 0010 —» COPROCESSOR ACCESS IN CPU SPACE
A15-A13 =xxx —— COPROCESSOR IDENTIFICATION
A4-AY =rrir ——» COPROCESSOR INTERFACE REGISTER SELECTOR

*“Chip select logic may be integrated into the coprocessor
Address lines not specified above are “0* during coprocessor access

Figure 10-2. Asynchronous Non-DMA M68000 Coprocessor
Interface Signal Usage

10-6 MC68030 USER’S MANUAL MOTOROLA

The MC68030 accesses the registers in the CIR set using standard asynchron-
ous or synchronous bus cycles. Thus, the bus interface implemented by a
coprocessor for its interface register set must satisfy the MC68030 address,
data, and control signal timing. The MC68030 timing information for read
and write cycles is illustrated in Figures 13-5-13-8 on foldout pages in the
back of this manual. The MC68030 never requests a burst operation during
a coprocessor {CPU space) bus cycle, nor does it internally cache data read
or written during coprocessor (CPU space) bus cycles. The MC68030 bus
operation is described in detail in SECTION 7 BUS OPERATION.

During coprocessor instruction execution, the MC68030 executes CPU space
bus cycles to access the CIR set. The MC68030 drives the three function code
outputs high (FC2:FC0=111) identifying a CPU space bus cycle. The CIR set
is mapped into CPU space in the same manner that a peripheral interface
register set is generally mapped into data space. The information encoded
on the function code lines and address bus of the MC68030 during a copro-
cessor access is used to generate the chip select signal for the coprocessor
being accessed. Other address lines select a register within the interface set.
The information encoded on the function code and address lines of the
MC68030 during a coprocessor access is illustrated in Figure 10-3.

FUNCTION
CODE ADDRESS BUS
2 0 31 19 15 12 4 0

|111]|ooouoooonouu|ou|orc;;-mIunnooooo CIR REGISTER |

CPU SPACE
TYPE FIELD

Figure 10-3. MC68030 CPU Space Address Encodings

Address signals A16-A19 specify the CPU space cycle type for a CPU space
bus cycle. The types of CPU space cycles currently defined for the MC68030
are interrupt acknowledge, breakpoint acknowledge, and coprocessor access
cycles. CPU space type $2 (A19:A16=0010) specifies a coprocessor access
cycle. .

Signals A13-A15 of the MC68030 address bus specify the coprocessor iden-
tification code CplD for the coprocessor being accessed. This code is trans-
ferred from bits 9-11 of the coprocessor instruction operation word (refer to
Figure 10-1) to the address bus during each coprocessor access. Thus, de-

MOTOROLA MC68030 USER'S MANUAL 107

coding the MC68030 function code signals and bits A13-A19 of the address
bus provides a unique chip select signal for a given coprocessor. The function
code signals and A16-A19 indicate a coprocessor access; A13-A15 indicate
which of the possible seven coprocessors (001-111) is being accessed. Bits
A20-A31 and A5-A12 of the MC68030 address bus are always zero during
a cCoprocessor access.

The MC68010 can emulate coprocessor access cycles in CPU space using the
MOVES instruction.

10.1.4.3 COPROCESSOR INTERFACE REGISTER SELECTION. Figure 10-4 shows

10-8

that the value on the MC68030 address bus during a coprocessor access
addresses a unique region of the main processor’'s CPU address space. Sig-
nals A0-A4 of the MC68030 address bus select the CIR being accessed. The
register map for the M68000 coprocessor interface is shown in Figure 10-5.

The individual registers are described in detail in 10.3 COPROCESSOR IN-

TERFACE REGISTER SET.

CPU SPACE ADDRESS

20000 —_

INTERFACE REGISTER SET ADDRESS SPACE FOR
2001F | MEMORY
MANAGEMENT
RESERVED UNIT
22000 _
INTERFACE REGISTER SET
2201F ADDRESS SPACE FOR
I— COPROCESSOR WITH
RESERVED . Cp-ID=1
24000 —

;L

2E000

INTERFACE REGISTER SET
2E01F ADDRESS SPACE FOR

COPROCESSOR WITH
RESERVED CpiD = 7

Figure 10-4. Coprocessor Address Map in MC68030 CPU Space

MC68030 USER'S MANUAL MOTOROLA

3 15 0

00 RESPONSE* CONTROL®

04 SAVE* RESTORE*

08 OPERATION WORD COMMAND*
oc (RESERVED) CONDITION®
10 OPERAND*

14 REGISTER SELECT (RESERVED)
18 INSTRUCTION ADDRESS

1c OPERAND ADDRESS

Figure 10-5. Coprocessor Interface Register Set Map

10.2 COPROCESSOR INSTRUCTION TYPES

The M68000 coprocessor interface supports four categories of coprocessor
instructions: general, conditional, context save, and context restore. The cat-
egory name indicates the type of operations provided by the coprocessor
instructions in the category. The instruction category also determines the
CIR accessed by the MC68030 to initiate instruction and communication pro-
tocols between the main processor and the coprocessor necessary for in-
struction execution.

During the execution of instructions in the general or conditional categories,
the coprocessor uses the set of coprocessor response primitive codes defined

“for the MC68000 coprocessor interface to request services from and indicate
status to the main processor. During the execution of the instructions in the
context save and context restore categories, the coprocessor uses the set of
coprocessor format codes defined for the M68000 coprocessor interface to
indicate its status to the main processor.

10.2.1 Coprocessor General Instructions

The general coprocessor instruction category contains data processing in-
structions and other general-purpose instructions for a given coprocessor.

MOTOROLA MC68030 USER'S MANUAL : 10-9

10.2.1.1 FORMAT. Figure 10-6 shows the format of a general type instruction.

10-10

HERERER CpiD [o] o] o] EFFECTIVE ADDRESS
COPROCESSOR COMMAND
OPTIONAL EFFECTIVE ADDRESS OR COPROCESSOR-DEFINED EXTENSION WORDS

Figure 10-6. Coprocessor General Instruction Format (cpGEN)

The mnemonic cpGEN is a generic mnemonic used in this discussion for all
general instructions. The mnemonic of a specific general instruction usually
suggests the type of operation it performs and the coprocessor to which it
applies. The actual mnemonic and syntax used to represent a coprocessor
instruction is determined by the syntax of the assembler or compiler that
generates the object code. :

A coprocessor general type instruction consists of at least two words. The
first word of the instruction is an F-line operation code (bits [15:12]=1111).

- The CplD field of the F-line operation code is used during the coprocessor

access to indicate which of the coprocessors in the system executes the
instruction. During accesses to the coprocessor interface registers (refer to
10.1.4.2 PROCESSOR-COPROCESSOR INTERFACE), the processor places the
CpID on address lines A13-A15.

Bits [8:6] = 000 indicate that the instruction is in the general instruction cat-
egory. Bits 0-5 of the F-line operation code sometimes encodes a standard
M68000 effective address specifier {refer to 2.5 EFFECTIVE ADDRESS EN-
CODING SUMMARY). During the execution of a cpGEN instruction, the co-
processor can use a coprocessor response primitive to request that the
MC68030 perform an effective address calculation necessary for that instruc-
tion. Using the effective address specifier field of the F-line operation code,
the processor then determines the effective addressing mode. If a coproces-
sor never requests effective address calculation, bits 0-5 can have any value
(don't cares).

The second word of the general-type instruction is the coprocessor command

word. The main processor writes this command word to the command CIR
to initiate execution of the instruction by the coprocessor.

MC68030 USER'S MANUAL MOTOROLA

An instruction in the coprocessor general instruction category optionally
includes a number of extension words following the coprocessor command
word. These words can provide additional information required for the co-
processor instruction. For example, if the coprocessor requests that the
MC68030 calculate an effective address during coprocessor instruction ex-
ecution, information required for the calculation must be included in the
instruction format as effective address extension words.

10.2.1.2 PROTOCOL. The execution of a cpGEN instruction follows the protocol
shown in Figure 10-7. The main processor initiates communication with the
coprocessor by writing the instruction command word to the command CIR.
The coprocessor decodes the command word to begin processing the cpGEN
instruction. Coprocessor design determines the interpretation of the copro-
cessor command word; the MC68030 does not attempt to decode it.

MAIN PROCESSOR " COPROGESSOR

M1 RECOGNIZE COPROCESSOR INSTRUCTION F-LINE
OPERATION WORD

M2 WRITE COPROCESSOR COMMAND WORD TO
COMMAND CIR — C1 DECODE COMMAND WORD AND INITIATE
COMMAND EXECUTION

€2 WHILE (MAIN PROCESSOR SERVICE IS REQUIRED)
DO STEPS 1) AND 2) BELOW

M3 READ COPROCESSOR RESPONSE PRIMITIVE -~ 1) REQUEST SERVICE BY PLACING APPROPRIATE
CODE FROM RESPONSE CIR RESPONSE PRIMITIVE CODE IN RESPONSE CIR
1) PERFORM SERVICE REQUESTED BY RESPONSE 2) RECEIVE SERVICE FROM MAIN PROCESSOR
PRIMITIVE
2) IF (COPROCESSOR RESPONSE PRIMITIVE C3 REFLECT “NO COME AGAIN" IN RESPONSE CIR
INDICATES “COME AGAIN") GO TO M3
SEE NOTE 1) C4 COMPLETE COMMAND EXECUTION

C5 REFLECT “PROCESSING FINISHED" STATUS IN
RESPONSE CIR

M4 PROCEED WITH EXECUTION OF NEXT INSTRUCTION
(SEE NOTE 2}

NOTES: 1. “Come Again” indicates that further service of the main processor is being requested
by the coprocessor
2. The next instruction should be the operation word pointed to by the ScanPC at this point.
The operation of the MC68030 ScanPC is discussed in 10.4.1 ScanPC

Figure 10-7. Coprocessor Interface Protocol for
General Category Instructions

MOTOROLA MC68030 USER'S MANUAL 10-11

While the coprocessor is executing an instruction, it requests any required
services from and communicates status to the main processor by placing
coprocessor response primitive codes in the response CIR. After writing to
the command CIR, the main processor reads the response CIR and responds
appropriately. When the coprocessor has completed the execution of an
instruction or no longer needs the services of the main processor to execute
the instruction, it provides a response to release the processor. The main
processor can then execute the next instruction in the instruction stream.
However,. if a trace exception is pending, the MC68030 does not terminate
communication with the coprocessor until the coprocessor indicates that it

' has complieted all processing associated with the cpGEN instruction (refer

to 10.5.2.5 TRACE EXCEPTIONS).

The coprocessor interface protocol shown in Figure 10-7 allows the copro-
cessor to define the operation of each general category instruction. That is,
the main processor initiates the instruction execution by writing the instruc-
tion command word to the command CIR and by reading the response CIR
to determine its next action. The execution of the coprocessor instruction is
then defined by the internal operation of the coprocessor and by its use of
response primitives to request services from the main processor. This in-
struction protocol allows a wide range of operations to be implemented in
the general instruction category.

10.2.2 Coprocessor Conditional Instructions

10-12

The conditional instruction category provides program control based on the
operations of the coprocessor. The coprocessor evaluates a condition and
returns a true/false indicator to the main processor. The main processor
completes the execution of the instruction based on this true/false condition
indicator.

The implementation of instructions in the conditional category promotes
efficient use of both the main processor’s and the coprocessor’s hardware.
The condition specified for the instruction is related to the coprocessor op-
eration and is, therefore, evaluated by the coprocessor. The instruction com-

pletion following the condition evaluation is, however, directly related to the

operation of the main processor. The main processor performs the change
of flow, the setting of a byte, or the TRAP operation, since its architecture -
explicitly implements these operations for its instruction set.

MC68030 USER'S MANUAL MOTOROLA

Figure 10-8 shows the protocol for a conditional category coprocessor in-
struction. The main processor initiates execution of an instruction in this
category by writing a condition selector to the condition CIR. The coprocessor
decodes the condition selector to determine the condition to evaluate. The
coprocessor can use response primitives to request that the main processor
provide services required for the condition evaluation. After evaluating the
condition, the coprocessor returns a true/false indicator to the main processor
by placing a null primitive (refer to 10.4.4 Null Primitive) in the response CIR.
The main processor completes the coprocessor instruction execution when
it receives the condition indicator from the coprocessor.

MAIN PROCESSOR COPROCESSOR
M1 RECOGNIZE COPROCESSOR INSTRUCTION F-LINE
OPERATION WORD
M2 WRITE COPROCESSOR CONDITION SELECTOR TO
CONDITION CIR ——» 1 DECODE CONDITION SELECTOR AND INITIATE
CONDITION EVALUATION

€2 WHILE (MAIN PROCESSOR SERVICE IS REQUIRED
DO STEPS 1) AND 2) BELOW

M3 READ COPROCESSOR RESPONSE PRIMITIVE CODE ~€—3 1) REQUEST SERVICE BY PLACING APPROPRIATE
FROM RESPONSE CIR RESPONSE PRIMITIVE CODE IN RESPONSE CIR
1) PERFORM SERVICE REQUESTED BY RESPONSE 2) RECEIVE SERVICE FROM MAIN PROCESSOR
PRIMITIVE
2) IF (COPROCESSOR RESPONSE PRIMITIVE C3 COMPLETE CONDITION EVALUATION
INDICATES “COME AGAIN") GO T0 M3
(SEE NOTE 1)) C4 REFLECT “NO COME AGAIN" STATUS WITH TRUE/FALSE

CONDITION INDICATOR IN RESPONSE CIR

M4 COMPLETE EXECUTION OF INSTRUCTION BASED ON
THE TRUE/FALSE CONDITION INDICATOR
RETURNED IN THE RESPONSE CIR

NOTES: 1. All coprocessor response primitives, except the Null primitive, that allow the “Come Again”
primitive attribute must indicate “Come Again” when used during the execution of a
conditional category instruction. If a *‘Come Again’ attribute is not indicated in one of these
primitives, the main processor will initiate protocol violation exception processing (see 10.6.2.1
PROTOCOL VIOLATIONS)

Figure 10-8. Coprocessor Interface Protocol for Conditional
Category Instructions

10.2.2.1 BRANCH ON COPROCESSOR CONDITION INSTRUCTION. The condi-
tional instruction category includes two formats of the M68000 Family branch
instruction. These instructions branch on conditions related to the copro-
cessor operation. They execute similarly to the conditional branch instruc-
tions provided in the M68000 Family instruction set.

MOTOROLA MC68030 USER'S MANUAL 10-13

10.2.2.1.1 Format. Figure 10-9 shows the format of the branch on coprocessor

10-14

condition instruction that provides a word-length . displacement. Figure
10-10 shows the format of the instruction that includes a long-word displace-
ment.

11 5 0

15 14 13 12 9 8 7 ' B
v oo e o[]| CONDITION SELECTOR
OPTIONAL COPROCESSOR-DEFINED EXTENSION WORDS
DISPLACEMENT

Figure 10-9. Branch on Coprocessor Condition Instruction {cpBcc.W)

15 14 13 12 " 9 6 5 0

8 7
HERERER CpiD [o] 1] 1] CONDITION SELECTOR

OPTIONAL COPROCESSOR-DEFINED EXTENSION WORDS

DISPLACEMENT — HIGH

DISPLACEMENT — LOW

Figure 10-10. Branch On Coprocessor Condition Instruction (cpBcc.L)

The first word of the branch on coprocessor condition instruction is the
F-line operation word. Bits [15:12]=1111 and bits [11:9] contain the identi-
fication code of the coprocessor that is to evaluate the condition. The value
in bits [8:6] identifies either the word or the long-word displacement format
of the branch instruction, which is specified by the cpBcc.W or cpBcc.L mne-
monic, respectively.

Bits [0-5] of the F-line operation word contain the coprocessor condition
selector field. The MC68030 writes the entire operation word to the condition
CIR to initiate execution .of the branch instruction by the coprocessor. The
coprocessor uses bits [0-5] to determine which condition to evaluate.

If the coprocessor requires additional information to evaluate the condition,
the branch instruction format can include this information in extension words.
Following the F-line operation word, the number of extension words is de-
termined by the coprocessor design. The final word(s) of the cpBcc instruction
format contains the displacement used by the main processor to calculate
the destination address when the branch is taken.

MC68030 USER'S MANUAL MOTOROLA

10.2.2.1.2 Protocol. Figure 10-8 shows the protocol for the cpBcc.L and cpBcc.W
instructions. The main processor initiates the instruction by writing the
F-line operation word to the condition CIR to transfer the condition selector
to the coprocessor. The main processor then reads the response CIR to de-
termine its next action. The coprocessor can return a response primitive to
request services necessary to evaluate the condition. If the coprocessor re-
turns the false condition indicator, the main processor executes the next
instruction in the instruction stream. If the coprocessor returns the true con-
dition indicator, the processor adds the displacement to the MC68030 scanPC
(refer to 10.4.1 ScanPC) to determine the address of the next instruction for
the main processor to execute. The scanPC must be pointing to the location
of the first word of the displacement in the instruction stream when the
address is calculated. The displacement is a twos-complement integer that
can be either a 16-bit word or a 32-bit long word. The processor sign-extends
the 16-bit displacement to a long-word value for the destination address
calculation.

10.2.2.2 SET ON COPROCESSOR CONDITION INSTRUCTION. The set on copro-
cessor condition instructions set or reset a flag (a data alterable byte) ac-
cording to a condition evaluated by the coprocessor. The operation of this
instruction is similar to the operation of the Scc instruction in the M68000
Family instruction set. Although the Scc instruction and the cpScc instruction
do not explicitly cause a change of program flow, they are often used to set
flags that contro! program flow.

10.2.2.2.1 Format. Figure 10-11 shows the format of the set on coprocessor con-
dition instruction, denoted by the cpScc mnemonic.

5 14 13 12 N 9 8 71 6
HERERER CpiD [o [o [1 EFFECTIVE ADDRESS
CONDITION SELECTOR
OPTIONAL COPROCESSOR-DEFINED EXTENSION WORDS
OPTIONAL EFFECTIVE ADDRESS EXTENSION WORDS (0-5 WORDS)

Figure 10-11. Set On Coprocessor Condition (cpScc)

MOTOROLA MC68030 USER’'S MANUAL 10-15

The first word of the cpScc instruction is the F-line operation word. This word
contains the CplD field in bits [9-11] and 001 in bits [8:6] to identify the cpScc
instruction. The lower six bits of the F-line operation word are used to encode
an M68000 Family effective addressing mode (refer to 2.5 EFFECTIVE AD-
DRESS ENCODING SUMMARY).

The second word of the cpScc instruction format contains the coprocessor
condition selector in bits [0-5]. Bits [6-15] of this word are reserved by
Motorola and should be zero to ensure compatibility with future M68000
products. This word is written to the condition CIR to initiate the cpScc in-
struction. : :

If the coprocessor requires additional information to evaluate the condition,
the instruction can include extension words to provide this information. The
number of these extension words, which follow the word containing the
coprocessor condition selector field, is determined by the coprocessor de-
sign.

The final portion of the cpScc instruction format contains zero to five effective
address extension words. These words contain any additional information
required to calculate the effective address specified by bits [0-5] of the
F-line operation word.

10.2.2.2.2 Protocol. Figl;re 10-8 shows the protocol for the cpScc instruction. The

10-16

MC68030 transfers the condition selector to the coprocessor by writing the
word following the F-line operation word to the condition CIR. The main

‘processor then reads the response CIR to determine its next action. The

coprocessor can return a response primitive to request services necessary
to evaluate the condition. The operation of the cpScc instruction depends on
the condition evaluation indicator returned to the main processor by the
coprocessor. When the coprocessor returns the false condition indicator, the
main processor evaluates the effective address specified by bits [0-5] of the
F-line operation word and sets the byte at that effective address to FALSE
(all bits cleared). When the coprocessor returns the true condition indicator,
the main processor sets the byte at the effective address to TRUE (all bits
set to one).

MC68030 USER'S MANUAL MOTOROLA

10.2.2.3 TEST COPROCESSOR CONDITION, DECREMENT AND BRANCH INSTRUC-
TION. The operation of the test coprocessor condition, decrement and branch
instruction is similar to that of the DBcc instruction provided in the M68000
Family instruction set. This operation uses a coprocessor evaluated condition
and a loop counter in the main processor. It is useful for implementing DO-
UNTIL constructs used in many high-level languages.

10.2.2.3.1 Format. Figure 10-12 shows the format of the test coprocessor condi-
tion, decrement and branch instruction, denoted by the cpDBcc mnemonic.

5 14 13 12 M 9 8 7 6 5 4 3 2 0
NERERER CpiD [o { o | 1+ [o] of 1 [erecmive ADDRESS
{RESERVED) CONDITION SELECTOR

OPTIONAL COPROCESSOR-DEFINED EXTENSION WORDS
DISPLACEMENT

Figure 10-12. Test Coprocessor Condition, Decrement and Branch
Instruction Format {cpDBcc)

The first word of the cpDBcc instruction is the F-line operation word. This
word contains the CplD field in bits [9-11] and 001001 in bits [8:3] to identify
the cpDBcc instruction. Bits [0:2] of this operation word specify the-main
processor data register used as the loop counter during the execution of the
instruction.

The second word of the cpDBcc instruction format contains the coprocessor
condition selector in bits {0-5] and should contain zeros in bits [6-15] to
maintain compatibility with future M68000 products. This word is written to
the condition CIR to initiate execution of the cpDBcc instruction by the co-
processor.

If the coprocessor requires additional information to evaluate the condition,
the cpDBcc instruction can include this information in extension words. These
extension words follow the word containing the coprocessor condition se-
lector field in the cpDBcc instruction format.

The last word of the instruction contains the displacement for the cpDBcc
instruction. This displacement is a twos-complement 16-bit value that is sign-
extended to long-word size when it is used in a destination address calcu-
lation.

MOTOROLA MC68030 USER'S MANUAL 10-17

10.2.2.3.2 Protocol. Figure 10-8 shows the protocol for the cpDBcc instructions.

The MC68030 transfers the condition selector to the coprocessor by writing
the word following the operation word to the condition CIR. The main pro-
cessor then reads the response CIR to determine its next action. The copro-
cessor ‘can use a response primitive to request any services necessary to
evaluate the condition. If the coprocessor returns the true condition indicator,
the main processor executes the next instruction in the instruction stream.
If the coprocessor returns the false condition indicator, the main processor
decrements the low-order word of the register specified by bits [0-2] of the
F-line operation word. If this register contains minus one (—1) after being
decremented, the main processor executes the next instruction in the in-
struction stream. If the register does not contain minus one (— 1) after being
decremented, the main processor branches to the destination address to
continue instruction execution.

The MC68030 adds the displacement to the scanPC (refer to 10.4.1 ScanPC)
to determine the address of the next instruction. The scanPC must point to
the 16-bit displacement in the instruction stream when the destination ad-
dress is calculated.

10.2.2.4 TRAP ON COPROCESSOR CONDITION. The trap on coprocessor condi-

tion instruction allows the programmer to initiate exception processing based
on conditions related to the coprocessor operation.

dition instruction, denoted by the cpTRAPcc mnemonic.

n 10.2.2.4.1 Format. Figure 10-13 shows the format of the trap on coprocessor con-

10-18

15 14 13 12 " 9 8 7 6 5 4 3 2 0

HENERER CpiD [o o] o[+] v] 1] ormooe
(RESERVED) CONDITION SELECTOR
OPTIONAL COPROCESSOR-DEFINED EXTENSION WORDS
OPTIONAL WORD
OR LONG-WORD OPERAND

Figure 10-13. Trap On Coprocessor Condition (cpTRAPcc)

MC68030 USER'S MANUAL v MOTOROLA

The F-line operation word contains the CplD field in bits {9-11] and 001111
in bits [8:3] to identify the cpTRAPcc instruction. Bits [0-2] of the cpTRAPcc
F-line operation word specify the number of optional operand words in the
instruction format. The instruction format can include zero, one, or two op-
erand words.

The second word of the cpTRAPcc instruction format contains the coproces-
sor condition selector in bits [0-5] and should contain zeros in bits [6-15] to
maintain compatibility with future M68000 products. This word is written to
the condition CIR of the coprocessor to initiate execution of the cpTRAPcc
instruction by the coprocessor.

If the coprocessor requires additional information to evaluate a condition,
the instruction can include this information in extension words. These ex-
tension words follow the word containing the coprocessor condition selector
field in the cpTRAPcc instruction format.

The operand words of the cpTRAPcc F-line operation word follow the
coprocessor-defined extension words. These operand words are not explicitly
used by the MC68030, but can be used to contain information referenced by
the cpTRAPcc exception handling routines. The valid encodings for bits [0-2]
of the F-line operation word and the corresponding numbers of operand
words are listed in Table 10-1. Other encodings of these bits are invalid for
the cpTRAPcc instruction.

‘Table 10-1. cpTRAPcc Opmode

Encodings
Optional Words in
Opmode Instruction Format
010 One
011 Two
100 Zero

10.2.2.4.2 Protocol. Figure 10-8 shows the protocol for the cpTRAPcc instructions.
The MC68030 transfers the condition selector to the coprocessor by writing
the word following the operation word to the condition CIR. The main pro-
cessor then reads the response CIR to determine its next action. The copro-
cessor can, using a response primitive, request any services necessary to
evaluate the condition. If the coprocessor returns the true condition indicator,
the main processor initiates exception processing for the cpTRAPcc exception

MOTOROLA MC68030 USER'S MANUAL 10-19

(refer to 10.5.2.4 cpTRAPcc INSTRUCTION TRAPS). If the coprocessor returns
the false condition indicator, the main processor executes the next instruction
in the instruction stream.

10.2.3 Coprocessor Save and Restore Instructions

The coprocessor context save and context restore instruction categories in
the M68000 coprocessor interface support multitasking programming envi-
ronments. In a multitasking environment, the context of a coprocessor may
need to be changed asynchronously with respect to the operation of that
coprocessor. That is, the coprocessor may be interrupted at any point in the
execution of an instruction in the general or conditional category to begln
context change operations.

In contrast to the general and conditional instruction categories, the context
save and context restore instruction categories do not use the coprocessor
response primitives. A set of format codes defined by the M68000 copro-
cessor interface communicates status information to the main processor
during the execution of these instructions. These coprocessor format codes
are discussed in detail in 10.2.3.2 COPROCESSOR FORMAT WORDS.

10.2.3.1 COPROCESSOR INTERNAL STATE FRAMES. The context save (cpSAVE)

10-20

and context restore (cpRESTORE) instructions transfer an internal coproces-
sor state frame between memory and a coprocessor. This internal copro-
cessor state frame represents the state of coprocessor operations. Using the
c¢pSAVE and cpRESTORE instructions, it is possible to interrupt coprocessor
operation, save the context associated with the current operation, and initiate
coprocessor operations with a new context.

A cpSAVE instruction stores a coprocessor’s internal state frame as a se-
guence of long-word entries in memory. Figure 10-14 shows the format of a
coprocessor state frame. During execution of the cpSAVE instruction, the
MC68030 calculates the state frame effective address from information in the
operation word of the instruction and stores a format word at this effective
address. The processor writes the long words that form the coprocessor state
frame to descending memory addresses, beginning with the address spec-
ified by the sum of the effective address and the format word-length field
multiplied by four. During execution of the cpRESTORE instruction, the
MC68030 reads the format word and long words in the state frame from
ascending addresses, beginning with the effective address specified in the
instruction operation word.

MC68030 USER'S MANUAL MOTOROLA

SAVE RESTORE

ORDER ORDER a3 2 15 0

0 FORMAT LENGTH (UNUSED, RESERVED)

COPROCESSOR-DEPENDENT INFORMATION

0
n 1
n-1 2
n-2 3

Figure 10-14. Coprocessor State Frame Format in Memory

The processor stores the coprocessor format word at the lowest address of
the state frame in memory, and this word is the first word transferred for
both the cpSAVE and the cpRESTORE instructions. The word following the
format word does not contain information relevant to the coprocessor state
frame, but serves to keep the information in the state frame a multiple of
four bytes in size. The number of entries following the format word (at higher
addresses) is determined.

The information in a coprocessor state frame describes a context of operation
for that coprocessor. This description of a coprocessor context includes the
program invisible state information and, optionally, the program visible state
information. The program invisible state information consists of any internal
registers or status information that cannot be accessed by the program but
is necessary for the coprocessor to continue its operation at the point of
suspension. Program visible state information includes the contents of all
registers that appear in the coprocessor programming model and that can
be directly accessed using the coprocessor instruction set. The information
saved by the cpSAVE instruction must include the program invisible state
information. If cpGEN instructions are provided to save the program visible
state of the coprocessor, the cpSAVE and cpRESTORE instructions should
only transfer the program invisible state information to minimize interrupt
latency during a save or restore operation. i

MOTOROLA MC68030 USER'S MANUAL 10-21

10.2.3.2 COPROCESSOR FORMAT WORDS. The coprocessor communicates sta-

tus information to the main processor during the execution of cpSAVE and
cpRESTORE instructions using coprocessor format words. The format words
defined for the M68000 coprocessor interface are listed in Table 10-2.

Table 10-2. Coprocessor Format Word Encodings

Format Code Length Meaning
00 XX Empty/Reset
01 XX Not Ready, Come Again
02 XX Invalid Format
03-0F XX Undefined, Reserved
10-FF Length Valid Format, Coprocessor Defined

The upper byte of the coprocessor format word contains the code used to
communicate coprocessor status information to the main processor. The
MC68030 recognizes four types of format words: empty/reset, not ready,
invalid format, and valid format. The MC68030 interprets the reserved format
codes ($03-$0F) as invalid format words. The lower byte of the coprocessor
format word specifies the size in bytes (which must be a multiple of four) of
the coprocessor state frame. This value is only relevant when the code byte
contains the valid format code (refer to 10.2.3.2.4 Valid Format Word).

10.2.3.2.1 Empty/Reset Format Word. The coprocessor returns the empty/reset

10-22

format code during a ¢pSAVE instruction to indicate that the coprocessor
contains no user-specific information. That is, no coprocessor instructions
have been executed since either a previous coRESTORE of an empty/reset
format code or the previous hardware reset. If the main processor reads the
empty/reset format word from the save CIR during the initiation of a cpSAVE
instruction, it stores the format word at the effective address specified in the
cpSAVE instruction and executes the next instruction.

When the main processor reads the empty/reset format word from memory
during the execution of the cpoRESTORE instruction, it writes the format word
to the restore CIR. The main processor then reads the restore CIR and, if the
coprocessor returns the empty/reset format word, executes the next instruc-
tion. The main processor can initialize the coprocessor by writing the empty/
reset format code to the restore CIR. When the coprocessor receives the
empty/reset format code, it terminates any.current operations and waits for
the main processor to initiate the next coprocessor instruction. In particular,
after the cpRESTORE of the empty/reset format word, the execution of a

~

MC68030 USER'S MANUAL MOTOROLA

cpSAVE should cause the empty/reset format word to be returned when a
cpSAVE instruction is executed before any other coprocessor instructions.
Thus, an empty/reset state frame consists only of the format word and the
following reserved word in memory (refer to Figure 10-14).

10.2.3.2.2 Not Ready Format Word. When the main processor initiates a cpSAVE
instruction by reading the save CIR the coprocessor can delay the save op-
eration by returning a not ready format word. The main processor then
services any pending interrupts and reads the save CIR again. The not ready
format word delays the save operation until the coprocessor is ready to save
its internal state. The cpSAVE instruction can suspend execution of a general
or conditional coprocessor instruction; the coprocessor can resume execu-
tion of the suspended instruction when the appropriate state is restored with
a cpRESTORE. If no further main processor services are required to complete
coprocessor instruction execution, it may be more efficient to complete the
instruction and thus reduce the size of the saved state. The coprocessor
designer should consider the efficiency of completing the instruction or of
suspending and later resuming the instruction. when the main processor
executes a cpSAVE instruction.

When the main processor initiates a cpRESTORE instruction by writing a
format word to the restore CIR, the coprocessor should usually terminate
any current operations and restore the state frame supplied by the main
processor. Thus, the not ready format word should usually not be returned
by the coprocessor during the execution of a cpRESTORE instruction. If the
coprocessor must delay the cpRESTORE operation for any reason, it can
return the not ready format word when the main processor reads the restore
CIR. If the main processor reads the not ready format word from the restore
CIR during the cpRESTORE instruction, it reads the restore CIR again without
servicing any pending interrupts.

10.2.3.2.3 Invalid Format Word. When the format word placed in the restore CIR
to initiate a cpRESTORE instruction does not describe a valid coprocessor
state frame, the coprocessor returns the invalid format word in the restore
CIR. When the main processor reads this format word during the coRESTORE
instruction, it writes the abort mask to the control CIR and initiates format
error exception processing. The two least significant bits of the abort mask
are 01; the fourteen most significant bits are undefined.

MOTOROLA MC68030 USER'S MANUAL 10-23

A coprocessor should usually not place an invalid format word in the save
CIR when the main processor initiates a cpSAVE instruction. A coprocessor,
however, may not be able to support the initiation of a cpSAVE instruction
while it is executing a previously initiated cpSAVE or cpRESTORE instruction.
In this situation, the coprocessor can return the invalid format word when
the main processor reads the save CIR to initiate the cpSAVE instruction
while either another cpSAVE or cpRESTORE instruction is executing. If the
main processor reads an invalid format word from the save CIR, it writes the
abort mask to the control CIR and initiates format error exception processing
(refer to 10.5.1.5 FORMAT ERRORS).

10.2.3.2.4 Valid Format Word. When the main processor reads a valid format

word from the save CIR during the cpSAVE instruction, it uses the length
field to determine the size of the coprocessor state frame to save. The length
field in the lower eight bits of a format word is relevant only in a valid format
word. During the cpRESTORE instruction, the main processor uses the length
field in the format word read from the effective address in the instruction to
determine the size of the coprocessor state frame to restore.

The length field of a valid format word, representing the size of the copro-
cessor state frame, must contain a multiple of four. If the main processor
detects a value that is not a multiple of four in a length field during the
execution of a cpSAVE or cpRESTORE instruction, the main processor writes
the abort mask (refer to 10.2.3.2.3 Invalid Format Word) to the control CIR
and initiates format error exception processing.

10.2.3.3 COPROCESSOR CONTEXT SAVE INSTRUCTION. The M68000 coproces-

sor context save instruction category consists of one instruction. The copro-
cessor context save instruction, denoted by the cpSAVE mnemonic, saves
the context of a coprocessor dynamically without relation to the execution
of coprocessor instructions in the general or conditional instruction cate-
gories. During the execution of a cpSAVE instruction, the coprocessor com-
municates status information to the main processor by using the coprocessor
format codes.

10.2.3.3.1 Format. Figure 10-15 shows the format of the cpSAVE instruction. The

first word of the instruction is the F-line operation word, which contains the
coprocessor identification code in bits [9-11] and an M68000 effective address

MC68030 USER'S MANUAL MOTOROLA

code in bits [0-5]. The effective address encoded in the cpSAVE instruction
is the address at which the state frame associated with the current context
of the coprocessor is saved in memory.

5 1 13 12 N 9 8 71 6 5
HERERER CplD | 1] o] o] EFFECTIVE ADDRESS
EFFECTIVE ADDRESS EXTENSION WORDS (0-5 WORDS)

Figure 10-15. Coprocessor Context Save Instruction Format (cpSAVE)

The control alterable and predecrement addressing modes are valid for the
cpSAVE instruction. Other addressing modes cause the MC68030 to initiate
F-line emulator exception processing as described in 10.5.2.2 F-LINE EMU-
LATOR EXCEPTIONS.

The instruction can include as many as five effective address extension words
following the cpSAVE instruction operation word. These words contain any
additional information required to calculate the effective address specified
by bits [0-5] of the operation word.

10.2.3.3.2 Protocol. Figure,10-16 shows the protocol for the coprocessor context
save instruction. The main processor initiates execution of the cpSAVE in-
struction by reading the save CIR. Thus, the cpSAVE instruction is the only
coprocessor instruction that begins by reading from a CIR. (All other copro-
cessor instructions write to a CIR to initiate execution of the instruction by
the coprocessor.) The coprocessor communicates status information asso-
ciated with the context save operation to the main processor by placing
coprocessor format codes in the save CIR.

If the coprocessor is not ready to suspend its current operation when the
main processor reads the save CIR, it returns a “not ready”” format code. The
main processor services any pending interrupts and then reads the save CIR
again. After placing the not ready format code in the save CIR, the coprocessor
should either suspend or complete the instruction it is currently executing.

Once the coprocessor has suspended or completed the instruction it is ex-
ecuting, it places a format code representing the internal coprocessor state
in the save CIR. When the main processor reads the save CIR, it transfers the
format word to the effective address specified in the cpSAVE instruction. The
lower byte of the coprocessor format word specifies the number of bytes of
state information, not including the format word and associated null word,

MOTOROLA MC68030 USER'S MANUAL 10-25

10-26

MAIN PROCESSOR COPROCESSCR

M1 RECOGNIZE COPROCESSOR INSTRUCTION F-LINE

OPERATION WORD
M2 READ SAVE CIR TO INITIATE THE cpSAVE INSTRUCTION C1 IF (NOT READY TO BEGIN CONTEXT SAVE OPERATION)
DO STEPS 1) AND 2) BELOW
M3 IF (FORMAT = NOT READY) DO STEPS 1) AND 2) BELOW —~—— 1) PLACE NOT READY FORMAT CODE IN SAVE CIR
1) SERVICE PENDING INTERRUPTS 2). SUSPEND OR COMPLETE CURRENT OPERATIONS
2) 6O TO M2
C2 PLACE APPROPRIATE FORMAT WORD IN SAVE CIR
M3 EVALUATE EFFECTIVE ADDRESS SPECIFIED IN F-LINE C3 TRANSFER NUMBER OF BYTES INDICATED IN
OPWORD AND STORE FORMAT WORD AT FORMAT WORD THROUGH OPERAND CIR
EFFECTIVE ADDRESS

M4 IF (FORMAT = EMPTY) GO TO M5
ELSE, TRANSFER NUMBER OF BYTES INDICATED
IN FORMAT WORD FROM OPERAND CIR TO
EFFECTIVE ADDRESS

M5 PROCEED WITH EXECUTION OF NEXT INSTRUCTION

Figure 10-16. Coprocessor Context Save Instruction Protocol

to be transferred from the coprocessor to the effective address specified. If
the state information is not a multiple of four bytes in size, the MC68030
initiates format error exception processing (refer to 10.5.1.5 FORMAT ER-
RORS). The coprocessor and main processor coordinate the transfer of the
internal state of the coprocessor using the operand CIR. The MC68030 com-
pletes the coprocessor context save by repeatedly reading the operand CIR
and writing the information obtained into memory until all the bytes specified
in the coprocessor format word have been transferred. Following a cpSAVE
instruction, the coprocessor should be in an idle state — that is, not executing
any coprocessor instructions.

The cpSAVE instruction is a privileged instruction. When the main processor
identifies a cpSAVE instruction, it checks the supervisor bit in the status
register to determine whether it is operating at the supervisor privilege level.
If the MC68030 attempts to execute a cpSAVE instruction while at the user
privilege level (status register bit [13]=0), it initiates privilege violation ex-
ception processing without accessing any of the coprocessor interface reg-

“isters (refer to 10.5.2.3 PRIVILEGE VIOLATIONS).

The MC68030 initiates format error exception processing if it reads an invalid
format word (or a valid format word whose length field is not a multiple of
four bytes) from the save CIR during the execution of a cpSAVE instruction

“(refer to 10.2.3.2.3 Invalid Format Word). The MC68030 writes an abort mask

(refer to 10.2.3.2.3 Invalid Format Word) to the control CIR to abort the co-
processor instruction prior to beginning exception processing. Figure 10-16

MC68030 USER'S MANUAL MOTOROLA

does not include this case since a coprocessor usually returns either a not
ready or a valid format code in the context of the cpSAVE instruction. The
coprocessor can return the invalid format word, however, if a cpSAVE is
initiated while the coprocessor is executing a coSAVE or cpRESTORE instruc-
tion and the coprocessor is unable to support the suspension of these two
instructions. :

10.2.3.4 COPROCESSOR CONTEXT RESTORE INSTRUCTION. The M68000 copro-
cessor context restore instruction category includes one instruction. The co-
processor context restore instruction, denoted by the cpRESTORE mnemonic,
forces a coprocessor to terminate any current operations and to restore a
former state. During the execution of a cpRESTORE instruction, the copro-
cessor can communicate status information to the main processor by placing
format codes in the restore CIR.

10.2.3.4.1 Format. Figure 10-17 shows the format of the cpRESTORE instruction.

5 14 13 12 1 9 8 1 § 5 0
HERER RN CpiD [1 [o] 1] EFFECTIVE ADDRESS
EFFECTIVE ADDRESS EXTENSION WORDS (0-5 WORDS)

Figure 10-17. Coprocessor Context Restore Instruction Format (cpRESTORE)

the coprocessor identification code in bits [9-11] and an M68000 effective
addressing code in bits [0-5]. The effective address encoded in the cp-
RESTORE instruction is the starting address in memory where the copro-
cessor context is stored. The effective address is that of the coprocessor
format word that applies to the context to be restored to the coprocessor.

The first word of the instruction is the F-line operation word, which contains “

The instruction can include as many as five effective address extension words
following the first word in the cpRESTORE instruction format. These words
contain any additional information required to calculate the effective address
specified by bits [0-5] of the operation word.

All memory addressing modes except the predecrement addressing mode
are valid. Invalid effective address encodings cause the MC68030 to initiate
F-line emulator exception processing (refer to 10.5.2.2 F-LINE EMULATOR
EXCEPTIONS).

MOTOROLA MC68030 USER'S MANUAL 10-27

10.2.3.4.2 Protocol. Figure 10-18 shows the protocol for the coprocessor context

10-28

restore instruction. When the main processor executes a cpRESTORE instruc-
tion, it first reads the coprocessor format word from the effective address in
the instruction. This format word contains a format code and a length field.
During cpRESTORE operation, the main processor retains a copy of the ilength
field to determine the number of bytes to be transferred to the coprocessor
during the cpRESTORE operation and writes the format word to the restore
CIR to initiate the coprocessor context restore.

MAIN PROCESSOR COPROCESSOR

M1 RECOGNIZE COPROCESSOR INSTRUCTION F-LINE
OPERATION WORD

M2 READ COPROCESSOR FORMAT CODE FROM EFFECTIVE
ADDRESS SPECIFIED IN OPERATION WORD

M3 WRITE COPROCESSOR FORMAT WORD TO RESTORE CIR —— €1 TERMINATE CURRENT OPERATIONS AND EVALUATE
FORMAT WORD

€2 IF (INVALID FORMAT) PLACE INVALID FORMAT CODE
M4 READ RESTORE CIR - IN THE RESTORE CIR

M5 IF (FORMAT = INVALID FORMAT) WRITE $0001
ABORT CODE TO CONTROL CIR AND INITIATE FORMAT
ERROR EXCEPTION PROCESSING (SEE NOTE 1)

M6 IF (FORMAT = EMPTY/RESET) GO TO M7 €3 IF (VALID FORMAT) RECEIVE NUMBER OF BYTES

ELSE, TRANSFER NUMBER OF BYTES SPECIFIED BY INDICATED N FORMAT WORD THROUGH OPERAND CIR
FORMAT WORD TO DPERAND CIR (SEE NOTE 2)

M7 PROCEED WITH EXECUTION OF NEXT INSTRUCTION

NOTES: 1. See 10.6.1.5 FORMAT ERROR
2. The MC68030 uses the length field in the format word read during M2 to determine the number
of bytes to read from memory and write to the operand CIR

Figure 10-18. Coprocessor Context Restore Instruction Protocol

When the coprocessor receives the format word in the restore CIR, it must
terminate any current operations and evaluate the format word. If the format
word represents a valid coprocessor context as determined by the copro-
cessor design, the coprocessor returns the format word to the main processor
through the restore CIR and prepares to receive the number of bytes specified
in the format word through its operand CIR.

After writing the format word to the restore CIR the main processor continues
the cpRESTORE dialog by reading that same register. If the coprocessor
returns a valid format word, the main processor transfers the number of
bytes specified by the format word at the effective address to the operand
CIR.

MC68030 USER'S MANUAL MOTOROLA

If the format word written to the restore CIR does not represent a valid
coprocessor state frame, the coprocessor places an invalid format word in
the restore CIR and terminates any current operations. The main processor
receives the invalid format code, writes an abort mask (refer to 10.2.3.2.3
Invalid Format Word) to the control CIR, and initiates format error exception
processing (refer to 10.5.1.5 FORMAT ERRORS).

The cpRESTORE instruction is a privileged instruction. When the main pro-
cessor accesses a cpRESTORE instruction, it checks the supervisor bit in the
status register. If the MC68030 attempts to execute a cpRESTORE instruction
while at the user privilege level (status register bit [13] =0), it initiates privilege
violation exception processing without accessing any of the coprocessor
interface registers (refer to 10.5.2.3 PRIVILEGE VIOLATIONS).

10.3 COPROCESSOR INTERFACE REGISTER SET

The instructions of the M68000 coprocessor interface use registers of the CIR
set to communicate with the coprocessor. These CIRs are not directly related
to the coprocessor’s programming model.

Figure 10-4 is a memory map of the CIR set. The registers denoted by asterisks
{*) must be included in a coprocessor interface that implements coprocessor
instructions in all four categories. The complete register model must be
implemented if the system uses all of the coprocessor response primitives
defined for the M68000 coprocessor interface.

The following paragraphs contain detailed descriptions of the registers.

10.3.1 Response CIR

The coprocessor uses the 16-bit response CIR to communicate all service
requests (coprocessor response primitives) to the main processor. The main
processor reads the response CIR to receive the coprocessor response pri-
mitives during the execution of instructions in the general and conditional
instruction categories. The offset from the base address of the CIR set for
the response CIR is $00. Refer to 10.4 COPROCESSOR RESPONSE PRIMI-
TIVES.

MOTOROLA MC68030 USER'S MANUAL 10-29

10.3.2 Control CIR

The main processor writes to the 2-bit control CIR to acknowledge copro-
cessor-requested exception processing or to abort the execution of a copro-
cessor instruction. The offset from the base address of the CIR set for the
control CIR is $02. The control CIR occupies the two least significant bits of
the word at that offset. The 14 most significant bits of the word are undefined.
Figure 10-19 shows the format of this register.

5 o i 2 1 0
| ' (UNDEFINED, RESERVED) | xa | a8 |

Figure 10-19. Control CIR Format

When the MC68030 receives one of the three take exception coprocessor
response primitives, it acknowledges the primitive by writing the exception
acknowledge mask (102) to the control CIR, which sets the exception ac-
knowledge {XA) bit. The MC68030 writes the abort mask (012), which sets
the abort (AB) bit, to the control CIR to abort any coprocessor instruction in
progress. {The most significant 14 bits of both masks are undefined.) The
MC68030 aborts a coprocessor instruction when it detects one of the follow-
ing exception conditions:

® An F-line emulator exception condition after reading a response primitive

® A privilege violation exception as it performs a supervisor check in re-
sponse to a supervisor check primitive

e A format error exception when it receives an invalid format word or a
valid format word that contains an invalid length ’

10.3.3 Save CIR

10-30

The coprocessor uses the 16-bit save CIR to communicate status and state

- frame format information to the main processor while executing a cpSAVE

instruction. The main processor reads the save CIR to initiate execution of
the cpSAVE instruction by the coprocessor. The offset from the base address
of the CIR set for the save CIR is $04. Refer to 10.2.3.2 COPROCESSOR FOR-
MAT WORDS.

MC68030 USER'S MANUAL MOTOROLA

10.3.4 Restore CIR R

The main processor initiates the cpRESTORE instruction by writing a copro-
cessor format word to the 16-bit restore register. During the execution of the
cpRESTORE instruction, the coprocessor communicates status and state frame
format information to the main processor through the restore CIR. The offset
from the base address of the CIR set for the restore CIR is $06. Refer to
10.2.3.2 COPROCESSOR FORMAT WORDS.

10.3.5 Operation Word CIR

The main processor writes the F-line operation word of the instruction in
progress to the 16-bit operation word CIR in response to a transfer operation
word coprocessor response primitive (refer to 10.4.6 Transfer Operation Word
Primitive). The offset from the base address of the CIR set for the operation
word CIR is $08.

10.3.6 Command CIR

The main processor initiates a general category instruction by writing the
instruction command word, which follows the instruction F-line operation
word in the instruction stream, to the 16-bit command CIR. The offset from
the base address of the CIR set for the command CIR is $0A.

10.3.7 Condition CIR

The main processor initiates a conditional category instruction by writing the
condition selector to the 16-bit condition CIR. The offset from the base address
of the CIR set for the condition CIR is $0E. Figure 10-20 shows the format of
the condition CIR.

15 6 5 0
| ' (UNDEFINED, RESERVED) (CONDITION SELECTOR

Figure 10-20. Condition CIR Format

MOTOROLA MC68030 USER’'S MANUAL 10-31

10.3.8 Operand CIR

When the coprocessor requests the transfer of an operand, the main pro-
cessor performs the transfer by reading from or writing to the 32-bit operand
CIR. The offset from the base address of the CIR set for the operand CIR is
$10.

The MC68030 aligns all operands transferred to and from the operand CIR
to the most significant byte of this CIR. The processor performs a sequence
of long-word transfers to read or write any operand larger than four bytes.
If the operand size is not a multiple of four bytes, the portion remaining after
the initial long-word transfers is aligned to the most significant byte of the
operand CIR. Figure 10-21 shows the operand alignment used by the MC68030
when accessing the operand CIR.

3 23 15 7 0
[svieoperno NO TRANSFER |
[WORD OPERAND NO TRANSFER |
[THREE BYTE OPERAND NO TRANSFER |
[LONG WORD OPERAND |
TEN -
BYTE -
OPERAND] . NO TRANSFER

Figure 10-21. Operand Alignment for Operand CIR Accesses

10.3.9 Register Select CIR

10-32

When the coprocessor requests the transfer of one or more main processor
registers or a group of coprocessor registers, the main processor reads the
16-bit register select CIR to identify the number or type of registers to be
transferred. The offset from the base address of the CIR set for the register
select CIR is $14. The format of this register depends on the primitive that
is currently using it. Refer to 10.4 COPROCESSOR RESPONSE PRIMITIVES.

MC68030 USER'S MANUAL MOTOROLA

10.3.10 Instruction Address CIR

When the coprocessor requests the address of the instruction it is currently
executing, the main processor transfers this address to the 32-bit instruction
address CIR. Any transfer of the scanPC is also performed through the in-
struction address CIR (refer to 10.4.17 Transfer Status Register and ScanPC
Primitive). The offset from the base address of the CIR set for the instruction
address CIR is $18.

10.3.11 Operand Address CIR

When a coprocessor requests an operand address transfer between the main
processor and the coprocessor, the address is transferred through the 32-bit
operand address CIR. The offset from the base address of the CIR set for the
operand address CIR is $1C.

10.4 COPROCESSOR RESPONSE PRIMITIVES

The response primitives are primitive instructions that the coprocessorissues
to the main processor during the execution of a coprocessor instruction. The
coprocessor uses response primitives to communicate status information
and service requests to the main processor. In response to an instruction
command word written to the command CIR or a condition selector in the
condition CIR, the coprocessor returns a response primitive in the response
CIR. Within the general and conditional instruction categories, individual
instructions are distinguished by the operation of the coprocessor hardware
and also by services specified by coprocessor response primitives provided
by the main processor.

Subsequent paragraphs, beginning with 10.4.2 Coprocessor Response Pri-
mitive General Format, consist of detailed descriptions of the M68000 co-
processor response primitives supported by the MC68030. Any response
primitive that the MC68030 does not recognize causes it to initiate protocol
violation exception processing (refer to 10.5.2.1 PROTOCOL VIOLATIONS).
This processing of undefined primitives supports emulation of extensions to
the M68000 coprocessor response primitive set by the protocol violation
exception handler. Exception processing related to the coprocessor interface
is discussed in 10.5 EXCEPTIONS.

MOTOROLA MC68030 USER'S MANUAL 10-33

10.4.1 ScanPC

10-34

Several of the response primitives involve the scanPC, and many of them
require the main processor to use it while performing services requested.
These paragraphs describe the scanPC and tell how it operates.

During the execution of a coprocessor instruction, the program counter in
the MC68030 contains the address of the F-line operation word of that in-
struction. A second register, called the scanPC, sequentially addresses the
remaining words of the instruction.

If the main processor requires extension words to calculate an effective ad-
dress or destination address of a branch operation, it uses the scanPC to
address these extension words in the instruction stream. Also, if a copro-
cessor requests the transfer of extension words, the scanPC addresses the
extension words during the transfer. As the processor references each word,
it increments the scanPC to point to the next word in the instruction stream.
When an instruction is completed, the processor transfers the value in the
scanPC to the program counter to address the operation word of the next
instruction.

The value in the scanPC when the main processor reads the first response
primitive after beginning to execute an instruction depends on the instruction
being executed. For a ¢cpGEN instruction, the scanPC points to the word
following the coprocessor command word. For the cpBcc instructions, the
scanPC points to the word following the instruction F-line operation word.
For the cpScc, cpTRAPcc, and cpDBcc instructions, the scanPC points to the
word following the coprocessor condition specifier word.

If a coprocessor implementation uses optional instruction extension words
with a general or conditional instruction, the coprocessor must use these
words consistently so that the scanPC is updated accordingly during the
instruction execution. Specifically, during the execution of general category
instructions, when the coprocessor terminates the instruction protocol, the
MC68030 assumes that the scanPC is pointing to the operation word of the
next instruction to be executed. During the execution of conditional category
instructions, when the coprocessor terminates the instruction protocol, the

. MC68030 assumes that the scanPC is pointing to the word following the last

of any coprocessor-defined extension words in the instruction format.

MC68030 USER'S MANUAL MOTOROLA

10.4.2 Coprocessor Response Primitive General Format

The M68000 coprocessor response primitives are encoded in a 16-bit word
that is transferred to the main processor through the response CIR. Figure
10-22 shows the format of the coprocessor response primitives.

5 1 13 12 8 7 0
| CA | PC | DR | FUNCTION | PARAMETER

Figure 10-22. Coprocessor Response Primitive Format

The encoding of bits [0-12] of a coprocessor response primitive depends on
the individual primitive. Bits [13-15], however, specify optional additional
operations that apply to most of the primitives defined for the M68000 co-
processor interface.

Bit [15], the CA bit, specifies the ““‘come again’ operation of the main pro-
cessor. When the main processor reads a response primitive from the re-
sponse CIR with the come again bit set to one, it performs the service indicated
by the primitive and then reads the response CIR again. Using the CA bit, a
coprocessor can transfer several response primitives to the main processor
during the execution of a single coprocessor instruction.

Bit [4], the PC bit, specifies the pass program counter operation. When the
main processor reads a primitive with the PC bit set from the response CIR,
the main processor immediately passes the current value in its program
counter to the instruction address CIR as the first operation in servicing the
primitive request. The value in the program counter is the address of the
F-line operation word of the coprocessor instruction currently executing. The
.PC bit is implemented in all of the coprocessor response primitives currently
defined for the M68000 coprocessor interface.

When an undefined primitive or a primitive that requests an illegal operation
is passed to the main processor, the main processor initiates exception pro-
cessing for either an F-line emulator or a protocol violation exception (refer
to 10.5.2 Main-Processor-Detected Exceptions). If the PC bit is set in one of
these response primitives, however, the main processor passes the program
counter to the instruction address CIR before it initiates exception processing.

When the main processor initiates a cpGEN instruction that can be executed

concurrently with main processor instructions, the PC bit is usually set in the
first primitive returned by the coprocessor. Since the main processor pro-

MOTOROLA MC68030 USER'S MANUAL 10-35

ceeds with instruction stream execution once the coprocessor releases it, the
coprocessor must record the instruction address to support any possible
exception processing related to the instruction. Exception processing related
to concurrent coprocessor instruction execution is discussed in 10.5.1 Co-
processsor-Detected Exceptions.

Bit [13], the DR bit, is the direction bit. It applies to operand transfers between
the main processor and the coprocessor. If DR=0, the direction of transfer
is from the main processor to the coprocessor (main processor write). If
DR =1, the direction of transfer is from the coprocessor to the main processor
(main processor read). If the operation indicated by a given response pri-
mitive does not involve an explicit operand transfer, the value of this bit
depends on the particular primitive encoding.

10.4.3 Busy Primitive

The busy response primitive causes the main processor to reinitiate a co-
processor instruction. This primitive applies to instructions in the general
and conditional categories. Figure 10-23 shows the format of the busy pri-
mitive.

514 138 12 10 9 8 1 6 5 4 3 2 1 0
LifreltJoJolrJoJoJoJoJo loJoJofa]o]

Figure 10-23. Busy Primitive Format

This primitive uses the PC bit as previously described.

Coprocessors that can operate concurrently with the main processor but
cannot buffer write operations to their command or condition CIR use the
busy primitive. A coprocessor may execute a cpGEN instruction concurrently
with an instruction in the main processor. If the main processor attempts to
initiate an instruction in the general or conditional instruction category while
the coprocessor is concurrently executing a cpGEN instruction, the copro-
cessor can place the busy primitive in the response CIR. When the main
processor reads this primitive, it services pending interrupts (using a pre-
instruction exception stack frame, refer to Figure 10-41). The processor then
restarts the general or conditional coprocessor instruction that it had at-
tempted to initiate earlier.

10-36 MC68030 USER'S MANUAL MOTOROLA

The busy primitive should only be used in response to a write to the command
or condition CIR. It should be the first primitive returned after the main
processor attempts to initiate a general or conditional category instruction.
In particular, the busy primitive should not be issued after program-visible
resources have been altered by the instruction. (Program-visible resources
include coprocessor and main processor program-visible registers and op-
erands in memory, but not the scanPC.) The restart of an instruction after it
has altered program-visible resources causes those resources to have in-
consistent values when the processor reinitiates the instruction.

The MC68030 responds to the busy primitive differently in a special case that
can occur during a breakpoint operation (refer to 8.1.12 Multiple Exceptions).
This special case occurs when a breakpoint acknowledge cycle initiates a
coprocessor F-line instruction, the coprocessor returns the busy primitive in
response to the instruction initiation, and an interrupt is pending. When these
three conditions are met, the processor re-executes the breakpoint acknowl-
edge cycle after the interrupt exception processing has been completed. A
design that uses a breakpoint to monitor the number of passes through a
loop by incrementing or decrementing a counter may not work correctly
under these conditions. This special case may cause several breakpoint ac-
knowledge cycles to be executed during a single pass through a loop.

10.4.4 Null Primitive

The null coprocessor response primitive communicates coprocessor status
information to the main processor. This primitive applies to instructions in
the general and conditional categories. Figure 10-24 shows the format of the
null primitive.

5 14 13 12 1u 1 9 8 7 6 5 4 3 2 1 0
[eaflpc| ool v fofofm]Jololofo]o]o]e]r]

Figure 10-24. Null Primitive Format

This primitive uses the CA and PC bits as previously described.

Bit [8], the IA bit, specifies the interrupts allowed optional operation. This bit
determines whether the MC68030 services pending interrupts prior to re-
reading the response CIR after receiving a null primitive. Interrupts are al-
lowed when the IA bit is set.

MOTOROLA MC68030 USER'S MANUAL 10-37

10-38

Bit [1], the PF bit, shows the “processing finished"” status of the coprocessor.
That is, PF=1 indicates that the coprocessor has completed all processing
associated with an instruction.

Bit [0], the TF bit, indicates the true/false condition during the execution of
a conditional category instruction. TF=1 is the true condition specifier, and
TF=0 is the false condition specifier. The TF bit is only relevant for null
primitives with CA=0 that are used by the coprocessor during the execution
of a conditional instruction.

The MC68030 processes a null primitive with CA=1 in the same manner
whether executing a general or conditional category coprocessor instruction.
If the coprocessor sets CA and IA to one in the null primitive, the main
processor services pending interrupts (using a mid-instruction stack frame,
refer to Figure 10-43) and reads the response CIR again. If the coprocessor
sets CA to one and IA to zero in the null primitive, the main processor reads
the response CIR again without servicing any pending interrupts.

A null, CA=0 primitive provides a condition evaluation indicator to the main
processor during the execution of a conditional instruction and ends the
dialogue between the main processor and coprocessor for that instruction.
The main processor completes the execution of a conditional category co-
processor instruction when it receives the primitive. The PF bit is not relevant
during conditional instruction execution since the primitive itself implies
completion of processing.

Usually, when the main processor reads any primitive that does not have
CA =1 while executing a general category instruction, it terminates the dia-
logue between the main processor and coprocessor. If a trace exception is
pending, however, the main processor does not terminate the instruction
dialogue until it reads a null, CA=0, PF=1 primitive from the response CIR
(refer to 10.5.2.56 TRACE EXCEPTIONS). Thus, the main processor continues
to read the response CIR until it receives a null, CA=0, PF=1 primitive, and
then performs trace exception processing. When IA=1, the main processor
services pending interrupts before reading the response CIR again.

MC68030 USER'S MANUAL MOTOROLA

A coprocessor can be designed to execute a cpGEN instruction concurrently
with the execution of main processor instructions and, also, buffer one write
operation to either its command or condition CIR. This type of coprocessor
issues a null primitive with CA=1 when it is concurrently executing a cpGEN
instruction, and the main processor initiates another general or conditional
coprocessor instruction. This primitive indicates that the coprocessor is busy
and the main processor should read the response CIR again without reini-
tiating the instruction. The IA bit of this null primitive usually should be set
to minimize interrupt latency while the main processor is waiting for the
coprocessor to complete the general category instruction.

Table 10-3 summarizes the encodings of the null primitive.

Table 10-3. Null Coprocessor Response Primitive Encodings

CA

PC

1A

PF

TF

General Instructions

Conditional Instructions

1

X

X

X

Pass Program Counter to Instruc-
tion Address CIR, Clear PC Bit, and
Proceed with Operation Specified
by CA, IA, PF, and TF Bits

Same as General Category

Reread. Response CIR, Do Not
Service Pending Interrupts

Same as General Category

Service Pending Interrupts and
Reread the Response CIR

Same as General Category

If (Trace Pending) Reread Re-
sponse CIR; Else, Execute Next In-
struction

Main Processor Completes In-
struction Execution Basedon TF=c

If (Trace Pending) Service Pending
Interrupts and Reread Response
CIR; Else, Execute Next Instruction

Main Processor Completes In-
struction ExecutionBasedon TF=c

Coprocessor Instruction Com-
pleted; Service Pending Excep-
tions or Execute Next Instruction

Main Processor Completes In-
struction Execution Based on
TF=c.

x=Don’t Care

c¢=1 or 0 Depending on Coprocessor Condition Evaluation

MOTOROLA

MC68030 USER'S MANUAL

10-39

10.4.5 Supervisor Check Primitive

The supervisor check primitive verifies that the main processor is operating
in the supervisor state while executing a coprocessor instruction. This pri-
mitive applies to instructions in the general and conditional coprocessor
instruction categories. Figure 10-25 shows the format of the supervisor check
primitive.

5 14 13 12 19 8 1 6 5 4 3 2 1 0
Lt frefofofofrfoJofoJoJofofJaJofJoJol]

Figure 10-25. Supervisor Check Primitive Format

This primitive uses the PC bit as previously described. Bit [15] is shown as
one, but during execution of a general category instruction, this primitive
performs the same operations regardliess of the value of bit [15]. If this pri-
mitive is issued with bit [156]=0 during a conditional category instruction,
however, the main processor initiates protocol violation exception process-
ing.

When the main processor reads the supervisor check primitive from the
response CIR, it checks the value of the S bit in the status register. If S=0
(main processor operating at user privilege level), the main processor aborts
the coprocessor instruction by writing an abort mask (refer to 10.3.2 Control
CIR) to the control CIR. The main processor then initiates privilege violation
exception processing (refer to 10.5.2.3 PRIVILEGE VIOLATIONS). If the main
processor is at the supervisor privilege level when it receives this primitive,
it reads the response CIR again.

The supervisor check primitive allows privileged instructions to be defined
in the coprocessor general and conditional instruction categories. This pri-
mitive should be the first one issued by the coprocessor during the dialog
for an instruction that is implemented as privileged.

10.4.6 Transfer Operation Word Primitive

10-40

The transfer operation word primitive requests a copy of the coprocessor
instruction operation word for the coprocessor. This primitive applies to
general and conditional category instructions. Figure 10-26 shows the format
of the transfer operation word primitive.

MC68030 USER'S MANUAL MOTOROLA

5 14 13 12 1 10 9 8§ 7 6 5 4 3 2 1 0
[cafec]l o oot] oo]Jofo]JoJo]ofo]o]ol]

Figure 10-26. Transfer Operation Word Primitive Format

This primitive uses the CA and PC bits as previously described. If this primitive
is issued with CA=0 during a conditional category instruction, the main
processor initiates protocol violation exception processing.

When the main processor reads this primitive from the response CIR, it
transfers the F-line operation word of the currently executing coprocessor
instruction to the operation word CIR. The value of the scanPC is not affected
by this primitive.

10.4.7 Transfer from Instruction Stream Primitive

The transfer from instruction stream primitive initiates transfers of operands
from the instruction stream to the coprocessor. This primitive applies to
general and conditional category instructions. Figure 10-27 shows the format
of the transfer from instruction stream primitive.

15 14 13 12 n 10 9 8 7 0
[eafec[oo [o] o[]1] ~ LENGTH |

Figure 10-27. Transfer from Instruction Stream Primitive Format

This primitive uses the CA and PC bits as previously described. If this primitive
is issued with CA=0 during a conditional category instruction, the main
processor initiates protocol violation exception processing.

Bits [0-7] of the primitive format specify the length, in bytes, of the operand
to be transferred from the instruction stream to the coprocessor. The length
must be an even number of bytes. If an odd length is specified, the main
processor initiates protocol violation exception processing (refer to 10.5.2.1
PROTOCOL VIOLATIONS).

This primitive transfers coprocessor-defined extension words to the copro-
cessor. When the main processor reads this primitive from the response CIR,
it copies the number of bytes indicated by the length field from the instruction
stream to the operand CIR. The first word or long word transferred is at the

MOTOROLA MC68030 USER'S MANUAL 10-41

location pointed to by the scanPC when the primitive is read by the main
processor, and the scanPC is incremented after each word or long word is
transferred. When execution of the primitive has completed, the scanPC has
been incremented by the total number of bytes transferred and points to the
word following the last word transferred. The main processor transfers the
operands from the instruction stream using a sequence of long-word writes
to the operand CIR. If the length field is not an even multiple of four bytes,
the last two bytes from the instruction stream are transferred using a word
write to the operand CIR.

10.4.8 Evaluate and Transfer Effective Address Primitive

10-42

The evaluate and transfer effective address primitive evaluates the effective
address specified in the coprocessor instruction operation word and transfers
the result to the coprocessor. This primitive applies to general category in-
structions. If this primitive is issued by the coprocessor during the execution
of a conditional category instruction, the main processor initiates protocol
violation exception processing. Figure 10-28 shows the format of the evaluate
and transfer effective address primitive.

5 1 13 12 " 1 9 8 1 6 5 4 3 2 1
feafrc[ool {of1]Jolofolololo[o]o]o]

v Figure 10-28. Evaluate and Transfer Effective Address Primitive Format

This primitive uses the CA and PC bits as previously described.

When the main processor reads this primitive while executing a general
category instruction, it evaluates the effective address specified in the in-
struction. At this point, the scanPC contains the address of the first of any
required effective address extension words. The main processor increments

- the scanPC by two after it references each of these extension words. After

the effective address is calculated, the resulting 32 bit value is ertten to the
operand address CIR.

The MC68030 only calculates effective addresses for control alterable ad-
dressing modes in response to this primitive. If the addressing mode in the
operation word is not a control alterable mode, the main processor aborts
the instruction by writing a $0001 to the control CIR and initiates F-line em-
ulation exception processmg (refer to 10.5.2.2 F-LINE EMULATOR EXCEP-

‘TIONS).

MC68030 USER'S MANUAL MOTOROLA

10.4.9 Evaluate Effective Address and Transfer Data Primitive

The evaluate effective address and transfer data primitive transfers an op-
erand between the coprocessor and the effective address specified in the
coprocessor instruction operation word. This primitive applies to general
category instructions. If the coprocessor issues this primitive during the ex-
ecution of a conditional category instruction, the main processor initiates
protocol violation exception processing. Figure 10-29 shows the format of
the evaluate effective address and transfer data primitive.

' "o 8 7 0
LCA | PC | DRl 1| o | vaupea | LENGTH |

Figure 10-29. Evaluate Effective Address and Transfer Data Primitive Format

This primitive uses the CA, PC, and DR bits as previously described.

The valid effective address field (bits [8—10]) of the primitive format specifies
the valid effective address categories for this primitive. If the effective address
specified in the instruction operation word is not a member of the class
specified by bits [8-10], the main processor aborts the coprocessor instruc-
tion by writing an abort mask (refer to 10.3.2 Control CIR) to the control CIR
and by initiating F-line emulation exception processing. Table 10 4 lists the
valid effective address field encodings.

Table 10-4. Valid Effective
Address Codes

Field Category
000 Control Alterable
001 Data Alterable

010 Memory Alterable
011 Alterable

100 Control
101 Data
110 Memory

11 Any Effective Address
(No Restriction)

MOTOROLA MC68030 USER'S MANUAL 10-43

10-44

Even when the valid effective address fields specified in the primitive and in
the instruction operation word match, the MC68030 initiates protocol viola-
tion exception processing if the primitive requests a write to a nonalterable
effective address.

The length in bytes of the operand to be transferred is specified by bits [0-7]
of the primitive format. Several restrictions apply to operand lengths for
certain effective addressing modes. If the effective address is a main pro-
cessor register {register direct mode), only operand lengths of one, two, or
four bytes are valid; all other lengths (zero, for example) cause the main
processor to initiate protocol violation exception processing. Operand lengths
of 0-255 bytes are valid for the memory addressing modes.

The length of 0-255 bytes does not apply to an immediate operand. The
length of an immediate operand must be one byte or an even number of
bytes (less than 256), and the direction of transfer must be to the coprocessor;
otherwise, the main processor initiates protocol violation exception pro-
cessing.

When the main processor receives this primitive during the execution of a
general category instruction, it verifies that the effective address encoded in
the instruction operation word is in the category specified by the primitive.
If so, the processor calculates the effective address using the appropriate
effective address extension words at the current scanPC address and incre-
ments the scanPC by two for each word referenced. The main processor then
transfers the number of bytes specified in the primitive between the operand
CIR and the effective address using long-word transfers whenever possible.
Refer to 10.3.8 Operand CIR for information concerning operand alignment
for transfers involving the operand CIR.

The DR bit specifies the direction of the operand transfer. DR=0 requests a

transfer from the effective address to the operand CIR, and DR=1 specifies
a transfer from the operand CIR to the effective address.

MC68030 USER'S MANUAL MOTOROLA

If the effective addressing mode specifies the predecrement mode, the ad-
dress register used is decremented by the size of the operand before the
transfer. The bytes within the operand are then transferred to or from as-
cending addresses beginning with the location specified by the decremented
address register. In this mode, if A7 is used as the address register and the
operand length is one byte, A7 is decremented by two to maintain a word-
aligned stack.

For the postincrement effective addressing mode, the address register used
is incremented by the size of the operand after the transfer. The bytes within
the operand are transferred to or from ascending addresses beginning with
the location specified by the address register. In this mode, if A7 is used as
the address register and the operand length is one byte, A7 is incremented
by two after the transfer to maintain a word aligned stack. Transferring odd
length operands longer than one byte using the — (A7) or (A7)+ addressing
modes can result in a stack pointer that is not word aligned.

The processor repeats the effective address calculation each time this pri-
mitive is issued during the execution of a given instruction. The calculation
uses the current contents of any required address and data registers. The
instruction must include a set of effective address extension words for each
repetition of a calculation that requires them. The processor locates these
words at the current scanPC location and increments the scanPC by two for
each word referenced in the instruction stream.

The MC68030 sign-extends a byte or word-sized operand to a long-word

value when itis transferred to an address register (A0-A7) using this primitive

with the register direct effective addressing mode. A byte or word-sized n
operand transferred to a data register (D0-D7) only overwrites the lower byte

or word of the data register.

MOTOROLA MC68030 USER'S MANUAL 10-45

10.4.10 Write to Previously Evaluated Effective Address Primitive

The write to previously evaluated effective address primitive transfers an
operand from the coprocessor to a previously evaluated effective address.
This primitive applies to general category instructions. If the coprocessor
uses this primitive during the execution of a conditional category instruction,
the main processor initiates protocol violation exception processing. Figure
10-30 shows the format of the write to previously evaluated effective address

primitive.
5 1@ 13 12 1 10 9 8 71 0
[calec | 1 JoloJofo]o] LENGTH |

Figure 10-30. Write to Previously Evaluated Effective
Address Primitive Format

This primitive uses the CA and PC bits as ‘previous'ly described.

Bits [0-7] of the primitive format specify the length of the operand in bytes.
The MC68030 transfers operands between zero and 255 bytes in length.

When the main processor receives this primitive during the execution of a
general category instruction, it transfers an operand from the operand CIR
to an effective address specified by a temporary register within the MC68030.
When a previous primitive for the current instruction has evaluated the ef-
fective address, this temporary register contains the evaluated effective ad-
dress. Primitives that store an evaluated effective address in a temporary
register of the main processor are the evaluate and transfer effective address,
evaluate effective address and transfer data, and transfer multiple coproces-
sor registers primitive. If this primitive is used during an instruction in which
the effective address specified in the instruction operation word has not been
calculated, the effective address used for the write is undefined. Also, if the
previously evaluated effective address was register direct, the address written
to in response to this primitive is undefined.

The function code value during the write operation indicates either supervisor

or user data space, depending on the value of the S bit in the MC68030 status
register when the processor reads this primitive. While a coprocessor should

10-46 MC68030 USER'S MANUAL MOTOROLA

request writes to only alterable effective addressing modes, the MC68030
does not check the type of effective address used with this primitive. For
example, if the previously evaluated effective address was program counter
relative and the MC68030 is at the user privilege level (S=0 in status register),
the MC68030 writes to user data space at the previously calculated program
relative address (the 32-bit value in the temporary internal register of the
processor).

Operands longer than four bytes are transferred in increments of four bytes
(operand parts) when possible. The main processor reads a long-word op-
erand part from the operand CIR and transfers this part to the current effective
address. The transfers continue in this manner using ascending memory
locations until all of the long-word operand parts are transferred, and any
remaining operand part is then transferred using a one-, two-, or three-byte
transfer as required. The operand parts are stored in memory using ascending
addresses beginning with the address in the MC68030 temporary register.

The execution of this primitive does not modify any of the registers in the
MC68030 programmer’s model, even if the previously evaluated effective
address mode is the predecrement or postincrement mode. If the previously
evaluated effective addressing mode used any of the MC68030 internal ad-
dress or data registers, the effective address value used is the final value
from the preceding primitive. That is, this primitive uses the value from an
evaluate and transfer effective address, evaluate effective address and trans-
fer data, or transfer multiple coprocessor registers primitive without modi-
fication.

The take address and transfer data primitive described in the next section
does not replace the effective address value that has been calculated by the
MC68030. The address that the main processor obtains in response to the
take address and transfer data primitive is not available to the write to pre-
viously evaluated effective address primitive.

A coprocessor can issue an evaluate effective address and transfer data
primitive followed by this primitive to perform a read-modify-write operation
that is not indivisible. The bus cycles for this operation are normal bus cycles
that can be interrupted, and the bus can be arbitrated between the cycles.

MOTOROLA MC68030 USER'S MANUAL 10-47

10.4.11 Take Address and Transfer Data Primitive

10-48

_The take address and transfer data primitive transfers an operand between

the coprocessor and an address supplied by the coprocessor. This primitive
applies to general and conditional category instructions. Figure 10-31 shows
the format of the take address and transfer data primitive.

15 14 13 12 " 10 7) 0

9 8
|CA|Pc|DR|n|u|1|u|1|' LENGTH

Figure 10-31. Take Address and Transfer Data Primitive Format

This primitive uses the CA, PC, and DR bits as previously described. If the
coprocessor issues this primitive with CA=0 during a conditional category
instruction, the main processor initiates protocol violation exception pro-

" cessing.

Bits [0-7] of the primitive format specify the operand length, which can be
from 0-255 bytes.

The main processor reads a 32-bit address from the operand address CIR.
Using a series of long-word transfers, the processor transfers the operand
between this address and the operand CIR. The DR bit determines the di-
rection of the transfer. The processor reads or writes the operand parts to
ascending addresses, starting at the address from the operand address CIR.
If the operand length is not a multiple of four bytes, the final operand part
is transferred using a one-, two-, or three-byte transfer as required.

The fun\cti'on code used with the address read from the operand address CIR

indicates either supervisor or user data space according to the value of the
S bit in the MC68030 status register.

MC68030 USER'S MANUAL 'MOTOROLA

10.4.12 Transfer to/from Top of Stack Primitive

The transfer to/from top of stack primitive transfers an operand between the
coprocessor and the top of the currently active main processor stack (refer
to 2.8.1 System Stack). This primitive applies to general and conditional
category instructions. Figure 10-32 shows the format of the transfer to/from
top of stack primitive.

5 14 13 12 1 10 9 8§ 7
LCAlPClDR|0|1|1|1|0| LENGTH |

Figure 10-32. Transfer To/From Top of Stack Primitive Format

This primitive uses the CA, PC, and DR bits as previously described. If the
coprocessor issues this primitive with CA=0 during a conditional category
instruction, the main processor initiates protocol violation exception pro-
cessing.

Bits [0-7] of the primitive format specify the length in bytes of the operand
to be transferred. The operand may be one, two, or four bytes in length;
other length values cause the main processor to initiate protocol violation
exception processing.

If DR=0, the main processor transfers the operand from the currently active
system stack to the operand CIR. The implied effective address mode used
for the transfer is the (A7) + addressing mode. A one-byte operand causes
the stack pointer to be incremented by two after the transfer to maintain
word alignment of the stack.

If DR=1, the main processor transfers the operand from the operand CIR to
the currently active stack. The implied effective address mode used for the
transfer is the — (A7) addressing mode. A one-byte operand causes the stack
pointer to be decremented by two before the transfer to maintain word align-
ment of the stack.

MOTOROLA MC68030 USER'S MANUAL 10-49

10.4.13 Transfer Single Main Processor Register Primitive

The transfer single main processor register primitive transfers an operand
between one of the main processor’s data or address registers and the co-
processor. This primitive applies to general and conditional category instruc-
tions. Figure 10-33 shows the format of the transfer single main processor
register primitive. :

1514131211109'8755432v0
|CA|PC|DR|0|||1|o|n|o|o|u]o|D/A| REGISTER |

Figure 10-33. Transfer Single Main Processor Register Primitive Format

This primitive uses the CA, PC, and DR bits as previously described. If the
coprocessor issues this primitive with CA=0 during a-conditional category
instruction, the main processor initiates protocol violation exception pro-
cessing.

Bit [3], the D/A bit, specifies whether the primitive transfers an address or
data register. D/A=0 indicates a data register, and D/A=1 indicates an ad-
dress register. Bits [2-0] contain the register number.

If DR=0, the main processor writes the long-word operand in the specified
register to the operand CIR. If DR=1, the main processor reads a long-word
operand from the operand CIR and transfers it to the specified data or address
register. :

10.4.14 Transfer Main Processor Control Register Primitive

10-50

The transfer main processor control register primitive transfers a long-word
operand between one of its control registers and the coprocessor. This pri-
mitive applies to general and conditional category instructions. Figure 10-34
shows the format of the transfer main processor control register primitive.
This primitive uses the CA, PC, and DR bits as previously described. If the
coprocessor issues this primitive with CA=0 during a conditional category
instruction, the main processor initiates protocol violation exception pro-
cessing.

MC68030 USER'S MANUAL MOTOROLA

15 14 13 12 " o 9 8 17 6 5 4 3 2 1 0
Leafpcfor[o] v [1 Jof 1 JoJoJo[o]ofo]ofo]

Figure 10-34. Transfer Main Processor Control Register Primitive Format

When the main processor receives this primitive, it reads a control register
select code from the register select CIR. This code determines which main
processor control register is transferred. Table 10-5 lists the valid control
register select codes. If the control register select code is not valid, the MC68030
initiates protocol violation exception processing (refer to 10.5.2.1 PROTOCOL
VIOLATIONS).

Table 10-5. Main Processor Control
Register Selector Codes

Hex Control Register

x000 Source Function Code (SFC) Register

x001 Destination Function Code (DFC) Register

x002 Cache Control Register (CACR)
x800 User Stack Pointer (USP)

x801 Vector Base Register (VBR)
x802 Cache Address Register (CAAR)
x803 Master Stack Pointer (MSP)

x804 Interrupt Stack Pointer (ISP)

All other codes cause a protocol violation exception

After reading a valid code from the register select CIR, if DR=0, the main
processor writes the long-word operand from the specified control register
to the operand CIR. If DR=1, the main processor reads a long-word operand
from the operand CIR and places it in the specified control register.

MOTOROLA MC68030 USER'S MANUAL 10-51

10.4.15 Transfer Multiple Main Processor Registers Primitive

The transfer multiple main processor registers primitive transfers long-word
operands between one or more of its data or address registers and the
coprocessor. This primitive applies to general and conditional category in-
structions. Figure 10-35 shows the format of the transfer multiple main pro-
cessor registers primitive.

15 14 13 12 n 0m 9 8 7 6 5 4 3 2 1 0
B N I I R N I I A N AN A I I

Figure 10-35. Transfer Multiple Main Processor Registers Primitive Format

This primitive uses the CA, PC, and DR bits as previously described. If the
coprocessor issues this primitive with CA=0 during a conditional category
instruction, the main processor initiates protocol violation exception pro-
cessing.

When the main processor receives this primitive, it reads a 16-bit register
select mask from the register select CIR. The format of the register select
mask is shown in Figure 10-36. A register is transferred if the bit correspond-
ing to the register in the register select mask is set to one. The selected
registers are transferred in the order D0-D7 and then A0-A7.

15 14 13 12 1Al 10 9 8 7 6 5. 4 3 2 1 0
[a7 [as [as [me [ms] a2 A [ao[or[os{os|os]os|o2{on]no]

Figure 10-36. Register Select Mask Format

If DR=0, the main processor writes the contents of each register indicated
in the register select mask to the operand CIR using a sequence of long-word
transfers. If DR=1, the main processor reads a long-word operand from the
operand CIR into each register indicated in the register select mask. The
registers are transferred in the same order, regardless of the direction of
transfer indicated by the DR bit.

10.4.16 Transfer Multiple Coprocessor Registers Primitive

The transfer multiple coprocessor registers primitive transfers from 0-16
operands between the effective address specified in the coprocessor instruc-
tion and the coprocessor. This primitive applies to general category instruc-

MC68030 USER'S MANUAL MOTOROLA

tions. If the coprocessor issues this primitive during the execution of a
conditional category instruction, the main processor initiates protocol vio-
lation exception processing. Figure 10-37 shows the format of the transfer
multiple coprocessor registers primitive.

5 14 13 12 n 1 9 8§ 7 0
ICA|Pc|nR|0|0|0|0|1| LENGTH |

Figure 10-37. Transfer Multiple Coprocessor Registers Primitive Format

This primitive uses the CA, PC, and DR bits as previously described.

Bits [7-0] of the primitive format indicate the length in bytes of each operand
transferred. The operand length must be an even number of bytes; odd length
operands cause the MC68030 to initiate protocol violation exception pro-
cessing (refer to 10.5.2.1 PROTOCOL VIOLATIONS).

When the main processor reads this primitive, it calculates the effective ad-
dress specified in the coprocessor instruction. The scanPC should be pointing
to the first of any necessary effective address extension words when this
primitive is read from the response CIR; the scanPC is incremented by two
for each extension word referenced during the effective address calculation.
For transfers from the effective address to the coprocessor (DR =0), the con-
trol addressing modes and the postincrement addressing mode are valid.
For transfers from the coprocessor to the effective address (DR = 1), the con-
trol alterable and predecrement addressing modes are valid. Invalid address-
ing modes cause the MC68030 to abort the instruction by writing an abort
mask (refer to 10.3.2 Control CIR) to the control CIR and to initiate F-line
emulator exception processing (refer to 10.5.2.2 F-LINE EMULATOR EXCEP-
TIONS).

After performing the effective address calculation, the MC68030 reads a
16-bit register select mask from the register select CIR. The coprocessor uses
the register select mask to specify the number of operands to transfer; the
MC68030 counts the number of ones in the register select mask to determine
the number of operands. The order of the ones in the register select mask
is not relevant to the operation of the main processor. As many as 16 op-
erands can be transferred by the main processor in response to this primitive.
The total number of bytes transferred is the product of the number of op-
erands transferred and the length of each operand specified in bits [0-7] of
the primitive format.

MOTOROLA MC68030 USER’'S MANUAL 10-53

If DR=1, the main processor reads the number of operands specified in the
register select mask from the operand CIR and writes these operands to the

-effective address specified in the instruction using long-word transfers when-

ever possible. If DR=0, the main processor reads the number of operands
specified in the register select mask from the effective address and writes
them to the operand CIR.

For the control addressing modes, the operands are transferred to or from
memory using ascending addresses. For the postincrement addressing mode,
the operands are read from memory with ascending addresses also, and the
address register used is incremented by the size of an operand after each
operand is transferred. The address register used with the (An)+ addressing
mode is incremented by the total nhumber of bytes transferred during the
primitive execution.

For the predecrement addressing mode, the operands are written to memory
with descending addresses, but the bytes within each operand are written
to memory with ascending addresses. As an example, Figure 10-38 shows
the format in long-word-oriented memory for two 12-byte operands trans-
ferred from the coprocessor to the effective address using the —(An) ad-
dressing mode. The processor decrements the address register by the size
of an operand before the operand is transferred. It writes the bytes of the
operand to ascending memory addresses. When the transfer is complete,
the address register has been decremented by the total number of bytes

‘ transferred. The MC68030 transfers the data using long-word transfers when-

ever possible.

3 23 15 7 0

An - 2 *LENGTH = FINAL An —» 01, BYTE (0) ! | i
| | |
| ! !

! ! ! OP1, BYTE (L-1)
An - LENGTH —3 0PO, BYTE (0) ! | i
I | 1
] | !

! ; | OPOBYIE(L)
INITIAL An —» l | |

10-54

NOTE: OPO, Byte (0} is the first byte written to memory
OPOQ, Byte (L-1) is the last byte of the first operand written to memory
OP1, Byte (0} is the first byte of the second operand written to memory
OP1, Byte (L-1) is the last byte written to memory -

Figure 10-38. Operand Format in Memory for Transfer to —(An)

MC68030 USER'S MANUAL MOTOROLA

10.4.17 Transfer Status Register and ScanPC Primitive

Both the transfer status register and the scanPC primitive transfers values
between the coprocessor and the main processor status register. On an op-
tional basis, the scanPC also makes transfers. This primitive applies to general
category instructions. If the coprocessor issues this primitive during the ex-
ecution of a conditional category instruction, the main processor initiates
protocol violation exception processing. Figure 10-39 shows the format of
the transfer status register and scanPC primitive.

%5 14 13 1 n 1 3 & 7 6 5 4 3 2 1 0
lealpcfor]f o JoJo v [spfoJoJoJoJo]o]o]o]

Figure 10-39. Transfer Status Register and ScanPC P}rimiti,ve Format

This primitive uses the CA, PC, and DR bits as previously described.

Bit [8], the SP bit, selects the scanPC option. If SP=1, the primitive transfers
both the scanPC and status register. If SP=0, only the status register is
transferred. .

If SP=0 and DR =0, the main processor writes the 16-bit status register value
to the operand CIR. If SP=0 and DR=1, the main processor reads a 16-bit
value from the operand CIR into the main processor status register.

if SP=1 and DR=0, the main processor writes the long-word value in the

scanPC to the instruction address CIR and then writes the status register

value to the operand CIR. If SP=1 and DR=1, the main processor reads a
16-bit value from the operand CIR into the status register and then reads a

long-word value from the instruction address CIR into the scanPC.

With this primitive, a general category instruction can change the main pro-
cessor program flow by placing a new value in the status register, in the
scanPC, or new values in both the status register and the scanPC. By ac-
cessing the status register, the coprocessor can determine and manipulate
the main processor condition codes, supervisor status, trace modes, selection
of the active stack, and interrupt mask level.

MOTOROLA MC68030 USER'S MANUAL 10-55

The MC68030 discards any instruction words that have been prefetched be-
yond the current scanPC location when this primitive is issued with DR=1
(transfer to main processor). The MC68030 then refills the instruction pipe
from the scanPC address in the address space indicated by the status register
S bit.

If the MC68030 is operating in the trace on change of flow mode (T1:TO in
the status register contains 01) when the coprocessor instruction begins to
execute and if this primitive is issued with DR=1 (from coprocessor to main
processor), the MC68030 prepares to take a trace exception. The trace ex-
ception occurs when the coprocessor signals that it has completed all pro-
cessing associated with the instruction. Changes in the trace modes due to
the transfer of the status register to main processor take effect on execution
of the next instruction.

10.4.18 Take Pre-Instruction Exception Primitive

10-56

The take pre-instruction exception primitive initiates exception processing
using a coprocessor-supplied exception vector number and the pre-instruc-
tion exception stack frame format. This primitive applies to general and con-
ditional category instructions. Figure 10-40 shows the format of the take pre-
instruction exception primitive.

5 14 18 1 n 1 9 8 7
IDIPC|U|1|1|1|0|D| VECTOR NUMBER

Figure 10-40. Take Pre-Instruction Exception Primitive Format

The primitive uses the PC bit as previously described. Bits [0-7] contain the
exception vector number used by the main processor to initiate exception
processing.

When the main processor receives this primitive, it acknowledges the co-
processor exception request by writing an exception acknowledge mask (re-
fer to 10.3.2 Control CIR) to the control CIR. The MC68030 then proceeds with
exception processing as described in 8.1 EXCEPTION PROCESSING SE-
QUENCE. The vector number for the exception is taken from bits [0-7] of the
primitive, and the MC68030 uses the four-word stack frame format shown in
Figure 10-41.

MC68030 USER'S MANUAL MOTOROLA

5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SP —— STATUS REGISTER

+02

PROGRAM COUNTER

+06 {0 0 0 0O VECTOR NUMBER

Figure 10-41. MC68030 Pre-Instruction Stack Frame

The value of the program counter saved in this stack frame is the F-line
operation word address of the coprocessor instruction during which the pri-
mitive was received. Thus, if the exception handler routine does not modify
the stack frame, an RTE instruction causes the MC68030 to return and rein-
itiate execution of the coprocessor instruction.

The take pre-instruction exception primitive can be used when the copro-
cessor does not recognize a value written to either its command CIR or
condition CIR to initiate a coprocessor instruction. This primitive can also be
used if an exception occurs in the coprocessor instruction before any pro-
gram-visible resources are modified by the instruction operation. This pri-
mitive should not be used during a coprocessor instruction if program-visible
resources have been modified by that instruction. Otherwise, since the
MC68030 reinitiates the instruction when it returns from exception process-
ing, the restarted instruction receives the previously modified resources in
an inconsistent state.

One of the most important uses of the take pre-instruction exception primitive
is to signal an exception condition in a cpGEN instruction that was executing
concurrently with the main processor’s instruction execution. If the copro-
cessor no longer requires the services of the main processor to complete a
cpGEN instruction and the concurrent instruction completion is transparent
to the programmer’s model, the coprocessor can release the main processor
by issuing a primitive with CA=0. The main processor usually executes the
next instruction in the instruction stream, and the coprocessor completes its
operations concurrently with the main processor operation. If an exception
occurs while the coprocessor is executing an instruction concurrently, the
exception is not processed until the main processor attempts to initiate the
next general or conditional instruction. After the main processor writes to
the command or condition CIR to initiate a general or conditional instruction,
it then reads the response CIR. At this time, the coprocessor can return the

MOTOROLA M668030 USER’'S MANUAL 10-67

take pre-instruction exception primitive. This protocol allows the main pro-
cessor to proceed with exception processing related to the previous con-
currently executing coprocessor instruction and then return and reinitiate the
coprocessor instruction during which the exception was signaled. The co-
processor should record the addresses of all general category instructions
that can be executed concurrently with the main processor and that support
exception recovery. Since the exception is not reported until the next copro-
cessor instruction is initiated, the processor usually requires the instruction
address to determine which instruction the coprocessor was executing when
the exception occurred. A coprocessor can record the instruction address by
setting PC=1 in one of the primitives it uses before releasing the main pro-
CEeSSOor.

10.4.19 Take Mid-Instruction Exception Primitive

10-58

The take mid-instruction exception primitive initiates exception processing
using a coprocessor-supplied exception vector number and the mid-instruc-
tion exception stack frame format. This primitive applies to general and con-
ditional category instructions. Figure 10-42 shows the format of the take mid-
instruction exception primitive. '

5 14 13 12 1 1 9 8 1 0
[ofec| o[1 [t [1]o] 1] VECTOR NUMBER

Figure 10-42. Take Mid-Instruction Exception Primitive Format

This primitive uses the PC bit as previously described. Bits [7-0] contain the
exception vector number used by the main processor to initiate exception
processing.

When the main processor receives this primitive, it acknowledges the co-
processor exception request by writing an exception acknowledge mask (re-
fer to 10.3.2 Control CIR) to the control CIR. The MC68030 then performs
exception processing as described in 8.1 EXCEPTION PROCESSING SE-
QUENCE. The vector number for the exception is taken from bits [0-7] of the
primitive and the MC68030 uses the 10-word stack frame format shown in
Figure 10-43.

MC68030 USER'S MANUAL MOTOROLA

5 14 13 12 n 10 9 8 7 6 5 4 3 2 1 0

SP ——» STATUS REGISTER
+02
SCAN PC

+06 |1 0 0 1 VECTOR NUMBER
+08 :

PROGRAM COUNTER
+0C . INTERNAL REGISTER
+0E OPERATION WORD
+10

EFFECTIVE ADDRESS

Figure 10-43. MC68030 Mid-Instruction Stack Frame

The program counter value saved in this stack frame is the operation word
address of the coprocessor instruction during which the primitive is received.
The scanPC field contains the value of the MC68030 scanPC when the pri-
mitive is received. If the current instruction does not evaluate an effective
address prior to the exception request primitive, the value of the effective
address field in the stack frame is undefined.

The coprocessor uses this primitive to request exception processing for an
exception during the instruction dialog with the main processor. If the ex-
ception handler does not modify the stack frame, the MC68030 returns from
the exception handler and reads the response CIR. Thus, the main processor
attempts to continue executing the suspended instruction by reading the
response CIR and processing the primitive it receives.

MOTOROLA MC68030 USER'S MANUAL 10-59

10.4.20 Take Post-Instruction Exception Primitive

10-60

The take post-instruction exception primitive initiates exception processing
using a coprocessor-supplied exception vector number and the post-instruc-
tion exception stack frame format. This primitive applies to general and con-
ditional category instructions. Figure 10-44 shows the format of the take post-
instruction exception primitive.

15 14 13 12 " 10

9 8 7
|0|Pc|0|1|1|1|1|0| VECTOR NUMBER]

Figure 10-44. Take Post-Instruction Exception Primitive Format

This primitive uses the PC bit as previously described. Bits [0-7] contain the
exception vector number used by the main processor to initiate exception
processing.

When the main processor receives this primitive, it acknowledges the co-
processor exception request by writing an exception acknowledge mask {re-
fer to 10.3.2 Control CIR) to the control CIR. The MC68030 then performs
exception processing as described in 8.1 EXCEPTION PROCESSING SE-
QUENCE. The vector number for the exception is taken from bits [0-7] of the
primitive, and the MC68030 uses the six-word stack frame format shown in
Figure 10-45.

The value in the main processor scanPC at the time this primitive is received
is saved in the scanPC field of the post-instruction exception stack frame.
The value of the program counter saved is the F-line operation word address
of the coprocessor instruction during which the primitive is received.

5 14 13 12 1 w0 9 8 7 6 5 4 3 2 1 0
P ———] - STATUS REGISTER
+02
SCAN PC
406 10 0 1 0 VECTOR NUMBER
+08
PROGRAM COUNTER

Figure 10-45. MIC68030 Post-Instruction Stack Frame

MC68030 USER'S MANUAL MOTOROLA

When the MC68030 receives the take post-instruction exception primitive, it
assumes that the coprocessor either completed or aborted the instruction
with an exception. If the exception handler does not modify the stack frame,
the MC68030 returns from the exception handler to begin execution at the
location specified by the scanPC field of the stack frame. This location should
be the address of the next instruction to be executed.

The coprocessor uses this primitive to request exception processing when
it completes or aborts an instruction while the main processor is awaiting a
normal response. For a general category instruction, the response is a re-
lease; for a conditional category instruction, it is an evaluated true/false
condition indicator. Thus, the operation of the MC68030 in response to this
primitive is compatible with standard M68000 Family instruction related ex-
ception processing (for example, the divide-by-zero exception). -

10.5 EXCEPTIONS

Various exception conditions related to the execution of coprocessor instruc-
tions may occur. Whether an exception is detected by the main processor
or by the coprocessor, the main processor coordinates and performs excep-
tion processing. Servicing these coprocessor-related exceptions is an exten-
sion of the protocol used to service standard M68000 Family exceptions. That
is, when either the main processor detects an exception or is signaled by the
coprocessor that an exception condition has occurred, the main processor
proceeds with exception processing as described in 8.1 EXCEPTION PRO-
CESSING SEQUENCE. '

10.5.1 Coprocessor-Detected Exceptions

Exceptions that the coprocessor detects, also those that the main processor
detects, are usually classified as coprocessor-detected exceptions. These ex-
ceptions can occur during M68000 coprocessor interface operations, internal
operations, or other system-related operations of the coprocessor.

Most coprocessor-detected exceptions are signaled to the main processor
through the use of one of the three take exception primitives defined for the
M68000 coprocessor interface. The main processor responds to these pri-
mitives as previously described. However, not all coprocessor-detected ex-
ceptions are signaled by response primitives. Coprocessor-detected format
errors during the cpSAVE or cpRESTORE instruction are signaled to the main
processor using the invalid format word described in 10.2.3.4.3 Invalid Format
Words.

MOTOROLA MC68030 USER'S MANUAL 10-61

10.5.1.1 COPROCESSOR-DETECTED PROTOCOL VIOLATIONS. Protocol violation

10-62

exceptions are communication failures between the main processor and co-
processor across the M68000 coprocessor interface. Coprocessor-detected
protocol violations occur when the main processor accesses entries in the
coprocessor interface register set in an unexpected sequence. The sequence
of operations that the main processor performs for a given coprocessor
instruction or coprocessor response primitive has been described previously
in this section.

A coprocessor can detect protocol violations in various ways. According to
the M68000 coprocessor interface protocol, the main processor always ac-
cesses the operation word, operand, register select, instruction address, or
operand address CIRs synchronously with respect to the operation of the
coprocessor. That is, the main processor accesses these five registers in a
certain sequence, and the coprocessor expects them to be accessed in that
sequence. As a minimum, all M68000 coprocessors should detect a protocol
violation if the main processor accesses any of these five registers when the
coprocessor is expecting an access to either the command or condition CIR.

_Likewise, if the coprocessor is expecting an access to the command or con-

dition CIR and the main processor accesses one of these five registers, the
coprocessor should detect and signal a protocol violation.

According to the M68000 coprocessor interface protocol, the main processor
can perform a read of either the save or response CIRs or a write of either
the restore or control CIRs asynchronously with respect to the operation of
the coprocessor. That is, an access to one of these registers without the
coprocessor explicitly expecting that access at that point can be a valid access.
Although the coprocessor can anticipate certain accesses to the restore, re-
sponse, and control coprocessor interface registers, these registers can be
accessed at other times also.

The coprocessor cannot signal a protocol violation to the main processor
during the execution of cpSAVE or cpRESTORE instructions. If a coprocessor
detects a protocol violation during the cpSAVE or cpRESTORE instruction, it
should signal the exceptlon to the main processor when the next coprocessor
instruction is initiated.

The main philosophy of the coprocessor-detected protocol violation is that
the coprocessor should always acknowledge an access to one of its interface
registers. If the coprocessor determines that the access is not valid, it should
assert DSACKX, to the main processor and signal a protocol violation when
the main processor next reads the response CIR. If the coprocessor fails to

MC68030 USER'S MANUAL MOTOROLA

assert DSACKx, the main processor waits for the assertion of that signal (or
some other bus termination signal) indefinitely. The protocol previously de-
scribed ensures that the coprocessor cannot halt the main processor.

The coprocessor can signal a protocol violation to the main processor with
the take mid-instruction exception primitive. To maintain consistency, the
vector number should be 13, as it is for a protocol violation detected by the
main processor. When the main processor reads this primitive, it proceeds
as described in 10.4.19 Take Mid-Instruction Exception Primitive. If the ex-
ception handler does not modify the stack frame, the MC68030 returns from
the exception handler and reads the response CIR.

10.5.1.2 COPROCESSOR-DETECTED ILLEGAL COMMAND OR CONDITION
WORDS. lllegal coprocessor command or condition words are values writ-
ten to the command CIR or condition CIR that the coprocessor does not
recognize. If a value written to either of these registers is not valid, the
coprocessor should return the take pre-instruction exception primitive in the
response CIR. When it receives this primitive, the main processor takes a pre-
instruction exception-as described in 10.4.18 Take Pre-Instruction Exception
Primitive. If the exception handler does not modify the main processor stack
frame, an RTE instruction causes the MC68030 to reinitiate the instruction
that took the exception. The coprocessor designer should ensure that the
state of the coprocessor is not irrecoverably altered by an illegal command
or condition exception if the system supports emulation of the unrecognized
command or condition word.

All Motorola M68000 coprocessors signal illegal command and condition
words by returning the take pre-instruction exception primitive with the
F-line emulator exception vector number 11.

10.5.1.3 COPROCESSOR DATA-PROCESSING EXCEPTIONS. Exceptions related
to the internal operation of a coprocessor are classified as data-processing-
related exceptions. These exceptions are analogous to the divide-by-zero
exception defined by M68000 microprocessors and should be signaled to the
main processor using one of the three take exception primitives containing
an appropriate exception vector number. Which of these three primitives is
used to signal the exception is usually determined by the point in the in-
struction operation where the main processor should continue the program
flow after exception processing. Refer to 10.4.18 Take Pre-Instruction Excep-
tion Primitives, 10.4.19 Take Mid-Instruction Exception Primitive, and 10.4.20
Take Post-Instruction Exception Primitive.

MOTOROLA MC68030 USER'S MANUAL 10-63

10.5.1.4 COPROCESSOR SYSTEM-RELATED EXCEPTIONS. System-related ex-

ceptions detected by a DMA coprocessor include those associated with bus
activity and any other exceptions (interrupts, for example) occurring external
to the coprocessor. The actions taken by the coprocessor and the main pro-
cessor depend on the type of exception that occurs.

When an address or bus error is detected by a DMA coprocessor, the co-
processor should store any information necessary for the main processor
exception handling routines in system-accessible registers. The coprocessor
should place one of the three take exception primitives encoded with an
appropriate exception vector number in the response CIR. Which of the three
primitives is used depends upon the point in the coprocessor instruction at
which the exception was detected and the point in the instruction execution
at which the main processor should continue after exception processing.

10.5.1.5 FORMAT ERRORS. Format errors are the only coprocessor-detected ex-

10-64

ceptions that are not signaled to the main processor with a response pri-
mitive. When the main processor writes a format word to the restore CIR
during the execution of a cpRESTORE instruction, the coprocessor decodes
this word to determine if it is valid (refer to 10.2.3.3 COPROCESSOR CONTEXT
SAVE INSTRUCTION). If the format word is not valid, the coprocessor places
the invalid format code in the restore CIR. When the main processor reads
the invalid format code, it aborts the coprocessor instruction by writing an
abort mask (refer to 10.3.2 Control CIR) to the control CIR. The main processor
then performs exception processing using a four-word pre-instruction stack
frame and the format error exception vector number 14. Thus, if the exception
handler does not modify the stack frame, the MC68030 restarts the
cpRESTORE instruction when the RTE instruction in the handler is executed.
If the coprocessor returns the invalid format code when the main processor
reads the save CIR to initiate a cpSAVE instruction, the main processor per-
forms format error exception processing as outlined for the cpRESTORE
instruction.

MC68030 USER'S MANUAL MOTOROLA

10.5.2 Main-Processor-Detected Exceptions

A number of exceptions related to coprocessor instruction execution are
detected by the main processor instead of the coprocessor (they are still
serviced by the main processor). These exceptions can be related to the
execution of coprocessor response primitives, communication across the
M68000 coprocessor interface, or the completion of conditional coprocessor
instructions by the main processor.

10.5.2.1 PROTOCOL VIOLATIONS. The main processor detects a protocol violation
when it reads a primitive from the response CIR that is not a valid primitive.
The protocol violations that can occur in response to the primitives defined
for the M68000 coprocessor interface are summarized in Table 10-6.

MOTOROLA MC68030 USER’S MANUAL 10-65

10-66

Table 10-6. Exceptions Related to Primitive Processing (Sheet 1 of 2)

Primitive

Protocol

F-Line | Other

Busy

NULL

Supervisory Check*
Other: Privilege Violation if “S"” Bit=0

Transfer Operation Word*

Transfer from Instruction Stream*
Protocol: If Length Field is Odd (Zero Length Legal)

Evaluate and Transfer Effective Address
Protoco!l: If Used with Conditional Instruction
F-Line: If EA in Op-Word is NOT Control Alterable

Evaluate Effective Address and Transfer Data

Protocol:
1. If Used with Conditional Instructions
2. Length is Not 1, 2, or 4 and EA=Register Direct
3. If EA=Immediate and Length Odd and Greater Than 1
4. Attempt to Write to Nonalterable Address Even if Address De-

clared Legal in Primitive
F-Line: Valid EA Field Does Not Match EA in Op-Word

Write to Previously Evaluated Effective Address
Protocol: If Used with Conditional Instruction

Busy

Take Address and Transfer Data*

Transfer To/From Top of Stack*
Protocol: Length Field Other Than 1, 2, or 4

Transfer To/From Main Processor Register*

| Transfer To/From Main Processor Control Register

Protocol: invalid Control Register Select Code !

Transfer Multiple Main Processor Registers*

Transfer Multiple Coprocessor Registers
Protocol:
1. If Used with Conditional Instructions
2. Odd Length Value
F-Line:
1. EA Not Control Alterable or {An)+ for CP to Memory Transfer
2. EA Not Control Alterable or —(An) for Memory to CP Transfer

MC68030 USER'S MANUAL

MOTOROLA

Table 10-6. Exceptions Related to Primitive Processing (Sheet 2 of 2)

Primitive Protocoll F-Line | Other
Transfer Status and/or ScanPC X
Protocol: If Used with Conditional Instruction
Other: X

1. Trace — Trace Made Pending if MC68020 in “Trace on Change
of Flow"” Mode and DR=1
2. Address Error — If Odd value Written to ScanPC

Take Pre-Instruction, Mid-Instruction, or Post-Instruction Exception X X X
Exception Depends on Vector Supplies in Primitive

*Use of this primitive with CA=0 will cause protocol violation on conditional instructions.

Abbreviations:
EA =Effective Address
CP=Coprocessor

When the MC68030 detects a protocol violation, it does not automatically
notify the coprocessor of the resulting exception by writing to the control
CIR. The exception handling routine may, however, use the MOVES instruc-
tion to read the response CIR and thus determine the primitive that caused
the MC68030 to initiate protocol violation exception processing. The main
processor initiates exception processing using the mid-instruction stack frame
(refer to Figure 10-43) and the coprocessor protocol violation exception vector
number 13. If the exception handler does not modify the stack frame, the
main processor reads the response CIR again following the execution of an
RTE instruction to return from the exception handler. This protocol allows
extensions to the M68000 coprocessor interface to be emulated in software
by a main processor that does not provide hardware support for these ex-
tensions. Thus, the protocol violation is transparent to the coprocessor if the
primitive execution can be emulated in software by the main processor.

MOTOROLA MC68030 USER'S MANUAL 10-67

10.5.2.2 F-LINE EMULATOR EXCEPTIONS. The F-line emulator exceptions de-

10-68

tected by the MC68030 are either explicitly or implicitly related to the en-
codings of F-line operation words in the instruction stream. If the main
processor determines that an F-line operation word is not valid, it initiates
F-line emulator exception processing. Any F-line operation word with bits
[8:6]1=110 or 111 causes the MC68030 to initiate exception processing with-
out initiating any communication with the coprocessor for that instruction.
Also, an operation word with bits [8:6]=000-101 that does not map to one
of the valid coprocessor instructions in the instruction set causes the MC68030
to initiate F-line emulator exception processing. If the F-line emulator excep-
tion is either of these two situations, the main processor does not write to
the control CIR prior to initiating exception processing.

F-line exceptions can also occur if the operations requested by a coprocessor
response primitive are not compatible with the effective address type in bits
[0-5] of the coprocessor instruction operation word. The F-line emulator
exceptions that can result from the use of the M68000 coprocessor response
primitives are summarized in Table 10-6. If the exception is caused by re-
ceiving an invalid primitive, the main processor aborts the coprocessor in-
struction in progress by writing an abort mask (refer to 10.3.2 Contro! CIR)
to the control CIR prior to F-line emulator exception processing.

Another type of F-line emulator exception occurs when a bus error occurs
during the coprocessor interface register access that initiates a coprocessor
instruction. The main processor assumes that the coprocessor is not present
and takes the exception.

When the main processor initiates F-line emulator exception processing, it
uses the four-word pre-instruction exception stack frame (refer to Figure
10-41) and the F-line emulator exception vector number 11. Thus, if the ex-
ception handler does not modify the stack frame, the main processor attempts
to restart the instruction that caused the exception after it executes an RTE
instruction to return from the exception handler.

If the cause of the F-line exception can be emulated in software, the handler
stores the results of the emulation in the appropriate registers of the pro-
grammer’s model and in the status register field of the saved stack frame.
The exception handler adjusts the program counter field of the saved stack
frame to point to the next instruction operation word and executes the RTE
instruction. The MC68030 then executes the instruction following the instruc-
tion that was emulated.

MC68030 USER'S MANUAL MOTOROLA

The exception handler should also check the copy of the status register on
the stack to determine whether tracing is on. If tracing is on, the trace ex-
ception processing should also be emulated. Refer to 8.1.7 Trace Exception
for additional information.

10.5.2.3 PRIVILEGE VIOLATIONS. Privilege violations can result from the cpSAVE
and cpRESTORE instructions and, also, from the supervisor check coproces-
sor response primitive. The main processor initiates privilege violation ex-
ception processing if it attempts to execute either the cpSAVE or cpRESTORE
instruction when it is in the user state (S=0 in status register). The main
processor initiates this exception processing prior to any communication with
the coprocessor associated with the cpSAVE or cpRESTORE instructions.

If the main processor is executing a coprocessor instruction in the user state
when it reads the supervisor check primitive, it aborts the coprocessor in-
struction in progress by writing an abort mask (refer to 10.3.2 Control CIR)
to the control CIR. The main processor then performs privilege violation
exception processing.

If a privilege violation occurs, the main processor initiates exception pro-
cessing using the four-word pre-instruction stack frame (refer to Figure
10-41) and the privilege violation exception vector number 8. Thus, if the
exception handler does not modify the stack frame, the main processor at-
tempts to restart the instruction during which the exception occurred after
it executes an RTE to return from the handler.

10.5.2.4 cpTRAPcc INSTRUCTION TRAPS. If, during the execution of a cpTRAPcc
instruction, the coprocessor returns the TRUE condition indicator to the main
processor with a null primitive, the main processor initiates trap exception
processing. The main processor uses the six-word post-instruction exception
stack frame (refer to Figure 10-45) and the trap exception vector number 7.
The scanPC field of this stack frame contains the address of the instruction
following the cpTRAPcc instruction. The processing associated with the
cpTRAPcc instruction can then proceed, and the exception handler can locate
any immediate operand words encoded in the cpTRAPcc instruction using
the information contained in the six-word stack frame. If the exception han-
dler does not modify the stack frame, the main processor executes the in-
struction following the cpTRAPcc instruction after it executes an RTE
instruction to exit from the handler.

MOTOROLA MC68030 USER'S MANUAL 10-69

10.5.2.5 TRACE EXCEPTIONS. The MC68030 supports two modes of instruction

10-70

tracing, discussed in 8.1.7 Trace Exception. In the trace on instruction exe-

.cution mode, the MC68030 takes a trace exception after completing each

instruction. In the trace on change of flow mode, the MC68030 takes a trace
exception after each instruction that alters the status register or places an
address other than the address of the next instruction in program counter.

The protocol used to execute coprocessor cpSAVE, cpRESTORE, or condi-
tional category instructions does not change when a trace exception is pend-
ing in the main processor. The main processor performs a pending trace on
instruction execution exception after completing the execution of that in-
struction. If the main processor is in the trace on change of flow mode and
an instruction places an address other than that of the next instruction in the
program counter, the processor takes a trace exception after it executes the
instruction. '

If a trace exception is not pending during a general category instruction, the
main processor terminates communication with the coprocessor after read-
ing any primitive with CA=0. Thus, the coprocessor can complete a cpGEN
instruction concurrently with the execution of instructions by the main pro-
cessor. When a trace exception is pending, however, the main processor
must ensure that all processing associated with a cpGEN instruction has
been completed before it takes the trace exception. In this case, the main
processor continues to read the response CIR and to service the.primitives
until it receives either a null, CA=0, PF=1 primitive, or until exception pro-
cessing caused by a take post-instruction exception primitive has completed.
The coprocessor should return the null, CA=0 primitive with PF=0, while it
is completing the execution of the cpGEN instruction. The main processor
may service pending interrupts between reads of the response CIR if IA=1
in these primitives (refer to Table 10-3). This protocol ensures that a trace
exception is not taken until all processing associated with a cpGEN instruction
has completed. '

If T1:T0O=01 in the MC68030 status register (trace on change of flow) when
a general category instruction is initiated, a trace exception is taken for the
instruction only when the coprocessor issues a transfer status register and
scanPC primitive with DR=1 during the execution of that instruction. In this
case, it is possible that the coprocessor is still executing the cpGEN instruction
concurrently when the main processor begins execution of the trace excep-
tion handler. A ¢pSAVE instruction executed during the trace on change of
flow exception handler could thus suspend the execution of a concurrently
operating cpGEN instruction.

MC68030 USER'S MANUAL MOTOROLA

10.5.2.6 INTERRUPTS. Interrupt processing, discussed in 8.1.9 Interrupt Excep-
tions, can occur at any instruction boundary. Interrupts are also serviced
during the execution of a general or conditional category instruction under
either of two conditions. If the main processor reads a null primitive with
CA=1 and IA=1, it services any pending interrupts prior to reading the
response CIR. Similarly, if a trace exception is pending during cpGEN in-
struction execution and the main processor reads a null primitive with CA=0,
IA=1, and PF=0 (refer to 10.5.2.5 TRACE EXCEPTIONS), the main processor
services pending interrupts prior to reading the response CIR again.

The MC68030 uses the ten-word mid-instruction stack frame when it-services
interrupts during the execution of a general or conditional category copro-
cessor instruction. Since it uses this stack frame, the main processor can
perform all necessary processing and then return to read the response CIR.
Thus, it can continue the coprocessor instruction during which the interrupt
exception was taken.

The MC68030 also services interrupts if it reads the not ready format word
from the save CIR during a cpSAVE instruction. The MC68030 uses the normal
four word pre-instruction stack frame when it services interrupts after reading
the not ready format word. Thus, the processor can service any pending
interrupts and execute an RTE to return and re-initiate the cpSAVE instruction
by reading the save CIR.

10.5.2.7 FORMAT ERRORS. The MC68030 can detect a format error while exe-
cuting a cpSAVE or cpRESTORE instruction if the length field of a valid format
word is not a multiple of four bytes in length. If the MC68030 reads a format m
word with an invalid length field from the save CIR during the cpSAVE in-
struction, it aborts the coprocessor instruction by writing an abort mask (refer
to 10.3.2 Control CIR) to the control CIR and initiates format error exception
processing. If the MC68030 reads a format word with an invalid length field
from the effective address specified in the cpRESTORE instruction, the
MC68030 writes that format word to the restore CIR and then reads the
coprocessor response from the restore CIR. The MC68030 then aborts the
* ¢cpRESTORE instruction by writing an abort mask (refer to 10.3.2 Contro}.CIR)
to the control CIR and initiates format error exception processing.

The MC68030 uses the four-word pre-instruction stack frame and the format
error vector number 14 when it initiates format error exception processing.
Thus, if the exception handler does not modify the stack frame, the main
processor attempts to restart the instruction during which the exception oc-
curred after it executes an RTE to return from the handler.

MOTOROLA MC68030 USER'S MANUAL 10-71

10.5.2.8 ADDRESS AND BUS ERRORS. Coprocessor-instruction-related bus faults

can occur during main processor bus cycles to CPU space to communicate
with a coprocessor or during memory cycles run as part of the coprocessor
instruction execution. If a bus error occurs during the coprocessor interface
register access that is used to initiate a coprocessor instruction, the main
processor assumes that the coprocessor is not present and takes an F-line
emulator exception as described in 10.5.2.2 F-LINE EMULATOR EXCEPTIONS.
That is, the processor takes an F-line emulator exception when a bus error
occurs during the initial access to a CIR by a coprocessor instruction. If a bus
error occurs on any other coprocessor access or on a memory access made
during the execution of a coprocessor instruction, the main processor per-
forms bus error exception processing as described in 8.1.2 Bus Error Excep-
tions. After the exception handler has corrected the cause of the bus error,
the main processor can return to the point in the coprocessor instruction at
which the fault occurred.

An address error occurs if the MC68030 attempts to prefetch an instruction
from an odd address. This can occur if the calculated destination address of
a cpBcc or cpDBcc instruction is odd or if an odd value is transferred to the
scanPC with the transfer status register and the scanPC response primitive.

-If an address error occurs, the MC68030 performs exception processing for

a bus fault as described in 8.1.3 Address Error Exception.

10.5.3 Coprocessor Reset

Either an external reset signal or a RESET instruction can reset the external
devices of a system. The system designer can design a coprocessor to be
reset and initialized by both reset types or by external reset signals only. To
be consistent with the MC68030 design, the coprocessor should be affected

by external reset signals only and not by RESET instructions, because the

coprocessor is an extension to the main processor programming model and
to the internal state of the MC68030.

10.6 COPROCESSOR SUMMARY

10-72

Coprocessor instruction formats are presented for reference. Refer to the
M68000PM/AD, M68000 Programmer’s Reference Manual, for detailed infor-
mation on coprocessor instructions.

MC68030 USER’'S MANUAL MOTOROLA

The M68000 coprocessor response primitive formats are shown in this sec-
tion. Any response primitive with bits [13:8] =$00 or $3F causes a protocol
violation exception. Response primitives with bits [13:8] =$0B, $18-$1B, $1F,
$28-$2B, and $38-3B currently cause protocol violation exceptions; they are
undefined and reserved for future use by Motorola.

BUSY

5 14 13 12 1 1w 9 & 1 6 5 4 3 2 1 0
Lifeef v foJofrJofoJofofoJofoJofao]o]
TRANSFER MULTIPLE COPROCESSOR REGISTERS

15 14 13 12 " 10 9 8 7 0
[CA{Pc|DR|o|o|o|o|1| LENGTH

TRANSFER STATUS REGISTER AND SCANPC

W 13 n 5 4 3 2 1 0

15 m w0 9 8 1 &
LCAIPC'DRIO|0|0|1lSPIOlOI

(=)
B
B
- |
|
E

SUPERVISOR CHECK

151413 12 1103 8§ 1 6
Lt frefofoJofrJoJofJolol]

(22}
&~
w
N
—_
o

o
B
|
|
B
E

TAKE ADDRESS AND TRANSFER DATA

15 14 13 12 1" 10 9 8 7
LCA'PCIDR|U|0|1|0|1| LENGTH |

TRANSFER MULTIPLE MAIN PROCESSOR REGISTERS

5 1 13 12 1un 1 9 8 1 6 5 4 3
LCAch[DRLO|0|1|1|o|o|0|0|0|0|

(=]
o
o

TRANSFER OPERATION WORD

14 12

15 13 m 1w 9 8 71 & 5 4 3 2 1 0
[eafec] ool o[v [v 1 JoJoJoJoJoJofJo]o]

MOTOROLA MC68030 USER'S MANUAL 10-73

10-74

NULL

5 4 13 12 1 1 9 8 71 6 5 4 3 2 1 0

Jeafrc[oo v folo]m]JoJoloJo]o]|ofe]r]

EVALUATE AND TRANSFER EFFECTIVE ADDRESS

%5 14 13 12 o 1w 9 8 7 6 5 4 3 2 1 0

lealec[oJo[1ol Jololo[ofoJo]o[o]o]

TRANSFER SINGLE MAIN PROCESSOR REGISTER

5 14 13 12 1 1 9 8 7 6 5 4 3 2 0

IﬂlPCIDR|0|I|1|0|0|0|0|0|0|D/A| REGISTER

TRANSFER MAIN PROCESSOR CONTROL REGISTER

5 14 13 12 m 1 9 8 71 6 5 4 3 2 1 0

[CA|PC|DR|0|1|1|0|1|0|0|0|o|u|u|0|n|

TRANSFER TO/FROM TOP OF STACK

% 14 13 12 1N 10 9 8 7 0

[calec|or| o v [1] 1]0] LENGTH

TRANSFER FROM INSTRUCTION STREAM

5 14 13 12 1 1 9 8 7 0

|CA|Pc|o|0|111|1|1| LENGTH

EVALUATE EFFECTIVE ADDRESS AND TRANSFER DATA

% 14 13 12 1N 10 9 8 71 . 0

lealrcJor] 1 o] vamea] LENGTH

TAKE PRE-INSTRUCTION EXCEPTION

5 1@ 13 12 1 1 9 8 71 0

IoIPc|n|1|1|1|o|o| VECTOR NUMBER I
MC68030 USER'S MANUAL MOTOROLA

TAKE MID-INSTRUCTION EXCEPTION

15 14 13 12 " 10 9 8 7
Lofe[of][v JTo] 1] VECTOR NUMBER

TAKE POST-INSTRUCTION EXCEPTION

5 14 13 12 1 10 98 8§ 7
[ofrc[ol oo o]]o] VECTOR NUMBER

WRITE TO PREVIOUSLY EVALUATED EFFECTIVE ADDRESS

15 14 13 12 n 10 9 8 7 0
|CA|PC|1|0|o|u|0|u| LENGTH

MOTOROLA MC68030 USER’'S MANUAL 10-75

SECTION 11
INSTRUCTION EXECUTION TIMING

This section describes the instruction execution and operations (table
searches, etc.) of the MC68030 in terms of external clock cycles. It provides
accurate execution and operation timing guidelines but not exact timings for
every possible circumstance. This approach is used since exact execution
time for an instruction or operation is highly dependent on memory speeds
and other variables. The timing numbers presented in this section allow the
assembly language programmer or compiler writer to predict actual cache-
case and average no-cache-case timings needed to evaluate the performance
of the MC68030. Additionally, the timings for exception processing, context
switching, and interrupt processing are included so that designers of multi-
tasking or real-time systems can predict task switch overhead, maximum
interrupt latency, and similar timing parameters.

In this section, instruction and operation times are shown in clock cycles to
- eliminate clock frequency dependencies.

11.1 PERFORMANCE TRADEOFFS

The MC68030 maximizes average performance at the expense of worst case
performance. The time spent executing one instruction can vary from zero
to over 100 ciocks. Factors affecting the execution time are the preceding
and following instructions, the instruction stream alignment, residency of
operands and instruction words in the caches, residency of address trans-
lations in the address translation cache, and operand alignment.

To increase the average performance of the MC68030, certain tradeoffs were
made to increase best case performance and to decrease the occurrence of
worst case behavior. For example, burst filling increases performance by
prefetching data for later accesses, but it commits the external bus controller
and a cache for a longer period.

The MC68030 can overlap data writes with instruction cache reads, data cache
reads, and/or microsequencer execution. Instruction cache reads can be over-
lapped with data cache fills and/or microsequencer activity. Similarly, data
cache reads can be overlapped with instruction cache fills and/or micro-

MOTOROLA MC68030 USER'S MANUAL 111

sequencer activity. The execution of an instruction that only accesses on-
chip registers can be overlapped entirely with a concurrent data write gen-
erated by a previous instruction, if prefetches generated by that instruction
are resident in the instruction cache.

11.2 RESOURCE SCHEDULING

Some of the variability in instruction execution timings results from the over-
lap of resource utilization. The processor can be viewed as consisting of eight
independently scheduled resources. Since very little of the scheduling is
directly related to instruction boundaries, it is impossible to make accurate
estimates of the time required to execute a particular instruction without
knowing the complete context within which the instruction is executing. The
position of these resources within the MC68030 is shown in Figure 11-1.

11.2.1 Microsequencer

The microsequencer is either executing microinstructions or awaiting com-
pletion of accesses that are necessary to continue executing microcode. The
bus controller is responsible for all bus activity. The microsequencer controls
the bus controller, instruction execution, and internal processor operations
such as calculation of effective addresses and setting of condition codes. The
microsequencer initiates instruction word prefetches and controls the vali-
dation of instruction words in the instruction pipe.

11.2.2 Instruction Pipe

The MC68030 contains a three-word instruction pipe where instruction op-
codes are decoded. As shown in Figure 11-1, instruction words (instruction
operation words and all extension words) enter the pipe at stage B and
proceed to stages C and D. An instruction word is completely decoded when
it reaches stage D of the pipe. Each of the pipe stages has a status bit that
reflects whether the word in the stage was loaded with data from a bus cycle
that was terminated abnormally. Stages of the pipe are only filled in response
to specific prefetch requests issued by the microsequencer.

Words are loaded into the instruction pipe from the cache holding register.
While the individual stages of the pipe are only 16 bits wide, the cache holding
register is 32 bits wide and contains the entire. long word. This long word is
obtained from the instruction cache or the external bus in response to a
prefetch request from the microsequencer. When the microsequencer re-

MC68030 USER'S MANUAL MOTOROLA

V104010

IVNNVIAN S.H3SN 0€0890IN

€Ll

ADDRESS
BUS

ADDRESS
PADS

MICROSEQUENCER AND CONTROL

INSTRUCTION PIPE

CACHE
HOLDING
REGISTER

(CAHR)

PHYSICAL
ADDRESS

INSTRUCTION EXECUTION UNIT

ADDRESS

BUS

Ir=ik

L

LOGICAL
ADDRESS

PROGRAM
COUNTER
SECTION

ADDRESS
SECTION

DATA
SECTION

(fe

it

DATA

BUS CONTROLLER

ADDRESS

] - BUS

BUS CONTROL
SIGNALS

MISALIGNMENT
MULTIPLEXER

DATA
BUS

INTERNAL

SIZE DATA
MULTIPLEXER PADS
4N

Figure 11-1. Block Diagram — Eight Independent Resources

DATA
BUS

quests an even-word (long-word aligned) prefetch, the entire long word is
accessed from the instruction cache or the external bus and loaded into the
cache holding register, and the high-order word is also loaded into stage B
of the pipe. The instruction word for the next sequential prefetch can then
be accessed directly from the cache holding register, and no external bus
cycle or instruction cache access is required. The cache holding register
provides instruction words to the pipe, regardless of whether the instruction
cache is enabled or disabled.

Prefetch requests are simultaneously submitted to the cache holding register,
the instruction cache, and the bus controller. Thus, even if the instruction
cache is disabled, an instruction prefetch may hit in the cache holding register
and cause an external bus cycle to be aborted. :

11.2.3 Instruction Cache

The instruction cache services the instruction prefetch portion of the micro-
sequencer. The prefetch of an instruction that hits in the on-chip instruction
cache causes no delay in instruction execution since no external bus activity
is required for the prefetch. The instruction cache also interacts with the
external bus during instruction cache fills following instruction cache misses.

11.2.4 Data Cache

The data cache services data reads and is updated on data writes. Data
operands required by the execution unit that are accessed from the data
cache cause no delay in instruction execution due to external bus activity for
the data fetch. The data cache also interacts with the external bus during
data cache fills following data cache misses. ’

11.2.5 Bus Controller Resources

Prefetches that miss in the instruction cache cause an external memory cycle
to be performed. Similarly, when data reads miss in the on-chip data cache,
an external memory cycle is required. The time required for either of these
bus cycles may be overlapped with other internal activity.

The bus controller and microsequencer can operate on an instruction con-

currently. The bus controller can perform a read or write while the micro-
sequencer controls an effective address calculation or sets the condition

MC68030 USER’S MANUAL MOTOROLA

codes. The microsequencer may also request a bus cycle that the bus con-
troller cannot perform immediately. In this case, the bus cycle is queued and
the bus controller runs the cycle when the current cycle is complete.

The bus controller consists of the micro bus controller, the instruction fetch
pending buffer, and the write pending buffer. These three resources carry
out all writes and reads that miss in the on-chip caches.

11.2.56.1 INSTRUCTION FETCH PENDING BUFFER. The instruction prefetch mech-
anism includes a single long-word instruction fetch pending buffer. Interlocks
are provided to prevent this buffer from being overwritten by an instruction
prefetch request before a previously requested prefetch is completed.

11.2.5.2 WRITE PENDING BUFFER. The MC68030 incorporates a single write
pending buffer, allowing the microsequencer to continue execution after the
request for a write cycle proceeds to the bus controller. Interlocks prevent
the microsequencer from overwriting this buffer.)

11.2.5.3 MICRO BUS CONTROLLER. The micro bus controller performs the bus
cycles issued to the bus controller by the rest of the processor. It implements
any dynamic bus sizing required and also controls burst operations.

When prefetching instructions from external memory, the micro bus con-
troller utilizes long-word read cycles. The processor reads two words, which
may load two instructions at once or two words of a multi-word instruction
into the cache holding register (and the instruction cache if it is enabled and
not frozen). A special case occurs when prefetch, that, corresponds to an
instruction word at an odd-word boundary, is not found in the cache holding
register (e.g., due to a branch to an odd-word location) with an instruction
cache miss. From a 32-bit memory, the MC68030 reads both the even and
odd words associated with the long-word base address in one bus cycle.
From an 8- or 16-bit memory, the processor reads the even word before the
odd word. Both the even and odd word are loaded into the cache holding
register (and the instruction cache if it is enabled and not frozen).

MOTOROLA MC68030 USER'S MANUAL 11-5

11.2.6 Memory Management Unit

11.3

The MC68030 includes a memory management unit (MMU) that translates
logical addresses to physical addresses for external accesses when required.
The MMU uses an address translation cache (ATC) to store recently used
translations. When the physical address corresponding to a logical address
resides in the ATC, the address translation time is completely overlapped
with on-chip cache accesses and has no effect on instruction timing.

When the ATC does not contain the translation for a logical address, the
processor performs a table search operation to external memory. The amount
of time required for a table search depends on the structure of the address
translation tree and whether a nonresident portion of the translation tree is
required.

The MMU supports demand-paged virtual memory. When a table search
terminates with an exception, indicating that the requested instruction or
data is not resident, additional time to bring the appropriate page into mem-
ory is required. The time required is dependent on the handllng routine for
the exception.

INSTRUCTION EXECUTION TIMING CALCULATIONS

The instruction-cache-case timing, overlap, average no-cache-case timing,
and actual instruction-cache-case executlon time calculations are dlscussed
in the following paragraphs.

11.3.1 Instrucﬁon-Cache Case

The instruction-cache-case (CC) time for an instruction is the total number
of clock periods required to execute the instruction, provided all the corre-
sponding instruction prefetches are resident in the on-chip instruction cache.
All bus cycles are assumed to take two clock periods. The instruction-cache-
case time does not assume any overlap with other instructions nor does it
take into account hits in the on-chip data cache. The overall instruction-cache-
case time for some instructions is divided into the instruction-cache-case
time for the required effective address calculation (CCea) and the instruction-
cache-case time for the remainder of the operation {CCop). The instruction-
cache-case times for all instructions and addressing modes are listed in the
tables of 11.6 INSTRUCTION TIMING TABLES.

MC68030 USER'S MANUAL MOTOROLA

11.3.2 Overlap and Best Case

Overlap is the time, measured in clock periods, that an instruction executes
concurrently with the previous instruction. In Figure 11-2, a portion of in-
structions A and B execute simultaneously. The overlap time decreases the
overall execution time for the two instructions. Similarly, an overlap period
between instructions B and C reduces the overall execution time of these
two instructions.

'_ — — — — INSTRUCTION A —1
|__ — — — INSTRUCTION B —|
|_ — — — — INSTAUCTION C —|

— =

OVERLAP OVERLAP

Figure 11-2. Simultaneous Instruction Execution

Each instruction contributes to the total overlap time. As shown in Figure
11-2, a portion of time at the beginning of the execution of instruction B can
overlap the end of the execution time of instruction A. This time period is
called the head of instruction B. The portion of time at the end of instruction
Athat can overlap the beginning of instruction B is called the tail of instruction
A. The total overlap time between instructions A and B consists of the lesser
“of the tail of instruction A or the head of instruction B. Refer to the instruction
timing tables in 11.6 INSTRUCTION TIMING TABLES for head and tail times.

Figure 11-3 shows the timing relationship of the factors that comprise the n
instruction-cache case time for either an effective address calculation (CCea)

or for an operation (CCop). In Figure 11-12, the best case execution time for

instruction B occurs when the instruction-cache-case times for instruction B

and instruction A overlap so that the head of instruction B is completely

overlapped with the tail of instruction A,

MOTOROLA MC68030 USER'S MANUAL 11-7

lL CACHE CASE

i

| BEST CASE |
l 1
] HEAD I
READ/WRITE BUS
{ TIMEOR SYNC | I WRITE BUS TIME |
| 1 | L
L CODE TIME |

|
A TAIL I
| |

Figure 11-3. Derivation of Instruction Overlap Time

The nature of the instruction overlap and the fact that the heads of some
instructions equal the total instruction-cache-case time for those instructions
makes a zero net execution time possible. The execution time of an instruction
is completely absorbed by overlap with the previous instruction.

11.3.3 Average No-Cache Case

The average no-cache-case (NCC) time for an instruction takes into account
the time required for the microcode to execute plus the time required for all
external bus activity. This time is calculated assuming both caches miss and
the associated instruction prefetches require one external bus cycle per two
instruction prefetches. Refer to 11.2.2 Instruction Pipe. The average no-cache-
case time also assumes no overlap. A/l bus cycles are assumed to take two
clock periods. Average no-cache-case times for instructions and effective
address calculations are listed in 11.6 INSTRUCTION TIMING TABLES. Be-
cause the no-cache-case times assume no overlap, the head and tail values
listed in these tables do not apply to the no-cache-case values.

Since the actual no-cache-case time depends on the alignment of prefetches
associated with an instruction, both alignment cases were considered, and
the value shown in the table is the average of the odd-word-aligned case
and the even-word-aligned case (rounded up to an integral number of clocks).
Similarly, the number of prefetch bus cycles is the average of these two cases
rounded up to an integral number of bus cycles.

MC68030 USER'S MANUAL MOTOROLA

The effect of instruction alignment on timing is illustrated by the following
example. The assumptions referred to in 11.6 INSTRUCTION TIMING TABLES
apply. Both the data cache and instruction cache miss on all accesses.

Instruction
1. MOVE.L (d16,An,Dn),Dn
2. CMPLW #(data).W,(d16,An)

The instruction stream is positioned with even alignment in 32-bit memory

as:

Address n MOVE EA Ext
n+4 dig CMPI
n+8 #(data.W) d1s
n+12

Figure 11-4 shows processor activity for even alignment of the given instruc-
tion stream. It shows the activity of the external bus, the bus controller, and
the sequencer.

Acns#e—l-——l(PREFETCH)I(READ)I(PREFETCH)l——-——|< READ)|< PREFETCH >|—|

BUS | i | (PREFETCH | READ FROM | PREFETCH 1OLE READ FROM | PREFETCH DLE
CONTROLLER S el ne8 UL (digAnDa) G n4t2 {d1gAn) n+16
222 CALCULATE AND FETCH Jon . CALCULATE AND FETCH
SEQUENCER | | SOURCEEA 3 "%%M SOURCE EA IDLE Psgmm
S FORMOVE S YR FOR CMPI
INSTRUCTION | o o '
EXECUTION . - ! MOVE.L (d1g,An,Dn)Dn © * CMPI.W #(data).W,{d1g.An)
TME : o e AN ’
o | . e . N
count [’]‘ ’]

LEGEND:

MOVEL (digAnOnDn [|
#aaaWogan [|

Figure 11-4. Processor Activity — Even Alignment

MOTOROLA MC68030 USER'S MANUAL 11-9

ACTI

CONTROLLER

SEQUENCER

INSTRUCTION
EXECUTION

COUNT I‘

11-10

Figure 11-5 shows processor activity for odd alignment. The instruction stream
is positioned in 32-bit memory as:

Address n - MOVE
n+4 EA Ext d16
n+8 CMPI -#(data.W)
n+12 die

s ‘|< READ)l(PREFETCH)|—|< PREFETCH)l(READ)I(PREFETCH)]

BUS READ FROM |~ PREFETCH IDLE PREFETCH | READ FROM | PREFETCH

| (digAnDn) |1 n+8 n+12 {d1g.An} n+16

CALCULATEAND FETCH & - f . ¥ | CALCULATE AND FETCH
SOURCE EA b IDLE PE,G;?EMS SOURCE EA PEE;(:,TM
FORMOVE .o ‘ i FOR CMPI

MOVEL (digAnDn},Dn | e CMPLW #(data)W,{d1gAn)
TIME S A ,

ok | 0) =|L 6

LEGEND:

MOVEL digAnDriOn []
#(data).W,{dyg.An) :]

-Figure 11-5. Processor Activity — Odd Alignment

Comparing the two alignments, the execution time of the MOVE instruction
is eight clocks for even alignment and 10 clocks for odd alignment, an average
of nine clocks. Referring to the table in 11.6.6 MOVE Instruction and the table
in 11.6.1 Fetch Effective Address (fea), the average no-cache-case time is
2+7=9 clocks. A similar calculation can be made of the CMPI instruction,
which has an average no-cache-case time of seven clocks.

The average no-cache-case timing rather than the maximum no-cache-case
timing gives a closer approximation of the actual timing of an instruction
stream in many cases. The total execution time of the two instructions in the
previous example is 16 clocks for both even and odd alignment. Adding the

MC68030 USER'S MANUAL MOTOROLA

average no-cache-case timing of the given instructions also gives 16 clocks
{9+47=16 clocks). It should be noted again that the no-cache-case time as-
sumes no overlap. Therefore, the actual execution time of an instruction
stream may be less than that given by adding the no-cache-case times. To
factor in the effect of wait states for the no-cache case, refer to 11.5 EFFECT
OF WAIT STATES.

11.3.4 Actual Instruction-Cache-Case Execution Time Calculations

The overall execution time for an instruction may depend on the overlap
with the previous and following instructions. Therefore, to calculate instruc-
tion execution time estimations, the entire code sequence to be evaluated
must be analyzed as a whole. To derive the actual instruction-cache-case
execution times for an instruction sequence (under the assumptions listed
in 11.6 INSTRUCTION TIMING TABLES), the instruction-cache-case times
listed in the tables must be used, and the proper overlap must be subtracted
for the entire sequence. The formula for this calculation is:

CCq +[CC2—min(H2,T{)1+ [{CC3—min(H3,T2)]+. .. (11-1)

‘where: ‘
CCp, is the instruction-cache-case time for an instruction,
T, is the tail time for an instruction,
Hp is the head time for an instruction, and
min(a,b) is the minimum of parameters a and b.

The instruction-cache-case time for most instructions is composed of the
instruction-cache-case time for the effective address calculation (CCea) over-
lapped with the instruction-cache-case time for the operation (CCop). The
more specific formula is: ‘

CCeaq +[CCopq —min{Hop1,Teaq)]+[CCeaz —min({Heas, Topq)] +
[CCop2 —min(Hopa,Teaz)] + [CCeaz — min(Heag, Topo)] +. . . (11-2)

where:
CCeay, is the effective address time for the instruction-cache case,
CCopp, is the instruction-cache-case time for the operation portion of an
instruction,
Teap, is the tail time for the effective address of an instruction,
Hopp, is the head time for the operation portion of an instruction,
Topp is the tail time for the operation portion of an instruction,
Heap, is the head time for the effective address of an instruction, and
min(a,b) is the minimum of parameters a and b.

MOTOROLA MC68030 USER'S MANUAL 11-11

11-12

The instructions that require the instruction-cache case, head, and tail of an
effective address (CCea, Hea, and Tea) to be overlapped with CCop, Hop, and
Top are footnoted in 11.6 INSTRUCTION TIMING TABLES.

The actual instruction-cache-case execution time for a stream of instructions
can be computed using Equation {(11-1) or the general Equation {11-2). Equa-
tion (11-1) is used unless the instruction-cache case, head, and tail of an
effective address are required.

An example using a series of instructions that require Equation (11-1) to
calculate the instruction-cache-case execution time follows. The assumptions
referred to in 11.6 INSTRUCTION TIMING TABLES apply.

Instruction
1. ADD.L A1,D1
2. SUBA.L D1,A2

Referring to the timing table in 11.6.8 Arithmetic/Logical Instructions, the
head, tail, and instruction-cache-case (CC) times for ADD.L A1,D1 and SUBA.L
D1,A2 are found. There is no footnote directing the user to add an effective
address time for either instruction. Since both of the instructions use register
operands only, there is no need to add effective address calculation times.
Therefore, the general Equation {11-1) can be used for both.

Head Tail CcC

1. ADD.L A1,D1 : 2 0 2

2. SUBA.L D1,A2) 4 0 4
NOTE

The underlined numbers show the typical pattern for the comparison
of head and tail in the following equation.

The following computations use Equation (11-1):
Execution Time = CC1+[CC2—min(H2,T1)]
=2+ [4—min(4,0)]
=2+[4-0]
=6 clocks

Instructions that require the addition of an effective address calculation time
from an appropr