P

29K Family Advanced

1990 Data Book Micro
Devices

e

Advanced
Micro
Devices

29K Family
Data Book

© 1989 Advanced Micro Devices

Advanced Micro Devices reserves the right to make changes in its products without notice in
order to improve design or performance characteristics. The performance characteristics
“listed in this document are guaranteed by specific tests, correlated testing, guard banding,
design and other practices common to the industry.
For specific testing details, contact your loca!l AMD sales representative.
The company assumes no responsibility for the use of any circuits described herein.

901 Thompson Place, P.O. Box 3453, Sunnyvale, California 94088-3000
(408)732-2400 TWX: 910-339-9280 TELEX: 34-6306

Am29000, Am29027, Am23041, 29K, ADAPT29K, ASM29K, BTC, Branch Target Cache, Fusion29K, HighC29K,
MON29K, PCEB29K, and XRAY29K are trademarks of Advanced Micro Devices, Inc.

CROSSTALK is a registered trademark of Digital Communications Associates, Inc.
DEC is a registered trademark of Digital Equipment Corporation.

Hewlett-Packard is a registered trademark of Hewlett-Packard, Inc.

IBM and PC-AT are registered trademarks of International Business Machines Corporation.
MetaWare is a trademark of MetaWare, Inc.

Motorola and MC68000 are registered trademarks of Motorola, Inc.

PAL is a registered trademark of Advanced Micro Devices, Inc.

Sun Workstation is a registered trademark of Sun Microsystems, Inc.

Sun and Sun-3 are trademarks of Sun Microsystems, Inc.

Tektronix is a registered trademark of Tektronix, Inc.

UniSite is a trademark of Data IO Corporation.

UNIXis a registered trademark of American Telephone and Telegraph Company.
VAX is a registered trademark of Digital Equipment Corporation.

Introduction

INTRODUCTION

The RISC-based Am29000 Streamlined Instruction Processor from Advanced Micro Devices is the high-
performance solution for your general-purpose embedded systems needs. As the heart of the 29K Family, this 32-
bit CMOS microprocessor delivers outstanding performance, yet offers flexible cost-effective solutions that can
quickly move your product to market.

This data book is your comprehensive guide to AMD’s 29K Family of microprocessors and development tools.
These products have helped current developers create applications that fully exploit the power of the Am29000
microprocessor: laser printers of all types, real-time graphics systems, networks and bridges, and a host of other
peripheral and communication devices.

To provide a total system solution for you, AMD has taken the 29K Family's advantages of 17-MIPS performance,
flexible memory-configuration requirements, and outstanding development tools and coupled them with our
Fusion29K™ program. This program provides you with AMD and industry-standard third-party solutions, including
the application-specific solutions you need for successful system integration that can substantially shorten the
time-to-market factor of your design.

AMD is committed to the 29K Family, and will continue to apply substantial resources to ensure that the present
levels of high performance, cost and design flexibility, and rapid design cycles are maintained and further
enhanced. Qualified support is readily available for our customers—our highly trained field applications engineers
are backed by experts in the factory. For further details on how the 29K Family can be the solution to your design
needs, call your local AMD sales office or the authorized representative listed in the back of this publication.

A

Geoff Tate
Senior Vice President
Microprocessors & Peripherals Group

iii

29K Family Data Book

PREFACE

Advanced Micro Devices' 29K™ Family is a new generation of high-performance CMOS microprocessor compo-
nents and associated software tools. The heart of the 29K Family is the RISC-based Am29000™ microprocessor.
The Am29000 Streamlined Instruction Processor is a high-performance, general-purpose, 32-bit microprocessor
that supports a variety of applications, by virtue of a flexible architecture and rapid execution of simple instruc-
tions which are common to a wide range of tasks. The 29K Family’s microprocessors are fully described in
Chapter 1.

The Am29000 Streamlined Instruction Processor efficiently performs operations common to all systems, while
deferring most decisions on system policies to the system architect. It is well suited for applications in high-
performance workstations, general-purpose super minicomputers, high-performance real-time controllers, laser
printer controllers, network protocol converters, and many other applications where high performance, flexibility,
and the ability to program using standard software tools is important.

The Am29000 microprocessor has been enhanced to support byte and half-word loads and stores. This feature is
provided as an option, requiring that an external device or memory be able to write individual bytes and/or half-
words of a word. The Am29000 microprocessor can perform all necessary padding, sign extension, and alignment
within the word. Furthermore, this feature is defined to be compatible with existing 28K Family software.

The Am29027™ Arithmetic Accelerator is a high-computational unit intended for use with the Am29000 Stream-
lined Instruction Processor. It connects directly to the Am29000 microprocessor’s system buses, and requires no
additional interface circuitry. When added to an Am29000 microprocessor-based system, the Am29027 co-
processor can improve floating-peint performance by an order of magnitude or more. The Am29027 co-processor
implements an extensive floating-point and integer instruction set, and can perform operations on single-, double-,
or mixed-precision operands.

But the superior performance of the 29K Family of microprocessors is only part of the story: AMD also provides a
comprehensive set of software and hardware development tools, as shown in Chapter 2. These tools, coupled
with the growing number of development products from established third-party vendors, can drastically reduce the
time-to-market factor of designs.

For software development, AMD offers the globally optimizing HighC29K™ Cross-Development Toolkit, complete
with high-performance math libraries. The HighC29K compiler is packaged with the ASM29K™ Cross-Develop-
ment Toolkit, which includes a relocatable macro assembler, linker/loader, librarian, and a full architectural
simulator of the Am29000 microprocessor.

Several debugging tools are available, including the XRAY29K™, a source-level debugger for high-level and as-
sembly-level debugging and the software-based MON29K™ target-resident debugger/monitor. All tools work at
the Am29000 processor’s clock rate to allow debugging while operating at full microprocessor speed.

The application notes in Chapter 3 make development with the 29K Family of silicon and tools a simpler task.
Within these documents, AMD engineers explore solutions of common problems that stand as roadblocks in your
development path. So whether you need general information on programming standalone Am29000 microproces-
sor-based systems or detailed specifics on how to make your product HIF compatible, these application notes can
provide the answers. And with new notes constantly being written and released, this wealth of knowledge will
continue to be integral to your development process.

Table of Contents

- 29K FAMILY DATA BOOK

TABLE OF CONTENTS
Chapter 1 29K Family CMOS Devices
29000 Data Sheet
29027 Data Sheet
Chapter 2 29K Family Support Tools
ASM29K Data Sheet...
HighC29K Data Sheet.
MON29K Data Sheet
XRAY29K DAt SNEEL ...t ittt ettt ettt e st et s s et saasae s st eaarene e eh b en e nee e st enean
Chapter 3
AM29000 SYSCLK DIIVING ovevieniiiiteneeitteesetetetistsees sttt es s st eae shevessessaesesssueesereesesestasessstesenessesesssnssseses 3-3
Connected Am23000 Instruction/Data Buses ... et 3-5
Byte-Writable Memories for the Am290003-8
Am29027 Hardware Interfaceccocoeeevienieceinenecieeneeeeee .3-10
When is Interleaved Memory with the Am29000 Unnecessary? 3-14
Implementation of an Am23000 Stack Cache.......... .3-20
Introduction to the Am29000 Development Tools................... ..3-42
Preparing PROMs Using the Am23000 Development TOOIScce.vvirierereeneriieririee e reein e e se et 3-81
Programming Standalone AM23000 SYSIEMScouiiiiiiiiiiiere et e sttt e abe e 3-107
Host Interface (HIF) v1.0 SPECIfICAtIONccooiiiieiie ettt ettt et er e et st ae s saeeaa s 3-163 .
Chapter 4 General Information
Related Literature
Package OULIINES ..ot e e eb et se e et b st bbbt -

Table of Contents

CHAPTER1
29K Family CMOS Devices

AM29000 DAtA SNEEL....ceieeeee ettt te e e s e sstr e s e sae e e s s beseseess s e sase s besansessess sons sasrarssanseesnseassnsensrannnen 1-3
AM29027 DAt SHEEL ... i ettt reee st e e s etee s e tesebaesesar e sesasreareeas sebeasassbetaste st asssnsae st araennnren 1-111

Am29000

Am29000 ‘ | | Advanced

Micro
Streamlined Instruction Processor ; Devices

DISTINCTIVE CHARACTERISTICS

" Full 32-bit, three-bus architecture B Burst-mode access support

¥ 23 million Instructions per second (MIPS) " 192 general-pufpose registers
sustained at 33 MHz ¥ 512-byte Branch Target Cache™
33., 25-, 20-, and 16-MHz operating frequency ® G4-entry Memory-Management Unit

® Efficient execution of high-level language ® Demultiplexed, pipelined address, instruction,
programs and data buses :
CMOS technology ® Three-address Instruction architecture
4-gigabyte virtual address space with demand On-chip byte-alignment support allows
paging ' : optional byte/half-word accesses

% Concurrent instruction and data accesses

SIMPLIFIED BLOCK DIAGRAM

NL ' ‘ Am29027 | o ke
> Arithmetic % < R >

Accelerator

Address .~ Am29000

< : Streamlined <
} - Instruction

Processor : E S
g 3 : ’ ‘ L /
V] e 32

Instruction | .
ROM Instruction
Instruction
Memory -
Data -
Memory

Data

32

\/

Vs

09075B-003A
- BD011370

Publication # 09075 Rev.. C . - Amendment 0
Issue Date: ~ Novernber 1989

13

29K Family CMOS Devices

TABLE OF CONTENTS
DISTINCTIVE CHARACTERISTICS .. o\viirererenenineneerannnns e 1-3 -
SIMPLIFIED BLOCK DIAGRAM 1-3
GENERALDESCRIPTION . ..t iti ittt iiie it iatncnnananasoncrasianinans 1-7
RELATED AMDPRODUCTScccvuruennans eeeeseaan B 17
CONNECTION DIAGRAM Sesvienae Pireeeree e ndeanasenn wesaaeeaees 1-8
PINDESIGNATION AP . 1-10
LOGIC SYMBOL ittt ittt ittt ittt tenanaoanasonasnensnensanannnns 1-14
ORDERING INFORMATION iiiitiiineiceirneninronasnsarananas 1-15
PINDESCRIPTIONcoitiiitiinnnennnnnnnns A A 1-17 .
FUNCTIONALDESCRIPTION ...\ iiiiitiiinaeercnnntnneeeneasvnnnasnens 1-21
Product Overview e e 1-21
Cycle Time ... e e e e 1-21
Four-Stage Pipelinettt 1-21
System Interface i e e e e 1-21
Register File o e e e e 1-21
Instruction Execution o i ol e s 1022
BranchTargetCache i i it it e e 1-22
BranChing i e e e 1-22
LoadsandStores i 1-22
Memory Management e e T AN 1-23
Interrupts and TrapPs . .. oot e i i L e e i e 1-23
Floating-Point Arithmetic Unit0..o oo, PETRTTISEIN 1-23
ARCHITECTURE HIGHLIGHTS By RO 1-24
Architecture Overview e e e 1-24
PrOgramMOdes ...t e e e e e A 1-24
Visible Registersc.oi. v e i Ll L e e A 1-24
Instruction Set Overview o il e 1-26
Data Formats and Handling 0 i e i e PR 1-29
Interrupts and Traps ot e v eve e ST B< | I
Memory Management it i e e i 1-31
Coprocessor Programming :....... A e e e i e 131
Timer Facility A S R S il eene.. 1981
Trace Facility P Vi Vi s S e PRt oLl 1-31
FUNCTIONAL OPERATIONu.s I T ST 132
Four-Stage Pipeline S Ve T s B R R AL 1-32
Function Organization e el 1-32
Instruction Fetch Unit0.... RSN S M .. 1-32
ExecutionUnito oo i i e e e 1-32
Memory Management Unit iviien, R P TP I £ X 1
ProcessorModes i il P R AT . 1-34
SystemInterface e e e e e s 1-34

1-4

Am23000

TABLE OF CONTENTS (continued)

L0175 o 13 P P 1-34
Test/Development Interface ...ttt 1-35
ClOCKS vttt i e e e e e e e 1-35
Master/Slave Operationttt e e 1-35
Coprocessor AttaChmentottt it e 1-35
ProgramModest e e e e e 1-36
SUPEIVISOr MOdE e e 1-36
USerMode ... e e 1-36
REGISTERDESCRIPTIONi.iiitiiitientinrinrenessonnnnenansannans 1-37
General-Purpose Registers i i 1-37
TLB REGIStOrS ..o e e e i, 1-54
INSTRUCTION SETtiiiiiii i tnatnerarsnsssnnssansnssonsnseanan 1-57
Integer ArtNMEtico e e i 1-57

107 1170 - 1-57
oo o 1-57
SRt . e e e e 1-57
Data Movement e e e e e 1-57.
Constant....... e e e e e A 1-57
Floating-Point U FPE SELIR 1-57
Brancho S AN 1-57
MiSCEllaNEOUS ...\ e e e 1-57
Reserved Instructions i e 1-60
DATAFORMATS ANDHANDLINGiiiuininninennenanensnns e 1-64
INteger Data TYPeS .. vttt it ittt i et e 1-64
Floating-Point Data Types & ... it e e it e et 1-65
Special Floating-Point Values it 1-66
External Data ACCESSES .. . oottt et e e e 1-66
Addressing and Alignment e e e e e 1-70
Byte and Half-Word ACCESSES v it it i 1-72
INTERRUPTS AND TRAPS ittt ittt it in it tarssrnasnnennnss 1-75
I ErTUPES e e e 1-75
Traps ..o e e e e e e et e 1-75
Wait Mode e e 1-75
VECIOr AT . .. e e e 1-75
Interrupt and Trap Handling P 1-76
WARN TIaD .« .t i et ee e e i e 1-79
Sequencing of Interruptsand Traps RN e 1-80
Exception Reportingand Restarting iien i i 1-80
Arithmetic ExCeptions i i e 1-82
Exceptions During Interrupt and Trap Handling R N ST AP AT 1-83

- MEMORY MANAGEMENTiuuuiiiviiinnenni.s el i e 1-84
Translation Look-Aside Buffer o i il 1-84
Address Translationooiiiinianniiaaais e 1-85
ReI0ad ...t e e e e .. 1-87
Entry Invalidationo i 1-88

-~ Protection.. R S AT P 1-88

29K Family CMOS Devices

TABLE OF CONTENTS (continued)

CHANNEL DESCRIPTION iivuneenrinnianennnanns e e Ceereseenn 1-89

User-Defined Signals vttt ittt it diine s iiniieenanas 1-89
INStUCHON ACCESSES .ttt i i ittt iit ittt et e e e it aninenns 1-89
DataAccesses e e e e 1-89
Reporting Efrorso i e e e 1-90
ACCESS ProtoColS it i e e i e e e 1-90
SIMpPle ACCESSES . o ittt ittt et s, N 1-90
Pipelined ACCESSES .. v.iviin ittt i e e e e e e i 1-90
Burst-Mode ACCESSES . v\ ittt i ie ittt it e 1-92
(1= 1T 3 PP 1-97
Use of BINVtO Cancel an ACCESScvvunierer v erinnnneeernnseennnnns 1-98
Bus Sharing—Electrical Considerationscoiiiiiiiiiiiiinnnn.. 1-98
Channel Behavior for Interrupts andTrapscveintiiiiieeinneneinnnnn. 1-99
Effectof the LOCK Oulput v it i i i et e en s 1-99
Initializationand Resetottt i i i [N 1-99
ABSOLUTEMAXIMUMBATINGSc0inieitrnntrnertoonscsonrnnnnnnes 1-101
OPERATINGRANGES00uvnn.. ceraaesenes e e 1-101
DCCHARACTERISTICScoiiiievivandennns e tearieeasat e 1-101
CAPACITANCE s aes e e e et a s eant i ar e iane b aseena s ias 1-101
SWITCHING CHARACTERISTICSc.iivvvnnnnns B R 1-102
SWITCHING WAVEFORMS it iiieie i itanansosnesenennenneanas 1-106
SWITCHING TESTCIRCUIT ... vieineievnnnnians . . e 1-109

1-6

Am29000

GENERAL DESCRIPTION

The Am29000™ Streamlined Instruction Processor is a
high-performance, general-purpose, 32-bit micropro-
cessor implemented in CMOS technology. It supports a
variety of applications by virtue of a flexible architecture
and rapid execution of simple instructions that are com-
mon to a wide range of tasks. '

The Am238000 efficiently performs operations common
to all systems, while deterring most decisions on system
policies to the system architect. It is well-suited for ap-
plication in high-performance workstations, general-
purpose super-minicomputers, high-performance real-
time controllers, laser printer controllers, -network
protocol converters, and many other applications where
high performance, flexibility, and the ability to program
using standard software tools is important.

The Am29000 instruction set has beeninfluenced by the
results of high-level language, optimizing compiler re-
search. It is appropriate for a variety of languages
because it efficiently executes operations that are com-
monto all languages. Consequently, the Am23000is an
ideal target for high-level languages such as C, FOR-
TRAN, Pascal, Ada, and COBOL.

The processor is available in two packaging options: a
169-lead pin-grid-array (PGA) package, and a 164-lead
Ceramic Quad Flat Pack (CQFP) package for the mili-
tary. The PGA has 141 signalpins, 27 power and ground
pins, and 1 alignment pin. The CQFP has 141 signal
pins and 23 power and ground pins. A representative
system diagram is shown on page 1.

29K™ Family Development Support Products

Contact your local AMD representative for information
on the complete set of development support tools.

Software development products on several hosts:

® Optimizing compilers for common high-level
languages ,

'_' Assembler and utility packages

® Source- and assembly-level software - -
- debuggers

n Targét-resident development monitors
B Simulators -

Hardware Development:

B ADAPT29K™ Advanced Development and
Prototyping Tool

RELATED AMD PRODUCTS
Am29000 Peripheral Devices

Part No. Description

Am29027™ Arithmetic Accelerator

29K Family CMOS Devices

CONNECTION DIAGRAM

169-Lead PGA*

@ N U WN

. bk ek ek A e a
NO A WN - OO

Bottom View

ABCDEFGHJIKLMNPRTU

/ﬁ©@®®@©®®®@®@©@@@
10JOJOJOJOJOXOJOXOJOXOJOXOJOXOJOJO)
lojoJoJojoJoJoJoJoJoJoJoJoJoJOXOJO)

(OJOJOJO RN 10JOJO)
0JOJO) 10JOJO)
10JOJO) 10JOJO)
oJOJo loJoJo]
0JOJO) 0JOJO)
0JOJO) 0JOJO]
oJoJo 0JOJO)
0JoJO] : 0JOJO)
10JOJO} 10JOJO)
10JOJO} 0JOJO]
10JOLO) oJoJoN
ioJolojJojoJoJoJoJojoJoJoJoJoXoJoJO]
ioJojojojoJoloJooJoJoJoZoJOJOJOJO)
lcJojJojoJoJoJoJoJoJoJoJoJoJoJoJoLo)

N

\

* Pinout observed from pin side of package.

1-8

0000000

NNNNNNNNNNNNNNNNNN

HHHHHHIIHHHIHHHHHHIHI

JHUHIUHHHIUIHHNIHNHHUF |

HlIUIHHNIHIHUHNHNHNIH Hi

e ————
@ ———l -

- —

. N - eee——iy
————
R ————

29K Family CMOS Devices

PGA PIN DESIGNATION

{Sorted by Pin No.)

Pin No. Pin Name Pin No. Pin Name Pin No. Pin Name Pin No. Pin Name
A-1 GND C-10 GND J-16 Ats R-12 STAT:
A-2 Ih C-11 GND J-17 Au R-13 GND
A-3 lo C-12 D22 K-1 l26 R-14 OPTo
A-4 Dz C-13 D2s K-2 I2s R-15 Az
A5 Da C-14 Vee K-3 GND R-16 As
A-6 Ds C-15 Dao K-15 Vee R-17 Ar
A-7 De C-16 Das K-16 Az T-1 INCLK
A-8 D C-17 Ax K-17 Az T-2 BREQ
A-9 Diz D1 I L1 = T3 DERR
A-10 D D-2 o L-2 l28 T-4 TRDY
A-11 Dis D-3 Iy L-3 Vee T-5 WARN
A-12 D1 D-4 PIN169 L-15 Vee T-6 INTR:
A-13 Dz D-15 Ast L-16 Avo T7 INTRo
A-14 D21 D-16 A L-17 An T-8 BINV
A-15 Des D-17 Az M-1 I T9 BGRT
A-16 Dz E-1 Ia M-2 I T-10 DREQ
A-17 GND E-2 Iz M-3 GND T-11 LOCK
B-1 ls E-3 Vee M-15 GND T-12 MSERR
B-2 Is E-15 GND M-16 Ao T-13 STATe
B-3 la E-16 Azr M-17 At T-14 SUP/US
B-4 Do E-17 Az N-1 lay T-15 OPT:
B-5 D: F-1 I N-2 TEST T-16 As
B-6 Ds F-2 Iis N-3 SYSCLK T-17 As
B-7 Ds F-3 ha N-15 GND U-1 GND
B-8 Do F-15 As N-16 MPGM: u-2 PEN
B-9 Dis F-16 Az N-17 MPGMo u-3 1ERR
B-10 Dis F-17 Az P-1 CNTL: u-4 TBACK
B-11 D17 G-1 Ie p-2 CNTLo u-5 INTRs
B-12 Dis G-2 he P-3 PWRCLK U-6 INTR1
B-13 D2 G-3 o P-15 As u-7 TRAPo
B-14 D2s G-15 Az P-16 As u-8 IBREQ
B-15 Dz2s G-16 - Az P-17 As U-9 TREQ
B-16 D2o G-17 Ao R-1 RESET U-10 PIA
B-17 Aso H-1 Io R-2 - CDA U-11 RW
C-1 Io H-2 lo2 R-3 DRDY U-12 DREQT:
C-2 ls H-3 Iy R-4 DBACK U-13 DREQTo
C-3 la H-15 GND R-5 GND U-14 | STAT:
C-4 l2 H-16 A R-6 Vee U-15 IREQT
c5 GND H-17 A R7 TRAP U-16 OPT:
C-6 D3 J-1 I R-8 GND u-17 GND
C-7 Dy J-2 loa R-9 DBREQ
c-8 Vee J-3 GND R-10. PDA
C-9 Vce J-15 - Ats . . R-11 Vee

Note: Pin Number D-4 is the alignment pin and is electrically connected to the package lid.

1-10

Am29000

PGA PIN DESIGNATIONS

(Sorted by Pin Name)

Pin No. Pin Name | Pin No. Pin Name Pin No. Pin Name Pin No. Pin Name
M-16 Ao B-6 Ds K-3 GND ‘ T-1 INCLK
M-17 A A-6 Ds N-15 GND 17 INTRo
R-15 A: c-7 Dr R-5 GND U-6 INTR:
T-16 As B-7 Ds U-1 GND T-6 INTR:
T-17 As A-7 Ds R-13 GND U-5 INTR:
P-15 As B-8 Dw R-8 GND T-4 IRDY
R-16 As A-8 D M-3 GND U-9 IREQ
R-17 A7 A-9 Diz U-17 GND S U-15 IREQT
P-16 As B-9 Dis A-3 lo T-11 LOCK
P-17 As A-10 Du A-2 I N-17 MPGMo.
L-16 At B-10 Dis C-4 h N-16 MPGM:
L-17 An A-11 Dis B-3 Is T-12 MSERR
K-16 A2 B-11 D1z C-3 Is R-14 OPTo
K-17 A A-12 Dig B-2 Is T-15 OPTy
J-17 A B-12 Dis B-1 Is U-16 OPT2
J-15 Ass A-13 Dz D-3 Iz R-10 PDA
J-16 A A14 D2s c-2 Is u-2 PEN
H-17 Av C-12 D22 C-1 lo. U-10 PIA
H-16 A B-13 D23 D-2 1o D-4 PIN169
G-17 Ais B-14 Das D-1 It P-3 PWRCLK
G-16 Az A-15 D2s E-2 Iz U-11 RIW
F-17 Az C-13 " Da2s E-1 ls R-1 RESET
G-15 Az A-16 D27 F-3 N T-13 STAT.

" E-17 Az B-15 D2s F-2 Iis U-14 - STAT:
F-16 Az B-16 D2e F-1 lie R-12 STAT:
F-15 Azs C-15 Dso G-3 17 T-14 SUP/US
D-17 Az C-16 Dsi G-2 ts N-3 SYSCLK
E-16 Az R-4 DBACK G-1 lho N-2 TEST
D-16 Az R-9 DBREQ H-1 I u-7 TRAPo
C-17 Az T-3 DERR H-3 Iy R-7 TRAP:
B-17 A R-3 DRDY H-2 122 C-14 Vee
D-15 Aai T-10 DREQ J-1 Iz L-15 Vce
T-9 . BGRT U-13 DREQT. J-2 14 C-8 " Vee
T-8 BINV u-12 DREQT: K-2 Is c-9 Vce
T-2 BREQ E-15 GND K-1 I E-3 “Vee

" R-2 CDA H-15 GND L-1 l27 K-15 Vce
pP-2 CNTLo M-15 ‘GND L-2 Is L-3 Vee
P-1 CNTL: C-10 . GND M-1 Iz R-6 Vee
B-4 Do A1 - GND M-2 120 R-11 Vee
B-5 D: A-17 .GND N-1 lay 15 WARN
A-4 D2 C-5 ‘GND U-4 IBACK '
C-6 Ds C-11 GND u-8 IBREQ
A5 " Da 143 GND U-3 IERR

Note: Pin Number D-4 is the alignment pin and is electrically connected to the package lid.

29K Family CMOS Devices

CQFP PIN DESIGNATION

(Sorted by Pin No.)

Pin No. Pin Name Pin No. Pin Name Pin No. Pin Name Pin No. Pin Name
1 CDA 42 Vee 83 Vee 124 GND

2 INCLK 43 Is 84 GND 125 OPTo
3 PWRCLK 44 2 85 A 126 OPT1
4 SYSCLK 45 I 86 An 127 OPT:2
5 GND 46 GND 87 Az 128 SUP/US
6 Vee 47 lo 88 Az 129 IREQT
7 GND 48 Do 89 Az 130 STATo
8 RESET 49 D1 90 Az 131 STAT
9 CNTLo 50 Dz 91 Azs 132 STAT:
10 CNTL: 51 Da 92 Az 133 MSERR
1 TEST 52 D« 93 Az 134 DREQTo
12 la1 53 Ds 94 Az 135 DREQT
13 lxo 54 Ds 95 Az 136 LOCK
14 ls 55 Dr 96 Ax 137 RW
15 Is 56 Ds 97 Ats 138 DREQ
16 Iz 57 Ds 98 A 139 PDA
17 I 58 Dio 99 A7 140 PIA

18 l2s 59 D 100 Ats 141 1REQ
19 ls 60 D2 101 Ats 142 BGRT
20 GND 61 Dis 102 GND 143 DBREQ
21 Vee 62 Dis 103 Vee 144 IBREQ
22 Iz 63 Vee 104 A 145 BINV
23 Iz 64 GND 105 A3 146 Vee

24 |21 65 Dss 106 A2 147 GND
25 l20 66 Dis 107 An 148 Vee

26 he 67 Dy 108 At 149 GND
27 hs 68 D1s 109 At 150 TRAPo
28 Tz 69 Do 110 Ao 151 TRAP:
29 e 70 D2 111 MPGMo 152 INTRo
30 Iis 71 Dz 112 MPGM; 153 INTR1
31 la 72 D22 113 Vee 154 INTRz
32 ha 73 D2s 114 As 155 INTRs
33 Iz 74 D 115 As 156 WARN
34 I 75 Dzs 116 A7 157 IBACK
35 Io 76 Dz 117 As 158 IRDY
36 lo 77 Dz 118 As 159 TERR
37 ls 78 Dzs 119 A 160 DERR
38 Iz 79 Dae 120 As 161 DBACK
39 ls 80 Dso 121 Az 162 PEN_
40 Is 81 Da 122 GND 163 BREQ
3] ls 82 GND 123 GND 164 DRDY

Am23000

CQFP PIN DESIGNATIONS

(Sorted by Pin Name)

Pin No. PIn Name Pin No. Pin Name Pin No. Pin Name Pin No. Pin Name
110 Ao 51 Da 82 GND 144 IBREQ
109 A 52 D4 84 GND 159 IERR
121 Az 53 Ds 102 GND 2 INCLK
120 As 54 De 122 GND 152 INTRo
119 A4 55 D7 123 GND 153 INTR:
118 As 56 Ds 124 GND 154 INTR:
117 As 57 Ds 147 GND 155 INTR:
116 A7 58 Do 149 GND 158 IRDY
115 As 59 Du 47 lo 141 IREQ
114 As 60 De 45 I 129 IREQT
108 Aw 61 D13 44 Iz 136 TOCK
107 An 62 Du 43 Is 111 MPGMo
106 Ar 65 Dis 41 ls 112 MPGM:
105 A 66 Dis 40 Is 133 MSERR
104 Au 67 - D7 39 Is 125 OPTo
101 Ass 68 Dis 38 12 126 OPT:
100 Ass 69 D1 37 Is 127 OPT:
99 A 70 D20 36 I 139 PDA

98 A 71 D1 35 lo 162 PEN
97 A 72 D2 34 In 140 PIA

96 Ax 73 D2 33 h2 3 PWRCLK
95 Az 74 D2s 32 hs 137 RW

94 Az 75 Dzs 31 I 8 RESET
93 A2 76 D2s 30 s 130 STATo
92 Ax 77 D27 29 lis 131 STAT:
91 Azs 78 D2s 28 7 132 STAT:
90 Az 79 D2 27 hs 128 SUP/US
89 A 80 D3 26 lo 4 SYSCLK
88 Az 81 Da1 25 I 11 TEST
87 Az 161 DBACK 24 It 150 TRAPo
86 Ax 143 DBREQ 23 122 151 TRAP:
85 Asn 160 DERR 22 Iz 6 Vee

142 BGRT 164 DRDY 19 ™ 21 Vec

145 BINV 138 DREQ 18 Is 42 Vee

163 BREQ 134 DREQTo 17 l2s 63 Vee

1 CDA 135 DREQT: 16 Iz 83 Vee

9" CNTLo 5 GND 15 I8 103 Vee

10 CNTL: 7 GND 14 I» 113 Vee

48 Do 20 GND 13 lo 146 Vee

49 Dt 46 GND 12 I3t 148 Vee

50 D: 64 GND 157 IBACK 156 WARN

1-13

29K Family CMOS Devices

LOGIC SYMBOL

CDA
WARN

INTR-INTR,

CNTL-CNTL,
RESET

TEST

INCLK
TRAP,-TRAP,

)

PWRCLK
SYSCLK

BGRT
BIRV

RW

sup/U3

oK
MPGM,~MPGM,
TREQ

PDA

DBREQ

DREQT;-DREQT,

MSERR
DREQ

OPT,~OPT,

STAT-STAT,

IREQT
PR

IBREQ

“As-Ao
D3i~Do

2

CARRLENENNEIN

I

Am29000

ORDERING INFORMATION
Standard Products

AMD standard products are available in several packages and 6perating ranges. The ordering number
(Valid Combination) is formed by a combination of:

AM2%000 25

o
[2]
Q

a. Device Number

b. Speed Option (if applicable)
c. Package Type

d. Temperature Range

e. Optional Processing

-L———-— e. OPTIONAL PROCESSING

Blank = 'Standard Processing
B = Bum-in

d. TEMPERATURE RANGE
C= Commerpial (Te= 010 +85°C)

c. PACKAGE TYPE
G = 169-Lead Pin Grid Array wnthout
“ Heat Sink (CGX1 69)

Am29000

Streamlined Instruction Processor

a. DEVICE NUMBER/DESCRIPTION

Valid Combinations
AM29000-33
AM29000-25 GC, GCB
AM29000-20 -
AM29000-16

b. SPEED OPTION
-33 = 33 MHz
—25 =25 MHz
—-20 =20 MHz
-16=16 MHz

Valid Combinations

Valid Combinations list configurations planned to
be supported in volume for this device. Consult
the local AMD sales office to confirm availability of
specific valid combinations, to check on newly
released combinations, and to obtain additional
data on AMD’s standard military grade products.

1-15

29K Family CMOS Devices

ORDERING INFORMATION
APL Products

AMD products for Aerospace and Defense applications are available in several packages and operating
ranges. APL {Approved Products List) products are fully compliant with MIL-STD-883C requirements. The
ordering number (Valid Combination) is formed by a combination of: a. Device Number

AM29000 -

]
10

]

1

b. Speed Optlon (if applicable)
c. Device Class
d. Package Type

_e. Lead Finish

(4]
I—— e. LEAD FINISH

C = Gold
d. PACKAGE TYPE

Z = 169-Lead Pin Grid Array without Heatsink
(CGX169)

Y = 164-Lead Ceramic Quad Flat Pack without
Heatsink

c. DEVICE CLASS
/B = Class B

a. DEVICE NUMBER/DESCRIPTION
Am29000)
Streamlined Instruction Processor

Valid Combinations
AM29000-20 B0
AM29000-16 §

1 AM29000-20 BYC
AM29000-16 :

b. SPEED OPTION
-20 = 20 MHz
~16= 16 MHz

- Valid Combinations

Valid Combinations list configurations planned to
be supported in volume for this device. Consult

- the local AMD sales office to confirm availability of

specific valid combinations, to check on newly
released combinations, and to obtain additional
data on AMD’s standard military grade products.

Group A Tests
Group A tests consist of Subgroups
1,2,3,7,8,9,10, 11.

PIN DESCRIPTION .

Although certain outputs are described as belng three- -

state or bidirectional outputs, all' outputs (except
MSERR) may be placed in a high-impedance state by
the Test mode. The three-state and bidirectional termi-

nology in this section is for those outputs (except

SYSCLK) that are disabled when the processor grants
the channel to another master.

Aszi—Ao
Address Bus (three-state output, synchronous)

The Address Bus transfers the byte address for all ac-
cesses except burst-mode accesses. For burst-mode
accesses, it transfers the address for the first access in
the sequence.

BGRT
Bus Grant (output, synchronous)
This output signals: to-an external master that the

processor is_relinquishing control of the channel in

response to BREQ.

BINV
Bus Invalid (output, synchronous)
This output indicates that the address bus and related

controls are -invalid. It defmes an- ldle cycle for-the -

channel,

BREQ ,
Bus Request (input, synchronous)

This input allows other masters to arbitrate for control of

the processor channel.

CDA

Coprocessor Data Accept (input synchronous)

~ This signal allows the coprocessor to indicate the ac-
ceptance of operands or operation codes. For transfers
to the coprocessor, the processor does not expect a
DRDY response; an active level on CDA performs the
function normally performed by DRDY. CDAmay- be
active” whenever the coprocessor. is able to . accept
transfers.

CNTL.—CNTL,
CPU Control (input, asynchronous)
These inputs control the processor mode:

' Am29000

DBACK ;
Data Burst Acknowledge (input, synchronous)

This input is active whenever a burst-mode data access’
has been established. It may be active even though no
data are currently being accessed.

DBREQ "

Data Burst Request (three-state output
synchrohous)

This signal.is used to establish a burst—mode daia ac-
cess and to request data transfers during a burst-mode

~ data access. DBREQ may be active eventhoughthe ad-.-

dress bus is being used for an instruction access. This
signal becomes vahd late in the cycle with respect to
DREQ.

DERR

Data Error {(input, synchronous)

This input indicates that an error occurred during the
current data access. For a load, the processor ignores -
the content of the data bus. For astore, the accessister- -
minated. In either case, a Data Access Exception trap
occurs. The processor ignores this 5|gna| |t ihere is no
pending data access. : :

DRDY
Data Ready (input, synchronous)

For loads, this input indicates that valid data i isonthe
data bus. For stores, it indicates that the access is com-

 plete, and that data need no longer be driven onthe data
-bus. The processor ignores this sugnal |1 there IS no

pending data access.

DREQ

Data Request (three-state output, synchronous)
This signal requests a data access. Whenitis active, the -
address for the access appears on the address bus.

DREQT,—DREQT,
Data Request Type
(three-state output, synchronous)

These signals specify the address space.of a data ac-
cess, as follows (the value “x” is a “don't care”): ‘

'DREQT; DREQT, Meaning
CNTL, CNTL, ! Mode SR R 0 Instruction/data
L memory access
0 0 Load Test 0 1 * Input/output
Instruction - access
0 S - Step. 1 X . Coprocessor
A i 0 Halt : " transfer
1 1 Normal
'Dyr=Do An interrupt/trap vector request is indicated as a data-
31

Data Bus (bidirechonal synchronous)

The Data Bus transfers data to and from the processor
for load and store operahons

memory read. If required, the system can identify
the vector fetch. by the STAT—STATo . outputs.
DREQT+-DREQTo are valid only when DREQ is active.

29K Family CMOS Devices

'31—l0
Instruction Bus (Input, synchronous)

The Instruction Bus transfers instructions to the
processor.

IBACK

Instruction Burst Acknowledge

(input, synchronous)

This input is active whenever a burst-mode instruction
access has been established. It may be active even
though no instructions are currently being accessed.

IBREQ

Instruction Burst Request (three-state

output, synchronous)

This signalis used to establish a burst-mode instruction
access and to request instruction transfers during a
burst-mode instruction access. IBREQ may be active
eventhough the address bus is being used for adata ac-
cess. This signal becomes valid late in the cycle with re-
spect to IREQ.

1IERR
Instruction Error (Input, synchronous)

This input indicates that an error occurred during the
current instruction access. The processor ignores the
content of the instruction bus, and an Instruction Access
Exception trap occurs if the processor attempts to exe-
cute the invalid instruction. The processor ignores this
signal if there is no pending instruction access.

INCLK
Input Clock (input)

Whenthe processor generates the clock for the system,
this is an oscillator input to the processor at twice the
processor’s operating frequency. In systems where the
clock is not generated by the processor, this signal must
be tied High or Low, except in certain master/slave con-
figurations.

INTRs~INTRo

Interrupt Request (input, asynchronous)

These inputs generate prioritized interrupt requests.
The interrupt caused by INTRo has the highest priority,
and the interrupt caused by INTRa has the lowest prior-
ity. The interrupt requests are masked in prioritized or-
der by the Interrupt Mask field in the Current Processor
Status Register.

IRDY

Instruction Ready (input, synchronous)

This input indicates that a valid instruction is on the in-
struction bus. The processor ignores this signal if there
is no pending instruction access.

IREQ
Instruction Request
(three-state output, synchronous)

This signal requests an instruction access. When it is
active, the address for the access appears on the ad-
dress bus.

IREQT
Instruction Request Type
(three-state output, synchronous)

This signal specifies the address space of an instruction
request when IREQ is active:

. IREQT Meaning
0 Instruction/data memory access
1 Instruction read-only memory
access
LOCK

Lock (three-state output, synchronous)

This output allows the implementation of various chan-
nel and device interlocks. It may be active only for the
duration of an access, or active for an extended period
of time under control of the Lock bit in the Current
Processor Status.

MPGM-MPGM,

MMU Programmable

(three-state output, synchronous)

These outputs reflect the value of two PGM bits in the
Translation Look-Aside Buffer entry associated with the
access. lf no address translation is performed, these
signals are both Low.

MSERR
Master/Slave Error (output, synchronous)

This output shows the result of the comparison of
processor outputs with the signals provided internallyto -
the off-chip drivers. If there is a difference for any en-
abled driver, this line is asserted.

1-18

Am29000

OPT~OPT,

Option Control

(three-state output, synchronous)

These outputs reflect the value of bits 18—16 of the load
or store instruction that begins an access. Bit 18 of the
instruction is reflected on OPTz, bit 17 on OPT1, and bit
16 on OPTo.

The standard definitions of these signals (based on
DREQT) are as follows (the value “x” is a “don’t care”):

DREQT, DREQT, OPT, OPT, OPT, Meaning
0 X 0 0 0 Word-
length
access
0 X 0 0 1 Byte
access

o] X 0 1 0 Half-word
access

o] 0 1 0 [Instruction
ROM
access

(as data)
0 0 1 o . 1 Cache
control

[o] 0 1 1 0 ADAPT29K

accesses

-all others- Reserved

During an interrupt/trap vector fetch, the OPT>-OPTo
signals indicate a word-length access (000). Also, the
system should return an entire aligned word for a read,
regardless of the indicated data length.

The Am23000 does not explicitly prevent a store to the
instruction ROM. OPT2-OPTe are valid only when
DREQ is active.

PDA

Pipelined Data Access

(three-state output, synchronous)

1t DREQ is not active, this outputindicates thatadata ac-
cess is pipelined with another in-progress data access.
The indicated access cannot be completed until the first
access is complete. The completion of the first access is
signaled by the assertion of DREQ.

PEN

Pipeline Enable (input, synchronous)

This signal allows devices that can suppor pipelined ac-
cesses (i.e., that have input latches for the address and
required controls) to signal that a second access may
begin while the first is being completed.

PIA

Pipelined Instruction Access

(three-state output, synchronous)

IfIREQ s not active, this output indicates that an instruc-
tion access is pipelined with another in-progress instruc-
tion access. The indicated access cannot be completed

until the first access is complete. The completion of the

first access is signaled by the assertion of IREQ.
RW
Read/Write (three-state output, synchronous)

This signal indicates whether data is being transferred
from the processor to the system, or from the system to
the processor. R/Wis valid only when the address bus is
valid. RW will be High when IREQ is active.

RESET
Reset (input, asynchronous)
This input places the processor in the Reset mode.

STAT~STAT,

CPU Status (output, synchronous)

These outputs indicate the state of the processor’s exe-
cution stage on the previous cycle. They are encoded
as follows:

STAT, STAT, STAT, Condition

0 0 0 Halt or Step Modes

0 0 1 Pipeline Hold Mode

0 1 0 Load Test Instruc-
tion Mode,
Halt/Freeze

0 1 1 Wait Mode

1 0 0 Interrupt Return

1 0 1 Taking Interrupt or
Trap

1 1 0 Non-sequential
Instruction Fetch

1 1 1 Executing Mode

SUP/US

Supervisor/User Mode
(three-state output, synchronous)

This output indicates the program mode for an access.

The processor does not relinquish the channel {(in re-
sponse to BREQ) when LOCK is active.

SYSCLK
System Clock (bidirectional)

This is either a clock output with a frequency that is half
that of INCLK, or aninput from an external clock genera-
tor at the processor’s operating frequency.

TEST
Test Mode (input, asynchronous)

Whenthis input is active, the processor is in Test mode.
Al outputs and bidirectional lines, except MSERR, are
forced to the state.

TRAP;—TRAP,
Trap Request {input, asynchronous)

These inputs generate prioritized trap requests. The
trap caused by TRAPo has the highest priority. These

29K Family CMOS Devices

trap requests are disabled by the DA bit of the Current
Processor Status Register.

WARN

Warn (input, asynchronous, edge-sensitive)

A high-to-low transition ‘on this input causes a non-
maskable WARN trap to occur. This trap bypasses the
* normal trap vector fetch sequence, and is useful in situ-

ations where the vector fetch may not work (e.g., when
data memory is faulty). .

The following pins are not signal pins, but are named in
Am29000 documentation because of their special role
in the processor and system.

PWRCLK (
Power Supply for SYSCLK Driver

This pin is a power supply for the SYSCLK output driver.
Itisolates the SYSCLK driver, and is used to determine

- whether or not the Am29000 generates the clock for the

system. If power (+5 volts) is applied to this pin, the
Am29000 generates a clock on the SYSCLK output. If
this pin is grounded, the Am29000 accepts a clock gen-
erated by the system on the SYSCLK input.

PIN169
Alignment pin

Inthe PGA package, this pin is used to indicate proper. .
pin-alignment of the Am29000 and is used by the -
ADAPT29K to communicate its presence to the system.
This pin does not exist on the Am29000 in CQFP
package.

1-20

Am23000

FUNCTIONAL DESCRIPTION
Product Overview

The Am29000 contains a high-function execution unit, a
large register file (192 locations), a Branch Target
Cache (32 4-bit instruction branch targets), a memory
management unit (64 entries), and a high-bandwidth,
pipelined external channel with separate instruction and
data buses. The flexible register file may be used as a
cache for run-time variables during program execution,
or as a collection of register banks allocated to separate
tasks in multitasking applications.

The Am29000 provides a significant margin of per-
formance over other processors in its class, since the
majority of processor features were defined with the
maximumachievable performance in mind. This section
describes the features of the Am29000 from the point of
view of system performance.

Cycle Time

The processor operates at a frequency of 33 MHz. The
processor cycle time is a single, 30-ns clock period. The
processor interface drivers can drive 80-pF loads at this
frequency (for greater loads see Capacitive' Output
Delay table).

The Am29000 architecture and system interfaces are
designed so that the processor cycle time can decrease
with technology improvements.

Four-Stage Pipeline

The Am29000 utilizes a four-stage pipeline, allowing it
to execute one instruction every clock cycle. The pro-
cessor can complete aninstruction on every cycle, even
though four cycles are required from the beginning of an
instruction to its completion.

Ata 33-MHz operating frequency, the maximum instruc-
tion execution rate is 33 million instructions per second
(MIPS). The Am29000 pipeline is designed so that the
Am238000 can operate at the maximum instruction
execution rate a significant portion of the time.

Pipeline interlocks are implemented by processor hard-
ware. Except for afew special cases, it is not necessary
to rearrange programs to avoid pipeline dependencies.

System Interface

The Am29000 accesses external instructions and data
using three non-multiplexed buses. These buses are re-
ferred to collectively as the channel. The channel proto-
col minimizes the logic chains involved in atransfer, and
provides a maximum transfer rate of 264 Mb/s.

Separate Address, Instruction, and Data Buses

The Am29000 incorporates two 32-bit buses for instruc-
tion and data transfers, and a third address bus that is
shared between instruction and data accesses. This
bus structure allows simultaneous instruction and data
transfers, even though the address bus is shared. The

channel achieves the performance of four separate
32-bit buses at a much-reduced pin count.

Pipelined Addresses

The Am29000 address bus is pipelined so that it can be
released before an instruction or data transfer is com-
pleted. This allows a subsequent access to beginbefore
the first has been completed, and allows the processor
to have two accesses in progress simultaneously.

Support of Burst Devices and Memories
Burst-mode accesses provide high transfer rates for
instructions and data at sequential addresses. For such
accesses, the address of the first instruction or datum
is sent, and subsequent requests for instructions or data
at sequential addresses do not require additional
address transfers. These instructions or data are trans-
ferred until either party involved in the transfer termi-
nates the access.

Burst-mode accesses can occur at the rate of one ac-
cess per cycle after the first address has been pro-
cessed. At 33 MHz, the maximum achievable transfer
bandwidth for either instructions or data is 132 Mb/s.

Burst-mode accesses may occur to input/output de-
vices if the system design permits.

Interface to Fast Devices and Memories

The processor can be interfaced to devices and memo-
ries that complete accesses within one cycle. The chan-
nel protocol takes maximum advantage of such devices
and memories by allowing data to be returned to the
processor during the cycle inwhich the address is trans-
mitted. This allows a full range of memory-speed trade-
offs to be made within a particular system.

Register File .

An on-chip Register File containing 192 general-
purpose registers allows most instruction operands to
be fetched without the delay of an external access. The
Register File incorporates several features that aid the
retention of data required by an executing program.
Because of the number of general-purpose registers,
the frequency of external references for the Am23000 is
significantly lower than the frequency of references in
processors having only 16 or 32 registers.

Triple-port access to the Register File allows two source
operands to be fetched in one cycle while a previously
computed result is written. Three 32-bit internal buses
prevent contention in the routing of operands. All oper-
and fetches and result write-backs for instruction execu-
tion can be performed in a single cycle.

The registers allow efficient procedure linkage by cach-
ing a portion of a compiler’s run-time stack. Onthe aver-
age, procedure calls and returns can be executed 5 to
10 times faster (on a cycle-by-cycle basis) than in pro-
cessors that require the implementation of a run-time

29K Family CMOS Devices

stack in external memory (with the attendant loading
and storing of registers on procedure call and return).

The registers can contain variables, constants, ad-
dresses, and operating-system values. In multitasking
applications, they can be used 1o hold the processor
status and variables for as many as eight differenttasks.
A register-banking option allows the Register File to be
divided into segments, which can be individually pro-
tected. In this configuration, a task switch can occur in
as few as 17 cycles.

Instruction Execution

The Am29000 uses an Arithmetic/Logic Unit, a Field
Shift Unit, and a Prioritizer to execute most instructions.
Each of these is organized to operate on 32-bit oper-
ands and provide a 32-bit result. All operanons are per-
formedin a smgle cycle.

Instruction operations are overlapped with operand
fetch and result write-back to the Register File. Pipeline
forwarding logic detects pipeline ‘dependencies: and

routes data as required, avoiding delays that might arise

from these dependencies.

Branch Target Cache

In' general, the AmM29000 meets its instruction
bandwidth requirements via instruction prefetching.
However, instruction prefetching is ineffective when a
branch occurs. The Am29000 therefore incorporates an
on-chip Branch Target Cache to supply instructions fora
branch—if this branch has been taken previously—
“while a new prefetch stream is established.

If branch-target instructions are in the Branch Target
Cache, branches execute in a single cycle. The Branch

" Target Cache inthe Am29000 has an average hit rate of
60%. In other words, it eliminates the branch latency for
60% of all successful branches on the average.

- .Branching

Branch: conditions- in the. Am29000 are based on
Boolean data contained in general-purpose registers
rather than on arithmetic condition codes. Using a con-
dition-code register for the purpose of branching—
which is common in other processors—inhibits certain
compiler optimizations because the condition-code reg-
ister is modified by many different instructions. It is diffi-
“cult for an optimizing compiler to schedule this shared
.- use. By treating branch conditions as any other instruc-
tion operand, the Am23000 avoids this problem

The Am29000 executes branches in a smgle cycle for
those cases where the target of the branchis in the
Branch Target Cache. The single-cycle branch is un-
usual for a pipelined processor, and is due fo processor
hardware that allows much of the branch instruction op-
eration to be performed early in the execution of the
branch. Single-cycle branching has a dramatic effect on
performance, since successful branchestypically repre-
sent 15% to 25% of a processor’s instruction mix.

The techniques used to achieve single-cycle branching
also minimize the execution time of branches in those
cases where the target is not in the Branch Target
Cache. To keep the pipeline operating at the maximum
rate, the instruction following the branch, referred to as
the delay instruction, is executed regardless of the out-
come of the branch. An optimizing compiler candefine a
useful instruction for the delay instruction in approxi-
mately 90% of branch instructions, thereby increasing
the performance of branches.

Loads and Stores

The performance degradation of load and store opera-
tions is minimized in the Am29000 by overlapping them
with--instruction execution, by taking advantage of
pipelining, and by organizing the flow of external data
onto the processor so that the impact of external ac-
cesses is minimized.

Overlapped Loads and Stores

In the Am29000, a load or store is performed concur-
rently with execution of instructions that do not have de-
pendencies on the load or store operation. An optimiz-

-ing compiler can schedule loads and stores in the in-

struction sequence so that, in most cases, data ac-
cesses are overlapped with instruction execution.

Overlapped load and store operations can achieve upto
a 30% improvement in performance when data memory
has a two-cycle access time. Processor hardware de-
tects dependencies while overlapped loads and stores
are being performed, so dependencies have no soft-
ware implications:

The Am29000 exception restart mechanism automati-
cally saves information required to:restart any load
or store until the operation is successfully completed.
Thus, it allows the overlapped execution of loads and
stores while.. properly handling address-transiation
exceptions.

-The Am29000 data-flow organization avoids the one-

cycle penalty that would result from the contention be-
tween load data and the results of overlapped instruc-
tion execution. Load data is buffered in a latch while
awaiting an opportunity to be writteninto the registerfile.
This opportunity is guaranteed to arise before the next
load is executed. While the data is buffered in this latch,
it may be used as an instruction operand in place of the
destination register for the load.:

-Load Multiple and Store Multiple .

Load Muttiple and Store Multiple instructions allow the
transfer of the contents of multiple registers to or from .
external memories or devices. Thistransfer can occur at
a rate of one register content per cycle.

The advantage of Load Multiple and Store Multiple is
best seen in task switching, register-file saving and
restoring, and in block data moves. In many systems,

1-22

Am23000

such operations require a significant percentage of
execution time.

The Load Multiple and Store Multiple sequences are in-
terruptible so that they do not affect interrupt latency.

Forwarding of Load Data

Datathat are sentto the processor atthe completionof a
load are forwarded directly to the appropriate execution
unit if the data are required immediately by an instruc-
tion. This avoids the common one-cycle delay from bus
transfer to use of data, and reduces the access latency
of external data by one cycle.

Memory Management

A 64-entry Translation Look-Aside Buffer (TLB) on the
Am29000 performs virtual-to-physical address trans-
lation, avoiding the cycle thatwould be requiredto trans-
fer the virtual address to an external TLB. A number of
enhancements improve the performance of address
translation:

1. Pipelining—The operation of the TLB is pipe-
lined with other processor operations.

2. Early Address Translation—Address transla-
tions for load, store, and branch instructions oc-
cur during the cycle in which these instructions
are executed. This allows the physical address
to be transterred externally in the next cycle.

3. Task Identifiers—Task Identifiers allow TLB en-
tries to be matched to different processes so that
TLB invalidation is not required during task
switches.

4. Least-Recently Used Hardware—This hard-
ware allows immediate selection of a TLB set to
be replaced. '

5. Software Reload—Software reload allows the
operating system to use a page-mapping
scheme that is best matched to its environment.
Paged-segmented, one-level page mapping,
two-level page mapping, or any other user-de-
fined page-mapping scheme can be supported.
Because Am23000 instructions execute at an
average rate of nearly one instruction per cycle,
software reload has a performance approaching
that of hardware TLB reload.

Interrupts and Traps

Whenthe Am29000 takes aninterruptortrap, it does not
automatically save its current state information. This
greatly improves the performance of temporary inter-
ruptions such as TLB reload, floating-point emulation, or
other simple operating-system calls that require no sav-
ing of state information.

In cases where the processor state must be saved, the
saving and restoring of state information is under the
control of software. The methods and data structures
used to handle interrupts—and the amount of state
saved—may be tailored to the needs of a particular
system.

Interrupts and traps are dispatched through a 256-entry
Vector Area, which directs the processor to a routine to
handle a given interrupt or trap. The Vector Area may be
relocated in memory by the modification of a processor
register. There may be multiple Vector Areas inthe sys-
tem, though only one is active at any given time.

The Vector Areais either a table of pointers to the inter-
rupt and trap handlers, or a segment of instruction mem-
ory (possibly read-only memory) containing the han-
dlers themselves. The choice between the two possible
Vector Area definitions is determined by the cost/per-
formance trade-offs made for a particular system.

If the Vector Area is a table of vectors in data memory, it
requires only 1 kb of memory. However, this structure
requires that the processor perform a vector fetch every
time an interrupt or trap is taken. The vector fetch re-
quires at least three cycles in addition to the number of
cycles required for the basic memory access.

If the Vector Area is a segment of instruction memory, it
requires a maximum of 64 kb of memory. The advan-
tage of this structure is that the processor begins the
execution of the interrupt or trap handler in the minimum
amount of time. :

Floating-Point Arithmetic Unit

The Am29027 is a double-precision, floating-point arith-
metic unit for the Am29000. It can provide an order-of-
magnitude performance increase over floating-point op-
erations performed in software. It performs both single-
precision and double-precision operations using IEEE
and other floating-point formats. The Am29027 also
supports 32- and 64-bit integer functions.

The Am29027 performs floating-point operations using
combinatorial—rather than sequential—logic; there-
fore, operations with the Am29027 require only five
Am29000 cycles. Floating-point operations may be
overlapped with other processor operations. Further-
more, the Am29027 incorporates - pipeline registers
and eight operand registers, permitting very high
throughputfor certaintypes of operations (such as array
computations).

The Am23027 attaches directly to the Am23000 using
the coprocessor interface. The Am29000 can transfer
two 32-bit quantities to the Am29027 in one cycle.

The Am29027 is described in detail in the Am29027
Arithmetic Accelerator Data Sheet (order# 09114) and
the Am29027 Handbook (order# 11852).

1-23

29K Family CMOS Devices

ARCHITECTURE HIGHLIGHTS

This section introduces the principle architectural ele-
ments, hardware features, and system interfaces of the
Am28000.

Architecture Overview

This section gives a brief description of the Am29000
from a programmer’s point of view. It introduces the
processor's program modes, registers, and instructions.
An overview of the processor's data formats and han-
dling is given. This section also briefly describes inter-
rupts and. traps, memory management, and the
coprocessor interface. Finally, the Timer Facility and
Trace Facility are introduced.

Program Modes

There are .two mutually exclusive modes of program
execution: the Supervisor mode and the User mode. in
the Supervisor mode, executing programs have access
to all processor resources. In the User mode, certain
processor resources may not be accessed; any at-
tempted access causes a trap.

Visible Registers

The Am29000 incorporates three classes of registers
that are accessed and manipulated by instructions:
general-purpose. registers,. special-purpose registers,
and Translation Look-Aside Buffer (TLB) registers. (Re-
fer to the Register Description section for greater detail
of the register categories.) .

«Gerieral-Purpose Registers

The Am29000 has 192 general-purpose registers. With
a few exceptions, general-purpose registers are not

- dedicated to any special use and are available for any
appropriate program use.

‘Most processor instructions are three- address instruc-
tions. An instruction specifies any three of the 192 regis-
ters for use in instruction execution. Normally, two of
these registers contain source operands for the instruc-
tion, and a third stores the result of the instruction.

The 192 registers are divided into 64 global and 128 lo-
cal registers. Global registers are addressed with abso-
lute register numbers, while local registers ‘are ad-
dressed relative to an internal Stack Pointer.

For fast procedure calling, a portion of a compiler’s run-
time stack can be mapped into the loca! registers. Stati-
cally allocated variables, temporary values, and operat-
ing-system parameters are kept in the global registers.

The Stack Pointer for local registers is mapped to Global
Register 1. The Stack Pointer is-a full 32-bit virtual ad-
dress for the top of the run-time stack.

The general-purpose registers may be accessed in-
directly, with the register number specified by the con-
tent of a special-purpose register {see below) rather
than by an instruction field. Three independent indirect

register numbers are contained in three separate spe-
cial-purpose registers. Indirect addressing is accom-
plished by specifying Global Register 0 as an instruction
operand or result register. An instruction can specify an
indirect register access for any or all of the source oper-
ands or result.

General-purpose registers may be partitioned into seg-
ments of 16 registers for the purpose of access protec-
tion. A registerin a protected segment may be accessed
only by a program executinginthe Supervisor mode. An
attempted access (either read or write) by a User-mode
program causes a trap to occur.

Special-Purpose Registers

The Am29000 contains 27 special-purpose registers.
These registers provide controls and data for certain
processor functions.

Special-purpose registers are accessed by data move-
ment only. Any special-purpose register can be written
with the contents of any general-purpose register, and
any general-purpose register can be written with the
contents of any special-purpose register.- Operations
cannot be performed directly onthe oontents of special-
purpose registers.

Some special-purpose registers are protected, and can
be accessed only in the Supervisor mode. This restric-
tion applies to both read and write accesses. An attempt
by a User-mode program to access a protected register
causes a trap to occur.

The protected special-purpose registers are defined as
follows:

1. Vector Area Base Address—Defines the begin-
ning of the interrupt/trap Vector Area.

2. Old Processor Status—Receives a copy of the
Current Processor Status (see below) when an
interrupt ortrap is taken: It is fater used to restore
the Current Processor Status on an interrupt
return.

3. Current Processor Status—Contains control in-
formation associated with the currently execut-
ing process, such as interrupt disables and the
Supervisor Mode bit.

4. Configuration—Contains = control informa-
tion that normally varies only from system to
system, and usually is set only during system
initialization.

5." Channel Address—Contains the address asso-
ciated with an external access, and retains the
address if the access is not completed success-
fully. The Channel Address Register, in con-
junction with the Channel Data and Channel
Control registers described below, allows the re-
starting of unsuccessful external accesses. This

1-24

Am29000

might be necessary for an access encountering
a page fault in a demand-paged environment,
for example.

6. Channel Data—Contains data associated with a
store operation, and retains the data it the opera-
tion is not completed successfully.

7. Channel Control—Contains control information
associated with achanneloperation, and retains
this information if the operation is not completed
successfully.

8. Register Bank Protect—Restricts access of
user-mode programs to specified groups of 16
registers. This facilitates register banking for
multitasking applications, and protects operat-
ing system parameters kept in the global regis-
ters from corruption by user-mode programs.

9. Timer Counter—Supports real-time control and
other timing-related functions.

10. Timer Reload—Maintains synchronization of
the Timer Counter. It includes control bits for the
Timer Facility.

11. Program Counter 0—Contains the address of
the instruction being decoded when an interrupt
or trap is taken. The processor restarts this in-
struction upon interrupt return.

12. Program Counter 1—Contains the address of
the instruction being executed when an interrupt
or trap is taken. The processor restarts this in-
struction upon interrupt return.

13. Program Counter 2—Contains the address of
the instruction just completed when an interrupt
or trap is taken. This address is provided for in-
formation only, and does not participate in anin-
terrupt return.

14. MMU Configuration—Allows selection of vari-
ous memory-management options, such as
page size.

15. LRU Recommendation—Simplifies the reload of
entries in the Translation Look-Aside Buffer
(TLB) by providing information on the least
recently used entry of the TLB when a TLB miss
occurs.

The unprotected special-purpose registers are defined
as tollows:

1. Indirect Pointer C—Allows the indirect access of
a general-purpose register.

2. Indirect Pointer A—Allows the indirect access of
a general-purpose register.

3. Indirect Pointer B—Allows the indirect access of
a general-purpose register.

4. Q—Provides additional operand bits for multiply
step, divide step, and divide operations.

5. ALU Status—Contains information about the
outcome of integer arithmetic and logical opera-
tions, and holds residual control for certain in-
struction operations.

6. Byte Pointer—Contains an index of a byte or
half-word within a word. This register is also ac-
cessible via the ALU Status Register.

7. Funnel Shift Count—Provides a bit offset for the
extraction of word-length fields from double-
word operands. This register is also accessible
via the ALU Status Register.

8. Load/Store Count Remaining—Maintains a
count of the number of loads and stores remain-
ing for Load Multiple and Store Multiple opera-
tions. The count is initialized to the total number
of loads or stores to be performed before the op-
eration is initiated. This register is also accessi-
ble via the Channel Control Register.

9. Floating-Point Environment—Controls the op-
eration of floating-point arithmetic, such as
rounding modes and exception reporting.

10. Integer Environment—Enables and disables the
- reporting of exceptions that occur during integer
multiply and divide operations.

11. Floating-Point Status—Contains information
about the outcome of floating-point operations.

12. Exception Opcode—Reports the operation code
of an instruction causing a trap. This register is
provided primarily for recovery from floating-
point exceptions, but is also set for other instruc-
tions that cause traps.

TLB Registers

Translation Look-Aside Buffer (TLB) entries in the
Am29000 Memory Management Unit are accessed via
128 TLB registers. A single TLB entry appears as two
TLB registers; TLB registers are thus paired according
to the corresponding TLB entry.

TLB registers are accessed by data movement only.
Any TLB register can be written with the contents of any
general-purpose register, and any general-purpose reg-
istercanbe writtenwith the contents of any TLB register.
Operations cannot be performed directly on the
contents of TLB registers.

TLB registers can be accessed only in the Supervisor
mode. This restriction applies to both read and write ac-
cesses. An attempt by a User-mode program to access
a TLB register causes a trap to occur.

1-25

29K Family CMOS Devices

Instruction Set Overview

The three-address architecture of the Am29000 instruc-
tion set allows a compiler or assembly-language pro-
grammer to prevent the destruction of operands, and
aids register allocation and operand reuse. Instruction
operands may be contained in any 2 of the 192 general-
purpose registers, and instruction results may be stored
in any of the 192 general-purpose registers.

The compiler or assembly-language programmer has
complete freedom to allocate register usage. There is
no dedication of a particular register or register group to
a particularclass of operations. The instruction set is de-
signed to minimize the number of side effects and
implicit operations of instructions.

Most Am29000 instructions can specify an 8-bit con-
stant as one of the source operands. Larger constants
are constructed using one or two additional instructions
and ageneral-purpose register. Relative branchinstruc-
tions specify a.16-bit, signed, word offset. Absolute
branches specify a 16-bit word address.

The Am29000 instruction set contains 117 instructions.
These instructions are divided into nine classes:

1. Integer Arithmetic—Perform integer add, sub-
tract, multiply, and divide operations.

2. Compare—Perform arithmetic and logical com-
parisons. Some instructions in this class allow
the generation of a trap if the comparison condi-
tion is not met.

3. Logical—Perform a set of bit-wise Boolean op-
erations.

4. Shift—Perform arithmetic and logical shifts, and
allow the extraction of 32-bit words from 64-bit
double words. :

5. Data Movement—Perform movement of data
fields between registers, ‘and the movement
of data to and from external devices- and
memories.

6. Constant—Allow the generation 6f large con-
stant values in registers.

7. Floating-Point—Included for floating-point arith-
metic, comparisons, and format conversions.
These instructions are not currently imple-

~'mented directly in processor hardware.

8. Branch—Perform program jumps and subrou-
tine calls. :

9. Miscellaneous—Perform miscellaneous control
- functions and operations not provided by other
classes.

The Am29000 executes allinstructions in a single cycle,
except for interrupt retums, Load Muitiple, and Store
Multiple.

Figure 1 shows a complete list of Am29000 instructions,
listed alphabetically by instruction mnemonic {(refer to
the Instruction Set section for more details).

- 1-26

Am29000

Mnemonlc Instruction Name
ADD Add

ADDC Add with Carry

ADDCS Add with Carry, Signed

ADDCU Add with Carry, Unsigned

ADDS Add, Signed

ADDU Add, Unsigned

AND AND Logical

ANDN AND-NOT Logical

ASEQ Assert Equal To

ASGE Assert Greater Than or Equal To

ASGEU Assert Greater Than or Equal To, Unsigned
ASGT Assert Greater Than

ASGTU Assert Greater Than, Unsigned

ASLE Assert Less Than or Equal To

ASLEU Assert Less Than or Equal To, Unsigned
ASLT Assert Less Than

ASLTU Assert Less Than, Unsigned

ASNEQ Assert Not Equal To

CALL Call Subroutine

CALLI Call Subroutine, Indirect

CLASS Classify Floating-Point Operand

cLz Count Leading Zeros

CONST Constant

CONSTH Constant, High

CONSTN Constant, Negative

CONVERT Convert Data Format

CPBYTE Compare Bytes

CPEQ Compare Equal To

CPGE Compare Greater Than or Equal To
CPGEU Compare Greater Than or. Equal To, Unsigned
CPGT Compare Greater Than

CPGTU Compare Greater Than, Unsigned

CPLE Compare Less Than or Equal To

CPLEU Compare Less Than or Equal To, Unsigned
CPLT Compare Less Than

CPLTU Compare Less Than, Unsigned

CPNEQ Compare Not Equal To

DADD Floating-Point Add, Double-Precision

DDV Floating-Point Divide, Double-Precision
DEQ Floating-Point Equal To, Double-Precision
DGE Floating-Point Greater Than or Equal To, Double-Precision
DGT Floating-Point Greater Than, Double-Precision
Div Divide Step i i

DivOo Divide Initialize

DIVIDE Integer Divide, Signed

DIVIDU Integer Divide, Unsigned

DIVL Divide Last Step

DIVREM Divide Remainder

DMUL Floating-Point Multiply, Double-Precision
DsuB Floating-Point Subtract, Double-Precision
EMULATE Trap to Software Emulation Routine
EXBYTE Extract Byte

EXHW Extract Half-Word

EXHWS Extract Half-Word, Sign-Extended
EXTRACT Extract Word, Bit-Aligned

FADD Floating-Point Add, Single-Precision

FDIV Floating-Point Divide, Single-Precision
FDMUL Floating-Point Multiply, Single-to-Double Precision
FEQ Floating-Point Equal To, Single-Precision
FGE Floating-Point Greater Than or Equal To, Single-Precision

Figure 1. Am29000 Instruction Set

1-27

29K Family CMOS Devices

Mnemonic

Instruction Name
FGT Floating-Point Greater Than, Single-Precision
FMUL Floating-Point Multiply, Single-Precision
FSUB Floating-Point Subtract, Single-Precision
HALT Enter Halt Mode
INBYTE Insert Byte
INHW Insert Half-Word
INV Invalidate
IRET Interrupt Return
IRETINV Interrupt Return and Invalidate
JMP Jump
JMPF Jump False
JMPFDEC - Jump False and Decrement
JMPFI Jump False Indirect
JMPI Jump Indirect
JMPT Jump True
JMPTI Jump True Indirect
LOAD Load
LOADL Load and Lock
LOADM Load Multiple
LOADSET Load and Set
MFSR Move from Special Register
MFTLB Move from Translation Look-Aside Buffer Register
MTSR - Move to Special Register
MTSRIM Move to Special Register Immediate
MTTLB Move to Translation Look-Aside Buffer Register -
MUL Mutltiply Step
MULL Multiply Last Step
MULTIPLU Integer Multiply, Unsigned
MULTIPLY Integer Multiply, Signed
MULTM Integer Multiply Most-Significant Bits, Signed
MULTMU Integer Multiply Most-Significant Bits, Unsigned
MULU Multiply Step, Unsigned
NAND NAND Logical
NOR NOR Logical
OR OR Logical
SETIP Set Indirect Pointers
SLL Shift Left Logical
SQRT Square Root !
- SRA Shift Right Arithmetic
SRL Shift Right Logical
STORE Store :
STOREL Store and Lock
STOREM Store Multiple
suB Subtract L
SUBC Subtract with Carry
SUBCS Subtract with Carry, Signed
SUBCU Subtract with Carry, Unsigned
SUBR Subtract Reverse
SUBRC Subtract Reverse with Carry
SUBRCS Subtract Reverse with Carry, Signed
SUBRCU Subtract Reverse with Carry, Unsigned
SUBRS Subtract Reverse, Signed)
SUBRU Subtract Reverse, Unsigned
SUBS Subtract Signed
SuBU Subtract Unsigned
XNOR Exclusive-NOR Logical
XOR

Exclusive-OR Logical

Figure 1. Am29000 Instruction Set (continued)

Am29000

Data Formats and Handling

This section introduces the data formats and data-
manipulation mechanisms that are supported by the
Am29000.

Data Types

Awordis defined as 32 bits of data. A half-word consists
of 16 bits, and a double word consists of 64 bits. Bytes
are 8 bits in length. The Am29000 has direct support
for word-integer (signed and unsigned), word-logical,
word-Boolean, half-word integer (signed and unsigned),
and character (signed and unsigned) data.

Other data types, such as character strings, are sup-
ported with sequences of basic instructions and/or ex-
ternal hardware. Single- and double-precision floating-
point types are defined for the Am23000, but are not
supported directly by hardware.

The format for Boolean data used by the processor is
suchthatthe Boolean values TRUE and FALSE are rep-
resented by 1and 0, respectively, inthe most-significant
bit of a word.

Figure 2 illustrates the numbering conventions for data
units contained in a word. Within a word, bits are num-
bered in increasing order from right to left, starting with
the number 0 for the least-significant bit. Bytes and half-
words within a word are numbered in increasing order,
starting with the number 0. However, bytes and half-

words may be numbered right-to-left or left-to-right, as
controlied by the Configuration Register.

Note that the numbering of bits within words is strictly for
notational convenience. In contrast, the numbering con-
ventions for bytes and half-words within words affect
processor operations.

External Data Accesses

External accesses move data between the processor
and external devices and memories. These accesses
occur only as a result of load and store instructions.

Load and store instructions move words of data to and
from general-purpose registers. Each load and store in-
struction moves a single word. There are load and store
instructions that support interlocking operations neces-
sary for multiprocessor exclusion, synchronization, and
communication.

For the movement of multiple words, Load Multiple and
Store Multiple instructions move the contents of se-
quentially addressed external locations to or from se-
quentially numbered general-purpose registers. The
Load Multiple and Store Multiple allow the movement of
up to 192 words at a maximum rate of one word per
processor cycle. The multiple load and store sequences
may be interrupted, and restarted at the point of
interruption.

Bytes Within Words O bit =
31 23 15 7 0
CETTErrprerre e ety rirtind
Byte 0 Byte 1 Byte 2 Byte 3

OR BO bit = 1
31 23 . 15 7 0
Frrertreprertr ety e rtrerp et
Byte 3 Byte 2 Byte 1 Byte 0
alf-Words Within Wor it =
31 23 15 7 ' 0
certrtrrrtrerrtrrprr ettt rrrerTl
Half-Word 0 Half-Word 1
OoR BObit=1
31 23 15 ‘ 7 0
NEEEREREERERRERREREEERNNEEEEnE
Half-Word 1 Half-Word 0

Figure 2. Data-Unit Numbering Conventions

1-29

29K Family CMOS Devices

Load and store instructions provide no mechanism for
computing the address associated with the external
data access. All addresses are contained in a general-
purpose register at the beginning of the access, or are
givenby an 8-bit instruction constant. Any address com-
putation must be performed explicitly before the load or
store instruction is executed. Since address computa-
tions are expressed directly, they are exposed for
compiler optimizations as any other computations are.

External data accesses are overlapped with instruction
execution. Processor performance is improved if in-
structions that follow loads do not immediately use ex-
ternally referenced data. In this manner, the time re-
quired to perform the external access is overlapped with
subsequentinstruction execution. Because of hardware
interlocks, this concurrency has no effect on the logical
behavior of an executing program.

Addressing and Alignment

External instructions and data are contained in one of
four 32-bit address spaces:

1. Instruction/Data Memory

2. Input/Output -
3. Coprocessor’

4. Instruction Read-Only Memory (Instruction

ROM)

An address in the instruction/data memory address
space may be treated as virtual or physical, as deter-
mined by the Current Processor. Status Register. Ad-
dress translation for data accesses is enabled sepa-
rately from address translation for instruction accesses.
A program in the Supervisor mode may temporarily dis-
able address translation for individual loads and stores;
this permits load-real and store-real operations.

Bits contained within load and store instructions distin-
guish between the instruction/data memory, input/out-
put, and coprocessor address spaces. Address transla-
tion also may determine whether an access is per-
formed in the instruction/data memory or the input/out-
put address space. The Current Processor Status regis-
ter determines whether instruction accesses are di-
rected to the instruction/data memory address space or
to the instruction ROM address space.

The Am29000 does not support data accesses directly
to the instruction ROM address space. However, this
capability is possible as a system option.

All addresses are interpreted as byte addresses, al-
‘though accesses are word-oriented. The number of a

byte within a word is given by the two least-significant

address bits. The number of a half-word within a word is
“ given by the next-to-least-significant address bit.

Since only byte addressing is supported, it is possible
that an address for the access of a word or half-word is
not aligned to the desired word or half-word. For a word
access, anunaligned address has a 1in either or both of
the two least-significant address bits. For a half-word
access, an unaligned address has a 1 in the least-sig-
nificant address bit. In many systems, address align-

ment can be ignored, with addresses truncated to ac-
cess the word or half-word of interest. However, as a
user option, the Am29000 creates a trap when a non-
aligned access is attempted. The trap allows software
emulation of nonaligned accesses.

inthe Am29000, allinstructions are 32 bits in length, and
are aligned on word-address boundaries.

Byte and Half-Word Accesses

The Am29000 supports the direct external access of
bytes and half-words as an option. If this option is en-
abled, the Am23000 selects a byte or half-word within a
word on aload, and aligns it to the low-order byte or half-
word of a register. On a store, the low-order byte or half-
word of aregister is replicated in all byte or half-word po-
sitions, so that the external memory can easily write the
required byte or half-word in memory. This option re-
quires that the external memory system be able to write
individual bytes and half-words within words.

To avoid the memory-system complexity caused by
writing individual bytes and half-words, the Am29000
can perform byte and half-word accesses using soft-
ware alone. The Am29000 can set a byte-position
indicatorinthe ALU Status Register as an option for load
instructions, with the two least-significant bits of the
address for the load. To load a byte or half-word, a word
load is first performed. This load sets the byte-position
indicator, and a subsequent instruction extracts the byte
or haif-word of interest fromthe accessed word. To store
a byte or half-word, a load is also first performed; the
byte or half-word of interestis inserted into the accessed
word, and the resulting word then is stored. Even if
the Am29000 is configured to perform byte and
half-word accesses in hardware, this software-only
technique operates correctly; this allows software to be

. upwardly compatible from simpler systems to more

complex systems.

Interrupts and Traps

Normal program flow may be preempted by an interrupt
or trap for which the processoris enabled. The effecton
the processor is identical for interrupts and traps; the
distinction is in the different mechanisms by which inter-
rupts and traps are enabled. Itis intended that interrupts
be used for suspending current program execution and
causing another program to execute, while traps are
used to report errors and exceptional conditions.

The interrupt and trap mechanism supports high-speed,
temporary context switching and user-defined interrupt-
processing mechanisms.

~ Temporary Context Switching

The basic interrupt/irap mechanism of the Am29000
supports temporary context switching. During the tem-
porary context switch, the interrupted context is held in
processor registers. The interrupt or trap handler canre-
turn immediately to this context.

Temporary context switching is useful for instruction
emulation, floating-point operations, TLB reload rou-

1-30

Am29000

tines, and so forth. Many of its features are similar to
microprogram execution; processor context does not
have tobe saved, interrupts are disabled for the duration
of the program, and all processor resources are acces-
sible, even if the context that was interrupted is in the
User mode. The associated routine may execute from
instruction/data memory or instruction ROM.

User-Defined Interrupt Processing

Since the basic interrupttrap mechanism for the
Am29000 keeps the interrupted context in the pro-
cessor, dynamically nested interrupts are not supported
directly. The context in the processor must be saved
before another interrupt or trap can be taken.

The interrupt or trap handler executing during a tempo-
rary context switch is not required to return to the in-
terrupted context. This routine optionally may save the
interrupted context, load a new one, and return to the
new context.

The implementation of the saving and restoring of con-
texts is completely user-defined. Thus, the context
save/restore mechanism used (e.g., interrupt stack,
program status word area, etc.) and the amount of con-

text saved may be tailored to the needs of the system. -

Vector Area

Interrupt and trap dispatching occur through a
relocatable Vector Area, which accommodates as many
as 256 interrupt and trap handling routines. Entries into
the Vector Area are associated with various sources of
interrupts and traps; some are predefined while others
are user-defined. :

The Vector Areaiis either atable of vectors in data mem-
ory where each vector points to the beginning of an in-
terrupt or trap handler, or it is a segment of instruction/
data memory (or instruction ROM) containing the actual
routines. The latter configuration for the Vector Area
yields better interrupt performance with the cost of addi-
tional memory.

Memory Management

The Am29000 incorporates a Memory Management
Unit (MMU) that accepts a 32-bit virtual byte address
and translates it to a 32-bit physical byte address in a
single cycle. The MMU is not dedicated to any particular
address-translation architecture.)

Address translation in the MMU is performed by a
64-entry Translation Look-Aside Buffer (TLB), an asso-
ciative table containing the most recently used address
translations for the processor. If the translation for a
given address cannot be performed by the TLB, a TLB
miss occurs and causes a trap that allows the required
translation to be placed into the TLB.

Processor hardware ‘maintains _information for each
TLB line indicating which entry was least recently used;
when a TLB miss occurs, this information is used to

indicate the TLB entry to be replaced. Software is
responsible for searching system page tables and modi-
fying the indicated TLB entry as appropriate. This allows
the page tables to be defined according to the system
environment.

TLB entries are modified directly by processor instruc-
tions. A TLB entry consists of 64 bits and appears as two
word-length TLB registers, which may be inspected and
modified by instructions.

TLB entries are tagged with a Task Identifier field, which
allows the operating systemto create a unique 32-bit vir-
tual address space for each of 256 processes. In addi-
tion, TLB entries provide support for memory protection
and user-defined control information.

Coprocessor Programming

The coprocessor interface for the Am29000 allows a
program to communicate with an off-chip coprocessor
for performing operations not supported by processor
hardware directly.

The coprocessor interface allows the program to trans-
fer operands and operation codes to the coprocessor,
and then perform other operations while the coproces-
soroperation is in progress. The results of the operation
are read from the coprocessor by a separate transfer.
The processor may transfer multiple operands to the
coprocessor without retransferring operation codes or
reading intermediate results. As many as 64 bits of in-
formation can be transferred to the coprocessor in a
single cycle.

The Am29000 includes features that support the defini-
tion of the coprocessor as a system option. inthis case,
coprocessor operations are emulated by software when
the coprocessor is not present in a system.

Timer Facility

The Timer Facility provides a counterforimplementinga
real-time clock or other software timing functions. This
facility comprises two special-purpose registers: the
Timer Counter Register, which decrements at a rate
equal to the processor operating frequency, and the
Timer Reload Register, which reinitializes the Timer
Counter Register when it decrements to 0. The Timer
Facility optionally may create an interrupt when the
Timer Counter decrements to 0.

Trace Facility

The Trace Facility allows a debug program to emulate
single-instruction stepping in a program under test. This
tacility allows a trap to be generated after the execution
of any instruction in the program being tested.

Using the Trace Facility, the debug program caninspect
and modify the state of the program at every instruction
boundary. The Trace Facility is designed to work
properly in the presence of normal system interrupts
and traps.

1-31

29K Family CMOS Devices

FUNCTIONAL OPERATION

This section briefly describes the operation of Am29000
hardware. It introduces the processor pipeline and the
three major internal functional units: the Instruction
Fetch Unit, the Execution Unit, and the Memory Man-
agement Unit. Finally, the processor’'s operational
modes are described.

Four-Stage Pipeline

The Am29000 implements a four-stage pipeline for in-
struction execution. The four stages are: fetch, decode,
execute, and write-back. The pipeline is organized so
that the effective instruction execution rate is as high as
one instruction per cycle. Data forwarding and pipeline
interlocks are handled by processor hardware.

Fetch Stage

During the fetch stage, the Instruction Fetch Unit
determines the location of the next processor instruction
and issues the instruction to the decode stage. The in-
struction is fetched either from the Instruction Prefetch
Buffer, the Branch Target Cache, or an external
instruction memory.

Decode Stage

During the decode stage, the Execution Unit decodes
the instruction: selected during the fetch stage and
fetches and/or assembles the required operands. It also
evaluates addresses for branches, loads, and stores.

Execute Stage

During the execute stage, the Execution Unit performs
the operation specified by the instruction. In the case of
branches, loads, and stores, the Memory Management
Unit performs address translation if required.

Write-Back Stage

‘During the write-back stage, the results of the operation
performed during the execute stage are stored. In'the

case of branches, loads, and stores, the physical ad- -

dress resulting from translation during the execute
stage is transmitted to an external device or memory.

Function Organization

Figure 3 shows the Am29000 internal data-flow organi-
zation. The following sections refer to the various com-
ponents on this data-flow diagram.

" Instruction Fetch Unit

The Instruction Fetch Unit fetches instructions and sup-
plies instructions to other functional units. It incorpo-
rates the Instruction Prefetch Buffer, the Branch Target
Cache, and the Program Counter Unit. All components
of the Instruction Fetch Unit operate during the fetch
stage of the processor pipeline.

Instruction Prefetch Buffer
Most instructions executed by the Am29000 are fetched
from external instruction/data memory: The processor

prefetches instructions so that they are requested at
least four cycles before they are required for execution.

Prefetched instructions are stored in a four-word In-
struction Prefetch Buffer while awaiting execution.. An
instruction prefetch request occurs whenever there is a
free location in this buffer (if the processor is otherwise
enabled to fetch instructions). When a nonsequential in-
struction fetch occurs, prefetching is terminated, and
then restarted for the new instruction stream.

Instruction prefetching uncouples the instruction fetch
rate from the instruction access latency. For example,
an instruction may be transferred to the processor two
cycles after it is requested. However, as long as instruc-
tions are supplied to the processor at an average rate of
one instruction per cycle, this latency has no effect on
the instruction execution rate.

Branch Target Cache

The Am29000 incorporates a Branch Target Cache that
contains as many as 128 instructions. The Branch Tar-
get Cache is a two-way, set-associative cache contain-
ing the first four target instructions of a number of re-
cently taken branches. Each of the two sets in the
Branch Target Cache contains 64 instructions, and the
64 instructions are further divided into 16 blocks of 4 in-
structions each.)

The purpose of the Branch Target Cache is to provide
instructions for the beginning of a nonsequential in-
struction-fetch sequence. This keeps the instruction
pipeline full until the processor can establish a new in-
struction prefetch stream from the external instruction/
data-memory.

The processor is organized so that branch instructions
can execute in a single cycle if the target instruction se-
quence is present in the Branch Target Cache.

Program Counter Unit

The Program Counter Unit creates and sequences
addresses of instructions as they are executed by the
processor.

Execution Unit

The Execution Unit executes instructions. [t incorpo-
rates the Register File, the Address Unit, the Arithmetic/
Logic Unit, the Field Shift Unit, and the Prioritizer. The
Register File and Address Unit operate during the de-
code stage of the pipeline. The Arithmetic/Logic Unit,
Field Shift Unit,-and Prioritizer operate during the exe-
cute stage of the pipeline. The Register File operates
during the write-back stage.

Register File

The general-purpose registers are implemented by a
192-location Register File. The Register File can per-
formtwo read accesses and one write access in a single
cycle. Normally, two read accesses are performed dur-
ing the decode-pipeline stage to fetch operands re-

1-32

Am29000

U g VY -
L]

V INSTRUCTION FETCH UNIT . RBUS EXECUTIONUNIT 1
' ' '
' ' '
PC-BUS 3 ' 1 c c .

: Branch Target F X 7 N Register !
' Cacho ! Address Address ¥ . '
' 2x64x32 Program . Unit Generator; A .1[sxer '
' Courter ' B 192'532 '
' Unit Y !
) N '
:] : 1-BUS A] :
A .

] ‘;’ IR ; » :
! , A-BUS [
. [3 1 '
) . ¥ N
v |instruction +0BUS G
[Prefetch 1) 4 :) .
t Butter . 1
' ' | Best A B :
' [P {--3 rite]
' ' MEMORY MANAGEMENT i | Contel :
N 1 UNIT ' ‘ " !

1 L] . " . P’
: v |TLBREG# ' Amgir;\s(gr:ﬁc:gd% lI;er :
[] : Ti ion Look-Asids - : ’ . Prioritizer '
' ' Buffer M-Bus ' Special- . D-Bus '
' ' and Interface ' Purpose intertace '
! 1 Protection Logic ' Registers '
t f} x32x 64 . . t
) ' N f
. ' |enwvsao ' D-BUS [Res < .
1 N N 1
' ' 32) R-BUS !
' ' / '
heoe= I R el T T T == S S R el
Instruction Data

Bus

Bus

Figure 3. Am29000 Data Flow

quired by the instruction being decoded. The write ac-
cess during the same cycle completes the write-back
stage of a previously executed instruction.

Addressing logic associated with the Register File dis-
tinguishes between the global and local general-
purpose registers, and it performs the Stack-Pointer ad-
dressing for the local registers. Register File addressing
functions are performed during the decode stage.

Address Unit :

The Address Unit evaluates addresses for branches,
loads, and stores. It also assembles instruction-immedi-
ate data and computes addresses for Load Multiple and
Store Multiple sequences.

Arithmetic/Logic Unit

The ALU performs all logical, compare, and arithmetic

operations (including multiply step and divide step)..

Field Shift Unit - ‘ :
The Field Shift Unit performs N-bit shifts. The Field Shift
Unit also performs byte and half-word extract and insert
operations, and it extracts words from double words.

Prioritizer

The Prioritizer provides a count of the number of leading
0 bits in a 32-bit word; this is useful for performing float-
ing-point normalization, for example. - It can- also
be used to implement prioritization: in a: multilevel
interrupt handler: !

Memory Management Unit

The Memory Management Unit (MMU} performs ad-
dress translation and memory-protection functions for

. allbranches, loads, and stores. The MMU operates dur-
ing the execute stage of the pipeline, so the physical ad-
dress that it generates is available at the beginning of
the write-back stage.

All addresses for external accesses are physical ad-
dresses. MMU operation is pipelined with external ac-
cesses, so that an address translation can occur while a
previous access is being completed.

Address translation is not performed for the addresses
associated with instruction prefetching. Instead, these
addresses are generated by an instruction prefetch
pointer that is incremented by the processor. Address

29K Family CMOS Devices

translation is performed only at the beginning of the
prefetch sequence (as the result of a branch instruc-
tion), and when the prefetch pointer crosses a potential
virtual-page boundary.

Processor Modes

The Am29000 operates in several different modes to
accomplish various processor and system functions. All
modes except for Pipeline Hold (see below) are under
direct control of instructions and/or processor control
inputs. The Pipeline Hold mode normally is determined
by the relative timing between the processor and its
external system for certain types of operations. The
processor provides an external indication of its
operational mode.

Executing

When the processor is in the Executing mode, it fetches
and executes instructions as described in this manual.
External accesses occur as required.

Walt

When the processor is inthe Wait mode, it does not exe-
cute instructions and it performs no external accesses.
The Wait mode is controlled by the Current Processor
Status Register. The processor leaves this mode when
an interrupt or trap for which it is enabled occurs, or
when a reset occurs.

Pipeline Hold

Under certain conditions, processor pipelining might
cause nonsequential instruction execution or timing-de-
pendent results of execution. For example, the proces-
sor might attempt to execute an instruction that has not
been fetched from instruction/data memory.

Forsuch cases, pipeline-interlock hardware detects the
anomalous condition and suspends processor execu-
tion until execution can proceed properly. While execu-
tion is suspended by the interlock hardware, the proces-
sor is in the Pipeline Hold mode. The processor re-
sumes execution when the pipeline-interlock hardware
determines that it is correct to do so.

Hait

The Halt mode is provided so that the processor may be
placed under the control of the ADAPT29K or other
hardware-development system for the purposes of
hardware and software debugging. The processor en-
ters the Halt mode as the result of instruction execution,
or as the result of external controls. Inthe Halt mode, the
processor neither fetches nor executes instructions.

Step : :

The Step mode allows the ADAPT29K or other hard-
ware-development system to step through processor
pipeline operation on a stage-by-stage basis. The Step
mode is nearly identical to the Halt mode, except that it
enables the processor to enter the Executing mode
while the pipeline advances by one stage.

Load Test Instruction

The Load Test Instruction mode permits the ADAPT29K
or other hardware-development system to access data
contained in the processor or system. This is accom-
plished by allowing the ADAPT29K to supply the pro-
cessorwithinstructions, instead of having the processor
fetch instructions from instruction/data memory. The
Load Test Instruction mode is defined so that, once the
processor has completed the execution of instructions
provided by the ADAPT29K, it may resume the execu-
tion of its normal instruction sequence.

Test

The Test mode facilitates testing of hardware associ-
ated with the processor by disabling processor outputs
so thatthey may be drivendirectly by test hardware. The
Test mode also allows the addition of a second proces-
sor fo a system to monitor the outputs of the first and to
signal detected errors.

Reset

The Reset mode provides initialization of certain pro-
cessor registers and control state. This is used for
power-on reset, for eliminating unrecoverable error con-
ditions, and for supporting certain hardware debugging
functions.

System Interface

This section briefly describes the features of the
Am29000 that allow it to be connected to other system
components.

The two major interfaces of the Am29000, introduced in
this section, are the channel and the Test/Development
interfaces. The other topics briefly described here are
clock generation, master/slave checking, and coproces-
sor attachment. o

Channel

The Am28000 channel consists of the following 32-bit
buses and related controls:

1. An Instruction Bus, which transfers instructions
into the processor

2. ADataBus, which transfers data to and fromthe
processor

3. An Address Bus, which provides addresses for

- both instruction and data accesses. The ad-
dress bus also is used to transfer data to a
coprocessor.

The channel performs accesses and datatransfersto all
external devices and memories, including instruction/
data memories, instruction caches, instruction read-

* only memories, data caches, input/output devices, bus

converters, and coprocessors.

1-34

Am29000

The channel defines three different access protocols:
simple, pipelined,” and burst-mode. For simple
accesses, the Am29000 holds the address valid
throughout the entire access. This is appropriate for
high-speed devices that can complete an access inone
cycle, and for fow-cost devices that are accessed in-
frequently (such as read-only memories containing
initialization routines). Pipelined .and burst-mode
accesses provide high performance with other types of
devices and memories. i

For pipelined accesses, the address transfer is uncou-
pled fromthe corresponding data or instruction transfer.
After transmitting an address for a request, the proces-
sor may transmit one more address before receivingthe
reply to the first request. This allows address transfer
and decoding to be overlapped with another access.

On the other hand, burst-mode accesses eliminate the
address-transfer cycle completely. Burst-mode ac-
cesses are defined so that once an address is trans-
ferred for a given access, subsequent accesses to se-
quentially increasing addresses may occur without re-
transfer of the address. The burst may be terminated at
any time by either the processor or responding device.

The Am29000 determines whether an access is simple,
pipelined, or burst-mode on a transfer-by-transfer (i.e.,
generally device-by-device) basis. However, anaccess
that begins as a simple access may be converted to a
pipelined or burst-mode access at any time during the
transfer. This relaxes the timing constraints on the chan-
nel-protocol implementation, since addressed devices
- do not have to respond immediately to a pipelined or
burst-mode request. ’

Except for the shared address bus, the channel main-
tains a strict division between instruction and data
accesses. In the most common situation, the system
supplies the processor with instructions using burst-
mode accesses, with instruction addresses transmitted
to the system only when a branch occurs. Data ac-
cesses can occur -simultaneously without interfering
with instruction transfer.)

The Am29000 contains arbitration logic to support other
masters onthe channel. Asingle externalmastercanar-
bitrate directly for the channel, while multiple masters
may arbitrate using a daisy chain or other method that
requires no additional arbitration logic. However, to in-
crease arbitration performance in a multiple-master
configuration, an external channel arbiter should be
used. This arbiter works in conjunction with the proces-
* sor's arbitration logic.

Test/Development Interface

The Am239000 supports the attachment of the
ADAPT29K or other hardware-development system.
This attachment is made directly to the processor in the
system under development, without the removal of the
processor from the system. The TestDevelopment In-
_terface makes it possible for the hardware-development
system to gain control over the Am23000, and inspect

and modify its internal state (e.g., general-purpose reg-
ister contents, TLB entries, etc.). In addition, the
Am29000 may be used to access other system devices
and memories on behalf of the hardware-development

~system.

The Test/Development Interface is made up of controls
and status signals provided on the Am239000, as well as
the instruction and data buses. The Halt, Step, Reset,
and Load Test Instruction modes allow the hardware-
development system to control the operation of the
Am29000. The hardware-development system may
supply the processor with instructions on the instruction
bus using the load test instruction mode. The internal
processor state can be inspected and modified via the
data bus.

Clocks

The Am29000 generates and distributes a system clock
at its operating frequency. This clock is specially de-
signed to reduce skews between the system clock and
the processor’s internal clocks. The internal clock-gen-
eration circuitry requires a single-phase oscillator signal
at twice the processor operating frequency.

For systems in which processor-generated clocks are
not appropriate, the Am29000 also can accep! a clock
from an external clock generator.

The processor decides between these two clocking
arrangements based on whether the power supply to

~the clock-output driver (PWRCLK) is tied to +5 volts orto
Ground.

Master/Slave Operation

Each Am29000 output has associated logic that com-
pares the signal on the output with the signal that the
processor is providing internally to the output driver. The
processor signals situations where the output of any en-
abled driver does not agree with its input.

For a single processor, the output comparison detects
short circuits in output signals, but does not detect open
circuits. It is possible to connect a second processor in
parallel with the first, where the second processor has
its outputs disabled due to the Test mode. The second
processor detects open-circuit signals, as well as pro-
vides a check of the outputs of the first processor.

Coprocessor Attachment

A coprocessor for the Am29000 attaches directly to the
processor channel. However, this attachment has fea-
tures that are different from those of other channe! de-

" vices. The coprocessor interface is designed to support

a high operand transfer rate and to support the overlap
of coprocessor operations with other processor opera-
tions, including other external accesses.

The coprocessor is assigned a special address space
on the channel. This permits the transfer of operands
and other information on the address bus without inter-
fering with normal addressing functions. Since both the

1-35

29K Family CMOS Devices

address bus and data bus are used for data transfer, the
Am29000 can transfer 64 bits of information to the
coprocessor in one cycle.

Program Modes

All system-protection features of the Am29000 are
based on two mutually exclusive program modes: the
Supervisor mode and the User mode. Memory pro-
tection in the Memory Management Unit is also based
on the Supervisor and User modes (see Memory
Management section).

Supervisor Mode

The processor is in the Supervisor mode whenever the
Supervisor Mode (SM) bit of the Current Processor
Status Register (see Register Description section) is 1.
In this mode, executing programs have access to all
processor resources.

During the address cycle of a channel_request, the
Supervisor mode is indicated by the SUP/US output be-
ing High.

User Mode

The processor is in the User mode whenever the SM bit
in the Current Processor Status Register is 0. In this
mode, any of the following actions by an executing pro-
gram causes a Protection Violation trap to occur:

1. An attempted access of any TLB entry.

2. An attempted access of any general-purpose
register for which a bit in the Register Bank Pro-
tect Registeris 1.

3. An attempted execution of a load or store in-
struction for which the PAbit is 1, or for whichthe
UAbitis 1. (The attempted execution of a trans-
lated load or store for which the AS bit is 1 also
causes a Protection Violation trap. However,
this trap occurs regardiess of whether or not the
processor is in the User mode.)

4. An attempted execution of one of the following
instructions: Interrupt Return, Interrupt Return
and Invalidate, Invalidate, or Halt. However, a
hardware-development system such as the
ADAPT29K can disable protection checking for
the Halt instruction, so this instruction may be
used to implement instruction breakpoints in
User-mode programs.

5. Anattempted access of one of the following reg-
isters: Vector Area Base Address, Old Proces-
sor Status, Current Processor Status, Configu-
ration, Channel Address, Channel Data, Chan-
nel Control, Register Bank Protect, Timer
Counter, Timer Reload, Program Counter 0,
Program Counter 1, Program Counter 2, MMU
Configuration, or LRU Recommendation.

6. . An attempted execution of an assert or Emulate
instruction that specifies a vector number be-
tween 0 and 63, inclusive.

Devices and memories on the channel also can imple-
ment protection and generate traps based on the value
of the SM bit. During the address cycle of a channel re-
quest, the User mode is indicated by the SUP/US output
being Low.

1-36

Am29000

REGISTER DESCRIPTION

The Am29000 has three classes of registers that are
accessible by instructions. These are general-purpose
registers, special-purpose registers, and Translation
Look-Aside Butfer (TLB) registers. Any operation avail-
able in the Am29000 can be performed on the general-
purpose registers, while special-purpose registers and
TLB registers are accessed only by explicit data move-
ment to or from general-purpose registers. Various pro-
tection mechanisms prevent the access of some of
these registers by User-mode programs.

General-Purpose Registers

The Am23000 incorporates 192 general-purpose régis-
ters. The organization of the general-purpose registers
is diagrammed in Figure 4.

General-purpose registers hold the following types of
operands for program use:

32-bit data addresses

32-bit signed or unsigned integers

32-bit branch-farget addresses

32-bit logical bit strings

8-bit signed or unsigned characters

16-bit signed or unsigned integers

word-length Booleans

single-precision floating-point numbers
double-precision floating-point numbers (in two
register locations) E

RN ALOD -

Because a large number of general-purpose registers
are provided, a large amount of frequently used data
can be kept on-chip, where access time is fastest.

Am29000 instructions can specify two general-purpose

registers for source operands, and one general-purpose

register for storing the instruction result. These registers
are specified by three 8-bit instruction fields containing
register numbers. Aregister may be specified directly by
the instruction, or indirectly by one of three special-pur-
pose registers.

Register Addressing

The general-purpose registers are partitioned into 64
global registers and 128 local registers, differentiated by
the most-significant bit of the register number. The dis-
tinctionbetween global and local registers is the result of
register-addressing considerations.

The foliowing terminology is used to describe the ad-
dressing of general-purpose registers:

1. Register number—this is a software-level num-

ber for a general-purpose register. For example,

this is the number contained in an instruction
field. Register numbers range from 0 to 255.

2. "Global register number—this is a software-level
number for a global register. Global register
numbers range from 0 to.127. i

3. Local register number—this is a software-level
number for a local register. Local register num-
bers range from 0 to 127.

4. Absolute register number—this is a hardware-
level number used to select a general-purpose
register in the Register File. Absolute register
numbers range from 0 to 255.

Global Registers

When the most-significant bit of aregister numberis 0, a
global register is selected. The seven least-significant
bits of the register number give the global register num-
ber. For global registers, the absolute register numberis
equivalent to the register number.

Global Registers 2 through 63 are unimplemented. An
attempt to access these registers yields unpredictable
results; however, they may be protected from User-
mode access by the Register Bank Protect Register.

The register numbers associated with Global Registers
0 and 1 have special meaning. The number for Global
Register 0 specifies that an indirect pointer is to be used
as the source of the register number; there is anindirect
pointer for each of the instruction operand/result
registers. Global Register 1 coniains the Stack Pointer,
which is used in the addressing of local registers as
explained below.

Local Register Stack Pointer

The Stack Pointer is a 32-bit register that may be an op-
erand of an instruction as any other general-purpose
register. However, a shadow copy of Global Register 1
is maintained by processor hardware to be used in focal
register addressing. This shadow copy is set only with
the results of Arithmetic and Logical instructions. If the
Stack Pointer is set with the result of any other instruc-
tion class, local registers cannot be accessed predict-
ably until the Stack Pointer is set once again with an .
Arithmetic or Logical instruction.

Local Registers

When the most-significant bit of aregister numberis 1,a
local register is selected. The seven least-significant
bits of the register number give the local-register num-
ber. For local registers, the absolute register number is

- obtained by adding the local register number to bits 8-2

of the Stack Pointer and truncating the result to seven
bits; the most-significant bit of the original register num-
ber is unchanged (i.e., it remains a 1).

The Stack Pointer addition applied to local register num-
bers provides a limited form of base-plus-offset ad-
dressing within the local registers. The Stack Pointer
contains the 32-bit base address. This assists run-time
storage - management of variables for dynamically
nested procedures. :

1-37

29K Family CMOS Devices

Absolute REG# General-Purpose Register
0 Indirect Pointer Access
1 Stack Pointer
2 through 63 not implemented
7
64 Global Register 64
65 Global Register65
- 66 Global Register 66
Global * *
Registers * ®
L] L]
126 Global Register 126
\ 127 . Global Register 127
/
128 Local Register 125
129 Local Register 126
130 Local Register 127
131 Local Register 0 ‘-_l
132 Local Register 1
Local Stack
Registers . . Pointer
* ° =131
D - . - (example)
254 Local Register 123
\ 255 Local Register 124
Figure 4. General-Purpose Register Organization
- Register Banking and are partitioned according to absolute register num-
For the purpose of access restriction, the general- Ders, as shown in Figure 5.

purpose registers are divided into register banks. Regis-
ter banks consist of 16 registers (except for Bank 0,
whichcontains Unimplemented Registers 2 through 15)

The Register Bank Protect Register contains 16 protec-
tion bits, where each bit controls User-mode accesses

1-38

Am29000

Reglster Absolute- General-Purpose
Bank Protect Register Numbers Registers
Reglster Bit
Bank 0
0 2through 15 {unimplemented)
1 16 through 31 /- Bank1
: (unimplemented)
2 32 through 47 _Bank 2
(unimplemented)
3 48 through 63 _Bank 3
(unimplemented)
4 64 through 79 Bank 4
5 80 through 95 Bank 5
6 96 through 111 Bank 6
7 112 through-127 Bank 7
8 128 through 143 - Bank 8
9 144 through 159 Bank 9
10 160 through 175 Bank:10
11 *176 through 191 Bank 11
12 192 through 207 Bank 12
13 208 through 223 Bank 13
14 224 through 239 Bank 14 .
15 240 through 255 Bank 15

Figure 5. Reglister Bank Organization

(read or write) to a bank of registers. Bits 0-15 of the
Register Bank Protect Register protect Reglster Banks
0 through 15, respectively.

When abitin the Register Bank Protect Registeris 1 and
a register in the corresponding bank is specified as an
operand register or resulit register by a User-mode in-

- struction, a Protection Violation trap occurs. Note that
protection is based on absolute register numbers; inthe
case of local registers, Stack-Pointer addition is per-
formed before protection checking.

Whenthe processor is in Supervisor mode, the Register
Bank Protect Register has no effecton general purpose
register accesses.

 Indirect Accesses

Specification of Global Register 0 as an instruction-op-
erand register or result register causes an indirect ac-
cess to the general-purpose registers. In this case, the.
absolute register number is provided by an indirect -

pointer contained in a special-purpose register.

1-39

29K Family CMOS Devices

Each of the three possible registers for instruction exe-
cution has an associated 8-bit indirect pointer. Indirect
register numbers can be selected independently for
each of the three operands. Since the indirect pointers
contain absolute register numbers, the number in an
indirect pointer is not added to the Stack Pointer when
local registers are selected.

The indirect pointers are set by the Move To Special
Register, Floating-Point, MULTIPLY, MULTM, MULTI-
PLU, MULTMU, DIVIDE, DIVIDU, SETIP, and EMU-
LATE instructions.

For a Move To Special Register instruction, an indirect
pointer is set with bits 9-2 of the 32-bit source operand.
This provides consistency between the addressing of
words in general-purpose registers and the addressing
of words in external devices or memories. A modifica-
tion of an indirect pointer using a Move To Special Reg-
ister has a delayed effect on the addressing of general-
purpose registers.

Forthe remaining instructions, allthree indirect pointers
are set, simultaneously, with the absolute register num-
bers derived from the register numbers specified by the
instruction. For any local registers selected by the in-
struction, the Stack-Pointer addition is applied o the
register numbers before the indirect pointers are set.

Register numbers stored into the indirect pointers are
checked for bank-protection violations—except when
an indirect pointer is set by a Move-To-Special-Register
instruction—at the time that the indirect pointers are set.

Special-Purpose Registers

The Am29000 contains 27 special-purpose registers.
The organization of the special-purpose registers is
shown in Figure 6.

Special-purpose registers provide controls and data for
certain processor operations. Some special-purpose
registers are updated dynamically by the processor, in-
dependent of software controls. Because of this, a read
of a special-purpose register following a write does not
necessarily get the data that was written.

Some special-purpose registers have fields that are re-
served for future processor implementations. When a
special-purpose register is read, a bit in a reserved field
is read as a 0. An attempt to write a reserved bit with a 1
has no effect; however, this should be avoided because
of upward-compatibility considerations.

The special-purpose registers are accessed by explicit
data movement only. Instructions that move data to or
from a special-purpose register specify the special-
purpose register by an 8-bit field containing a special-
purpose register number. Register numbers are speci-
fied directly by instructions. :

An attempted read of an unimplemented special-pur-
pose register yields an unpredictable value. An at-
tempted write of an unimplemented special-purpose

register has no effect; however, this should be avoided,
because of upward-compatibility considerations.

The special-purpose registers are partitioned into pro-
tected and unprotected registers. Special-purpose reg-
isters numbered 0-127 and 160-255 are protected
(note that not all of these are implemented). Special-
purpose registers numbered 128-159 are unprotected
(again, not all are implemented).

Protected special-purpose registers numbered 0-127
are accessible only by programs executing inthe Super-
visor mode. An attempted read or write of a protected
special-purpose register by a User-mode program
causes a Protection Violation trap to occur. Protected
special-purpose registers numbered 160-255 are not
accessible by programs in either the User mode or the
Supervisor mode. These register numbers identify vir-
tual registers in the floating-point architecture.

The Floating-Point Environment Register, Integer Envi-
ronment Register, Floating-Point Status Register, and
Exception Opcode Register are not implemented in
processor hardware. These registers are implemented
via a virtual floating-point interface provided on the
Am29000.

Unprotected special-purpose registers are accessible
by programs executing in both the User and Supervisor
modes.

Vector Area Base Address (Register 0)

This protected special-purpose register (see Figure 7)
specifies the beginning address of the interrupt/trap
Vector Area. The Vector Area is either a table of 256
vectors that points to interrupt and trap handling
routines, or a segment of 256 64-instruction blocks that
directly contains the interrupt and trap handling
routines.

The organization of the Vector Area is determined by the
Vector Fetch (VF) bit of the Configuration Register. if the
VF bit is 1 when an interrupt or trap is taken, the vector
number for the interrupt or trap (see Interrupts and
Traps section) replaces bits 9-2 of the value in the
Vector Area Base Address Register to generate the
physical address for a vector contained in instruction/
data memory.

Ifthe VF bit is 0, the vector number replaces bits 15-8 of
the value in the Vector Area Base Address Register to
generate the physical address of the first instruction of
the interrupt or trap handler. The instruction fetch for this
instruction is directed either to instruction memory orin-
struction read-only memory, as determined by the ROM
Vector Area (RV) bit of the Configuration Register.

Bits 31-16: Vector Area Base (VAB)—The VAB field
gives the beginning address of the Vector Area. This ad-
dress is constrained to begin on a 64-kb address-
boundary in instruction data memory or instruction read-
only memory.

1-40

Am29000

Register Number

Protected Registers

0 Vector Area Base Address
1 Old Processor Status
2 Current Processor Status
3 Configuration
4 ‘Channel Address
5 Channe! Data
6 Channel Control
7 Register Bank Protect
8 Timer Counter
9 Timer Reload
10 Program Counter 0
11 . Program Counter-1
12 Program Counter 2
>13 MMU Configuration
14 LRU Recommendation
Unprotected Registers
128 Indirect Pointer C
129 Indirect Pointer A
130 Indirect Pointer B
131 Q
132 ALU Status
133 Byte Pointer
134 Funnel Shift Count
135 Load/Store Count Remaining
160 Floating-Point Environment
161 Integer Environment
c162 Floating-Point Status
164 Exception Opcode

Figure 6. Special-Purpose Registers

Mnemonic
VTB
OPS
CPS
CFG
CHA
CHD
CHC’
RBP
T™MC
TMR
PCo
PC1
PC2
MMUC
LRU

IPC
IPA
IPB

SR
BPR
FCR
MC

FPE

INTE
FPS
EXOP

1-41

29K Family CMOS Devices

31 23
RERRERRRRRRERE

VAB

Figure 7. Vector Area Base Address Register

Bits 15-0: Zeros—These bits force the alignment of the
Vector Area.

Old Processor Status (Register 1)

This protected special-purpose register has the same
format as the Current Processor Status described be-
low. The Old Processor Status stores a copy of the Cur-
rent Processor Status when an interrupt or trap is taken.
This is required since the Current Processor Status will
be modified to reflect the status of the interruptArap
handler.

During an interrupt return, the Old Processor Status is
copied into the Current Processor Status. This allows
the Current Processor Status to be set as required for
the routine that is the target of the interrupt return.

Current Processor Status (Register 2)

This protected special-purpose register (see Figure 8)
controls the behavior of the processor and its ability to
recognize exceptional events.

Bits 31-16: reserved.

Bit 15: Coprocessor Active (CA)—The CA bit is set
andresetunderthe control of load and store instructions
thattranster informationto and from a coprocessor. This
bit indicates that the coprocessor is performing an op-
eration at the time that an interrupt or trap is taken. This
notifies the interrupt ortrap handier that the coprocessor
contains state information to be preserved. Note that
this notification occurs because the CA bit of the Old
Processor Status is 1 in this case, not because of the
value of the CA bit of the Current Processor Status.

" Bit 14: Interrupt Pending (IP)—This bit allows soft-
ware to detect the presence of external interrupts while
they are disabled. The IP bit is set if one or more of the
external signals INTR-INTRo is active, but the proces-
sor is disabled from taking the resulting interrupt due to

the value of the DA, DI, or IM bits. If all external interrupt
sighals subsequently are deasserted while still dis-
abled, the IP bit is reset.

Bits 13-12: Trace Enable, Trace Pending (TE, TP)—
The TE and TP bits implement a software-controlled, in-
struction single-step facility. Single stepping is not im-
plemented directly, but rather emulated by trap se-
quences controlled by these bits. The value of the TE bit
is copied to the TP bitwhenever aninstruction execution
is completed. When the TP bitis 1, a Trace trap occurs.

Bit 11: Trap Unaligned Access (TU)—The TU bit en-
ables checking of address alignment for external data-
memory accesses. When this bit is 1, an Unaligned Ac-
cess trap occurs if the processor either generates an ad-
dress for an external word that is not aligned on a word
address boundary (i.e., either of the least-significant two
bits is 1), or generates an address for an external half-
word that is not aligned on a half-word address bound-
ary (i.e., the least-significant address bit is 1). When the
TU bitis 0, data-memory address alignment is ignored.

Alignment is ignored for input/output ‘accesses and
coprocessor transfers. The alignment of instruction ad-
dresses is also ignored (unaligned instruction ad-
dresses can be generated only by indirect jumps). Inter-
rupt/trap vector addresses always are aligned properly.

BIt 10: Freeze (FZ)—The FZ bit prevents certain regis-
ters from being updated during interrupt and trap pro-
cessing, except by explicit data movement. The affected
registers are: Channel Address, Channel Data, Channel
Control, Program Counter 0, Program Counter 1, Pro-
gram Counter 2, and the ALU Status Register.

When the FZ bit is 1, these registers hold their values.
An affected register can be changed only by a Move To
Special Register instruction. When the FZ bit is 0, there
is no effect on these registers, and they are updated by

15

31 23
RERRRERERERRREER

Reserved

céa. Te! TU

LI e mam s
LI
+
1

P TP FZ

Figure 8. Current Processor Status Register

1-42

Am239000

processor instruction execution as described in this
manual.

The FZ bit is set whenever an interrupt or trap is taken,
holding critical state in the processor so that it is not
modified unintentionally by the interrupt or trap handler.

Bit 9: Lock (LK)—The LK bit controls the value of the
LLOCK external signal. If the LK bit is 1, the LOCK signal
is active. If the LK bit is 0, the LOCK signal is controlled
by the execution of the instructions L.oad and Set, Load
and Lock, and Store and Lock. This bit is provided for
the implementation of multiprocessor synchronization
protocols. '

Bit 8: ROM Enable (RE)—The RE bit enables instruc-
tionfetching fromexternalinstruction read-only memory
(ROM). When this bit is 1, the IREQT signal directs all
instruction requests to ROM. ‘Instructions that are
fetched from ROM are subject to capture and reuse by
the Branch Target Cache when it is enabled; the Branch
Target Cache distinguishes between instructions from
ROM and those from non-ROM storage. When this bit
is 0, off-chip requests for instructions are directed to
instruction/data memory.

Bit 7: WAIT Mode (WM)—The WM bit places the pro-
cessor in the Wait mode. When this bit is 1, the proces-
sor performs no operaiions. The Wait mode is reset by
aninterrupt ortrap for whichthe processorls enabled, or
by the Reset mode.

Bt 6: Physical Addressing/Data (PD)—The PD bit
determines whether address translation is performed
for load or store operations. Address translation is per-
formed for an access only when this bit is 0, and the
Physncal Address (PA) bitin the load or store instruction
causing the access is also 0.

Bit 5: Physical Addressing/Instructions (Pl1}—The P|
bit determines whether address translation is performed
forexternal instruction accesses. Address transiation is
performed only when this bit is 0.

Bit 4: Supervisor Mode (SM)—The SM bit protects
certain processor context, such as protected special-
purpose registers. When this bit is 1, the processoris in
the Supervisor mode, and access to all processor con-
textis allowed. When this bit is 0, the processor is in the

User mode, and access to protected processor context

is not allowed; an attempt to access (either read or write)
protected processor context causes a Protection Viola-
tion trap.

For an external access, the User Access (UA) bit in the
load or store instruction also controls access to pro-
tected processor context. When the UA bit is 1, the
Memory Management Unit and channel performthe ac-
cess as though the program causing the access was in
User mode.

Bits 3-2: interrupt Mask (IM)—The IM field is an en-
coding of the processor priority with respect to external
interrupts. The interpretation of the interrupt mask is
specified by the following table:

IM Value Result
00 - INTR, enabled
01 INTR, INTR0 enabled
10 TF!2 INTR, enabled
11 NTR-INTR, enabled

Bit 1: Disable Interrupts (DI)—The DI bit prevents the
processor from being interrupted by external interrupt
requests INTR=—INTRo. When this bit is 1, the processor
ignores all external interrupts. However, note that traps
(bothinternal and external), Timer interrupts, and Trace
traps will be taken. When this bit is 0, the processor will
take any interrupt enabled by the IM field, unless the DA
bit is 1.

Bit 0: Disable all Interrupts and Traps (DA)—The DA
bit prevents the processor from taking any interrupts
and most traps. Whenthis bitis 1, the processor ignores
interrupts and traps, except for the WARN, Instruction
Access Exception, Data Access Exception, and Co-
processor Exception traps. When this bit is 0, all traps
will be taken, and interrupts will be taken if otherwise
enabled.

Configuration (Register 3)

This protected special-purpose register (see Figure 9)
controls certain processor and system options. Most
fields normally are modified only during system initial-
ization. The Configuration Register definition follows.

Bits 31-24: Processor Release Level (PRL)—The
PRL field is an 8-bit, read-only identification number that
specifies the processor version.

Bits 23-6: reserved.

Bit 5: Data Width Enable (DW)—The DW bit enables
and disables byte and half-word external accesses. if
the DW bitis 0, byte and half-word accesses are not per-

PRL

31 23 . 15 7
NEEREERERRERERRRNEEERRRE

Reserved

1 R 1 ¥
[T |
[

Figure 9. Configuration Register

1-43

29K Family CMOS Devices

formed in hardware, and these accesses must be emu-
lated by software. If the DW bit is 1, byte and half-word
accesses are performed by hardware: this requires that
external devices and memories be able to write individ-
ual bytes and half-words within a word. -

Bit 4: Vector Fetch (VF)—The VF bit determines the
structure of the interrupt/trap Vector Area. If this bitis 1,
the Vector Area is defined as a block of 256 vectors that
specify the beginning addresses of the interrupt and trap
handling routines. if the VF bit is 0, the Vector Area is a
segment of 256 64-instruction blocks that contain the
actual routines.

Bit3: ROM Vector Area (RV)—If the VF bit is 0, the RV
bit specifies whether the Vector Area is contained in
instruction memory (RV = 0) or instruction read-only
memory (RV = 1). The value of the RV bit is irrelevant if
the VF bitis 1.

Bit 2: Byte Order (BO)—The BO bit determines the or-
dering of bytes and half-words within words. If the BO bit
is 0, bytes and half-words are numbered left-to-right
within aword. If the BObit is 1, bytes and half-words are
numbered right-to-left.

Bit 1: Coprocessor Present (CP)—The CP bit indi-
cates the presence of a coprocessor that may be used
by the processor. If this bit is 1, it enables the execution
of load and store instructions that have a Coprocessor
Enable (CE) bit of 1. If the CP bit is 0 and the processor
attempts to execute a load or store instruction with a CE
bit of 1, a Coprocessor Not Present trap occurs. This
feature may be usedto emulate coprocessor operations
as well as to protect the state of a coprocessor shared
between multiple processes.

Bit0: Branch Target Cache Disable (CD)—The CD bit
determines whether or not the Branch Target Cache is
used for nonsequential instruction references. When
this bit is 1, all instruction references are directed to ex-
ternal instruction memory or instruction ROM, and the
Branch Target Cache is not used. When this bit is 0, the
targets of nonsequential instruction fetches are storedin
the Branch Target Cache and reused. The value of the

CD bit does not take effect untitthe execution of the next
branch instruction.

Channel Address (Register 4)

This protected special-purpose register (Figure 10) is
used to report exceptions during external accesses or
coprocessor transfers. It also is used to restart inter-
rupted Load Multiple and Store Multiple operations, and
to restart other external accesses when possible (e.g.,
after TLB misses are serviced).

The Chanriel Address Register is updated on the execu-
tion of every load or store instruction, and on every load
or store in a Load Multiple or Store Muitiple sequence,
except when the Freeze (F2) b|t in the Current Proces-
sor Status Register is 1.

Bits 31-0: Channel Address (CHA)—This field con-
tains the address of the current channel transaction (if
the FZ bit of the Current Processor Status Register is 0).
For external data accesses, the address is virtual if ad-
dress translation was enabled for the access, or physi-
cal if transiation was disabled. For transfers to the -
coprocessor, the CHA field contains data transferred to
the coprocessor.

Channel Data (Register 5) ,
This protected special-purpose register (Figure 11) is
used to report exceptions during external accesses or
coprocessor transfers. 1t is also used to restart the first
store of an interrupted Store Multiple operation and to
restart other external accesses when possible (e.g., af-
ter TLB misses are serviced).

The Channel Data Register is updated on the execution
of every load or store instruction, and on every lQad or
store in a Load Multiple or Store Multiple sequence, ex-
cept when the Freeze (FZ) bit in the Current Processor.
Status Registeris 1. When the Channel Data Register is
updated for a load operation, the resumng value is un-
predictable.

Bits 31-0: Channel Data (CHD)—Thls field contams
the data (if any) associated with the current channel

CHA

RRRNEARRRRRREERRRRRRRRRRRRRRRRE

Flgdre 10. Channel Address Register

TTTTTTTT T]

CHD

RRRRRRRRERRRES

Figure 11. Channel Data Register

1-44

Am29000

transaction (if the FZ bit of the Current Processor Status
Register is 0). If the current channel transaction is not a
store or a transter to the coprocessor, the value of this
field is irrelevant.

Channel Control (Register 6)

This protected special-purpose register (Figure 12) is
used to report exceptions during external accesses or
coprocessor transfers. It also is used to restart inter-
rupted Load Muitiple and Store Multiple operations, and
to restart other external accesses when possible (e.g.,
after TLB misses are serviced).

The Channel Control Register is updated on the execu-
tion of every load or store instruction, and on every load
or store in a Load Muttiple or Store Multiple sequence,
except when the Freeze (F2) bit in the Current Proces-
sor Status Register is 1.

Bits 31-24—These bits are a direct copy of bits 23—16
fromthe load or store instruction that started the current
channel transaction.

Bits 23—16: Load/Store Count Remalning (CR)—The
CR field indicates the remaining number of transfers for
a Load Muiltiple or Store Multiple operation that encoun-
tered an exception or was interrupted before comple-
tion. This number is zero-based; for example, a value of
28 in this field indicates that 29 transfers remain to be
completed. If the fault or interrupt occurs on the last
transaction, the CR field contains a value of 0 and the
ML bit is 1 (see below).

Bit 15: Load/Store (LS)—The LS bit is 0 if the channel
transaction is a store operation, and 1'if it is a load
operation.

Bit 14: Multiple Operation (ML)—The ML bit is 1 if the
current channel transaction is a partially complete Load
Multiple or Store Multiple operation; otherwise it is 0.

Bit 13: Set (ST)—The ST bit is 1 if the current channel
transaction is for a Load and Set instruction; otherwise it
is 0.

Bit 12: Lock Active (LA)—The LA bit is 1 if the current
channel transaction is for a Load and Lock or Store and
Lock instruction; otherwise it is 0. Note that this bit is not
set as the result of the Lock (LK) bit in the Current Pro-
cessor Status Register.

Bit 11: reserved.

Bit 10: Transaction Faulted (TF)—The TF bit indicates
that the current channel transaction was not complete
due to some exceptional circumstance. This bit is set
only for exceptions reported via the DERR input, and it
causes a Data Access Exception or Coprocessor Ex-
ception trap to occur (depending on the value of the CE
bit) when it is 1.

The TF bit allows the proper sequencing of externally re-
ported errors that get preempted by higher-priority
traps; it is reset by software that handles the resulting
trap.

Bits 9-2: Target Register (TR)—The TR field indicates
the absolute register number of data operand for the
current transaction (either a load target or store data
source). Since the register number in this field is abso-
lute, it reflects the Stack-Pointer addition when the indi-
cated register is a local register.

Bit 1: Not Needed (NN)—The NN bit indicates that,
even though the Channel Address, Channel Data, and
Channel Control registers containa valid representation
of an uncompleted load operation, the data requestedis
not needed. This situation arises when a load instruction
is overlapped with an instruction that writes the load tar-
get register.) S

Bit 0: Contents Valid (CV)—The CV bit indicates that
the contents of the Channel Address, Channel Data,
and Channel Control registers are valid.

Register Bank Protect (Register 7)

This protected special-purpose register (Figure 13) pro¥
tects banks of general-purpose registers from- User-
mode program accesses.

The general-purpose registers are partitioned into 16
banks of 16 registers each (except that Bank 0 contains
14 registers). The banks are organized as shown in
Figure 4.

Bits 31-16: reserved.

Bits 15-0: Bank 15 through Bank 0 Protection Bits
(B15-B0)—In the Register Bank Protect Register, each
bit is associated with a particular bank of registers and

- the bit number gives the associated bank number (e.g.,

31 2

B11 determines the protection for Bank 11).

3
HERRRERRRRRRA

CNTL CR

7 0
HERRRR

TR

T T
1
]

'
CE LS |
]

RN
[}
ST, RS

NN

- o ===

Q-====d
<

)
ML LA TF

Figure 12. Channel Control Register

1-45

29K Family CMOS Devices

31 23 ‘
EERRRRRRRERRRR

Reserved

15 ‘ 7
RERERRERERRRE

0
I
B150 0. BO

Figure 13. Register Bank Protect Register

When a protection bit is 1, the corresponding bank is
protected from access by programs executing in the
User mode. A Protection Violation trap occurs when a
User-mode program attempts to access (either read or
write) a register in a protected bank.. When a bit in this
register is 0, the corresponding bank is available to pro-
grams executing in the User mode.

Supervisor-mode programs are not atfected by the Reg-
ister Bank Protect Register.

Register protection is based on absolute register num-
bers. For local registers, the protection checking is per-
formed after the Stack-Pointer addition is performed.

Timer Counter (Register 8)

This protected special-purpose register (Figure 14)
contains the counter for the Timer Facility.

" Bits 31-24: reserved.
Bits 23-0: Timer Count Value (TCV)—The 24-bit TCV

field decrements by one on each processor clock. When

the TCV field decrements to 0, it is reloaded with the
content of the Timer Reload Value field in the Timer
Reload Register. At this time, the Interrupt bit in the
Timer Reload Register is set.

Timer Reload (Register 9)

This protected special-purpose register (Figure 15)
maintains synchronization of the Timer Counter Reg-

ister, enables Timer interrupts, and maintains Timer
Facility status information.)

Bits 31-27: reserved.

Bit 26: Overflow (OV)—The OV bit indicates that a
Timer interrupt occurred before a previous Timer inter-
ruptwas serviced. ltis set if the Interrupt (IN) bitis 1 (see
below) when the Timer Count Value (TCV) field of the
Timer Counter Register decrements to 0. In this case, a
Timer interrupt caused by the IN bit has not been ser-
viced when another interrupt is created.

Bit 25: Interrupt (IN}—The IN bit is set whenever the
TCV field decrements to 0. If this bit is 1 and the IE bit is
also 1,a Timerinterruptoccurs. Note that the IN bit is set
when the TCV field decrements to 0, regardless of the
value of the IE bit. The IN bit is reset by software that
handles the Timer interrupt.

The TCVfield is zero-based with respect to the Timerin-
terrupt interval; for example, a value of 28 in the TCV
field causes the IN bit to be set in the 29th subsequent
processor cycle. The reason for this is that the TCV field
is 0 for a complete cycle before the IN bit is set.

Bit 24: Interrupt Enable (IE}—When the IE bitis 1, the
Timer interrupt is enabled, and the Timer interrupt oc-
curs whenever the IN bit is 1. When this bit is 0, the
Timer interrupt is disabled. Note that Timer interrupts

3N . 23 15 7 0
crrereryper ettt er et et rrErirry
Reserved TCV
-Figure 14. Tiher Counter Register
31 23 15 7 0
[TT1 EEEEREREERREERRRERREEE
Reserved TRV
ov' IE

TR

Figure 15. Timer Reload Register

1-46

Am29000

may be disabled by the DA bit of the Current Processor
Status Register regardless of the value of the IE bit.

Bits 23-0: Timer Reload Value (TRV)—The value of
this field is written into the Timer Count Value (TCV) field
of the Timer Counter Register whenthe TCV field decre-
ments to 0.

Program Counter 0 (Register 10)

This protected special-purpose register (Figure 16) is
used on an interrupt return to restart the instruction that
was in the decode stage when the original interrupt or
trap was taken.

Bits 31-2: Program Counter 0 (PC0)—This field cap-
tures the word address of an instruction as it enters the
decode stage of the processor pipeline, unless the
Freeze (FZ) bit of the Current Processor Status Register
is 1. If the FZ bit is 1, PCO holds its value.

When aninterrupt ortrap is taken, the PCOfield contains
the word address of the instruction in the decode stage;
the interrupt or trap has prevented this instruction from
executing. The processor uses the PCO field to restart
this instruction on an interrupt return.

Bits 1-0: Zeros—These bits are 0 since instruction ad-
dresses are always word-aligned.

Program Counter 1 (Register 11)

This protected special-purpose register (Figure 17) is
used on an interrupt return to restart the instruction that
was in the execute stage when the original interrupt or
trap was taken.

Bits 31-2: Program Counter 1 (PC1)—This field cap-
tures the word address of an instruction as it enters the
execute stage of the processor pipeline, unless the

- Freeze (FZ) bit of the Current Processor Status Register

is 1. If the FZ bit is 1, PC1 holds its value.

When aninterrupt or trap is taken, the PC1 field contains
the word address of the instruction in the execute stage;
the interrupt or trap has prevented this instruction from
completing execution. The processor uses the PC1 field
to restart this instruction on an interrupt return.

Bits 1-0: Zeros—These bits are 0 since instruction ad-
dresses are always word-aligned.

Program Counter 2 (Register 12)

This protected special-purpose register (Figure 18) re-
ports the address of certain instructions causing traps.

Bits 31-2: Program Counter 2 (PC2)—This field cap-
tures the word address of an instruction as it enters the

- write-back stage of the processor pipeline, unless the

Freeze (FZ) bit of the Current Processor Status Register
is 1. If the FZ bit is 1, PC2 holds its value.

Whenaninterrupt or trap is taken, the PC2 field contains
the word address of the instruction in the write-back
stage. In certain cases, PC2 contains the address of the
instruction causing atrap. The PC2 field is used to report
the address of this instruction, and has no other use in
the processor.

31 23 15 7 0
HEREREEERRERREEREREEEEEEEEE
PCO o0
Figure 16. Program Counter 0 Register
31 23 15 7 0
HERRERERRRRRERRRERRRREREEERE
PC1 o0
Figure 17. Program Counter 1 Register
31 23 15 7 . 0
HEREEEREERRERERRRERERRRRREEEE
PC2 oj0

Figure 18. Program Counter 2 Register

1-47

29K Family CMOS Devices

Bits 1-0: Zeros—These bits are 0 since instruction ad-
dresses are always word-aligned.

MMU Configuration (Register 13)

This protected special-purpose register (Figure 19)
specifies parameters associated with the Memory Man-
agement Unit (MMU).

Bits 31-10: reserved.

Bits 9-8: Page Size (PS)—The PS field specifies the
page size for address translation. The page size affects
translation as discussed in the Memory Management
section. The PS field has a delayed effect on address
translation. At least one cycle of delay must separate an
instruction that sets the PS field and an instruction that
performs address translation. The PS field is encoded
as follows:

PS Page Size
00 1 kb
01 2kb
10 4 kb
11 8 kb

Bits 7-0: Process Identifier (PID)—For translated
User-mode loads and stores, this 8-bit field is compared
to Task Identifier (TID) fields in Translation Look-Aside
Buffer entries when address translation is performed.
Forthe address translationto be valid, the PID field must
match the TID field in an entry. This allows a separate
32-bit virtual-address space to be allocated to each ac-
tive User-mode process (within the limit of 255 such
processes). Translated Supervisor-mode loads and

stores use afixed process identifierof 0, and require that
the TID field be 0 for successful translation.

LRU Recommendation (Register 14)

This protected special-purpose register (Figure 20) as-
sists Translation Look-Aside Buffer (TLB) reloading by
indicating the least recently used TLB entry in the re-
quired replacement line.

Bits 31-7: reserved.

Bits 6-1: Least Recently Used Entry (LRU)—The
LRU field is updated whenever a TLB miss occurs dur-
ing an address translation. It gives the TLB register
number of the TLB entry selected for replacement. The
LRU field also is updated whenever a memory-protec-
tion violation occurs; however, it has no interpretation in
this case.

Bit 0: Zero—The appended 0 serves to identify Word 0
of the TLB entry.

Indirect Pointer C (Register 128)

This unprotected special-purpose register (Figure 21)
provides the RC-operand register number when an in-
struction RC field has the value 0 (i.e., when Global Reg-
ister 0 is specified).

Bits 31-10: reserved.

Bits 9-2: Indirect Pointer C (IPC)—The 8-bit IPC field
contains an absolute register number for a general-
purpose register. This number directly selects a register

Reserved

ERRRRRRNRRRARRRRARRRRAR

TTTTTTT

PS PID

Figure 19. MMU Configuration Register

31 23 15 7 0
rerrreerrree ettt rrep et
Reserved LRU 0
- Figure 20. LRU Recommendation Register
31 23 , 15 7 0
crrreerrrreeirrrrr et T
Reserved PC oo

Figure 21. Indirect Pointer C Register

1-48

Am29000

(Stack-Pointer addition is not performed in the case of
local registers).

Bits 1-0: Zeros—The IPC field is aligned for compati-
bility with word addresses.

Indirect Pointer A (Register 129)

This unprotected special-purpose register (Figure 22)
provides the RA-operand register number when an in-
struction RA field has the value 0 (i.e., when Global Reg-
ister 0 is specified).

Bits 31-10: reserved.

Bits 9-2: Indirect Pointer A (IPA)}—The 8-bit IPA field
contains an absolute register number for either a
general-purpose register or a local register. This num-
ber directly selects a register (Stack-Pointer addition is
not performed in the case of local registers).

Bits 1-0: Zeros—The IPA field is aligned for compati-
bility with word addresses.

Indirect Pointer B (Register 130)

This unprotected special-purpose register (Figure 23)
provides the RB-operand register number when an in-
struction RB field has the value 0 (i.e., when Global Reg-
ister 0 is specified).

Bits 31-10: reserved.

Bits 9-2: Indirect Pointer B (IPB)—The 8-bit IPB field
contains an absolute register number for a general-
purpose register. This number directly selects a register
(Stack-Pointer addition is not performed in the case of
local registers).

Bits 1-0: Zeros—The IPB field is aligned for compati-
bility with word addresses.

Q (Register 131)

The Q Registeris an unprotected special-purpose regis-
ter (Figure 24).

Bits 31-0: Quotient/Multiplier (Q)—During a se-
quence of divide steps, this field holds the low-order bits
of the dividend; it contains the quotient at the end of the
divide. During a sequence of multiply steps, this field
holds the multiplier; it contains the low-order bits of the
result at the end of the multiply.

For aninteger divide instruction, the Qfield contains the
high-order bits of the dividend at the beginning of the in-
struction, and contains the remainder upon completion
of the instruction.

ALU Status (Register 132)

This unprotected special-purpose register (Figure 25)
holds information about the outcome of Arithmetic/Logic
Unit (ALU) operations as well as control for certain op-
erations performed by the Execution Unit.

Bits 31-12: reserved.

Bit 11: Divide Flag (DF)—The DF bit is used by the in-
structions that implement division. This bit is set at the
end of the division instructions either to 1 or to the com-
plement of the 33rd bit of the ALU. When a Divide Step
instruction is executed, the DF bit then determines
whether an addition or subtractlon operation is per-
formed by the ALU.

31 23 15 7 0
HERERRRRRRRRERRRERR RN
Reserved PA o]0
Figure 22. Indirect Pointer A Register
31 23 15 7 0
NEERRERRRRRRRRRERRRERRREEEE
Reserved IPB oo

Figure 23. Indirect Pointer B Register

Q

Illlllrllllllll

Figure 24. Q Register

1-49

29K Family CMOS Devices

Reserved

TTTTTTTTITTITTITTTT] |

TTT

BP

DF

Figure 25. ALU Status Register

Bit 10: Overflow (V)}—The V bit indicates that the result
of a signed, twos-complement ALU operation required
more than 32 bits to represent the result correctly. The
value of this bit is determined by exclusive ORing the
ALU carry-out with the carry-in to the most-significant bit
for signed, twos-complement operations. This bit is not
used for any special purpose in the processor, and is
provided for information only.

Bit 9: Negative (N)—The N bit is set with the value of
the most-significant bit of the result of an arithmetic or
logical operation. If twos-complement overflow occurs,
the N bit does not reflect the true sign of the result. This
bit is used in divide operations.

Bit 8: Zero (Z)—The Z bit indicates that the result of an
arithmetic orlogical operation is 0. This bitis notused for
any special purpose inthe processor, and is provided for
information only.

Bit 7: Carry (C)—The C bit stores the carry-out of the
ALU for arithmetic operations. It is used by the add-with-
carry and subtract-with-carry instructions to generate
the carry into the Arithmetic/Logic Unit.

Bits 6-5: Byte Polinter (BP)—The BP field holds a 2-bit
pointer to a byte within a word. It is used by Insert Byte
and Extract Byte instructions. The exact mapping of the
pointer value to the byte position depends on the value
of the Byte Order (BO) bit in the Configuration Register.

The most-significant bit of the BP field is used to deter-
mine the position of a half-word within a word for the In-
sert Half-Word, Extract Half-Word, and Extract Half-
Word, Sign-Extended instructions. The exact mapping
of the most-significant bit to the half-word position de-
pends on the value of the BO bit in the Configuration
Register.

The BP field is set by a Move To Special Register in-
struction with either the ALU Status Register or the Byte
Pointer Register as the destination. It is also set by a

load or store instruction if the Set Byte Pointer (SB) bitin
the instruction is 1. A load or store sets the BP field
either with the two least-significant bits of the address (if
the DW bit of the Configuration Register is 0) or with the
complement of the Byte Order bit of the Configuration
Register (if DW is 1).

Bits 4-0: Funnel Shift Count (FC)—The FC field con-
tains a 5-bit shift count for the Funnel Shifter. The Fun-
nel Shifter concatenates two source operands into a sin-
gle 64-bit operand and extracts a 32-bit result from this
64-bit operand; the FC field specifies the number of bit
positions from the most-significant bit of the 64-bit oper-
and to the most-significant bit of the 32-bit result. The
FC field is used by the Extract instruction.

The FC field is set by a Move To Special Register in-
struction with either the ALU Status Register or the Fun-
nel Shift Count Register as the destination.

Byte Pointer (Register 133)

This unprotected special-purpose register (Figure 26)
provides an alternate access to the BP field in the ALU
Status Register.

Bits 31~2: Zeros.

Bits 1-0: Byte Pointer (BP)—This field allows a pro-
gramto change the BP field without affecting other fields

- in the ALU Status Register.

Funnel Shift Count (Register 134)

This unprotected special-purpose reglstér (Figure 27)
provides an alternate access to the FC field in the ALU
Status Register.

Bits 31-5: Zeros.

31 _23

15

BP|

Figure 26. Byte Pointer

1-50

Am29000

31 23 7 I [I l0
ololojolojojo]ojojojojojojofofo]jojojo]ojojojojo]o]o]o EC
Figure 27. Funnel Shift Count
Bits 4-0: Funnel Shift Count (FC)—This field allows a
program to change the FC field without affecting other FRM1-0 Round Mode
fields in the ALU Status Register. 00 Round to nearest
01 . Round to —o
Load/Store Count Remaining (Register 135) 10 Round to +e

This unprotected special-purpose register (Figure 28)
provides alternate access to the CR field in the Channel
Control Register.

Bits 31-8: Zeros.

Bits 7-0: Load/Store Count Remaining (CR)—This
field allows a program to change the CR field without af-
fecting other fields in the Channel Control Register, and
is used to initialize the value before a'Load Multiple or
Store Multiple instruction is executed.

Floating-Point Environment (Register 160)

This unprotected special-purpose register (Figure 29)
contains control bits that affect the execution of floating-
point operations.

Bits 31-9: reserved.

Bit 8: Fast Float Select (FF)—The FF bit being 1 en-
ables fast floating-point operations, in which certain re-
quirements of the |IEEE floating-point specification are
not met. This improves the performance of certain
operations by sacrificing conformance to the |EEE
specification.

Bits 7-6: Floating-Point Round Mode (FRM)—This
field specifies the default mode used to round the results
of floating-point operations, as follows:

11 Round to zero

Bit 5: Floating-Point Divide-By-Zero Mask (DM)—If
the DM bit is 0, a Floating-Point Exception trap occurs
when the divisor of a floating-point division operation is
zero and the dividend is a non-zero, finite number. If the
DMbitis 1, a Floating-Point Exception trap does not oc-
cur for lelde -by-zero.

Bit 4: Floating-Point Inexact Result Mask (XM)—If
the XM bit is 0, a Floating-Point Exception trap occurs
when the result of a floating-point operation is not equal
to the infinitely precise result. If the XM bitis 1, a Float-
ing-Point Exception trap does not occur for an inexact
result.

Bit 3: Floating-Point Underflow Mask (UM)—If the
UM bitis 0, a Floating-Point Exception trap occurs when
the result of a floating-point operation is too small to be
expressed in the destination format. If the UM bitis 1, a
Floating-Point Exceptlon trap does not occur for under-
flow. -

Bit 2: Floating-Point Overflow Mask (VM)—If the VM
bitis 0, a Floating-Point Exceptiontrap occurs whenthe
result of a floating-point operation is too large to be ex-
pressed in the destination format. If the VM bit is 1, a

31 23 15 7 0
[PTHET
ojofojojofojojojojojojojofojo ofojojojojojojo CR
Figure 28. Load/Store Count Remaining
31 23 15 7 0
NERRRREERRRRRRRRRRERRRER
) Reserved 1FRM| -

1] [}
XM VM NM

Figure 29. Floatin‘g-Polnt Environment

1-51

29K Family CMOS Devices

Floating-Point Exception trap does not occur for over-
flow.

Bit 1: Floating-Point Resetved Operand Mask (RM)
—if the RM bit is 0, a Floating-Point Exception trap oc-
curswhenone or more input operands to afloating-point
operation is a reserved value, or when the result of a
floating-point operationis a reserved value. If the RM bit
is 1, a Floating-Point Exception trap does not occur for
reserved operands.

Bit 0: Floating-Polnt Invalid Operation Mask (NM)—
If the NM bit is 0, a Floating-Point Exception trap occurs
when the input operands to a floating-point operation
produce an indeterminate result (e.g., e times 0). If the
NMbitis 1, a Floating-Point Exception trap does not oc-
cur for invalid operations.

Integer Environment (Register 161)

This unprotected special-purpose register (Figure 30)
contains control bits that affect the execution of integer
operations.

Bits 31-2: reserved.

Bit 1: integer Division Overflow Mask (DO)—If the
DO bit is 0, an Out of Range trap occurs when overflow
of a signed or unsigned 32-bit result occurs during DI-
VIDE or DIVIDU instructions, respectively. If the DO bit
is 1, an Out of Range trap does not occur for overflow
during integer divide operations.

The DIVIDE and DIVIDU instructions always cause an
Out of Range trap upon division by 0, regardless of the
value of the DO bit.

Bit 0: integer Multiplication Overfiow Exception
Mask (MO)—If the MO bit is 0, an Out of Range trap oc-
curs when overflow of a signed or unsigned 32-bit resuit

occurs during MULTIPLY or MULTIPLU instructions, re-
spectively. If the DO bit is 1, an Out of Range trap does
not occur foroverflow during integer multiply operations.

Floating-Point Status (Register 162)

This unprotected special-purpose register (Figure 31)
contains status bits indicating the outcome of floating-
point operations. The bits of the Floating-Point Status
Register are divided into two groups of status bits. The
bits in each group correspond to the causes of Floating-
Point Exception traps that are enabled and disabled by
bits 50 of the Floating-Point Environment Register.

The first group of status bits (bits 13-8) are trap status
bits that report the cause of a Floating-Point Exception
trap. The trap status bits are set only when a Floating-
Point Exception trap occurs, and indicate all conditions
that apply to the trapping operation. All other operations
leave ‘the status bits unchanged. A trap status bit is
set regardless of the state of the corresponding mask
bit of the Floating-Point Environment Register, except
that at least one of the mask bits must be 0 for the trap
to occur. When a Floating-Point Exception trap occurs,
all trap status bits not relevant to the trapping operation
are reset.

The second group of status bits (bits 5-0) are sticky
status bits that, once set, remain set until explicitly
cleared by a Move to Special Register (MTSR) or Move
to Special Register Immediate (MTSRIM) instruction.
A sticky status bit is set only when a floating-point
exception is detected and the corresponding mask bit
of the Floating-Point Environment Registeris 1. Thatis,
the sticky statusbitis setonly if the corresponding cause
of a Floating-Point Exception trap is disabled. Normally,
this means that sticky status bits are not set when a
Floating-Point Exception trap is taken. However, if

31 23 15 7 0
HEEEERERRRERRRRRRR R RN
Reserved

!

Do |

MO

Figure 30. Integer Environment

31 .23 15 7 0
HEREREERREERREEE I
Reserved res

T Tt : T IR

L] LI I N . L I R 1] .l

L R L

DT:UT;RT: DS:US:RS:

XT VT NT XS VS NS

Figure 31. Floating-Point Status

1-52

Am29000

multiple exceptions are detected, a sticky status bit
corresponding to a masked exception may still be set if
a Floating-Point Exception trap occurs for an unmasked
exception. ’

Bits 31-14: reserved.

Bit 13: Floating-Point Divide-By-Zero Trap (DT)—
The DT bit is set when a Floating-Point Exception trap
occurs, and the associated floating-point operation is a
divide with a zero divisor and a non-zero, finite dividend.
Otherwise, this bit is reset when a Floating-Point Excep-
tion trap occurs.

Bit 12: Floating-Point Inexact Result Trap (XT)—The
XT bit is set when a Floating-Point Exception trap oc-
curs, and the result of the associated floating-point op-
eration is not equat to the infinitely precise result. Other-
wise, this bit is reset when a Floating-Point Exception
trap occurs.

Bit 11: Floating-Point Underflow Trap (UT)—The UT
bit is set when a Floating-Point Exception trap occurs,
and the result of the associated floating-point operation
is too small to be expressed in the destination format.
Otherwise, this bit is reset when a Floating-Point Excep-
tion trap occurs.

Bit 10: Floating-Point Overflow Trap (VT)—The VT
bit is set when a Floating-Point Exception trap occurs,
and the result of the associated floating-point operation
is too large to be expressed in the destination format.
Otherwise, this bit is reset when a Floating-Point Excep-
tion trap occurs.

Bit 9: Floating-Point Reserved Operand Trap (RT)—
The RT bit is set when a Floating-Point Exception trap
occurs, and either one or more input operands to the as-
sociated floating-point operation is a reserved value or
the result of this floating-point operation is a reserved
value. Otherwise, this bit is reset when a Floating-Point
Exception trap occurs.

Bit 8: Floating-Point Invalid Operation Trap (NT)—
The NT bit is set when a Floating-Point Exception trap
occurs, and the input operands to the associated float-
ing-point operation- produce an indeterminate result.
Otherwise, this bit is reset when a Floating-Point Excep-
tion trap occurs.

Bits 7-6: reserved.

Bit 5: Floating-Point Divide-By-Zero Sticky (DS)—
The DS bit is set when the DM bit of the Floating-Point
Environment Register is 1, the divisor of a floating-point

division operation is a 0, and the dividend is a non-zero,
finite number.

Bit 4: Floating-Point Inexact Result Sticky (XS)—
The XS bit is set when the XM bit of the Floating-Point
Environment Register is 1, and the result of a floating-
point operation is not equal to the infinitely precise
result.

Bit 3: Floating-Point Underflow Sticky (US)}—The US
bit is set when the UM bit of the Floating-Point Environ-
ment Register is 1, and the result of a floating-point op-
eration is too small to be expressed in the destination
format.

Bit 2: Floating-Point Overflow Sticky (VS)—The VS
bit is set when the VM bit of the Floating-Point Environ-
ment Register is 1, and the result of a floating-point op-
eration is 0o large to be expressed in the destination
format.

Bit 1: Floating-Point Reserved Operand Sticky
(RS)—The RS bitis set when the RM bit of the Floating-
Point Environment Register is 1, and either one or more
input operands to a floating-point operation is a re-
served value or the result of a floating-point operation is
areserved value.

Bit 0: Floating-Point Invalid Operation Sticky (NS)—
The NS bit is set when the NM bit of the Floating-Point
Environment Register is 1, and the input operands to
a floating-point operation produce an indeterminate
result.

Exception Opcode (Register 164)

This unprotected special-purpose register (Figure 32)
reports the operation code (opcode) of an instruction
causing a trap. It is provided primarily for recovery from
floating-point exceptions, but reports the opcode of any
trapping instruction.

.Bits 31-8: reserved.

Bits 7-0: Instruction Opcode (IOP)—This field cap-
tures the opcode of aninstruction causing atrap as a re-
sult of instruction execution; the opcode is captured as
the instruction enters the write-back stage of the proces-
sor pipeline. Instructions that do not trap as a conse-
quence of execution do not modify the IOP field.

0

Reserved

TTTTTT T T T T T T T T

TTTTTT

IoP

Figure 32. Exception Opcode

1-53

29K Family CMOS Devices

TLB Registers

The Am29000 contains 128 Translation Look-Aside
Bufter (TLB) registers. The organization of the TLB reg-
isters is shown in Figure 33.

The TLB registers comprise the TLB entries, and are
provided so that programs may inspect and alter TLB
entries. This allows the loading, invalidation, saving,
and restoring of TLB entries.

TLB registers have fields that are reserved for future
processor implementations. When a TLB register is
read,abitinareservedfieldis read as a 0. An attemptto
write a reserved bit with a 1 has no effect; however, this
should be avoided because of upward-compatibility
considerations.

The Translation Look-Aside Buffer (TLB) regisiers are
accessed only by -explicit data movement by Su-

pervisor-mode programs. Instructions that move datato
or from a TLB register specify a general-purpose regis-

ter containing a TLB register number. The TLB register

number is given by the contents of bits 6-0 of the -

general-purpose register. TLB register numbers may

~only be specmed indirectly 'by general-purpose

registers.

TLB entries are accessed as reglsters numbered

0-127. Since two words are' required to completely

‘specify a TLB entry, two registers are required for each

TLB entry. The words corresponding to an entry are
paired as two sequentially numbered registers starting
on an even-numbered register. The word with the even
register number is called Word 0, and the word with the
odd register number is called Word 1. The entries for”
TLB Set 0 are in registers numbered 063, and the en-
tries for TLB Set 1 are in registers numbered 64-127.

TLB Entry Word 0
The TLB Entry Word 0 register is shown in Figure 34.

Bits 31-15: Virtual Tag (VTAG)—When the TLB is
searched for an address translation, the VTAG field of
the TLB entry must match the most significant 17, 16,
15, or 14 bits of the address being translated—for page
sizesof 1,2, 4, and 8 kb, respectively—for the search to

be successful.

TLB Reg# TLB Set 0
0 TLB Entry Line 0 Word 0
1 TLB Entry Line 0 Word 1
2 TLB Entry Line 1 Word 0
3 TLB Entry Line 1 Word 1
L] .
L] . L]
L] .
62 TLB Entry Line 31 Word 0
63 TLB Entry Line 31 Word 1
TLB Set1
64 TLB Entry Line 0 Word O _
65 TLB Entry Line 0 Word 1
. s
. . ..
L] L]
126 TLB.Entry Line 31 Word 0
127 TLB Entry Line 31 Word 1

Flgure 33. Translation Look-Aside Buffer Registers

1-54

Am29000

VTAG

31 23 15
HERRRRRRERRRRRN

7 0
RERERR

TID

]
'
SE

VE Sw UR

1
'
uw

SR

Croeeee-

E

Figure 34. TLB Entry Word 0

When software loads a TLB entry with an address trans-
lation, the most significant 14 bits of the Virtual Tag are
set with the most significant 14 bits of the virtual address
whose translation is being loaded into the TLB. The re-
maining 3 bits of the Virtual Tag must be set eitherto the

corresponding bits of the address orto 0s, dependingon’

the page size, as follows (“A” refers to corresponding
address bits):

VTAG 2-0 (TLB Word 0 bits 17-15)

. Page Size
1kb AAA
2kb AAO
4 kb A00
8 kb 000

Bit 14: Valid Entry (VE)—If this bit is 1, the associated
TLB entry is valid; if it is 0, the entry is invalid.

Bit 13: Supervisor Read (SR)—If the SR bit is 1, Su-
pervisor-mode load operations fromthe virtual page are
allowed; if it is 0, Supervisor-mode loads-are not
allowed.

Bitk12: Supervisor Write (SW)—If the SW bit is 1, Su- k

pervisor-mode' store operations to the virtual page are
allowed; if it is 0, Supervisor-mode stores are not
allowed.

Bit 11: Supervisor Execute (SE)—If the SEbitis 1, Su-
pervisor-mode instruction accesses to the virtual page
are allowed; if it is 0, Supervisor-mode instruction
accesses are not allowed.

Bit 10: User Read (UR)—If the UR bit is 1, User-mode

load operations from the virtual page are allowed; if it is
0, User-mode loads are not allowed.

Bit 9: User Write (UW)—If the UW bit is 1, User-mode
store operations to the virtual page are allowed; if itis 0,
User-mode stores are not allowed.

Bit8: User Execute (UE)—If the UE bitis 1, User-mode
instruction accesses to the virtual page are allowed:; if it
is 0, User-mode instruction accesses are not allowed.

Bits 7-0: Task Identifier (TID)—When the TLB is
searched foran addresstranslation, the TID must match
the Process Identifier (PiD) in the MMU Configuration
Register for the transiation to be successful. This field is

- allows the TLB entry to be associated with a particular

process.

TLB Entry Word 1)
The TLB Entry Word 1 register is shown in Figure 35.

Bits 31-10: Real Page Number (RPN)—The RPN field
gives the most significant 22, 21, 20, or 19 bits of the
physical address of the page for page sizes of 1, 2, 4,
and 8 kb, respectively. It is concatenated to bits 9-0,
10-0, 11-0, or 12-0 of the address being translated—
for 1-, 2-, 4-, and 8-kb page sizes, respectively—to form
the physical address for the access.

When software loads a TLB entrywith an address trans- -
lation, the most significant 19 bits of the Real Page Num-
ber are set with the most significant 19 bits of the physi-
cal address associated with the translation. The remain-
ing 3 bits of the Real Page Number must be set either to
the corresponding bits of the physical address, or to 0s,
depending onthe page size, as follows (“A”refers to cor-
responding address bits):

Page Size RPN 2-0 (TLB Word 1 bits 12-10)
1kb AAA
2kb AAO
4kb A0O
8 kb 000

Bits 7-6: User Programmable (PGM)—These bits are
placed on the MPGM:+—~MPGMo outputs when the ad-

RPN

TTTTTITT T I T T T]

[1]

res |PGM res |U

Figure 35. TLB Entry Word 1 10

1-55

29K Family CMOS Devices

dress is transmitted for an access. They have no
predefined effect onthe access; any effect is defined by
logic external to the processor.

Bit 1: Usage (U)—This bit indicates which entry in a
given TLB line was least recently used to perform an ad-
dress translation. If this bit is a 0, then the entry in Set 0
inthelineis least recently used;ifitis 1, thenthe entry in
Set 1is least recently used. This bit has an equal value
for both entries in a line. Whenever a TLB entry is used

to translate an address, the Usage bit of both entries in
the line used for translation are set according to the TLB
set containing the translation. This bit is set whenever
the transiation is valid, regardless of the outcome of
memory-protection checking.

Bit 0: Input/Output (I0)—The 10 bit determines
whether the access is directed to the instruction/data
memory (IO=0) or the input/output (I0=1) address
space.

1-56

Am29000

INSTRUCTION SET

The Am23000 implements 117 instructions. All instruc-
tions execute in a single cycle except for IRET,
IRETINV, LOADM, STOREM, and the trapping arithme-
tic instructions such as floating-point instructions.

Most instructions deal with general-purpose registers
foroperands and results; however, in most instructions,
an 8-bit constant can be used in place of a register-
based operand. Some instructions deal with special-
purpose registers, TLB registers, external devices and
memories, and coprocessors.

This section describes the nine instructionclassesinthe
Am29000, and provides a brief summary of instruction
operations.

If the processor attempts to execute aninstructionthatis
not implemented, an lllegal Opcode trap occurs.

Integer Arithmetic

The Integer Arithmetic instructions perform add, sub-
tract, multiply, and divide operations on word-length in-
tegers. Certain instructions in this class cause traps if
signed or unsigned overflow occurs during the execu-
tion of the instruction. There is support for multi-preci-
sion arithmetic on operands whose lengths are multi-
ples of words. All instructions in this class set the ALU
Status Register. The integer arithmetic instructions are
shown in Figure 36.

The instructions MULTIPLU, MULTMU, MULTIPLY,
MULTM, DIVIDE, and DIVIDU are not implemented di-
rectly by processor hardware, but cause traps to occur
in instruction-emulation routines.

Compare

The Compare instructions test for various relationships
between two values. For all Compare instructions
except the CPBYTE instruction, the comparisons are
performed on word-length signed or unsigned integers.
There are two types of Compare instructions. The first
type places a Boolean value refiecting the outcome of
the compare into a general-purpose register. For the
second type (assert instructions), instruction execution
continues only if the comparison is true; otherwise a
trap occurs. The assert instructions specify a vector for
the trap.

The assert instructions support run-time operand
checking and operating-system calls. If the trap occurs
“in-the User mode and a trap number between 0 and
63 is specified by the instruction, a Protection Violation
trap occurs. The Compare instructions are shown in
Figure 37.

Logical

The Logical instructions perform a set of bit-by-bit
Boolean functions on word-length bit strings. All instruc-
tions in this class setthe ALU Status Register. These in-
structions are shown in Figure 38. i

Shift

The Shift instructions (Figure 39) perform arithmetic
and logical shifts. All but the Extract instruction operate
on word-length data and produce a word-length result.
The Extract instruction operates on double-word data
and produces a word-length result. If both parts of the
double word for the Extract instruction are from the
same source, the Extract operation is equivalent to a ro-
tate operation. For each operation, the shift count is a
5-bit integer, specifying a shift amount in the range of 0
to 31 bits.

Data Movement

The Data Movement instructions (Figure 40) move
bytes, half-words, and words between processor regis-
ters. In addition, they move data between general-
purpose registers and external devices, memories, and
the coprocessor.

Constant

The Constant instructions (Figure 41) provide the ability
to place half-word and word constants into registers.
Mostinstructions inthe instruction set allow an 8-bit con-
stant as an operand. The Constant instructions allow the
construction of larger constants.

Floating-Point

The Floating-Point instructions (Figure 42) provide op-
erations on single-precision (32-bit) or double-precision
(64-bit) floating-point data. In addition, they provide con-
versions between single-precision, double-precision,
and integer number representations. in the current pro-
cessor implementation, these instructions cause traps
to occur in routines that perform the floating-point op-
erations. :

Branch

The Branch instructions (Figure 43) control the execu-
tion flow of instructions. Branch target addresses may
be absolute, relative to the Program Counter (with the
offset given by a signed instruction constant), or con-
tained in a general-purpose register. For conditional
jumps, the outcome of the jump is based on a Boolean
value in a general-purpose register. Procedure calis are
unconditional and save the return address in a general-
purpose register. All branches have a delayed effect;
the instruction sequence following the branch is exe-
cuted regardiess of the outcome of the branch.

Miscellaneous

The Miscellaneous .instructions (Figure 44) perform
various operations that cannot be grouped into other in-
struction classes. In certain cases, these are control
functions available only to Supervisor-mode programs.

1-57

29K Family CMOS Devices

Mnemonic Operation Description
ADD DEST <-SRCA + SRCB
ADDS DEST <-SRCA + SRCB
IF signed overflow THEN Trap (Out Of Range)
- ADDU DEST <-SRCA + SRCB
IF unsigned overflow THEN Trap (Out Of Range)
‘ADDC DEST <-SRCA + SRCB + C
ADDCS DEST <-SRCA + SRCB+ C -
IF signed overflow THEN Trap (Out Of Range)
ADDCU DEST <-SRCA+ SRCB + C
IF unsigned overflow THEN Trap (Out Of Range)
SUB DEST <-SRCA ~ SRCB
SUBS DEST <-SRCA ~ SRCB
IF signed overflow THEN Trap (Out Of Rangse)
SUBU DEST <-SRCA - SRCB
IF unsigned underflow THEN Trap (Out Of Range)
SuBC DEST <-SRCA-SRCB-1+C
SUBCS DEST <-SRCA - SRCB-1+C
IF signed overflow THEN Trap (Out Of Range)
SuBCU DEST <-SRCA-SRCB-1 +C
IF unsigned underflow THEN Trap (Out Of Range) .
SUBR DEST <-SRCB - SRCA
SUBRS DEST <-SRCB - SRCA
IF signed overflow THEN Trap (Out Of Range)
SUBRU DEST <-SRCB - SRCA '
IF unsigned underflow THEN Trap (Out Of Range)
SUBRC . DEST <-SRCB-SRCA-1+C
SUBRCS 'DEST <-SRCB=SRCA-1+C
- IF signed overflow THEN Trap (Out Of Range)
SUBRCU DEST <-SRCB-SRCA-1+C
g : - IF unsigned underflow THEN Trap (Out Of Range)
MULTIPLU DEST <-SRCA * SRCB (unsigned)
MULTIPLY 'DEST <-SRCA * SRCB (signed)
MUL Perform 1-bit step of a multiply operation (signed)
MULL Complete a sequence of multiply steps
MULTM : DEST <-SRCA * SRCB (signed), most-significant bits
MULTMU - DEST <-SRCA * SRCB (unsigned), most-significant bits
MULU .- Perform 1-bit step of a multiply operation (unsigned)
DIVIDE ca i DEST <-(QIISRCA)/SRCB (signed) Q <-Remainder
DIVIDU a DEST <-(Q//SRCA)/SRCB (unsigned) Q <-Remainder
Divo Initialize for a sequence of divide steps (unsigned)
Div . - Perform 1-bit step of a divide operation (unsigned)
DIVL Complete a sequence of divide steps (unsigned)
DIVREM Generate remainder for divide operation (unsigned)

Figure 36. Integer Arithmetic Instructions

1-58

Am29000

Mnemonic Operation Description
CPEQ IF SRCA = SRCB THEN DEST <-TRUE
ELSE DEST <-FALSE
CPNEQ IF SRCA < SRCB THEN DEST <-TRUE
ELSE DEST <-FALSE
CPLT IF SRCA < SRCB THEN DEST <-TRUE
ELSE DEST <-FALSE
CPLTU IF SRCA < SRCB (unsigned) THEN DEST <-TRUE
ELSE DEST <-FALSE
CPLE IF SRCA <= SRCB THEN DEST <-TRUE
ELSE DEST <- FALSE
CPLEU IF. SRCA <= SRCB (unsigned) THEN DEST <-TRUE
ELSE DEST <-FALSE
CPGT IF SRCA > SRCB THEN DEST <-TRUE
ELSE DEST <-FALSE
CPGTU IF SRCA > SRCB (unsigned) THEN DEST <-TRUE
ELSE DEST <-FALSE
CPGE IF SRCA >= SRCB THEN DEST <-TRUE
ELSE DEST <-FALSE
CPGEU IF SRCA >= SRCB (unsigned) THEN DEST «-TRUE
ELSE DEST <-FALSE
CPBYTE IF (SRCA.BYTEO = SRCB.BYTEO) OR
(SRCA.BYTE1 = SRCB.BYTE1) OR
(SRCA.BYTE2 = SRCB.BYTE2) OR
(SRCA.BYTES3 = SRCB.BYTES3)THEN DEST <-TRUE
ELSE DEST <-FALSE :
ASEQ IF SRCA = SRCB THEN Continue
ELSE Trap (VN)
ASNEQ | IF SRCA <> SRCB THEN Continue
ELSE Trap (VN) i
ASLT IF SRCA < SRCB THEN Continue
ELSE Trap (VN) .)
ASLTU IF SRCA < SRCB (unsigned) THEN Continue
IR ELSE Trap (VN) .
ASLE IF SRCA <= SRCB THEN Continue
ELSE Trap (VN)
ASLEU® IF SRCA <= SRCB (unsigned) THEN Continue
. ELSE Trap (VN)
ASGT IF SRCA > SRCB THEN Continue
: ELSE Trap (VN)
ASGTU - IF SRCA > SRCB (unsigned) THEN Continue
ELSE Trap (VN)
ASGE IF SRCA >= SRCB THEN Continue
“ELSE Trap (VN)
IF SRCA >= SRCB (unsigned) THEN Continue

ASGEU

ELSE Trap (VN)

Figure 37. Compare Instructions

1-59

29K Family CMOS Devices

Mnemonic Operation Description
AND DEST <-SRCA & SRCB
ANDN DEST <-SRCA & ~ SRCB
NAND DEST <-~ (SRCA & SRCB)
OR DEST <-SRCA | SRCB
NOR DEST <-~ (SRCA | SRCB)
XOR DEST <-SRCA * SRCB
XNOR DEST <-~ (SRCA SRCB)

Figure 38. Logical Instructions

Mnemonic ‘Operation Description

SLL DEST <-SRCA << SRCB (zero fill)

SAL DEST <-SRCA >> SRCB (zero fill)

SRA DEST <-SRCA >> SRCB (sign fill)

EXTRACT DEST <-high-order word of (SRCA/SRCB << FC)

Figure 39. Shift Instructions

Reserved Instructions

Sixteen Am29000 operation codes are reserved for
instruction emulation. These instructions cause traps,
much like the floating-point instructions, but currently
have no specified interpretation. The relevant operation
codes and the corresponding trap vectors are:

~ Operation Codes Trap Vector
(hexadecimal) Numbers (decimal)
D8-DD 24-29
E7-E9 3941
F8 . 56
FA-FF 58-63

These instructions are intended for future processor
enhancements, and users desiring compatibility with fu-
ture processor versions should not use them for any
purpose.

1-60

Am29000

Mnemonic Operation Description
LOAD DEST <-EXTERNAL WORD [SRCB]
LOADL DEST <-EXTERNAL WORD [SRCB]
assert *LOCK output during access
LOADSET DEST <-EXTERNAL WORD [SRCB])
EXTERNAL WORD [SRCB] <-h'FFFFFFFF’,
assert LOCK output during access
LOADM DEST.. DEST + COUNT <-
EXTERNAL WORD {SRCB] ..
EXTERNAL WORD [SRCB + COUNT * 4]
STORE EXTERNAL WORD [SRCB] <-SRCA
STOREL EXTERNAL WORD [SRCB] <-SRCA
assert LOCK output during access
STOREM EXTERNAL WORD [SRCB] ..
EXTERNAL WORD [SRCB + COUNT * 4] <-
SRCA .. SRCA + COUNT
EXBYTE DEST <-SRCB, with low-order byte replaced
‘ by byte in SRCA selected by BP
EXHW DEST <-SRCB, with low-order half-word replaced
by half-word in SRCA selected by BP
EXHWS DEST <- half-word in SRCA selected by BP,
sign-extended to 32 bits
INBYTE DEST <-SRCA, with byte selected by BP replaced
by low-order byte of SRCB
INHW DEST <-SRCA, with half-word selected by BP replaced
: by low-order half-word of SRCB
MFSR DEST <-SPECIAL
MFTLB DEST <-TLB [SRCA]
MTSR SPDEST <-SRCB
MTSRIM SPDEST <- 0116
MTTLB TLB [SRCA] <-SRCB
Figure 40. Data Movement Instructions
Mnemonic Operation Description
CONST DEST <-0l16
CONSTH Replace high-order half-word of SRCA by 116
CONSTN DEST <-1116

Figure 41. Constant Instructions

1-61

29K Family CMOS Devices

Mnemonic Operation Description
FADD DEST (single-precision) <-SRCA (single-precision)
+ SRCB (single-precision)
DADD DEST (double-precision) <-SRCA (double-precision)
+ SRCB (double-precision)
FSUB DEST (single-precision) <-SRCA (single-precision)
-SRCB (single-precision)
DSuB DEST (double-precision) <-SRCA (double-precision)
-SRCB (double-precision)
FMUL DEST (single-precision) <-SRCA (single-precision)
* SRCB (single-precision)
FDMUL DEST (double-precision) <-SRCA (single-precision)
* SRCB (single-precision)
DMUL DEST (double-precision) <-SRCA (double-precision)
* SRCB (double-precision)
FDIV DEST (single-precision) <-SRCA (single-precision)/
SRCB (single-precision)
DDIV DEST (double-precision) <-SRCA (double-precision)/
SRCB (double-precision)
FEQ IF SRCA (single-precision) = SRCB (single-precision)
THEN DEST <-TRUE
ELSE DEST <-FALSE
DEQ IF SRCA (double-precision) = SRCB (double-precision)
THEN DEST <-TRUE .
ELSE DEST <-FALSE
FGE IF SRCA (single-precision) >= SRCB (single-precision)
THEN DEST <-TRUE
ELSE DEST <-FALSE
DGE IF SRCA (double-precision) >= SRCB (double-precision)
THEN DEST <-TRUE
ELSE DEST <-FALSE
FGT IF SRCA (single-precision) > SRCB (single-precision)
THEN DEST <-TRUE
ELSE DEST <-FALSE
DGT IF SRCA (double-precision) > SRCB (double-precision)
THEN DEST <-TRUE .
ELSE DEST <-FALSE
SQRT DEST (single-precision, double-precision, extended-precision)
<-SQRT[SRCA (single-precision, double-precision, extended-precision)]
CONVERT DEST (integer, single-precision, double-precision)
<-SRCA (integer, single-precision, double-precision)
CLASS DEST (single-precision, double-precision, extended-precision) .
<-CLASS[SRCA (single-precision, double-precision, extended-precision)]

Figure 42. Floating-Point Instructions

1-62

Am29000

Mnemonic Operation Description
CALL DEST <-PC//00 + 8
PC <-TARGET
Execute delay instruction
CALLI DEST <-PC//00 + 8
PC <-SRCB
Execute delay instruction
JMP PC <-TARGET
Execute delay instruction
JMPI PC <-SRCB
Execute delay instruction
JMPT IF SRCA = TRUE THEN PC <-TARGET
Execute delay instruction
JMPTI IF SRCA = TRUE THEN PC <-SRCB
Execute delay instruction
JMPF IF SRCA = FALSE THEN PC <-TARGET
Execute delay instruction
JMPFI IF SRCA = FALSE THEN PC <-SRCB
Execute delay instruction
JMPFDEC IF SRCA = FALSE THEN
SRCA <-SRCA -1
PC <-TARGET
ELSE
SRCA <-SRCA -1
Execute delay instruction
Figure 43. Branch Instructions
Mnemonic Operation Description
ClLz Determine number of leading zeros in a word
SETIP Set IPA, IPB, and IPC with operand register numbers
EMULATE Load IPA and IPB with operand register numbers, and Trap (VN)
INV Reset all Valid bits in Branch Target Cache to zeros .
IRET Perform an interrupt return sequence
IRETINV Perform an interrupt return sequence, and reset all Valid bits
in Branch Target Cache to zeros
HALT Enter Halt mode on next cycle

Figure 44. Miscellaneous Instructions

1-63

29K Family CMOS Devices

DATA FORMATS AND HANDLING

This section describes the various data types supported
by the Am29000, and the mechanisms for accessing
data in external devices and memories. The Am29000
includes provisions for the external access of bytes,
half-words, unaligned words, and unaligned half-words,
as described in this section.

Integer Data Types

Most Am29000 instructions deal directly with word-
length integer data; integers may be either signed or un-
signed, depending on the instruction. Some instructions
(e.g., AND) treat word-length operands as strings of
bits. In addition, there is support for character, half-
word, and Boolean data types.

Byte Operations

The processor supports character data through load,
store, extraction, and insertion operations on word-
length operands, and by a compare operation on byte-
length tields within words. The format for unsigned and
signed characters is shown in Figure 45; for signed
characters, the sign bit is the most-significant bit of the
character. For sequences of packed characters within
words, bytes are ordered either left-to-right or right-to-
left, depending on the BO bit of the Configuration Regis-
ter (see Special Floating-Point Values section).

If the Data Width Enable (DW) bit of the Configuration
Registeris 1, the Am29000 is enabled to load and store
byte data. On a load, an external packed byte is con-
verted to one of the character . formats shown:in
Figure 45. On a store, the low-order byte of a word is
packed into every byte of an externalword. The External
Data Accesses section describes external byte ac-
cesses in more detail.

The Extract Byte (EXBYTE) instruction replaces the
low-order character of a destination word with an arbi-
trary byte-aligned character from a source word. Forthe

EXBYTE instruction, the destinationword canbe azero

word, which effectively zero-extends the character from
the source operand.

The Insert Byte (INBYTE) instruction replaces an arbi-

trary byte-aligned character in a destination word with

the low-order character of a source word. For the IN-
BYTE instruction, the source operand can be a charac-
ter constant specified by the instruction.

The Compare Bytes (CPBYTE) instruction compares
two word-length operands and gives a result of True if
any corresponding bytes within the operands have
equivalent values. This allows programs to detect char-
acters within words without first having to extract individ-
ual characters, one at a time, from the word of interest.

Half-Word Operations

The processor supports half-word data through load,
store, insertion, and extraction operations on word-
length operands. The format for unsigned and signed
half-words is shown in Figure 46; for signed half-words,
the sign bit is the most-significant bit of the half-word.
For sequences of packed half-words within words, half-
words are ordered either left-to-right or right-to-left, de-
pending on the Byte Order (BO) bit of the Configuration
Register (see Addressing and Alignment section).

If the Data Width Enable (DW) bit of the Configuration
Register is 1, the Am23000 is enabled to load and store
half-word data. On a load, an external packed half-word
is converted to one of the formats shown in Figure 46.
On a store, the low-order half-word of a word is packed
into every half-word of an external word.

The Extract Half-Word (EXHW) instruction replaces the
low-order half-word of a destination word with either the
low-order or high-order half-word of a source word. For
the EXHW instruction, the destination word can be a
zero word, which effectively zero-extends the half-word
from the source operand.

The Extract Half-Word, Sign-Extended (EXHWS) in-
struction is similar to the EXHW instruction, except that
it sign-extends the half-word in the destination word
(i.e., it replaces the most-significant 16 bits of the desti-
nation word with the most-significant bit of the source
half-word).)

The Insert Half-Word (INHW) instruction replaces either
the low-order or high-order half-word in a destination
word with the low-order half-word of a source word.

Unsigned:

IEEREREREREERERERRRRRRER

TTTTTTT

koboooqooooo,ooooo’oooooooo data
Signed: : ‘

31 23 . 15 7 0
HEEREHEEEEREERRRERRERE REERRE
sssssksssss'ss‘sssssssssssss data

Figure 45. Character Format

1-64

Am29000

Unsigned:

31 23 15 7 0
Crrrertevtrtertrep ettt ertl
0000O0O0O0OOOOOOOOODO data

Signed:

31 23 15 7 0
N REERERRRRERRRRRRRRRERRR R R
S §S 8 S5 SSSSSSS S S S|S data

Figure 46. Hali-Word Format

Boolean Data

Some instructions in the Compare class generate word-
length Boolean results. Also, conditional branches are
conditional upon Boolean operands. The Boolean for-
mat used by the processor is such that the Boolean
values True and False are represented by a 1 or 0,
respectively, in the most-significant bit of a word. The
remaining bits are unimportant; for the compare instruc-
tions, they are reset. Note that twos-complement
negative integers are indicated by the Boolean value
True in this encoding scheme. .

Floating-Point Data Types

The Am29000 defines single-- and double-precision
floating-point formats that comply with the IEEE Stan-
dard for Binary -Floating-Point Arithmetic (ANSIIEEE
Std. 754-1985). These data types are not supported di-
rectly in processor hardware, but can be xmplemented
by a virtual floating-point interface provided in the
Am23000. :

Inthis section, the following nomenclature is used to de-
note fields in a floating-point value:

® s:signbit

= bexp: biased exponent
¥ frac: fraction
® sig: significand

Single-Precision Floating-Point

The format for a smgle-precnsmn tloating-point value is
shown in Figure 47.

Typically, the value of a single-precision operand is ex-
pressed by:

(-1)*"*s * 1.frac * 2**(bexp—-127).

The encoding of special floating-point values is givenin
the Special Floating-Point Values section.

Double-Precision Floating-Point

The 1ormat for a double-precision ﬂoatlng point value is
shown in Figure 48.)

Typically, the value of a double- precnsnon operand is ex-
pressed by:)

(-1)*"s*1.drac* 2" (bexp—1023).

The encoding of special floating-point values is given in
the Special Floating-Point Values section.

In order to be properly referenced by a floating-point
instruction, a double-precision floating-point value must
be double-word aligned. The absolute register number
of the register containing the first word (iabeled “0” in
Figure 48) must be even. The absolute register number
of the register containing the second word (labeled “1” in
Figure 48) must be odd. If these conditions are not met,
the results of the instruction are unpredictable. Note that
the appropriate registers for a double-precision value
in the local registers depend on the value of the Stack
Pointer.

31

S : bexp

EEEEEIREERERERRERERRRREEIREREE

frac

Figure 47. Single-Precision Floating-Point Format

1-65

29K Family CMOS Devices

31

23
HERERERRR

s bexp

BERRRERERERRRRRRRRE

frac... 0

NEREREERR

HERRRRERRRRRRRRRRE

...frac

Figure 48. Double-Precision Floating-Point Format

Special Floating-Point Values

The Am29000 defines floating-point values that are en-
coded for special interpretation. The values are de-
scribed in this section.

Not-a-Number

A Not-a-Number (NaN) is a symbolic value used to re-
port certain floating-point exceptions. It also can be
used to implement user-defined extensions to floating-
pointoperations. ANaN comprises afloating-point num-
ber with maximum biased exponent and non-zero frac-
tion. The sign bit can be either 0 or 1 and has no signifi-
cance. There are two types of NaN: signaling NaNs and
quiet NaNs. A signaling NaN causes an Invalid Opera-
tion exception if used as an input operand to a floating-
point operation; a quiet NaN does not cause an excep-
tion. The Am29000 distinguishes signaling and. quiet
NaNs by the most-significant bit of the fraction: a 1 indi-
cates a quiet NaN, and a 0 indicates 2 signaling NaN.

An operation never generates a signaling NaN as a re-
sult. A quiet NaN result can be generated in one of two
ways:

B a5 the result of an invalid operation that can-
not generate a reasonable result, or

® as the result of an operation for which one or
more input operands are either signaling or
quiet NaNs.

In either case, the Am29000 produces a quiet NaN hav-
ing a fraction of 11000. .. 0; that is, the two most-signifi-
cant bits of the fractionare 11, and the remaining bits are
0. If desired, the Reserved Operand exception can be
enabled to cause a Floating-Point Exception trap. The
trap handler in this case can implement a scheme
whereby user-defined NaN values appear to pass
through operations as results, providing overall status
for a series of operations.

Infinity

Infinity is an encoded value used to represent a value
that is too large to be represented as a finite number in
a given floating-point format. Infinity comprises a float-
ing-point number with maximum biased exponent and
zero fraction. The sign bit of an infinity distinguishes +eo
from —eo,

Denormalized Numbers

The |EEE Standard specifies that, wherever possible, a
result thatis too smallto be represented as a normalized
number be represented as a denormalized number. A
denormalized number may be used as aninput operand
to any operation. For single- and double-precision for-
mats, a denormalized number comprises a floating-
point number with a biased exponent of 0 and a non-
zero fraction field; the sign bit can be either 1 or 0. The
value of a denormalized number is expressed by:

(-1)**s * 0.frac * 2**(-bias + 1),

where ‘bias” is the exponent bias for the format in
question.

Zero

A zero comprises a floating-point number with a biased
exponent of 0 and a zero fraction field. The sign bit of a
zero canbe either 0 or 1; however, positive and negative
zero are both exactly zero, and are considered equal by
comparison operations.

External Data Accesses

All processor external accesses occur between
general-purpose registers and external devices and
memories. Accesses occur as the result of the execu-
tion of load and store instructions. The load and store in-
structions specify which general-purpose register re-
ceives the data (for a load) or supplies the data (for a
store). The format of the load and store instructions is
shown in Figure 49.

Addresses for accesses are given either by the content
of a general-purpose register or by a constant value
specified by the load or store instruction. The load and
store instructions do not perform-address computation
directly. Any required address computations are per-
formed explicitly by other instructions.

Inthe load or store instruction, the Coprocessor Enable
(CE) bit (bit 23) determines whether or not the access is
directed to the coprocessor. If the CE bit is 0, the access
is directed to an external device or memory. If the GE bit
is 1, data is transferred to or from the coprocessor. The
CE bit affects the interpretation of the Control (CNTL)
field as well as the channel protocol. This section deals

1-66

Am29000

23

TTTTTTT

XXX XXX XM

HERER

CNTL

TTTTTTT

RBorl

TTTTTTT

RA

CE

Figure 49. Load/Store Instruction Format

with all external accesses other than coprocessor
accesses.

The format of the instructions that do not perform
coprocessor data transfers (i.e., in which the CE bit is 0)
is shown in Figure 50.

Inload and store instructions, the “RB or |" field specifies
the address for access. The address is either the con-
tent of a general-purpose register, with register number
RB, or a constant with a value | (zero-extended to 32
bits). The M bit determines whether the register or the
constant is used.

The data for the access is written into the general-
purpose register RA for a load, and is supplied by regis-
ter RA for a store.

The definitions for other fields in the load or store in-
struction are given below:

Bit 23: Coprocessor Enable (CE)—The CE bit is 0 for
a non-coprocessor load or store.

Bit 22: Address Space (AS)—If the AS bit is 0 for an
untranslated load or store, the access is directed to in-
struction/data memory. If the AS bit is 1 for an untrans-
lated load or store, the access is directed to input/output.
The AS bit must be 0 for a translated load or store; if the
AShbitis 1foratranslated load or store, a Protection Vio-
lation trap occurs. The address space for a translated
load or store is determined by the Input/Output (10) bit of
the associated TLB entry.

Bit 21: Physical Address (PA)}—The PA bit may be
used by a Supervisor-mode programto disable address
translation for an access. If the PAbit is 1, then address
translation is not performed for the access, regardless of
the value of the Physical Addressing/Data (PD) bitinthe

Current Processor Status Register. If the PAbitis 0, ad-
dress translation depends on the PD bit.

The PA bit may be 1 only for Supervisor-mode instruc-
tions. If it is 1 for a User-mode instruction, a Protection
Violation trap occurs.

Blt 20: Set Byte Pointer/Sign Bit (SB)—If the Data
Width Enable (DW) bit of the Configuration Registeris 0
and the SB bit is 1, the Byte Pointer Register is written
with the two least-significant bits of the address for the
access. These address bits can control subsequent
character and half-word operations. If the BP bitis 0, the
Byte Pointer Register is not affected.

If the Data Width Enable (DW) bit of the Configuration
Register is 1 and the SB bit is 1 for a load, the loaded
byte or half-word is sign-extendedin the destination reg-
ister; if the SB bit is 0, the byte or half-word is zero-ex-
tended. If the DW bit is 1 and the SB bit is 1 for either a
load or store, then each bit of the Byte Pointer Register
is written with the complement of the Byte Order bit of
the Configuration Register. The Byte Pointer Register is
set in this case to provide software compatibility across
different types of memory systems. If the SB bit is 0, the
Byte Pointer Register is not affected.

Bit 19: User Access (UA)—The UA bit allows pro-
grams executing in the Supervisor mode to emulate
User-mode accesses. This allows checking of the
authorization of an access requested by a User-mode
program. It also causes address translation (if applica-
ble) to be performed using the PID field of the MMU
Configuration Register, rather than the fixed Supervi-
sor-mode process identifier zero.

Ifthe UAbitis 1 fora Supervisoerode load or store, the
access associated with the instruction is performed in

31 23 15 7 0
HERBRR REERRRERERERRRRER
XXXXXXXM 10 OPT RA RBorl
i
CE:PAEUA
AS SB

Figure 50. Non-Coprocessor Load/Store Format

1-67

29K Family CMOS Devices

the User mode. In this case, the User mode affects only
TLB protection checking, the SUP/US output, and the
use of the PID field in translation; it has no effect on the
registers that can be accessed by the instruction. If the
UA bit is 0, the program mode for the access is con-
trolled by the SM bit.

If the UA bit is 1 for a User-mode load or store, a Protec-
tion Violation trap occurs.

Bits 18-16: Option (OPT)—This field is placed on the
" OPT2-OPTo outputs during the address cycle of the ac-
cess. There is a one-to-one correspondence between
the OPT field and the OPT=—OPTo outputs; that is, the
most-significant OPT bit is placed on OPTz2, and so on.

The OPT field controls system functlons as described
below.

Bits 15-8: (RA)—The data for the access is written into
the general-purpose register RA for a load, and is sup-
plied by register RA for a store.

Bits 7-0: (RB or I)}—In load and store instructions, the
“RB or I” field specifies the address for the access. The
address is either the content of a general-purpose reg-
ister with register number RB, or a constant value |
(zero-extended to 32 bits). The M bit of the operation
code (bit 24) determines whether the register or the con-
stant is used.

Load and store operations are overlapped with the exe-
cutionof instructions that follow the load or store instruc-
tion. Only one load or store may be in progress on any
given cycle. If aload or store instruction is encountered
while another load or store operation is in progress, the
processor enters the Pipeline Hold mode until the first
operation is completed. However, the address for the
second operation may appear on the address bus if the
first operation is to a device or memory that supports
pipelined operations (see Pipelined Accesses section).

Load Operations

The processor provides the following instructions for
performing load operations: Load (LOAD), Load and
Lock (LOADL), Load and Set (LOADSET), and Load
Multiple (LOADM). All of these instructions transfer data
from an external device or memory into one or more
general-purpose registers.

The LOADL instruction supports the implementation of
device and memory interlocks in a multiprocessor con-
figuration. It activates the LOCK output during the ad-
dress cycle of the access.

The LOADSET instruction implements a bmary sema-
phore. It loads a general-purpose register and automati-
cally writes the accessed location with aword that has 1
in every bit position (that is, the write is indivisible from
the read). The LOCK output is asserted during both the
read and write accesses. Note that, if address transla-
tion is enabled for the LOADSET instruction, the TLB
memory-protection bits must allow both the read and

write accesses. If either the read or write access is not
allowed, neither access is performed.

The LOADM loads a specified number of registers from
sequential addresses, as explained below.

Load operations are overlapped with the execution of in-
structions that follow the load instruction. The processor
detects any dependencies on the loaded data that sub-
sequent instructions may have, and, if such a depen-
dency is detected, enters the Pipeline Hold mode until
the data are returned by the external device or memory.
If a register that is the target of an incomplete load is
written with the result of a subsequent instruction, the
processor does not write the returning data into the reg-
ister when the load is completed; the Not Needed (NN)
bit in the Channel Control Register is set in this case.

Store Operations

The processor provides the followmg instructions for
performing store operations: Store (STORE), Store and
Lock (STOREL), and Store Multiple (STOREM). All of
these instructions transfer data from one or more

‘general-purpose registers to an external device or

memory.

The STOREL instruction supports the implementation
of device and memory interlocks in a multiprocessor
configuration. It activates the TOCK output during the
address cycle of the access.

The STOREM instruction stores a specified number of
registers to sequential addresses, as explained below.

Store operations are overlapped with the execution of
instructions that follow the store instruction. However,
no data dependencies can exist since the store prevents
any subsequent accesses until it is completed.

Multiple Accesses

Load Multiple (LOADM) and Store Multiple (STOREM)
instructions move contiguous words of data between
general-purpose registers and external devices and
memories. The number of transfers is determined by the
Load/Store Count Remaining Register.

The Load/Store Count Remaining (CR) field inthe Load/
Store Count Remaining Register specifies the number
of transfers to be performed by the next LOADM or
STOREM executedin the instruction sequence. The CR
fieldis inthe range of 0to 255 and is zero-based; a count
value of 0 represents one transfer, and a count value of
255 represents 256 transfers. The CR field also appears
in the Channel Control Register.

Before a LOADM or STOREM is executed, the CR field
is set by a Move To Special Register. A LOADM or
STOREM uses the most recently written value of the CR
tield. If an attempt is made to alter the CR field and the
Channel Control Register contains information for an
external access that has not yet been completed, the
processor enters the Pipeline Hold mode until the

1-68

Am29000

access is completed. Note that since the CR is set inde-
pendently of the LOADM and STOREM, the CR field
may represent a valid state of an interrupted program
even if the Contents Valid (CV) bit of the Channel
Control Register is 0.

Because of the pipelined implementation of LOADM
and STOREM, at least one instruction (e.g., the instruc-
tion that sets the CR field) must separate two succes-
sive LOADM and/or STOREM instructions.

After the CR field is set, the execution of a LOADM or
STOREM begins the data transfer. As with any other
load or store operation, the LOADM or STOREM waits
until any pending load or store operation is complete
before starting. The LOADM instruction specifies
the starting address and starting destination general-
purpose register. The STOREM instruction specifies the
starting address and the starting source general-
purpose register.

During the execution of the LOADM or STOREM
instruction, the processor updates the address and reg-
ister number after every access, incrementing the
address by 4 and the register number by 1. This contin-
ues until either all accesses are completed or an inter-
rupt or trap is taken.

For a Load Multiple or Store Multiple address sequence,
addresses wrap from the largest possible value (hexa-
decimal FFFFFFFC) to the smallest possible value
(hexadecimal 00000000).

The processor increments absolute register numbers
‘duringthe Load Multiple or Store Multiple sequence. Ab-
solute register numbers wrap from 127 to 128, and from
255 to 128. Thus, a sequence that begins in the global
registers may make a transition to the localregisters, but
a sequence that begins in the local registers remains in
the local registers. Also, note that the local registers are
addressed circularly. :

The normal restrictions on register accesses apply for
the Load Multiple and Store Multiple sequences. For ex-
ample, if a protected general-purpose register is en-
countered in the sequence for a User-mode program, a
Protection Violation trap occurs.

Intermediate addresses are stored in the Channel Ad-
dress Register, and register numbers are stored in the
Target Register (TR) field of the Channel Controt Regis-
ter. For the STOREM instruction, the data for every
access is stored in the Channel Data Register (this
register also is set during the execution of the LOADM
instruction, but has no interpretation in this case). The
CRfield is updated on the completion of every access so
that it indicates the number of accesses remaining inthe
sequence.

Load Multiple and Store Multiple operations are indi-
cated by the Multiple Operation (ML) bit in the Channel

Control Register. This bit may be 1 even though the CR
field has a value of 0 (indicating that one transfer
remains to be performed). The ML bitisusedtorestarta
multiple operation on an interrupt return; if it is set
independently by a Move To Special Register before a
load or store instruction is executed, the results are
unpredictable.

While a multiple load or store is executing, the processor
is in the Pipeline Hold mode, suspending any subse-
quent instruction execution until the multiple access is
completed. if an interrupt or trap is taken, the Channel
Address, Channel Data, and Channel Control registers
contain the state of the multiple access at the point of in-
terruption. The mulliple access may be resumed at this
point, at a later time, by an interrupt return.

The processor attempts to complete multiple accesses
using the burst-mode capability of the channel (see
Burst-Mode Accesses section). For this reason, multiple
accesses of individual bytes and half-words are not sup-
ported. If the burst-mode access is preempted, the pro-
cessor retransmits the address at the point of preemp-
tion. If the external device or memory cannot support
burst-mode accesses, the processor transmits an ad-
dress for every access. If the address sequence causes
a virtual page-boundary crossing, the processor
preempts the burst-mode access, translates the ad-
dress for the new page, and reestablishes the burst-
mode access using the new physical address.

The last load or store is executed as a simple access.
The processor will preempt burst-mode transfer imme-
diately prior to the last word of the transfer.

Option Bits

The Option field in the load and store instructions sup-
ports system functions, such as byte and half-word ac-
cesses. The definition of this field for a load or store, de-
pending on the AS bit of the instruction, is as follows:

AS OPT, OPT, OPT,
X 0

Meaning

Word-length access
Byte access
Half-word access
Instruction ROM
access (as data)
Cache control
ADAPT29K accesses
Reserved

0
0
1
0

co-=o

X 0
X 0
0 1
.

1 N
-all others -

oo
20

O -

Note that some of these encodings do not affect proces-
sor operation, and could have other interpretations in a

~ paricular system. For example, the OPT values 000,

001, and 010 affect processor operation only if the DW
bit of the Configuration Register is 1. However, non-
standard uses of the OPT field have an implication on
the portability of software between different systems.

1-69

29K Family CMOS Devices

Addressing and Alignment
Address Spaces

External instructions and data are contained in one of
four 32-bit address spaces:

1. InstructionvData Memory
2. Input/Output
3. Coprocessor

4. Instruction Read-Only Memory (Instruction
ROM).

An address in the instruction/data memory address
space may be treated as virtual or physical, as deter-
mined by the Current Processor Status Register. Ad-
dress translation for data accesses is enabled sepa-
rately from address translation for instruction accesses.
A program in the Supervisor mode may temporarily dis-
able address translation for individual loads and stores;
this permits load-real and store-real operations.

Itis possible to partition physical instruction and data ad-
dresses into two separate physical address spaces.
However, virtual instruction and data addresses appear
in the same virtual address space (i.e., instruction/data
memory).

The coprocessor address space is not an address
space in the strictest sense. The coprocessor address
space is defined so that transfers of operands and op-
eration codes to the coprocessor do not interfere with
other external devices and memories.

The processor does not directly support the access of
the instruction ROM address space using loads and
stores; this capability is defined as a system option re-
quiring external hardware.)

For untranslated data accesses, bits contained in load
and store instructions distinguish between the instruc-
tionvdata memory, input/output, and coprocessor ad-
dress spaces. For translated data accesses, the Input/
Output bit of the associated TLB entry: distinguishes
between the instruction/data memory and input/output
address spaces.

For instruction fetches, the ROM Enable (RE) bit of the
Current Processor Status Register- distinguishes be-
tweenthe instruction/data and instruction ROM address
spaces.

Byte and Half-Word Addressing

The Am29000 generates word-oriented byte addresses
for accesses to external devices and memories. Ad-
dresses are word-oriented because loads, stores, and
instruction fetches access words. However, addresses
are byte addresses because they are sufficient to select
bytes packed within accessed words. For load and store
operations, the processor provides means for using the
least-significant address bits to access bytes and half-
words within external words.

The selection of a byte within a word is determined by
the two least-significant bits of an address and the Byte
Order (BO) bit of the Configuration Register. The selec-
tion of a half-word within a word is determined by the
next-to-least-significant bit of an address and the BObit.
Figure 51 illustrates the addressing of bytes and half-
words when the BO bit is 0, and Figure 52 illustrates the
addressing of bytes and half-words when the BObitis 1.
In Figure 51 and Figure 52, addresses are represented
in hexadecimal notation.

In the processor, the two least-significant bits of an ex-
ternal address can be reflected in the Byte Pointer (BP)
field of the ALU Status Register when the DW bit of the
Configuration Register is 0. Alternatively, the two least-
significantbits of the address can be used to control byte
and half-word accesses whenthe DW bitis 1. The BO bit
affects only the interpretation of the BP field and the two
least-significant address bits.

If the BO bit is 0, bytes are ordered within words such
that a 00 in the BP field or in the two least-significant ad-
dress bits selects the high-order byte of aword, and a 11
selects the low-order byte. If the BO bitis 1, a 00 in the
BP field or in the two least-significant address bits se-
lects the low-order byte of a word, and a 11 selects the
high-order byte. :

If the BO bit is 0, half-words are ordered within words
such that a 0 in the most-significant bit of the BP field or
the next-to-least-significant address bit selects the high-
order half-word, and a 1 selects the low-order half-word.
If the BO bit is 1, a 0 in the most-significant bit of the BP
field or the next-to-least-significant address bit selects
the low-order half-word of a word, and a 1 selects the
high-order half-word. Note that since the least-signifi-
cant bit of the BP field or an address does not participate
in the selection of half-words, the alignment of half-
words is forced to half-word boundaries in this case.

Alignment of Words and Half-Words

Since only byte addressing is supported, it is possible
that an address for the access of a word or half-word is
not aligned to the desired word or half-word. The
Am29000 either ignores or forces alignment in most
cases. However, some systems may require that un-
aligned accesses be supported for compatibility rea-
sons. Because of this, the Am29000 pravides an option
that creates a trap when a nonaligned access is at-
tempted. This trap allows software emulation of the non-
aligned accesses in a manner that is appropriate for the
particular system.

The detection of unaligned accesses is activated by a 1

~in the Trap Unaligned Access (TU) bit of the Current

Processor Status Register. Unaligned access detection
is based on the data length as indicated by the OPT field
of aload or store instruction, and on the two least-signifi-
cant bits of the specified address. Only addresses for
instruction/data memory accesses are checked; align-

1-70

Am29000

31 23 15 i 7 0
HERREERRREERERRRARRRRRRREEER R

Word 00000000
Half-Word 00000000 Half-Word 00000002

Byte 00000000 Byte 00000001 Byte 00000002 Byte 00000003

RERRRRRRRRRRERRNRREERRRRRER R
Word 00

000004
Half-Word 00000004 Half-Word 00000006

Byte 00000004 Byte 00000005 Byte 00000006 ' Byte 00000007

CErrrrrtrrtrtrrrr i irrreerrtettl

Word FFFFFFF8

Half-Word FFFFFFF8 Half-Word FFFFFFFA
Byte FFFFFFF8 Byte FFFFFFF9 Byte FFFFFFFA Byte FFFFFFFB
NERRRRERREERERERNERERRERRRRRER
Word FFFFFFFC ~
Half-Word FFFFFFFC Half-Word FFFFFFFE
Byte FFFFFFFC Byte FFFFFFFD Byte FFFFFFFE Byte FFFFFFFF

Figure 51. Byte and Half-Word Addressing with BO=0

31

23 : 5 7 0
NEERERREREREAREEEERERR RN

Word 00000000
Half-Word 00000002 i Half-Word 00000000

Byte 00000003 Byte 00000002 Byte 00000001 Byte 00000000

RERRRRRRERRERNANNNEERERRRRRERY

Word 000000
Half-Word 00000006 Half-Word 00000004

Byte 00000007 Byte 00000006 Byte 00000005 Byte 00000004

lll'll‘lllIIVIIIHIII‘HIlll,lllTlll

Word FFFFFFF8

Half-Word FFFFFFFA Hall-Word FFFFFFF8
Byte FFFFFFFB Byte FFFFFFFA Byte FFFFFFFO Byte FFFFFFF8
HEREERRRRERERRRRNERRERREERREEE
Word FFFFFFFC
Half-Word FFFFFFFE Half-Word FFFFFFFC

Byte FFFFFFFF Byte FFFFFFFE Byte FFFFFFFD Byte FFFFFFFC

Figure 52. Byte and Half-Word Addressing with BO = 1

171

29K Family CMOS Devices

ment is ignored for input/output accesses and copro-
cessor transfers.)

An Unaligned Access trap occurs only if the TU bit is 1
and any of the following combinations of OPT field and
address bits is detected for a load or store to instruction/
data memory:

OPT, OPT, OPT, A, A,

0 0 0 1 0 Unaligned

4] 0 0 0 1 word access’

0 0 0 1 1

0 1 0 0 1 Unaligned

0 1 0 1 1 half-wqrd access

The trap handier for the Unaligned Access trap is
responsible for generating the correct sequence of
aligned accesses and performing any necessary shift-
ing, masking and/or merging. Note that a virtual page-
boundary crossing also may have to be considered.

Alignment of Instructions

Inthe Am29000, all instructions are 32 bits inlength, and
are aligned on word-address boundaries. The proces-
sor's Program Counter is 30 bits in length, and the least-
significant 2 bits of processor-generated instruction ad-
dresses are always 00. An unaligned address can be
generated by indirect jumps and calls. However, align-
ment is ignored by the processor in this case, and it ex-
pects the systemto force alignment (i.e., by interpreting
the two least-significant address bits as 00, regardless
of their values). ‘ .

Accessing Instructions as Data

To aid the external access of instructions and data on
separate buses, the processor distinguishes between
instruction and data accesses. However, it does not
support a logical distinction between instruction and
data address spaces (except in the case of instruction
read-only memory). In particular, address translation in
the Memory Management Unit is in no way affected by
this distinction (although memory protection is).

In systems where it is necessary to access instructions
as data, this function should be performed via the
shared address space. The OPT field provides a means
for loads to access instructions in the instruction read-
only memory (ROM) address space. The Am29000
does nottake any actionto prevent a store to the instruc-
tion ROM address space.

Byte and Half-Word Accesses

The Am29000 can performbyte and half-word accesses
in either software or hardware under control of the Data
Width Enable (DW) bit of the Configuration Register.
Software byte and half-word accesses are selected by a
DW bit of 0, and hardware byte and half-word accesses
are selected by a DW bit of 1. Software byte and half-
word accesses are less efficientthan hardware byte and

half-word accesses, but hardware accesses require that
the system be able to selectively write individual byte
and half-word positions within external devices and
memories. The software-only technique is compatible
with systems designed to provide hardware support for
byte and half-word accesses.

This section describes the operation of both software
and hardware byte and half-word accesses. Byte and
half-word accesses operate as described here for mem-
ory and input/output accesses, but not for coprocessor
transfers. Coprocessor transfers are unaffected by.the
DW bit.

The DW bit is cleared by a processor reset. It must ex-
plicitly be set to 1 by software before hardware byte and
half-word accesses can be performed.

Software Byte and Half-Word Accesses

If the DW bit is 0, the Am23000 allows the Byte Pointer
Register to be set with the least-significant bits of an ad--
dress specified by any load or store instruction, except

those that transfer information to and from the coproces-

sor. Insert and extract instructions can then be used to

access the byte or half-word of interest, after the exter-

nal.word has been accessed. This provides a general--
purpose mechanism for manipulating external byte and

half-word data, without the need for external hardware

support.

To load a byte or half-word, a word load is first per-
formed. This load sets the BP field with the two least-
significant bits of the address. A subsequent EXBYTE,
EXHW, or EXHWS instruction extracts the byte or half-
word of interest from the accessed word.

To store a byte or half-word, a load is first performed,
setting the BP field with the two least-significant bits of
the address. A subsequent INBYTE or INHW instruction
insertsthe byte or half-word of interest into the accessed
word, and the resulting word is then stored.

Software that relies on loads and stores setting the BP
tield cannot operate correctly when the Freeze (F2) bit
of the Current Processor Status Register is 1, because
the ALU Status Register is frozen.

Hardware Byte and Half-Word Accesses

If the DW bit is 1 on a load, the Am29000 selects a byte
or half-word from the loaded word depending on the Op-
tion (OPT) bits of the load instruction, the Byte Order
(BO) bit of the Configuration Register, and the two least-
significant bits of the address (for bytes) or the next-to-
least-significant bit of the address (for half-words). The
selected byte or half-word is right-justified within the
destination register. if the SB bit of the load instruction is

- 0, the remainder of the destination register is zero-

extended. if the SB bitis 1, the remainder of the destina-
tion register is sign-extended with the sign bit of the se-
lected byte or half-word.

Ifthe DW bit is 1 on a store, the Am23000 replicates the -
low-order byte or half-word in the source register into

1-72

Am239000

every byte and half-word position of the stored word.
The system is responsible for generating the appropri-
ate byte and/or half-word strobes, based on the OPTz—~
OPTo signals and the two least-significant bits of the ad-
dress, to write the appropriate byte or half-word in the
selected device or memory (the system byte order must
also be considered). The SB bit does not affect the op-
eration of a store, except for setting the BP field as de-
scribed below.

Ifthe SBbitis 1 for either aload or store and the DW bit is
also 1, bothbits of the BP field are set to the complement
of the BO bit when the load or store is executed. This
does not directly affect the load or store access, but
supports compatibility for software developed for word-
write-only systems. Hardware byte and half-word
accesses—in contrast to software byte and half-word
accesses—can be performed when the FZ bit is 1, be-
cause these accesses do not rely on the BP field.

System Alternatives and Compatibility

The two mechanisms for performing byte and half-word -

accesses create the possibility of two types of systems.
These are named for convenience:

B Type 1: simple, word-only accesses in exter-
nal devices and memories; software byte and
half-word accesses.

B Type 2: byte/half-word stroBes in external de-
vices and memories; hardware byte and half-
word accesses by the Am239000.

The provision for hardware byte and half-word accesses
encourages Type 2 systems. Software for Type 1 sys-
tems can execute on Type 2 systems, but the reverse is
not true. Software compatibility is possible primarily be-
cause of the DW bit and because the Am23000 sets the
BP field with an appropriate byte pointer even when it
performs byte and half-word accesses with intemal
hardware. Also, the system must return a full word in
either type of system, regardless of the access data-
width. The DW bit must be 0 in Type 1 systems and must
be 1 in Type 2 systems. To illustrate compatibility be-
tween systems, consider the following steps of an un-
signed byte load compiled for a Type 1 system, but exe-
cuting on a Type 2 system:

1. Perform a load with OPT=001 and SB=1.

B Type 1 system: The addressed word is ac-
cessed and placed into the destination regis-
ter. The BP field is set with the two least-sig-
nificant bits of the address.

B Type 2 system: The addressed byte is ac-
cessed, aligned, padded, and placed into the
destination register. The BP field is set to point
to the low-order byte, reflecting the alignment
thathas been performed (the pointer depends
on the value of the BO bit).)

2. Perform a byte extract on the loaded word.

® Type 1 system: The byte selected by the BP
fieldis aligned to the low-order byte of the des-
tination register and the remainder of the word
is zero-extended. The selected byte may bein
any byte position. '

B Type 2 system: The byte selected by the BP
field (set to point to the low-order byte) is
aligned tothe low-orderbyte of the destination
register and the remainder of the word is zero-
extended. (Note that the selected byte was al-
ready in the low-order byte position. This op-
eration does not change the program state
but merely allows software compatibility.)

The recommended instruction sequences for all types of
byte and half-word accesses and for both types of sys-
tems are enumerated below. Compatibility between
these systems follows the above example, but for brev-
ity, compatibility is not described in detail here.

Byte read, unsigned:

Type1l Comments

load 0,17,temp,addr ; OPT=001, SB=1

exbyte temp,temp,0 ; get byte

Iype2 Comments

load 0,1,temp,addr ; OPT=001,SB=0
Byte read, signed:

Jype1l Comments

. load 0,17,temp,addr ; OPT=001,SB=1

exbyte temp,temp,0 ; get byte

sl temp,temp,24 ; sign extend

sra temp,temp,24

Type 2 Comments

load 0,17,temp,addr ; OPT=001, SB=1

(sign extended)

Byte Write:

Type1 Comments

load 0,17,temp,addr ; OPT=001, SB=1

inbyte temp,temp, ;insert byte

data

store 0,1,temp,addr ; store

Type 2 Comments

store 0,1,data,addr ; OPT=001,SB=0

1-73

29K Family CMOS Devices

Half-word read, unsigned: Half-word write:
Type 1 Comments Type 1 Comments
load 0,18,temp,addr ; OPT=010, SB=1 load 0,18,temp,addr ; OPT=010,SB=1
exhw temp,lemp,0 ; get half-word un- inhw temptemp,data ; insert half-word
signed store 0,2,temp,addr ; store
Type2 Comments Type 2 Comments
load 0,2temp,addr ;OPT=010,SB=0 store 0,2,data,addr. ; OPT=010,SB=0

Half-word read, signed:

Type 1 Comments

load 0,18,temp,addr ; OPT=010, SB=1

exhws temp,temp ; get half-word sign-
extend

Type 2 Comments

load 0,18,temp,addr ; OPT=010,SB=1,
(sign-extend)

174

Am23000

INTERRUPTS AND TRAPS

Interrupts and traps cause the Am29000 to suspend the
execution of an instruction sequence and to begin the
execution of a new sequence. The processor may or
may not later resume the execution of the original in-
struction sequence.

The distinction between interrupts and traps is largely
one of causation and enabling. Interrupts allow external
devices and the Timer Facility to control processor exe-
cution, and are always asynchronous to program execu-
tion. Traps are intended to be used for certain excep-
tional events that occur during instruction execution,
and are generally synchronous to program execution.

Throughout this manual, a distinction is made between
the point at which an interrupt or trap occurs and the
point at which it is taken. An interrupt or trap is said to
occurwhen all conditions that define the interrupt or trap
are met. However, an interrupt or trap that occurs is not
necessarily recognized by the processor, either be-
cause of various enables or because of the processor’s
operational mode (e.g., Halt mode). An interrupt or trap
is taken when the processor recognizes the interrupt or
trap and alters its behavior accordingly.

Interrupts

Interrupts are caused by signals applied to any of the ex-
ternal inputs INTRa-INTR, or by the Timer Facility. The
processor may be disabled from taking certain inter-
rupts by the masking capability provided by the Disable
All Interrupts and Traps (DA) bit, Disable Interrupts (Dl)
bit, and Interrupt Mask (IM) field in the Current Proces-
sor Status Register.

The DA bit disables all interrupts and most traps. The Di
bit disables external interrupts without affecting the rec-
ognition of traps and Timer interrupts. The 2-bit IM field
selectively enables external interrupts as follows:

IM Value Result
00 INTR, enabled
01 INTR,~INTR, enabled
10 INTR,-INTR, enabled
11 INTR,~INTR, enabled

Note that the INTRo interrupt cannot be disabled by the
IM field. Also, note that no external interrupt is taken if
either the DA or Dl bit is 1. The Interrupt Pending bit in
the Current Processor Status indicates that one or more
of the signals INTR=—INTR is active, but that the corre-
sponding interrupt is disabled due to the value of either
DA, DI, or IM.

Traps

Traps are caused by signals applied to one of the inputs
TRAP—TRAPo, or by exceptional conditions such as
protection violations. Except for the Instruction Access
Exception, Data Access Exception, and Coprocessor
Exception traps, traps are disabled by the DA bit in the

Current Processor Status; a 1 in the DA bit disables
traps, and a 0 enables traps. It is not possible to selec-
tively disable individual traps.

Wait Mode

A wait-for-interrupt capability is provided by the Wait
mode. The processor is in the Wait mode whenever
the Wait Mode (WM) bit of the Current Processor Status
is 1. While in Wait mode, the processor neither fetches
nor executes: instructions and performs no external
accesses. The Wait mode is exited when an interrupt or
trap is taken.

Note that the processor can take only those interrupts or
traps for which it is enabled, even in the Wait mode. For
example, if the processor is in the Wait mode with a DA
bit of 1, it can leave the Wait mode only via the Reset
mode or a WARN trap.

Vector Area

Interrupt and trap processing rely on the existence of a
user-managed Vector Area in external instruction/data
memory or instruction read-only memory (instruction
ROM). The Vector Area begins at an address specified
by the Vector Area Base Address Register, and pro-
vides foras many as 256 differentinterrupt and trap han-
dling routines. The processor reserves 24 routines for
system operation and 40 routines for instruction emula-
tion. The number and definition of the remaining 192
possible routines are system-dependent.

The Vector Area has one of two possible structures as

determined by the Vector Fetch (VF) bit in the Configu-
ration Register. The first structure, as described below,

requires less external memory than the second, but

imposes the performance penalty of the vector-table

lookup.

If the VF bitis 1, the structure of the Vector Areais ata-
ble of vectors in instruction/data memory. The layout of
a single vector is shown in Figure 53. Each vector gives
the beginning word-address of the associated interrupt
or trap handling routine, and specifies, by the R bit,
whether the routine is contained in instruction/data
memory (R = 0) or.instruction ROM (R = 1).

Ifthe VF bitis 0, the structure of the Vector Areais a seg-
ment of contiguous blocks of instructions in instruction/
data memory orinstruction ROM. The ROM Vector Area
(RV) bit of the Configuration Register determines
whether the Vector Area is in instruction/data memory -
(RV = 0) or instruction ROM (RV = 1). A 64-instruction
block contains exactly one interrupt or trap handling rou-
tine, and blocks are aligned on 64-instruction address
boundaries.

Vector Numbers

When an interrupt or trap is taken, the processor deter-
mines an 8-bit vector number associated with the inter-
rupt or trap. The vector number gives either the number

1-75

29K Family CMOS Devices

31 23 15 7
HERRRRRERRRRRRRRRRERRRRR R

Handler Starting Address Al

Figure 53. Vector Table Entry

of a vector table entry or the number of an instruction
block, depending on the value of the VF bit.

If the VF bit is 1, the physical address of the vector table
entry is generated by replacing bits 9-2 of the value in
the Vector Area Base Address Register with the vector
number.

If the VF bit is 0, the physical address of the first instruc-
tion of the handling routine is generated by replacing bits
15-8 of the value in the Veclor Table Base Address
Register with the vector number.

Vector numbers are either predefined or speciﬁed by an
instruction causing the trap. The assignment of vector
numbers is shown in Figure 54 (vector numbers are in
decimal notation). Vector numbers 64 to 255 are foruse
by trapping instructions; the definition of the routines as-
sociated with these numbers is system-dependent.

lnterruptk and Trép Handling

Interrupt and trap handling consists of two distinct op-
erations: taking the interrupt or trap, and returning from
the interrupt or trap handler. If the ‘interrupt or trap
handler retumns directly to the interrupted routine, the
interrupt or trap handler need not save and restore
processor state.

Taking an Interrupt or Trap :
~ The following operations are performed in sequence by
the processor when an interrupt or trap is taken:
1. Instruction execution is suspended.
k 2. Instruction fetching is suspended.

3. Any in-progress load or store operation is com-
pleted. Any additional operations are canceled
in the case of Load Multiple and Store Multiple.

4. The contents of the Current Processor Status
Register are copied into the Old Processor
Status Register.

5. The Current Processor Status register is modi-

fied as shown in Figure 55 (the value “u” means
unaffected). Note that setting the Freeze (FZ) bit
freezes the Channel Address, Channel Data,
Channel Control, Program Counter 0, Program
Counter 1, Program Counter 2, and ALU Status
Registers.

6. The address of the first instruction of the inter-
rupt ortrap handler is determined. If the VF bit of

the Configuration Register is 1, the address is
obtained by accessing a vector from instruction/
data memory, using the physical address ob-
tained from the Vector Area Base Address Reg-
ister and the vector number. This access ap-
pears on the channel as a data access, and the
OPT>-OPTo signals indicate a word-length ac-
cess. Ifthe VF bit is 0, the instruction address is
given directly by the Vector Area Base Address
Register and the vector number.

7. lfthe VF bitis 1, the R bit in the vector fetched in
Step 6 is copied into the RE bit of the Current
Processor Status Register. If the VF bit is 0, the
RV bit of the Configuration Register is copied
into the RE bit. This step determines whether or
not the first instruction of the interrupt handler is
in instruction ROM.

8. Aninstruction fetch is initiated using the instruc-
tion address determined in Step 6. At this point,
normal instruction execution resumes.

Note that the processor does not explicitly save the con-
tents of any registers when an interrupt is taken. If regis-
ter saving is required, it is the responsibility of the inter-
rupt or trap-handling routine. For proper operation, reg-
isters must be saved before any further interrupts or
traps may be taken. The FZ bit must be reset atieasttwo
instructions before interrupts or traps are reenabled to
allow the program state to be reflected properly in pro-
cessor registers if an interrupt or trap is taken.

_ Returning from an Interrupt or Trap

Two instructions are used to resume the execution of an
interrupted program: Interrupt Return (IRET), and Inter-
rupt Return and Invalidate (IRETINV). These instruc-
tions are identical except in one respect: the IRETINV
instruction resets all Valid bits in the Branch Target
Cache, whereas the IRET instruction does not affect the

, Valid bits.

In some situations, the processor state must be set
properly by software before the interrupt return is exe-
cuted. The following is a list of operatvons normally per-
formed in such cases:

1. The Current Processor Status is configured as
shown in Figure 55 (the value “x" is a “don’t
fcare") Note that setting the FZ bit freezes the
registers listed below so that they may be set for
the interrupt return.

1-76

-Am29000

Number Type of Trap or Interrupt Cause
0 lllegal Opcode executing undefined instruction
1 Unaligned Access access on unnatural boundary, TU=1
2 Out of Range overflow or underflow
3 Coprocessor Not Present coprocessor access, CP =0
4 Coprocessor Exception coprocessor DERR response
5 Protection Violation invalid User-mode operation
6 Instruction Access Exception TERR response
7 Data Access Exception DERR response, not coprocessor
8 User-Mode Instruction TLB Miss no TLB entry for translation
9 User-Mode Data TLB Miss ” -
10 Supervisor-Mode Instruction TLB Miss ”
1 Supervisor-Mode Data TLB Miss ”
12 Instruction TLB Protection Violation TLB UE/SE=0
13 Data TLB Protection Violation TLB UR/SR =0, UW/SW =0 on write
14 Timer Timer Facility
15 Trace Trace Facility
16 NTR, INTR, input
17 INTR, INTR, input
18 INTR INTR, input
19 INTR, INTR, input
20 TRAP, TRAP, input
21 TRAP, TRAP, input
22 Floating-Point Exception unmasked floating-point exception
23 reserved
24-29 reserved for instruction emulation
(op codes D8-DD)
30 MULTM MULTM instruction
31 MULTMU MULTMU instruction
32 MULTIPLY MULTIPLY instruction-
33 DIVIDE DIVIDE instruction
34 MULTIPLU MULTIPLU instruction
35 DIVIDU DIVIDU instruction
36 CONVERT CONVERT instruction
37 SQRT SQRT instruction
38 CLASS ‘ CLASS instruction
39-41 reserved for instruction emulation
(op codes E7-E9)
42 FEQ FEQ instruction
43 DEQ DEQ instruction
a4 FGT FGT instruction
45 DGT DGT instruction
46 FGE FGE instruction
47 DGE DGE instruction
48 FADD FADD instruction
49 DADD DADD instruction
50 FSUB FSUB instruction
51 DSuUB DSUB instruction
52 FMUL FMUL instruction
53 DMUL - DMUL instruction
54 FDIV FDIV instruction
55 DDIV : DDIV instruction
56 _reserved for instruction emulation -
(op code F8)
57 FDMUL FDMUL instruction
58-63 reserved for instruction' emulation
(op codes FA-FF)
64-255 Assert and EMULATE instruction traps

(vector number specified by instruction)

Figure 54. Vector Number Asslgnhents

29K Family CMOS Devices

31 23 7 0
BERRRRRRRRERRERR l
000000000000000O0O ofoftjofufoft{tfi]u ult |4
Reserved SRR N S A
o :TP:Fz:REEPD:SM IM ' DA
] 1
CA TE-TU LK WM PI DI

Figure 55. Current Processor Status after an Interrupt or Trap

2. The Old Processor Status is set to the value of
the Current Processor Status for the target
routine.

3. The Channel Address, Channel Data, and
Channel Control registers are setto restart orre-
sume uncompleted channel operations of the
target routine.

4. The Program Counter 1 and Program Counter 0
registers are set to the addresses of the first and
second instructions, respectively, to be exe-
cuted in the target routine.

6. Other registers are set as required. These may
include registers such as the ALU Status, Q, and
so forth, depending on the particular situation.
Some of these registers are unaffected by the
FZ bit, so they must be setin such a manner that
they are not modified unintentionally before the
interrupt return.

Once the processor registers are configured properly,
as described above, an interrupt return instruction
(IRET or IRETINV) performs the remaining steps neces-
sary to return to the target routine. The following opera-
tions are performed by the interrupt return instruction:

1. Any.in-progress load or store operation is com-
pleted. If a Load Multiple or Store Multiple se-
quence is in progress, the interrupt return is not
executed until the sequence is completed.

2. Interrupts and traps are disabled, regardiess of
the settings of the DA, DI, and IM fields of the

' Current Processor Status, for Steps 3 through

10.

. If the interrupt return instruction is an IRETINV,

all Valid bits in the Branch Target Cache are
reset.

.~ The contents of the Old Processor Status Regis-

ter are copied into the Current Processor Status
Register. This normally resets the FZ bit allow-
ing the Program Counter 0, 1, 2, Channel Ad-
dress, Data, Control, and ALU Status registers
to update normally. Since certain bits of the Cur-
rent Processor Status Register always are up-
dated by the processor, this copy operation may
be irrelevant for certain bits (e.g., the Interrupt
Pending bit).

. If the Contents Valid (CV) bit of the Channel

Control Register is 1, and the Not Needed (NN)
and Multiple Operation (ML) bits are both 0, an
external access is started. This operation is
based on the contents of the Channel Address,
Channel Data, and Channe! Control registers.
The Current Processor Status Register condi-
tions the access—as is normally the case. Note
that Load Multiple and Store Multiple operauons
are not restarted at this point.

. The address in Program Counter 1 is used to

fetch an instruction. The Current Processor
Status Register conditions the fetch. This stepis
treated as a branch inthe sense thatthe proces-

31 23 7 ~ 0
HERERRRERERRERER ; |
00000000000 00000 1o ppxex |if1
N Ry RENERENEEEEEE
Reserved :: :E:E:E:::: .
P TP: FZI REIPDISM IM | DA
CA TE TU LK WM P DI

Figure 56. Current Processor Status Before Interrupt Return

1-78

Am29000

sor searches the Branch Target Cache for the
target of the fetch.

7. The instruction fetched in Step 6 enters the de-
code stage of the pipeline.

8. The address in Program Counter 0 is used to
fetch an instruction. The Current Processor
Status Register conditions the fetch. This step is
treated as abranch in the sense thatthe proces-
sor searches the Branch Target Cache for the
target of the fetch.

9. The instruction fetched in Step 6 enters the exe-
cute stage of the pipeline, and the instruction
fetched in Step 8 enters the decode stage.

10. lf the CV bit inthe Channel Control Register is a
1, the NN bit is 0, and the ML bitis 1, a Load Mul-
tiple or Store Mulliple sequence is started,
based on the contents of the Channel Address,
Channel Data, and Channel Control registers.

11. Interrupts and traps are enabled per the ap-
propriate bits in the Current Processor Status
Register.

* 12. The processor resumes normal operation.

Fast Interrupt Processing

The registers affected by the FZ bit of the Current Pro-
cessor Status Register are those that are modified by al-
most any usual sequence of instructions. Since the FZ

- bitis set by aninterrupt or trap, the interrupt or trap han-
dler is able to execute while not disturbing the state of
the interrupted routine, though its execution is some-
what restricted. Thus, it is not necessary in many cases
for the interrupt or trap handler to save the registers that
are affected by the FZ bit. .

The processor provides an additional benefit if the Pro-
gram Counter 0 and Program Counter 1 registers are
not modified by the interrupt or trap handler. If Program
Counters 0 and 1 containthe addresses of sequentialin-
structions when an interrupt or trap is taken, and if they
are not modified before an interrupt retum is executed,
Step 8 of the interrupt return sequence above occurs as
a sequential fetch—instead of a branch—or the inter-
rupt return. The performance impact of a sequential
fetchis normally less than that of a nonsequentiat fetch.

Because the registers affected by the FZ bit are some-
times required for instruction execution, itis not possible
for the interrupt or trap handler to execute all instruc-
tions unless the required registers are first saved else-
where (e.g., in one or more global registers). Most of the
~ restrictions due to register dependencies are obvious
(e.g., the Byte Pointer for byte extracts), and will not be
discussed here. Other less obvious restrictions are
listed below:

1. Load Multiple and Store Multiple. The Channel
Address, Channel Data, and Channel Control
registers are used to sequence Load Multiple

and Store Multiple operations, so these instruc-
tions cannot be executed while the registers are
frozen. However, note that other external
accesses may occur; the Channel Address,
Channel Data, and Channel Control registers
are required only to restart an access after an
exception, andthe interrupt or trap handler is not
expected to encounter any exceptions.

2. Loads and stores that set the Byte Pointer. If the
Set Byte Pointer (SB) of a load or store instruc-
tionis 1 and the FZ bitis also 1, there is no effect
on the Byte Pointer. Thus, the execution of ex-
ternal byte and half-word accesses using this
mechanism is not possible.

3. Extended arithmetic. The Carmry bit of the ALU
Status Register is not updated while the FZ bit
is 1.

4. Divide step instructions. The Divide Flag of the
ALU Status Registeris notupdatedwhenthe FZ
bit is 1.

If the interrupt or trap handler does not save the state of
the interrupted routine, it cannot allow additional inter-
rupts and traps. Also, the operation of the interrupt or
trap handler cannot depend on any trapping instruc-
tions (e.g., Floating-Point instructions, illegal operation
codes, arithmetic overflow, etc.) since these are dis-
abled. There are certain cases, however, where traps
are unavoidable; these are discussed in the Arithmetic
Exceptions section. :

WARN Trap

The processor recognizes a special trap, caused by the
activation of the WARN input, that cannot be masked.
The WARN trap is intended to be used for severe sys-

" tem-error or deadlock conditions. It allows the processor

to be placed in a known, operable state, while preserv-
ing much of its original state for error reporting and pos-
sible recovery. Therefore, it shares some features in
common with the Reset mode as well as features com-
mon to other traps described in this section.

The major differences between the WARN trap and
other traps are:

1. The processor does not wait for an in-progress
external access to be completed before taking
the trap, since this access might not be com-
pleted. However, the information related to any
outstanding access is retained by the Channel
Address, Channel Data, and Channel Control
registers when the trap is taken.

2. The vector-fetch operation is not performed, re-
“gardless of the VF bit of the Configuration Regis-
ter, when the WARN trap is taken. Instead, the
ROM Enable (RE) bit in the Current Processor
Status is set, and instruction fetching begins im-
mediately at Address 16 in the instruction ROM.

1-79

29K Family CMOS Devices

The trap handler executes directly from the in-
struction ROM without the need to access
external (and possibly nonfunctional or invalid)
instruction/data memory.

Note that WARN trap may disrupt the state of the routine
that is executing when itis taken, prohibiting this routine
from being restarted.

Sequencing of interrupts and Traps

On every cycle, the processor decides eitherto execute
instructions or to take an interrupt or trap. Since there
are multiple sources of interrupts and traps, more than
one interrupt or trap may be pending on a given cycle.

To resolve conflicts, interrupts and traps are taken ac-
cording to the priority shown in Figure 57. In this table,
interrupts and traps are listed in order of decreasing pri-
ority. This section discusses the first three columns of
Figure 57. The last two columns are discussed in the
Exception Reporting and Restarting section.

In Figure 57, interrupts and traps fall into one of two
categories depending on the timing of their occurrence
relative to instruction execution. These categories are
indicated in the third column by the labels “inst” and
“async.” These labels have the following meanings: -

1. Inst—Generated by the execution or attempted
execution of an instruction.

2. Async—Generated asynchronous to and inde-
pendent of the instruction being executed, al-
though it may be a result of an lnstructlon exe-
cuted previously.

The principle forinterrupt andtrap sequencing isthatthe
highest priority interrupt or trap is taken first.. Other
interrupts and traps remain active until they can be
taken, or are regenerated when they can be taken. This
is accomplished, depending on the type of interrupt or
trap, as follows:

1. Alltraps in Figure 57 with Priority 13 or 14 are re-
generated by the re-execution of the causing in-
struction.

2. Most of the interrupts and traps of Priorities 4
through 12 must be held by external hardware
_until they are taken. The exceptions to this are
listed in (3) below.

3. Theexceptions to (2) above are the Data Access
Exception trap, the Coprocessor Exception trap,
the Timer interrupt, and the Trace trap. These

-are caused by bits in various registers in the
processor and are held by these registers until
taken or cleared. The relevant bits ‘are: the
Transaction Fauited (TF) bit of the Channel Con-
trol Register for Data Access Exception and
. Coprocessor Exception traps, the Interrupt (IN)
~ bit-of the Timer Reload Register for Timer inter-

rupts, and the Trace Pending (TP) bit of the Cur-
rent Processor Status Register for Trace traps.

4. Alitraps of Priorities 2 and 3 in Figure 57, except
for the Unaligned Access trap, are not regener-
ated. These traps are mutually exclusive and are
given high priority because they cannot be re-
generated; they must be taken if they occur. If
one of these traps occurs at the same time as a
reset or WARN trap, it is not taken, and its occur-
rence is lost.

5. The Unaligned Access trap is regenerated inter-
nally when an external access is restarted by the
Channel Address, Channel Data, and Channel
Control registers. Note that this trap is not nec-
essarily exclusive to the traps discussed in (4)
above.

Note that the Channel Address, Channel Data, and
Channel Control registers are set fora WARN trap only if
an external access is in progress whenthe trapis taken.

Exception Reporting and Restarting

When an instruction encounters an exceptional condi-
tion, the Program Counter 0, Program Counter 1, and
Program Counter 2 registers report the relevant instruc-
tion address(es), and allow the instruction sequence to
be restarted once the exceptional condition has been
remedied (if possible). Similarly, when an external ac-
cess or coprocessor transfer encounters an exceptional
condition, the Channel Address, Channel Data, and

-Channel Control registers report information on the ac-

cess ortransfer, and allow it to be restarted. This section
describes the interpretation and use of these registers.

The “PC1” column in Figure 57 describes the value held
inthe Program Counter 1 Register (PC1) whenthe inter-
rupt ortrap is taken. For traps in the “inst” category, PC1
contains either the address of the instruction causing
the trap, indicated by “curr,” or the address of the in-
struction following the instruction causing the trap, indi-
cated by “next.”

For interrupts and traps in the “async” category, PC1
contains the address of the first instruction, which was
not executed due to the taking of the interrupt or trap.
This is the next instruction to be executed uponinterrupt
return, as indicated by “next” in the PC1 column.

Inslruction Exceptions

Fortraps caused by the execution of an instruction (e.g.,
the Out of Range trap), the Program Counter 2 Register
contains the address of the instruction causing the trap.
In all of these cases, PC1 is in the “next” category. The
Exception Opcode Register contains the operation code
of the instruction causing the trap.

The traps associated with instructionfetches (i.e., those
of Priority 13) occur only if the processor attempts the
execution of the associated instruction. An exception

Am29000

Prlority Type Of Interrupt Or Trap Inst/Async PC1 | Channel Regs
1 WARN async next see Note 1
(highest)
User-Mode Data TLB Miss inst next all
2 Supervisor-Mode Data TLB Miss inst next all
Data TLB Protection Violation inst next all
Unaligned Access inst next all
Coprocessor not Present inst next all
Out of Range inst next N/A
Floating-Point Exceptions inst next N/A
Assert Instructions inst next N/A
Floating-Point Instructions inst next N/A
3 MULTIPLY inst next N/A
MULTM inst next N/A
DIVIDE inst next N/A
MULTIPLU inst next N/A
MULTMU inst next N/A
DIVIDU inst next N/A
EMULATE inst next N/A.
4 Data Access Exception async next all
Coprocessor Exception async next all
5 TRAP, async next multiple
6 TRAP, async next multiple
7 INTR, async next multiple
8 INTR, async next multiple
9 INTR, async next multiple
10 INTR, async next multiple
" Timer async next multiple
12 Trace async next muitiple
User-Mode Instruction TLB Miss inst curr N/A
13 Supervisor-Mode Instr. TLB Miss inst curr N/A
Instruction TLB Protection Violation inst curr N/A
Instruction Access Violation - inst curr N/A
14 lilegal Opcode inst curr N/A
(lowest) Protection Violation inst curr N/A

Note: The Channel Address, Channel Data, and Channel Control registers are set for a WARN trap
only if an external access is in progress when the trap is taken.

Figure 57. Interrupt and Trap Priority Table

may be detected during an instruction prefetch, but the
associated trap does not occur if a nonsequential fetch
occurs before the processor attempts the execution of
the invalid instruction. This prevents the spurious indica-
tion of instruction exceptions.

Data Exceptions

The “Channel Regs” column of Figure 57 indicates the
cases for which the Channel Address, Channel Data,
and Channel Control registers contain information re-

1-81

29K Family CMOS Devices

lated to an external access or coprocessor transfer
(these registers collectively are termed “channel regis-
ters” in the following discussion). For the cases indi-
cated, the access or transfer was not completed be-
cause of some exceptional condition. Note that the
Channel Data Register contains relevant information
only in the case of a store.

Forthe WARN trap, the channelregisters are valid only if
a load or store were in progress when the trap was
taken. Recall that the WARN trap does not wait for any
in-progress access to be completed.

For the traps with an “all” in the “Channel Regs” column
of Figure 57, the channel registers contain information
relevant to the trap in all cases. These traps are associ-
ated with exceptional events during external accesses
or coprocessor transfers.

For the traps with a “multiple” in the “Channel Regs” col-
umn, the channel registers might contain information for
restarting an interrupted Load Multiple or Store Multiple
operation. Inthese cases, the operation did not encoun-
ter an exception, but was simply canceled for latency
considerations.

The information contained in the channel registers al-
lows the processor to restart the related operation dur-
ing aninterrupt return sequence, without any special as-
sistance by software. Software must only ensure that
the relevant information is retained in, or restored to, the
channelregisters before aninterrupt returnis executed.

Arithmetic Exceptions

Integer and floating-point instructions can cause Out of
Range or Floating-Point Exceptiontraps, respectively, if
an exception is detected during the arithmetic operation.
This section describes the conditions under which these
traps occur and the additional operations performed be-
yondthose described in the Interrupt and Trap Handling
section. ‘

Integer Exceptions

Some integer add and subtract instructions—ADDS,
ADDU, ADDCS, ADDCU, SUBS, SUBU, SUBCS,
SUBCU, SUBRS, SUBRU, SUBRCS, and SUBRCU—
cause an Out of Range trap upon overflow or underflow
of a 32-bit signed or unsigned result, depending on the
instruction.

Two integer multiply instructions—MULTIPLY and '

'MULTIPLU—cause an Out of Range trap upon overflow

of a 32-bit signed or unsigned result, respectively, if the
MO bit of the Integer Environment Register is 0. If the
MO bit is 1, these multiply instructions cannot cause an
Out of Range trap.

Two integer divide instructions—DIVIDE and DIVIDU-—
take the Out of Range trap upon overflow of a 32-bit
signed or unsigned result, respectively, if the DO bit of
the Integer Environment Register is 0. If the DO bit is 1,
the divide instructions cannot cause an Out of Range

trap unless the divisor is 0. If the divisor is 0, an Out of
Range trap always occurs, regardless of the DO bit.

In addition to the operations described in the Interrupt
and Trap Handling section, the following operations are
performed when an Out of Range trap is taken:

1. Theoperationcode of the instruction causing the
exceptionis placed in the IOP field of the Excep-
tion Opcode Register.

2. For the MULTIPLY, MULTIPLU, DIVIDE, and
DIVIDU instructions, the absolute register num-
bers of the excepting instruction’s source and
destination registers are placed into the Indirect
Pointer A, Indirect Pointer B, and Indirect Pointer
C registers.

3. For the MULTIPLY, MULTIPLU, DIVIDE, and
DIVIDU instructions, the destination register or
registers are unchanged.

Floating-Polnt Exceptions

A Floating-Point Exception trap occurs when an excep-
tion is detected during a floating-point operation, and the
exception is not masked by the corresponding bit of the
Floating-Point Mask Register. Inthis context, a floating-
point operation is defined as any operation that accepts
a floating-point number as a source operand, that pro-
duces afloating-point result, orboth. Thus, for example,
the CONVERT instruction may create an exception
while attempting to convert a floating-point value to an
integer value.

In addition to the operations described in the Interrupt
and Trap Handling section, the following operations are
performed when a Floating-Point Exception trap is
taken:)

1. Theoperationcode of the instruction causing the
exception is placed in the IOP field of the Excep-
tion Opcode Register.

2. The status of the trapping operation is written
into the trap status bits of the Floating-Point
Status Register. The status bits that are written
do not depend on the values of the correspond-
ing mask bits in the Floating-Point Environment
Register.

3. The absolute register numbers of the excepting
instruction’s source and destination registers
are placed into the Indirect Pointer A, Indirect
Pointer B, and Indirect Pointer C registers. If the
RB or RC fields specify a function code, that
code is transferred to the corresponding indirect
pointer. Note that if the most-significant bit of the
this function code is 1, the value of the Stack

1-82

Am23000

Pointer has been added to the RB field and must
be subtracted to recover the original field.

4. The destination register or registers are left un-
changed.

Exceptions During Interrupt
and Trap Handling

In most cases, interrupt and trap handling routines are
executed withthe DA bitin the Current Processor Status
having a value of 1. Itis assumed that these routines do
not create many of the exceptions possible in most other
processor routines, so most of these are ignored.

If the assumption of no exceptions is not valid for a par-
ticular interrupt or trap handler, it is important that the
handler save the state of the processor and reset the FZ
bit of the Current Processor Status, so that the handler
itself may be restarted properly. This must be accom-
plished before any interrupts or traps can be taken. In
this case, the state (or the state of some other process)
must be restored before an interrupt return is executed.

Itis possible that errors reported via the IERR and DERR
signals are associated with hardware errors, indepen-
dent of any routine being executed. For this reason, the
Instruction Access Exception, Data Access Exception,
and Coprocessor Exception traps cannot be disabled by
the DA bit, and the processor may take one of these
traps even while handling another interrupt or trap.

It the processor does take an unmaskable trap while
handling another interrupt or trap, and the state of the
interrupt or trap handler is not reflected in processor reg-
isters, it is not possible o return to the point at which the
unmaskable trap is taken. When the unmaskable trap is
taken, the processor state saved isthat state associated
with the original interrupt or trap, not with the unmask-
able trap; however, the Old Processor Status Registeris
modified to reflect the Current Processor Status Regis-
ter of the interrupt or trap handler. This situation, indi-
cated by the DA bit being 1 in the Old Processor Status
Register, may not be recoverable.

1-83

29K Family CMOS Devices

MEMORY MANAGEMENT

The Am29000 incorporates a Memory Management
Unit (MMU) for performing virtual-to-physical address
translation and memory access protection. This section
describes the logical operation of the Memory Manage-
ment Unit.

Address translation can be performed only for instruc-
tion/data memory accesses. No address translation is
performed for instruction ROM, input/output, coproces-
sor, or interrupt/trap vector accesses. However, an in-
structiorn/data memory access can be redirected to in-
put/output by the address-transiation process.

Translation Look-Aside Buffer

The MMU stores the most recently performed address
translations in a special cache, the Translation Look-
Aside Buffer (TLB). All virtual addresses generated by
the processor are translated by the TLB. Given a virtual
address, the TLB determines the corresponding physi-
cal address.

The TLB reflects information in the processor system
page tables, except that it specifies the translation for
many fewer pages; this restriction allows the TLB to be

incorporated on the processor chip where the per-
formance of address translation is maximized.

Adiagramofthe TLBis shownin Figure 58. The TLBis a
table of 64 entries, divided into two equal sets, called Set
0 and Set 1. Within each set, entries are numbered 0 to
31. Entries in different sets that have equivalent entry
numbers are grouped into a unit called a line; there are
thus 32 lines in the TLB, numbered O to 31.

Each TLB entry is 64 bits long and contains mapping
and protection information for a single virtual page. TLB
entries may be inspected and modified by processor in-
structions executed in the Supervisor mode. The layout
of TLB entries is described in the Register Description
section.

The TLB stores information about the ownership of the
TLB entries in an 8-bit Task Identifier (TID) field in each
entry. This makes it possible for the TLB to be shared by
several independent processes without the need for in-
validation of the entire TLB as processes are activated.
It also increases system performance by permitting
processes to warm-start (i.e., {o start execution on the

Entry TLB Set0
#

Line 0 0
Line 1 1
Line 2 2
Line 3 3
Line 4 4

] L] L]

. . .

. L] (]
Line 31 31

‘ 64 bits .

Entry TLB Set 1
#
0
1
2
3
4
L] L]
L] .
L] .
31
‘ 64 bits ’

Figure 58. Translation Look-Aside Buffer Organization

1-84

Am29000

processor with a certain number of TLB entries remain-
ing in the TLB from a previous execution).

Each TLB entry contains a Usage bit to assist manage-
ment of the TLB entries. The Usage bit indicates which
set of the entry within a given line was least recently
used to perform an address translation. Usage bits for
two entries in the same line are equivalent.

The TLB contains other fields, described in the following
sections.

Address Translation

For the purpose of address translation, the virtual
instruction/data address space of a process is parti-
tioned into regions of fixed size, called pages. Pages are
mapped by the address-translation process into equiva-
lent-sized regions of physical memory, called page
frames. All accesses to instructions or data contained
within a given page use the same virtual-to-physical
address translation.

Virtual addresses are partitioned into three fields for the
address-transiation process, as shown in Figure 59.
The partitioning of the virtual address is based on the
page size. Page sizes may be of 1, 2, 4, or 8 kb, as
specified by the MMU Configuration Register. The tields
shown in Figure 59 are described in the following
discussion. '

Address Translation Controls

The processor attempts to perform address translation
for the following external accesses:

1. Instruction accesses, if the Physical Addressing/
Instructions (P1) -and ROM Enable (RE) bits of

the Current Processor Status are both 0.

User-mode accesses to instruction/data mem-
ory if the Physical Addressing/Data (PD) bit of
the Current Processor Status is 0.

Supervisor-mode accesses to instruction/data
memory if the Physical Address (PA) bit of the
load or store instruction performing the access is
0, and the PD bit of the Current Processor Status
is 0.

Address translation also is controlled by the MMU Con-
figuration Register. This register specifies the virtual
page size and contains an 8-bit Process Identifier (PID)-
field. The PID field specifies the process number associ-
ated with the currently running program, if this is a User-
mode program. Supervisor-mode programs are as-
signed a fixed process number of 0. The process num-
ber is compared with Task Identifier (TID) fields of the
TLB entries during address translation. The TID field of
a TLB entry must match the process number for the
“translation to be valid.

1-kb Page Size:
31 23 18 7 0
EERERBARERREREENEA VS NERERRERER
Virtual Tag Comparison Select Page Offset
2-kb PageSnze
31 15 7 o
IIIIIIIIIIIIIII'TLLL,!,,G'IIIIII]II
Virtual Tag Comparison Select Page Offset
4kb Page Size: -
15 7 0
TTTTTTTTTTTTT TITTTTTTTTTTT7T]
Virtual Tag Compatison Select Page Offset
8-kb Page Size:
31 23 15 g 7) 0
BERRRARERRERENEY AR EARERRRRRERR
Virtual Tag Comparison Select Page Offset

Figure 59. Virtual Address for 1-, 2-, 4-, and 8-kb Pages

1-85

29K Family CMOS Devices

Address Translation Process

The address-translation process is diagrammed in
Figure 60. Address translation is performed by the fol-
lowing fields in the TLB entry: the Virtual Tag (VTAG),
the Task Identifier (TID), the Valid Entry (VE) bit, the
Real Page Number (RPN) field, and the Input/Output
(10) bit. To perform an address translation, the proces-
sor accesses the TLB line whose number is given by
certain bits in the virtual address. The bits used depend
on the page size as follows:

Virtual Address Bits

Page Size (for Line Access)
1kb 14-10
2kb 15~-11
4kb 16-12
8kb 17-13

The accessed line contains two TLB entries, which in
turn contain two VTAG fields. The VTAG fields are both
compared to bits inthe virtual address. This comparison
depends on the page size as follows (note that VTAG

bit-numbers are relative to the VTAG field, not the TLB
entry):

Page Size Virtual Address Bits

VTAG Bits
1 kb 31-15 16-0
2kb 31-16 16-1
4kb 31-17 16-2
8 kb 31-18 16-3

Certain bits of the VTAG field do not participate in the
comparisonforpage sizes largerthan 1 kb. These bits of
the VTAG field are required to be 0.

For an address translation to be valid, the following con-
ditions must be met:

1. The virtual address bits match corresponding
bits of the VTAG field as specified above.

2. ForaUser-mode access, the TIDfieldinthe TLB
entry matches the PID field inthe MMU Configu-

Virtual Address

TLB Set 0

= ' T8} . ' TLB Slet 1 i

.]]] ' '] [

' [l '] 1 ' ']

1 s 1 .) 1 L} [} .

] [] [. l] | .
seloct H—+ Vinual:V, \ Task Real Page PGM, VirtuahV, i Task Real Page 1PGM
Tag PROTID !Number U, 10]||Tag \PROTID |Number !U,IO

¢ select] T ! T, :

oo : T '

B . i i 1 1 1 [L 1

[Ps[piD '
G = |-(=)
- 6—t)
MMU
Configuration LA v
Tttt te e select | ¥{select
Control - | * -
ek
j TLB Miss Protection
) ’ Violation
Page Offset] Real Page Number MPGMO-1

Merge

Physical Address

Figure 60. Address Translation Process’

1-86

Am29000

ration Register. For a Supervisor-mode access,
the TID field is 0.

3. The VEbitinthe TLB entryis 1.

4, -Only one entry in the line meets conditions 1, 2,
and 3 above. If this condition is not met, the re-
sults of the translation may be treated as valid by
the processor, but the results are unpredictable.

lfthe address translation s valid for one TLB entry in the
selected line, the RPN field in this entry is used to form
the physical address of the access. The RPN field gives
. the portion of the physical address that depends on
the translation; the remaining portion of the virtual ad-
dress, called the Page Offset, is invariant with address
translation.

The Page Offset comprises the low-order bits of the vir-
tual address, and gives the location of a byte (because
of byte addressing) within the virtual page. This byte is
located at the same position in the physical page frame,
so the Page Offset also comprises the low-order bits of
the physical address.

The 32-bit physical address is the concatenation of cer-
tainbits of the RPN field and Page Offset, where the bits
from each depend on the page size as follows (note that
RPN bit numbers are relative to the RPN field, not the
TLB entry):

Virtual Address Bits

Page Size . RPN Bits for Page Ofset
1kb 21-0 9-0
2kb 21-1 10-0
4kb 21-2 11-0

8kb 21-3 12-0

Note that certain bits of the RPN field are not used in

forming the physical address for page sizes greaterthan

1 kb. These bits of the RPN are required to be 0. In addi-

tion, for certain instruction accesses, the Page Offset is
" incremented by 16.

The address space of the physical address is deter-
mined by the Input/QOutput (I0) bit of the TLB entry. lfthe

- lObitis 0, the address is in the instruction/data memory
address space. If the 10 bitis 1, the address is in the in-
put/output address space.

Successful and Unsuccessful Translations

If an address translation is successful, the TLB entry is
further used to perform protection checking for the ac-
cess. Bits in the TLB make it possible to restrict ac-
cesses-—independently for Supervisor-mode and User-
mode accesses—to any combination of load, store, and
instruction accesses, or to no access.

If the address transtation s valid and no protection viola-
tion is detected, the physical address from the transla-
tion is placed on the processor’s address bus and the
access is initiated. If the translation is not valid or a pro-
tection violation is detected, a trap occurs. Depending

onthe state of the channelinterface, the access request
may be placed on the address bus with the signal BINV
asserted, even though the trap occurs.

Also, if the address translation is successful and there is
no protection violation, the PGM bits from the TLB entry
used for translation are placed on the MPGMi—-MPGMo
outputs during the address cycle for the access. If ad-
dress translation is not performed, these pins are both
Low for the address cycle.

If the TLB cannot translate an address, a TLB miss oc-
curs. The MMU causes a trap if either a TLB miss oc-
curs, or the translation is successful and a protection
violation is detected. The processor distinguishes be-
tween traps caused by instruction and data accesses,
and between traps caused by User and Supervisor-
mode accesses, as follows:

Trap Vector
Number Type of Trap
‘8 User-Mode Instruction TLB Miss
9 User-Mode Data TLB Miss
10 Supervisor-Mode Instruction
TLB Miss
11 ‘Supervisor-Mode Data TL Miss
12 Instruction TLB Protection
. Violation
13 Data TLB Protection Violation

The distinction between the above traps is made to
assist trap handling, particularly the routines that load
TLB entries. .

Reload

Sothatthe MMU may support a large variety of memory-
management architectures, it does not directly load TLB
entries that are required for address translation. It sim-
ply causes a TLB miss trap when address translation is
unsuccessful. The trap causes a program-—calied the
TLB reload routine—to execute. The TLB reload routine
is defined according to the structure and access method
of the page table contained in an external device or
memory.

When a TLB miss trap occurs, the LRU Recommenda-
tion Register is written with the TLB register number for
Word 0 of the TLB entry to be used by the TLB reload
routine. For instruction accesses, the Program Counter
1 Register contains the instruction address that was not
successfully translated. For data accesses, the Channel
Address Register contains the data address that was
not successfully translated.

The TLB reload routine determines the translation for
the address given by the Program Counter 1 Register or

~Channel Address Register, as appropriate. The TLB

reload routine uses an external page table to determine
the required translation, and loads the TLB entry indi-
cated by the LRU Recommendation Register so that the
entry may perform this translation. In a demand-paged

1-87

29K Family CMOS Devices

environment, the TLB reload routine may additionally in-
voke a page-fault handler when the translation cannot
be performed. :

TLB entries are written by the Move To TLB (MTTLB)
instruction, which copies the contents of a general-
purpose register into a TLB register. The TLB register
number is specified by bits 6-0 of a general-purpose
register. TLB entries are read by the Move From
TLB {MFTLB) instruction, which copies the contents of
a TLB register into a general-purpose register. Again,
the TLB register number is specified by a general-
purpose register.

Entry Invalidation

There are two methods for invalidating TLB entries that
are no longer required at a given point in program exe-
cution. The firstinvolves resetting the Valid Entry bit of a
single entry (this is done by a Move To TLB instruction).
The second involves changing the value of the Process
Identifier (PID) field of the MMU Configuration Register;
this invalidates all entries whose Task Identifier (TID)
fields do not match the new value.

If an entry is invalidated by changing the PID field, the

" TLB entry still remains valid in some sense. If the PID

field is changed again to match the TID field, the entry
may once again participate in address translation. This
ability can be used to reduce the number of TLB misses

in a system during process switching. However, it is im-
portant to manage TLB entries so that an invalid match
cannot occur between the PID field and the TID field of
an old TLB entry.

Protection

If an address translation is performed successfully, the
TLB entry used in address translationis used to perform
protection checking for the access. There are 6 bits in
the TLB entry for this purpose: Supervisor Read (SR),
Supervisor Write (SW), Supervisor Execute (SE), User
Read (UR), User Write (UW), and User Execute (UE).
These bits restrict accesses, depending on the program
mode of the access, as shown in Figure 61 (the value “x”
is a “don't care”).

Note that for the Load and Set (LOADSET) instruction,
the protection bits must be set to allow both the load and
store access. If this condition does not hold, neither ac-
cess is performed.

If protection checking indicates that a given access is
not allowed, a Data TLB Protection Violation or Instruc-
tion TLB Protection Violation trap occurs. The cause of
the trap is determined by inspection of the Program
Counter 1 Register for an Instruction TLB Protection
Violation, or by inspection of the contents of the Channel
Address and Channel Control registers for a Data TLB
Protection Violation.

SR sSwW SE UR uw UE Type of Access Allowed

X X X 0 0 0 No user access

X X b3 0 0 1 User instruction

X X b3 0 1 0 User store

X X X 0 1 1 User store or instruction

X X X 1 0 0 User load

X X X 1 0 1 User load or instruction

X X X 1 1 0 User load or store

X X X 1 1 1 Any user access

o] 0] X X X No supervisor access

0 0 1 X X X Supervisor instruction

] 1 0 X X X Supervisor store

0 1 1 X X X -Supervisor store or instruction
1 0 0 X X X Supetvisor load

1 0 1 X X X Supervisor load or instruction
1 1 o] X X X Supervisor load or store

1 1 1 X X X Any supervisor access

Figure 61. TLB Access Protection

Am29000

CHANNEL DESCRIPTION

The processor channel provides the bandwidth required
for performance, while permitting the connection of
many different types of devices. This section describes
the channel and methods of connecting devices and
memories to the processor.

The channel consists of three 32-bit synchronous buses
with associated control and status signals: the Address
Bus, Data Bus, and Instruction Bus. The Address Bus
transfers addresses and control information to devices
and memories. The Data Bus transters datato and from
devices and memories. The Instruction Bus transfersin-
structions to.the processor from instruction memories.
In addition, a set of signals allows control of the channe!
to be relinquished to an external master.

There are five logical groups of signals performing five
distinct functions, as follows (since some signals per-
form more than one function, a signal may appear in
more than one group):

1. Instruction Address Transfer and [nstruction Ac-
cess Requests: Aa—Ao, SUP/US, MPGMi-
MPGMo, PEN, TREQ, IREQT, PIA, BINV

2. Instruction Transfer: lai-lo, IBREQ, IRDY, IERR
IBACK

3. Data Address Transfer and Data Access Re-
quests: Asi—Ao, R/W, SUP/US, LOCK, MPGM:—
MPGMo, PEN, DREQ, DREQT:-DREQTo,
OPT=—OPTo, FDA, BINV

4. Data Transfer: Dai-Do, DBREQ, DRDY, DERR,
DBACK, CDA

5. Arbitration: BREQ, BGRT, BIN

User-Defined Signals

There are two types of user-defined outputs on the pro-
cessorto control devices and memories directly in a sys-
tem-dependent manner. Each of these outputs is valid
simultaneously with—and for the same duration as—
the address for an access.

The first set of user-defined signals, MPGM:—-MPGMo,
is determined by the PGM bits in the Translation Look-
Aside Buffer entry used in address translation. If ad-
dress translation is not performed, these outputs are
both Low.

The second set of signals, OPT=—0PTo, is determined
by bits 18—16 of the load or store instruction that initiates
an access. These signals are valid only for data.ac-
cesses, and have a. predefined interpretation for
coprocessor data transfers.

Standard interpretations of OPT>—OPTo are givenin the
Pin Description section. Since the OPT-OPTo signals
are determined by instructions, they have an impact on
application-software compatibility, and system hard-
ware should use the given definitions of OPT=—OPTo.

The OPT=-OPTo signals are used to encode byte and
half-word accesses. However, for a load, the system
should return an entire aligned word, regardless of the
indicated data width.

Note that the standard interpretations of OPT—OPTo
apply only to accesses to instruction/data memory and
input/output. Other interpretations may be used for
coprocessor transfers.

For interrupt and trap vector fetches, the MPGM;—
MPGMo and OPT=-OPTo outputs are all Low.

Instruction Accesses

Instruction accesses occur to one of two address
spaces: instruction/data memory and instruction read-
only memory (instruction ROM). The distinction be-
tween these address spaces is made by the IREQT sig-
nal, which is in turn derived from the ROM Enable (RE)
bit of the Current Processor Status Register. These are
truly distinct address spaces; each may be populatedin-
dependently based on the needs of a particular system.

Instruction/data memory contains both instructions
and data. Although the channel’ supports separate
instruction and data memories, the Memory Manage-
ment Unit does not. In certain systems, it may be re-
quired to access instructions via loads and stores, even
though instructions may be contained in physically
separate memories. For example, this requirement
might be imposed because of the need to load instruc-
tions into memory. Note also that the OPT=—OPTo sig-
nals may be used to allow the access of instructions in
instruction ROM, using loads; the Am23000 does not
prevent a store to the instruction ROM, and protection
against stores to the instruction ROM must be provided
externally, if required.

All processorinstructionfetches are read accesses, and
the R/W signal is High for all instruction fetches.

Data Accesses

Data accesses occur to one of three address spaces:
instruction/data - memory, input/output (I/0), and the
coprocessor. The distinction between these spaces is
made by the DREQT-DREQTo signals, which are in
turn determined by the load or store instruction that initi-
ates adata access. Eachofthese address spacesisdis-
tinct from the others.

The protocol for datatransfers to and from the coproces-
sor is slightly different than the protocol for instruction/
data memory and I/O accesses.

Data accesses may occur either from a slave device or
memory to the processor (for a load), or from the pro-
cessor to a slave device or memory (for a store). The di-
rection of transfer is determined by the R/W signal. In
the case of a load, the processor requires that data on
the data bus be held valid only for a short time before the
end of a cycle. In the case of a store, the processor

1-89

29K Family CMOS Devices

drives the data bus as soon as the bus is available and
holds the data valid until the slave device or memory sig-
nals that the access is complete.

Reporting Errors

The successful completion of aninstruction access is in-
dicated by an active levelonthe IRDY input, and the suc-
cessful completion of a data access is indicated by an
active level on the DRDY input. If there are exceptional
conditions for which an instruction or data access can-
not be completed successfully, the unsuccessful com-
pletion is indicated by an active level on the IERR or
DERR input, as appropriate.

If the processor receives an 1ERR or DERR in response
to aninstruction or data access, it ignores the content of
the instruction or data bus and the value of IRDY or
DRDY. An IERRresponse causes an Instruction Access
Exceptiontrap, unless itis associated with an instruction
that the processor does not ultimately execute (because
of a nonsequential instruction fetch). A DERR response
always causes either a Data Access Exceptiontrapora
Co-processor Exception Trap.

The processor supports the restarting of unsuccessful
accesses upon an interrupt return. In the case of an un-
successful instruction access, the restart is performed
by the Program Counter 0 and Program Counter 1 regis-
ters. inthe case of an unsuccessful data access, the re-
start is performed by the Channel Address, Channel
Data, and Channel Control registers. In any event, the
control program must determine whether or not an ac-
cess can and/or should be restarted.

The Instruction Access Exception and Data Access Ex-
ception traps cannot be masked. if one of these traps
occurs within an interrupt or trap handler, the processor
state may not be recoverable.

Access Protocols

Figure 62 shows a control flowchart for accesses per-
formed by the Am29000. This control flow applies inde-
pendently to both instruction and data accesses. Since
the processor performs concurrent instruction and data
accesses, these accesses may be at different points in
the control flow at any given point in time.

Note that the items on the flowchart of Figure 62 do not
represent actual states and have no particular relation-
ship to processor cycles. The flowchart provides only a
high-level understanding of the control flow. Also, ex-
ceptions and error conditions are not shown.

The channel supports three protocols for accesses: sim-
ple, pipelined, and burst-mode. These are described in
the following sections. The various protocols are de-
fined to accommodate minimum-latency accesses as
well as maximum-transfer-rate accesses. The protocols
allow an access to complete in a single cycle, although
they support accesses requiring arbitrary numbers of
cycles. Address transfers for accesses may be inde-
pendent of instruction or data transfers.

Simple Accesses

For a simple access, the processor holds the address
valid throughout the entire access. This protocol is used
for single-cycle accesses, and for accesses to simple
devices and memories.

On any cycle before the completion of the access, a sim-
ple access may be converted to a pipelined access (by
the assertion of PEN) or to a burst-mode access (by the
assertion of IBACK or DBACK, if the processor is assert-
ing IBREQ or DBREQ). Thus, the protocol for simple ac-
cesses also may be used during the initial cycles of
pipelined and/or burst-mode accesses. This is advanta-
geous, for example, in cases where the slave device or
memory either.requires the address to be held for multi-
ple cycles at the beginning of the pipelined or burst-
mode access, or cannot respond to the pipelined or
burst-mode request within one cycle.

Pipelined Accesses

Apipelined access is one that starts before an earlier in-
progress accesses completed. The in-progress access
is called a primary access and the second access is
called a pipelined access. A pipelined access is of the
same type as the primary access. For example, an in-
struction access that begins before the completion of a
data access is not considered to be a pipelined access,
whereas a second data access is.

The Am29000 allows only one pipelined access at any
given time.

Tradeoffs

For accesses that require more than one cycle to com-
plete, pipelined accesses performbetter than simple ac-
cesses because they allow the overlap of portions of two
accesses. In addition, the ability to latch addresses in
support of pipelined accesses reduces utilization of the
address bus, thereby reducing contention between in-
struction and data accesses. However, devices and
memories that support pipelined accesses are some-
what more complex than devices and memories that
support only simple accesses.

Support for pipelined operations is required for both the
primary access and the pipelined access. The slave per-
forming the primary access must contain some means
for storing the address and other information about the
access. The slave performing the pipelined access must
be able to restrict its use of the instruction bus or data
Bus, and must be prepared to cancel the access (as ex-
plained below). i

Pipelined Operation

Pipelined accesses are controlled by the signals PEN,
PIA; and PDA. Because of internal data-flow con-
straints, the Am29000 does not perform a pipelined
store operationwhile a load is in progress. However, the
protocol does not restrict pipelined operations. Other
channel masters may perform a pipelined store during
aload.

1-90

Am239000

PROCESSOR

Latch Resuit

SLAVE DEVICE

-]‘ Initiate Access [
Assert [IREQ, DREQ

Latch Address

Drive result and

TRDY or DRDY

NO Burst requested

YES

Primary

access complete,
? .

. NO
Initiate pipelined

i - <

v Assert IBACK

: BB

' Drive result and 1

: RDY or Burst-mode Access

' ' . see Figures 63 thru 66

' , Primary

! v Access

N + Complete

L} L]
R N A N L R -

1 L}

1] 1]

L]

REEEEE R g A -
PIPELINED ACCESS

access

Assert PIA, FDA

Start Access
(optional)

re|

e
L

Interrupt
or Exception
?

YES

Remove pipelined

access from
channel

Deassert PIA, FDA

Primary
access complete

(TREQ, DREQ active)

PIA
PDA

active
?

YES

Figure 62. Channel Flowchart

1-91

29K Family CMOS Devices

Except as noted above, the processor attempts to per-
formpipelining for every access; the input PEN indicates
whether or not pipelining is supported for a given ac-
cess. The PEN input can be driven by individual devices,
or can be tied active or inactive to enable or disable sys-
tem-wide pipelined accesses. The processor ignores
the value of PEN unless it is performing an access.

The processor samples PEN on every cycle during a pri-
mary access. If PEN is active on any cycle, the proces-
sorceases to drive the address and associated controls
forthe primary access inthe next cycle. If the processor
requires another access before the primary access is
completed, it drives the address and controls for the
second access, asserting PIA or PDA to indicate that the
second access is a pipelined access.

The output IREQ or DREQ, as appropriate, is not as-
serted for a pipelined access. Devices and memories
that cannot support pipelined accesses should there-
fore ignore PIA and/or PDA, and base their operation
upon IREQ and/or DREQ.

A device or memory that receives a request for a
pipelined access may treat it as any other access, with
one exception: the pipelined access cannot use the In-
struction and data buses or the associated controls
(e.g., IRDY or DRDY). In the case of a data read or in-
struction access, the results of the pipelined access
cannot be driven onthe appropriate bus. Inthe case of a
data write, the data do not appear on the data bus. Any
otheroperations forthe access, such as address decod-
ing, can occur.

When the primary access is completed (as indicated by
IRDY or DRDY), the pipelined access becomes a pri-
mary access. The processor indicates this by asserting
IREQ or DREQ, depending on the type of access. The
device or memory performing the pipelined access may
complete the access as soon as IREQ or DREQ is as-
serted (possibly in the same cycle). When the access
becomes a primary access, it controls the channel as
any other primary access. For example, it may deter-
mine whether or not another pipelined access can be
performed.

When the pipelined access becomes a primary access,
- the output PIA or PDA remains asserted for one cycle to
ensure continuity of control within the slave device or

memory. In In the cycle after IREQ or DREQ is asserted, -

PIA or PDA is deasserted unless the processor initiates
another pipelined access, in which case PIA or PDA re-
mains asserted for the new access.

Cancellation of Pipelined Accesses

If the processor takes an interrupt or trap before a
pipelined access becomes a primary access, the re-
quest for the pipelined access is removed from the
channel. This may occur, for example, when 1ERR or
DERR is signaled for the primary access.

If the pipelined access is removed from the channel, the
slave device or memory does not receive an TREQ or
DREQforthe pipelined access. Hence, the pipelined ac-
cess does not become a primary access, and cannot be
completed. A pipelined access may be canceled in this
manner at any time before it becomes a primary access.
Because of this, a pipelined access should not change
the state of a slave device or memory until the pipelined
access becomes a primary access.

~ Burst-Mode Accesses

A burst-mode access allows multiple instructions or
data words at sequential addresses to be accessed with
asingle address transfer. The number of accesses per-
formed and the timing of each access within the se-
quence are controlied dynamically by the burst-mode
protocol. Burst-mode accesses take advantage of se-
quential addressing patterns, and provide several bene-
fits over simple and pipelined accesses:

1. Simultaneous instruction and data acgesses.
Burst-mode accesses reduce the utilization of
the address bus. This is especially important for
instruction accesses, which are normally se-
quential. Burst-mode instruction accesses elimi-
nate most of the address transfers for instruc-
tions, allowing the address bus to be used for si-
multaneous data accesses.

2. Faster access times. By eliminating the ad-
dress-transfer cycle, burst-mode accesses al-
low addresses to be generated in a manner that
improves access times.

3. Faster memory access modes. Many memories
have special high-bandwidth access modes
(e.g., fast page mode DRAM). These modes
generally require a sequential addressing pat-
tern, even though addresses may not be pre-
sented explicitly to the memory for all accesses.
Burst-mode accesses allow the use of these ac-
cess modes without hardware to detect sequen-
tial addressing patterns.

Burst-Mode Overview

The control-flow diagrams in Figure 63 and Figure 64 il-
lustrate the operation of the processor and an instruc-
tion memory during a burst-mode instruction access.
The control-flow diagrams in Figure 65 and Figure 66 il-
lustrate the operation of the processor and a data mem-
ory or device during a burst-mode data access. These
diagrams are for illustration only; nodes on these dia-
grams do not necessarily correspond to processor or
slave states, and transitions on these diagrams do not
necessarily correspond to processor cycles.

1-92

Am29000

ACTIVE

not available
or Halt or
Step Modes

TRDY

Active

IPB (1)
location
available

Mode

Nonsequential
Fetch

If no exception
retransmit address

(1) IPB = Instruction Prefetch Buffer

or Load
Test Instr.

1-kb boundary
or channel arbitration

[e |

TLB miss or
protection violation

Nonsequential Fetch

ERR

Active

Deactivate

Figure 63. Processor Burst-Mode Instruction Accesses: Control Fiow

A burst-mode access is in one of the following opera-
tional conditions at any given time:

1. Established:

2, Active:

3. Suspended:

The processor and slave device
have successfully initiated the
burst-mode access. A burst-
mode access that has been es-
tablished is either active or sus-
pended. An established burst-
mode access may - become
preempted, terminated or can-
celed.

Instruction or data accesses and
transfers are being performed
as the result of the burst-mode
access. An active burst-mode

4. Preempted:

5. Terminated:

access ‘may become sus-

pended.

No accesses ortransfers are be-
ing performed as the resuit of

6. Canceled:

“the burst-mode access, but the

burst-mode access remains es-
tablished. Additional accesses
and transfers may occur at
some later time (i.e., the burst-
mode access may become ac-
tive) without the retransmission
of the address for the access.

The burst-mode access can no
longer continue because of
some condition, but the burst-
mode ~access can be re-
established within a short
amount of time.

All " required accesses - have
been performed.

The burst-mode access can no
longer ‘continue - because - of

1-93

29K Family CMOS Devices

[s | BREG, IBACK Active

Terminated,
Preempted, or
Canceled by Preempted
Processor

PRI IR RS I R) .

) '

1)

) []

: Fetch .

, Instruction ' Unsuccessful

! ' Cannot continue burst Fetd?

1 1

. B Successful |

1 Active Active Fetch '

' .

. 1

] 1

' Drive Instruction : Activate
: _ Activate TRDY : EMRR
R S LT .

]]

: : Fetch Unsuccessful

' 1 Fetch

[} 1

] 1

: ! Drive Instruction

! ' Activate TRDY

! ! vale Activate Deactivate
LSUSPENDED _ f ____ 7T . TERR TBACR

Canceled

Note: A similar state transition may be used to support suspended burst-mode data accesses
or a channel master other than the processor.

Figure 64. Slave Burst-Mode Instruction Accesses: Control Flow

some exceptional condition.
The access may be re-
established only after the excep-
tional condition has been cor-
rected, if possible.

Each of the above conditions, except for the terminated
condition, is under the control of both the processor and
slave device or memory. The terminated condition is
determined by the processor, because only the proces-
sor can determine that all required accesses have been
performed. The following sections discuss each of the
above conditions with respect to the burst-mode
protocol.

Establishing Burst-Mode Accesses

The Am29000 attempts to perform all instruction
prefetches using burst-mode accesses, except for in-
struction fetches at the last word before a 1-kb address
boundary. For data accesses, the processor attempts to
perform Load Multiple and Store Multiple operations us-
ing burst-mode accesses. The processor indicates that
it desires a burst-mode access by asserting IBREQ or

DBREQ during the cycle in which the initial address is
placed on the address bus (however, note that these
signals become valid later in the cycle than the ad-
dress).) ’

Theinputs IBACK and DBACK indicate thata requested
burst-mode access is supported. The processorignores
the value of IBACK unless IBREQ is asserted, and it ig-
nores the value of DBACK unless DBREQ is asserted.

When it desires a burst-mode access, the processor
continues to drive IBREQ or DBREQ on every cycle for
which the address is valid on the address bus. During
this time, the device or memory involved in the access
may assert IBACK or DBACK to indicate that it can per-
formthe burst-mode access. IfIBACK or DBACK (as ap-
propriate) is asserted while the initial address appears
on the address bus, the burst-mode access is estab-
lished. Inthe following cycle, the processor removes the
request address and deasserts IREQ or DREQ. How-
ever, it continues to assert IBREQ or DBREQ.

If the burst-mode access is not established on the first
access, the processor attempts to establish a burst-

1-94

Am29000

ACTIVE

Latch data
if read

Deactivate

DBREQ

itread

1-kb boundary
or channel arbitration

BERR Active,

or interrupt/trap taken

Deactivate Deactivate
DBREQ DBREQ

DERR

Active

Access

Deactivate

DERR

Active

if read

[Preempted I

l Terminated]

Canceled

If no exception
retransmit address

TLB miss or
protection violation

Note: The Am29000 does not suspend burst-mode data accesses.

Figure 65. Processor Burst-Mode Data Accesses: Control Flow

mode access on each subsequent address transfer, as
long as there are more accesses yet to be performed.
During any subsequent access, the addressed device or
memory may establish a burst-mode access by assert-
ing IBACK or DBACK. If the burst-mode access is never
established, the default behavior is to have the proces-
sor transmit an address for every access.)

Active and Suspended Burst-Mode Accesses

After the burst-mode access is established, IBREQ and
DBREQ are used during subsequent accesses to indi-
cate that the processor requires at least one more ac-
cess. If IBREQ or DBREQ is active at the end of the cycle
inwhichan access is successfully completed (i.e., when
IRDY or DRDY is active), the processor requires another
access. If the slave device or memory previously has
not preempted the burst-mode access, and does not

preempt (by deasserting IBACK or DBACK) or cancel
(by asserting IERR or DERR,) the burst-mode access in
the cycle that the access completes, the additional ac-
cess must be performed.

The execution rate of instructions is known only dynami-
cally, so that in certain situations, a burst-mode instruc-
tion access must be suspended. If IBREQ is inactive
during the cycle in which an instruction access is com-
pleted, the burst-mode access is suspended (if it is nei-
ther preempted nor canceled at the same time). The
burst-mode access remains suspended unless the
processor requests a new instruction access (in which
case IREQ is asserted), or unless the instruction mem-
ory preempts the burst-mode access.

A suspended burst-mode instruction access becomes
active wheneverthe processor can accept more instruc-

1-95

29K Family CMOS Devices

Active

Activate DRDY
Drive data if

Terminated,
Preempted, or

Canceled by Preempted

Processor

Unsuccessful
Access
Activate
DERR
Successful
Access Unsuccessful
Access
Activate DRDY Activate Deactivate
Drive data if DErR DBBAGK

read

Canceled

Figure 66. Slave Burst-Mode Data Accesses: Control Flow

tions. The processor activates the burst-mode access
by asserting IBREQ. If the instruction memory does not
preempt the burst-mode access during this cycle, anin-
struction access must be performed.

Whena suspended burst-mode instruction access is ac-
tivated, the resulting instruction access is not permitted
tobe completed inthe cycle inwhich IBREQ s asserted,
but may be completed in the next cycle. The reason for
this restriction is that the burst-mode protocol is defined
such that the combination of an active level on IBREQ
and TRDY causes an instruction access (as previously
discussed). lf the instruction access is completed imme-
diately in the cycle where a suspended burst-mode ac-
cess is activated, there is an ambiguity in the protocol: it
is possible to interpret a single-cycle assertion of IBREQ
as a request for two instructions.

The above ambiguity is resolved by delaying the instruc-
tion access resulting from a reactivated burst-mode ac-
cessfor acycle. Since this restriction applies only when
the Instruction Prefetch Buffer is full and the instruction
memory is capable of a very fast access, the delayed in-
struction response has no performance impact.

The Am29000 does not suspend burst-mode data ac-
cesses because the data transfers occur to and from
general-purpose registers, which are always available.
However, other channel masters may suspend burst-
mode data accesses (during direct memory accesses,

for example). The principles for suspending burst-mode
accesses are the same as those for instruction ac-
cesses discussed above.

Processor Preemption, Termination,

and Cancellation

The processor may preempt, terminate or cancel a
burst-mode access by deasserting IBREQ or DBREQ
and asserting TREQ or DREQ at some later point. Nor-
mally, the processor receives one more instruction or
data word after IBREQ or DBREQ is deasserted. How-.
ever, this access may be completed in the same cycle
that IBREQ or DBREQ is deasserted. During the period
after IBREQ or DBREQ is deasserted and before IREQ
or DREQis asserted, the burst-mode access is in a sus-

. pended condition.

The slave device or memory cannot. distinguish be-
tween preempted, terminated, and canceled burst-
mode accesses, when these are caused by the proces-
sor, until the processor asserts IREQ or DREQ. If the
slave continuesto assert IBACK or DBACK after IBREQ
or DBREQ is deasserted, the slave should be prepared

- 10 accept any new request during the cycle in which

TREQ or DREQ is asserted to begin the new access. The
reason for this is that the processor may attempt to es-
tablish a burst-mode access for the new access: if the
slave is asserting IBACK or DBACK because of a previ-

1-96

Am29000

ously preempted, terminated, or canceled burst-mode
access, the processor interprets the active IBACK or
DBACK as establishing the new burst-mode access and
removes the request in the following cycle.

The processor preempts a burst-mode access when an
external channel master arbitrates for the channel, or
when a burst-mode fetch crosses a potential virtual-
page boundary. Since the minimum page size is 1 kb,
burst-mode instruction and data accesses are pre-
empted whenever the address sequence crosses a 1-kb
address boundary. The burst is reestablished as soon
as a new address translation is performed (if required).
A new physical address is transmitted when the burst-
mode access is reestablished.

Note that the preemption resulting from page bound-
aries is advantageous for devices or memories that
require counters to follow the burst-mode address
sequence. Since all burst-mode accesses are word
accesses and the processor retransmits an address at
every 1-kb address boundary, an 8-bit counter in the

slave device or memory is sufficient to follow the burst-

mode address sequence. Additional address bits are
simply latched.

The processor terminates a burst-mode access when-
ever all required instructions or data have been ac-
cessed. In the case of instruction accesses, the burst-
mode access is terminated when a nonsequential fetch
occurs. In the case of data accesses, the burst-mode
access is terminated when the count indicates a single
load or store remains. The last load or store is executed
as a simple access.

The processor cancels a burst-mode access when an

interrupt ortrap is taken. Note that atrap may be caused -

by the burst-mode access, for example whena Transla-
tion Look-Aside Buffer miss occurs on an address inthe
burst-mode sequence. If the processor cancels a burst-
mode access when an access in the sequence remains
to be completed, this access must be completed in spite
of the cancellation.

Canceled burst-mode data accesses may be restarted
at some (possibly much later) point in execution via the
Channel Address, Channel Data, and Channel Control
registers. In this case, the burst-mode access is re-
started at the point at which it was canceled, rather than
at the beginning of the original address sequence.

Slave Preemption and Cancellation

The slave device or memory involved in a burst-mode
access may preempt the access by deasserting IBACK
or DBACK. The processor samples IBACK and DBACK
when TRDY and DRDY are active so that IBACK and
DBACK may be deasserted as the last supported ac-
cess is completed. However, IBACK and DBACK also
may be deasserted in any cxcle before the access is
completed. If IBACK or DBACK is deasserted when the
processor is in a state where it expects an access, the
access must be completed.

In general, the slave device or memory preempts the
burst-mode access whenever it cannot support any fur-
ther accesses in the burst-mode sequence. This nor-
mally occurs whenever an implementation-dependent
address boundary is encountered (e.g., a cache-block
boundary), but may occur for any reason. By preempt-
ing the burst-mode access, the slave receives a new re-
quest with the address of the next instruction or data
word required by the processor.

The slave device or memory may cancel a burst-mode
access by asserting TERR or DERR in response 10 a re-
quested access. The signals IBACK or DBACK need not
be deasserted at this time, but should be deasserted in
the next cycle.

Note that the IERR and DERR signals cause non-mask-
able traps, exceptinthe case where IERRs asserted for
an instruction that the processor does not execute.

Arbitration

External masters can gain access to the address, data,
and instruction buses by assertingthe BREQ input. The
processor completes any pending access, preempts
any burst-mode access, and asserts the BGRT output.
Atthis time, the processor places all channel outputs as-
sociated with the address, data, and instructionbuses in
the high-impedance state.

For the first cycle in which BGRT is asserted, the output’
BiNVis also asserted. If the external master cannot con-
trolthe address bus and associated controls in the cycle
where BGRT is asserted, the active level on BINV may
be used to define an idle cycle for the channel (i.e., any
spurious access requests are ignored). The BINV signal
is asserted only for a single cycle, so the external master
must take control of the channel inthe cycle after BGRT
is asserted.

While the BREQ input remains asserted, the processor
continuesto assert BGRT. The external master has con-
trol over the channel during this time.

To release the channel to the processor, the external
master deasserts BREQ, but must continue to control
the channel for the first cycle in which BREQ is
deasserted. In the cycle after BREQ is deasserted, the
processor asserts BINV and deasserts BGRT; the exter-
nal master should release control of the channel at this
time. On the following cycle, the processor deasserts
BINV and is able to use the channel. The processor
reestablishes any burst-mode access preempted by
arbitration.

The processordoes not relinquishthe channelwhenthe
LOCK signal is active. This prevents external masters
trom interfering with exclusive accesses. ;

1-97

29K Family CMOS Devices

Use of BINV to Cancel an Access

Besides using the BINV signal to transfer control of the
channelfrom one master to another, the Am29000 uses
the BINV signalto cancel accesses afterthey have been
initiated. To cancel an access, BINVis asserted duringa
cycle in which TREQ or DREQ also is asserted. If an ac-
cess is canceled, the accompanying response (using
TRDY, TERR, DRDY or DERR) is ignored during the cycle
where BINV is asserted; thereafter, the system should
not respond to the canceled access.

The BINV signal is used to cancel an instruction access
in the following situations:

¥ when an interrupt or trap is taken

® when an instruction fetch-ahead is canceled
because atargetblock s only partially present
in the Branch Target Cache

B when an instruction TLB miss or protection
violation occurs on an instruction access

® when abranchinstructionis the delay instruc-
tion of another branch, and the targets of both
branches are in the Branch Target Cache (in
this case, the external fetch for the target of
the first branch is not required)

® when the processor enters the Load Test In-
struction Mode, and there is an active instruc-
tion request on the channel

The BINV signal is used to cancel a data access in the
following situations:

B when a data TLB miss or protection violation
occurs on the data access

B when an interrupt or trap is taken in the cycle
where a pipelined data access becomes a pri-
mary access

If, for data accesses, address translation is not per-
formed and pipelined accesses are not implemented,
the BINV signal can be ignored by the system during the
access.

When a LOADSET instruction encounters a protection
violation because store access is not permitted, the
processor cancels the load access with BINV.

Bus Sharing—Electrical Considerations
When buses are shared among multiple masters and

slaves, itis importantto avoid situations wherethesede-

vices are driving a bus at the same time. This may occur
whenmore than one master or slave is allowedto drive &
bus inthe same cycle if bus arbitration is incompletely or
incorrectly performed. However, it also occurs when a

masteror slave releases abus inthe same cycle thatan-
other master or slave gains control, and the first master
or slave is slow in disabling its bus drivers, compared to
the point at which the second master or slave begins to
drive the bus. The latter situation is called a bus collision
in the following discussion.

In addition to the logical errors that can occur when mul-
tiple devices drive abus simultaneously, such situations
may cause bus drivers to carry large amounts of electri-
cal current. This can have a significant impact on driver
reliability and power dissipation. Since .bus collisions
usually occur for a small amount of time, they are of less
concern, but may contribute to high-frequency electro-
magnetic emissions.

The Am29000 channel is defined to prevent all situ-
ations where multiple drivers are driving a bus simulta-
neously. However, bus collisions may be allowed to oc-
cur, depending on the system design.

In the case of the Am29000 channel, arbitration for the
channel prevents the processor from driving the ad-
dress and data buses atthe same time as another chan-
nel master. If there is more than one external master,
the system design must include some means for ensur-
ing that only one external master gains control of the
channel, and that no external master gains control of the
channel at the same time as the processor.

When the processor relinquishes control of the channel
to an external master, bus collisions may be prevented
by not allowing the external master to drive any bus
while BINV is active. This ensures that all processor out-
puts are disabled by the time the external master takes
control of the channel. However, there is nothing in the
channel protocol to prevent the external master from
taking control as soon as BGRT is asserted.

Slave devices and memories are prevented from simul-
taneously driving the instruction bus or data bus by
allowing only the device or memory performing a pri-
mary access to drive the appropriate bus. When a
pipelined access becomes a primary access, it may
drive the instruction or data bus immediately, so there is
a potential bus collision if the pipelined access is
performed by a slave other than the slave performing
the original primary access. This bus collision may be
prevented by restricting all slaves to driving the instruc-
tion and data buses in the second half-cycle (using
SYSCLK, for example). Since the processor samples
data only at the end of a cycle, this restriction does not
affect performance.

When the processor performs a store immediately fol-
lowing a load, it drives the data bus for the store in the
second cycle following the cycle in which the data for the
load appears on the data bus. This provides a complete
cycle for the slave involved in the load to disable its data
drivers. The processor continues to drive the data bus
until it receives a DRDY or DERR in response to the
store; it ceases to drives the data bus inthe cycle follow-
ing the response.

1-98

Am23000

‘Channel Behavior for Interrupts
and Traps

If aninterrupt or trap is taken, any burst-mode accesses
are canceled. If arequestfor a pipelined accessisonthe
address bus, this request is removed. Any other ac-
cesses are completed and no new accesses are started,
other than those required for the interrupt or trap. Note
that any accesses that the processor expects to com-
plete must be completed, even though burst-mode and
pipelined accesses are canceled.

When interrupt or trap processing is complete, any can-
celed burst-mode access transactions are reestab-
lished using the address of the access that was to be
performed next when the interrupt or trap was taken.
Uncompleted pipelined accesses are restarted, either
by the interrupt return sequence in the case of an in-
struction access, or by restarting the initiating instruction
in the case of a data access.

Note that the restarting of a pipelined access is not per-
formed by the Channel Address, Channel Data, and
Channel Control registers, since these registers may be
required to restart the primary access. The instruction
initiating the pipelined access is not allowed to be com-
pleted until the primary access is completed, so that the
Program Counter 1 (PC1) register contains the address
of the initiating instruction when a pipelined access is
canceled. The address in PC1 can restart this instruc-
tion on interrupt return.

Effect of the LOCK Output

The LOCK output provides synchronization and exclu-
sion_of accesses in a multiprocessor environment.
LOCK has no predefined effect for a system, other than
the fact that the Am29000 does not grant the channel to
an external master while LOCK is active.

The LOCK outputis asserted for the address cycle of the
Load-and-Lock and Store-and-Lock instructions, and is
asserted for both the read and write accesses of aL.oad
and Set instruction. LOCK may also be active for an ex-
tended period of time under control of the Lock bit in the
Current Processor Status Register (this capability is
available only to Supervisor-mode programs).

LOCK may be defined to provide any level of resource
locking for a particular system. For example, it may lock

the channel, an individual device or memory, or a loca-
tion within a device or memory.

Whenaresource is locked, it is available for access only
by the processor with the appropriate access privilege.
The mechanisms for restricting accesses and the meth-
ods for reporting attempted violations of the restrictions
are system-dependent.

Initialization and Reset

When power is first applied to the processor, it is in an
unknown state and must be placed in a known state.
Also, under certain circumstances, it may be necessary
to place the processorin a defined state. This is accom-
plished by the Reset mode, which s invoked by activat-
ing the RESET pin for the required duration. The Reset
mode configures the processor state as follows:

1.. Instruction execution is suspended.

2. Instruction fetching is suspended.

3.

4. The Current Processor Status Register is set as
shown in Figure 67.

Any interrupt or trap conditions are ignored.

The Cache Disable bit of the Configuration Reg-
ister is set.

The Data Width Enable bit of the Configuration
Register is reset.

The Contents Valid bit of the Channel Control
Register is reset.

7.

Except as previously noted, the contents of all géneral-

purpose registers, special-purpose registers, and TLB
registers are undefined. The contents of the Branch Tar-
get Cache are also undefined.

The Reset mode also configures the processor to initi-
ate an instruction fetch using an address of 0. Since the
ROM enable (RE) bit of the Current Processor Status is
1, this fetch is directed to external instruction read-only
memory. This fetch occurs when the Reset mode is
exited (i.e., when the RESET input is deasserted).

The Reset mode is invoked by asserting the RESET in-
put and can be entered only if the SYSCLK pinis operat-
ing normally, whether or not the SYSCLK pin is being

31 23 15 7 0
olofofo]o]o|ofo|ofo]o]o]ojofofo]ojojolofof1]o]1]|o}i}1|1]o]of1]1
) v SRR
Reserved R R T L T T T S

*IP' TP FZ! RE!PD! SM ! DI !

1) LN, | L) L] 1

CA TE TU LK WM Pl IM DA

Figure 67. Current Processor Status Register In Reset Mode

1-99

29K Family CMOS Devices

driven by the processor. The Reset mode is entered
within four processor cycles after RESET is asserted.
The RESET input must be asserted for at least four pro-
cessor cycles to accomplish a processor reset.

The Reset mode can be entered from any other proces-
sor mode (e.g., the Reset mode can be entered fromthe
Halt mode). If the RESET input is asserted at the time
that power is first applied to the processor, the proces-
sor enters the Reset mode only after four cycles have
occurred on the SYSCLK pin.

The Reset mode is exited when the RESET input is de-
asserted. Either three or four cycles after RESET is de-
asserted (depending on internal synchronization time),
the processor performs an initial instruction access on
the channel. The initial instruction access is directed to
Address 0 in the instruction read-only memory (instruc-
tion ROM). If instruction ROM is not implemented in a
particular system, another device or memory must re-
spond to this instruction fetch.

if the CNTL—~CNTLo inputs are 10 or 01 when RESET Is
deasserted, the processor enters the Halt or Step mode,

respectively. If the processor enters the Halt mode im-
mediately after reset, the protection checking that nor-
mally applies to the Halt instruction is disabled so that
the Halt instruction can be used as an instruction break-
point in a User-mode program. The Load Test Instruc-
tion mode cannot be directly entered from the Reset
mode. If the CNTL+CNTLo inputs are 00 immediately
after RESET is deasserted, the effect on processor op-
eration is unpredictable. If the CNTL+~CNTLeinputs are
11, the processor enters the Executing mode.

The processor samples the STATo output internally
when RESET is assented. A High level on STATo in this
case is used to enable a special test configuration and
causes the processor to be inoperable. When RESET is
asserted, the processor drives STATo Low in order to
disable this test configuration. However, if processor
outputs are disabled by the Test mode, the processor is
not able to drive STATo. Thus, if RESET is asserted
when the processor is in the Test mode, the STATo pin
must be driven Low externally. (In a master/slave con-
figuration, STATois driven Low by the master processor
when RESET is asserted.) :

1-100

Am29000

ABSOLUTE MAXIMUM RATINGS

Storage Temperature —65 to +150°C
Voltage on any Pin
with Respect to GND -05toVee +0.5V

Stresses above those listed under ABSOLUTE MAXI-
MUM RATINGS may cause permanent device failure.
Functionality at or above these limits is not implied. Ex-
posure to absolute maximum ratings for extended peri-
ods may affect device reliability.

OPERATING RANGES
Commerclal (C) Devices
Case Temperature (Tc) 0to +85°C
Supply Voltage (Vee) +4.75t0 +5.25 V
Military Devices
Case Temperature (Tc)* -55 to +125°C
Supply Voltage (Vece) +4.5t0 +5.5V

Operating rangés define those limits between which the
functionality of the device is guaranteed.
*measured “instant on”

DC CHARACTERISTICS over COMMERCIAL and MILITARY operating ranges

Parameter | Parameter
Symbol Description Test Conditions Min. Max. unit
Vi Input Low Voltage -0.5 0.8 V.
Viu Input High Voltage 2.0 Veec +0.5 \
VIUNCLK INCLK Input Low Voltage -0.5 0.8 \'/
VIHINCLK INCLK Input High Voltage 2.0 Vec+0.5 \
ViLsyscik SYSCLK Input Low Voltage -0.5 0.8 Vv
ViHsyscLi SYSCLK Input High Voltage Vee +0.5 \'/
Voo Output Low Voltage for

All Outputs except SYSCLK 0.45 \
VoH Output High Voltage for

All Outputs except SYSCLK v
lu Input Leakage Current +10 pA
o Qutput Leakage Current +10 HA
lccor Operating Power-Supply 22for | - :

Current Commercial mA/MHz

25 for
lied S Military

Vo SYSCLK Output Low Voltage . lo.c =20.7 0.6 v
Voic SYSCLK Output High Voltagé | “lése £20 mA Vcc—0.6 \
losanp SYSCLK GND Short .

Circuit Current cc=5.0V 100 mA
losvee SYSCLK Vce Shq

Circuit Current 100 " mA
CAPACITANCE
Parameter | Parameter
Symbol Description Test Conditions - Min. Max. Unit
Cin Input Capacitance 15 pF
Civex INCLK Input Capacitance 20 pF
Csvscik SYSCLK Capacitance fC=1 MHz (Note 1) 30 pF
Cour Output Capacitance : 20 pF
Cwo 1/0 Pin Capacitance 20 pF

Note: 1. Not 100% tested.

1-101

29K Famlly CMOS Devices

SWITCHING CHARACTERISTICS over COMMERCIAL operating range

Parameter Test 33 MHz 25 MHz
No. Description Conditions Min. Max. Min. Max. Unit
1 Systam Clock (SYSCLK)
Period (T) Note 1 40 1000 ns
1A | SYSCLK at 1.5V to SYSCLK
at 1.5V when used as an output Note 13 0.5T~1 0.5T+1 ns
2 SYSCLK High Time when used as input Note 13 19 ns
3 SYSCLK Low Time when used as input Note 13 17 ns
4 SYSCLK Rise Time Note 2 5 ns
5 SYSCLK Fall Time Note 2 5 ns
6 Synchonous SYSCLK Output
Valid Delay Notes 3, 12 3 14 ns
6A | Synchronous SYSCLK Output
Valid Delay for D,,~D, Note 12 4 18 ns
7 Three-State Synchronous SYSCLK Notes 4,
Output Invalid Delay 3 30 ns
8 | Synchronous SYSCIK
Output Valid Delay 3 14 ns
8A | Three-State SYSCLK .
Synchronous Output Invalid Delay 3 30 ns
9 Synchronous Input Setup Time 12 ns
9A | Synchronous Input Setup Time
for Dy,—D,, b1, 6 ns
9B | Synchronous Input Setup Time
for DRDY 13 . ns
10 | Synchronous Input Hold Time 2 ns
1 Asynchronous Input Minimum
Pulse Width T+10 ns
12. | INCLK Period 20 500 ns
12A | INCLK to SYSCLK Delay 2 10 - ns
128 | INCLK to SYSCLK Delay 2 10 ns -
13 | INCLK Low Time 8 ns
14 | INCLK High Time 8 ns
15 | INCLK Rise Time 5 ns
16 | INCLK Fall Time 5 . ns
17 | INCLK to Deassertion of RESET v
{for phase synchronization of SYSCLK) Note 9 0 5 ns
18 | WARN Asynchronous Deassertion
Hold Minimum Pulse Width Note 10 4T ns
19 | BINV Synchronous Output Valid
Delay from Note 12 1 7 ns
20 | Three-State synchronous SYSCLK Notes 11,
output invalid delay for D,,~D, 14, 15 3 20 ns

1102

Am29000

SWITCHING CHARACTERISTICS over COMMERCIAL operating range

Parameter Test 20 MHz 16 MHz
No. Description Conditions Min. Max. Min. Max. Unit
1 | System Clock (SYSCLK))
Period (T) Note 1 50 1000 60 1000 ns
1A | SYSCLK at 1.5V to SYSCLK
at 1.5V when used as an output Note 13 0.5T-1 | 0.5T+1 05T-2| 05T+2 ns
2 SYSCLK High Time when used as input Note 13 22 27 ns
3 | SYSCLK Low Time when used as input | Note 13 19 22 ns
4 SYSCLK Rise Time Note 2 5 5 ns
5 SYSCLK Fall Time Note 2 5 5 ns
6 | Synchonous SYSCLK Output %‘g
Valid Delay Notes 3, 12 : 3 16 ns
6A | Synchronous SYSCLK Output
Valid Delay for D,,—D, Note 12 4 20 ns
7 Three-State Synchronous SYSCL Notes 4,
Output Invalid Delay ’ 14, 15 30 3 30 ns
8 Synchronous SYSCLK
Output Valid Delay 16 3 16 ns
8A | Three-State SYSCLK)
Synchronous Output Invalid Delay 30 3 30 ns
9 Synchronous Input Setup Time 15 15 ns
9A | Synchronous Input Setup Time
for Dy —D,, ly—1o 8 8 ns
9B | Synchronous Input Setup Time
tor DRDY 16 16 ns
10 Synchronous Input Hold Time - 2 2 ns
1" Asynchronous Input Minimum
Pulse Width : Note 8 T+10 T+10 ns
12 INCLK Period 25 500 30 500 ns
12A | INCLK to SYSCLK Delay 2 12 2 15 ns
12B | INCLK to SYSCLK Delay 2 12 2 15 ns
13 INCLK Low Time 10 12 ns
14 | INCLK High Time 10 12 ns
15 | INCLK Rise Time 5 5 ns
16 INCLK Fall Time 5 5 ns
17 | INCLK to Deassertion of RESET
(for phase synchronization of SYSCLK) Note 9 0 5 0 5 ns
18 .| WARN Asynchronous Deassertion v
Hold Minimum Pulse Width Note 10 4T 4T ns
19 | BINV Synchronous Output Valid ,
Delay from Note 12 1 8 1 9 ns
20 Three-State synchronous SYSCLK Notes 11,
output invalid delay for D,,—D, 14,15 3 25 3 25 ns

1-103

29K Family CMOS Devices

SWITCHING CHARACTERISTICS over MILITARY operating range

Parameter Test 20 MHz 16 MHz
No. Description Conditions Min. Max. Min. Max. Unit
1 System Clock (SYSCLK)
Period (T) ‘. Note 1 50 1000 60 1000 ns
1A | SYSCLK at 1.5V to SYSCLK
at 1.5V when used as an output Note 13 0.5T—1 | 05T+1 05T-2 | 05T+2 ns
2 SYSCLK High Time when used as input Note 13 22 27 ns
3 SYSCLK Low Time when used as input Note 13 19 22 ns
4 SYSCLK Rise Time Note 2 5 5 ns
5 SYSCLK Fall Time Note 2 5 ns
6 Synchonous SYSCLK Output
Valid Delay Notes 3, 12 3 3 16 ns
6A | Synchronous SYSCLK Output
Valid Delay for D,,~D, Note 12 4 20 ns
7 Three-State Synchronous SYSCLK Notes 4,
Output Invalid Delay 3 30 ns
8 | Synchronous SYSCTK
Output Valid Delay 16 3 16 ns
8A | Three-State SYSCLK ,
Synchronous Output Invalid Delay 30 3 30 ns
9 | Synchronous Input Setup Time 15 ns
9A | Synchronous Input Setup Time
for Dy,~Dy, by=lo 8 ns
9B | Synchronous Input Setup Time
for DRDY 16 16 ns
10 | Synchronous Input Hold Time 2 2 ns
11 Asynchronous Input Minimum)
Pulse Width Note 8 T+10 T +10 ns
12 INCLK Period 25 500 30 500 ns
12A | INCLK to SYSCLK Delay 12 15 ns
12B | INCLK to SYSCLK Delay 12 15 ns
13 | INCLK Low Time 10 12 ns
14 | INCLK High Time 10 12 ns
15 | INCLK Rise Time 5 5 ns
16 | INCLK Fall Time _ 5 5 ns
17 | INCLK to Deassertion of RESET
(for phase synchronization of SYSCLK) Note 9 0 5 0 5 ns
18 | WARN Asynchronous Deassertion
Hold Minimum Pulse Width Note 10 4T 4T ns
19 | BINV Synchronous Output Valid
Delay from SYSCLK Note 12 1 8 1 9 ns
20 Three-State synchronous SYSCLK Notes 11,
output invalid delay for D,~D, 14,15 4 25 .4 25 ns

1-104

Am29000

Notes:

. AC measurements made relative to 1.5 V, except where noted.
. SYSCLK rise and fall times measured between 0.8 V and (V.~1.0 V).

3. Sﬁnchronous Opu[tfuts relative to SYSCLK rising edge include: A,~A,, BGRT, R"W, SUP/US, LOCK, MPGM,~-MPGM,,

O o N WK

12
13.

14.

15.

<r

, IREQT, PIA, DREQ, DREQT,~-DREQT,, PDA, OPT,-OPT,, STAT,~STAT,, and MSERR.

. Three-state Synchronous Outputs relative to SYSCLK rising edge include: A,~-A, RW, SUP/US, LOCK,
%DX.

MPGM,~-MPGM,, TREQ, IREQT, PIA, DREQ, DREQT,~DREQT,, and OPT,-OPT,,

. Synchronous Outputs relative to SYSCLK falling edge (SYSCLK): IBREQ, DBREQ.

. Synchronous Inputs include: BREQ, PEN, IRDY, IERR, TBACK, DERR, DBACK, CDA, |,,-I,, DRDY, and D,,~D,,
. Synchronous Inputs include: BREQ, PEN, TRDY, TERR, 1BACK, DERR, DBACK, and CDA.

. Asynchronous Inputs include: WARN, INTR,-INTR,, TRAP,~TRAP,, and CNTL,~CNTL,.

. RESET is an asynchronous input on assertion/deassertion. As an option to the user, RESET deassertion can be used to

force the state of the internal divide-by-two flip-flop to synchronize the phase of SYSCLK (if internally generated) rela-
tive to RESET/INCLK.

. WARN has a minimum pulse width requirement upon deassertion.
11.

To guarantee Store/Load with one-cycle memories, Dy,—D, must be asserted relative to SYSCLK falling edge from an
external drive source.

Refer to Capacitive Output Delay table when capacitive loads exceed 80 pF.

When used as an input, SYSCLK presents a 90-pF max. load to the external driver. When SYSCLK is used as an out-
put, timing is specified with an external load capacitance of <200 pF.

Three-State Output Inactive Test Load. Three-State Synchronous Output Invalid Delay is measured as the time to a
+500 mV change from prior output level. i
When a three-state output makes a synchronous transition from a valid logic level to a high-impedance stats, data is
guaranteed to be held valid for an amount of time equal to the lesser of the minimum Three-State Synchronous Output
Invalid Delay and the minimum Synchronous Output Valid Delay.

Conditions:

a.
b.
c.
d.

All inputs/outputs are TTL compatible for V,,,, V,,, Vo and V,, unless otherwise noted.

All output timing specifications are for 80 pF of loading.

All setup, hold, and delay times are measured relative to SYSCLK or INCLK unless otherwise noted.

All input Low levels must be driven to 0.45 V and all input High levels must be driven to 2.4 V except SYSCLK.

1-105

29K Family CMOS Devices
SWITCHING WAVEFORMS

v

©)
W

SYSCLK | f
Vee—1.0V V=10V
1.5V T5V /1.5v 15V

08V 0.8V /
Synchronous

——
Outputs *'5 ! | >_

SYSCLK
6&
&

SYSCLK /
Synchronous 15V
Outputs \ .
(19
BINV : 1.5V

?

9,9A
-
©

15V 15V

Synchronous Inputs

Relative to SYSCLK

1-106

Am29000

SWITCHING WAVEFORMS

INCLK
RESET
‘@ (10) »
< (9 >
Vd 4
7
WARN 15V 15V
l o |
< () >
. Idd
Pl
,A,,;{,';ghm""“s 15V 15V

INCLK and Asynchronous Inputs

1-107

29K Family CMOS Devices

SWITCHING WAVEFORMS

1.5V
08V

ZZ Vee=1.0V BS Ve =10V

15V
08V

Z1.5V

-+ 0O

SYSCLK Definition

SYSCLK - —]

nck %8V

: 1.5V

INCLK to SYSCLK Delay

1-108

Am29000

Capacitive Output Delays
For loads greater than 80 pF

This table describes the additional output delays for capacitive loads greater than 80 pF. Values in the Maximum
Additional Delay column should be added to the value listed in the Switching Characteristics table. For loads less
than or equal to 80 pF, refer to the delays listed in the Switching Characteristics table.

Total Maximum

External Additlonal
No. Parameter Description Capacitance Delay
6 Synchronous SYSCLK Output Valid Delay 100 pF +1ns
+2ns
+4ns
+6ns
+8 ns
6A Synchronous SYSCLK Output Valid Delay for D,,~D, +ins
+6 ns
+10ns
+15ns
+19ns
8 Synchronous SYSCLK Outp +1ns
o +2ns
200 pF +4ns
250 pF +6ns
i 300 pF +8 ns
19 BINV Synchronoué"@utput Valid Delay from SYSCLK 100 pF +1ns
150 pF +3ns
200 pF +4ns
250 pF +6 ns
300 pF +7 0ns

SWITCHING TEST CIRCUIT

Vi

Am29000
Pin Under Test

09075B-001A
1C001030

C_ is guaranteed to 80 pF. For capacitive loading greater
than 80 pF, refer to the Capacitive Output Delay table.

1-109

29K Family CMOS Devices

Am29000 Thermal Characteristics
Pin-Grid-Array Package

M1

0, =0,c+6,

Thermal Reslstance - °C/Watt

'sec)
700 900
Parameter (3.58) (4.61)
6,. Junction-to-Case 2 2
6., Case-to-Ambient (no Heaisqgn!g 1 10
8., Case-to-Ambient (with .
Heatsink, Thermallo vomzq{) 10 6 3 2 2 2
8, Case-to-Ambient (wm{mnidlrecuonal Pin Fin
Heatsink, Wakefield 840-20) 10 6 3 2 2 2
Ceramic-Quad-Flat-Pack Package
0
* l \J
0 O
000, +06a 1C001040
Thermal Resistance ~ °C/Watt
Alrflow—ft./min. (m/sec)
0 150 300 480 700 800
Parameter (0) (0.76) (1.53) (2.45) (3.58) (4.61)
0,. Junction-to-Case
0., Case-to-Ambient

Note: This is for reference only.

1110

Am29027

Am29027

Arithmetic Accelerator

bn

Advanced
Micro
Devices

DISTINCTIVE CHARACTERISTICS

High-speed floating-point accelerator for the
Am29000™ processor
Comprehensive floating-point and integer

Instruction sets, including addition,
subtraction, and multiplication

Single-, double-, and mixed-precision
operations

Performs conversions between precisions and
between data formats

Complies with seven industry-standard
floating-point formats:

-|EEE Standard for Binary Floating-Point
Arithmetic (ANSI/IEEE std 754-1985), single- and
double-precision

-DEC™ F, DEC D, and DEC G Standards
~IBMe System/370 single- and double-precision

Exact IEEE compliance for denormalized
numbers with no speed penalty

Simple interface requires no glue logic
between Am29000 and Am29027 ™
Eight-deep register file for intermediate re-
sults and on-chip 64-bit data path facilitate
compound operations, for example, Newton-
Raphson division, sum-of-products, and
transcendentals

Supports pipelined or flow-through operation

Full compiller and assembler support for IEEE
format

Fabricated with Advanced Micro Devices’ 1.2-
micron CMOS process

SIMPLIFIED SYSTEM DIAGRAM

Am29027
Arithmetic

"

AN
\/

Accelerator

Address Am29000

< Streamlined
Instruction

Processor

32

4

Instruction|
ROM

32

Instruction

Data

32

09114-001C

Publication # 09114
Issue Date: October 1989

Rev. C Amendment 0

111

29K Family CMOS Devices

TABLE OF CONTENTS
DISTINCTIVE CHARACTERISTICSttt iiiitiatiannrenesnsnaneersananasansnasns 1-111
SIMPLIFIED SYSTEMDIAGRAMttt ittt ittt entnnsnetaasoaenonsasnnssnnnenas 1-111
GENERAL DESCRIPTIONottt ittt ittt ie it titre i tienaerosetsasnananonsnsons 1-114
CONNECTIONDIAGRAMStiiiiiinereennnnarantanenannnans e e eieiaaaes 1-115
PINDESIGNATIONSi ittt iieiiiiiinstseenerannastssnasoasseranssssannssnnns 1117
LOGIC SYMBOL ..ottt iiitiinnitienssanssernssansossesinesisninensnnnsseensnnanns 1121
ORDERING INFORMATION ...ttt eiintnenareasansnssantssoasossonsnasenrnsninssns 1-122
PINDESCRIPTION ..\ tetteteteeeninneeeeessvesnenanaeaeeeererasnnnnansnasnansnes 1-124
FUNCTIONAL DESCRIPTION ... it iiiiitiiiinesnrnaenatsnennsssoasnssnnsoansssenns 1-125
10 T g - Y 1-125
ArChECURE . .o e e e e e e 1-125
InStruction Set i e e el 1-125
P OIMaNCE . . ot e e e e e O P N 1-125
01T = Ve S P 1-125
MaS I/ SIaVE .ottt e e e e e et e e e e 1-126
SUP PO . . ot i e e et e 1-126
Block Dlagram DesSCHpPtion viii ittt it ittt a s i, 1-126
Lo 101 2= 1151 (=] £ O PPN 1-127
Operand Selection MURIPIEXEIS ot i i e et cee i 1-127
INStrUCHiON RegiStar i i e i e 1-127
ALU o e e 1-127
Output Register/Register File ot i e e e e e 1-127
Flag Register o . ot e e e e e e 1-127
SHalUS Register . . . ot e e e e e e 1-127
OUtPUL MU DIEXET . ettt et et et i e 1-127
MOAE ROIS T v vt vttt ittt e e e 1-127
(07T 11 (] IR 11 O AN S 1-127
Master/SIave ComMPArator vttt i r it tne e iiiine e eneter et 1-128
Systeminterfacecit i i it i ettt s i e, e 1-128
Special-PUrpose RegISters ivee'vuerverireeennsnoeronnssans e e 1-129
Mode Register B S N 1-129
StatUS RegiSter . . .o et e e e 1-131
Flag Register i i e e i e e R 1-131
Precision Register e e e e 1-132
Instruction Register, I-Temp Register S 1-132
Operand Registers ouiv ittt ittt it i iienatenesinaseatvesnsenacnnesans 1-132
Accelerator Transaction Requests ittt iiiine i einannes wiv... 14133
Write Transaction Requests vt T T PSP AP 1-133
Read Transaction Requestso oo oo, e e e e e e 1-134
Coprocessor Data Accept i iv i i e AR S 1-135
DataReadycci ool D e 1-135
DataError........0. 0 o v G A s e e A L 1-135
Accelerator Instruction Set . .. i e e e e e 1-136
InstructionWord-............ B N 1-136
Base Operation Code < i i e e 1-136
Sign-Change Selects e e e 1-136
Operand Precision Selects i e e e 1-136
Operand Source SEleCtSt i i e i s L. 14139
Register File COoNtrols oot i i i e e e 1-139
Accelerator Operations it S P 1-139

1112

Am29027

Base Operation Code Description iii it it i e e e 1-143
Primary and Alternate Floating-Point Formats Rt 1-145

(07T (Tl o (=Tl 11 T o PP 1-145
OperatioN Flags ... v vi ittt e it i it e it 1-145
Updatingthe Status Registerttt i e it e e e 1-148
Operation SequUeNCINGttt iitetinresenenossncsasssanossncsssansansans 1-148
Operation in Flow-ThroughModeottt e 1-148
Operationin Pipeline Mode i i e 1-153
Pipeline AQvanCettt et e ERET T 1-153
Performing Operations ittt i ittt i i e et e e 1-153
Master/Slave Operationc.ceiiiiiiiinnernennsransseeoennasseiscansanenns 1-158
Initlalization and ReSetuiiiitiii it in i iaserasesnanssnsnsasnsosnsnasannnns 1-158

Vo o L= T4 T 3 - 1-158
ABSOLUTEMAXIMUMBATINGSicitiiniiiiiinncncnsnnanarnceenonasenacsaannnas 1-161
OPERATING RANGES ...ttt iiiitn e tatenenanannnnsnasssasasnnssasacansanns 1-161
DCCHARACTERISTICSiivivinnrnnrennnennnnnsnnes R 1-162
CAPACITANCE B e erecaee i B 1-162
SWITCHING CHARACTERISTICS ctitiiiiiiiiairacnenresesnnnananasoceasnnsnnanns 1-163
SWITCHINGWAVEFORMS A P 1-165
SWITCHING TEST CIRCUIT ..ottt et ee it tae s anenssonansranneesannassss P ... 1-169
TESTPHILOSOPHY ANDMETHODSiiititititninrnenenonnnnensnnnecensssnnanns 1-170
APPENDIX A—DATAFORMATSt tiiitieitetatnrneersaresnanonsnseessacnsncnss 1-172
APPENDIXB—ROUNDINGMODEScuiinirniinnnaseroneasoscncannnannananns 1-177
APPENDIX C—ADDITIONAL OPERATION DETAILS . ..ottt iiiiiieneidnnannns Vi eneds 1-180

APPENDIX D—TRANSACTION REQUEST/OPERATIONTIMINGccciiveiniiiiernnnnnn 1-182

1-113

29K Family CMOS Devices

GENERAL DESCRIPTION

The Am29027 Arithmetic Accelerator is a high-
performance computational unit intended for use with
the Am29000 Streamlined Instruction Processor. When
added to an Am29000-based system, the Am29027
improves floating-point performance by an order of
magnitude or more.

The Am29027 implements an extensive floating-point
and integer instruction set, and can perform operations
on single-, double-, or mixed-precision operands. The
three most widely used floating-point formats—IEEE,
DEC, and IBM—are supported. IEEE operations fully
comply with the IEEE Standard for Binary Floating-Point
Arithmetic (ANSI/IEEE standard 754-1985), with direct
implementation of special features such as gradual un-
derflow and exception handling.

The Am29027 consists of a 64-bit ALU, a 64-bit data
path, and a control unit. The ALU has three data input
ports, and can perform operations requiring one, two, or
three input operands. The data path comprises two
64-bit input operand registers, an 8-by-64-bit register
file for storage of intermediate results, three operand se-
lection multiplexers that provide for orthogonal selection
of input operands, and an output multiplexer that
allows access to the result data, the operation status,
the flags, or the accelerator state. The control unitinter-
prets transaction requests from the Am29000, and
sequences the ALU and data path.

Operations can be performed in either of two modes:
flow-through or pipeline. In flow-through mode, the ALU
is completely combinatorial; this mode is best suited
to scalar operations. Pipeline mode divides the ALU
into two or three pipelined stages for use in vector

operations, such as those-found in graphics or signal
processing.

The Am29027 connects directly to Am23000 system
buses and requires no additional interface circuitry.

Fabricated with AMD's 1.2-micron CMOS technology,
the Am29027 is housed in two packages: a 169-
lead pin-grid-array (PGA) package, and a 164-lead
ceramic-quad-flat-pack (CQFP) package for military
applications.

\

Related AMD Products
Part No. Description
Am29000 Streamlined Instruction Processor

29K™ Family Development Support Products

Contact your local AMD representative for information
on the complete set of development support tools.

Software development products on several hosts:

B Optimizing compilers for common high-level
languages

® Assembler and utility packages

m Source- and assembly-level software debuggers

B Target-resident development monitors

® Simulators

" Hardware Development:

® ADAPT29K™ Advanced Development and Proto-
typing Tool

1-114

Am29027

CONNECTION DIAGRAMS

169-Lead PGA*
Bottom View

© NGO s WD -

.oJoJoJoJoJoJoJoJoJoJoJoJoloJo
joJojJoJoJoJoJoYoJoXoJoJoJOoJoJO)
(oJoJoJoJoJoJoJoJoJoJoXoJoJoJO)

10J0JO)
10JOJO)
10JOJO)
10J0JO)
10JOJO
10020
0JOJO)
10JOJO)
10JoJO
10JOJO)
10JOJO)

-k ok e A A
Nt AE WD+~ O W

ABCDEFGHJKLMNPRTU

'b®@®@®®®®®©®®®©®©
10JOoXOJOJOJOXOJOXOJOXOJOXOJOXOJOXO)
loJoJoJoJoJoJoJoJoJoJoJoXoJO]
ORT : 10JOJO)

O]
®
O]

[oJoXoJoJo;
10J0JOJOIO]
10J0JOJOJO;

loJoJo}
loJoJo
0JOJO)

joJoJoJo]
10JOJOXO]
(©JOJOJO

\

* Pinout observed from pin side of package.
“*Alignment pin (not connected internally).

CD009761

1-115

29K Family CMOS Devices

CONNECTION DIAGRAMS (continued)
164-Lead CQFP*

Top View
(Lid Facing Viewer)

(A

124

123

iy

ALY

=5

1-116

Am29027

PGA PIN DESIGNATIONS (sorted by Pin No.)

Note: Pin Number D-4 = Alignment Pin. :
Veco and GNDO are power and ground pins for the output buffers.

Vee and GND are power and ground pins for the rest of the logic.

Pin No. | Pin Name PinNo. | Pin Name PinNo. | Pin Name PinNo. | Pin Name
A-1 Sat C-10 F20 J-16 ls R-12 DREQTo
A2 Fa c-11 Veco J-17 ha R-13 RESET
A3 Fs c-12 GNDO K-1 Ss R-14 DREQ
A-4 Fs C-13 F2o K-2 S1o R-15 I
A-5 Fio C-14 GNDO K-3 GND R-16 127
A-6 Fiz C-15 Vcco K-15 l21 R-17 l24
A-7 Fia C-16 12 K-16 |20 T-1 R2s
A-8 Fie C-17 le K-17 l1o T-2 Ras
A-9 " Fis D-1 Sos L-1 Ss T-3 Ra1
A-10 Fa1 D-2 Ses L-2 Sz T-4 Ris
A-11 Fz2 D-3 Szs L-3 Se T5 Ris
A-12 Fas D-4 (see note) L-15 GNDO T-6 Ria
A-13 Fa D-15 lo L-16 123 T7 Rio
A-14 Fas D-16 13 L-17 2 T-8 R
A-15 Fai D-17 ls M-1 Ss T-9 Rs
A-16 SLAVE E-1 Sz M-2 Sa T-10 Ra
A-17 1 E-2 Sa3 M-3 Sz T-11 Ro
B-1 Sao E-3 S2s M-15 Veco T-12 OPT:
B-2 Fi E-15 la M-16 DRDY T-13 DREQT
B-3 Fa E-16 Iz M-17 CDA T-14 BINV
B-4 Fs E-17 lo N-1 Ss T-15 Iat
B-5 F7 F-1 S N-2 S T-16 128
B-6 Fa F-2 Sz N-3 R T-17 las
B-7 Fia F-3 S22 N-15 NC U-1 Ras
B-8 Fis F-15 Vee N-16 EXCP u-2 Re2
B-9 Fi7 F-16 ho N-17 DERR u-3 Rie
B-10 F1o F-17 [P P-1 So uU-4 Riz
B-11 F23 G-1 S5 P-2 Rzs U-5 Ris
B-12 Fas G-2 Sz P-3 Ras U-6 R
B-13 Fzs G-3 Sig P-15 ls uU-7 Rn
B-14 Fao G-15 GND P-16 NC U-8 Ro
B-15 GND G-16 I P-17 NC U-9 Re
B-16 MSERR G-17 l1a R-1 Ra U-10 Rs
B-17 Is H1 Sia R-2 Rar U-11 R
C-1 Sz7 H-2 Sus R-3 Ras uU-12 R1
C-2 S2s H-3 Sis R-4 Rao U-13 OPTo
Cc-3 Fo H-15 GND R-5 Vee U-14 OPT2
C-4 Fz H-16 I1a R-6 GND U-15 R/W
C5 Veco H-17 b5 R-7 Re U-16 OE
C-6 GNDO J-1 S R-8 Rs U-17 130
C-7 F11 J-2 Stz R-9 GND
Cc-8 GNDO J-3 Vee R-10 Vee
c-9 Veeco J-15 iz R-11 CLK

1117

~ 29K Family CMOS Devices

PGA PIN DESIGNATIONS (sorted by Pin Name)

Pin No. | Pin Name Pin No. Pin Name Pin No. Pin Name Pin No. | Pin Name
T-14 BINV G-15 GND B-16 MSERR P-1 So
M-17 CDA H-15 GND N-15 NC N-2 S
R-11 CLK K-3 GND P-16 NC M-3 S
N-17 DERR R-6 GND p-17 NC N-1 Ss
M-16 DRDY R-9 GND u-16 OE M-2 Ss
R-14 DREQ C-6 GNDO U-13 OPTo M-1 Ss
R-12 DREQTo C-8 GNDO T-12 OPT1 L-3 Se
T-13 DREQT: C-12 GNDO U-14 OPT2 L-2 S
N-16 EXCP C-14 GNDO T-11 Ro L-1 Ss
C-3 Fo L-15 GNDO U-12 Ri K-1 Soe
B-2 F D-15 Io U-11 R: K-2 S
C-4 F2 A-17 I T-10 Ra J-1 Su
B-3 Fa C-16 l2 uU-10 Ra J-2 Sz
A-2 Fa D-16 Is T9 Rs H-1 Sna
B-4 Fs E-15 l4 U-9 Rs H-2 S
A-3 Fs B-17 Is T-8 Ry G-1 Sis
B-5 Fr C-17 ls R-8 Rs H-3 St
A-4 Fa E-16 I7 U-8 R G-2 Sw
B-6 Fo D-17 ls T-7 Rio F-1 S1s
A-5 F1o E-17 I U-7 Rn1 G-3 S
C-7 F11 F-16 lo R-7 Ri2 F-2 S2
A-6 Fi2 G-16 In T-6 Ris E-1 Sa21
B-7 Fis F-17 b2 U-6 Ru F-3 Sz
A-7 Fus H-16 I U-5 Ris E-2 Sz
B-8 Fis G-17 ha T-5 Ris D-1 N
A-8 Fie H-17 lis U-4 Ry D-2 Sz
B-9 Fiz J-16 lis T-4 Ris E-3 S2s
A-9 Fis J-15 I U-3 Rie C-1 Sar
B-10 Fio J-17 he R-4 Rz C-2 S2s
C-10 Fzo K-17 ho T-3 Rz D-3 Sz
A-10 F2i K-16 I U-2 R22 B-1 Sso
A-11 Fz2 K-15 l21 T2 Rzs A-1 Sat
B-11 Fzs L-17 12 R-3 Rz A-16 SLAVE
A-12 Fas L-16 ls U-1 Rzs F-15 Vee
B-12 Fa2s R-17 l24 P-3 R2s J-3 Vee
B-13 F2s T-17 I2s R-2 Rz R-5 Vee
A-13 Far P-15 l2s T-1 R2s R-10 Vee
A-14 Fzs ~R-16 lz7 P-2 Rze C-5 Veco
C-13 F2o T-16 l2s N-3 Rao C-9 Veeco
B-14 Fao R-15 l2o R-1 R C-11 Veco
A-15 Fa1 U-17 £ R-13 RESET C-15 Veco
B-15 GND 115 b U-15 RW M-15 Veeo

Note: Pin Number D-4 = Alignment Pin.
Veeo and GNDO are power and ground pins for the output buffers.

Vcc and GND are power and ground pins for the rest of the logic.

1-118

Am29027

CQFP PIN DESIGNATIONS (sorted by Pin No.)

Pin No. | Pin Name Pin No. Pin Name Pin No. Pin Name PinNo. | Pin Name
1 Fo 42 Vee 83 l2g 124 Razs
2 F1 43 GND 84 ls 125 R2s
3 F2 44 lo 85 la1 126 R22
4 Fs 45 I 86 DREQ 127 Res
5 Fa 46 I2 87 OE 128 Rz
6 Vceo 47 Ia 88 BINV 129 Rao
7 GNDO 48 ls 89 RESET 130 Ras
8 Fs 49 Is 90 RW 131 So
9 Fs 50 ls 91 DREQT 132 St
10 F7 51 17 92 DREQTo 133 Sa
11 Fs 52 ls 93 OPT2 134 S
12 Fo 53 lo 94 OPTh 135 Sa
13 Fio 54 lo . 95 OPTo 136 Ss
14 F11 55 I 96 CLK 137 Se
15 Fi2 56 12 97 Ro 138 Sy
16 Fi13 57 l13 98 R 139 Ss
17 Fia 58 GND 99 Rz 140 Ss
18 Fis 59 l1a 100 Rs 141 S
19 GNDO 60 lis 101 Rs 142 Sn
20 Veco 61 le 102 Vee 143 GND
21 Fie 62 li7 103 ‘GND 144 Vee
22 Fiz 63 l1s 104 Rs 145 Si2
23 Fis 64 hs 105 Rs 146 Sia
24 Fig 65 l20 106 R 147 Su
25 Fao 66 l21 107 Rs 148 Sis
26 Far 67 2 108 Re 149 S
27 Fz 68 Iz 109 Rio 150 Sy
28 Fzs 69 CDA 110 R 151 S
29 Fas 70 DRDY 111 R 152 S
30 Fos 7 DERR 112 Ria 153 S0
31 Fzs 72 GNDO 113 R 154 Sa1
32 Veco 73 Veco 114 Ris 155 Sz
33 GNDO | 74 EXCP 115 Ris 156 Ses
34 Faz 75 NC 116 Rz 157 Sa
35 Fas 76 NC 117 Ris 158 Sas
36 F2o 77 NC 118 R 159 So
37 Fao 78 loa 119 Reo 160 Sa7
38 Fa 79 I2s 120 Ra1 161 S
39 GND 80 ls 121 Ra2 162 S29
40 SLAVE 81 lz 122 Rz 163 Sao
41 MSERR 82 lo 123 Ras - 164 Sas

1-119

29K Family CMOS Devices

CQFP PIN DESIGNATIONS (sorted by Pin Name) -

Pin No. | Pin Name Pin No. | Pin Name Pin No. | Pin Name PinNo. | Pin Name
88 BINV 39 GND 41 MSERR 130 R
69 CDA 43 GND 75 NC 40 SLAVE
96 CLK 58 GND 76 NC 131 So
71 DERR 103 GND 77 NC 132 S
86 DREQ 143 GND 87 OE 133 S:
92 DREQTo 7 GNDO 95 OPTo 134 Ss
91 DREQT: 19 GNDO 94 OPT: 135 Ss
70 DRDY 33 GNDO 93 OPT: . 136 Ss
74 EXCP 72 GNDO 89 RESET 137 Se
1 Fo 44 o 90 RW - 138 S
2 Fi 45 It 97 Ro 139 Se

3 F2 46 l2 98 R 140 S

4 Fs 47 la 99 R2 141 Sie
5 Fa 48 la 100 Rs 142 Sn
8 Fs 49 Is 101 Ra 145 Sz
9 Fe 50 ls 104 Rs 146 " Su
10 F7 51 4 105 Rs 147 S
11 Fs 52 la 106 Ry 148 S1s
12 Fo 53 lo 107 Rs 149 S1s
13 Fo 54 lo -108 Re 150 S
14 Fu 55 I 109 Rio 151 S1s
15 Fiz 56 Iz 110 Ru 152 S
16 Fis 57 ha 111 Rz 153 S20
17 Fis 59 l1a 112 R 154 Sa1
18 Fis 60 Iis 113 Ru 155 S22
21 Fis 61 b 114 Ris 156 S2
22 Fiz 62 Iz 115 Ris 157 S24
23 Fie 63 ls 116 Rz 158 Sas
24 Fi9 64 lo 117 Ris 159 S26
25 F20 65 I20 118 - R 160 Sa7
26 Fai 66 121 119 Rz 161 S2s
27 Fz2 67 |2 120 Rz 162 S20
28 - Faa 68 I 121 Rz 163 Sao
29 F2s 78 l24 122 Rz 164 Sa
30 Fas 79 I2s 123 Rz 42 Vee
31 F2s 80 ls 124 Rzs 102 Vee
34 Far 81 Iz 125 Rzs 144 Vce
35 Fa2s 84 l2s 126 'Rz 6 Veeo
36 F2o 83 I29 127 Rzs 20 Veco
37 F3o 82 lao 128 R2e 32 Veco
38 Fa1 85 fa1 129 Rao 73 Veco

1-120

Am29027

LOGIC SYMBOL

Transaction {
Request

Rl

32

¥

32

U

32

BURy;

DREQ ‘
DREQT,-DREQT,

OPT~OPT,

INV

RJl—RO

SJI—SQ

ln=lo

GE
STAVE
CLK

3
O O
<l >

O
m
py)
s

Fu—Fo

MSERR

——-> Transaction
© Status

09114B-002C

1-121

29K Family CMOS Devices

ORDERING INFORMATION

Standard Products

AMD standard products are available in several packages and operating ranges. The ordering number
(Valid Combination) is formed by a combination of: . a. Device Number

>
Y]

9027 25 G

b. Speed Option (if applicable)
c. Package Type

d. Temperature Range

e. Optional Processing

-[-———— 9. OPTIONAL PROCESSING

Blank = Standard Processing
B = Burm-in

d. TEMPERATURE RANGE

C = Commercial (0 to +85°C)

c. PACKAGE TYPE
G = 169-Lead Pin Grid Array without Heatsink
(CGX169)

b. SPEED OPTION

Am29027

Arithmetic Accelerator

-25 =25 MHz
-20 = 20 MHz
=16 = 16 MHz

a. DEVICE NUMBER/DESCRIPTION

Valid Combin

ations

Valid Combinations
Valid Combinations list configurations planned to

© AM29027-25
AM29027-20
AM29027-16

GC, GCB

be supported in volume for this device. Consult
the local AMD sales office to confirm availability of
specific valid combinations, to check on newly
released combinations, and to obtain additional
data on AMD's standard military grade products. -

1-122

Am29027

MILITARY ORDERING INFORMATION
APL Products

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL
(Approved Products List) products are fully compliant with MIL-STD-883C requirements. The order number (Valid Combina-
tion) is formed by a combination of a. Device Number

b. Speed Optlon (if applicable)

c. Device Class

d. Package Type

e. Lead Finish

AM29027 -20 ;] z ¢

T'————— e. LEAD FINISH

C = Gold

d. PACKAGE TYPE
Z = 169-Lead Pin Grid Array without Heatsink
(CGX169)
Y = 164-Lead Ceramic Quad Flat Pack without Heatsink

c. DEVICE CLASS
/B =Class B

b. SPEED OPTION
—-20 =20 MHz
-16 = 16 MHz

a. DEVICE NUMBER/DESCRIPTION

Am29027
Arithmetic Accelerator

Valid Combinations

Valid Combinations Valid Combinations list configurations planned to

AM29027-20 - be supported in volume for this device. Consult

/BZC, /1BYC the local AMD sales oftice to confirm availability of

AM29027-16 specific valid combinations or to check on newly
. released valid combinations.

~ Group A Tests
Group A tests consist of Subgroups
1,2,3,7,8,9,10, 11.

1-123

29K Family CMOS Devices

PIN DESCRIPTION

BINV

Bus Invalid (Synchronous Input)

A logic Low indicates that the Am29000 address bus
and related control signals are invalid. The Am29027
will ignore signal DREQT1 when BINV is Low.

CDA

Coprocessor Data Accept (Three-State Output)

A logic Low indicates that the Am23027 is ready to ac-
cept data from the Am29000. This signal is normally
driven by the Am29027, and assumes a high-imped-
ance state only if input signal OE is High or input signal
SLAVE is Low.

CLK
Clock (Input)

DERR

Data Error (Three-State Output)

A logic Low indicates that an unmasked exception oc-
curred during or preceding the current transaction re-
quest. This signal is normally driven by the Am28027,
and assumes a high-impedance state only if input signal
OE is High or input signal SLAVE is Low.

DRDY

Data Ready (Three-State Output)

A logic Low indicates that data is available on Port F.
This signal is normally driven by the Am29027, and as-
sumes a high-impedance state only if input signal OE is
High or input signal SLAVE is Low.

DREQ

Data Request (Synchronous Input)

Alogic Low indicates that the Am23000 is making a data
access. The Am29027 will ignore signal DREQT: when
DREQ is High.

DREQT,

Start Instruction/Suppress Errors

(Synchronous Input)

This signal, when accompanied by a valid write operand
R, write operand S, write operands R, S, or write instruc-
tion transaction request, commands the Am29027 to
begin a new operation. When accompanying a valid
read result LSBs, read result MSBs, read flags, or read
status transaction request, DREQTo suppresses the re-
porting of operation errors. DREQTo also modifies the
action of the write status transaction request to retime
an operation in flow-through mode, or to invalidate the
ALU pipeline in pipeline mode.

DREQT,
Accelerator Transaction Request
(Synchronous Input)

A logic High indicates that the Am29000 is making an
accelerator transaction request. This signal is consid-

ered valid only when signal BINV is High and signal
DREQ is Low.

EXCP

Exception (Three-State Output))
Indicates that the status register contains one or more
unmasked exception bits. This signal can be used as
an interrupt or trap signal by the Am29000. EXCP is
normally driven by the Am29027, and assumes a high-
impedance state only if input signal OE is High or input
signal SLAVE is Low.

Fa—Fo
F Output Bus (Three-State Output)

|31"'0

Instruction Bus (Synhchronous Input)

Used to specify the operation to be performed by the
accelerator.

MSERR

Master/Slave Error (Output)

Reports the result of the comparison of processor out-
puts with the signals provided internally to the off-chip
drivers. If there is a difference for any enabled driver,
MSERR assumes the logic High state.

OE

Output Enable (Asynchronous Input)

A logic High forces all accelerator outputs except
MSERR to assume a high-impedance state uncondi-

tionally; master/slave comparison circuitry is also dis-
abled. This signal is provided for test purposes.

OPT~OPT,

Transaction Type (Synchronous Input)

These signals, in conjunction with RAW, specify the type
of accelerator transaction, if any, currently being re-
quested by the Am29000.

R31"R0
R Data Bus (Synchronous Input)

RESET

Reset (Asynchronous Input)

Resets the Am29027. When RESET is a logic Low, the
state of internal sequencing circuitry is initialized, and
the status register is cleared. RESET must be connected
to the signal line used to reset the Am29000.

R/W

Read/Write (Synchronous Input)

Determines the direction of a transaction. When R/Wis
High, data is transferred from the Am29027 to the
Am29000; when R/Wis Low, dataistransferred fromthe
Am29000 to the Am29027.

1124

Am29027

S:n—So
S Data Bus (Synchronous Input)

SLAVE

Master/Slave Mode Select

(Synchronous Input)

Alogic Low selects Slave mode; in this mode all outputs
except MSERR assume a high-impedance state. Alogic
High selects Master mode.

FUNCTIONAL DESCRIPTION

Overview

The Am28027 is a high-performance, single-chip arith-
metic accelerator forthe Am29000 Streamlined Instruc-
tion Processor.

Architecture

The Am29027 comprises a high-speed ALU, a 64-bit
data path, and control circuitry.

The core of the Am29027 is a 64-bit floating-point/inte-
ger ALU. The ALU takes operands from three 64-bit
input ports and performs the selected operation, placing
the result on a 64-bit output port. Seven ALU flags report
operation status. The ALU is completely combinatorial
for minimum latency; optional pipelining is available to
boost throughput for vector operations.

The data path consists of two 32-bit input buses, R and
S; two 64-bit input registers; two 64-bit temporary input
registers; a 64-bit result register; an 8-word-by-64-bit
register file for storage of intermediate results; three op-
erand selection multiplexers that provide for orthogonal
selection of input operands; an output multiplexer that
selects data, operation fiags, operation status, or other
accelerator state; and a 32-bit output bus, F. Input oper-
ands enter the floating-point accelerator through the R
and S buses, and are then demultiplexed and buffered
for subsequent storage in the input registers. The oper-
and selection multiplexers route the operands to the
ALU; operation results and status leave the device on
Output Bus F. Operation results also can be stored in
the register file for use in subsequent operations.

On-board control circuitry sequences the ALU and data
path during operations, and manages the transfer of
data between the accelerator and the Am29000. A
32-bit instruction register and a 32-bit temporary in-
struction register hold the instruction words for current
and pending operations.

Instruction Set

The Am29027 implements 57 arithmetic and logical in-
structions. Thirty-five instructions operate on floating-
point numbers; these instructions fall into the following
categories: . :

B addition/subtraction
B multiplication

multiplication-accumulation

comparison

selecting the maximum or minimum of two numbers
rounding to integral value

absolute value, negation, pass

reciprocal seed generation

conversion between any of
floating-point formats,
between precisions

m - conversion of a floating-point number to an integer

format, with an optional scale factor

By concatenating these operations, the user can also
perform - division, square-root extraction, polynomial
evaluation, ‘and other functions not implemented
directly.

the supported
including conversions

Twenty-two instructions operate on integers, and be-
long to the following general categories;

M addition/subtraction

multiplication

comparison

selecting the maximum or minimum of two numbers
absolute value, negation, pass

logical operations, e.g., AND, OR, XOR, NOT
arithmetic, logical, and funnel shifts

conversion between single- and double-precision
integer formats

conversion of an integer numberto a ﬂoatihg-point
format, with an optional scale factor

M pass operand

One special instruction is provided to move data.

Performance

The Am29027 provides operation speeds several times
greater than conventional floating-point - processors
by virtue of its extensive use of combinatorial, rather
than sequential, logic. Most floating-point operations,
whether single, double, or mixed precision, can be
performed in as few as six system clock cycles. Perfor-
mance is further enhanced by the presence of the
on-board register file that can be used to hold intermedi-

- ate results, thus reducing the amount of time needed to

transfer operands between the Am29027 and the
Am29000. The input operand registers and the instruc-
tion register are double-buffered, so that a new opera-
tion canbe specified while the current operation is being
completed.

Interface :

The Am23027 connects directly to the Am29000 system
buses. Am29027 operations are specified by a series of

1-125

29K Family CMOS Devices

operand and instruction transactions issued by the
Am29000. Eight input signals specify the transaction to
be performed; three output signals report transaction
status.

Master/Slave

The Am29027 contains special comparison hardware to
allow the operation of two accelerators in parallel, with
one accelerator (the slave) checking the results pro-
duced by the other (the master). This feature is of
particular importance in the design of high-reliability
systems.

Support

The Am29027 IEEE format is fully supported by those
hardware and software tools available forthe Am29000,
including:

B HighC29K Cross-Development Toolkit

W ASM29K Cross-Development Toolkit

B ADAPT29K, a general-purpose hardware develop-
ment system. The ADAPT29K permits single-step
operation, break-point insertion, and other standard
debugging techniques.

Block Diagram Description

A block diagram of the Am29027 is shown in Figure 1.
The Am29027 comprises the input registers, the oper-
and selection multiplexers, the instruction register, the
ALU, the output register/register file, the flag register,
the status register, the output multiplexer, the mode reg-
ister, the control unit, and the master/slave comparator.

ISi_lO R:Il_RO s:n—so
» 32 \ 32 . 32
P] B] | Prvem] pomemp] | oo I P]
| BN A ! D RFy
'>1 ' " D .
2:1 : : y
' b R I P S] i [Constants| b RF,
D Instr. M e -
220" il AT SO Sal 00T
| R Operand Select I
RW O— —> Y64 K64 64
DREQ D—¥ : } :
DREQT, O \/_J
DREQT, D—¥ - P \/ Q T
OPT, FP/Integer ALU
OPT, . =% Control
OPT, D— ' Unit F
BINV. D—» . 64
T I——
lg— Mode “~ 7
Instruction Fegister prec,
DAO—G— . Register ¢~ Registerp F k Flags I | Status I
ﬁﬁfﬁo—d— o ‘\1\,32*324‘32 \La Jaf 32 7 47
i — \ y
DERR : I 8:1 Multiplexer l
32
B D>— Master/Slave :
OE Comparator
RESET - O—» 6
CLK o—)
SIAVE bD—»> MSERR Fa=Fo EXCP
Figure 1. Am29027 Block Diagram ‘ 09114-003C

1-126

Am28027

Input Registers

Operands are loaded into the accelerator via the 32-bit
R and S buses, and are demultiplexed and buffered for
subsequent storage in 64-bit registers R and S; input op-
erands may be either single-precision (32-bit) ordouble-
precision (64-bit). Two single-precision or one double-
precision operand may be written to the input registers
in a single system clock cycle. Accompanying the input

registers are two 64-bit temporary registers, R-Temp

and S-Temp, that permit the overlapping of operand
transfers and ALU operations.

Operand Selection Multiplexers

The operand selection multiplexers route operands
to the ALU. These multiplexers, as well as selecting
operands from input registers R and S and register file
locations RF7—RFo, also have access to a set of floating-
point and integer constants. These constants are
double-precision preprogrammed numbers for use in
ALU operations, and are automatically provided in the
appropriate format.

Instruction Register

The instruction register stores a 32-bit word specifying
the current accelerator operation. Included in the in-
struction word are fields that specify the core operation
to be performed by the ALU, operand format (integer or
floating-point), sign-change selects for ALU input and
result operands, operand precisions, operand sources,
and register file controls. The instruction register is
. preceded by the 32-bit temporary register, I-Temp, per-
mitting the overlapping of instruction transfers and ALU
operations. Instructions enter the accelerator via 32-bit
Instruction Bus I.

ALU

The ALU is a combinatorial arithmetic/logic unit that
performs a large repertoire of floating-point and integer
operations. The ALU has three operand inputs. Some
operations require a single input operand, for example,
conversion operations. Others, such as addition or mul-
tiplication, require two input operands. The multiplica-
tion-accumulation and funnel shift operations require
three input operands. Most ALU operations allow the
user to modify operand signs, thus greatly increasing
the number of arithmetic expressions that can be evalu-
ated in a single ALU pass.

The ALU can be configured in either flow-through mode,
for which the ALU is completely combinatorial, or pipe-
line mode, forwhich ALU operations are divided into one
or two pipeline stages.

Output Register/Register File

Operation results are stored in 64-bit output register F;
results can also be stored in the 8-by-64-bit register
file for use in subsequent operations. A precision regis-
ter, part of the register file, contains bits indicating the

precisions of the operands stored in each register file .

location, thus permitting the ALU to correctly process
these operands in later operations.

Flag Register

The 32-bit flag register stores flags pertaining to the
most recently performed operation. The flags indicate
error conditions, such as underflow or overflow, and
also report results for operations that produce result
flags, such as comparisons.

Status Register

The 32-bit status register contains information regard-
ing the status of past, current, and pending operations.

Six exception bits report operation error conditions.
These exception bits are individually latched; once a
givenbit is set, it remains set until reset by the Am29000
or by system reset. The exception bits indicate error
conditions of overflow, underflow, zero result, reserved
operand, invalid operation, and inexact result. At the us-
er's option, the presence of an exception can be usedto
report a data error to the Am23000, or to halt Am29027
operation; exception bits can be individually enabled or
disabled by programming the corresponding mask bit in
the mode register.

Exception bit activity is summarized by a seventh bit,
Exception Status, which indicates that one or more un-
masked status bits are set. If desired, the state of this bit
can be placed on signal EXCP, which can be usedto in-
terrupt the Am29000.

The status register contains four additional bits—
R-Temp Valid, S-Temp Valid, I-Temp Valid, and Opera-
tion Pending—that pertain to the state of pending oper-

. ands and operations.

Output Multiplexer

The output multiplexer routes operation results and ac-
celerator's internal state to the Am29000 through the
32-bit F bus. This multiplexer can select Register F, the
flag register, status register, instruction register, mode
register, or precision register.

Mode Register

The 64-bit mode register contains accelerator control
parameters that change infrequently or not at all, such
as floating-point format, round mode, and operation
timing information. These parameters are initialized by
the Am29000 during system start-up, and are modified
as required during operation.

Control Unit

The control unit manages the transfer of data between
the Am239000 and the Am23027, as well as the timing of
operation execution. The Am23000 oversees operation
ofthe Am29027 by issuing one of thiteen commands, or
transaction requests, to the control unit via eight signal
lings. Each transaction request specifies an action on
the part of the Am29027, such as writing an operand to
an input register or returning a result to the Am29000.
The control unit interprets the transaction request and
sequences the Am23027 to produce the desired action.
Three transaction status lines are generated by the con-

1127

29K Family CMOS Devices

trolunit to indicate transaction completion, or to indicate
the existence of an accelerator error condition.

Master/Slave Comparator

Each Am29027 output signal has associated Ioglc that
compares that signal with the signal that the accelerator
provides internally to the output driver; any discrepan-
cies are indicated by assertion of signal MSERR.

For a single accelerator, this output comparison detects
short circuits in output signals or defective output driv-
ers, but does not detect open circuits. It is possible to
connect a second accelerator in parallel with the first,
with the second accelerator’s outputs disabled by asser-
tion of signal SLAVE. The second accelerator detects
open-circuit signals, and provides a check of the outputs
of the first accelerator.

System Interface

Am29000/Am29027 signal interconnects are depicted
in Figure 2.

Three Am29027 buses—Rs1—Ro, lai—lo, and Fa1—Fo—are
connected to Am29000 Data Bus Da1—Do; the remaining
Am29027 bus, Sa1-So, is connected to Am29000 Ad-

dress Bus Aai—Ao. Through these connections, the
Am29000 can transfer to the Am29027 a 32-bit instruc-
tion, two 32-bit operands, or a 64-bit operand in a single
cycle, or canreceive a 32-bit result fromthe Am29027 in
a single cycle.

Twelve additional signals govern communication be-
tweenthe Am29000 and Am29027. Eight Am29000 out-
put sngnals—RNV DREQ, DREQT:, DREQTo, OPT2-
OPTe, and BINV—are connected to the corresponding
Am29027 signals and are used to issue transaction
requests to the Am29027. Three Am23027 sig-
nals—CDA, DRDY, and DERR—report transaction
status. CDA is directly connected to the corresponding
input of the Am28000, while DRDY and DERR must be
ORed with like signals from other resources. A fourth
Am29027 signal, EXCP, may be connected to an
Am29000 trap or interrupt input to signal the presence of
Am29027 operation exceptions at the user's option.

The Am239027 takes its clock input from the Am29000
SYSCLK system clock output.

The signal used to reset the Am29000 must also be
connected to the Am29027 RESET input.

Am29000 RESET Am29027
RESET L RESET
RW RW
DREQ DREQ
DREQT, DREQT,
DREQT, DREQT,
OPT: OPT:
OPT, OPT,
OPT, OPT,
BINV BINV
CDA CDA

orTrap [~~~ 5; """""" EXCP
Ao~ M 5,5,
Dar‘Dc /, | 32 H:u—Ro ‘
T OF f¢——
4 Fs—Fo SCAVE ——
- SYSCLK CLK MSERR| >
INCLK .
Sgstem ©09114-004C
lock

Figure 2. Am29000/Am29027 Hardware Interface

1-128

Am29027

Special-Purpose Registers

The Am23027 contains six special-purpose registers:
the mode register, status register, flag register, preci-
sion register, instruction register, and I-Temp register.

Mode Register

The 64-bit mode register stores 24 infrequently changed
parameters pertaining to accelerator operation; its for-
matis shownin Figure 3. The Am29000 modifies the ac-
celerator parameter set by issuing a write mode register
transaction request.

The mode register should be initialized after hardware
reset, and may be written with new parameters when a
new mode of accelerator operation is required; mode
changes take effect immediately. The Am29027 does
not alter the contents of the mode register in the course
of operation.

Bits 63-47—Reserved for future use. This field must
be set to 0 to assure future compatibility.

Bit 46—EXCP Enable (EX): When EX is High, report-
ing ofunmasked exceptions via signal EXCPis enabled.
When EX'is Low, signal EXCP is forced inactive (logic
High).

Bit 45—Halt On Error Enable (HE) When HE is High,
the Am28027 will halt operation in the presence of an
unmasked exception.

Bit 44—Advance DRDY (AD): When AD is High, signal
DRDY is advanced one cycle in flow-through mode. This
bit has no effect in pipeline mode.

Bits 43-40—Timer Count for the MOVE P Operation
(MVTC): In flow-through mode, MVTC specifies the
number of clock cycles needed for data to traverse the
ALU forbase operation code MOVE P; in pipeline mode,
it has no effect. This field can assume values between 3
and 15, inclusive.

Bits 39-36—Timer Count for the Multiply-Accumu-
late Operation (MATC): In flow-through mode,
MATC specifies the number of clock cycles needed for
data to traverse the ALU for base operation code
F'=(P’x Q') + T"; in pipeline mode, it has no effect. This
field can assume values between 3 and 15, inclusive.

Bits 35-32—Pipeline Timer Count (PLTC): In flow-
through mode, PLTC specifies the number of clock cy-
cles needed for data to traverse the ALU for any base
operation code except F’ = (P’ x Q") + T"or MOVE P; in
pipeline mode, it specifies the number of cycles needed
for data to traverse a single pipeline stage for any base
operation code. This field can assume values between 3
and 15, inclusive, in flow-through mode, and between 2
and 15, inclusive, in pipeline mode.

Bits 31-28—Reserved for future use. This field must
be set to 0 to assure future compatibility.

Bit 27—Zero Result Exception Mask (ZMSK): When
ZMSK is High, the status register zero result exception

bit is masked and will not contribute to the detection of
an error condition.

Bit 26—Inexact Result Exception Mask (XMSK):
When XMSK is High, the status register inexact result
exception bit is masked and will not contribute to the de-
tection of an error condition.

Bit 25—Underflow Exception Mask (UMSK): When
UMSK is High, the status register underflow exception
bit is masked and will not contribute to the detection of
an error condition.

Bit 24—Overflow Exception Mask (VMSK): When
VMSK is High, the status register overflow exception bit
is masked and will not contribute to the detection of an
error condition.

Bit23—Reserved Operand Exception Mask (RMSK):
When RMSK is High, the status register reserved oper-
and exception bitis masked and will not contribute to the
detection of an error condition.

Bit 22—Invalid Operation Exception Mask (IMSK):
When IMSK is High, the status register invalid operation
exception bit is masked and will not contribute to the
detection of an error condition.

Bit 21—Reserved for future use. This bit must be set
to 0 to assure future compatibility.

Bit 20—Pipeline Mode Select (PL): When PL is High,
pipeline mode is selected; when PL is Low, flow-through
{unpipelined) mode is selected.

Bits 19-17—Reserved for future use. This field must
be set to 0 to assure future compatibility.

Bits 16—14—Round Mode Select (RMS): Selects one
of six rounding modes as follows:

RMS Round Mode

000) Round to nearest (IEEE)
001 Round to minus infinity
010 Round to plus infinity
011 Round to zero

100 Round to nearest (DEC)
101 Round away from zero
11X lilegal value

Additional mformahon on round modes can be found in
Appendix B.

Bits 13-12—Integer Multiplication Format Adjust
(MF): Selects the output format for integer multiplica-

. tion. The user may select either the MSBs or the LSBs of

an integer multiplication result, with optional format
adjust. MF is encoded as follows:

MF Output Format

00 LSBs

01 LSBs, format-adjusted
10 MSBs

11 MSBs, format-adjusted

1-129

29K Family CMOS Devices

“Format-adjusted” indicates that the product is shifted
left one place before the MSBs or LSBs are selected.

Bit - 11—Integer Multiplication Signhed/Unsigned
Select (MS): If MS is High, input operands for integer
multiplication operations are treated as two’s comple-
ment numbers. If MS is Low, the input operands are
treated as unsigned numbers.

Bit 10—Reserved for future use. This bit must be set
to 0 to assure future compatibility.

Bit 9—~IBM Underflow Mask Enable (BU): If BU is
High, certain underflowed IBM operations will produce a
normalized result with a biased exponent increased by
128. It BU is Low, these operations will produce a final
resultof true zero. BU affects only those operations that
produce aresultin 1BMformat and that use the following
base operation codes: :

F=P+T Convert T to Alternate F.P. Format
FF=PxQ Convert T from Alternate F.P.
Compare P, T Format

F'=(P’xQ) + T Scale T to Floating-point by Q

Bit 8—IBM Significance Mask Enable (BS): If BS is
High, certain IBM operations having intermediate re-
sults of 0 will produce a final result of 0 with the
biased exponent unchanged. If BS is Low, these opera-
tions will produce a final result of true zero. BS affects
only those operations that produce a result in 1BM
format and thatuse the F’ = P’ + Q"and COMPARE P, T
base operation codes.

Bit 7—IEEE Sudden Underflow Enable (SU): If SU is
High, all IEEE denormalized results are replaced by a0
of the same sign; if SU is Low, the appropriate denor-
malized number will be produced. If IEEE traps are en-
abled (mode register bit TRP High}, sudden underflow is
disabled.

Bit 6—|EEE Trap Enable (TRP): If TRP is High, IEEE

trapped operation is enabled; the Saturate Enable
(SAT) and Sudden Underflow (SU) bits are ignored. For
anunderflowed result, the biased exponent is increased
by 192 (single precision) or 1536 (double precision),
with the significand unchanged. For an overflowed re-
sult, the biased exponent is decreased by a like amount

with the significand unchanged. If TRP is Low, IEEE
trapped operation is disabled. This bit affects only those
operations that produce a result in IEEE floating-point
format.

Bit 5—IEEE Affine/Projective Select (AP): If AP is
High, IEEE addition or subtraction operations having
infinite input operands are performed in affine mode; if
AP is Low, these operations are performed in projective
mode. In affine mode, it is permissible to add infinities of
like sign or subtract infinities of opposite sign, producing
an infinite result with the appropriate sign. In projective
mode these operations will produce an invalid operation
exception. This bit affects only those operations that
produce a result in IEEE floating-point format.

Bit 4—Saturate Enable (SAT): If SAT is High, over-
flowed results are replaced by the largest representable
value in the selected format of the same sign as the
overflowedresult; if SAT is Low, the result produced de-
pends on the overilow conventions for the selected
floating-point format. If IEEE traps are enabled (mode
register bit TR High), saturation is disabled for any
operation that produces a result in IEEE floating-point
format.

Bits 1-0 Primary Floating-Point Format (PFF),
Bits 3-2 Alternate Floating-Point Format (AFF): The
primary format is used as the source and destination for-
mat for all floating-point operations except conversions;
and as the source or destination format for operations
that convert between floating-point and integer formats.
The alternate format is used as a source or destination
format in operations that convert one floating-point
format to another. Both the PFF and AFF fields are en-
coded as follows:

High Low

Bit Bit Format
0 0 IEEE
0 1 DEC F (Single), DEC D (Double)
1 0 DEC F (Single), DEC G (Double)
1 1 IBM

Floating-point formats are discussed in further detail in
Appendix A.

63 47 46 45 44 43 40 39 3635 32
E H A M M P
X E D v A L
T T T
- C o} C

31 28 27 262524 2322 2120 19 17 16 14 13 12 1110 9 8 7 65 43 21 0
ZIXJU|V]IR]I Pl R M M B|B|S|T| A] S A P
. M{M|M|M|M|M| .| L . M F S|.]U[SJU|R|P]A F F
S|S|S|S|S|S S P T F F

K|KIK|K|K|K)
Figure 3. Mode Register 09114-005C

1-130

Am29027

Status Reglster

The status register contains operation exception status,
as well as the status of pending operands and opera-
tions; its format is shown in Figure 4. The Am29000 can
initialize or modify the contents of the status register by
issuing a write status transaction request, and can read
current status register contents by issuing a read status
transaction request or as part of a save state sequence.

All status register bits are initialized to a logic Low after
hardware reset.

3 43 1110 98 7 65 43 2 10
o dolifs[rle]z|x|ulvr]i
Reserved PIVIVI|VI|SIEIE|E|EJE|E
Plala|A] [xIx|x|x]x|x

h)

(49
09114-006C

Figure 4. Status Register

Bits 31-11—Reserved for future use. This field must
be set to 0 when written to assure future compatibility.

Bit 10—Operation Pending (OPP): A logic High indi-
cates that an operation awaits execution.

Bit 9—I-Temp Valid (IVA): A logic High indicates that
register I-Temp contains an instruction for a pending
operation.

Bit 8—S-Temp Valld (SVA): A logic High indicates that
register S-Temp contains an operand for a pending
operation.)

Bit 7—R-Temp Valid (RVA): A logic High indicates that
register R-Temp contains an operand for a pending
operation. E

Bit 6—Exception Status (ES): A logic High indicates
that status register bits 0-5 contain an unmasked
exception.

Bit 5—Zero Result Flag (ZEX): A logic High indicates
that an operation produced a zero result. Latches until
cleared.

Bit 4—Inexact Result Bit (XEX): A logic High indicates
that an operationresult had to be rounded to fit the desti-
nation format. Latches until cleared.

Bit 3—Underflow Exception Bit (UEX): A logic High
indicates that an operation result has underflowed the
destination format. Latches until cleared.

Bit 2—Overflow Exception Bit (VEX): A logic High in-
dicates that an operation result overflowed the destina-
tion format. Latches until cleared.

Bit 1—Resetved Operand Exception Bit (REX): A
logic High indicates that a reserved operand appeared
as aninputoperandto an operation orwas generated as
a result. Latches until cleared.

Bit 0—Invalid Operation Exception Bit (IEX): A logic
High indicates that input operands are unsuitable for the
operation performed (e.g., = % 0). Latches until cleared.

Flag Register

The flag register contains 7 flag bits that report excep-
tion or Boolean results for the most recently performed
operation; its format is shown in Figure 5. The remaining
25 register bits are reserved for future. use. The

- Am29000 can read the current flag register contents by

issuing a read flags transaction request.

Flag register bits 6-0 correspond to Flag 6-Flag 0
(FLe—FLo).

These flags assume a meaning that is operation-de-
pendent, as discussed in the Operation Flags section.

The flag register is made transparent in flow-through
mode.

31 . 7 65 43 210
TC
FIF|F[F|F|F|F
Reserved LjejLjLefrfe
6|5]413|2]1]0
3
(49
09114-007C
Figure 5. Flag Register

1-131

29K Family CMOS Devices

Precision Register

The precision register contains 8 bits that report the pre-
cision of operands stored in the register file; its format is
shown in Figure 6. Bit 0 (PRo) reports the precision of
register file location 0 (RFo), bit 1 the precision of loca-
tion 1 (RF1), and so on. A logic High indicates a single-
precision value, logic Low a double-precision value.

The precision register also contains the Accelerator Re-
lease Level (ARL), an 8-bit, read-only identification
number that specifies the accelerator version. The ARL
field occupies bits 31-24.)

The remaining 16 bits of the precision word are reserved
for future use, and must be set to 0 when written to as-
sure future compatibility.

31 24 23 . 876543210
hl aRRRRRRE
ARL Reserved {RIR|{R|R|R|R|R|R
7lels]alaf2]1]o

b))

e
09114-008A

Figure 6. Precision Register

Instruction Register, I-Temp Register

The instruction register contains a 32-bit instruction
word that specifies the ALU operation; its format is
shown in Figure 7.

31 30282724 232019161514 1312111098 76 5 40

R| R PlQl TIILIRl s|s|s]s|L|C
el F M| M| MIPIP[I | | Il |F|O
S S|S|S|IRIRI.P|JQ}| T]| F

09114-009A

Figure 7. Instruction Register

Bit 31—Reglster File Enable (RF): Enables a write to
the register file. When RF is High, the operation result is
written to the register file location specified by RFS and
the resulting precision is written to the corresponding bit
of the precision register. When RF is Low, no write
is performed either to the register file or the precision
register.

Bits 30-28—Register file select (RFS): Selects the
register file location (RF7—RFo) to which the operation
resultis to be written. If bit RF is Low, the value of RFS is
a “don’t care.” '

Bits 27-24—Select for P Operand - Multiplexer
(PMS): Selects the data input for the ALU P port.

Bits 23-20—Select for Q Operand Multiplexer
(QMS): Selects the data input for the ALU Q port.

Bits 19-16—Select for T Operand Multiplexer (TMS):
Selects the data input for the ALU T port.

Bit 15—Input Preclsion (IPR): Precision of the oper-
ands in Registers R and S; single precision when High,
double precision when Low.

Bit 14—Result Precision (RPR): Precision of the ALU
output; single precision when High, double precision
when Low.

Blts 13-12—Sign P (SIP): Sign-change control for the
ALU P input.

Bits 11-10—Sign Q (SIQ): Sign-change control for the
ALU Q input.

Bits 9-8—Sign T (SIT): Sign-change control for the
ALU T input.

Bits 7-6—Slign F (SIF): Sign-change control for the
ALU output.

Bit 5—Integer/Floating-point Select (IF): A logic Low
selects a floating-point operation, a logic High aninteger
operation.

Bits 4-0—Core Operation (CO): Specifies the core op-
eration to be performed by the ALU.

The function of the instructionword fields is discussed in
turther detail in the Accelerator Instruction Set section.

The 1-Temp register has a format identical to that of the
instruction register; this register is used to temporarily
buffer instructions for pending operations, thus allowing
the overlap of operation specification and execution.

The Am29000 can write to the instruction and I-Temp
registers by issuing the write instruction transaction
request, and can read the contents of these registers as
part of the save state sequence.

Operand Registers

The Am29027 holds operands in thirteen 64-bit regis-
ters. Four registers—R, S, R-Temp, and S-Temp—
store ALU input operands; a fifth register, F, stores ALU
results. Eight. remaining registers, RF—RFo, are ar-
ranged as a file into which operation results can be
written, and fromwhich operands canbe taken foruse in
subsequent operations.

All operand registers share common data formats; any
register can hold a single- or double-precision floating-
point number, or a single- or double-precision integer.

- Floating-point numbers are stored with the signbitinthe

most significant bit (bit 63) of the operand register. For
single-precision numbers, the 32 LSBs of the register
are unused; the value of these unused bits is a “don’t
care.”

Integer numbers are stored with the least significant bit
placed in the least significant bit (bit 0) of the operand

1-132

Am29027

register. For single-precision numbers, the 32 MSBs of
the register are unused; the value of these unused bits is
a‘"don't care.” Floating-point and integer formats are de-
scribed in further detail in Appendix A.

Accelerator Transaction Requests

The Am29000 controls the Am29027 with 13 transac-
tion requests. Transaction request type is indicated by
the state of four signals: R/W and OPT>-OPTo. Table 1
lists the transaction types and corresponding signal
states.

Transaction requests are conditioned by signal
DREQT: (which when High_indicates an accelerator
transaction) and signals BINV and DREQ. The
Am29027 will recognize a transaction request only if
DREQT: and BINV are High and DREQ is Low.

Signal DREQTo modifies the execution of most transac-
tion requests. For transaction requests that transfer
operands or instructions to the Am29027, asserting
DREQTo will start the execution of an accelerator
operation. For transaction requests that transfer opera-
tion results, status, or flags to the Am29000, asserting
DREQTo will. suppress the reporting of unmasked
exceptions via signal DERR. For the write status trans-
actionrequest, asserting DREQTo either retimes the op-
eration currently described by the instruction register
(flow-through mode) or invalidates the ALU pipeline
(pipeline mode).

Write Transaction Requests

Write transactions transfer data from the Am29000 to
the Am29027, or cause the Am29027 to transfer data
internally. To perform a write request, the Am29000:

B [ssues the appropriate transaction request on
signals OPT=—OPTo, and asserts signal R/W Low

B Places the data to be transferred, if any, on output
signals Dai-Do and Aai-Ao.

The Am29027 responds to the request by asserting one
(and only one) of two status signals:

m CDA indicates that the Am29027- will take the
specified action and clock.in the data accom-
panying the transaction request, if any, on the next
rising edge of clock.)

B DERR indicates that the Am29027 is unable to
accept the data, due to the presence of an
unmasked exception.

Timing for write transactions is illustrated in Appendix D.

Table 1. Transaction Requests

R'W OPT. OPT, OPT, Request Type

1] 0 0 1] Write Operand R

0 0 0 1 Wirite Operand S

1] 0 1 0 Write Operands'R, S
0 0 1 1 Write Mode

1] 1 0 0 Write Status

0 1 0 1 Write RF Precisions
0 1 1 0 Write Instruction

0 1 1 1 Advance Temp Registers
1 (o] 1] 0 Read Results MSBs
1 0 (o] 1 Read Results LSBs
1 o] 1 0 Read Flags

1 1] 1 1 Read Status

1 1 0 0 Save State

There are eight write transactions:

Write Operand R: An operand is written to Input Regis-
ter R and/or R-Temp. The most significant half of the
64-bitoperand to be written is placed on Input Bus R, the
least significant half on Input Bus S. The action taken
depends on signal DREQTo and on whether an accel-
erator operation will be in progress during the next clock
cycle.

Operation
in progress Data Operation
DREQT, next written R-Temp pending
asserted . clock cycle to valid bit bit
No X R-Temp Set Unchanged
Yes No R-Temp, R Reset Reset
Yes Yes R-Temp Set Set

It DREQTois asserted and no accelerator operation will
be in progress during the next clock cycle, a new opera-
tion will be started on the next rising edge of CLK.

If mode register bit HE {Halt On Error Enable) is High
and an unmasked exception has been detected, the
Am29027 will respond to a write operand R request by
asserting signal DERR; the contents of Registers R and
R-Temp will not be changed, andthe R-Temp Valid and
Operation Pending bits will retain their current values.

Write Operand S: An operand is written to Input Regis-
ter S and/or S-Temp. The most significant half of the
64-bit operand to be written is placed on Input Bus R,
the least significant half on Input Bus S. The actiontaken
depends on signal DREQTo and on whether an accel-
erator operation will be in progress during the next clock
cycle.

1-133

29K Family CMOS Devices

Operation
In progress = Data Operation
DREQT, next written S-Tem| pending
asserted ~clock cycle to valid bit bit
No X S-Temp Set Unchanged
Yes No S-Temp, S Reset Reset
Yes Yes S-Temp Set Set

If DREQTo is asserted and no accelerator operation will
be inprogress during the next clock cycle, a new opera-
tion will be started on the next rising edge of CLK.

If mode register bit HE (Halt On Error Enable) is High
and an unmasked exception has been detected, the
Am29027 will respond to a write operand S request by
asserting signal DERR; the contents of Registers S and
S-Temp will not be changed, and the S-Temp Valid and
Operation Pending bits will retain their current values.

Write Operands R, S: Two 32-bit operands are written
to Registers R and S and/or Registers R-Temp and S-
Temp. The 32-bit operand to be written to Registers Ror
R-Temp is placed on Input Bus R; the 32-bit operand to
be written to Registers S or S-Temp is placed on Input
Bus S. Each 32-bit word is written to both the upper and
lower halves of the target register. The action taken
depends on signal DREQTo and on whether an accel-
erator operation will be in progress during the next clock
cycle.

Operation
in progress Data R-, S- Operation
DREQT, next written - Temp pending
asserted clockcycle to valid bits bit
No X R-Temp Set Unchanged
S-Temp .
Yes No R-Temp = Reset Reset
. S-Temp
R, S
Yes Yes - R-Temp Set Set
S-Temp

If DREQTo is asserted and no accelerator operation will
be inprogress during the next clock cycle, a new opera-
tion will be started on the next rising edge of CLK.

If mode register bit HE (Halt On Error Enable) is High -

and an unmasked exception has been detected, the
Am29027 will respond to a write operands R, S request
by asserting signal DERR; the contents of Registers R,
R-Temp, S, and S-Tempwil not be changed, and the R-
Temp Valid, S-Temp Valid, and Operation Pending bits
will retain their current values. ‘

Write Mode: A 64-bit word is written to the mode regis¥
ter. The least significant half of the mode word is placed

on Input Bus R, the most significant half on Input Bus S.

The state of signal DREQTo is a “don't care” for this
transaction request.

Write Status: A 32-bit word is written to the status regis-
ter and the status word to be written is placed on Input
Bus R. Asserting signal DREQTo will produce an addi-
tional action that is mode-dependent. In flow-through
mode, asserting DREQTo will cause the operation cur-
rently specified by the instruction register to be retimed;
operation results will not be written to the status register
or the register file. In pipeline mode, asserting DREQTo
will invalidate the ALU pipeline.

Write Register File Precisions: A 32-bit word indicat-
ing the precisions of register file locations RF—RFo is
written to the precision register; the precision word to be
written is placed on Input Bus R. The state of signal
DREQTo is a “don’t care” for this transaction request.

Write Instruction: A 32-bit accelerator instruction is
written to the instruction register and/or Register |-
Temp. The 32-bit instruction is taken from input signals
lsi~lo. The action taken depends on signa! DREQTe, and
on whether an accelerator operation will be in progress
during the next clock cycle.

Operation -
In progress Data Operation
DREQT, next written - l-Temp pending
asserted clockcycle to valid bit bit
No X I-Temp Set = Unchanged
Yes No I-Temp Reset Reset
instruction
register
Yes Yes I-Temp Set Set

If DREQTois asserted and no accelerator operation will
be in progress during the next clock cycle, a new opera-
tion will be started on the next rising edge of CLK.

If mode register bit HE (Halt On Error Enable) is High
and an unmasked exception has been detected, the
Am29027 will respond to a write instruction transaction
request by asserting signal DERR; the contents of Reg-
ister I-Temp and the instruction register will not be
changed, and the |-Temp Valid and Operation Pending
bits will retain their current values.

Advance Temp Registers: The contents of the R-
Temp, S-Temp, and I-Temp registers are transferred to
Register R, Register S, and the instruction register, re-
spectively. The state of signal DREQTo s a “don't care”
for this transaction request. The advance temp registers
transaction request is used during restoration of accel-
erator state.

Read Transaction Requests

Read transactions transfer data from the Am29027 to
the Am29000. When data.is to be transferred, the
Am29000:

1134

Am29027

B Issues the appropriate transaction request on
signals OPT—0OPTo, and asserts signal R/W High.

m Places its data bus drivers in a high-impedance
state.

The Am29027 then places the requested data on sig-
nals Fai—Fo and issues two status signals:

B DRDYindicates that the data requested is available
on Output Bus Fai—Fo.

m DERRindicates that the Am29027 has detected an
unmasked exception; the exception may or may not
be relfated to the data requested.

DRDY and DERR may both be active at the same time;

if so, the Am29000 will respond to DERR and ignore

DRDY.

Timing for read transactions is illustrated in Appendix D.
There are five read transactions:

Read Result MSBs: The 32 MSBs of Register F are
placed on output bus F. Asserting signal DREQTo will
suppress the reporting of unmasked exceptions.

Read Result LSBs: The 32 LSBs and 32 MSBs of
Register F are placed on Output Bus F in consecutive
clock cycles. Asserting signal DREQTowill suppressthe
reporting of unmasked exceptions. The read result
LSBs request must always be followed by a read result
MSBs request. !

Read Flags: The flag register contents are placed on
Output Bus F; bits Fai—F7 will be logic Low. Asserting
signal DREQTo will suppress the reporting of unmasked
exceptions.

Read Status: The status register contents are placed
on Output Bus F; bits Fxi—F 1 willbe logic Low. Asserting
signal DREQTowill suppress the reporting of unmasked
exceptions.

Save State: The contents of the instruction register,
mode register, status register, register file, precision
register, and Registers R, R-Temp, S, S-Temp, and I-
Temp are transferred to the Am29000 via Output Bus F.
Exception reporting via signal DERR is suppressed; the
state of signal DRETQu is a “don't care.” Further details
on the use of this request appear in the Saving and Re-
_storing State sections.

Coprocessor Data Accept

The Coprocessor Data Accept (CDA) signal indicatesto
the Am29000 that the Am29027 is able to accept new
operands or instructions. CDA is normally Low (active),
but will go High if:

® The Am29027 has an operation currently in
progress and a . completely specified pending
operation waiting in the temporary registers,

or

m The Am29027 has halted in response to an
unmasked exception {Halt On Error mode enabled).

Ifthe Am29027 issues any write transactionrequest and
CDAIis active Low, the transaction request will complete
in a single cycle. If CDA is High, response to a write
transaction request depends on request type:

B For the write operand R, write operand S, write
operands R, S, and write instruction transaction
requests, the Am29027 will assert CDA active when
it is able to accept new data. lfitis not able to accept
new data indefinitely due to presence of an
unmasked exception (Halt On Error mode enabled),
it will respond to the transaction request by
asserting signal DERR.

B For the write mode, write status, write register file
precisions, and advance temp registers trans-
action requests, the Am29027 will temporarily
assert CDA during the cycle after the request is
issued, regardiess of whether an operation is in
progress or an unmasked exception has halted the
accelerator.

CDA pertains only to write transaction requests; for read

transaction requests, the Am23000 ignores the state of
CDA.

Data Ready

The Data Ready (DRDY) signal indicates to the
Am29000 that the Am29027 is placing data on the F out-
put bus. The Am23027 generates DRDY in response to
the read result MSBs, read result LSBs, read status,
read flags, and save state transaction requests.

For the read result MSBs, read result LSBs, read flags,
and read status transaction requests, there is usually a
minimum of one cycle delay between the time the
request is issued and the time that DRDY is asserted.
The only exception to this rule is' when a read result
LSBs request is immediately followed by a read result
MSBs request, in which case the Am23027 responds to
the second request in a single cycle. If the Am29027 is
unable to respond immediately to a read transaction
request, as may be the case when an operation is in
progress, the DRDY signal will be held inactive until
such atime as the requested datacan be output. Forthe
save state transaction request, the delay between the
issuance of the transaction request and the DRDY re-
sponse varies according to the specific data requested.

DRDY pertains only to read transaction requests; for
write transaction requests, DRDY remains inactive.

Data Error

The Data Error (DERR) signal indicates to the Am239000
that the Am29027 is unable to respond to a transaction
request normally, due to the presence of an unmasked
exception bit in the status register.

For read transaction requests, read result LSBs, read
result MSBs, read flags, and read status, the Am28027
asserts DERR if the status register contains an un-
masked exception bit. The Am29000 may suppress

1-135

29K Family CMOS Devices

error reporting for these requests by issuing them with
signal DREQTo asserted.

For write transaction requests, write operand R, write
operand S, write operands R, S, and write instruction,
DERR s issued in the presence of an unmasked excep-
tion if Halt On Error Mode is enabled in such an event,
the contents of the target registers are left unchanged.

DERR is never issued in response to transaction re-
quests write mode, write status, write register file preci-
sions, advance temp registers, and save state.

Accelerator Instruction Set

The ALU performs 57 arithmetic and logic instructions.
Input operands for these instructions can be taken from
Input Registers R and S, register file locations RF—RFo,
and on-board constant stores. At the user’s option,
results can be stored in register file locations RF—RFo.

Instruction Word

The 32-bit instruction word, INai—INo, specifies the op-
eration to be performed by the ALU. The instruction
wordis stored in the instruction register; instruction reg-
ister format is shown in Figure 7. In flow-through mode,
the instruction word specifies the operation to be per-
formed by the entire ALU. In pipeline mode, the instruc-
tion word specifies the operation to be performed by the
first pipeline stage; the remaining pipeline stage or
stages are controlled by their respective pipeline regis-
ters. The instruction word also specifies input operand
sources, result destination, and operand precisions.

An instruction word comprises five sections: base op-
eration code, sign-change selects, operand precision
selects, operand source selects, and register file
controls

Base Operation Code

The base operation code consists of the core operahon
field (CO), which specifies the type of operation to be
performed, and the integerfioating-point select bit (IF),
which specifies whether the operation is integer or float-
ing-point. Available base operation codes andthe corre-
sponding valuesfor CO and IF are listed in Table 2. Note
that the value of IF is a “don't care” for base operation
code MOVE P. :

Sign-Change Selects

Each ALU input and output port has associated hard-

ware that can be used to modify operand signs (see Fig-

ure 8). These sign-change blocks, when applied to base
operations, greatly increase the number of available
operations. The base operation code F' = P’ + T', for
example, can be used to perform operations such as
P-T, ABS(P) + ABS(T), ABS(P +T), and others, simply
by modifying the signs of the input and output operands.
The SIP, SIQ, and SIT instruction word fields control the
sign-change blocks for the P, Q, and T input operands,
respectively; the SIQ and SIF fields control the sign
change block for output operand F.

Using the sign-change biocks, the sign of an input oper-
and may be left unchanged, inverted, set Low, or set
High; the sign of the output operand may be left un-
changed, inverted, set Low, set High, set to the sign of
the P input operand, or set to the sign of the T input oper-
and. Select codes for the P, Q, T, and F sign-change
blocks are shown in Tables 3, 4, 5, and 6, respectively.

Operand Precision Selects

The Am29027 supports mixed-precision operations; itis
possible, for example, to perform an operation having
single-precision inputs and a double-precision output,
or one single- and one double-precision input, or any
other combination.

The precision of the operands in Registers R and S
is specified by instruction bit IPR, which is logic High for
single-precision operands and logic Low for double-pre-
cision operands. Note that the operands inthe Rand S
registers must have the same precision if they are to be
used in the same operation. This restriction does not
preclude performing an operation with mixed-precision
input operands, as there are no restrictions on the preci-
sions of operands stored in the register file. The preci-
sion of each operand stored in the register file is
recorded in the precision register; this precision infor-
mation is automatically supplied to the ALU when a
register file location is specified as an input operand to
an operation.

The precision of an operation result is specified by in-
struction bit RPR, which is set High for a single-precision
result, and Low for a double-precision result. Should the
instruction word specify that the result is to be written to
the register file (instruction bit RF. High), the resulting
precision will be written fo the appropriate precision reg-
ister bit when the result is written to the register file.

1-136

Am29027

Table 2. Operation Codes

b

co

z
»w

z

INs

IN.

Base Operation Code (Floating-Polnt)

OO0 O0OO0 00000 O0OCOOO

OO0 0000OO0DO0OO0OO0OO0OOO

“ a4 amaama0000O0OO0OO0CO0

-~ 000 O~ 2a20D00CO

O = Bt O O OO =22 00

O 404+ 0~4~0=0~0=20

F=P

F=P+T

FaPxQ

Compare P, T

Max, P, T

MinP, T

Convert T to Integer

Scale T to Integer by Q
F=PxQ)+T

Round T to Integral Value
Reciprocal Seed of P

Convert T to Alternate F. P. Format
Convert T from Alternate F. P. Format

£

Z

-
=
&

z
~

z

Z

Base Operation Code (Integer)

— oeh mh eh ok eh wd oeh h b b b ek A

- edk ok —h k- OO0OO0DO0OO0OO0OOO

OO0 O0OO0OO0OO0OO0DOO0OOOO0COO

- 4 0 00Q 4+ 4. a2 DOOCO

OO0 = - 00 =00 -==00

- O A O RO 2 OO0 ~=0

F=P

F=P+T

F=Px Q

Compare P, T

Max P, T

MinP, T

Convert T to Floating-Point
Scale T to Floating-Point by Q
F=PORT

F=PANDT

F=PXORT

~ Shift P Logical Q Places

Shift P Arithmetic Q Places
Funne! Shift PT Logical Q Places

IN,

Base Operation Code (Speclal)

MOVE P

1137

29K Family CMOS Devices

P

//64

D,

Y

64

T

Y
/164

I Sign Change | I Sign Change l I Sign Changel

[

T

ALU

ALU

Figure 8. ALU Sign-Change Blocks

09114-010C

Table 3. Select Codes for P Operand

* Table 5. Select Codes for T Operand

Sign-Change Block Sign-Change Block
SIP SIT
INys IN;, SIGN (P) N, N, SIGN (T')
0 0 SIGN(P) 0 () SIGN(T)
0 1 SIGN (P) 0 1 SIGN (T)
1 0 0 1] 0
1 1 1 1 1 1
Table 4. Select Codes for Q Operand Table 6. Select Codes for F Operand
Sign-Change Block Sign-Change Block
sl SIQ SIF
N, Ny, SIGN (@) Pase Operation| INy INo IN, INg SIGN(F)
F=P 0 X 0 o0 SIGN(F")
0 0 S'GN@ (Floating-Point)
0 1 SIGN (Q) F = P (Integer) 0 X o0 1 |SGNFE
1 0 0 OR 0 X 1 0 0
! 1 1 Maximum P, T 0 X 1 1 1
OR 1 0 X X | sieNP)
Minimum P, T 1 1 X X | siGNm
; X X 0 0 | sieNF)
All Other Base X X 0 1 SIGN(F)
Operations X X 1 0 o]
X - X 1 1 1

1-138

Am29027

Operand Source Selects

Instruction fields PMS, QMS, and TMS specify the
select codes for the P, Q, and T operand multiplexers,
respectively; these codes are summarized in Table 7.

The P, Q, and T operand multiplexers can indepen-
dently select Register R, Register S, register file loca-
tions RF7—RFo, or one of six predefined constants. For
operations with floating-point inputs, constants 0,0.5, 1,
2, 3, and pi are available; for operations with integer in-
puts, constants 0, -1, 1, 2, 3, and —(2%%) are available.
These constants are suppliedto the ALU as double-pre-
cision numbers, independent of the precisions specified
forotherinput and result operands. Hexadecimal values
for the constants are listed in Table 8.

Register File Controls

Instruction fields RF and RFS control the storing of op-
eration results inthe registerfile. If registerfile enable bit
RF is High, the result of the operation specified by the
instruction word will be stored in register file location
RFS, where RFS is a number from 7 to 0; the precision
of the result, as specified by the RPR bit, will be written
to the appropriate bit in the precision register. If RF is
Low, the operation result is written to neither the register
file nor the precision register.

Accelerator Operations

Table 9 illustrates a number of possible ALU instructions
and corresponding values for instruction word fields
SIP, SIQ, SIT, SIF, IF, and CO. Note that the remaining
instruction fields—RF, RFS, PMS, QMS, TMS, IPR, and
RPR—can be specified independently.

The user may create additional instructions using
instruction words other than those listed in Table 9. For

some base operation codes, sign-change control set-
tings SIP, SIQ, SIT, and SIF are completely arbitrary;
for others, only the sign-change field values shown in
Table 9 are valid. Table 10 summarizes permissible
sign-change field values for each base operation code.

Table 7. Select Codes forP,Q,and T
Operand Multiplexers

PMS | INz | IN2s |INas | INg P
QMS| INza [IN |IN2 | IN Q
TMS | INyg | INss |INy; | IN T
0 0 0 o] Register R
0 0 0 1 Register S
0 0 1 o] 0 (Zero)
o] 0 1 1 0.5 (F.P.) —1(integer)
0 1 0 0 1
0 1 0 1 2
(o] 1 1 0 3
o| 1| 1] 1| n(FP)-2%integer)
1 0 0 0 RF,
1 0 o] 1 RF,
1 0 1 0 RF.
1 0 1 1 RF,
1 1 0 0 RF,
1 1 0 1 RFs
1 1 1 0 RFs-
1 1 1 1 RF;

1-139

29K Family CMOS Devices

Table 8. Hexadecimal Values for On-Chip Constants

IEEE Floating-Point Constant Hexadecimal Representation
0 0000000000000000
0.5 3FE0000000000000
1 . ' 3FF0000000000000
2 . 4000000000000000
3 4008000000000000
T 400921FB54442D18
DEC D Floating-Point Constant Hexadecimal Representation
0 0000000000000000
0.5 . 4000000000000000
1 . 4080000000000000
2 4100000000000000
3 4140000000000000
n 41490FDAA22168C2
DEC G Floating-Polnt Constant Hexadecimal Representation
0 0000000000000000
0.5 ’ 4000000000000000
1 4010000000000000
2 4020000000000000
3 4028000000000000
n 402921FB54442D18
IBM Fioating-Point Constant) Hexadecimal Representation .
0 0000000000000000
0.5 4080000000000000 -
1 : ' '4110000000000000
2 4120000000000000
3 4130000000000000
T 413243F6A8885A31
Integer Constant) Hexadecimal Representation
0) 0000000000000000
-1 FFFFFFFFFFFFFFFF
-1 0000000000000001
2 0000000000000002
3 ‘ 0000000000000003
28 : ~ 8000000000000000

1-140

Am29027

Table 9. Instruction Words for Typical ALU Operations

Operation SIP Sia SIT SIF IF co

FPP 00 00 XX 00 0 00000
FP-P 00 00 XX 01 0 00000
FP ABS(P) 00 00 XX 10 0 00000
FP Sign(T) x ABS(P) 00 11 XX XX 0 00000
FPP+T 00 XX 00 00 0 00001
FPP-T 00 XX 01 00 0 00001
FPT-P 01 XX 00 00 0 00001
FP-P-T (o] XX 01 00 0 00001
FP ABS(P + T) 00 XX 00 10 0 00001
FP ABS(P-T) 00 XX 01 10 0 00001
FP ABS(P) + ABS(T) 10 XX 10 00 0 00001
FP ABS(P) ~ ABS(T) 10 XX 1 00 0 00001
FP ABS[ABS(P) — ABS(T)] 10 XX 11 10 0 00001
FPPxQ 00 00 XX 00 0 00010
FP (-P)xQ 01 00 XX 00 0 00010
FP ABS(P x Q) 00 00 XX 10 0 00010
FP Compare P, T 00 XX 01 00 0 00011
FPMax P, T 00 00 01 00 0 00100
FP Max ABS(P), ABS(T) 10 00 11 00 0 00100
FPMinP, T 01, 00 00 00 0 00101
FP Min ABS(P), ABS(T) 11 00 10 00 0 00101
FP Limit P to Magnitude T 11 10 10 XX 0 00101
FP Convert T to Integer XX XX 00 00 0 00110
FP Scale T to Integer by Q XX 00 00 00 0 00111
FPT+PxQ 00 00 00 00 0 01000
FPT-PxQ 01 00 00 00 0 01000
FP-T+PxQ 00 00 01 00 0 01000
FP-T-PxQ o1 00 01 00 0 01000
FP ABS(T) + ABS(P x Q) 10 10 10 00 () 01000
FP ABS(T) - ABS(P x Q) 11 10 10 00 0 01000
FP ABS(P x Q) - ABS(T) 10 10 11 00 0 01000
FP Round T to Integral Value XX XX 00 00 0 01001
FP Reciprocal Seed (P) 00 XX XX 00 0 01010
FP Convert T to Alternate N

Floating-Point Format XX XX 00 00 0 01011
FP Convert T from Alternate

Floating-Point Format XX XX 00 00 0 01100
intP 00 00 00 00 1 00000
int—P 00 00 00 ot 1 00000
int ABS(P) 00 00 00 10 1 00000
int Sign(T) x ABS(P) 00 11 00 XX 1 00000
intP+T 00 XX 00 00 1 00001
itP-T 00 XX o1 00 1 00001
intT-P o1 XX 00 00 1 00001
int ABS(P + T) 00 XX 00 10 1 00001
int ABS(P - T) 00 XX 01 10 . 1 00001
int PxQ 00 00 XX -00 1 00010
int Compare P, T - 00 XX 01 00 - 1. 00011
intMax P, T 00 00 01 00 1 00100
intMinP, T 01 00 00 00 1 00101

1-141

29K Family CMOS Devices
Table 9. Instruction Words for Typical ALU Operations (continued)

Operation SIP siQ SIT SIF IF co
int Convert T to Float XX XX 00 00 1 00110
int Scale T to Floatby Q XX 00 00 00 1 00111
intPORT XX XX XX XX 1 10000
intPAND T XX XX XX XX 1 10001
intPXORT XX XX XX XX 1 10010
int NOT T (see Note 1) XX XX XX - XX 1 10010
int Shift P Logical Q Places 00 00 XX 00 1 10011
int Shift P Arithmetic Q Places 00 00 XX 00 1 10100
int Funnel Shift PT Q Places 00 00 00 00 1 10101
MOVE P XX XX XX XX X 11000

Note 1. NOT T is performed by XORing T with a word containing all 1s (integer — 1). When invoking NOT T the user must set
instruction field PMS to 0011, thus selecting integer constant 1.

Table 10. Allowable Sign-Change Combinations

IF co Operation SIP siQ SIT SIF
0 00000 FPF =P F v X v
0 00001 FPF =P +T v X v \"
0 00010 FPF =P x Q Vv v X '
0 00011 FP Compare P, T F X F F
0 00100 FPMax P, T F F F F
0 00101 FPMinP, T F F F F
0 00110 FP Convert T to Integer X X F F
0 00111 " FP Scale T to Integer X F F F
0 01000 FPF=(PxQ)+T v \" v Vv
0 01001 FP Round T X X F F
0 01010 FP Reciprocal Seed P F X X F
0 01011 FP Convert T to Alt Format X X F F
0 01100 FP Convert T from Alt Format X X F F
1 00000 intF=P F F F F
1 00001 intF=P+T F X F F
1 00010 intF=PxQ F F X F
1 00011 int Compare P, T F X F F
1 00100 intMax P, T F F F F
1 00101 intMinP, T F F F F
1 00110 int Convert T to F.P. X X F 'F
1 00111 int Scale T to F.P. X F F F
1 10000 intF=PORT X X X X
1 10001 intF=PANDT X X X X
1 10010 intF=PXORT X X X X
1 10011 int Shift P Logical F F X F
1 10100 int Shift P Arithmetic F F X F
1 10101 int Funnel Shift PT F F F "~ F
X 11000 MOVE P X X X X

Key: 'V = Variable; user can specify arbitrary sign change. .
F = Fixed; user is restricted to sign-change combinations shown in Table 9.
X = Don't care; this field does not affect the operation or its result.

1-142

Am29027

Base Operation Code Description

F’ = P (Floating-Point): The P-operand is passed
through the ALU unchanged, except for any specified
precision conversions. If the user specifies different in-
put and output precisions, the operation may be used to
perform single-to-double or double-to-single conver-
sions. Instructions such as negation, absolute value ex-
traction and sign transfer may be executed by setting
" the sign-change controls appropriately while executing
this base operation.

F’= P’ + T’ (Floating-Point): The two operands P’ and
T’ are added, taking into account any specified precision
conversions. Instructions such as subtraction, sum-of-
absolute-values, difference-of-absolute-values, abso-
lute-value-of-sum, and absolute-value-of-difference
may be executed by setting the sign-change controls
appropriately while executing this base operation.

F’ = P’ x Q" (Floating-Point): The operands P’ and Q’
are multiplied, taking into account any specified preci-
sion conversions. Instructions such as negative-product
and absolute-value-of-product may be executed by set-
ting the sign-change controls appropriately while exe-
cuting this base operation.

Compare P, T (Floating-Point): The two operands P
and T are compared, taking into account any specified
precision conversions. The output of the operationis the
result of the subtraction (P — T). The flags are set appro-
priately to indicate the result of the comparison, con-
forming to the relevant parts of the floating-point
standards. For IEEE and DEC operations, one of four
flags (greater than, less than, equal to, or unordered) is
set for any given compare operation. For {BM opera-
tions, the unordered flag does not apply since the format
does not support reserved operands.

Maximum P, T (Floating-Point): The two operands P
and T are compared, taking into account any specified
precision conversions. The most positive operand is se-
lected as the output. The Winner flag indicates which of
the operands is selected. Additionally, the operation
maximum-of-absolute-value may be performed by set-
ting the appropriate sign-change controls.

Minimum P, T (Floating-Point): The two operands P
and T are compared, taking into account any specified
precision conversions. The most negative operand is
selected as the output. The Winner flag indicates which
of the two operands is selected. Additionally, the opera-
tions minimum-of-absolute-values and limit-P-to-mag-
nitude-T may be performed by setting the appropriate
sign-change controls. The limit-P-to-magnitude-T op-
eration is useful for clipping a sequence of operands to
ensure that their magnitude never exceeds a preset
limit.

Convert T to Integer (Floating-Point): The operand T
is converted from floating-point representation to two’s
complement integer representation, taking into account
the specified precision of the floating-point operand. If
the output precision is specified as single, the resultis a

32-bitinteger. If the output precision is specified as dou-
ble, the result is a 64-bit integer.

Scale T to Integer by Q (Floating-Point): The operand
T is converted from floating-point representation to
two's complement integer representation, using the
exponent of the floating-point operand Q as a scale
factor and taking into account the specified precision of
the floating-point operands. The unbiased exponent of
the operand Q is added to the exponent of the operand
T, permitting IEEE and DEC operands to be multiplied
by any power of 2, and IBM operands by any power
of 16, before the conversion is performed. If the output
precisionis specified as single, the result is a 32-bit inte-
ger. If the output precision is specified as double, the
result is a 64-bit integer.

F’=(P’xQ’) + T’ (Floating-Point): The operands P’ and
Q’ are multiplied, producing a double-precision product.
This product is added to the operand T’, taking into ac-
count any specified precision conversions. Instructions
suchasPxQ-T,T-PxQ,ABS (P x Q)+ ABS(T) and
ABS(P x Q + T) may be executed by setting the sign-
change controls appropriately while executing this base
operation.

Round T to Integral Value (Floating-Point): The float-
ing-point operand T is rounded to an integer-valued
floating-point operand, using the specified rounding
mode and taking into account any specified precision
conversions. As an example, the operation converts a
floating-point representation of Pi (3.14159 . ..) 1o a
floating-point representation of 3.0 or 4.0, depending on
the rounding mode selected. The final result of the op-
eration is a floating-point number.

. Reciprocal Seed of P (Floating-Point): An approxima-

tion to the reciprocal of the operand P is evaluated,
taking into account any specified precision conversions.
The reciprocal seed comprises an accurate sign, a fully-
accurate exponent and a mantissa that is accurate to
only one place. This operation can be used as the initial
step in performing Newton-Raphson division; option-
ally, an external seed look-up table can be used for
faster convergence.

Convert T to Alternate Floating-Point Format (Float-
ing-Point): The floating-point operand T, assumed to
be in the primary floating-point format, is converted to a
floating-point operand in the alternate floating-point
format, taking into account any specified precision
conversions.

Convert T from Alternate Floating-Point Format
(Floating-Point): The floating-point operand T, as-
sumed to be in the alternate floating-point format, is
converted to a floating-point operand in the primary
floating-point format, taking into account any specified

‘precision conversions.

F = P (Integer): The P-operand is passed through the
ALU unchanged except for any specified precision
conversions. If the user specifies different input and out-
put precisions, the operation may be used to perform

1-143

29K Family CMOS Devices

single-to-double or double-to-single conversions. In-
structions such as negation, absolute value extraction,
and sign transfer may be performed by setting the sign-
change control appropriately while executing this base
operation.

F = P + T (Integer): The two operands P and T are
added, taking into account any specified precision
conversions. Instructions such as subtraction, absolute-
value-of-sum, and absolute-value-of-difference may be
performed by setting the sign-change controls appropri-
ately while executing this base operation.

F=Px Q(Integer): The two operands P and Q are mul-
tiplied, taking into account any specified precision con-
versions. Either 32-bit multiplication or 64-bit multiplica-
tion may be performed, and the user may select either
the MSBs or the LSBs of the product as the final result.
In addition, format-adjusting may be implemented if
required, and the operands may be considered as
signed (two's complement) or unsigned.

Compare P, T(Integer): The two operands Pand T are
compared, taking into account any specified precision
conversions. The output of the operation is the result of
the subtraction (P —T). The flags are set appropriately to
indicate the result of the comparison, one of three flags
(greater than, less than, or equal to) being set for any
given compare operation.

Maximum P, T (Integer): The two operands P and
T are compared, taking into account any specified preci-
sionconversions. The most positive operand is selected
as the output. The Winnerflag indicates which of the two
operands is selected.

Minimum P, T (Integer): The two operands P and T are

compared, taking into account any specified precision -

conversions. The most negative operand is selected as
the output. The Winner flag indicates which of the two
operands is selected.

Convert T to Floating-Point (Integer): The operand T
is converted fromtwo's complement integer representa-
tion to floating-point representation, taking into account

the specified precision of the integer operand. If the

output precision is specified as single, the result is a
32-bit floating-point operand. If the output precision is

specified as double, the result is a 64-bit floatlng -point

operand.

Scale T to Floating-Point by Q (Integer): The operand

Tis converted fromtwo’s complement integer represen-
tation to floating-point representation, using the expo-
nent of the floating-point operand Q as a scale factor
and taking into account the specified precision of the in-
teger operand. The unbiased exponent of the operand
Q is added to the exponent of the floating-point result,

permitting |IEEE and DEC operands to be muitiplied by

any power of 2, and IBM operands by any power of 16
afterthe conversion is performed. If the output precision
is specified as single, the result is a 32-bit floating-point
operand. If the output precision is specified as double,

F = P OR T (Integer): The operand P is logically ORed
with the operand T. Before the operation is performed,
the inputs, if 32-bit, are sign-extended to 64 bits.

F = P AND T (Iinteger): The operand P is logically
ANDed with the operand T. Before the operation is per-
formed, the inputs, if 32-bit, are sign-extendedto 64 bits.

F=P XORT (Integer): The operand P is logically exclu-
sive-ORed with the operand T. Before the operation is
performed, the inputs, if 32-bit, are sign-extended to 64
bits. This operation may be used toinvert an operand by
selectingthe second operand to be the integer constant,
-1, so that all bits of this second operand are 1.
Exclusive-ORing an operand with —1 is equivalent to
inverting each bit in the operand.

Shift P Logical Q Places (Integer): This operation can-
not be performed in mixed-precision mode. The preci-
sion of the result is the same as the precision of the input
operand P. A two’s-complement shift lengthin the range
~64 to +63 (double-precision) or -32 to +31 (single-pre-
cision) is extracted from the LSBs of the operand Q. The
operand P is logically right-shifted by the number of
places specified by the shift length. A negative shift
length therefore produces a left-shift. If a right-shift is
performed, Os fill vacated bit positions to the left of the
input operand. If a left-shift is performed, Os fill vacated
bit positions to the right of the input operand.

Shift P Arithmetic Q Places (Integer): This operation
cannot be performed in mixed-precision mode. The pre-
cision of the result is the same as the precision of the in-
put operand P. A two’s-complement shift length in the
range —64 to +63 (double-precision) or —32 to +31 (sin-
gle-precision) is extracted from the LSBs of the operand
Q. The operand P is arithmetically right-shifted by the
number of places specified by the shift length. A nega-
tive shift length therefore produces. a left-shift. If a right-
shift is performed, the MSB (bit 63 or 31) is replicated to
fill vacated bit positions to the left of the input operand. It
aleft-shiftis performed, Os fill vacated bit positions to the
right of the input operand.

Funnel Shift PT Q Places (Integer): This operation
cannot be performed in mixed-precision mode. The op-
erand T is interpreted as having the same precision as
the input operand P, and the precision of the result is
also the same as the precision of the input operand P. A
two's-complement shift length in the range —64 to +63
(double-precision). or 32 to +31 (single-precision) is
extracted fromthe LSBs of the operand Q. A triple-width
operand (96-bit or-192-bit) is formed by concatenating
the input operands into the arrangement P-T-P, with the
32-bit or 64-bit result field initially aligned with the. T-op-
erand. The triple-width operand is logically right-shifted
by the number of places specified by the shift length. A
negative shift length therefore produces a left-shift.

Move P (Floating-Point "or ‘Integer): The :64-bit

“operand P is passed unchanged through the ALU. No

exceptions are detected or signaled.

the result is a 64-bit floating-point operand..

1-144

Am29027

Primary and Alternate Floating-Point Formats

Two mode register fields, PFF and AFF, specify the pri-
mary and altemate floating-point formats used by the
ALU. Alifloating-point operations except format conver-
sions are performed in the format specified by PFF. For
format conversion operations, either primary floating-
point format PFF or alternate floating-point format AFF
are used as follows:

B Forconversions between floating-point and integer
formats (base operation codes Convert T to integer,
Convert T to floating-point, Scale T to integer by Q,
Scale T to floating-point by Q), the floating-point
source or destination format is specified by PFF; for
the scale operations, the format of operand Qis also
specified by PFF.

m When converting from the primary floating-point
format to the alternate floating-point format (base
operation code Convert T to alternate F. P. format),
an operand in format PFF is converted to format
AFF.

H When converting from the alternate floating-point
format to the primary floating-point format (base
operation code Convert T to primary F.P. format),
an operand in format AFF is converted to format
PFF.

Operation Precision

The ALU performs ali operations in double-precision
format. All single-precision input operands are con-
verted to double-precision equivalents by the ALU at
the start of an operation. If the operation is to report a
single-precision result, the ALU converis the double-
precision internal result to single-precision at the end of
the operation.

Note that operation flags and exception bits pertain to

the source and destination precisions. lf, for example,

an operation produces a single-precision overflowed re-

sult, an overflow is indicated regardless of whether that
- result overflows the double-precision internal format.

Opeiatlon Flags

For each operation, the ALU produces thirteen flags. Of
these, amaximumof seven are relevantto any givenop-
eration. The relevant flags are placed in the flag register

in the manner shown in Table 11. All flags are active
High. In flow-through mode the flag register is made
transparent, and the selected flags are presented di-
rectly to the output multiplexer.

The ALU flags are:

C—CARRY: Carry-out bit produced by integer addition,
subtraction, or comparison.

I—INVALID OPERATION: Indicates that the input
operands are unsuitable for the operation performed
(e.g., % 0).

R—RESERVED OPERAND: Indicates that the opera-
tionresultis areserved operand. Reserved operands in-
clude signaling or quiet NaNs in IEEE format, and DEC
reserved operands in DEC D or G formats.

S—SIGN: Result sign; Low for a non-negative result,
High for a negative result.

U—UNDERFLOW: Indicates that the operation result
underflowed the destination format.

V—OVERFLOW: Indicates that the operation result
overflowed the destination format.

W—WINNER: Indicates which of two input operands is
reported as the result of the MAX P, T and MIN P, T op-
erations. A logic High indicates that operand T is re-
ported as the result, a logic Low operand P.

X—INEXACT RESULT: indicates that the operation re-
sult had to be rounded to fit the destination format.

Z—ZERO RESULT: Indicates that the operation pro-
duced a zero result. Note that the result is exactly zero
only if the Z flag is High and the X flag is Low.

>, =, <, #—GREATER THAN, EQUAL TO, LESS
THAN, UNORDERED: Used to report the result of an
operation with the Compare P, T base operation code.
The Greater Than flag indicates that P > T, the Equal To
flag that P = T, and the Less Than flag that P < T. The
Unordered flag indicates that one or both input oper-
ands are reserved operands and cannot be compared.
Note thatthe Unordered flag cannot arise when compar-
ing IBM floating-point operands or integers. Exactly -
one comparison flag will be active per comparison
operation.

1-145

29K Family CMOS Devices

Table 11. Organization of Flags

Flag Register

F F F F F F F
co L L L L L L L
Format Operation IN—IN, 6 5 4 3 2 1 0
IEEE F =P 00000 S Z X u \" R I
IEEE F=P+T 00001 S 4 X u Vv R |
IEEE F=PxQ 00010 S z X U \") R |
IEEE Compare P, T 00011 ~ S = > < # R I
IEEE Maximum P, T 00100 S z w R I
IEEE Minimum P, T. 00101 S Z w - R I
IEEE Convert T to Integer 00110 S z X \ R I
IEEE Scale T to Integer 00111 S z X \ R |
IEEE F=(PxQ)+T 01000 S V4 u v R I
IEEE Round T to Integral Value 01001 S z X \ R I
IEEE Reciprocal Seed of P 01010 S z U Vv R I
IEEE Convert T to Alt F.P. Format 01011 S z X U \' R |
IEEE Convert T from Alt F.P. Format| 01100 S z X u \ R |
DECD F =P 00000 S 4 X Vv R
DECD F=P+T 00001 S Z X V] -V R
DECD F=PxQ 00010 S Z X U v R
DECD Compare P, T 00011 S = > < # R
DECD Maximum P, T 00100 S pA w i R
DECD Minimum P, T 00101 S 4 w R
DECD Convert T to Integer 00110 S 4 X A R |
DECD Scale T to Integer 00111 S 4 X \) R |
DECD F=FPxQ)+T 01000 S z u \ R
DECD Round T to Integral Value 01001 S z X v R
DECD Reciprocal Seed of P . 01010 S 4) U \ R |
DECD Convert T to Alt F.P. Format 01011 S z X U Vv R |
DECD Convert T from Alt F.P. Format | 01100 S Y4 X u Vv R |
DECG F=P 00000 S z X U Vv R
DECG F=P+T 00001 S Z X u \ R
DECG F=PxQ 00010 S V4 X U, \ R
DECG Compare P, T 00011 S = > < # R
DECG Maximum P, T 00100 S Zz w R
DECG Minimum P, T 00101 S V4 . w R :
DECG Convert T to Integer 00110 S V4 X \ R .
DECG - Scale T to Integer 00111 S z X \ R |
DECG F=PxQ)+T 01000 S Z U \" R
DECG Round T to Integral Value 01001 S z X v R
DEC G Reciprocal Seed of P 01010 S Y4 U \" R l
DECG Convert Tto Alt F.P. Format ~| 01011 S z X U Y R 1
DECG Convert T from Alt F.P. Format | - 01100 S 4 X u " R !
iBM F=P 00000 S z X \Y
-IBM F=P+T 00001 S Z X U Vv
IBM F=PxQ 00010 S 4 X U \
IBM Compare P, T 00011 S = > <
IBM Maximum P, T 00100 S z w
IBM Minimum P, T 00101 S V4 w
1BM Convert T to Integer 00110 S z X \
IBM Scale T to Integer 00111 S z X \
1BM F=(FxQ)+T 01000 S z U v
IBM Round T to Integral Value 01001 S Z X ‘ v
IBM Reciprocal Seed of P 01010 S 4 Vv |
_IBM Convert T to Alt F.P. Format 01011 S Z X U \ R
1BM Convert T from Alt F.P. Format | 01100 S Z X U -V R 1

1146

Am29027

Table 11. Organization of Flags (continued)

' Flag Register

F F F F F F
) co L L L L L L
Format Operation IN—IN, 6 5 4 3 2 0
Integer F=P 00000 S 4 Y
Integer’ F=P+T 00001 S z \ C
Integer F=PxQ 00010 S Y4 v
Integer Compare P, T 00011 S = > < A C
Integer Maximum P, T 00100 S Z w
Integer Minimum P, T 00101 S z w
Integer Convert T to Floating-Point 00110 S z X
Integer Scale T to Floating-Point 00111 S Z X U v
Integer F=PORT 10000 S z
Integer F=PANDT 10001 S Z
Integer F=PXORT 10010 S 4
Integer Logical Shift P by Q Places 10011 S V4
Integer Arithmetic Shift P by Q Places 10100 S V4 v
Integer Funnel Shift P T by Q Places 10101 S y4
MOVE P 11000 S

Note: Unused flags assume the Low state.

1-147

29K Family CMOS Devices

Updating the Status Register

The status register exception bits are updated at the
conclusion of each operation in flow-through mode, and
at the start of each operation in pipeline mode. An ex-
ception bit is updated only if the operation reports that
exception with a flag. For example, an IEEE floating-
point addition operation produces an overflow flag and
would therefore update the overflow exception bit; an
IEEE floating-point comparison operation, on the other
hand, does not produce an overflow flag and would
therefore leave the overflow exception bit unchanged.

The mode register exception mask bits do not affect the
updating of the status register exception bits—masked
exceptions still appear in the status register. However,
a masked exception will not set the exception status
bit (ES). .

Operation Sequencing

The Am29027 can be configured for either pipelined
or flow-through (unpipelined) operation. Flow-through
mode is normally selected for performing scalar opera-

tions; pipeline mode provides high throughput for vector
operations. The manner in which operations are se-
quenced depends on the mode currently invoked.

Operation in Flow-Through Mode

Flow-through mode is invoked by sening mode register
bit PL (Pipeline Mode Select) to logic Low.

Programmer’s Model

A programmer’s model of the Am29027 in flow-through
mode is shown in Figure 9. Note that Qutput Register F
and the flag register are made transparent in this mode.

Performing Operations
Flow-through mode operations are performed by:

® Storing instructions and/or operands in the
Am29027 and starting the operation

® Loading the result

Iyl Ry—Ro S31=So
.32 ‘W\ 32 X 32
N~
N P At b pee. | b AR
Pl‘Temp] ErOde 1| E PR‘TBMP I PS-Temp l E . > RF,.
2 E PR Ip s | ! [constan .
5 ' 1 |Constantsi b, RgE,
nstr. .| 02000200 te=e=eleeese-e ——- .
T
r Operand Select |
64 “\ 64 “\ 64
P Q T
ALU 1
F
s 64 Flags
Mode
instruction Register prec,
Register /\ Register

7

E Status '
32,132 d7 J11

N
) 4

b el
[,

8:1 Multiplexer I

32

09114-11C
FM-FO

Figure 15. Programmer’s Model for Flow-Through Mode

1-148 -

Am29027

Storing instructions and operands can be done in any of
three ways:

® Writing the instruction only, and starting the
operation: This is appropriate when all necessary
operands are already present in the Am29027,
as is sometimes the case when using on-board
constants or the results of previous operations
stored in the register file.

® Writing the operands only, and starting the
operation: This is appropriate when the desired
instruction is already present in the Am29027, as is
the case when performing the second of two
identical operations.

B Writing the instruction and operands, and
starting the operation: This is appropriate
whenever the next operation requires both a new
instruction and new operands.

Operands and instructions are written using the write
operand R, write operand S, write operands R, S, and
write instruction transaction requests. Operands and
instructions can be written to the Am29027 in any order,
with the operation start bit (DREQT. High) accompany-
ing the last of the transaction requests.

Loading an operation result is performed using the read
result MSBs, read result LSBs, and read flags trans-
action requests. The specific request used depends on
whether the result of an operation is a flag or flags (as is
the case with comparison operations) or data (as is the
case with most other operations). In cases where the
operation result is stored in the register file, the user
may elect not to read the result but to proceed with the
next operation.

Operation Timing)

The Am23027 will usually start a flow-through operation
during the first cycle following the receipt of a write
operand R, write operand S, write operands R, S, or
write instruction transaction. request having signal
DREQTo set High.

Operation execution begins with the transfer of the con-
tents of the R-Temp, S-Temp, and I-Temp registers to
Register R, Register S, and the instruction register, re-
spectively; only those temporary registers written to as
part of the operation specification will be transferred.
The operand or instruction accompanying the transac-
tion request that starts the operation (that is, the trans-
action request for which signal DREQTo is High) is writ-
ten directly to the appropriate working register, that is,
Register R, Register S, or the instruction register.

Once started, an operation will proceed for the number
of cycles specified by mode register fields. MATC,
MVTC, and PLTC; MATC specifies the number of cycles
for base operation code (P x Q) + T, MVTC the number
of cycles for base operation code MOVE P, and PLTC
the number of cycles for all other base operation codes.
Atthe end of the last operation cycle, the status register
exception bits and exception status bit will be updated

and, optionally, the operation result will be written to the
register file and precision register.

There are two conditions for which the Am23027 will not
start an operation immediately. The first condition is
when an operation is already in progress. In this case
the new operation is kept pending in the I|-Temp,
R-Temp, and S-Temp registers until the current opera-
tion is completed, at which time the new operation be-
gins. The second condition is when a previous operation
creates an unmasked exception in Halt On Error mode
(mode register bit HE High). In this case the new opera-
tion is kept in the I-Temp, R-Temp, and S-Temp regis-
ters until the exception is cleared, at which time the new
operation begins.

Timing for typical accelerator operations in the flow-
through mode is illustrated in Appendix D.

Availability of Operation Results

In order to directly read the result of an operation, the
operation specification should be followed by the appro-
priate read fransaction request. Should the Am29000
attempt to read an operation result before the operation
is completed, the Am29027 will withhold acknowledging
the transaction request by holding signals DRDY and
DERR inactive until the operation has been completed.
All read transaction requests, including save state, will
be held off in this manner.

Overlapping Operations

Due to the presence of the R-Temp, S-Temp, and
I-Temp registers, it is possible to partiaily or completely
specify a new operation while the previously specified
operation is being performed. Execution of the new
operation will begin immediately after the previous op-
eration is completed. Execution begins with the transfer
of the contents of the R-Temp, S-Temp, and I-Temp reg-

. istersto the corresponding working registers; only those

temporary registers that have been written to as part of
the operation specification are transferred.

It is important to note that, once the new operation is
completely specified, any attempt to read a result will be
held off until the new operation is completed. This
means that it is not possible to directly read the result of
anoperation if another operation is completely specified
before the results of the first operation are read. If, for
example, specification of operation 2.0 + 3.0 is immedi-
ately followed by specification of operation 4.0 x 5.0,
subsequent read result LSBs and read result MSBs
transaction requests will return value 20.0, the result of
the second operation. Similarly, a read flags transaction
request will return flags for the second operation, and a
read status transaction request will return status reflect-
ing the completion of the second operation. This de-
layed read feature is provided to eliminate ambiguity in
the correspondence between operations and results.

Should two operations be overlapped, and should the
first operation have as its target a register file location,
the second operation can be completely specified be-

1-149

29K Family CMOS Devices

fore the first operation is completed. If the first operation
produces a result that is to be read directly by the
Am29000, the second operation can be partially speci-
fied before the result of the first operation is read. A
partial operation specification is one that includes all but
the last operand or instruction.

Timing for typical overlapped operations inflow- 1hrough
mode is illustrated in Appendix D.

Saving and Restoring State

In flow-through mode, the complete state of the
Am29027 can be saved and restored with the save state
transaction request. The first save state transaction
request will return the contents of the instruction regis-
ter; subsequent requests will return the contents of
Registers I-Temp, R, S, R-Temp, S-Temp, the status
register, the precision register, register file locations
RF~RFo, and the mode register. The user has the op-
tion of saving only part of the state by issuing only the
number of save state transaction requests needed
to save registers of interest. When issuing a series of
save state transaction requests, data is returned in the
following order:

Request Data Returned
1 Instruction
2 I-Temp
3 RLSBs
4 R MSBs
5 SLSBs
6 S MSBs
7 R-Temp LSBs
8 R-Temp MSBs
9 S-Temp LSBs
10 S-Temp MSBs
11 Status
12 Precision
13 RF, LSBs
14 ‘ RF, MSBs
27 RF; LSBs
28 RFv MSBs
29 Mode LSBs
30 Mode MSBs

Sequencing for the save state transaction request is
reinitialized when the Am23000 issues any transaction
request other than save state. If, for example, the
Am29000 issues a write operand R transaction request
after a series of save state requests, the next save state
request will return the contents of the instruction
register.

It should be noted that the process of saving state alters
the contents of the instruction register and Registers R
and S.

Error reporting via signal DERR is suppressed for the
save state transaction request.

Accelerator state is restored using transaction requests
inconcert withthe MOVE P base operation code. Before
restoring state, all status register bits should be set to
logic Low using the write status transaction request to
prevent the possibility of an unmasked exception bit
inhibiting the restore sequence. The accelerator oper-
and-and instruction registers can then be restored,
followed by restoration of the status register using the

- write status transaction request, with signal DREQTo as-

serted to indicate the end of the restore sequence.
When state restoration is complete, the Am29027 will
retime the operation specified by current instruction
register contents.

1150

Am23027

Accelerator state is restored in the following order:

Register to

be restored Procedure for restoring

Status Set all bits in the status register to a logic
Low using the write status transaction

request.

Mode Write using write mode transaction
request. :

RF, Write “Move R to RF,” instruction using
write instruction transaction request.

Wirite RF, value to Register R using write
operand Rtransaction request, start opera-
tion.

RF; Write “Move R to RF," instruction using
write instruction transaction request.

Write RF; value to Register R using
write operand R transaction request, start
operation.

Precision Guarantee that “Move R to RF;” operation
has been completed by performing a read

result MSBs transaction request.

‘Write precisions using write register file
precisions transaction request.

R, S, ~ Write - R value to Register R-Temp
Instruction using’ the write ‘operand R transaction
: request. .

Write S value to Register S-Temp using the
write operand S transaction request. -

Write instruction value to Register |-Temp
using write instruction transaction request.

Transter contents of Registers R-Temp, S-
Temp, and I-Temp to Register R, Register
S, and the instruction register, respectively,
using the advance temp registers transac-
tion request.

Write R-Temp value to Register R-Temp
using the ‘write " operand 'R transaction
request. s

R-Teh‘np,
S-Temp,
I-Temp

Write S-Temp value to Register S-Temp
using. the write- operand - S transaction
request,

Write I-Temp value to Register |-Temp us-
ing the write . instruction transaction
. request.

Status Write status to- status: register using the

- write status transaction request, with signal .

DREQT, asserted to indicate that the re-
. store sequence is complete.

The user may elect to restore only those registers rele-
vant to a particular application by omitting parts of the
* state restoration sequence. The only mandatory por-

tions of state restoration are the initial clearing of the
status register, andrestoration of the status register with
signal DREQTo. asserted to indicate completion of the
restore sequence.

Error Recovery)

Six exception bits—invalid operation, reserved oper-
and, overflow, underflow, inexact result, and zero re-
sult—are maintained in the status register; these bits
are updated upon completion of anoperation. Exception
bits can be masked individually by programming the ap-
propriate bits in the mode register; if the corresponding
mask bit is inactive (logic Low), the exception bit is said
to be unmasked and contributes to error reporting. The
Am29027 provides three mechanisms with which un-
masked exceptions can be handled.

Reporting Errors Upon Read

If an unmasked status register exception bit is set, the
Am29027 will signal an error by asserting signal DERR
when the Am28000 performs a read result LSBs, read
result MSBs, read flags, or read status transaction re-
quest. Errorreporting can be suppressed by issuing any
of these transaction requests with signal DREQTo
asserted.

Halt On Error Mode

Should the application require, the Am29027 can be
configured to halt operation upon detection of an un-
masked exception; this mode is invoked by setting
mode register bit HE (Halt On Error) High. Once config-
ured this way, the Am23027 will respond to an un-
masked exception as follows:

= Signal CDA will become inactive upon completion
of ' the operation producing ‘the unmasked
exception.

® Should the operation producing the unmasked

exception specify that the operation result be stored

_on-chip, that is, in the register file, the result will not
be written to its destination.

B A pending operation will not be started; the
operands and/or instruction for that operation will
remain in the appropriate temporary registers.

8 |f the Am29000 attempts to start a new operation
during the last cycle of the operation that produces
the unmasked exception by issuing a write operand
R, write operand S, write operands R, S, or write
instruction transaction request with DREQTo
asserted, and if no other operation is pending, the
operand or instruction -will be written to the
appropriate temporary register rather than to the R,
S, or instruction register.

® - Once CDAisdeasserted, the Am29027 will respond
to the write operand R, write operand S, write
‘operands R, S, and write instruction transaction
requests by asserting signal DERR one cycle after
the request is issued; the contents of the target
register or registers will remain unchanged.

1-151

29K Family CMOS Devices

Through these measures, the Am29027 will retain the
input operands and instructions for the operation caus-
ing the exception. The input operands will be retained in
the R register, S register, or register file locations,
and the instructions will be retained in the instruction
register. Additionally, the R-Temp, S-Temp, and I-Temp
registers may contain the operands and instructions
for a partially or fully specified pending operation. The
Am29000 can recover these operands and instructions
with the save state transaction request; this infor-
mation canthen be givento an error~handhng routine for
resolution.

The error halt condition is removed by clearing the
status register exception status (ES) bit and the excep-
tion bit or bits responsible for producing the halt.

Reporting Errors via EXCP

Signal EXCPwill go active Low inthe presence of an un-
masked exception. This signal can be connected to an
Am29000 trap or exception input signal, and is enabled
or disabled independent of other exception handling
mechanisms with mode register bit EX.

Writing to the Mode, Status, and

Precision Registers

Unlike the R, S, and instruction registers, the mode,
status, and precision registers are not preceded by tem-
porary registers. Accordingly, writing to these registers
may produce undesirable orunpredictable side effects if
an accelerator operation is in progress at the time. To
avoid such side effects, a write to any of these registers
should be preceded by a read transaction request,
which will guarantee that any current or pending accel-
erator operations will have been completed before the
write transaction request is issued.

Writing to the Register File

The numerical result of any operation may be written to
the register file by specifying the desired destination in
instruction field RFS and setting instruction bit RF High.
Theresult canthenbe used as aninput operand for sub-
sequent operations.

It is permissible for an operation result to be placed in a
register file location that previously contained an input
operand for that operation. In such a case, however, itis
not permissible for the Am29000 to directly read the re-
sult, status, or tlags for that operation, as the writing of
the result modifies the operation performed by the ALU.

Determining Timer Counts =~

To provide optimum accelerator performance over a
range of possible system clock frequencies, the timing
of Am29027 operations is programmable. Three mode
register fields—pipeline timer count (PLTC), timer count
for the Multiply-Accumulate Operation (MATC), and
timer count for the MOVE P Operation (MVTC)—must
be programmed according to system clock irequency
and accelerator speed.

PLTC

PLTC specities the number of cycles allotted to opera-
tions other than those using base operation codes
(PxQ)+T or MOVE P. This count can assume values
between 3 and 15, inclusive, and must be given a value
that satisfies the relationship:

[8]<PLTC x{1],
where
[8] = Operation time, flow-through
mode, all other base operation
codes
and [1]= CLK period,

as described in the Switching Characteristics table.

MATC

MATC specifies the number of cycles allotted to opera-
tions that use base operation code F'=(P' x Q)+ T".
This count can assume values between 3 and 15, in-
clusive, and must be given a value that satisfies the
relationship:

[6]<MATC x [1],
where
[6] = Operation time, flow-through
mode, F'=(P'x Q)+ T
and {1]= CLK period,

as described in the Switching Characteristics table.

MVTC

MVTC specifies the number of cycles allotted to opera-
tions that use the MOVE P base operation code. This
count can assume values between 3 and 15, inclusive,
and must be given a value that satisfies the relationship:

[71SMVTC x [1],
where
[7]= Operation time, flow-through
mode, MOVE P
and [1]= CLK'period,

as described in the Switching Characteristics table.

ADVANCING DRDY

Normally, an operation result produced by the Am29027
inflow-through mode is read by the Am29000 no sooner
than the clock cycle following operation completion. De-
pending on the system clock frequency used, it may be
advantageous to overlap the reading of the result with
the last cycle of the operation. Consider, for example, a
system with a 45-ns clock cycle and an Am29027 that
performs an operation in 240 ns. The pipeline timer
count PLTC will have to be set to a minimum of 6 for
such a system, and the Am29000 will read a result
no sooner than during the seventh clock cycle after the
start of an operation.

Mode register bit DA, DRDY Advance, can be used to
advance transaction status signals DRDY and DERR by
a full clock cycle, thus allowing the Am29000 to read
data one clock cycle earlier than would otherwise be

1-152

Am29027

possible. Forthe example given above PLTC remains at
6, but the Am23000 can read data during the sixth clock
cycle after the operation starts rather than the seventh,
thus saving a clock cycle.

Inorderto advance DRDY and DERR, the following sys-
tem timing conditions must be met:

[19) < (MATC x [1])—[x 9B} - |gate]

[20) < (MVTC x [1])-{x 9B}-[gate]

[21] < (PLTC x [1])— [x 9B}~ [gate]

[19] = Data operation-start-to-output
valid delay, F'=P" x Q'+ T"

[20] = Data operation-start-to-output
valid delay, MOVE P

[21] = Data operation-start-to-output
valid delay, all other operations

and [1] = CLK period
as described in the Switching Characteristics table
and

where

{x9] = Synchronous input setup time

as described in the Switching Characteristics table of
the Am29000 Preliminary Data Sheet (order #09075).

- The term [gate] represents the delay of the external
gate through which the DERR signal passes.

Timing for a typical accelerator operation with DRDY
advanced is illustrated in Appendix D.

Operation in Pipeline Mode

Pipeline mode is invoked by setting mode register bit PL
(Pipeline Mode Select) to logic High.

Programmer’s Model

A programmer's model of the Am29027 in pipeline
mode is shown in Figure 10. Note that Output Register F
and the flag register are non-transparent in this mode,
thus permitting the overlap of the current operation(s)
with the reading of the result for a previous operation.

Pipeline Delays

When placed in pipeline mode, the ALU is divided into
three pipeline stages for multiply-accumulate opera-
tions, and into two stages for all other operations. The
ALU configuration: for pipeline mode is shown in
Figure 11. Note that for multiplication-accumulation op-

erations, multiplicand P and multiplier Q enter the first -

pipeline stage, while addend T enters the second pipe-
line stage. As a consequence, the source for operands
P and Q must be specified inthe corresponding multiply-
accumulate instruction, while the source for operand T
must be specified in the following instruction.

Pipeline Advance

The ALU pipeline is advanced whenever a new opera-
tion begins. One consequence of this advance criterion
is that data does not fall through the pipe but instead is
“pushed” through. If, for example, an addition is per-

formed in pipeline mode, the pipe must be advanced
twice (by starting two operations) before the result of the
addition appears in Register F, the flag register, the
status register, and, optionally, a register file location.

Performing Operations
Pipeline mode operations are performed by:

B Storing instructions and/or operands in the
Am29027, and starting the operation

® | oading the result of a previous operation

Storing instructions and operands can be done in any of
three ways:

B Writing the instructions only, and starting the
operation: This is appropriate when all necessary
operands are already present in the Am29027,
as is sometimes the case when using on-board
constants or the results of previous operations
stored in the register file.

® Writing the operands only, and starting the
operation: This is appropriate when the desired-
instructions are already present inthe Am29027, as
is the case when performing the second of two
identical operations.

8 Writing the instructions and operands, and
starting the operation: This is appropriate
whenever the next operation requires both new
instructions and new operands.

Operands and instructions are written using the write
operand R, write operand S, write operands R, S, and
write instruction transaction requests. Operands and
instructions can be written to the Am29027 in any order,
with the operation start bit (DREQTo High) accompany-
ing the last of the transaction requests.

Loading the result of a previous operation is performed
using the read result MSBs, read resuit LSBs, and read
flags transaction requests. The specific request used
depends onwhetherthe resultis aflag orflags (asisthe
case withcomparison operations) or data (asisthe case
with most other operations). In cases where the
operation result is stored in the register file, the user
may elect not to read the result, but to proceed with the
next operation.

Operation Timing

The Am29027 will usually start a pipelined operation
during the first cycle following the receipt of a write op- -
erand R, write operand S, write operands R, S, or write
instruction transaction request having signal DREQTo
set High.)

Operation execution begins with the transfer of the con-
tents of the R-Temp, S-Temp, and I-Temp registers to
Register R, Register S, and the instruction register, re-
spectively; data is transferred only from those tem-
porary registers written to as part of the operation speci-
fication. The operand or instruction accompanying the

14153

29K Family CMOS Devices

Rai—Ro
‘U\ 32

ls=lo

N 32

Pl-Temp I P Mode I

brrane | psrons]

21

e 15]

Instr.

I8 :@4

Ss=So
\Q 32
. b Prec. I D RF,
L}
! D RF,
. .
)
. .
) |Constants| & pp
464 464 64 64 64
\ .. S

Operand Select

64 64 “+ 64

~ 64
37
P F l b Flags I P Status |
;3 U S

]

4:1 Multiplexer

32

Fa—Fo | 09114-012C

Figure 16. Programmer’s Model for Pipeline Mode

transaction request that starts the operation (that is, the
transaction request for which signal DREQTo is High) is
written directly to the appropriate working register, that
is, Register R, Register S, or the instruction register. At
the start of the operation, the output of the last ALU pipe-
line stage is transferred to Register F, the flag register,
and, optionally, to a register file location; the status
register - exception status and exception. bits . are
updated. The outputs of all other ALU pipeline stages
are written to their respective pipeline registers.

Once started, an operation will proceed for the number
of cycles specified by mode register field PLTC, which
denotes the nhumber of cycles needed for data to tra-
verse a single pipeline stage.

There are two conditions for which the Am29027 will not
start an operation immediately. The first condition is
when an operation has been started recently and has
not yet had time to settle at the output of the first pipeline
stage. In this case the new operation is kept pending in
the I-Temp, R-Temp, and S-Temp registers until the
previous operation completes the first pipeline stage.
The second condition is when a previous operation cre-
ates an unmasked exception in-Halt On Error mode
(mode register bit HE High). In this case the new opera-
tion is kept in the I-Temp, R-Temp, and S-Temp regis-
ters until the exception is cleared, at which time the new
operation will begin.

1-154

Am2s027

P Q T Instruction
p Q T Instruction
Multiply
|> Pipeline | I Register Multiply — Add B
Aid Multiplexer
I> Pipeline Register D Pipeline Register
Renormalize Renormalize
v v
F F
a. Multiply-Accumulate b. Other Operations
09114-013C

Figure 17. ALU Configuration for Pipeline Mode

Timing for typical accelerator operations in the pipeline
mode is illustrated in Appendix D. .

Availability of Operation Results

Because Register F, the flag register, and the status
register are updated at the beginning of an operation,
these registers can be read at any time after.an opera-
tion begins.

Overlapping Operations

Due to the presence of the R-Temp, S-Temp, and I-
Temp registers, it is possible to partially or completely
specify a new operation while the previously specified
operation is propagating through the first ALU pipeline
stage. Execution of the new operation willbeginimmedi-
ately after the previous operation completes the first
pipeline stage. Execution begins with the transfer of the
contents of the R-Temp, S-Temp, and |-Temp registers
to the corresponding working registers; only those
temporary registers that have been written to as part of
operation specification are transferred.

It is important to note that, once the new: operation is
completely specified, any attempt to read a result will be
held off until the new operation begins; this means that it
is not possible to read the result that is placed in the out-
put registers- when the first operation-begins. If, for
example, result X is placed in Register F when an op-

eration starts and if another operation is completely
specified thereafter, subsequent read result MSBs and
read result LSBs transaction requests will return not X,
but the result placed in the F register when the second
operation begins; the read flags and read status trans-
action requests will behave in like manner. This delayed
read feature is provided to eliminate ambiguity in the
correspondence between operations and results.

Saving and Restoring State

Due to the presence of ALU pipeline registers, it is not
possible to save the complete state of the Am29027 in
pipeline mode. Pipeline operations ray therefore be in-
terrupted only under special circumstances, such as:

B if the interrupting routine does not use the
floating-point accelerator

or

& [f-the current series of pipelined operations has
been completed, and any operands needed for
future operations have already been transferred to
the Am29000 ‘

The save state transaction request is disabled in pipe-
line mode. It is permissible to switch to flow-through
mode and use the save state transaction request, but

1-155

29K Family CMOS Devices

doing so does not permit the saving of Register F, the
flag register, or the ALU pipeline registers.

Error Recovery

As for flow-through mode, the Am29027 provides three
mechanisms with which unmasked exceptions can be
handled.

Reporting Errors Upon Read

- If an unmasked status register exception bit is set, the
Am29027 will signal an error by asserting signal DERR
when the Am29000 performs a read result LSBs, read
result MSBs, read flags, or read status transaction re-
quest. Error reporting can be suppressed by issuing any
of these transaction requests with signal DREQTo
asserted.

Halt On Error Mode

Should the application require it, the Am29027 can be
configured to halt operation upon detection of an un-
masked exception; this mode is invoked by setting
mode register bit HE (Halt On Error) High. Once config-
ured this way, the: Am29027 will respond to an un-
masked exception as follows:

B Signal CDA will become inactive when the results of
the operation producing the unmasked exception
are transferred from the last pipeline stage to
Register F, the flag register, and the status register.

® Once CDAisdeasserted, the Am29027 will respond
to the write operand R, write operand S, write
operands R, S, and write instruction transaction
requests by asserting signal DERR one cycle after
the request is issued; the contents of the target
register or registers will remain unchanged.

Through these measures, the Am29027 will retain the
input operands and instructions for the most recently
started operation. The input operands for that operation
will be retained in the R register, S register, or register
file locations, and the instructions will be retained in the
instruction register. Additionally, the R-Temp, S-Temp,
and I-Temp registers may contain the operands and in-
structions for a partially or fully specified pending opera-
tion.. Note that the input operands and instructions
words for the operation causing the exception, as well
as for operations currently in the ALU pipeline, will not
be available. At the user’s option, this information can
be stored in a circular queue in the Am238000 register
file so that full recovery from a pipelined exception is
possible. .

The Am238000 can read the contents of Am29027 oper-
and and instruction registers by invoking flow-through
mode and using the save state transaction request.
Note that the contents of Register F, the flag register,

and the ALU pipeline registers will be lost. This informa--

tion can then be given to an error-handling routine for
resolution.

The error halt condition is removed by clearing the
status register exception status (ES) bit and the excep-
tion bit or bits responsible for producing the halt.

Reporting Errors via EXCP
Same as for the flow-through mode.

Pipeline Invalidation

There are several situations for which the ALU pipeline
stages may contain invalid data. The Am29027 recog-
nizes these situations and invalidates results automati-
cally; results marked as invalid will not update the
status register, register file locations RF—RFo, or the
precision register. Results are invalidated for the follow-
ing conditions:

B The Am29027 is switched from flow-through mode
to pipeline mode. Any data present inthe ALU atthe
time of the switch is marked as invalid. This
invalidation is illustrated in Figure 12a.

B The Am29027 performs a multiply-accumulate
operation that is preceded by an operation other
than multiply-accumulate. The multiply-accumulate
operation result and the result that precedes it will
be separated by a spurious result, due to the
insertion of an additional pipeline stage for the
multiply-accumulate operation. The spurious result
is marked invalid. This invalidation is illustrated in
Figure 12b.

The pipeline may also be invalidated manually by issu-
ing a write status transaction request with signal
DREQTo asserted High; this request invalidates all cur-
rent pipeline contents. Pipeline invalidation does not ap-
ply to operation in flow-through mode.

Writing to the Mode, Status, and Precision
Registers) .
Unlike the R, S, and instruction registers, the mode,
status, and precision registers are not preceded by tem-
porary registers. Accordingly, writing to these registers
may produce undesirable or unpredictable side effects if
an accelerator operation is pending at the time. To avoid
such side effects, a write to any of these registers should
be preceded by a read transaction request, which will
guarantee that any pending accelerator operation will
have started before the write transaction request is
issued. i

The mode register outputs are not pipelined in the ALU,
that is, all pipeline stages receive mode information
directly from the mode register. Accordingly, writing to
the mode register may produce undesirable or unpre-
dictable side effects for operations currently in the ALU
pipeline. To avoid such side effects, a write to the mode
register should be performed only if the contents of the
ALU pipeline are a “don’tcare,” that is, only after the last
operation result of interest has been written to Register
F.,the flagregister, or aregister file location. If, for exam-

1-156

Am29027

Start Operation l l ¢ l i

Operation | 1 I 2 | 3 | 4 I 5 l 6 | 7 |
PipelineStagei| 1 | 2 | 3 | 4 | s | 6 | 7 |
PipelineStage2| 1 | 2 | 2 | 3 | | 4 | s | & |

L+ 2 2 1 2] 3| 4| 5 |

Result
I‘_Pipeline Output

Invalid
f

Switch to
Pipeline Mode

a. Pipeline invalidation timing for switch from flow-through to pipeline mode. Operations shown incur
two pipe-line delays in pipeline mode [all base operations except F' = (P’ x Q') + T'].

T T S A SR BT

Operation- | ADD1| MPY1] MAC1| MAC2 | MAC3 | (DMAC)| ADD2 |MPY2| ADD3 | MPY3| ADD4| MPY4] ...

Pipeline Stage 1| ADD1] MPY1| MAG1| MAC2 | MAC3 | (DMAC)| ADD2 |MPY2| ADD3 | MPY3| ADD4| MPY4 | -

Pipeline Stage 2 |
Pipeline Stage 3| | | | ?
Result = | ' I

Pipeline Output
Invalid

-»| |

| ADD1] MPY1| MAC1 | MAC2 | MAC3 | (DMAC)| ADD2| MPY2 | ADD3| MPY3| ADD4 | - --
| MAC1 | MAC2 |MAC3 | | R |

| ADD1| MPY1 | 2 |MAC1 |MAC2 |MAC3| ADD2 | MPY2| ADD3| MPY3| -

b. Pipeline invalidation timing for multiply-accumulate operations in pipeline mode.

Notes: ADDx = addition operation
MPYx = multiplication operation
MACx = multiply-accumulate operation
(DMAC) =

dummy multiply-accumulate operation

09114-014C

Figure 18. Pipeline Invalidation Timing

ple, the last in a series of addition operations has
just been started, the mode register should not be writ-
ten until the pipeline is advanced twice, placing that
operation’s results in the F register, flag register, and,
optionally, a register file location. ’

Writing to the Register File
. The numerical result of any operation may be written to
the register file by specifying the desired destination in

instruction field RFS and setting instruction bit RF High.
The result may then be used as aninput operandin sub- -
sequent operations. Because all ALU operations incur
one or more pipeline delays, the result of an operation
will not be available for use by the very next operation.

It is permissible for an operation result to be placed ina
register file location that previously contained an input
operand for that operation.

1157

29K Family CMOS Devices

Muiltiplication-Accumulation Operations

The pipeline structure of the Am29027 permits the
evaluation of sum-of-products expressions in a canoni-
cally efficient manner by interleaving the evaluation of
two sum-of-product expressions. Operation sequencing
is described in Figure 13.

Determining Timer Counts

As for flow-through mode, the timing of operations in
pipeline mode is programmable to accommodate
variations in system timing. A single mode register
field—pipeline timer count (PLTC)—specifies the timing
of all pipelined operations; fields MATC and MVTC are
not used.

PLTC specifies the number of cycles allotted for data to
traverse a single pipeline stage. This count can assume
values between 2 and 15, inclusive, and must be givena
value that satisfies the relationship:

[9]<PLTC x [1},
where
[9]= Operation time, pipeline
mode, all cperations
and [1]= CLK period,

as described in the Switching Characteristics table.

Advancing DRDY

Because the Am29027 F register and flag register are
non-transparent in pipeline mode, it is.not possible {nor
advantageous) to advance DRDY. Accordingly, mode
register bit M44 has no effect in pipeline mode.

Master/Slave Operation

Two Am29027 accelerators can be tied together in mas-
ter/slave configuration, with the slave checking the re-
sults produced by the master. All input and output sig-
nals of the slave, with the exception of SLAVE and
MSERR, are connected directly to the corresponding
signals of the master. The master is selected by assen-

ing signal SLAVE Low, the slave by asserting signal

SLAVE High.

The slave accelerator, by comparing its outputs to the
outputs of the master accelerator, performs a compre-
hensive check of master accelerator logic. In addition, if
the slave accelerator is connected at the proper position
on the Am29000 buses, it may detect open circuits and
other faults in the electrical path between the master ac-
celerator and the Am23000. '

Note that the master accelerator also performs a
comparison between its outputs and its own internally
generated results, and is therefore able to detect faults
in its output drivers, which it reports with its MSERR
signal.

Initialization and Reset

The accelerator is in an unknown state when power is
first applied and must be initialized before processing

canbegin. This is accomplished by asserting the RESET
signal, which initializes accelerator state as follows:

" All bits in the status register are cleared
B The accelerator is placed in flow-through mode

B Signal CDA is active; signals DRDY and DERR are
inactive

® Al internal circuitry controlling operation timing is
initialized

The RESET signal does not initialize the operand and in-

struction registers and may corrupt existing register

contents. It is the responsibility of the user to initialize

these registers, if needed.

Applications

Suggestions for Power and Ground
Pin Connections

The Am29027 operates in an environment of fast signal
rise times and substantial switching currents. Therefore,
care must be exercised during circuit board design and
layout, as with any high-performance component. The
following is a suggested layout, but since systems vary
widely in electrical configuration, an empirical evalu-
ation of the intended layout is recommended.

The Veco and GNDO pins carry output driver switching
currents and can be electrically noisy. The Vcec and GND
pins, which supply the logic core of the device, tend to
produce less noise and the circuits they supply may be
adversely affected by noise spikes onthe Vcc plane. For
this reason, it is best to provide isolation between the
Vee and Veeo pins as well as independent decoupling for
each. Isolating the GND and GNDO pins is not required.

Printed Circuit-Board Layout Suggestions
1. Use of a multilayer PC board with separate power,
ground, and signal planes is highly recommended.

2. AllVee and Veco pins should be connectedto the Vee
plane. Veco pins should be isolated from Vee pins by
means of an isolation slot which is cut in the Vcc
plane (see Figure 14). By physically separating the
Vee and Veceo pins, coupled noise will be reduced.

3. All GND and GNDO pins should be connected
directly to the ground plane.

4.. The Vcco pins should be decoupled to ground with a
0.1-uF ceramic capacitor and a 10-uF electrolytic
capacitor, placed as closely to the Am29027 as is
practical. Vce pins should be decoupled to ground in
a similar manner.

A suggested layout is shown in Figure 14.

1-158

651-1

Operation fmac| mc | mac | mac | mac | mac | mac | mac | mac | mac | mac | mac | mac | mac | we | wmac | wmac | |
Register R | ‘a1t | a2t | ‘a2 | a22 | a;m | a3 | an | a2 | 83t | a4t | a2 | a2 | a3 | as3 | a34 | a4 | | |
RegisterS - | bt | b1 o] b2 | b2 | w | B | b | b | wm | m | b2 | b2 | b3 | B | b | ba | | |
Pipeline Staga 1 |a11ubt]a21xbt | at2xbe | a22xbz | at13xb3 | azaxba | ataxvs | azexva | a3txbi | aerxvr | ad2xb2 | aazxb2 | a2xb3 | acxba | asaxba | acaxb |]
Pipeline Stage 2 | Jatixbr | a2ixbt far2xb2+|a22xb2+ [a13xb3+ | a23xb34 | ataxbas |a24xbas| ad1xb1 |a4ixby | a32xb2+| ad2xb2+ |a33xb3+ |as3xb3+ | a34xb4+| adaxbas| |
(c1) =] (c1) (c2) (c1) (2) (3) (c4) (c3) (c4) (c3) (c4)
Pipeline Stage 3 | | |a11x51 IuZ\ka |a12xb2+ |a22xb2+ | a13x03+ | a23xb3+ | ataxbas | a24xbas | a31xbt | ad1xbi | a32xb2+ | a42xb2+ [a33xb3+ | a43xb3+] ad4xbas[adexbis]
{c1) () ey () (c1) (2) ' (e3) {c4) (c3) (cq) (3) (c4)
Ry I | lTel@le |l @ |l @ola@aloalel@leomloeleow| @l wla |
Rogister F | | | fenl @ e | @ | o | @) a2 | @] | @/ lew] @] wm]| e |o
Calculate matrix product C = A x B, where:
altal2ai3ald b1 c1 ci=alixbl+al2xb2+ai3xb3+ald xbd
A- | a2la22a23a24 | g_| b2] g_|c2| c2-a21xbi+a22xb2+a23xb3+a24xb4
gi:gigﬁgﬁ: zi ik c3=a31xb1+a32xb2+a33xb3+a34xb4s
c4=a41xb1+ad2xb2+a43xb3 +add4 xbs
09114-015C

Notes: 1. Register file location RF, is used as the accumulator,
2. Parentheses are used to indicate partial sums of products.

*Additional MAC operation needed to terminate sequence.

Figure 13. Canonically Efficient Sum-of-Products Evaluation in Plpeline Mode

LeoeTwy

29K Family CMOS Devices

10 ©

A PRTU

o 0000

o 0000

o 0000

o 000

o 500

o 000

o 0002

o 0000

o 0000
©00F
000
000
000
000
000
000
000

GIH0 0115S110 01108110 641

C, C. Cs C G C,

Ve Isolation Cut

@ = Through Hole
&> = Vcc Plane Connection

Ci = C;3 = Cs = C; = 0.1 uF (ceramic or monolithic capacitor)
C, = C, = Cs = Cy = 10 pF (electrolytic or tantalum capacitor)

Figure 20. Suggested Printed Circuit-Board Layout
(power and ground connections)

CDO11711

1-160

Am29027

ABSOLUTE MAXIMUM RATINGS

Storage Temperature -65 to +150°C
(Ambient) Temperature Under Bias .. -551to0 +125°C
Supply Voltage to

Ground Potential Continuous -0.3Vto+7.0V
DC Voltage Applied to Outputs for

High Qutput State -0.3Vto +Veec +0.3V
DC Input Voltage ~0.3 V1o +Vcc +0.3V
DC Output Current, into Low Outputs 30 mA
DClInput Current -10 mAto +10 mA

Stresses above those listed under ABSOLUTE MAXI-
MUM RATINGS may cause permanent device failure.
Functionality at or above these limits is not implied. Ex-
posure to absolute maximum ratings for extended peri-
ods may affect device reliability.

OPERATING RANGES
Commercial (C) Devices

Case Temperature (Tc) 0 to +85°C

Supply Voltage (Vec) - +4.75Vto +5.25V
Military* (M) Devices

Case Temperature (T¢) -55 to +125°C

Supply Voltage (Vee) .+ +45Vto+5.5V

Operating ranges define those limits between which the
functionality of the device is guaranteed.

*Military Product 100% tested at Tc=+25°C, +125°C, and
-55°C.

1-161

29K Family CMOS Devices

DC CHARACTERISTICS over COMMERCIAL operating range unless otherwise specified
(for APL Products, Group A, Subgroups 1, 2, and 3 are tested unless otherwise noted)

Parameter | Parameter
Symbol Description Test Conditlons (Note 1) Min. Max. | Unit
Vo Output High Voltage Vee = Min.
Vin= Vi or Vi, lon==4.0 mA 24 v
VoL Output Low Voltage Vee = Min.
Vm= Vm or V||_ lo.=4.0 mA 0.45 v
Vi Guaranteed Input Logical
High Voltage (Note 2) 2.0 v
Vo Guaranteed Input Logical
Low Voltage (Note 2) 0.8 \
Viu(F) Guaranteed Input Logical
High Voltage (Notes 2, 6) F Bus, Slave Operation Only Vee —0.5 \
Vi(F) Guaranteed Input Logical
Low Voltage (Notes 2, 6) 0.5 v
" Input Leakage Current +10 pA
o Output Leakage Current +10 HA
240
GND
(Note 3)
TTL Vw=0.5Vor 275
lec Static Static Power Supply Current 2.4V
(Note 3) mA
CMOS Vm = Vcc or
MiL GND
Te=-55to (Note 3)
+125°C TTL Vm =0.5Vor
24V
lecor Operating Power Supply ™| Vcc=Max.
Current Qutputs floating 9.0 mA/MHz
Notes: 1. V¢ conditions shown as Min. or Max. refer to 5% Vcc (commercial) and £10% Ve (military).
2. These input levels provide zero noise immunity and should only be statically tested in a noise-free environment
(not functionally tested).
3. 'Use CMOS Icc when the device is driven by CMOS circuits and TTL lec when the device is driven by TTL circuits.
4. lce (Total) = lcc (Static) + lecor % f, where f is in MHz, This is tested on a sample basis only.
5. Tested on a sample basis only.
6. These levels guaranteed compatible with F bus output levels.
CAPACITANCE
Parameter | Parameter
Symbol Descrliption Test Conditions Min. Max. Unit
Cw Input Capacitance 12 pF
Cour Output Capacitance fc=1 MHz (Note 5) 20 pF
Cuwo /O Pin Capacitance 20 - pF

1-162

Am29027

SWITCHING CHARACTERISTICS over COMMERCIAL operating range

25 MHz 20 MHz 16 MHz
No. | Parameter Description Tost Conditions | Min.| Max. | Min.| Max. Min.| Max.| Unit
1 CLK Period (Note 1) 40(DC 50| DC 60| DC ns
2 CLK Low Time 18 20 22 ns
3 CLK High Time 18 20 22 ns
4 CLK Rise Time (Note 2) 5 5 5 ns
5 CLK Fall Time {Note 2) 5 5 ns
Operation Time, Low-Latency
6 Mode, F' = (P'xQ)+ T’ 300 360 ns
7 MOVE P 150 180 ns
8 (All Other Base Operation Codes) 250 300 ns
Operation Time, Pipeline Mode
9 All Operations 150 180 ns
10 Transaction Request Setup Time (Note 3) 26 ns
11 Transaction Request Hold Time (Note 3) | 0 0 ns
12 | BINV Setup Time : 11 13 15 ns
13 BINV Hold Time 2 2 2 ns
14 Data Setup Time 18 22 24 ns
i5 Data Hold Time 2 2 2 ns
16 Instruction Setup Time 18 22 24 ns
17 Instruction Hold Time 2 2 2 ns
18~ | CDA CLK-to-Output-Valid Délay 20 24 26 ns
19 | Fy~Fo CLK-to-Output-Valid:Delay 30 35 a7 ns
20 Fu—Fo Three-State - ,
CLK-to-Output-Inactive Delay (Note 6) 22 25 27 ns
Data Operation-Start-to-Output-
Valid Delay
21 F=P'xQ)+T 270 285 340 ns
22 MOVE P 110 135 160 ns
23 (All Other Base Operation Codes) 190 235 280 ns
24 | DRDY CLK-to-Output-Valid Delay 18 21 23 ns
25 | DERR CLK-to-Output-Valid Delay 18 21 23 ns
26 EXCP CLK-to-Output-Valid Delay 18 21 23 ns
27 MSERR CLK-to-Output-Valid 20 25 30 ns
Delay
Notes: 1. CLK switching characteristics are made relative to 1.5 V.
2. CLK rise time/tall time measured between 0.8 V and (Vcc 1.0 V). Tested on a sample basis only.
3. Transaction request signals include R/W, DREQ, DREQT,~-DREQT,, and OPT,—OPTo
4. Data signals include Ry—Ro and Sy—S..
5. Instruction signals include ly—ls.
6. Three-State Output Inactive Test Load. Three-State CLKoto -Output-Inactive Delay is measured as the time to a

+500 mV change from prior output level.
Conditions: A. All inputs/outputs are TTL-compatible for Vi, Vi, and Vo unless otherwise noted.
B. All outputs are driving 80 pF unless otherwise noted.

C. All setup, hold, and delay times are measured relative to CLK at 1.5 V unless otherwise noted.

1-163

29K Family CMOS Devices

SWITCHING CHARACTERISTICS over MILITARY operating range

. 20 MHz 16 MHz
No. | Parameter Description Test Conditions Min. Max. Min. Max. Unit
1 | GLK Period (Note 1) 50 DC 60 DC ns
2 CLK Low Time 20 22 ns
3 CLK High Time 20 22 ns
4 CLK Rise Time (Note 2) 5 5 ns
5 CLK Fall Time {Note 2) 5 ns
Operation Time, Low-Latency
8 | Mode, F'=(P'xQ)+T 360 ns
7 MOVE P 180 ns
8 (All Other Base Operation Codes) 300 ns
Operation Time, Pipeline Mode
9 All Operations 180 ns
10 Transaction Request Setup Time 26 ns
11 Transaction Request Hold Time 0 ns
12 | BINV Setup Time 16 ns
13 | BINV Hold Time 2 ns
14 Data Setup Time 24 ns
15 Data Hold Time 2 ns
16 Instruction Setup Time 24 ns
17 Instruction Hold Time) 2 ns
18 | CDA CLK-to-Output-Valid Delay" . 26 ns
18 | Fu=Fo CLK-to-Output-Valid Delay 35 40 ns
20 | Fu-F, Three-State CLK-to- ~
Output-Inactive Delay (Note 6) 26 30 ns .
Data Operation-Start-to-Output-
Valid Delay
21 | P=(P'xQ)+T 285 340 ns
22 MOVE P 135 160 ns
23 (All Other Base Operation Codes) 235 280 ns
24 | DRDY CLK-to-Output-Valid Delay 21 23 ns
25 | DERR CLK-to-Qutput-Valid Delay 21 23. ns
26 | EXCP CLK-to-Output-Valid Delay 21 23 ns
27 MSERR CLK-to-Output-Valid Delay 25 30 ns
Notes: 1. CLK switching characteristics are made relative to 1.5 V.

Conditions: A.” All inputs/outputs are TTL-compatible for Vi, Vi, and Vo, unless otherwise noted.
B. All outputs are driving 80 pF unless otherwise noted.

ok LDd

CLK rise time/fall time measured between 0.8 V and (Vec—1.0 V). Tested on a sample basis only.

Transaction request signals include R/W, DREQ, DREQT,~DREQT,, and OPT~OPT.,.

Data signals include R3~Ro and S3~S,.

Instruction signals include ly=l.

Three-State Output Inactive Test Load. Three-State CLK-to-Output-Inactive Delay is measured as the time to a
+500 mV change from prior output level.

C. All setup, hold, and delay times are measured relative to CLK at 1.5 V unless otherwise noted.

1-164

Am29027

SWITCHING WAVEFORMS

CLK

Transaction
Request

@
=
<

Data,
Instruction

EXCP

“Input Signal Timing; CDA, EXCP Timing

1-165

29K Family CMOS Devices

SWITCHING WAVEFORMS (continued)

Start of
Operation

6, 7, § —————»n

CLK 15V ‘ 1.5V K 15V

Transaction -
Request Xuote2 | X

' g~ 20 -,
. 4 Vou-05V
FarFo : ; 7 15V P Voo 105V
— 24,
DRDY 25
DERR o T5V

1.5V
: . 26
P svh_(eed

Operation Timing for Flow-Through Mode, DRDY, DERR Not Advanced
(Mode Reglster Bit AD=0)

Notes: 1. Transaction request Write Operand R; Write Operand S; Write Operands R, S; or Write Instruction with S;gnal
DREQT, asserted.

2. Transaction Request Read Result MSBs, Read Result LSBs, Read Flags, Read Status, or Save State. If re-
quest Read Result LSBs is issued, the Am29027 produces two data outputs in two consecutive cycles, wnh
DRDY or DERR active for both cycles.

3. Signal EXCP is asserted in the presence of unmasked exception.

1-166

Am23027

SWITCHING WAVEFORMS (continued)

Start of Operation
» v\ RN N s
Transaction >< Note 1 >< X Note 2 ><
Request
i 21,22,23
20
19 <
N Vou =05V
OH <5
Fa—Fo 15V L_ Vo +0.5V
2
DRDY 3 :
e 21,22,23
DERR s
26

EXCP ol

Operation Timing for Flow-Through Mode, DRDY, DERR Advanced
(Mode Register Bit AD=1) .

Notes: 1. Transaction request Write Operand R; Write Operand S; Write Operands R, S; or Write Instruction with Signal
DREQT, asserted.

2. Transaction Request Read Result MSBs, Read Result LSBs, Read Flags, Read Status, or Save State. |f re-
quest Read Result LSBs is issued, the Am29027 produces two data outputs in consecutive cycles, with DRDY

or DERR active for both cycles.
3. Signal EXCP is asserted in the presence of an unmasked exception.

1-167

29K Family CMOS Devices

SWITCHING WAVEFORMS (continued)

Start of Operation

x

CLK 1.5V \ 7 15V ‘1.5V

Transaction Note 2

Request -
19}

20
-
Voi=0.5 V

Fu-Fo) : 185V >
S - _ olEe o3
DRDY, DERR {f '

Xi1s5v 15V

26

«—>

EXCP

’ 15V (Note 3)

Operation Timing for Pipeline Mode

VOL +0.5 \

Notes:. 1. Transaction request Write Operand R; Write Operand S; Write Operands R, S; or Write Instruction with signal
DREQT, asserted.

2. Transaction Request Read Result MSBs, Read Result LSBs, Read Flags, Read S!atus, or Save State. If re-

-quest Read Result LSBs is issued, the Am29027 produces two data outputs in consecutive cycles, with DRDY
or DERR for both cycles. . : . ; '

3. Signal EXCP is asserted in the presence of an unmasked exception.

oLx __/———____/—__7 15V {15V

. o~
Master/Slave Discrepancy
During This Cycle]
' '
MSERR 1.5V 15V

Master/Slave Timing

1-168

Am29027

SWITCHING TEST CIRCUIT

cc

V.
; R
1”1
Y|
C.=5pF —— § R.= 1K %

Three-State Output Inactive Test

1 = 300 ohms

Vi

lo. = 4.0 mA

Am29027
Pin Under Test

_ICL

Veer = 1.5V

low = 4.0 mA
Vi ' 09075B-001A

C. is guaranteed to 80 pF.

1-169

29K Family CMOS Devices

TEST PHILOSOPHY AND METHODS

The following nine points describe AMD's philosophy for
high-volume, high-speed automatic testing.

1.

Ensure that the part is adequately decoupled at the
test head. Large changes in Vcc current as the de-
vice switches may cause erroneous function fail-
ures due to Vee changes.

Do not leave inputs floating during any tests, as they
may start to oscillate at high frequency.

Do not attempt to perform threshold tests at high
speed. Following an output transition, ground cur-
rent may change by as much as 400 mA in 5-8 ns.
Inductance in the ground cable may allow the
ground pin at the device to rise by hundreds of mil-
livolts momentarily.

Use extreme care in defining point input levels for
AC tests. Many inputs may be changed at once, so
there will be significant noise at the device pins and
they may not actually reach Vi or Vi1 until the noise
has settled. AMD recommends using Vi< 0 V and
Vi=3.0 V for AC tests.

To simplify failure analysis, programs should be de-
signed to perform DC, Function, and AC tests as
three distinct groups of tests.

Capacitive Loading for AC Testing.

Automatic testers and their associated hardware
have stray capacitance that varies from one type of
tester to another, but is generally around 50 pF.
This, of course, makes it impossible to make direct
measurements of parameters that cali for smaller
capacitive load than the associated stray capaci-
tance. Typical examples of this are the so-called
float delays, which measure the propagation delays
into the high-impedance state and are usually
specified at a load capacitance of 5.0 pF. In these
cases, the test is performed at the higher load ca-
pacitance (typically 50 pF), and engineering corre-
lations based on data taken with a bench setup are
used to predict the result at the lower capacitance.

Similarly, a product may be specified at more than
one .capacitive load. Since the typical automatic

tester is not capable of switching loads in mid-test, it

is impossible to make measurements at both ca-
pacitances even though they may both be greater
than the stray capacitance. In these cases, a mea-
surement is made at one of the two capacitances.
Theresult atthe other capacitance is predicted from
engineering correlations based on datatakenwitha
bench setup and the knowledge that certain DC
measurements (low, loc, for example) have already
been taken and are within spec. In some cases,
special DC tests are performed in order to facilitate
this correlation.

Threshold Testing

The noise associated with automatic testing (due to
the long, inductive cables) and the high gain of the
tested device when in the vicinity of the actual de-
vice threshold, frequently give rise to oscillations
when testing high-speed circuits. These oscillations
are not indicative of areject device, butinstead of an
overtaxed test system. To minimize this problem,
thresholds are tested at least once for each input
pin. Thereafter, hard high and low levels are used
for other tests. Generally this means that function
and AC testing are performed at hard input levels
rather than at Ve Max. and Vw Min.

AC Testing

Occasionally, parameters are specified that cannot
be measured directly on automatic testers because
of tester limitations. Data input hold times often fall
into this category. In these cases, the parameter
in question is guaranteed by correlating these tests
with other AC tests that have been performed.
These correlations are arrived at by the cognizant
engineer by using precise bench measurements in
conjunction with the knowledge that certain DC
parameters have already been measured and are
within spec.

In some cases, certain AC tests are redundant,
since they can be shown to be predicted by some
other tests that have already been performed. In
these cases, the redundant tests are not performed.

1-170

Am29027

Am?29027 Thermal Characteristics
Pin-Grid-Array Package

0a=0,c+0ca

Thermal Resistance — °C/Watt

Alrilow—ﬁ./mln.;(ysec)

700 900

Parameter (3.58) (4.61)
0 Junction-to-Case 4 4
8ca Case-to-Ambient (no Heat 9 8
8 Case-to-Ambient (with'o gﬁg

Heatsink, Thermalloy 0417261 6 3. 2 2 2

._-ﬂ—zg——.—’

6ca Case-to-Ambient (with.unidirectional Pin Fin .)

Heatsink, Wakefield 840-20) 10 6 3 2 2 2
Am29027 Thermal Characteristics
Ceramic Quad-Flat-Pack Package

[cemm—— |
| S | OO — |
0 l
Bca Om
[}] JA = eJc + Oca
Thermal Resistance — °C/Watt
Airflow—ft./min. (m/sec)
0 150 300 480 700 900

Parameter (0) (0.76) (1.53) (2.45) (3.58) (4.61)

08, Junction-to-Case

Oca Case-to-Ambient (no Heatsink)

Note: This is for reference only.

1171

29K Family CMOS Devices
APPENDIX A—DATA FORMATS

The following data formats are supported: 32-bit integer, 64-bit integer, |EEE single-precision, |EEE double-precision,
DEC F, DEC D, DEC G, IBM single-precision, and 1BM double-precision.

The priméry and alternate floating-point formats are selected by mode register fields PFF and AFF. The user may
select between floating-point operations and integer operations by means of instruction bit INs.

The nine supported formats are described below:

Integer Formats

32-Bit Integer
The 32-bit integer word is arranged as follows:

Bit 31 30 29 28 27 26 25 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 7 6 5 4 3 2 10
-2 2 2 2 2 2 2 - -2 2 2 2 2 2 22
TB001030

The 32-bitword s interpreted as a two's-complement integer. For integer multiplications, the user has the option of
interpreting integers as unsigned. Anunsigned single-precision integer has a format similar to that of the two’s-com-
plement integer, but with an MSB weight of 2%,

64-Bit Integer
The 64-bit integer word is arranged as follows:

Bit 63 62 61 60 59 58 57 7. 6 5 4 3 2 {1 0

63 .62 61 60 59 58 57 : 7 6 5 4 3 2 1 0
-2 2 2 2 2 2 2 e 2 02 2 2 2 2 22
TB001040

The 64-bit word is interpreted as atwo's-complement integer. For integer multiplications, the user has the option of
interpreting integers as unsigned. Anunsigned double-precision |nteger has aformat similartothat of the two’s-com-
plement integer, but with an MSB weight of 2%, «

|IEEE Formats

|IEEE Single Precision
The IEEE single- precnsnon word is 32 bits wide and is arranged in the format shown below:

31 302928 27 26.25 24 23 2221 20 19 18 - . . 83'2 10
7 6 5.4 3 2 t1°0}-1 -2 3 -4 -5 20 =21 -22 -23
s 2 2 2 2 2 2 2 2412 2 2 2 2 .‘' "2 2:2 2
sign biased exponent (e) fraction (f : :
9 ponent (e) . s 0 TB001050

The floating-point word is divided into three fields: a single-bit sign, an 8-bit biased exponent, and a 23-bit fraction.
The sign bit is 0 for positive numbers and 1 for negative numbers. 0 may have either sign.

The biased exponent is an 8-bit unsigned integer representing a multiplicative factor of some power of 2. The bias
value is 127. If, for example, the multiplicative value for a floating-point number is to be 22, the value of the biased
exponent is a+ 127, where “a” is the true exponent.

1172

Am29027

The fraction is a 23-bit unsigned fractional field containing the 23 least significant bits of the floating-point number's
24-bit mantissa. The weight of the fraction’s most significant bit is 2-'. The weight of the least significant bit is 272,

An IEEE fioating-point number is evaluated or interpreted as follows:

fe=255andf#0 value =NaN Not a Number
lfe=255andf=0 value = (~1)3e Infinity
f0<e<255........... value = (=1)52+17 (1.f) Normalized number

- lfe=0andf#0 value = (—1)32'% (0.f) Denormalized number
fe=0andf=0 value =(-1)s0 Zero

Infinity: Infinity can have either a positive or negative sign. The interpretation of infinities is determined by mode
register bit AP.

NaN: A NaN is interpreted as a signal or symbol. NaNs are used to indicate invalid operations and as a means of
passing process status through a series of calculations. They arise in two ways: either generated by the Am29027 to
indicate an invalid operation, or provided by the user as an input. A signaling NaN has the MSB of its fraction set to 0
and at least one of the remaining fraction bits set to 1. A quiet NaN has the MSB of its fraction set to 1.

The IEEE format is fully described in ANSI/IEEE Standard 754-1985.

|IEEE Double Precision
The IEEE double-precision word is 64 bits wide and is arranged in the format shown below:

63 62 61 60 - -+ 54 53 52 51 50 49 48 47 - - - 3 2 1 0
0 9 8 2 1 0 -1 -2 -3 .4 -5 ~49 -50 -51 -52
sf2 2 2 -+ 2 2 2|2 2 2 2 2 . - -2 2 22
sign biased exponent (e) fraction (f) - : TB0O01060

The floating-point word is divided into three fields: a single-bit sign, an 11-bit biased exponent and a 52-bit fractlon
The sign bit is 0 for positive numbers and 1 for negative numbers; 0 may have either sign.

The biased exponent is an 11-bit unsigned integer representing a multiplicative factor of some power of 2. The bias
value is 1023. If, for example, the multiplicative value for a floating-point number is to be 22, the value of the biased
exponent is a+ 1023, where “a” is the true exponent.

The fraction is a 52-bit unsigned fractional field containing the 52 least significant bits of the floating-point‘number's
53-bit mantissa. The weight of the fraction’s most significant bit is 2-'". The weight of the least significant bit is 2752,

An |EEE floating-point number is evaluated or interpreted as follows:

Ife=2047 and f=0..... value = Reserved operand ~~ Not a Number
fe=2047and{=0..,.. value = (=1)% Infinity

f0<e<2047 value = (~1)52=192 (1.f) Normalized number
fe=0andfx0........ value = (~1)527%2 (0.f) Denormalized number
fe=0andf=0........ value = (~1)%0 Zero

Infinity: Infinity can have either a positive or negative sign. The lmerpretatlon of infinities is determlned by mode regis-
ter bit AP.

NaN: A NaN is interpreted as a signal or symbol. NaNs are used to indicate invalid operations and as a means of
passing process status through a series of calculations. They arise in two ways: either generated by the Am29027 to
indicate an invalid operation, or provided by the user as an input. A signaling NaN has the MSB of its fraction setto 0
and at least one of the remaining fraction bits set fo 1. A quiet NaN has the MSB of its fraction set to 1.

The IEEE format is fully described in ANSI/IEEE Standard 754-1985.

1173

29K Family CMOS Devices
DEC Formats

DECF
The DEC F word is 32 bits wide and is arranged in the format shown below:

31 30 29 28 27 26 25 24 23 22 21 201918 - - - 3 2 10

7 6 5 4. 83 2 1 0f -2 -3 -4 _-5 -6 -21 -22 -23 -24'
s|e 2 2 2 2 2 2 212 2 2 22 .-.--2 2 22

sign biased exponent (e) fraction (f)
TB001070
The floating-point word is divided into three fields: a single-bit sign, an 8-bit biased exponent, and a 23-bit iraction.
The sign bit is 0 for positive numbers and 1 for negative numbers; 0 has a positive sign.

The biased exponent is an 8-bit unsigned integer representing a multiplicative factor of some power of 2. The bias
value is 128. If, for example, the multiplicative value for a floating-point number is to be 22, the value of the biased
exponent is a + 128, where “a” is the true exponent.

The fraction is a 23-bit unsigned fractional field containing the 23 least significant bits of the floating-point nu mber's
24-bit mantissa. The weight of the fraction’s most significant bit is 2. The weight of the least significant bit is 2-2.

A DEC F tloating-point number is evaluated or interpreted as follows:

fex0 ...oovvvein.. value # (—1)52*'% (0.11)
lfs=0ande=0 value = 0
fs=1ande=0 value = DEC-Reserved Operand

DEC-Reserved Operand: ADEC-Reserved Operandis interpreted as a signal or symbol. DEC-Reserved Operands
are used to indicate invalid operations and operations whose results have overflowed the destination format. They
may also be used to pass symbolic information from one calculation to another.

The DEC formats are fully described in the VAX™ Architecture Manual.

DECD
The DEC D word is 64 bits wide and is arranged in the format shown below:

63 62 61 60 59 585756 66 64 653 52 651.60 -+ -3 2 .1 0

7 6.5 4 8 2 1 0 2 -3 -4 -5 -6 "~ .-53 <54 -55-56
sl2'2°2°2° 22 2 2|27 2 272720 . . .35 22 ,
sign biased exponent (e) fraction (f) TB001080

The floating-point word is divided into three fields: a single-bit sign, an 8-bit biased exponent, and a 55-bit fraction.
The sign bit is 0 for positive numbers and 1 for negative numbers; 0 has a positive sign.

The biased exponent is an 8-bit unsigned integer representing a multiplicative factor of some power of 2. The bias
value is 128. If, for example, the multiplicative value for a ﬂoatmg pomt number is to be 2%, the value of the biased
exponent Is a-+128, where “a” is the true exponent. :

The fraction is a 55-bit unsigned fractional field containing the 55 least significant bits of the floating-point number]
56-bit mantissa. The weight of the fraction’s most significant bit is 272, The weight of the Ieast sngnmcant bit is 2‘5“

A DEC D floating-point number is ‘evaluated or mterpreted as follows:

Fex0............. .. value={~1)52*" (0.1f) -
fs=0ande=0 value=0 KN
fs=tande=0 value = DEC-Reserved Operand .

DEC-Reserved Operand: ADEC-Reserved Operandis interpreted as a signal or symbol DEC Reserved Operands’
-are used to indicate invalid operations and operations whose results have overflowed the destination format. They
may also be used to pass symbolic information from one calculation to another. :

The DEC formats are fully described in the VAX Architecture Manual.

1174

Am29027

DECG
The DEC G word is 64 bits wide and is arranged in the format shown below:

63 62 61 60 - - 54 53 52 51 50 49 48 47 - - -3 2 1 0
s] 2102908 . . 02 o1 0 | 22 g8 g8 pE 8 | 550 551 55255
sign biased exponent (s) fraction (f) TB001030

The floating-point word is divided into three fields: a single-bit sign, an 11-bit biased exponent, and a 52-bit fraction.
The sign bit is 0 for positive numbers and 1 for negative numbers; 0 has a positive sign.

The biased exponent is an 11-bit unsigned integer representing a multiplicative factor of some power of 2. The bias
value is 1024. If, for example, the multiplicative value for a floating-point number is to be 2%, the value of the biased
exponent is a+ 1024, where “a" is the true exponent.

The fraction is a 52-bit unsigned fractional field containing the 52 least significant bits of the floating-point number’s
53-bit mantissa. The weight of the fraction’s most significant bit is 2-2. The weight of the least significant bit is 2752,

A DEC G floating-point number is evaluated or interpreted as follows:

fe£0............0.. value = (~1)52*-1% (0.1f)
~lfs=0ande=0 .,..... value=0 .
fs=1ande=0 value=DEC-Reserved Operand

DEC-Reserved Operand: A DEC-Reserved Operandis interpreted as a signal or symbol. DEC-Reserved Operands
are used to indicate invalid operations and operations whose results have overflowed the destination format. They
may also be used to pass symbolic information from one calculation to another.

The DEC formats are fully described in the VAX Architecture Manual.

IBM Formats

IBM Single Precision
The IBM single-precision word is 32 bits wide and is arranged in the format shown below:

31 302928 27 26 2524 232221 2019 18 - - - '3 2 10

s| 28 2524 23 22 51 20 |27t 22 9B o4 5 o8 L 52 52 52 52
sign biased exponent (e) : fraction (f) TB001080

The floating-point word is divided into three fields: a single-bit sign, a 7-bit biased exponent, and a 24-bit fraction.
The sign bit is 0 for positive numbers and 1 for negative numbers; a true 0 has a positive sign.

The biased exponent is a 7-bit unsigned integer representing a multiplicative factor of some power of 16. The bias
value is 64. If, for example, the multiplicative value for a floating-point number is to be 16% the value of the biased
exponent is a+64, where “a” is the true exponent.

The fraction is a 24-bit unsigned fractional field containing the 24 least significant bits of the floating-point number’s
25-bit mantissa. The weight of the fraction’s most significant bit is 2-'. The weight of the least significant bit is 272,

An IBM floating-point number is evaluated or interpreted as follows:
Value=(-1)S16>%(0.f) =

Zero: There are two classes of zero. If the sign, biased exponent, and fraction are all zero, the operand is known as a
“True Zero.” If the fraction is zero, but the sign and biased exponent are not both zero, the operand is known as a
“Floating-point Zero.”

The 1BM format is fully described in the IBM System/370 Principles of Operation Manual.

1175

29K Family CMOS Devices

IBM Double Precision)
The IBM double-precision word is 64 bits wide and is arranged in the format shown below:

63 62 61 60 59 58 57 56 655 5453 52 51 50 - - - .3 2 1 O
6 5 4.3 2 1 0| 4 2 8 4 5 5 _53 -54 55 -56
s{2 2 22 2 2 2 2 2 2.2 2 2 - - -2 2 2 2
sign biased exponent (e) fraction (f) TB0O110

The floating-point word is divided into three fields: a single-bit sign, a 7-bit biased exponent, and a 56-bit fraction.
The sign bit is 0 for positive numbers and 1 for negative numbers; a true 0 has a positive sign.

The biased exponent is a 7-bit unsigned integer representing a multiplicative factor of some power of 16. The bias
value is 64. If, for example, the multiplicative value for a floating-| p01m number is to be 16, the value of the biased
exponent is a + 64, where “a” is the true exponent.

The fraction is a 56-bit unsigned fractional field containing the 56 least significant bits of the floating-point number's
57-bit mantissa. The weight of the fraction’s most significant bit is 2-'. The weight of the least significant bit is 2%, An
IBM floating-point number is evaluated or interpreted as follows:

Value = (~1)3 16°%(0.f)

Zero: There are two classes of zero. lithe sign, biased exponent, andfraction are all zero, the operand isknown as a
“True Zero.” If the fraction is zero, but the sign and biased exponent are not both zero, the operand is known as a
“Floating-point Zero.”

The IBM format is fully described in the IBM System/370 Principles of Operation Manual.

1-176

Am29027

APPENDIX B—ROUNDING MODES
The round mode is selected by mode register field RMS as follows:

RMS Round Mode

000 Round to Nearest (IEEE)

001 Round to Minus Infinity (IEEE)
010 Round to Plus Infinity (IEEE)
011 Round to Zero (IEEE)

100 Round to Nearest (DEC)

101 - Round Away from Zero

11X llegal Value

Round to Nearest (IEEE)

The infinitely precise result of an operation is rounded to the closest representable value in the destination format. if
the infinitely precise result is exactly halfway between two representations, it is rounded to the representation having
a least significant bit of 0.

Round to Minus Infinity (IEEE)

The infinitely precise result of an operationis rounded to the closest representable value inthe destination format that
- is less than or equal to the infinitely precise result.

Round to Plus Infinity (IEEE)

The infinitely precise result of an operationis rounded to the closest representable value inthe destination format that
is greater than or equal to the infinitely precise result.

- Round to Zero (IEEE) .

The infinitely precise result of an koperation is rounded to the closest representable value in the destination format
whose magnitude is less than or equal to the infinitely precise result.

Round to Nearest (DEC)

The infinitely precise result of an operation is rounded to the closest representable value in the destination format. If
the infinitely precise result is exactly halfway between two representations, it is rounded to the representation having
the greater magnitude.

Round Away from Zero

The infinitely precise result of an operation is rounded to the closest representable value in the destination format
whose magnitude is greater than or equal to the infinitely precise result.

A graphical representation of these round modes is shown in Figures B1 and B2.

The IEEE standard specifies that all four “IEEE” modes be available so that the user may select the mode most
appropriate for the algorithm being executed. The DEC standard specifies that two rounding modes be available—
Round-to-Nearest (DEC) and Round-to-Zero. The IBM standard specifies that all operations be performed using the
Round-to-Zero mode. '

It should be noted, however, thatthe Am29027 permits any of the supported rounding modes to be selected, regard-
less of the format of the operation. Itis permissible to use one of the IEEE rounding modes with an IBM operation, or
DEC rounding with an {EEE operation, or any other possible combination. Forthose integer operations where round-
ing is performed, any rounding mode may be chosen. This flexibility allows the user to select the mode most appropri-
ate for the arithmetic environment in which the processor is operating.

1177

8L1-1

Infinitely Precise Result

Rounded Result

Infinitely Precise Result

- Rounded Result

Infinitely Precise Result

Rounded Result

Round to Plus Infinity

Figure B1. Graphical Interpretation of Round-to-Nearest (Unbiased), Round-to-Minus-Infinity,

and Round-to-Plus-Infinity Rounding Modes

N NN
/AR
W W W

$991A9a SOWD Allwed M62

6L1-L

~ ~(P+19) -P ~(P-1q) 0 'P-1q P P+1q

TN N L W T

Rounded Result 47 - } {47 i Loy — } e
—(P+1q) P -(P-1q) 0 P-1q P . P+1q

G¢— -1

Round to Zero

—(P+1q) . -(P—1q) P+1q

Tl M J/] // \\i// L

Rounded Result }
—(P+1q) ‘ —P : —(P—1q) 0 . P—1q P P+1q

Round to Nearest (DEC)

—(P+1q) -P. ~-(P-1q) 0 P-1q : P P+1q
Infinitely Precise Result 47 =1 //Z/ f /M/ —t 4 } 4 \k\\ t \\“\\f &
Rounded Result 47 -} - } +47 - 474 } -4
—(P+1q) -P ’ —(P-1q) 0 P-1q P P+1q

Round Away from Zero

Figure B2. Graphical !nlerpretatlon of Round-to-Zero, Round-io-Nearest (DEC),
and Round-Away-from-Zero Rounding Modes

Leoesewy

29K Family CMOS Devices

APPENDIX C—ADDITIONAL OPERATION DETAILS

There are several cases in which the implementation of the IEEE, DEC, and IBM floating-point standards in the
Am29C327 differs from the formal definitions of those standards. This appendix describes these differences.

Differences Between Floating-Point Arithmetic and Am29027 IEEE Operation

Section 7.3 of the IEEE-754 standard specifies that “Trapped overflow on conversion from a binary floating-point for-
mat shall deliver to the trap handler a result in that or a wider format, possibly with the exponent bias adjusted, but
rounded to the destination’s precision.”

According to the IEEE standard, then, if a double-to-single IEEE operation overflows while traps are enabled, the
result is a double-precision operand, rounded to single-precision width (23-bit fraction), together with a correctly ad-
justed (double-precision) exponent and the appropriate flags for a trapped overflow.

In the case of an overflow in any IEEE operation, the Am29027 returns a result in the destination format specified by
the user, rounded to that destination format.

Inthe case of the double-to-single overflow described above, the result from the Am29027 is a single-precision oper-
and, together with a correctly adjusted (single-precision) exponent and the appropriate flags for a trapped overflow.

A simple example serves to illustrate the discrepancy by describing the conversion of the double-precision IEEE num-
ber 52B123456789ABCD to single-precision, with traps enabled, and the round-to-nearest rounding mode selected.
This number is too large to be represented in single-precision format.

According to the IEEE standard, the result of this operation is the double-precision number 5281234560000000, com-
prising the double-precision exponent of the input and a fraction truncated to 23 bits, together with flags V and X.

When the operation is performed in the Am23027, however, using the F’ = P’ operation with appropriate precision
controls, the result is the single-precision number 75891A2B, comprising the single-precision (overflowed) exponent
reduced by 192 (decimal) and a single-precision fraction, together with flags V and X.

It should be noted that trapped operation is an optional part of the [EEE standard. Full adherence to the IEEE specifi-
cation of trapped operation is therefore not necessary to ensure compliance with IEEE-754.

Differences Between DEC Floating-Point Arithmetic and Am29027 DEC Operation

TheDECF, DEC D, and DEC G standards, as implemented in the Am29027, differ fromthe implementationsina VAX
only in the way in which the subfields of the floating-point word are arranged. The differences are listed in Table C1.

Table C1. Difterences in Am29027 and DEC Floating-Point Formats

Am29027 Arrangement | VAX Arrangement
" sign: " bit 31 sign: bit 15
DECF exponent:. bits 30-23 exponent: bits 14-7
fraction: - bits 22-0 fraction:’ bits 6-0,
bits 31-16
)) sign: - bit 15
sign: . bit 63 exponegnt: bits 14-7
" exponent: bits 62-55 fraction: " bits 6-0,
DECD fraction: bits 54-0 bits 31~16,
} : bits 47-32,
~ bits 63-48
; N sign: - bit 15
: sign: bit 63 exponent: bits 14—4
DEC G exponent: * bits 62-52 fraction: bits 3-0,
fraction: . bits 51-0 . bits 31-16,
 bits 47-32,
bits 63—-48

1-180

Am29027

Differences Between IBM 370 Floating-Point Arithmetic and Am29027 1BM Operation

The Am28027's deviations from the IBM standard may be summarized as follows, assuming that the user has se-
lected the round-to-nearest rounding mode:

1. The Am29027 provides more guard bits in its internal format than specified by the IBM standard. With certain
combinations of input operands, the Am239027 produces more accurate results than a standard IBM processor for
instructions based on addition operations and comparisons.

2. Thediscrepancies are much larger for single-precision operations than double-precision operations, because the
difference in the number of guard bits is much greater (33 more for single, one more for double).

3. There is no universal rule for determining whether a given set of input operands will result in a discrepancy. Pro
vided the conditions in (1) above are met, the user must examine each operation on a case-by-case basis, taking
into account the input operands and the internal formats discussed in this section.

4. The Am29027 does not produce unnormalized results from additions. The results of all addition operations are
renormalized. Am29027 internal formats are compared with IBM internal formats in Figure C1.

Overfl) ; Stick:
%it ow . 37 Guird Bits N é:it Y
[ve[_24FractionBits_ | [elclelelelele]clel- - -Tele[clclclelelclcl[s]
Overflow a. Am29027 Internal Format—IBM Single-Precision Guir d Sticky
Bit Bits Bit

i 1 1
Mol 56 Fraction Bits | [elclelelells]

b. Am29027 Internal Format—IBM Double-Precision

4
Overflow Guard
Bit Bits
1 i
° Iw 24 Fraction Bits l I GI GrGl GI
c. IBM Internal Format—Single-Precision
: 4
Overflow Guard
Bit ' Bits
1 . . . X 1
[V]el T 56 Fraction Bits | lala]elal

d. IBM Internal Format-—Double-Precision

09114-016C

Figure C1. Differences in Internal Mantissa Formats of an IBM CPU and the Am29027

1-181

29K Family CMOS Devices

APPENDIX D—TRANSACTION REQUEST/OPERATION TIMING

0 or More
= Cycles =

ok | |_“_]
Transaction W '
Request < Y
D)
A \
b '
CDA Al Y VAV VAV VAV VAV VaVa Y, VaVaVavav, v,
1 AXOOOOOOOOOOOOOXXXX)
A’A’A’A’6’A’A.A.A‘A’A‘A’A’A’A‘A’A’A‘A’A’A
DROY :
'
DERR e
i
Data Accepted
on this Edge
a. Normal Operation, Data Accepted
CLK l
Transaction \
Request /
< \
Ay-A, /
< \
Da—Do /
CDA
DRDY

DERR - \ /

b. Halt On Error Mode, Unmasked Exception Present
091148-017C

Note: Signals Ax—A, and Dy,~D, are the Am29000 address and data buses, respectively.

Figure D1. Timing for the Write Operand R, Write Operand S, Write Operands R,
S, and Write Instruction Transaction Requests

1-182

Am23027

CLK

Transaction
Request

As~Ao

fli

Data Accepted
on this Edge

a. CDA Low

CLK

Transaction
Request

,AJ!-AO

D3—-Do

L1

O

O

>
/

O
x|
O
<

jw)]
m
o]
o)

Data Accepted
on this Edge

b. CDA High Initially

Note: Signals Ay~A, and Dy—Dg are the Am29000 address and data buses, respectively.)
' 09114-018C

Figure D2. Timing for the Write Mode, Write Status, and Write Register File Precisions
: Transaction Requests

1-183

29K Family CMOS Devices

CLK I
Transaction h
Request !
1
A.’l'—AO)
)
Dai-Do .

|

O
O
>

I

!

O]
D
O
<

O
m
D)
Pyl

Registers Advanced
on this Edge

a. CDA Low

CLK

Transaction
Request

|
As-Ao —<
—

D3—Do

U Y

T

Registers Advanced
on this Edge

b. CDA High Initlally
09114-019C

Note: Signals A;—A, and Dy—D, are the Am29000 addreés and data buses, respectively.

Figure D3. Timing for the Advance Temp. Registers Transaction Request

1-184

Am23027

1 or More
= Cycles -

o | ||

i -< Read Result LSBs X RD MSBs >
FaFo —-—\\—(LsBs X MSBs >
DA

:
J

lw/
2
~
”

a. Read Result MSBs Request Issued in Cycle after
Read Result LSBs Request

1 or More
k- Cycles -
CLK | | I
Tragsezcl}?sr; '< Read‘ Result MSBs >————< Read Result MSBs >—-——
Fu—Fo ———\\—(LSBs >< MSBs -

CDA
— . ——— ¢ —_——
DRDY T\ /_—\—/
DERR

b. Read Result MSBs Request Issued Two or More Cycles after

Read Result LSBs Request
09114-020C

Figure D4. Timing for the Read Result LSBs Transaction Request, No Unmasked Exceptions

1-185

29K Family CMOS Devices

CLK

Transaction
Request

FG“’FO

1 or More
k- Cycles =

AN
1
N

09114-021C

Figure D5. Timing for Read Result LSBs Transaction Request,
Unmasked Exception Present

1-186

Am29027

1 or More
- Cycles -

CLK l I |

Transaction _< \
Request N /
Fa-Fo < >
CDA
ROV ——3 /
DERR A

a. No Unmasked Exceptions Present

1 or More
- Cycles -

ox | LJ

Transaction .< \
Request A /

Fs:"Fo "————Rl_< >

CDA

A\

S ,
—— ,

b. Unmasked Exceptions Present

O
oy
O
<

|

O
m
oy}
by

09114-022C

Figure D6. Timing for Read Result MSBs, Read Flags, and Read Status Transaction Requests

1-187

29K Family CMOS Devices

1 or More
- Cycles -

CLK | l I

Trags;cl}ie"s’; -< _ Save State X Save State>
Fy—Fo ——————-\\-—(LSBs X MSBs >
DA

e

N\ /

R
%

O
0
=
<

[w]
)

a. Second Save State Request Issued in Cycle
Following First Request

1 or More
k= Cycles =l
CLK | I_\‘J
Transaction e
Request '< Save State >_“_—< Save State >—
Fa—Fo -——\\—< LSBs X MSBs

g5 POOOOON) 0'0'0'0'0'0'0'9'0'Q'Q'Q'Q'O;O;O'0;0;0;0;0;;
A OYYYY

OOOOOOOOUOOXAINKIARIRIARIRIARAAAAARIARSEANEREAAA

e |

A
\\&

I

O
D
Q
=<

O
ps)

‘ 09114-023C
b. Second Save State Request Issued Two or More Cycles
after First Request

Figure D7. Timing for the Save State Transaction Request, 64-Bit Resources (Registers R, R-Temp, S,
S-Temp; Register File Locations RF—~RFo: Mode Register)

1-188

Am29027

+ CLK

Transaction
Request

FJI—FO

1 or More
k= Cycles -

L

< — \
‘\‘\
| -——“—D
R XXy

__\P\—/

09114-024C

Figure D8. Timing for the Save State Transaction Request, 32-Bit Resources (Instruction Register,
Register I-Temp, Status Register, Precision Register)

CLK

Transaction
Request

As—AJ
DJI-DO

DREQT,

Notes:” WRS
RM
INST

Operation in Progress

p— 6 Cycles

RM

Write Operands R, S
Read MSBs
Addition Instruction

WI = Write Instruction
A, B = Operands A, B
RES = Result

Signals As~A; and D3~D, are the Am29000 address and data buses, respectively.

09114-025C

Figure D9. Typical Tlming for Single-Precision Operation in Flow-Through Mode—Pertorm the Operation
A PLUS B, Read the Result; Mode Register Field PLTC 6

1-189

29K Family CMOS Devices

CLK

Transaction
Request

As—Ao/
Dy~Do

DREQT,

CDA

DRD

<

DERI

Dl

Notes: WR
wi

RM
8
LsB

Operation in Progress

6 Cycles —

RN RRR RN RNREANES

() AL

Qua)X ws)

LSB
N/

/\

(|| 8

Write Operand R
Write Instruction
Read MSBs
Operand B
Result LSBs

WS = Write Operand S 09114-026C
RL = Read LSBs

A = Operand A

INST="Addition Instruction

MSB = Result MSBs

Signals Ay—A, and Dy~-D, are the Am29000 address and data buses, réspectively.

Figure D10. Typical Timing for the Double-Precision Operation in Flow-Through Mode—Perform the
Operation A PLUS B, Read the Result; Mode Register Field PLTC =6

CLK

Transaction
Request

CDA
DRDY

DERR

Notes: WRS -
AM

INST

Operation in Progress

fp—e 6 Cycles

RM

Write Operands R, S
Read MSBs
Addition Instruction

_/
\/

WI = Write Instruction i
A, B = Operands A, B 09114-027C
RES = Result i

Signals Ay—As and Dy~D, are the Am29000 address and data buses, respectively.

Figure D11. Typical Timing for Slnglé-Precision Operation in Flow-Through Mode, with Unmasked
Exception Present—Perform the Operation A PLUS B, Read the Result; Mode Register Field PLTC=6

1-190

Am23027

CLK

Transaction
Request

As—Ad/
Da—Do

DREQT,

CDA

DRDY

DERR

Notes: WR
Wi
A
INST
MSB

Operation in Progress

6 Cycles —

JESRRREERENEERRNERNEE

/\

Write Operand R WS
Write Instruction RL
Operand A B
Addition Instruction LSB
Result MSBs

Write Operand S

Read LSBs
Operand B

Result LSBs ‘ 09114-028C

Wononn

Signals Ay—A, and Dy—D, are the Am29000 address and data buses, respectively.

Figure D12. Typical Timing for Double-Precision Operation in Flow-Through Mode, with Unmasked
Exception Present—Perform the Operation A PLUS B, Read the Result; Mode Register Field PLTC=6

CLK

Transaction
Request

As-AJ
DJ|-D°

DREQT,

CDA

DRD

<

DER

D

Notes: WRS
RM
INST

Operation in Progress

 ———

6 Cycles

N
RM)

INST

>E$

{ RES)

Write Operands R, S wi
Read MSBs A B
Addition Instruction RES

Wirite Instruction

Operands A, B 09114-029C
= Result

Signals Ay—A, and Dy-D, are the Am29000 address and data buses, respectively.

Figure D13. Typical Timing for Single-Precision Operation in Flow-Through Mode, with DRDY
Advanced—Perform the Operation A PLUS B, Read the Result; Mode Register Field PLTC=6

1-191

29K Family CMOS Devices
) b Operation in Progress |
6 Cycles

Transaction m RL

Request @@
DJI—DO
DREQT, /_\

Sk

CDA
DRDY
DERR
Notes: WR = Write Operand R WS = Write Operand S)
WI = Write Instruction RL = Read LSBs 09114-030C
RM = Read MSBs A = Operand A
B = Operand B INST= Addition Instruction
LSB = Result LSBs MSB = Result MSBs

Signals Ax—As and D3—-D, are the Am29000 address and data buses, respectively.

Figure D14. Typical Timing for Double-Precision Operation in Flow-Through Mode, with DRD
Advanced—Perform the Operation A PLUS B, Read the Result; Mode Register Field PLTC=6

Operation in Progress

— 6 Cycles
CLK :
Transaction RM)
Request /
As—Ad - .
DREQT, _/_\
DA
DRDY _/
DERR _/
Notes: WRS = Write Operands R, S WI = Write Instruction
RM = Read MSBs A,B = Operands A, B 09114-031C
INST = Addition Instruction RES = Result

Signals As—A, and D3,-D, are the Am29000 address and data buses, respectively.

Figure D15. Typical Timing for Single-Precision Operation in Flow-Through Mode, with DRDY Advanced
. and Unmasked Exception Present—Perform the Operation A PLUS B, Read the Result
Mode Register Field PLTC=6

1-192

Am29027

Operation in Progress
6 Cycles

Request

Ay-Ad
DREQT, /_\

DA
DRDY u_
DERR \—_/—
Notes: WR = Write Operand R WS = Wirite Operand S

WL = Wirite Instruction RL = Read LSBs

A = Operand A B = Operand B

INST = Addition Instruction LSB = Result LSBs

MSB = Result MSBs 09114-037C

Signals Ayx—As and D3-D, are the Am29000 address and data buses, respectively.

Figure D16. Typical Timing for Double-Precision Operation in Flow-Through Mode, with DRDY Advanced
and Unmasked Exception Present—Perform the Operation A PLUS B, Read the Result;

Mode Register Field PLTC=6

Operation 1 , Operation 2

Jorrer——— 6 Cycles ————— 6 Cycles —4

CLK

o <Gy =
Request '

5 <XO—E

A

DREQT, /_\ /_\ :
COA —

A%

A%\

09114-032C

DRDY A\Ve—— \—/
DERR A
Notes: WRS = Wiite Operands R, S WI = Wirite Instruction
WR = Write Operand R RM = Read MSBs
A, B = Operands A, B 11 - = Addition Instruction
C = Operand C 12 = Multiplication Instruction
RES = Result .

Signals As—-A, and Dy—D, are the Am29000 address and data buses, respectively.

Figure D17. Typical Timing for Overlapped Single-Precision Operations in Flow-Through Mode; Perform
the Compound Operation (A PLUS B) x C by Performing Operations: (1)RFe< APLUS B, (2) RFox C

Mode Register Field PLTC=6

1-193

29K Family CMOS Devices

Operation 1 Operation 2
p————— 6 Cycles ——————tpe— 6 Cyclos —

CLK

a

oo, <)X oy—) R

CDA / A

A

DRDY n_/

A\

DERR : i b
Notes: WR = Write Operand R WS = Write Operand S
Wl = Write Instruction RL = Read LSBs
RM = Read MSBs A = Operand A
B = Operand B C = Operand C
I = Addition Instruction 12 = Multiplication Instruction
LSB = Result LSBs MSB = Result MSBs

Signals Ay—Aq and DD, are the Am29000 address and data buses, respectively. "09114-033C

Figure D18. Typical Timing for Overlapped Double-Precision Operations in Flow-Through Mode;

Perform the Compound Operation (A PLUS B) x C by Performing Operations:
(1) RFo« A PLUS B, (2) RFo x C; Mode Register Field PLTC=6

Mode Register Field PLTC=6

" Reces C o —mX oK e s
AVAN

As—Ad o\ S (e (i) —lreN—t o
5 X Xeg—ep—e————=—~)9
APLUSB : CPLUSD EPLUSF
orear, _/ N/ _/ \ /\ / \ /
CDA /N \
/T N/ N\
DERA -
PLSTAGE 1 | APwsB. | cpPwsD | EPLUSF | GPLUSH | IPLUS J |
| EPLUSF I PLUSH |

PLSTAGE2 | , | APLUSB | . CPLUSD

Notes: Wi = Write Instruction WRS=" Write Operands R, S

RM = Read MSBs | = Addition Instruction
A,B,...= Operands RES = Result

Signals Ay—A, and Dy—D, are the Am29000 address and data buses, respactively.

Figure D19. Typical Timing for Single-Precision Operations in Pipeline Mode;
Perform a Serles of Addition Operations A PLUS B, C PLUS D,
E PLUSF, ... Mode Register Fleld PLTC =3

1-194

S6i-1

il i iyl
T Roauest ~C—— X wey— X wey—wX(ws)—(m X(ewy——wXwoy— p Y pey—wax(vs) P
fis XXXt Moo X) 1o Xusp—1 X) 10 Ko

L_APLUSB | CPLUSD L_EPLUSF |
DREQT, /N /\ /\
CDA - -
i n__/ n___/ AN
DERR - -
PL STAGE 1 | APLUSB | CPLUSD | EPLUSF | G PLUSH ' 1PLUS J
PL STAGE2 | | APLUSB | cruso | EPusF | ePwsH
Notes: WI = Write Instruction WR = Write Operand R

WS = Write Operand S - RL ' =Read LSBs

RM = Read MSBs o = Addition Instruction

A, B, ...=Operands LSB = Result LSBs

MSB =Result MSBs
Signals As—A; and Dy-D, are the Am29000 address and data buses, respectively.

09114-035C

Figure D20. Typical Timing for Double—PrecisIon Operations in Pipeline Mode;
: Perform a Series of Addition Operations A PLUS B, C PLUS D,
E PLUSF,... Mode Register Field PLTC = 3

LzoeTwy

Table of Contents

CHAPTER 2
29K Family Support Tools

ASM29K Data Sheet.....
HighC29K Data Sheet...
MON28K Data Sheet
XRAY29K Data Sheet

ASM29K

ASM29K

Cross-Development Toolkit, Release 2

e

Advanced
Micro
Devices

DISTINCTIVE CHARACTERISTICS

B Relocatable Macro Assembler supports com-
plete Am29000™ microprocessor instruction
set.

B [inker/Loader combines separately assembled
modules by resolving external references and
by searching libraries.

B Librarian provides management facility for or-
ganizing modules into logical collections of
functions.

B |EEE Software Floating-Point Emulation
routines.

B Available for the PC-AT™, and Sun-3™ devel-
opment environments.

GENERAL DESCRIPTION

Processor performance depends on the processor’s
hardware and software environment. The key to maxi-
mizing performance lies in the realization that the pro-
cessor is part of a system that is a collection of compo-
nents that must be integrated properly. To take
advantage of the advanced RISC architecture of the
Am29000 microprocessor, equally sophisticated soft-
ware tools must be available.

The ASM29K™ cross-development toolkit offers such
a development environment for creating efficient and
portable Am23000 microprocessor software. The pack-
age consists of the assembler, the linker, the floating-
point emulation routines, and the object module librar-
ian. These tools allow users to desigh more efficient
systems and applications than ever before.

Cross-developmentis the design of an application pro-
gramonone computer (the hostsystem) and the execu-
tion of that same application program on a different com-
puter (the target system). The operating system on
the host, such as UNIX™ or DOS, provides the tools
needed to create the application program. These tools
include editors for writing the source code, compilers
and assemblers for translating the modules into exe-
cutable code, and utilities for preparing the application
for execution. The Am23000 microprocessor-based tar-
get computer generally does not provide the tools re-
quired to develop the application program. Figure 1
shows the path that an application follows fromdevelop-
ment on the host system to execution on the target
system.

Host Computer Target Computer
Library
Files
— 1]
e = ‘[m__@, 1]
. . —
. Source Compile/ Object . COFF
Edit 4=t Nang L 4+ Link - ! —+ Load || Am29000
Code Assemble Files File Microprocessor
§ 1000
Via On-Board
Monitor or
ADAPT29K
Debugger

Figure 1. Cross Software Development

— B A
10292 B 0
issue Date: September 1989

2-3

29K Family Support Tools

The ASM29K cross-development toolkit transforms a
PC or Sun-3 workstation host into a powerful software
development environment. ASM29K software assem-
bles user source and produces a relocatable object
module. This module can be combined with other
relocatable object modules (derived from the assembler
or high-level language cross-compilers) using the
ASM29K linker. Library modules prepared by the librar-
ian canbe linked in at this point as well. The resulting ab-
solute object module then can be downloaded to a tar-
get system.

AMD has established and published the Am29000
microprocessor Common Object File Format (COFF) to
which all Am29000 development tools conform. The
AMD COFF format extends the already standard AT&T
COFF format to support source-level debugging and
other Am29000 microprocessor-specific features. Simi-
larly, AMD has established a common calling conven-

tion that maximizes performance on the Am29000
microprocessor as well as defining another standard
for software vendors. This has led to a variety of compil-
ers, assemblers, debuggers, and associated tools
that may be mixed freely by developers of Am29000
microprocessor software.

The contents of the ASM29K cross-development toolkit
include:

B ASM29K macro assembler
ASM29K linker

ASM29K librarian

Hex utilities

|EEE floating-point emulation routines

Documentation

ORDERING INFORMATION
Licensing

The ASM29K cross-development toolkit is licensed
through AMD's Standard End-User Software License
Agreement (Boxtop). This license does not require a
signature; breaking the seal on the software envelope
indicates acceptance of the license terms. If changes
are required to the license agreement, they can be ar-
ranged through your AMD sales representative. Many
software products require the customer to provide a
CPU ID number when ordering the product. Contact
your sales representative if this information is not avail-
able at the time of purchase. In addition, terms of the
license require the customer to complete a Software
Warranty card with the serial number and site of the host
computer on which the software will reside. This card
must be returned to AMD within 30 days of receipt forthe
warranty to be valid.

Order Numbers

The ASM29K cross-development toolkit is available for
several different environments. Documentation can be
ordered separately. The order number (valid combina-
tion) is formed as a combination of:

B Product Family
Product Category
Product ldentifier
License Type .
Host / OS Type
Media Type

24

ASM29K

ORDER INFORMATION (continued)
AM20000 SW/ ~ ASM B 2 3

#

Media Type
08 = 0.25” Sun cartridge tape, TAR format

14 = 3.5” DSHD tloppies
21 = 9-track, 1600 BPI mag tape, TAR format

24 = 5.25” DSHD floppies

Host/ OS Type
07 = Sun-3
10 = PC-AT

License Type

B = Boxtop

S = Signed

“-" = Not Applicable

Product Identifier
ASM = ASM29K Cross-Development Toolkit

Product Category

SW/ = Software Product

DC/ = Documentation Product
MA/ = Maintenance Agreement

Valid Combinations

Product Family
Am29000 Microprocessor

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales
office to confirm availability of specific valid combinations and to check on newly released combinations.

Order Number Product Host Media

AM29000SW/ASMB0708 ASM29K Toolkit Sun-3 0.25” cartridge tape, TAR format
AM29000SW/ASMS0708 ASM29K Toolkit Sun-3 0.25” cartridge tape, TAR format
AM29000SW/ASMB0721 ASM29K Toolkit Sun-3 9-track, 1600 BPI tape, TAR format
AM29000SW/ASMS0721 ASM29K Toolkit Sun-3 9-track, 1600 BPI tape, TAR format
AM29000SW/ASMB1014 ASM29K Toolkit PC-AT 3.5” DSHD floppies
AM29000SW/ASMS1014 ASM29K Toolkit PC-AT "3.5” DSHD floppies
AM29000SW/ASMB1024 ASM29K Toolkit PC-AT 5.25” DSHD floppies
AM29000SW/ASMS 1024 ASM29K Toolkit PC-AT 5.25" DSHD floppies
AM29000DC/ASM-99 ASM29K Documentation UNIX Not Media Specific
AM29000MA/ASM-07 ASM29K Maintenance Sun-3 Not Media Specific
AM29000MA/ASM-10 ASM29K Maintenance ~ PC-AT Not Media Specific

25

29K Family Support Tools

FUMCTIONAL INFORMATION
Assembler

The ASM29K assembler converts user-written
Am29000 assembly code into relocatable object mod-
ules. It produces standard COFF object modules that

can be linked with other assembled or compiled mod- -

ules. lts advanced features permit the design of well-
structured modules that are easily maintained.

The assembler processes Am29000 microprocessor
instructions as defined in Chapter 8 of the Am29000
User’s Manual. Each instruction mnemonic and register
identifier is recognized in both upper and lower case.
ldentifiers (that is, user-named variables) can have up to
63 characters, all of which are significant. Integer, char-
acter, string, and floating-point constants are supported
as well as complex expression analysis.

In addition to the Am29000 microprocessor instructions,
the assembler supports a powerful macro facility. Pro-
grammers can define macros with multiple parameters
and direct macros to be repeated a specified number of
times. Macro code is inserted into the source code atthe
position of the macro call. Macros may use local la-
bels—labels that are visible only within the macro it-
self—to label an instruction that can be copied several
times throughout the program. Local labels are distin-
guished from regular labels by using the format “$n,”
where n can be from one to six digits.

The assembler also provides a number of directives for
organizing the code into efficient sections or modules.
Use of the include directive merges separate files during
assembly. The section directive assigns areas of code
to named text, data, uninitialized memory, or initialized
memory sections. Conditional assembly is also sup-
ported. This useful feature allows the programmerto as-
semble code conditionally for debugging. The assem-
bler directives are listed in Table 1.

The ASM29K software also produces a cross-reference
table for symbols. Flags allow the programmer to print
listings that contain expanded macros, instructions not
assembled due to conditional statements, and symbol
tables; and to insert user-specified headers into the
listing.

The assembler optionally emits debug information for
use with the XRAY29K™ source-level debugger. This
information allows the programmer to specify the sym-
bolic names of variables and labels during debugging
sessions.

The wide selection of features available in the ASM29K
assembler gives the user the latest tools to produce
well-structured and maintainable code.

Linker

The ASM29K linker integrates a group of separately
compiled or assembled modules into a composite
module in which all references between modules are
resolved. It processes and produces COFF modules,
including any module produced by a compiler in any
language and any assembler that adheres to the AMD-
defined COFF and calling-convention standards. Incre-
mental linking is supported also. The ASM29K linker
produces an extensive load map with an optional
symbol cross-reference table.

Object module libraries are searched with required
modules automatically included. All code and data sec-
tions are given absolute addresses as specified by the
programmer. The linker provides options that create
ROMable programs, generate warnings for possible
undefined external references, produce a global cross-
reference, and list defined symbols. Directives to the
linker may be included in a file (batch mode), on the
command line, orin combination. Programmers canuse
the ASM29K to:

—Resolve external references between separately
compiled or assembled modules.

- Assign absolute addresses.
- Direct section ordering.
—Perform incremental linking.

—Load only those library modules referenced for effi-
cient code space use.

—Generates optionally ROMable programs.

Librarian

The ASM29K librarian is a management facility for or-
ganizing independently developed pieces of software
into logical units. It permits the addition, deletion, and re-
placement of object modules in one or more libraries.
The ASM29K librarian:

—Organizes and initializes modules into a library file.
—Lists library contents and information.

—Lists a library directory.

ASM29K

Table 1. Assembler Directives

Group Directives Meaning
File Processing .end End of Assembly
.err Generate Assembly Error
.ident Specify Module Name
.include Include Text File
Conditional Assembly .else Alternate Condition
.endif End of Conditional Assembly Block
if Assemble if Value is Not Zero
.ifdef Assemble if Identifer is Defined
ifeqs Assemble if Strings are Equal
.itnes Assemble if Strings are Not Equal
.ifnotdef Assemble if ldentifier is Not Defined
Listing Control .eject Advance to Top of Page
flags Set Listing Flags
list Enable Listing
.nolist Disable Listing
.print Print to Standard Output
.sbttl Set the Listing Subtitle
.space Space N Lines
title Set the Listing Title
Symbol Declaration .equ Equate a Symbol to a Value (Unlimited Scope)
.extern Declare Symbols as External to This Module
.global Make Symbols Visible to Other Modules
.reg Declare a Symbol as a Synonym for a Register
.set Set a Symbol to a Value (Limited Scope)
Section Declaration .comm Declare a Common Symbol
.data Use the .data Section
.dsect Declare a Dummy Section
Jcomm Declare a Local bss Symbol
.sect Declare a New Section
text Use the .text Section
.use Use a Declared Section
Data Storage Declaration .align Specify Byte Alignment
.ascii Store the String
.block Reserve Bytes
.byte Initialize Bytes
.double Initialize Double-Precision Values
.extend Initialize Extended-Precision Values
foat Initialize Single-Precision Values
.hword Initialize Half-Words
.word Initialize Words
Repeat Block .endr End of Repeat Block
.irep Repeat for Each ltem in the List
.irepc Repeat for Each Character in the String
.rep Repeat N Times
Macro Definition .endm End Macro Definition
.exitm Terminate Macro Expansion
.macro Macro Heading
.purgem Purge All Macros Listed
High-Level Language (HLL) Debugging def Define Symbol Table Entry Directive
.dim Dimensions of an Array Attribute
.endef End of Symbol Definition Block Directive
file Source Filename Directive
line Source-File Line-Number Directive
n HLL Source-File Line-Number Directive
.scl Storage Class of a Symbol Attribute
.size Size of a Symbol Attribute
tag Structure, Union, or Enumeration Identifier Attribute
type Basic and Derived Type of a Symbol Attribute
wval Value of a Symbol Attribute

2.7

29K Family Support Tools

Floating-Point Emulation

The Am23000 microprocessor instruction set includes
floating-point and integer math operations. In the cur-
rent processor implementation, these instructions
cause traps to routines that perform the operations. The
user is provided with source to two complete sets of rou-
tines that emulate IEEE Floating-Point Standard 754 for
each of the instructions listed in Table 2.

The first set of routines is provided for users who
have integrated an Am29027™ arithmetic accelerator
into their systems. The Am29000 microprocessor

math instructions are emulated using the Am239027
CO-processor.

The second set of routines implements emulation of the
floating-point operations entirely in software. No special
hardware is required.

Documentation instructs users how to integrate the
package into theirtarget system. Both packages are de-
signed to insure upward compatibility with next genera-
tion processors.

Table 2. Arithmetic Instructions

Type Mnemonic Operation
Integer Arithmetic MULTIPLY Signed Multiply
MULTIPLYU Unsigned Multiply
DIVIDE Signed Divide
DIVIDEU Unsigned Divide
Single-Precision Floating-Point Arithmetic FADD Single-Precision Add
FSUB Single-Precision Subtract
FMUL Single-Precision Multiply
FDIV Single-Precision Divide
Double-Precision Floating-Point Arithmetic DADD Double-Precision Add
DSUB Double-Precision Subtract
DMUL Double-Precision Multiply
DDIV Double-Precision Divide
Floating-Point Compare FEQ Single Compare Equal To
DEQ Double Compare Equal To
FGT Single Compare Greater Than
DGT Double Compare Greater Than
FGE Single Compare Greater Than Or Equal To
DGE Double Compare Greater Than Or Equal To
Data Format Conversion CONVERT Convert Data Format

Hex Utilities

A set of hex utilities are provided to create Hex files for
downloading into target systems and for creating ROM
images. These tools convert AMD standard COFF files
into Motorola® S-Record or Tektronix® Extended Hex
files. These hex utilities and a brief description of each
are listed below.

B hioa
B cofichex Converts a COFF file into a hex file.

ASM29K software architectural
simulator.

Converts a binary file into an ASCII file.

B sim29

B nm29 Prints name list of a COFF file,

B romcoff Generates COFF file for ROM.

B cvcoff Translates Am29000 microprocessor
COFF files between big endian/little
endian hosts.

B strpcoff Strips symbolic information from a

COFF file.

ASM29K

WARRANTY and SUPPORT
Software Warranty

Software programs licensed by AMD are covered by the
warranty and patent indemnity provisions appearing in
AMD's standard software license forms. AMD makes no
warranty, express, statutory, implied or by description,
regarding the information set forth herein or regarding
the freedom of the described software program from
patent infringement. AMD reserves the right to modify,
change or discontinue the availability of this software
program at any time and without notice.

Customer Support
Maintenance

All orderable software products include one year of free
Maintenance Support, which starts from the date of
original purchase. Maintenance Support allows custom-
ers to receive technical assistance from highly trained
field and factory personne, to use a call-in on-line infor-
mation system and to receive product and documenta-
tion updates at no additional charge. Customers may
extend Maintenance Support in one-year increments.
Customers can access support services by calling
the 24-hour, toll-free 29K™ Family hotline at (800)
2929-AMD (292-9263).

On-Line Call-In Bulletin Board

In addition to the support engineering staff, AMD offers
a 24-hour on-line technical support center. The cus-

tomer can call (800) 2929-AMD at any time to query the
systemfor the latest information on a particular product:
bug fixes, work-arounds, information on upcoming
releases, etc. Messages may be left for the support
engineering staff during “after hours.”

Training Classes

AMD offers training classes for the 29K Family prod-
ucts. These classes focus on 29K Family system design
and implementation using the broad range of AMD soft-
ware developmenttools. Customers can shortenthe de-
velopment process through extensive hands-ontraining
covering a variety of topics. Contact your local AMD field
office for more information on training classes.

Fusion29K Program

AMD encourages broad-based development and sup-
port for the Am29000 microprocessor with the
Fusion29K™ program, a joint-effort program between
AMD and third-party developers. Published twice a
year, the Fusion29K program catalog reveals the
breadth of development and system solutions for the
29K Family, including software generation and debug
tools; hardware development tools; executive, kernel
and multi-user operating systems; board-level products;
silicon products; and more. For a copy of the Fusion29K
program catalog, call your local AMD field sales office or
the literature center at (800) 222-9323.

29K Family Support Tools

Preliminary

HighC29K

Cross-Development Toolkit, Release 2

1

Advanced
Micro
Devices

DISTINCTIVE CHARACTERISTICS

m Efficient, globally optimizing C compller tech-
nology developed by MetaWare™, Inc. ANSI
Standard C support and conformance verifica-
tion (ANSI document X3J11/88-159, December
7,1988 and compille-time error checking.

H Compiler supports load scheduling and de-
layed branch optimizations to promote fast
Am29000™ microprocessor code execution.

m Compller supports AMD’s Am29027™ Arithme-
tic Accelerator.

B Full ANSI standard run-time library of over 100
functions Include all standard /O routines
(stdio).

B Available for the PC-AT™ and Sun-3™ develop-
ment environments.

m Special library of high-performance transcen-
dental functions.

m HIghC29K™ toolkit includes the entire
ASM29K™ Cross-Development Toolkit. The
ASM29K package contalns:

— Relocatable macro assembler supports com-
plete Am29000 microprocessor instruction set.

— Linker/loader combines separately cdmpiled or
assembled modules by resolving external refer-
ences and by searching libraries. -

— Librarian provides management facility for
organizing modules into logical collections of
functions. .

— Full architectural simulator of the Am29000
microprocessor with user-defined memory
access times. Allows designers to obtain price/
performance statistics for their particular
Am29000 microprocessor design.

— |EEE software floating-point emulation func-
tions accessible from C and assembly lan-
guage modules.

GENERAL DESCRIPTION

Processor performance depends on the processor's
hardware and software environment. The key to maxi-
mizing performance lies in the realization that the proc-
essor is part of a system which is a collection of compo-
nents which must be properly integrated. To take ad-
vantage of the advanced RISC architecture of the
Am29000 microprocessor, equally sophisticated soft-
ware tools must be available to achieve this integration.

The HighC29K™ Cross-Development Toolkit offers
such a development environment for creating efficient
and portable software for the 20K™ Family. The pack-
age consists of the full ANSI standard, optimizing C
compiler, run-time libraries, assembler, linking loader,
floating-point emulation, and object module librarian.
These tools allow users to design more efficient sys-
tems and applications.

Cross-development is the design of an application pro-
gramon one computer (the host system) and the execu-
tion of that same application program on a ditferent
computer (the target system). The operating system on
the host, such as UNIX or DOS, provides the tools
needed to create the application program. These tools
include editors for writing the source code, compilers

and assemblers for translating the modules into execut-
able code, and utilities for preparing the application for
execution. The Am29000-based target computer gener-
ally does not provide the tools required to develop the
application program. Figure 1 shows the path that an
application follows from development on the host sys-
tem to execution on the target system.

The HighC28K Cross-Development Toolkit transforms
a PC or Sun workstation host into a powerful software
development environment. The HighC29K cross-com-
piler generates 29K Family relocatable object modules
which can be combined with other relocatable object
modules derived from the assembler or HighC29K com-
piler using the 29K Family linker/loader. Library mod-
ules prepared by the librarian can be linked in at this
point as well. The resulting absolute object module can
then be downloaded to a target system.

AMD has established and published the 29K Family
Common Object File Format (COFF) to which all 29K
Family development tools conform. The AMD COFF
format extends the already standard AT&T COFF for-
mat to support source-level debugging and other 29K
Family-specitic features. Similarly, AMD has estab-

Publication# 10957 Rev.B Amendment 0
Issue Date: September 1989

HighC29K

lished a common calling convention that maximizes gers, and associated tools that may be mixed freely by
performance on the 29K Family of microprocessors as developers of 29K Family software.

well as defining standards for software vendors. This
has led to a variety of compilers, assemblers, debug-

The contents of the HighC29K Cross-Development
Toolkit include:

HighC29K:
Optimizing C Compiler
Documentation
Function Libraries

ASM29K (included in HighC29K Development Package):
Relocatable Macro Assembler

Documentation

Architectural Simulator

Linker/Loader

Librarian

|EEE Floating Point Emulation Routines

Utilities
Host Computer Target Computer
Library
Files
3
y
Source Compile/ Object ‘ COFE l%|‘:"!
Bdt > Code Assemble [Fies [Y% ™ he [load [
Via On-Board | Am29000
Monitor or Microprocessor
ADAPT29K
Debugger

Figure 1. Cross Software Development

2-11

29K Family Support Tools

ORDERING INFORMATION
Licensing

The HighC29K Cross-Development Toolkit is licensed
through AMD’s Standard End-User Software License
Agreement (Boxtop). This license does not require a
signature; breaking the seal on the software package in-
dicates acceptance of the license terms. If changes are
required to the license agreement, they can be ar-
ranged through your AMD sales representative. Many
software products require the customer to provide a
CPU ID number when ordering the product. Contact
your sales representative if this information is not avail-
able at time of purchase. In addition, terms of the li-
cense require the customer to complete a Software
Warranty card with the serial number and site of the
host computer on which the development package will
reside. This card must be retumed to AMD within 30
days of receipt for the warranty to be valid.

Order Numbers

The HighC29K Cross-Development Toolkit is available
for several different environments. Documentation can
be ordered separately. The order number (Valid Combi-
nation) is formed as a combination of:

« Product Family

« Product Category
 Product Identifier
« License Type

* Host/OS Type

« Media Type

AM29000 SW/ HC

##

Media Type
08 = 0.25" Sun cartridge tape, TAR format
14 = 3.5" DSHD floppies

21 = 9-track, 1600 BPI mag tape, TAR format

24 = 5.25" DSHD floppies

Host/OS Type

07 = Sun-3

10 = PC-AT

99 = Not Host Specific

License Type

B = Boxtop

S = Signed

“"= Not Applicable

Product Identifier
HCC = HighC29K Cross-Development Toolkit

Product Category

SW/ = Software Product

DC/ = Documentation Product
MA/ = Maintenance Agreement

Product Family
Am29000 Microprocessor

2-12

HighC29K

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales
office to confirm availability of specific valid combinations and to check on newly released combinations.

Order Number Product Host Media

AM29000SW/HCCB0708 HighC29K Toolkit Sun-3 0.25" cartridge tape, TAR format
AM29000SW/HCCS0708 HighC29K Toolkit Sun-3 0.25" cartridge tape, TAR format
AM29000SW/HCCB0721 HighC29K Toolkit Sun-3 9-track, 1600 BPI tape, TAR format
AM29000SW/HCCS0721 HighC29K Toolkit Sun-3 9-track, 1600 BP! tape, TAR format
AM29000SW/HCCB1014 HighC29K Toolkit PC-AT 3.5" DSHD floppies
AM29000SW/HCCS1014 HighC29K Toolkit PC-AT 3.5" DSHD floppies
AM29000SW/HCCB1024 HighC29K Toolkit PC-AT 5.25" DSHD floppies
AM29000SW/HCCS1024 HighC29K Toolkit PC-AT 5.25" DSHD floppies
AM29000DC/HCC-99 HighC29K Documentation Not Host Specific Not Media Specific
AM23000MA/HCC-07 HighC29K Maintenance Sun-3 Not Media Spacific
AM239000MA/HCC-10 HighC29K Maintenance = PC-AT Not Media Specific

FUNCTIONAL INFORMATION
Compiler

The HighC29K cross-compiler supports an extended
version of the C language designed for professional
programmers. it includes a full ANSI implementation for
portable applications, yet also allows user access to the
best features of other languages such as nested func-
tions from Pascal and named parameter association
from Ada. Extensions to the C language also are sup-
ported, such as range notation in case statements and
enumerated data types. The compiler allows users to
create re-entrant procedures and to generate efficient
code in terms of space and execution speed.

The HighC29K cross-compiler facilitates program de-
velopment for dedicated or stand-alone Am29000 de-
signs. The compiler generates optimized, sharable
code that takes full advantage of the Am29000 instruc-
tion set. The language contains a variety of control
statements, data types, and predeclared procedures
and functions that promote the development of well-
structured programs. For example, the user may specify
the parameter types for external functions so that the
compiler can check that arguments are passed cor-
rectly.

The HighC29K cross-compiler generates 29K Family
object modules directly. The HighC29K compiler option-
ally generates information necessary for symbolic de-
bugging at the C or assembly level with XRAY29K™,
AMD’s source-level debugger for the 29K Family. The
compiler preprocessor allows the user to detine macros,
merge files into source and conditionally include or ex-
clude code.

Optimization

As a highly optimizing cross-compiler, HighC29K soft-
ware ensures the generation of fast, compact code by
using advanced optimization techniques including com-
mon subexpression elimination, loop invariant analysis,

global register allocation and automatic allocation of
variables to registers. Many of the optimizations are -
particularly effective when using the unique features of
the Am29000 microprocessor architecture. For ex-
ample, its large register set means passing parameters
in registers is more effective on the Am29000 micropro-
cessor than on any other microprocesor. Optimizations
specifically developed for the Am29000 RISC micropro-
cessor architecture are also performed such as load
scheduling for maximum instruction throughput. Addi-
tionally, the compiler makes extensive use of Am23000
microprocessor's large register file as a stack cache to
store frequently accessed values. The list of optimiza-
tions performed include:

Common subexpression elimination

Retention/reuse of register contents

Automatic allocation of variables to registers

Dead code elimination and cascaded jumps

Cross jumping (tail merging)

Constant folding

Switch statements optimally encoded using in-line

branch table, binary search or linear search.
Global flow analysis leading to removal of loop
invariant values
Load Scheduling
Delayed Branch

Several of these optimizations are explained below:

Loop Invariant Analysis: Computations made inside
of loops that do not change value in the loop can be
moved outside the loop. The value is stored in a register
for optimum access. Since an application may spend as
much as 90% of its time executing loops, this optimiza-
tion produces a significant gain in performance.

2-13

29K Family Support Tools

Fold Constants: Operands that are constant can often
be folded into a single constant, or into a temporary
value. If constants are defined at compile time, the
compiler can reduce them to a single value.

Load Scheduling: The Am29000 microprocessor sup-
ports overlapped load and store capabilities to decrease
delays incurred while waiting for data. The compiler
recognizes when certain instructions can be advanced
in the pipeline for efficient operation.

Delayed Branch: The Am29000 microprocessor
branch instruction is delayed by one cycle to allow the
processor pipeline to achieve maximum throughput.
The instruction following the branch instruction, called
the delayed instruction is executed whether the branch
is successful or not. In most cases, the compiler can
easily place a useful instruction, i.e. an instruction other
than NO-OP, as the delay instruction by reorganizing
the code.

Data Types

The single addressing mode of the Am29000 micropro-
cessor combines with high-level language implementa-
tions to provide efficient access to all data types.

Data Type Size (Bits)
int 32
long int 32
pointer 32
short int 16
char 8
float 32
double 64
unsigned 32
unsigned char 8
unsigned short 16
enum (default) 32
enum (option) 8,16,32

Am29027 Arithmetic Accelerator Support

Target systems that include the Am29027 Arithmetic
Accelerator for high-speed computations are directly
supported through the compiler. Users may direct the
compiler to generate in-line code to access the control
and instruction registers of the accelerator. Versions of
the libraries that assume direct use of the Am29027
microprocessor are included.

Alternatively, the user can signal the compiler to gener-
ate Am29000 microprocessor floating-point instructions
that are used in conjunction with the IEEE Floating-
Point Emulation Routines to access the accelerator.

The HighC29K Cross-Development Toolkit includes
AMD's entire ASM29K Cross-Development Toolkit. De-
tails of this package are contained in the ASM29K
Cross-Development Toolkit data sheet (order #10292).

Function Libraries

The HighC29K toolkit includes three different sets of
function libraries that enhance the functionality of the
compiler. The library sets are comprised of:

« the ANSI standard library which provides the full set
of functions specified by the ANSI C language stan-
dard

« alibrary of routines implementing the floating-point
environment functions specified in the |IEEE-754
standard

+ a library of hand-coded transcendental functions
optimized for use with the Am29000/Am29027
microprocessor combination.

Each library set contains several versions of the library
which reflect the different possible target environments.
The compiler driver is able to select the proper version
of the library to use based on the compile-time options
specified.

ANSI Standard Library

This library contains the full functionality specified by
the ANSI standard for the C language (X3J11/88-159,
December, 1988). At the lowest level, the library func-
tions interface with HIF (Host Interface), a small kernel
system defined by AMD. HIF is supported in all AMD
products, and is defined in the HighC29K toolkit manual
for the customer who needs to adapt to a different envi-
ronment.

The functions included in the ANSI Standard Library -
are:

Mathematical Routines

abs atan2 exp frexp modf sgrt acos
ceil fabs Idexp pow tan asin cos
floor log sin tanh atan cosh fmod
log10 sinh

Memory Allocation
calloc free malloc realloc

Standard Formated /O
fprintf printf sprintf viprintf vsprint fscanf scanf
sscanf vprintf _setmode

Standard File VO

fclose fopen remove setbuf tmpfile
fflush freopen rename setvbuf tmpnam
Character Routines

isalnum iscntrl isgraph isprint isspace
isxdigit toupper isalpha isdigit islower
ispunct isupper tolower

Character I/0 Routines

fgetc fputc getc gets putchar
ungetc fgets fputs getchar putc puts

214

HighC29K

String Routines

memchr strcat strcspn strncpy striok
_strncat memcmp strchr strerror strpbrk
strxfrm memcpy strcmp strlen strrchr
_rmemcpy memove strcoll strncat strspn
_rstrcpy memset strepy strncmp strstr
_strcats

Direct /0 Routines

fgetpos fread fseek fsetpos ftell fwrite
rewind

General Routines

abort atol getenv mbstowcs rand
strtoul atexit bsearch labs mbtowc
srand system atoi div Idiv on-
exit striod wctombs atof exit
mbien gsort strtol wctomb

Date and Time Routines

asctime ctime gmtime localtime mktime
stritime time clock difftime
Miscellaneous Routines

assert ferror localeconv perror setjmp
signal va_end clearerr kill longjmp
raise setlocale va_arg va_start feof

Floating-Point Environment Library

The functions included in the Floating-Point Environ-
ment Library are: :

“class rclass copysign rcopysign finite
rfinite isnan risnan logb rlogb
nextafter rnextafter remainder rremainder scalb
rscalb unordered runordered

Fast Transcendental Library

This library provides special hand-coded versions of the
standard transcendental functions. These functions are
optimized for performance with the Am23000/Am23027
microprocessor combination.

The functions included are: -
atan cos exp log pow
sin sqrt tan

Floating-Point Emulation

The Am23000 microprocessor’s instruction set includes
floating-point and integer math operations. In the sim-
plest processor implementation, these instructions
cause traps to routines that perform the operations. The
user is provided with source to two complete sets of
routines that emulate IEEE Floating-Point Standard 754
for each of the instructions listed below.

The first set of trap handlers is provided for users who
have integrated the Am29027 arithmetic accelerator
into their systems. The Am23000 microprocessor math

instructions are performed using the Am239027 micro-
processor.

The second set of trap handlers implements emulation
of the floating-point operations entirely in software. No
special hardware is required.

Documentation instructs users how to integrate the
package into their target system. Both packages are
designed to insure upward compatibility with future
generation processors. The floating-point routines are
accessible from both the assembler and compiler.

To eliminate the overhead incurred by using the trap
handlers, direct code generation (in-line coding) of
Am29027 microprocessor floating-point operations is
an included option of the HighC29K Cross-Develop-
ment Toolkit.

Am29000 Microprocessor Floating-Point
Instructions

Mnemonic Operation
CONVERT Convert values between types
Integer, Float, and Double

FEQ Compare Floats Equal
DEQ Compare Doubles Equal
FGT Compare Floats Greater Than
DGT Compare Double Greater Than
FGE Compare Floats Less Than
DGE Compare Double Less Than
FADD Float Add
DADD Double Add
FSUB Float Subtract
DSuUB Double Subtract
FMUL Float Multiply
DMUL Double Multiply
FDIV Float Divide
DDIV Double Divide

Utilities

A set of utilities is provided to work with the output files
produced by the development tools. They allow the user
to prepare output files for downloading into target sys-
tems and to create ROM images. The utilities include:
coff2hex: Converts Am23000 microprocessor COFF
files to Motorola® S-record or Extended Tektronix®
Hex Files.

romcoff: Allows creation of ROM
Am23000 microprocessor COFF files.
cveoff: Translates Am23000 microprocessor COFF
files between big endian/little endian hosts.

strpcoff: “Strips” symbolic information from an ex-
ecutable COFF file.

images . from

2-15

29K Family Support Tools

MAINTENANCE AND SUPPORT

Software Warranty

Software programs licensed by AMD are covered by the
warranty and patent indemnity provisions appearing in
AMD’s standard Software License Forms. AMD makes
no warranty, express, statutory, implied or by descrip-
tion regarding the information set forth herein or regard-
ing the freedom of the described software program from
patent infringement. AMD reserves the right to modify,
change or discontinue the availability of this software
program at any time and without notice.

Support

Customer Support

All orderable software products include one year of free
maintenance support, which starts from the date of
original purchase. Maintenance support allows custom-
ers to receive technical assistance from highly trained
field and factory personnel, to use a call-in on-line
information system and to receive product and docu-
mentation updates at no additional charge. Customers
may extend maintenance support in one-year
increments. Customers can access suppport services
by calling the 24-hour, toll-free 29K Family hotline at
(800) 2929-AMD (292-9263).

On-Line Call-In Bulletin Board

In addition to the support engineering staff, AMD offers
a 24-hour on-line technical support center. The cus-
tomer can call (800) 2929-AMD at any time to query the

system for the latest information on a particular product:
bug fixes, work-arounds and information on up-coming
releases. Messages may be left for the support engi-
neering staff during “after hours.”

Training Classes

AMD offers training classes for the 29K Family prod-
ucts. These classes focus on 29K Family system design
and implementation using the broad range of AMD
software development tools. Customers can shorten
the development process through extensive hands-on
training covering a variety of topics. Contact your local
AMD field sales office for more information on training
classes. :

Fusion29K Program

AMD encourages broad-based development and sup-
port for the Am29000 with the Fusion29K™ program, a
joint-effort program between AMD and third-party
developers. A bi-annual Fusion29K program catalog
reveals the breadth of development and system
solutions for the 29K Family, including software
generation and debug tools; hardware development
tools; executive, kernel and multi-user operating
systems; board-level products; silicon products; and
more. For a copy of the Fusion29K program catalog, call
your local AMD field sales office or the literature center
at (800) 222-9323.

2-16

MON29K

Preliminary

MON29K

Target Resident Debug Monitor

e\

Advanced
Micro
Devices

DISTINCTIVE CHARACTERISTICS

M Provides local control of an Am29000™ micro-
processor-based system

B Interfaces to the XRAY29K™ Source-Level
Debugger

M Allows modification and display of memory,
registers and 1/O ports

W Supports modification and display of special-
purpose registers by group)

B Allows access to both user- and system-level
code

M Supports the AMD Am29027™ Arithmetic
Accelerator

M Allows modification and display of Am29027
microprocessor registers

H Provides eight breakpoints plus single-
and multiple-instruction stepping

M Allows selection of user-defined displays after
each breakpoint or single step

B Provides in-line assembler and disassembler

B Supports downloading of COFF and hex files
from remote systems

B Provided in source form (C and Am29000
microprocessor assembly) to simplify
installation of /O devices

W Offers familiar user interface, similar to DEBUG
on IBM>PC

GENERAL DESCRIPTION

The Target Resident Debug Monitor (MON29K™)
resides on Am29000 microprocessor-based hardware.
It provides all the control a designer needs to load,
execute and debug Am23000 microprocessor
programs. MON29K software is provided in source form
so its I/O drivers and service routines can be modified
easily, which allows MON29K software to be
customized for various hardware configurations.

MON29K software provides the ability to set
breakpoints, to set and display memory and registers, to
read and write /O ports, to trace execution in single or
multiple steps, and to download files from a remote

host. MON29K software is controlled by either an ASClI
terminal or a host computer connected to a serial port
on the target system.

MON29K software supports high-level language
debugging through XRAY29K, the Am29000
microprocessor source-level debugger. In addition to its
own standard command set, the XRAY29K debugger
supports all the MON29K software commands.

The MON29K product includes:

*+ MON23K source code
« Documentation

Publication # Rev. Amendment
10287 B 0
Issue Date: September 1989

2-17

29K Family Support Tools

ORDERING INFORMATION

Licensing

The MON29K Resident Monitor is licensed through
AMD’s Standard End-User Software License
Agreement (Boxtop). This license does not require a
signature; breaking the seal on the product package
indicates acceptance of the license terms. If changes
are required to the license agreement, they can be
arranged through your AMD sales representative. Many
software products require the customer to provide a

Order Numbers

MON29K software executes on Am29000
microprocessor-based systems but is distributed in
machine readable source form for several hosts. Thus,
media type is the only distinguishing characteristic
when ordering MON29K software. Documentation can
be ordered separately. The order number (Valid
Combination) is formed as a combination of:

CPU ID number when ordering the product. Contact B Product Family
your sales representative if this information is not m product Category
available at the time of purchase. In addition, terms of o
the license require the customer to complete a Software W Product Identiier
Warranty card with the serial number and site of the B License Type
host computer on which the resident monitor source will g Hosy/OS Type
reside. This card must be returned to AMD within 30 A
days of receipt for the warranty to be valid. W Media Type
AM29000 SW/ MON B #i
T
Medla Type
_ 08 = 0.25" cartridge tape. TAR format
14 = 3.5" DSHD floppies
21 = 9-track, 1600 BPI mag tape, TAR format
24 = 5.25" DSHD floppies
Host/OS Type
99 = Not Host Specific
License Type
B = Boxtop
S = Signed

= Not Applicable

Product Identifier
MON = MON29K Target Resident Debug Monitor

Product Category

SW/ = Software Product

DC/ = Documentation Product
MA/ = Maintenance Agreement

Product Family

Am

29000 Microprocessor

2-18

MON29K

Valid Combinations

Valid Combinations lists configurations planned to be supported in volume for this device. Consult the local AMD
sales office to confirm availability of specific valid combinations and to check on newly released combinations.

Part Number Product Host Media
AM29000SW/MONB9908 MON29K Resident Monitor Not Host Specific 0.25" cartridge tape, TAR format
AM28000SW/MONS9908 MON29K Resident Monitor Not Host Specific 0.25" cartridge tape, TAR format
AM29000SW/MONB9914 MON29K Resident Monitor Not Host Specific 3.5" DSHD floppies
AM29000SW/MONS9914 MON29K Resident Monitor Not Host Specific 3.5" DSHD floppies
AM29000SW/MONB9921 MON29K Resident Monitor Not Host Specific 9-track, 1600 BPI tape, TAR format
AM29000SW/MONS9921 MON29K Resident Monitor Not Host Specific 9-track, 1600 BPI tape, TAR format
AM29000SW/MONB9924 MON29K Resident Monitor Not Host Specific 5.25" DSHD floppies
AM29000SW/MONS9924 MON29K Resident Monitor Not Host Specific 5.25" DSHD floppies
AM239000DC/MON-99 MON29K Documentation ~ UNIX Not Media Specific
AM29000MA/MON-99 MON29K Maintenance Not Host Specific Not Media Specific

FUNCTIONAL DESCRIPTION

MON23K software resides on the target system and
interfaces to the user through an ASCII terminal
connected to a serial port on the target system. All
commands and formatted displays are communicated
through this serial link. MON29K software supports
simple display formats so that compatibility can be
maintained with any CRT.

MON29K software provides program development
support at the assembler source level. High-level
source code development is provided by the XRAY29K
debugger when it is connected to MON29K monitor.
MON29K serves as the target resident monitor that
interrogates memory and registers for the host-resident
source-level debugger.

Memory, Register and I/O Addresses
MON29K software supports three address spaces:
register, memory, and l/O. Data values are always
represented in hex, as are memory and 1/O addresses.
Register addresses are represented by decimal
numbers and grouped as general, local, global, special-
purpose, and TLB. Special-purpose and TLB registers
can be accessed by register number or by their
abbreviated mnemonic. The Special-Purpose Registers
section that follows discusses other commands for
accessing these registers.

Memory and I/O addresses are assumed to be real
because MON29K software has no mechanism for
calculating or interpreting virtual addresses. MON29K
software allows specification of user and supervisor
modes and specitication of OPT lines with all memory
and 1/0 addresses.

Displaying Memory and Registers

The Display command shows data for a specified range
of addresses, beginning at a specified address or from
the currently active address. Each line in the display
contains 16 bytes of data. The 16 bytes are displayed
as either bytes, half-words, words, single-precision, or
double-precision floating points, depending on the
command entered.

Floating-point numbers are displayed in decimal format
if the value can be represented accurately within the
digits available. Otherwise, scientific notation, E format,
is used.

Following the numeric data is a string of ASCII
characters in which each character corresponds to one
byte of data. When no ASCII equivalent exists for the
byte of data, a period is displayed. Figure 1 shows
examples of memory and register displays.

Altering Memory and Registers

Memory and register contents can be set, filled, or
moved. The set command allows the contents of
registers and memory to be examined and optionally
changed. One or more values can be set without
examining the previous contents. The fill command sets
a range of register or memory addresses to a specific
value. The move command copies blocks of data from
one range of addresses to another. Blocks in the
destination address range may overlap blocks in the
source address range.

2-19

29K Family Support Tools

Special-Purpose Registers

The special-purpose register commands provide .
another method for accessing the Am29000
microprocessor special-purpose and TLB registers.
These registers are organized into groups:
Unprotected, Protected, TLB Entries, and Coprocessor.
Specific commands are used for examining the
contents of registers in each group. Within a group,
each register’s contents can be examined or changed
explicitly.

The large number of registers necessitates special
register display screens that clearly present each
group’s registers. To enhance display efficiency, the
single command X is available. It displays the registers
most likely to be in use: all the global registers, half the
loca! registers, and all the unprotected registers.
Figures 2 and 3 show examples of special-purpose
register display screens.

In-Line Assembler/Disassembler

An in-line assembler/disassembler allows the user to
examine and change memory using instruction
mnemonics rather than hex values. This improves
readability and minimizes user efforts while entering
changes to instruction memory. The lexical conventions
and statement syntax used are identical to the standard
AMD assembler, ASM29K™,

/0 Commands

110 commands provide simple forms of input and output.
They are intended to allow quick examination and
simple control of devices. These commands read or
write a full word of data to or from a real I/O address.

ﬂdw LR4, LR11

LR0O08 69006a00 6b006c00 6d006e00 6£007000
#

#

DB 10000I, 1001FI

000100001 61 00 62 00 63 00 64 00 65 00 66
000100101 69 00 6a 00 6b 00 6¢c 00 6d 00 6e

.

LR004 61006200 63006400 65006600 67006800 .

00 67 00 68 00 a.b.c.d.e.f.g.h
00 6£ 00 70 00 i.3.k.l.m.n.o.p.

Figure 1. Register and Memory Display

-

#Xp

CA IP TE TP LK RE WM
CPS: 0 0 0 0 0 0 0 0 0
OPS: 0 0 0 0 0 0 0 0 0

L

VAB CFG: PRL VF RV BO CP CD
0000 01 1 0 0 0 1

CHA CHD CHC: CE CNTL CR LS ML ST LA TF TR NN CV
00000000 00000000 -0 00 00 0 0 0 0 0 00 0 O
RBP: BF BE BD BC BB BA B9 B8 B7 B6 B5 B4 B3 B2 Bl BO

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TCV TR: OV IN IE TRV PCO PCl PC2 MMU: PS PID LRU

000000 1 1 0 000000 00010004 00010000 00000000 0 00 O

PD PI SM IM DI DA
o 0 0 0 O 0
o 0 o0 o0 0 0

Figure 2. Protected Register Group Display

2-20

MON23K

Downloading

Downloading controls the transmission of data from a
remote system to the local memory on the target
system. MON29K software can read COFF binary,
Motorola S3 hex records, and TEK extended hex files.
Each of these formats contains the address and byte
count in-formation for loading memory, so no other
parameters need to be specified.

An optional downloading parameter, <host command>,
can be specified by the user. The <host command> is a
character string that is uploaded by MON29K to the
remote host system. This command can be used to
initiate the host download procedure remotely from the
MON29K monitor terminal.

Execution Control

Execution control commands allow the user to start
program execution, setup through instruction singly or
in groups, breakpoint execution, and specify monitor
commands to be performed when termination occurs.
Following each break in program execution, the
MON29K monitor displays the address and
disassembled contents of the next executable
instruction. In addition, the user can identify registers
and memory he wishes to view after the termination of
each breakpoint or step command. This reduces the
amount of information displayed to the data that is
pertinent to the current debugging session.

MON29K software provides eight “sticky” and two “non-
sticky” breakpoints. Sticky breakpoints remain set until
expressly removed by the user. These are useful when
debugging code within an instruction loop. Non-sticky
breakpoints occur once and are removed automatically.
Non-sticky breakpoints are optional parameters of the
go command. Users can easily display, set, and reset
breakpoint addresses.

Program execution can be stepped one instruction at a
time or a group of instructions at a time. User-defined
displays and the address and contents of the next
executable instruction are displayed after each
instruction step. When stepping by group, these
displays can be delayed either until after the last
instruction in the group is executed, or until after each
instruction is executed. An option allows only register
data that was changed to be displayed. This
automatically informs the user of register changes, thus
eliminating the need to visually monitor register
contents.

Remote Mode

MON29K software supports two serial ports: one to a
terminal and one to a host computer. In normal mode,
either port can be used for initiating commands or for
downloading programs. In remote mode, the two serial
ports are linked together, allowing the terminal to
communicate directly with the host computer.

Miscellaneous Commands

An on-screen help facility, as seen in Figure 4, lists all
MON29K monitor commands. Information about a
specific command is obtained by specifying the
command name as a parameter to the help command.

Am29027 Arithmetic Accelerator Support
MON29K software is fully integrated with the AMD
Am29027 Arithmetic Accelerator. In the same. manner
that the Am29000 microprocessor registers can be
accessed, the Am29027 microprocessor registers can
be both displayed and modified using MON239K
software. An example of an Am29027 microprocessor
register display is shown in Figure 5.

ﬂx'r
LINE SET 1ST REG 0: VTAG

VE SR SW SE
00 0 TRO0O 00000 0 0 0 O
00 1 TRO64 00000 0 0 0 O
01 0 TR002 00000 0 0 O O
01 1 TRO66 00000 0 0 0 O
02 0 TR0O04 00000 0 0 O O
02 1 TR0O68 00000 0 0 0 O
03 0 TROO06 00000 0 0 O O
03 1 TR0O70 00000 0 0 0 O
#

cooococococod

R

J

UW UE TID l: RPN PGM U F
0 0 00 000000 0 0 0
0 0 00 000000 O 0 0
0 0 00 000000 O 0 0
0 0 00 000000 O 0 0
0 0 00 000000 O 0 0
0 0 00 000000 O 0 0
0 0 00 000000 O 0 0
0 0 00 000000 0 - 00

Figure 3. TLB Entries Group Display

2-21

29K Family Support Tools

Target System Requirements

The Am29000 microprocessor supports separate code
and data spaces and provides no instructions for
moving information between data and instruction
spaces. Because of this, the target system must
provide a mechanism for writing to code space in order
for MON29K monitor to set breakpoints and load
instruction memory.

MON29K software is designed to support a memory,
mapped 28530 SCC serial device. However, source
code is provided so the user can change the MON29K
monitor to support other devices on a particular target
system.

Other Tools

MON29K is a stand-alone product that does not depend
on other software to function. However, MON29K
software is delivered in source form and will need to
be compiled with the AMD HighC29K™ Cross-
Development Toolkit; modification may be necessary if
compiled with other Am29000 microprocessor C
compilers.

ﬂﬂ

Help:

H or ? to see this display
H<name> "help with a named command
?<name> help with a named command

Target Resource Access:

D - Display registers/memory

- Set registers/memory

Fill registers/memory

- Move registers/memory
Assemble in memory

- List disassembly from mem

- Input from port

= Qutput to port

U- Display/set unprotected reg

XOHBPD»RM®
1

Figure 4. On-Screen Help Facility

XP-Display/set
XT- Display/set
XC- Display/set
X - Display key
Y - Load a file
V - Save memory

protected reg
TLB entries
Am29027 reg
registers

to memory

to a file

N

Execution Control:
E - End execution command list

B - Display/Set/Clear breaks

G - Go (start execution)

T - Trace (single/multiple step)
Miscellaneous:

R - Remote mode (talk to host)

N - Normal {change ‘normal’ char)
Q —~ Re-initialize monitor

(ixc

~

PR MSW LSW PR MSW LSW
RFO: 0 00000000 00000000 RF1: 0 00000000 00000000
RF2: 0 00000000 00000000 RF3: 0 00000000 00000000
RF4: 0 00000000 00000000 RF5: 0 00000000 00000000
RF6: 0 00000000 00000000 RF7: 0 00000000 00000000
R: 00000000 00000000 S: 00000000 00000000
R TEMP: 00000000 00000000 S TEMP: 00000000 00000000
F: 00000000 00000000
IP RP RF RFS PMS TMS SIP SIQ SIT SIF co
INSTR: 0 0o 0 0 0 0 0 0 0 00
I TEMP: 0 0o 0 0 0 0 0 0 0 00
STATUS: OP IV SV RV ES ZE XE UE VE RE IE FLAGS:FL6 FL5 FL4 FL3 FL2 FL1 FLO
00 0 0 0 0 0 O 0 0 0 0 0
OP HE AD MVTC MATC PLTC ZM XM UM VM RM IM PL RMS MF MS BU BS SU TR AP SA AFF PFF
0 0 0 0 0 0 0 0 6 0 0 0 O 0 0 0 0 0 0 0 0O 0 0

Figure 5. Am29027 Register Display

2-22

MON29K

MAINTENANCE AND SUPPORT

Software Warranty

Software programs licensed by AMD are covered by the
warranty and patent indemnity provisions appearing in
AMD's standard software license forms. AMD makes no
warranty, express, statutory, implied, or by description
regarding, the information set forth herein or regarding
the freedom of the described software program from
patent infringement. AMD reserves the right to modify,
change, or discontinue the availability of this software
program at any time and without notice.

Customer Support

Maintenance

All orderable software products include one year of free
Maintenance Support, which starts from the date of
original purchase. Maintenance Support allows
customers to receive technical assistance from highly
trained field and factory personnel, to use a call-in on-
line information system, and to receive product and
documentation updates at no additional charge.
Customers may extend Maintenance Support in one-
year increments. Customers can access support
services by calling the 24-hour, toll-free 29K™ Family
hotline at (800) 2929-AMD (292-9263).

On-Line Call-In Bulletin Board

In addition to the support engineering staff, AMD offers
a 24-hour on-line technical support center. The
customer can cali (800) 2929-AMD at any time to query
the system for the latest information on a particular
product: bug fixes, work-arounds, information on up-
coming releases, etc. Messages may be left for the
support engineering staff during “after hours.”

Training Classes

AMD offers training classes for the 29K Family
products. These classes focus on 29K Family system
design and implementation using the broad range of
AMD software development tools. Customers can
shorten the development process through extensive
hands-on training covering a variety of topics. Contact
your local AMD field office for more information on
training classes.

Fuslon29K Program

AMD encourages broad-based development and
support for the Am29000 microprocessor with the
Fusion29K™ program, a joint-effort program between
AMD and third-party developers. Published twice a
year, the Fusion29K program catalog reveals the
breadth of development and system solutions for the
29K Family, including software generation and debug
tools; hardware development tools; executive, kernel,
and multi-user operating systems; board-level products;
silicon products; and more. For a copy of the Fusion29K
program catalog, call your local AMD field sales office or
the literature center at (800) 222-9323.

2-23

29K Family Support Tools

XRAY29K

Source-Level Debugger

1

Advanced
Micro
Devices

DISTINCTIVE CHARACTERISTICS

m Supports symbolic debugging with C ex-

pressions and statements for Am29000™
microprocessor development environments

H Controls and examines program execution In
high-level and assembly-level modes

m Provides interface and start-up code for the
Am29000 microprocessor, which allows use of
the MON29K™ Target-Resident Monitor,
ADAPT29K™ Advanced Development and
Protoyping Tool and PCEB29K™ PC Execution
Board

m Uses window-oriented display to segregate
debug information in meaningful regions

B Allows single-step execution and placement of
simple and complex breakpolnts

Supports custom screens and viewports, and
one-key command functions

m Provides command, breakpoint, and viewport
macros

Suppotts automatic test sequences by proces-
sing command files and logging output to a
file

H Includes on-line help, comprehensive docu-
mentation, and a sample debug session

GENERAL DESCRIPTION

AMD's XRAY29K™ source-level debugger provides
engineers with a multiwindow interactive environment
for debugging high-level and assembly-level software
programs for Am29000-based systems. XRAY29K soft-
ware resides on IBM® ATs® and compatibles, and Sun
Workstations®. Program execution is monitored and
controlled in high-level source or assembly language,
from the host system through the PCEB29K execution
board, MON29K monitor or ADAPT29K debugger on
the target system. Control is extensive, including de-
bugger commands for setting breakpoints, single step-
ping through the program, and examining or altering
register and memory contents.

XRAY29K software allows examination and modifica-
tion of a variable’s contents and computation of high-
level and assembly language expression values. Sym-
bols can be added, displayed, and deleted in the sym-
bol table.

The XRAY29K product includes:
B XRAY29K Software

® Documentation

m Install testing program

m Start-up code for ADAPT29K or targets using
MON29K

Publication # 10626 Rev. C Amendment /0

Issue Date: September 1989

2-24

XRAY29K

ORDERING INFORMATION

Licensing

The XRAY29K Source-Level Debugger is licensed
through AMD’s Standard End-User Software License
Agreement (Boxtop). This license does not require a
signature; breaking the seal on the product package in-
dicates acceptance of the license terms. If changes are
required to the license agreement, they can be ar-
ranged through your AMD sales representative. Many
software products require the customer to provide a
CPU ID number when ordering the product. Contact
your sales representative if this information is not avail-
able at the time of purchase.

Order Numbers

The XRAY29K Source-Level Debugger is available for
several different environments. Documentation can be
ordered separately. The order number (Valid Combina-
tion) is formed as a combination of:

m Product Family
m Product Category
= Product Identifier
m License Type

| Host/OS Type
m Media Type

AM29000 Sw/

XRY B ##

#it

T

Media Type

08 = 0.25" Sun cartridge tape, TAR format

14 = 3.5" DSHD floppies

21 = 9-track, 1600 BPI mag tape, TAR format
24 = 5.25" DSHD floppies

Host/ OS Type
07 = Sun-3
10 = PC-AT

B = Boxtop
S = Signed
“" = Not Applicable

Product Identifier
XRY= XRAY29K Source-Level Debugger

Product Category

SW/ = Software Product

DC/ = Documentation Product
MA/ = Maintenance Agreement

Product Family
Am29000 Microprocessor

2-25

29K Family Support Tools

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consutlt the local AMD
sales office to confirm availability of specific valid combinations and to check on newly released combinations.

Order Number Product Host Media
AM29000SW/XRYB0708 . XRAY29K Source-Level Debugger Sun-3 0.25" cartridge tape, TAR format
AM29000SW/XRYS0708 XRAY29K Source-Level Debugger Sun-3 0.25" cartridge tape, TAR format
AM29000SW/XRYB0721 XRAY29K Source-Level Debugger Sun-3 9-track, 1600 BP! tape, TAR format
AM29000SW/XRYS0721 XRAY29K Source-Level Debugger Sun-3 9-track, 1600 BPI tape, TAR format
AM29000SW/XRYB1014 XRAY29K Source-Level Debugger PC-AT 3.5" DSHD floppies
AM29000SW/XRYS1014 XRAY29K Source-Level Debugger PC-AT 3.5" DSHD floppies
AM29000SW/XRYB1024 XRAY29K Source-Level Debugger PC-AT 5.25" DSHD floppies
AM29000SW/XRYS1024 XRAY29K Source-Level Debugger PC-AT 5.25" DSHD floppies
AM29000DC/XRY-99 XRAY29K Documentation UNIX Not Media Specific
AM29000MA/XRY-07 XRAY29K Maintenance Sun-3 Not Media Specific
AM29000MA/XRY-10 XRAY29K Maintenance PC-AT Not Media Specific

FUNCTIONAL DESCRIPTION

XRAY29K software aids the control and examination of
program execution, and can set and examine memory
and register contents, set and remove breakpoints in
either high-level source or assembly language code,
and display and alter the microprocessor state. In addi-
tion to symbolic debugging, the XRAY29K debugger's
special features include help screens, macro capabili-
ties, command files, conditional commands, and
debugging through ports. For example, in batch mode,
command files can issue directives to XRAY29K soft-
ware to implement automated test sequences.

XRAY29K software functions in either high-level or as-
sembly-level mode. In high-level mode, an application
is debugged using C language source lines to control
and monitor execution. C variables and expressions
replace numeric addresses for memory access. Code
can be viewed by line number or procedure name. In
assembly-level mode, an application is debugged using
assembly language statements. In addition to all the ca-
pabilities available in high-level mode, assembly-level
mode includes machine-level register and status bit ma-
nipulation. For each mode, the monitor's screen is parti-
tioned in areas called viewports, where information is
displayed in meaningful regions and is easy to identify.

Viewport Commands

When the XRAY29K debugger executes, the screen is
divided in areas called viewports. The number of view-
ports and the information shown in each depends on
whether the object module was written in a high-level
language (high-level mode) or assembly language (as-
sembly-level mode).

The standard screen for high-level mode has four view-
ports: data, trace, code, and command. This screen is
displayed when an object module generated by a high-
level source program is executed. The standard screen
for assembly-level mode has five viewports: data, stack,
disassembled code, Am29000 microprocessor regis-
ters, and command. This screen is displayed when an
object module generated by an assembly language
program is executed. Figures 1 and 2 show examples of
these screens.

Viewport commands control the way information is dis-
played on the screen. Changing a viewport’s size, color,
and cursor position as well as adding and deleting a
custom viewport are viewport commands. In addition,
viewports can be cleared of data, and macros can be
associated with them. Frequently used viewport com-
mands are associated with function keys for easy
access.

XRAY29K

vactive Activate a viewport
vclear Clear data from a viewport

vclose Remove a user-defined viewport or
screen

vmacro Attach a macro to a viewport
vopen Create a screen/create or resize a

viewport
vscreen Activate a screen
vselc Set a viewport’s cursor position
zoom Increase or decrease viewport size

Macro Commands

XRAY29K software supports macros to create and exe-
cute complex command procedures, such as testing

program variables, and to conditionally execute other .

sets of commands. Macros can be defined and used
any time during a debugging session and can include
comments to explain its function. The macro definition
may contain parameters that can be changed for each
macro call. ’

Used as commands or in expressions, macros can be
attached to a breakpoint to create complex breakpoint
condition testing, or to a custom viewport to control data
display. Complex initialization conditions can be repre-
sented as a sequence of macro commands in a com-
mand file. Statements to increment variables, perform
loops and conditions, and control target program flow
can be part of a macro.

XRAY29K software provides a set of macro flow control
statements. These statements are similar to C condi-
tional statements (e.g., IF, ELSE, WHILE, DO, FOR,
RETURN and CONTINUE). To create a macro, the de-
fine command is used. After macro creation, the show
command allows the macro’s source to be viewed.

Commands to attach a macro to a viewport are part of
the viewport command set. Commands that attach a
macro to a breakpoint are part of the execution and
breakpoint command set.

define Create a macro
show Display a macro source

Debugger Commands

Commands, whether in high-level source or assembly
language mode, can be entered interactively from the
keyboard in the command viewport or placed in a com-
mand file and accessed as include or batch files. Some
commands take qualifiers that provide additional infor-
mation on how to execute the command and parame-
ters that describe an object and communicate ad-
dresses or file specifications.

Breakpoints and Execution Commands

A breakpoint causes program execution to halt or
causes the XRAY29K debugger to take some action,
such as incrementing a counter each time the target
program attempts to execute an instruction at a speci-
fied memory location. A macro can be associated with
the breakpoint to control execution. A special break-
point viewport shows breakpoint information during the
debugging session, including the breakpoint identifica-
tion number. Automatically assigned by XRAY29K soft-
ware, the breakpoint number can reference or clear a
breakpoint.

Execution commands start program execution or
re-sume execution after explicit suspension. The pro-
gram can be instructed to continue, single step, or set
temporary instruction breakpoints. Single stepping is
performed by C source line in high-level mode and
microprocessor instruction in assembly-level mode.
In addition, for each step, a macro can be invoked.

Data Trace
Monitored Data Routine Traceback
Information
Code

Source Code
Status Line
Command

Debugger Commands

Figure 1. Standard High-Level Screen

2-27

29K Family Support Tools

Data Stack
Monitored Data Stack Contents
Code — Registers —
i Am29000
Disassembled Code Microprocessor
Registers
Status Line
- Command
Debugger Commands

Figure 2. Standard Assembly-Level Screen

breakinstruction Set an instruction breakpoint

clear Clear a breakpoint

go Start or continue program
execution

gostep Execute a macro after each
instruction step

step Execute a number of instructions
or lines

stepover Single step, but execute through
procedures

Display Commands

Display commands write program information to a view-
port or file about memory, expressions, or procedures.
C source code, for example, can be listed starting at a
particular line number or for a named procedure. Any
active procedure—a procedure on the stack—can have
its values displayed.

Memory contents can be dumped in both hexadecimal
and ASCH text format, and, when in assembly-level
mode, memory can be disassembled and displayed in
the code viewpont. Variables can be monitored and
examined in the data viewport as the target program
executes. An expression or expression range can be
displayed in the command viewport according to type.

For type conversions, scaling, and output positioning,
display commands can open a file or device and then
write formatted output to it. Several format options are
provided, similar in function to those provided to C in
standard runtime libraries.

disassemble Display disassembled memory
(assembly mode)

dump Display memory contents

expand Display a procedure's local
variables

find Search for a string

fopen Open a file or device for writing

fprintf Print formatted output to a
viewport

list Display C source code

monitor Monitor expressions

next Find a string’s next occurrence

nomonitor Discontinue monitoring an
expression

printf Print formatted output to command
viewport

printvalue Print a variable’s value

Memory and Register Commands

To help track down problems and test fixes, memory
and registers can be examined and altered. Two blocks
of memory, for example, can be compared for similari-
ties or differences to check for a corrupt RAM image.
Memory and registers can be modified temporarily to
patch programs and continue testing during a debug-
ging session. Expression evaluation is supported dur-
ing searching and modification.

compare Compare two blocks of memory
copy Copy a memory block
fill Fill a memory block with values

nomen Prevent access to a memory location
search Search a memory block for a value
setmem Change a memory address

setreg Change a register's contents

test Examine memory area for invalid values

2-28

XRAY29K

Symbol Commands

A symbol is a sequence of characters used to represent
arithmetic values, memory addresses, and C variables.
XRAY29K software knows about two types of symbols:
program and debugger. Program symbols are symbolic
data names or program labels that were defined during
the source program's creation. Debugger symbols ma-
nipulate and direct the flow of the debugger and are
specified by the user during a debugging session.

Symbol commands encompass both types of symbols.
Debugger symbols can be added to the debugger sym-
bol table, and then displayed or removed. Information
about program symbols, such as name, data type, stor-
age class, and memory location, can be displayed.

add Create a symbol
context Show the current context
delete Delete a symbol from the symbol table
printsysbols Display symbol information
scope Specify current module and procedure
. scope
Utility Commands

Command files are commonly used to read macro defi-
nitions from a file or to change viewports. After a com-
mand file has been created, it may be included in a
startup file and executed as if entered at the keyboard.
When an include file error is encountered, XRAY29K
software can be directed to quit, abort, or continue. A log
of commands entered at the keyboard can be retained
and then subsequently used as a command file. If
XRAY29K software display and execution defaults are
changed, they can be saved in a new startup file.
All these operations are accessed through utility
commands.

Other utility commands control the microprocessor's
state. Reset simulates a microprocessor reset. Restart
restores the microprocessor to its initial state without
initializing memory or restarting the program, and it sets
the program counter to the original starting address
from the absolute file but maintains breakpoint declara-
tions. In addition, the user can temporarily change the
default values for debugger startup options, such as
enabling procedure-level tracing in the trace viewport
and intermixing C source code with assembly code in
the code viewport.

XRAY29K software automatically selects the correct de-
bugging mode-based on whether the object module was
created by the high-level compiler or the assembler.
When a program has both kinds of object modules, a
utility command toggles between the two modes.

XRAY29K software includes a search facility that can
find information in a source file and display the value of
an expression in decimal, hexadecimal or ASCI| format.

On-line help is provided for all debugger commands,
command arguments, and function keys, and includes a
selection menu.

alias Replace the name of the command

cexpression Calculate an expression’s value

error Set include file error handling

help Display on-line help screen

history Recall a specifc command

include Read in and process a command file

journal Save all viewport commands and data
to afile

log Record debugger commands and
errors in a file

mode Select debugging mode (high or
assembly)

option Set debugger options for this session

pause Pause simulation

reset Simulate microprocessor reset

restart Reset the program starting address

startup Save the default startup options

Session Control

The debugger session can be ended at any time or can
be paused while the host operating system environment
is used and then entered again. This area also controls
which object modules are loaded for debugging.

host Temporarily enter the host environment
load Load an object module for debugging
quit End a debugging session

System Requirements

The XRAY29K software resides on the host system and
presents the user with a friendly, high-level interface to
the Am23000 microprocessor-based system. The soft-
ware communicates with the host system through a se-
rial interface to the ADAPT29K unit or a target board
running the MON29K target-resident debug monitor, or
a bus interface to the PCEB29K personal computer
execution board. The MON29K software and the
ADAPT29K unit actually perform all the Am29000
microprocessor memory and register reads and writes
requested by the user through XRAY29K debugger
commands.

Before the XRAY29K debugger can be used, an abso-
lute object module must be created and downloaded
into the target system RAM memory. The object module
is created using AMD's HighC29K compiler or ASM29K
assembler. Once generated, the object module is
loaded into target system RAM memory by invoking the
XRAY29K software Load command. Figure 3 illustrates
the AMD development tool chain.

2-29

29K Family Support Tools

Software Warranty

Software programs licensed by AMD are covered by the
warranty and patent indemnity provisions appearing in
AMD's standard software license forms. AMD makes no
warranty, express, statutory, implied, or by description
regarding the information set forth herein or regarding
the freedom of the described software program from
patent infringement. AMD reserves the right to modify,
change or discontinue the availability of this software
program at any time and without notice.

Customer Support
Maintenance

All orderable software products include one year of free
Maintenance Support, which starts from the date of
original purchase. Maintenance Support allows custom-
ers to receive technical assistance from highly trained
field and factory personnel, to use a call-in on-line infor-
mation system and to receive product and documenta-
tion updates at no additional charge. Customers may
extend Maintenance Support in one-year increments.
Customers can access support services by calling the
24-hour, toll-free 29K™ Family hotline at (800) 2929-
AMD (292-9263).

On-Line Call-In Bulletin Board

In addition to the support engineering staff, AMD offers
a 24-hour on-line technical support center. A customer

can call (800) 2929-AMD at any time to query the
system for the latest information on a particular product:
bug fixes, work-arounds, information on upcoming re-
leases, etc. Messages may be left for the support engi-
neering staff during “after hours.”

Training Classes

AMD offers training classes for the 29K Family prod-
ucts. These classes focus on 29K Family system design
and implementation using the broad range of AMD
software development tools. Customers can shorten
the development process through extensive hands-on
training covering a variety of topics. Contact your local
AMD field sales office for more information on training
classes.)

Fusion29K Program

AMD encourages broad-based development and sup-
port for the Am29000 microprocessor with the
Fusion29K™ program, a joint-effort program between
AMD and third-party developers. Published twice a
year, the Fusion29K program catalog reveals the
breadth of development and system solutions for
the 29K Family, including software generation and
debug tools; hardware development tools; executive,
kernel and multi-user operating systems; board-level
products; silicon products; and more. For a copy of
the Fusion29K program catalog, call your local
AMD field sales office or the AMD literature center at
(800) 222-9323.

User and
Included
Libraries

c ASM29K
Source HighC29K *1{Assembly
and Link)

Assembly

Source
Code

/ MON29K
COFF ‘ - Debugged
Object File | XRAY20K Exe;::l.Jltable
1 ile

ADAPT29K
or PCEB29K

Figure 3. AMD Development Tool Chain

2-30

Table of Contents

CHAPTER 3
29K Family Application Notes

AM29000 SYSCLK DIIVING ..cvvvieerieriiiiiieitireneestaitessessesseessasse et esesssasassstessassssssesssssessesssessessanssssssasssssesssossessensss 3-3
Connected Am23000 Instruction/Data Buses .3-5
Byte-Writable Memories for the Am29000ccccvvcveeerennnae .38
Am29027 Hardware Interfaceooceevcemerienriinecereneneneennenae .3-10
When is Interleaved Memory with the Am29000 Unnecessary? ...3-14
Implementation of an Am29000 Stack Cachec.cccceevvenienns ...3-20
Introduction to the Am29000 Development Tools............c.c... 3-42
Preparing PROMs Using the Am23000 Development Tools .. 3-81
Programming Standalone Am239000 Systemsc.ccccvevereeen 3-107

Host Interface (HIF) V1.0 SPECHICAtIONcueeieeiiereeiete ettt asbe st e e sa e st e s st e e e 3-163

Am29000 SYSCLK Driving
Application Note

by Tom Crawford

INTRODUCTION

The purpose of this note is to describe the options of
connecting the SYSCLK pin in an Am29000™ system.

GENERAL CONSIDERATIONS

SYSCLK in any Am29000 system is going to be a high-
frequency, heavily loaded signal with strict duty factor
requirements. The most important considerations are
DC levels, capacitive loading, rise/fall times, high/low
times, and transmission line effects.

There are basically two options. One may make
SYSCLK a source or one may make SYSCLK a desti-
nation.

SYSCLK AS A SOURCE

The easiest (and the recommended) way to connect the
clocks in the system is to have the Am29000 generate
and drive SYSCLK. Figure 1 shows the connections.

In this configuration, PWRCLK (pin P3) is connected
directly to V.. This is a power pin; it must not be just
pulled up through a resistor.

Two times the desired operating frequency is injected
into INCLK. This is a TTL signal and the duty factor is
unimportant so long as it meets the minimum High time
and Low time parameters (see the Am23000 data
sheet, order# 09075).

SYSCLK is an output with CMOS levels (it swings from
nearly ground to nearly V). All the SYSCLK relative-
timing parameters are measured with respect to
SYSCLK at 1.5 volts, the normal TTL “trip point.”

Since SYSCLK must have fairly fast rise and fall times
and may be physically long, it may behave as a trans-
mission line (i.e., exhibit reflections). These effects can
be minimized using a few precautions.

If SYSCLK goes to more than one or, at most, two
places on the board, separate traces to each destina-
tion should be used. This minimizes the length of each
line and minimizes the capacitive loading on each line.
Series resistors at the source (at the Am29000) for each
line will reduce the edge rates. Using Schottky or Fast
logic is often preferable to CMOS logic, which lacks
input diodes to ground.

Publication # Rev. Amendment Issue Date
11024 A /0 11/89

Before resorting to parallel termination, one should con-
sider carefully the effects of relatively high DC loading
on the buffer V,, and V.

The prudent engineer will analyze his SYSCLK signal
with SPICE or a similar CAD package. This permits a
prediction of the actual behavior of the circuit, which is
essentially impossible to obtain without modeling.

At this time, there is no guaranteed relationship be-
tween the input on INCLK and the output on SYSCLK.
Information on this relationship will be included in the
Am29000 Data Sheet (order #09075).

SYSCLK AS A DESTINATION

SYSCLK can be driven externally. This is typically done
to provide an external signal with a known phase rela-
tionship to SYSCLK, perhaps at twice the frequency.
Figure 2 shows the connections.

PWRCLK and INCLK must both be connected directly
to ground.

SYSCLK is an input and must be driven with a CMOS-
level clock at the operating frequency. The fact that sig-
nals are generated from both edges of SYSCLK dic-
tates that it be very nearly a perfect square wave (from
1.5V to 1.5 V). Perhaps the best way to generate such
a signal is to begin with one at 2X frequency and divide
it by two with a flip-flop. The result is buffered with one
or more pieces of a CMOS buffer. A typical clock gen-
erator is shown in Figure 3.

VCO
L> PWRCLK
2X Clock
———® INCLK SYSCLK |t
to external
logic
Am29000

Figure 1. Source

© 1989 Advanced Micro Devices, Inc.

33

29K Family Application Notes

P PWRCLK
1 INCLK
Am29000
GND
SYSCLK
CMOS Clock

Figure 2. Destination

The TTL oscillator operates at twice the required
frequency. Since the 74AC74 is edge triggered, it
responds only to the Low-to-High transition of the
oscillator. Its output is nominally a square wave
(nominally because the tPHL may not be the same as
tPLH).

The buffer is more interesting. Clearly, it has to be
CMOS since SYSCLK is a CMOS input. It has to be
characterized to drive substantial capacitance since the
Am29000 has an input capacitance of 90 pF. One can
put multiple elements in parallel as long as they are in
the same package. In addition, one can drive different
portions of the load with different sections of the device.

As long as they are in the same package and are simi-
larly loaded, they will exhibit similar delays. In some
design groups, putting buffers in parallel is a prohibited
activity, since it is sometimes difficult to determine when
one of the buffers has failed. Local design rules should
always prevail.

Take, for example, the IDT 74FCT240A. With light DC
loading, the output swings within 0.2 V of the power
supply. At 50-pF loading, the propagation delay is
1.5 ns minimum and 4.8 ns maximum. Putting two
elements in parallel will solve the capacitive-loading
situation, if it really needs to be solved. The actual
waveforms should be examined before adding another
buffer. The IDT data book does not distinguish between
tPHL and tPLH. The device should be characterized at
the actual expected loading, temperature, and voltage
ranges to determine the actual switching char-
acteristics.

Take, for a second example, the 74AC04. With light DC
loading, the output swings within 0.1 V of the power
supply. The guaranteed propagation delays for the
74AC00 are 1.0 ns to 7.0 ns; we expect an AC04 to be
the same. In fact, a device actually driving an Am29000
has measured propagation delays of tPLH =4 and
tPHL = 5. Two elements in parallel appear to provide a
somewhat cleaner waveform.

VCC
é —>o—> to Am29000
D Q {>O—
74ACT74 —>(}—> to Am29027™
0sC CLK Q o
one half
? . of board
V
o other half
] of board
—{>O—> early SYSCLK

Figure 3. Clock Generator

Connected Am29000 Instruction/Data Buses

Application Note

by Tom Crawford

i\

The use of the Am29000™ has been proposed in a sys-
tem where the instruction and data buses are con-
nected directly to each other and to a single memory.

Am29000
ADRS Data |-
Instruction
A
> Static RAM -t

Figure 1. Block Diagram

If the memory is very fast (single cycle), then pipelined
or burst accesses never need to take place. Every ac-
cess is a simple one-cycle access. Data writes would

have to be two cycles (because BINV is valid so late).
Presumably this would be either a fairly high-end sys-
temwith lots of very fast memory or a cache system with
a modest amount of SRAM backed up by lots of DRAM.

This depends on the availability of very fast static
RAMSs. The equation below shows how to calculate the
required access time of the RAMs.

tMAX = tCLK — (para6 + paragA)

For a 25-MHz device running at various clock rates:

FREQ tCLK para6 para9A tMAX
25.00 40 14 6 20
22.22 45 14 6 25
20.00 50 14 6 30
18.18 55 14 6 35

An attempt to actually mechanize a system like this
uncovered a problem. When the Am29000 follows an
instruction read with a data write, there is a guaranteed
“bus crash.”

Parameter 10 requires that the data remain on the bus
for 2 ns after the rising edge of SYSCLK; in fact, RAM
disable times are typically 15 ns. This means there is no
known method to get the instruction off the instruction
bus until as fong as 15 ns after the clock rises. Addition-
ally, in the best possible case, a PAL® delay must be
added to allow for the use of SYSCLK to turn off the

- tCLK

=)

lg—— para 6

<§——— para 9A

ADRS ... /<

— (MAX ———

Data

v
7\

Figure 2. RAM Timing

Publication # Rev. Amendment Issue Date

11637 A /0 11/89

© 1989 Advanced Micro Devices, Inc.

3-5

29K Family Application Notes

- tCLK

— l—— para 6

ADRS ... ><

pafa 6A —— fet—

Data

para 10 —p»

Instruction

-

Figure 3. Bus Crash.

buffers. Transceivers have a similar problem and, in
addition, deduct from the allowable access time.

Parameter 6A specifies the maximum delay of SYSCLK
to write data valid. There is no minimum and, in prac-
tice, the buffers come out of Hi-Z with the rising edge of
SYSCLK. Since the instruction bus and data bus are
tied together, there is an unavoidable collision. The
memory continues to drive the common bus after the
Am23000 begins to drive it.

This problem does not occur in the case of data read
followed by a data write. The Am29000 is guaranteed to
insert an unused cycle. This provides adequate time for
the memory to get off the data bus.

A way to prevent this from occurring is to place a set of
transceivers between the data bus and the instruction
bus.

Now the block diagram looks like this:

Figure 4. Buffers Added

Am29000
ADRS Data [
Instruction
A | Buffers l
> Static RAM [

3-6

Connected Am29000 Instruction/Data Buses

The transceivers between the data bus and the instruc-
tion bus will isolate the Am29000 data drivers from the
RAM drivers long enough to allow the RAM drivers to go
into high impedance. The transceivers are then turned
on, pointed in the correct direction, and the data can be
driven into the array.

The instruction path has no additional delays (other
than the added capacitance of the transceivers). It can
still do single-cycle instruction fetches. The delay im-
posed in the the data path certainly dictates a two-cycle

load, unless the memory is substantially faster than
would otherwise be necessary for instruction fetches.
Stores are not affected since the BINV comes out too
late to allow single-cycle operations anyway.

The buses may also be required to be connected to-
gether when the memory must be common because of
software requirements. With a slow memory, the access
time added by the insertion of a buffer is a much smaller
percentage of the total access time.

Byte-Writable Memories For The Am29000

Application Note

by Tom Crawford

OVERVIEW

This document describes how to implement a byte-
write memory design for an Advanced Micro Devices
Am29000™-based system. While this document will
concentrate on the specific case of unsigned bytes, an
analogous case exists with signed bytes and signed
and unsigned halfwords. .

There are three important benefits that accrue from in-
corporating a partial write capability.

Assembly code can run faster

The code to perform a byte write currently generated by
the compilers and recommended for assembly-lan-
guage programmers looks like Figure 1.

A substantially faster way to do the same thing (given
that the memory can write single bytes) looks like
Figure 2.

This is faster since the initial LOAD is avoided. In addi-
tion, the compiler is more likely to be able to “bury” an
isolated STORE by scheduling than both a LOAD and a
STORE.

Future compiler releases will support byte-write
memories

AMD is enhancing our compiler to optionally generate
the byte writable code shown above. To benefit from
these enhancements, an application’s memory must be
able to support byte writes.

Future revisions of silicon will support byte writes

Future Am29000 CPU products will be designed to di-
rectly support byte writes. One approach would involve
having the processor replicate the byte in question onto
all byte positions. Analogous logic would have the pro-
cessor pick the correct byte during a LOAD. The system
design would have to be able to execute byte writes to
take advantage of the saved cycle.

The AMD Binary Compatibility Standard (BCS)

AMD’s BCS will assume a memory that has byte-write
capability. Therefore, if binary compatibility is important
to your application, your memory will need to support
byte writes.

WHAT MEMORY DESIGNERS MUST DO

The bottom line to support byte-write capability is, “you
have to be able to suppress writes to one or more
bytes.” This has two implications. The first is that some
control signal or signals must be generated and distrib-
uted by byte. The second is that you must choose be-
tween suppressing the write by completely suppressing
the memory cycle or by turning it into some kind of cycle
other than a write.

load 0,17, temp, addr

inbyte tenp, temp, data
store 0,17, temp, addr

;load full word into register,

;set BP to correct address. 0x11l
;in the CNTL field selects SB and
;OPT bits corresponding to byte

;insert byte into proper position
;store full word into memory

; (not byte writable)

Figure 1. Compiler-Generated Byte-Write Code

mtsrimbp,addr
inbyte temp, data,data

store 0,17, temp,addr

;put address into BP
;insert byte into proper data

;jposition and low order byte

;write a single byte. The external

;memory looks at OPT, Ax bits

Figure 2. Streamlined Byte-Write Code

Publication # Rev. Amendment Issue Date

11636 A /0 11/89

© 1989 Advanced Micro Devices, Inc.

3-8

Byte-Writable Memories for Am29000

There are four distinguishable memory configurations,
each of which can be treated in its own way. Whether
the devices have an explicit output enable really deter-
mines one's choices in selecting an alternative cycle
type. If there is not explicit output enable and the /O
pins are common or tied together, one must not allow a
“complete” read or there will be a bus crash.

Static RAMs with explicit output enables

The IDT 32K by 8 CMOS device is an example of a
static RAM with an explicit output enable. In the case of
these devices one can arrange to suppress either the /
Chip Select (the device will not cycle at all) or the /Write
Enable and the /Output Enable (the device will internally
execute a read but will not come out of high-imped-
ance).

Note that one cannot activate both /Chip Select and
/Output Enable to these devices without having them
drive their data pins.

Static RAMs without explicit output enables

The Toshiba 5561 64K by 1 CMOS device is an ex-
ample of a static RAM without explicit output enables. If
they get /Chip Enable, they will either drive their data-
out pins or execute a write, depending on the state of
Wirite Enable.

If their data inputs are connected to their data outputs
(typical when connected to a bi-directional bus), /Chip
Enable must be suppressed.

Video DRAMs (VDRAMSs) with explicit output
enable

VDRAMs allow more choice than any other technology.
/RAS can be suppressed, preventing the cycle alto-
gether. /CAS can be suppressed, turning the write into a
RAS-only refresh cycle. /WE (and /DT-OE) can be sup-
pressed, turning the cycle into an internal read. Of the
three, ! much prefer suppressing /CAS. First, | like the
elegance of generating a RAS-only refresh, and sec-
ond, /CAS is easier to suppress because it is generated
later in the cycle than /RAS or /WE, as shown in the
code below.

The equations in Figure 3 allow for a Byte-Order (little/
big endian)t input that effectively is XORed with the ad-
dress bits. This signal is not a pin on the Am29000. It is
a bit in the configuration register. If this bit always is
programmed to the same value in a given system, one
implements only the appropriate min-terms. If the signal
is dynamic in a system, a copy must be kept up-to-date
in an external register.

DRAMs without explicit output enable

256K or 1 Meg (by one) DRAMSs do not have an explicit
output enable. Rather, if /CAS falls with /RAS low and
/WE high, the device will enable its output buffers. This
means having the option of suppressing the cycle alto-
gether by suppressing /RAS, or turning it into a RAS-
only refresh by suppressing /CAS. 256K or 1 Meg by
four DRAMSs have an explicit output enable. This makes
them similar to the VRAM case.

!Cs31 !OPT1 & !OPTO

!OPT1 & OPTO & !BO &
'OPT1 & OPTO & BO &
OPT1 & !OPTO & !BO &
OPT1 & !OPTO & BO &
fOPT1 & !OPTO

{OPT1 & OPTO & !BO &
'OPT1 & OPTO & BO &
OPT1-& !'OPTO & !'BO &
OPT1 & !OPTO & BO &
fOPT1 & !OPTO

'OPT1 & OPTO & !BO &
'OPT1 & OPTO & BO &
OPT1 & !OPTO & !BO &
OPT1 & !OPTO & BO &
{OPT1 & !OPTO

'OPT1 & OPTO & !BO & Al &
{OPT1 & OPTO & BO & !Al & !AC
OPT1 & !OPTO & !BO & Al & !AQ
OPT1 & !'OPTO & BO & !Al & AO

1Al &
Al &
‘Al &
Al &

A0
A0
tAO
'AO
1Cs23
'Al & AO
Al & !AO
'Al & 'AO
Al & !'AO
1C815
Al &
'Al &
Al &
‘Al &

'AO
A0
‘A0
A0
tCsS07
AQ

MW | WA] e e || e |

AR RO R R R R

&

CAS_TIME /*Word*/
CAS_TIME /*Byte, Big*/
CAS_TIME /*Byte, Little*/
CAS_TIME /*HW, Big*/
CAS_TIME /*HW, Little*/
CAS_TIME /*Word*/
CAS_TIME /*Byte, Big*/
CAS_TIME /*Byte, Little*/
CAS_TIME /*HW, Big*/
CAS_TIME /*HW, Little*/
CAS_TIME /*Word*/
CAS_TIME /*Byte, Big*/
CAS_TIME /*Byte, Little*/
CAS_TIME /*HW, Big*/
CAS_TIME /*HW, Little*/
CAS_TIME /*Wordx/
CAS_TIME /*Byte, Big*/
CAS_TIME /*Byte, Little*/
CAS_TIME /*HW, Big*/
CAS_TIME /*HW, Little*/

Figure 3. /CAS-Suppressing Code
¥ Note that all AMD 29K Family software uses big endian byte ordering only. The little endian min-terms are shown for completeness only. Always

use big endian.

3-9

Am29027 Hardware Interface
Application Note

by Bob Perlman

o

INTRODUCTION

The Am23027™ arithmetic accelerator interfaces simply
and efficiently to the Am29000™ streamlined instruction
processor. The interface is designed to run at speeds in
excess of 25 MHz; so care must be taken when connect-
ing the two parts on a circuit board.

This application note describes the rules to use (and the
hazards to be aware of) when designing a 29K™ system
containing the Am29027.

PROCESSOR/ACCELERATOR
INTERCONNECT

A diagram of an Am29000/Am29027 interconnect is
shown in Figure 1. The interconnect contains the follow-
ing signals: *

Control signals—Eleven signals control the transfer of
data and instructions between the Am23000 and the
Am29027. Eight of these signals, R/W, DREQ, DREQTo,
DREQT1, OPT-OPTo, and BINV, are generated by the
Am28000. These specify the accelerator transaction
requested by the Am29000. The three remaining sig-
nals, CDA, DRDY, and DERR, are generated by the
Am29027. The CDA signal indicates whether the
Am29027 is ready to accept new instructions or oper-
ands. The DRDY and DERR signals indicate that data
requested by the Am29000 is available on the Am29027
output port or that an error has occurred, respectively.

Data signals—The Am29027 R and S data input ports
(Rar—Ro and Sa1-So), instruction port (lai—lo), and data
output port (Fai—Fo) are connected to the Am29000
address (Ao—Aar) and data (Do-Da1) buses. The

lssue Date:

t ion # Rev. A d
12215 A /0 11/89

Am29000 uses its address and data buses to transfer
instructions and operands to the Am29027, and uses its
data port to read results from the Am29027.

Clock—The Am29027 CLK input is connected to the
Am29027 SYSCLK pin. The SYSCLK signal can be
generated in two ways: internal to the Am29000, by
applying a 2X clock signal to the Am29000 INCLK input
(as shownin Figure 1); or externally, by applying a clock
signal to the Am29000 SYSCLK pin.

System reset—The system reset signal is applied to
the Am29000 and Am29027 RESET inputs.

Most interconnect signals are direct connections. The
only exceptions are signals DRDY and DERR, which
must be passed through negative-logic OR gates (i.e.,

through conventional AND gates). These gates form
the logical OR of the DRDY and DERR signals of all
resources on the Am29000 processor channel. The
33kQ resistors shown connected to the CDA, DRDY,
and DERR signals leaving the Am29027 need be pre-
sent only if the system sometimes is operated without
the Am29027.

One interconnection is optional. The Am29027 EXCP
signal, which indicates the presence of an unmasked
arithmetic exception created by an accelerator opera-
tion, can be connected to an Am29000 trap or interrupt
input. This connection is necessary only if the system
designer desires an imprecise processor interrupt in the
presence of an accelerator exception. The Am29027
contains internal mechanisms for recovering from
errors; these mechanisms make the use of EXCP
unnecessary in most systems.

© 1889 Advanced Micro Devices, Inc.

3-10

Am239027 Hardware Interface

Am29000 System RESET Am29027
RESET |« P RESET
RW »l rW
DREQ p{ DREQ
DREQT, p{ DREQT,
DREQT, P{ DREQT,
OPT, p| orT,
OPT, | OPT,
OPT, | OPT,
BINV »| 5
CDA 1« CDA
DRDY [« @ DRV
ST
o oo oo
Interrupt
or Trap g ——— e — e ——————] EXCP
A:n“Ao > s;.—so
0D, [] >l AR, oF |e—
T o o SIAVE |g—
Fy—Fo MSERR |—p»
SYSCLK »l
INCLK

L System Clock

Figure 1. Am29000/Am23027 Hardware Interconnect

12215-01

3-11

29K Family Application Notes

AN ALTERNATE INTERCONNECT

In the interconnect shown in Figure 1, three Am29027
ports are connected to the Am239000 data bus: input
data port R, output data port F, and the instruction port.
This places considerable capacitive loading on the
Am29000 data bus: 12 pF each forinput data port R and
the instruction port, and 20 pF for output port F, for a
total of 44 pF.

The Am29000 data bus can drive an 80-pF load without
derating. In systems where the 44-pF load presented to
the data bus by an Am29027 is excessive, an alternate
interconnect can be used, as shown in Figure 2. In this
configuration, the Am29027 instruction bus is con-
nected to the Am29000 address bus, rather than to the
data bus. This interconnect more evenly distributes
the Am29027 capacitive load between the Am29000
address and data buses. In this configuration the
address bus has a load of 24 pF, the data bus 32 pF.

The alternate interconnect, shown in Figure 2, is soft-
ware compatible with the interconnect of Figure 1. The
only requirement for this compatibility is that, when
transferring an accelerator instruction from the
Am23000 to the Am29027, the instruction must appear
on both the Am29000 address and data buses. For ex-
ample, an Am29000 co-processor store that transfers
an acceleratorinstruction from general-purpose register
gr96 to the-accelerator instruction register must have
the form:

store 1,CP_WRITE_INST,gr96,gr96

Note that gr96 is specified for both the RA and RB
instruction fields, thus ensuring that the accelerator
instruction to be transferred is placed on both the
address bus and the data bus. All 29K accelerator code,
including that produced by the 29K compilers, follows
this convention.

Am28000

Am29027

A:H-AO

P S,-S,

> l:l‘lo

D3t=Deo

P> Ry—R,

Fa—Fo

12215-02

Figure 2. Alternate Am29000/Am29027 Bus Connections

3-12

Am29027 Hardware interface

RULES TO FOLLOW

Even though interconnecting the Am29000 and
Am29027 is straightforward, a few precautions must be
taken to ensure correct accelerator operation:

« All signals except DRDY and DERR must be direct
connects; the signals should not pass through other
devices. For example, if the Am29000 address bus is
buffered before being fed to a memory array, the
Am29027 address bus connections must be made on
the processor side of the buffers.

« Signals DRDY and DERR should pass through one
(and only one) fast AND gate. The system designer
should take care to choose high-speed AND gates; a
74AS08, 74AS11, 74AS20, or 7.5 ns PAL® device will
suffice at 25 MHz.

« Keep signal interconnects short. Heavily loaded
traces may have propagation speeds on the order of
34 ns/foot. All signal traces, and in particular those

with the heaviest loading, should be kept as short as
possible.

* Minimize loading on the Am29000 data and address
buses. These buses are designedto drive 80-pF loads
without AC timing derating, and higher capacitances
with derating. If Am29000 bus capacitances exceed
80 pF, be sure to derate the AC parameters per the
information provided in the Am29000 Streamlined
Instruction Processor Data Sheet, order #09075.

While the alternate bus connections shown in Figure 2
will lower the capacitive loading presented to the
Am29000 data bus, they do present a greater routing
challenge than the connections of Figure 1.

WARNING: Withthe alternate connections of Figure 2,
many signal lines must cross one another either under
or near the Am29027. Before using the alternate
connections, be sure to examine layout and routing
requirements.

3-13

When is Interleaved Memory

with the Am29000 Unnecessary?

Application Note

by Tom Crawford

INTRODUCTION

ABSTRACT

This application note presents a graphic method of find-
ing the maximum acceptable access time of an
Am29000™ memory system that avoids the use of an
interleaved memory.

GENERAL

The advantage of an interleaved memory is that slower
and less expensive memory chips can be used. How-
ever, the use of interleaved memory in systems that
need only a limited amount of memory should be
avoided, since interleaving doubles the minimum mem-
ory size. The need to support two memory banks may
waste a substantial amount of memory space and result
in a higher system cost.

Advanced Micro Devices is developing a complete line
of Am29000 simulators, hardware target execution ve-
hicles, and high-level language development tools for
the Am29000 32-bit Streamlined Instruction Processor.
These products are designed to support end-users who
are building embedded system applications based on
the Am29000 processor. For these users, often there is
no existing operating system or kernelfor their hardware
design.

The design trade-off is component count versus the
required device access speed and density of memory.

By analyzing the required access speed of memory
devices for both interleaved and non-interleaved mem-
ory, it is possible to determine the relative cost and
performance for each approach. The analysis also iden-
tifies the situations in which the system clock rate
dictates the use of interleaved memory because suffi-
ciently fast memory devices, needed to support a single-
bank architecture, are unavailable.

WHEN IS INTERLEAVING
NECESSARY?

Figure 1 shows aroutine method of obtaining dataforan
instruction burst-mode access. (The instruction burst-
mode access considerations discussed in this applica-
tion note also apply to the data burst-mode access
considerations.)

A counter is loaded with the beginning address of the
burst, then incremented to fetch successive words. The
output of the counter goes through an address muilti-
plexer and then to the address inputs of the memory
chips. The data output pins of the memory chips are
connected directly to the Am29000 bus.

Assuming the counter increments on the positive edge
of SYSCLK, it is possible to calculate available time
before the data must be valid. Figure 2 shows the avail-
able time for a Static Column DRAM (tMAX). Any data
buffers between the memory and the Am29000 would
cause additional delays.

SYrCLK
N
Counter :> .
Static
! Column N
MUX :D Decode " v
R DRAMs | Instruction Bus
»
Initial Address
11656A-01
Figure 1. Typical Memory
Issue Date:

L' jon# Rev. A
11656 A /0 11/89

© 1989 Advanced Micro Devices, Inc.

3-14

When is Interleaved Memory with the Am29000 Unnecessary?

L. (Clock Not To Scale
SYSCLK /—x__
tPD_Count

Counter

tPD_MUX
Column
Address

[€— tPD_Wire
A DRAM X

[e—— tMAX Dl
Data

Figure 2. Single-Cycle Burst

11656A-02

In order to guarantee positive margins, the following
inequality must be satisfied:

n * tCLOCK — (tMAX + tPD_COUNT +
tPD_MUX + tSU + tPD_WIRE) >0

Equation 1:

The value nis the number of clock cycles available for
memory. If there is no interleaving or wait states, n = 1.
For two-way interleaving, n = 2, and so on.

The maximum column address delay (static column
decode DRAM) that can be allowed is tMAX. The clock-
to-output delay of the counter is tPD_COUNT. The
value of tPD_MUX is the input-to-output delay of the
multiplexer. The value of tSU is the setup time for
Am29000 instructions or data.

The value of tPD_WIRE is the propagation delay from
the multiplexer output to the furthest memory chip input.
This is the propagation delay per unit length of wire
times the length of the wire. The propagation delay per
unit length can be estimated from the equation:

")
tpd = tpd Y (1+(Cd /Co)

The unloaded propagation delay (tpd) is determined
only by the board material dielectric constant. It is equal
to approximately 1.77 ns/t. The trace capacitance (Co)
is a function of the trace impedance and propagation

delay and is usually taken to be approximately 18.5
pF/t. The distributed capacitance (Cd) resulting from
the memory chips is calculated from the per-device in-
put capacitance and the device spacing; assuming 5 pF
per device and two devices per inch gives: 120 pF/t.

Using these numbers in the above equation yields:

tod' = 1.77 NV (1+(120/185) =4.84 ns/it

Finally, assuming that 32 devices at 24 devices per foot
equals 1.33 ft, then the value for tPD_WIRE is 6.45 ns.
These numbers are sumimarized in Table 1.

Table 1. Initial Numbers

Name Value Obtained From
tPD_COUNT 6.5ns PAL16R8-7

tPD_MUX 8.0 ns 74F253 In to Zn
tPD_WIRE 6.5 ns See discussion above
tS_25 MHz 6.0 ns Am29000 25MHz tSU
tSU20/16 MHz 8.0ns Am29000 20/16 MHz tSU

Figure 3 shows the results of these values in equation 1.
The x-axis is tCLOCK and the y-axis is the allowable
access time. The solid line shows the allowable access
time for n=1 (single-cycle operation [no interleaving]).
The dotted line shows the allowable access time for
n=2.

1 See Appendix A of the Am29000 Memory Design Handbook (order #10623) for additional information on this equation.

3-15

29K Famlly Application Notes

The discontinuity in the n =1 line reflects the difference fora 16-MHz Am29000 from “fast” DRAMs with no inter-

in tSU between 25 MHz and 20/16 MHz. The horizontal leaving. However, one cannot build a single-cycle burst

lines show the access times for -70, =80, and -100 memory for a 20- or 25-MHz system without interleaving

Toshiba 1M-by-1 DRAMSs. The vertical lines show the with any available DRAM.

minimum tCLOCK times for 25-, 20-, and 16-MHz) . . S . .

Am29000s. The hatched area indicates where opera- Finally, using two-way mtefleavmg, it is possible to build

tion is possible without interleaving. a memory that supports single-cycle bursts at a clock
rate of 25 MHz or below, from memories with a column
address access time of less than 50 ns.

INITIAL RESULTS .

Frominspection of Figure 3, it might be concluded that it
is almost possible to build a single-cycle burst memory

4
/, ﬂ n=2
/ (two-way
55 / interleave)
/
/
/
/
50 / -100 RAM
4'7
/
’/
45 /
/
40 -80 RAM
Access Time 35 -70 RAM
30
25
n=1{no
20 interleaving)
25|MHz
20|MHz 14 MHz
15 /
35 40 45 50 55 60 65 70
tClock 11656A-03

Figure 3. Initial Results

3-16

When is Interleaved Memory with the Am29000 Unnecessary?

ARE IMPROVEMENTS POSSIBLE?

Could a system be built with single-cycle bursts without
interleaving to run at 20 MHz? To answer this question
graphically, move the heavy line in Figure 3 upwards
(extending the hatched area to the left). This is done by
reducing or eliminating the numbers, other than tMAX,
in the inequality. These are examined below, one at a
time.

tPD_COUNT

The 6.5 ns value is based on using a =7 PAL®. This is
already faster than any 74F, 74AS, or 74ACT counter
(or flip-tlop, for that matter) in any data book this author
has examined.

It is certainly possible to “play games” with the clock
scheme. SYSCLK on the Am29000 could be driven a
little later than the clock to the counter. Data hold time is
unlikely to ever be a problem. But the uncertainties in
propagation delay through a CMOS clock driver are
likely to cancel a lot of what could be gained. Further-
more, delaying the clock to the Am239000 delays the
address on the initial cycle.

tPD_MUX

The 8.0 ns value is based on using a 74F253. A 1/2 ns
reduction could be realized by building a multiplexer
with a 16L8-7 (7.5 ns). A better way is to completely
eliminate the multiplexer delay by building a three-state
bus. Figure 4 shows one way to do this.

The counter is implemented with a 16R8-7 (actually,
more than one is probably required). An 8-bit counter is
required and 2 additional bits of address must be main-
tained. Since the clock is not gated, some additional
inputs are required to indicate whether the counter
should load, hold, or count.

Just before RAS falls, the three-state buffer is enabled.
When the Column Address is required, the three-state
bufters of the PAL device are enabled and the counteris
driven into the array.

In this configuration, a worst-case design requires that
the extraordinary loading on the PAL device be consid-
ered. The total capacitance connected to the outputs
of the PAL devices is greater than the standard load.
However, the capacitances are distributed rather than
lumped. The driver never sees the entire load, so the
wire delay allowance is sufficient.

tPD WIRE

The wire delay can be reduced only by reducing the
wiring length. Instead of connecting all the memory
chips in serial, the board can be designed so that there
are two sets of chips connected in parallel. This halves
the 1.33-foot length previously calculated and reduces
the wire delay to 3.22 ns.

To reduce tSU, a fast Am29000 at a reduced clock rate
can be used. For example, a 30-MHz Am29000 has a
tSU of only 5 ns; this is 3 ns better than a 16-MHz part,
but it is expensive.

Another approach is to insert a pipeline register with a
very low setup time. For example, the data setup time of
a 74F374 is only 2 ns. Of course, including a pipeline
register has adverse consequences. The first access of
a burst-mode access will then be one SYSCLK cycle
longerthan would otherwise be required. In addition, the
control logic is made slightly more complicated. A posi-
tive side effect is that three-state buffers are included in
the register packages. Figure 5 shows registers in the
instruction path.

Buffer

Counter

—
—

Array

11656A-04

Figure 4. Multiplexer Avoidance

317

29K Family Application Notes

Now, assuming the implementation of all the changes
described above, the fixed numbers become the values

shown in Table 2.

Table 2. The Improved Numbers

If this is plotted as a function of cycle time, the line has
moved up a considerable amount as compared to
Figure 3. This indicates that it is possible to build a
20-MHz system with the fastest available DRAMSs. It
also indicates that it is possible to build a 16-MHz
system with 100-ns DRAMs.

Name Value Obtained From
tPD COUNT 6.5ns PAL16R8-7
tPD MUX 0.0 ns Three-state multiplexor
tPD_WIRE 3.2ns Length
tsu 20ns 74F374 data sheet

Address

Bus

Am29000
Instruction Bus
SYSCLK

Pipeline Register

Instruction

11656A-05

Figure 5. Pipeline Access

3-18

When is Interleaved Memory with the Am29000 Unnecessary?

CONCLUSION

By using the values for proposed memory architectures
into Equation 1, two to four specific values of tMAX can
be determined for appropriate values of tCLOCK. With
this information it is easy to draw graphs like those of
Figures 3and 6. Such graphs provide a simple display of
the available trade-offs between system clock rate,
memory architecture, and the memory device access
speed. Multiplying the memory device count for each

configuration by the access-speed driven memory
device costs of the configuration yields an approximate
cost for each memory system approach.

Such an analysis may point out significant cost
reductions by quickly identitying those situations in
which a non-interleaved memory architecture and
reduced clock rate can support the required system
performance.

55

50

45

40

Access Time 35

30

25

20

15 24 MHz 200MHz

16|MHz

35 40 45 50

55 60 65 70

tClock

11656A-06

Figure 6. Final Results

3-19

Implementation of an Am29000 Stack Cache

Application Note

by Phil Bunce and Erin Farquhar

ol

INTRODUCTION

This application note will describe the basic mecha-
nisms of the AMD Am239000's cache of the run-time
stack. The stack cache is animportant performance fea-
ture, because it permits a procedure’s entire context to
be resident in on-chip registers, thus eliminating, or at
least reducing, the need for memory accesses.

Our discussion is centered around a single example
program, which is shown in its entirety in Appendix B.

- Before discussing this example, we provide a brief over-
view of the basic operation of the stack cache.

OVERVIEW

Procedures executing on the Am29000 make use of a
run-time stack, which consists of consecutive, overlap-
ping structures called activation records. An activation
record contains the dynamically allocated information
specific to a particular activation of a procedure. Each
time a procedure is called, a new activation record is
allocated on the stack; when the procedure has finished
executing, its activation record is deallocated from the
stack.

Compilers and assemblers for the Am29000 use two
run-time stacks for activation records: the register stack
and the memory stack. A procedure’s activation record
may be divided between these stacks. Both stacks grow
toward lower addresses in memory, and items on the
stacks are referenced as positive offsets from RSP
(Register Stack Pointer) and MSP (Memory Register
Stack Pointer). Both pointers are realized using internal
Am298000 global registers. The globa! and local regis-
ters are both subsets of the general-purpose registers.

The register stack contains parameters passed to the
procedure, the local scalar variables used by the proce-
dure, return linkage information, and the arguments that
the procedure will pass to procedures that it in turn calls.

Publication# Rev. Amendment Issue Date:
rtaosa A0 11/89 |

The register stack is cached in the local registers, /r0-
Ir127, as explained below.

The memory stack is used for local structured data, for
example, arrays and records. It also is used for addi-
tional scalar data when needed. Whenthe scalar portion
of the activation record for a particular procedure
requires more than 128 words of local-register storage,
the excess may be kept in the procedure's activation
record in the memory stack.

Both stacks are aligned on a double-word (64-bit)
boundary. Procedures are required to maintain this
alignment by adjusting the size of the register stack
frame allocated at procedure entry to be a multiple of
eight bytes.

STACK CACHE

The 128 local registers are used to cache locations in
the register stack, such that when a procedure is active,
its entire register-stack activation record is mapped to
the local registers.

Each word location in the register stack is mapped to a
single localregister. The register number corresponding
to a location in the register stack is given by bits 8-2 of
the 32-bit memory address of that locationin the register
stack. Because there are 128 local registers, quantities
whose addresses differ by 512 (all addresses are byte
addresses) are mapped to the same local register and
cannot be in the cache at the same time.

Figure 1 shows a snapshot of the register stack in mem-
ory after some calls have been made, and the mapping
of the register stack to the local registers. As shown in
the figure, Global Register 1, called the Register Stack
Pointer (RSP), contains the 32-bit virtual address of the
top of the register stack in memory. This virtual address
on the Am29000 is the lowest-addressed valid stack
location in the current activation record.

© 1989 Advanced Micro Devices, Inc.

3-20

Implementation of an Am29000 Stack Cache

Start of
Registers Stack Register Stack -
Absolute Spilled
Register RFB Activation
Number . e Records 4EAS
R170 LR213 Used 3
. Locations
: A hY LR1 (FP)—] ADFE
R215 LR2 ACurrent
ctivation
Re14 LAl Record > 512
R213 LRO — GR1 (RSP) e Bytes
R212 LR127 4D54
[]
e ¥ > Free
* [RAB"‘M Locations
R171 LR214 | ____._.. .. scns?

11031A-01

Figure 1. Mapping of Register Stack to Stack Cache

Local registers are addressed as positive word offsets
from RSP, as in Figure 2. Specifically, when a local reg-
ister operand is specified in an instruction (that is, the
most significant bit of the register number is set), the
seven least significant bits are added to bits 8-2 of RSP
and the result is truncated to seven bits. For example, if
RSP has the value 0, as shown in Figure 2, then Ir0 is
absolute register 128 (the first local register), and Ir1 is
absolute register 129 (the second local register); if RSP
has the value four, then /r0is absolute register 129 and
Ir1 is absolute register 130.

Referring again to Figure 1, the current activation record
is delimited by the Frame Pointer (FP), which by soft-

ware convention uses Local Register 1, and RSP. FP
points to the “top” of the previous activation record, that
is, to the lowest-addressed word location above the cur-
rent activation record. When a procedure is active, this
entire area must be cached in local registers.

The register stack between FP and RFB (Register Free
Bound) contains the saved activation records of previ-
ously called procedures, which are also currently
mapped to the local-register cache. RFB, by convention
Global Register 127, is set to point to the lowest-
addressed word in the register stack that is not mapped
to the local registers.

31 e 15 87 6 543210
mr

GR1 (RSP) 9 01 0 1.0 1lo 10 1o 1 00
LA g

0 ABS REG #
0xD5 =213

x80
0 11031A-02

Figure 2. Local Register Addressing

3-21

29K Family Application Notes

The register stack between RSP and RAB (Register
Allocate Bound) represents stack locations (and corre-
sponding local registers) that are currently “unused” and
thus available for allocation when another procedure is
called. RAB (by convention Global Register 126) is set
to point to the lowest-addressed word in the register
stack that is currently mapped to a local register.

When aprocedure is called, RSP is decremented by the
number of words required to accommodate the called
procedure’s activation record. When RSP is decre-

" mented beyond the location pointed to by RAB and thus
beyond the available local registers, more local regis-
ters will be required for the activation record, and some
locations in the stack cache must be written to memory
(or “spilled”) before the new activation record is created.
This condition is called overflow. Note that in Figure 1,
locations between RFB and the Start of Stack are saved
activation records that have been previously spilled to
memory.

On return from a procedure, the activation record is

de-allocated by incrementing RSP by the same amount .

it was decremented when the procedure was called. If
the caller's FP (which points to highest location in the
caller’s activation record) is greater than RFB (which
points to the first unmapped register stack location
above the activation record), the contents of that portion
of the register stack will have to be loaded into the local
registers to accommodate the caller’s activation record.
This condition is called underflow.

Overflow and undertlow conditions are detected by
instruction sequences in the prologue and epilogue,
which are the instruction sequences that execute as a
result of a procedure call and procedure return, respec-
tively, and cause a transfer of control to the appropriate
trap handler routine. In the case of an overflow, the trap
handler moves the contents of the required number of
local registers to the register stack in memory and
adjusts the value in RAB and RFB. In the case of an
underflow, the trap handlerloads the required number of
register stack locations into the local registers and
adjusts the value in RAB and RFB.

3-22

Implementation of an Am29000 Stack Cache

OVERVIEW OF EXAMPLE PROGRAM

Our example program consists of the fourtext files listed
below.

regdcl.h: Register name declarations

macros.h: Macro definitions for prologue and epi-
logue

CPU Initialization
Overflow and Undertiow trap handler rou-
tines

start.s:

example.s: Two procedures main and recurse

Appendix A contains partial listings from the example
program that are described individually in the sub-sec-
tions below.

Appendix B contains the source for the entire example
program which includes all of the above files.

INCLUDE FILES

There are two include files, regdel.h and macros.h.
Note that regdcl.h must be included before macros.h,
because macros.h uses definitions from regdcl.h.

Inregdcl.h (see Appendix A—1, Register Declarations),
we assign the value 80 as the base of registers to be
used as temporaries by system software. Additional
temporaries will be addressed as offsets from it. These
registers will be used for work space in the start code
and the two trap handler routines.

.equ SYS_TMP, 80 ;system temp registers

We also assign symbolic names to global and local reg-
isters, in accordance with the software calling conven-
tions of the Am29000.

ilocal reg stack pointer
;memory stack pointer
;jregister allocate bound
;register free bound
;frame pointer

;return address

.reg rsp,grl
.reg msp,grl2s
.reqg rab,grl2é6
.reqg rfb,grl27
.reg fp,1rl
.reg raddr,lx0

The overflow and underflow trap vectors, V_SPILL and .

V_FILL, are setto the constant values 64 and 65. These
are the vector numbers for the trap handlers chosen for
this example.

.equ V_SPILL, 64
.equ V_FILL, 65

The second include file in our example program,
macro.h, contains the macro definitions for PRO-

LOGUE and EPILOGUE. These macros are discussed
in the Prologue and Epilogue sections.

START CODE

The module start.s contains code that sets up the exe-
cution environment for our example program. The initial
portion of the start code is shownin Appendix A-2, Start
Code. The overflow and underflow trap handlers, also in
start.s, will be discussed later.

We set the beginning of the stack (its highest address in
memory) at 0x5000. The “& ~7” in the expression en-
sures that the value is a multiple of eight, with rounding
downward if necessary.

.equ TOP_STK, (0x5000 & ~7) ;create
' ;double word
;alignment

The two temporary registers, tmp1 and tmp2, are
assigned values that are offsets of SYS_TMP, which
means that tmp? is Global Register 80, and tmp2 is
Global Register 81.

.reg tmﬁl,
.reg tmp2,

%% (SYS_TMP + 0)
£% (SYS_TMP + 1)

Then we initialize the four pointers that define the stack
environment. i

const rsp, (TOP_STK-8) ;set stack
;pointer

add rsp,rsp, 0 ;update rsp

const rab, (TOP_STK-512) ;set register
;jalloc bound

const f£p,TOP_STK ;set frame ptr

const rfb, TOP_STK iset reg free

;bound

Figure 3 shows the initialized stack. Because there has
been no spilling of local registers to the stack in memory,
RFB points to the top of the stack. RAB is, by definition,
512 bytes less than RFB. In the initial activation record,
defined by FP and RSP, FP points to the top of the stack
{(because there has been no prior context) and RSP is
set to a value eight bytes less than FP to aliow for the
current FP and raddr when a new activation record
is created. Note that the setting of RSP must pre-
cede the setting of FP by at least two instructions
because of the delayed effect of modifying RSP, and
that an explicit arithmetic or logical instruction must
be used to update RSP.

The CPS (Current Processor Status Register) is initial-
ized with the value 0x0072. Assuming the prior state of

3-23

29K Family Application Notes

this register was Reset mode (shown in Figure 4), we
have in effect cleared FZ, DA, and RE, and left the other
bits unchanged. The FZ (Freeze) bit is cleared because
the processor is unfrozen for normal operation. (For a
description of the Freeze bit, refer to the section called
“Special-Purpose Registers,” in the Am29000 User's
Manual). We clear the DA (Disable All Interrupts and
Traps) bit to enable all traps. The RE (ROM Enable) bit
is cleared because this example assumes we are exe-
cuting from RAM. ‘

mtsrim cps,0x72 ; PD, PI, SM, DI

PD, PI, SM, and DI remain set, meaning that address
translation is disabled (PD and Pl), supervisor mode is
selected (SM), and external interrupts are disabled
(D). Supervisor mode is selected because some of the
instructions in our example program are privileged.

We setthe Vector Fetchbit inthe Configuration Register
to select a vector table configuration for the Vector Area.
mtsrim cfg,0x10 ; VF

The VAB (Vector Area Base Address) register, which

specifies the beginning address of the vector table in
memory, is set to zero.

mtsrim wvab,0

Next we initialize the vector table with the address of
the Overflow trap handler routine, called SpillHandler.
First we load the address of the SpillHandler into a tem-
porary register, using two CONST instructions for the
case when SpillHandler is not in the first 64K-bytes of
memory.

Address translation is disabled because this example is const tmpl, SpillHandler
designed for systems not using the TLB. External inter- consth tmpl,SpillHandler
rupts are disabled because we have no interrupting
devices and want to eliminate any spurious interrupt
requests.
o)
f
p . 8
Bytes
rsp ——>» raddr
512
Bytes
~r -~
~ o~
rab ~——p
J
11031A-03
Figure 3. Initialized Stack
31 15 0
Lol ol ol o] ol ol ol ol o] o[o[ol of ol o] o] o} of o} ol of 1 o] 4| o] 1] 1] 1} o o] 1] 1]
[\ J w_‘
~ IRERERERRRARENY
Reserved
CA|TE|TU| LK|WM| PI IM DA
. TP FZ RE PD SM DI
11031A-04

Figure 4. Current Processor Status Register in Reset Mode

Because each entry inthe vector table is four bytes, we
compute the address in the vector table by multiplying

the vector number V_SPILL (64) by four (a shift left by
two).

3-24

Implementation of an Am29000 Stack Cache

const tmp2,V_SPILL
sll tmp2,tmp2,2 ;compute vector

;address

Thenwe store the address of SpillHandler (in tmp1) into
the vector table address we just computed.

store 0,0,tmpl,tmp2 ; write spill

; vector
Initializing the vector table with the address of the under-
flow trap handler routine (vector number V_FILL) is
done the same way:

tmpl, FillHandler

const

consth tmpl,FillHandler

const tmp2,V_FILL

sll tmp2, tmp2, 2 ; compute vect
; addr

store 0,0,tmpl, tmp2 ; write fill
; vector

The procedure startthen calls main, passing it the return

address (Ir0). A NOP follows the call because the .

Am29000 always executes one instructionbeyond acall
instruction before the call is taken.

call raddr,main

nop

halt ;halt after successful
;completion

EXAMPLE FUNCTIONS MAIN() AND RECURSE()

After the start code has executed, control is passed to
the procedure main(). The purpose of main() is to call
the procedure recurse(), providing it with an initial set of
values. Recurse() calls itself a total of 86 times, then
returns to itself 86 times before returning to main(). An
overflow condition occurs with the 21st call, and each
subsequent call causes an additional spill of local regis-
ters to memory. When the program returns, the 22nd
return causes an underflow condition, and each subse-
quent return causes an additional fill from memory to the
local registers.

The basic operation of main() and recurse() is summa-
rized by the following C program:

main ()
{
recurse(l,42);
}
recurse (n,m)
int n,m;
{
int i,3;
if (n > 85) return;
i=n+1;
recurse (i, m);

}

The code for main() and recurse() is shown in Appendix
A-3 and A—4, Code for Main() and Code for Recurse(),
respectively.

3-25

29K Family Application Notes

PROLOGUE

As with all Am29000 procedures, main() begins with a
prologue. The macro definition of PROLOGUE and
the expansion of PROLOGUE for main() are shown in
Appendix A-5 and A-6, Prologue Macro and Prologue
Expansion for Main(), respectively.

The purpose of PROLOGUE is to allocate an activation
record and check for overflow before the body of the pro-
cedure is executed. It is invoked with three parameters:
the number of arguments passed (INCNT), the number
of registers required for the procedure’s local variables
(LOCCNT), and the maximum number of arguments
thatthe procedure may passto any one functionitinturn
calls (OUTCNT).

.macro PROLOGUE, INCNT, LOCCNT, OUTCNT

The values of ALLOC_CNT and SIZE_CNT are com-
puted from the parameters.

.set ALLOC_CNT, ((2+OUTCNT+LOCCNT+1)&~1)
.set SIZE_CNT, (ALLOC_CNT+2+INCNT)

ALLOC_CNT is the amount of space on the stack that
must be newly allocated by the Prologue for the proce-
dure’s activation record. SIZE_A is the amount of space
that must be accessible by the procedure, that is, the
size of its activation record.

The expression for ALLOC_CNT does not use INCNT,
because incoming parameters were already allocated
space on the stack as the outgoing parameters (OUT-
CNT) of the calling procedure. “2" is the number of

words needed for the called procedure’s FP and return
address when it calls another procedure. ANDing the
expression with the complement of 1 (& ~1) maintains
double-word alignment on the stack by setting the least
significant bit to zero. The “+1” ensures that the amount
is rounded up, not down.

The expression for SIZE_CNT includes INCNT and two
additional words for Ir0 (return address) and FP of the
caller.

The three macro variables, IN_PRM, LOC_REG, and
OUT_PRM are used to establish offsets into the stack
for input, local, and output arguments. These macro
variables are set only if the corresponding value of the
parameter is not equal to zero.

.if (INCNT)

.set IN_PRM, (2 + ALLOC_CNT + 0x80)
.endif
.1f (LOCCNT)

.set LOC_REG, (2 + OUTCNT + 0x80)
.endif
.if (OUTCNT)

.set OUT_PRM, (2 + 0x80)
.endif

Inthe above, a macro variable is set equal to an expres-
sion that is evaluated to a local register number when
the program s assembled. The macro variable canthen
be used as the base register for offset addressing of
parameters of that type (as shown in Figure 5). The
“0x80" provides the 125-word offset required for a local
register access.

IN_PRM+1

IN_PRM —P

IN_PRM+0

} IN_CNT

old fp

old raddr

LOC_REG+1

LOG_REG —

LOC_REG+0

LOC_CNT

OUT_PRM4+1

OUT_PRM —®

OUT_PRM+0

OUT_CNT

RSP —»

raddr

11031A-05

Figure 5. Prologue Parameters

3-26

Implementation of an Am29000 Stack Cache

The body of the PROLOGUE macro has three instruc-
tions:

sub rsp, rsp, (ALLOC_CNT << 2)
asgeu V_SPILL, rsp, rab
add fp, rsp, (SIZE_CNT << 2)

Inthe above instructions, ALLOC_CNT and SIZE_CNT
are shifted left by two to convert them from word quan-
tities to the required byte quantities (the stack regis-
ters, whose contents will be modified, contain byte
addresses).

The first instruction allocates an activation record by
decrementing RSP by the amount ALLOC_CNT.

The second instruction asserts that RSP of the new acti-
vation record is greater than or equal to RAB. If this is
not the case, (that is, RSP has been decremented
beyond RAB), an overflow trap occurs, and there is a
transfer of control to the trap handler routine,
SpillHandler, pointed to by the vector V_SPILL. The trap
handler will move (spill) the contents of the required
number of local registers to the register stack in memory
and adjust RFBand RAB, as described in the Overflow
Trap Handler section.

The third instruction sets FP to point to the location just
above the new activation record, so it can be used
for underflow checking in the EPILOGUE macro of a
procedure thatis called by this procedure (see Epilogue
section).

After the prologue, main() calls recurse(). The expan-
sion of PROLOGUE for recurse() is shown in Appendix
A-7, Prologue Expansion for Recurse().

OVERFLOW TRAP HANDLER

- On the 21st call to itself, recurse() causes an overflow
trap. The code that services this trap is shown in Appen-
dix A-8, Overflow Trap Handler, and is described below.

In the following discussion of SpillHandler, we assume
the reader is familiar with the processor’s response to
traps. If not, referto the section called Interrupt and Trap
Handling in the Am29000 User's Manual.

The first three .reg directives assign symbolic names
to the three temporary system registers used by
SpillHandler.

. reg R_Cnt, %% (SYS_TMP+0) ;temp for

;count

.reg R_TmpPCO, $% (SYS_TMP+1) ;temp for
;PCO

.reg R _TmpPCl, %% (SYS_TMP+2) ;temp for

;PC1

The old PCs are saved intwo of the temporary registers
just declared.

mfsr
mfsr

R_TmpPCO, pcO
R_TmpPCl, pcl

;save the PCs

The CPS (Current Processor Status Register) is set to
the value 0x73. This clears the FZ (Freeze) bit, which
was set by hardware when the trap was taken (see
Figure 6), so that the trap handler can execute a Store
Multiple instruction. (Note that the PCs must be saved
before the FZ bit is cleared.) The DA (Disable All Inter-
rupts and Traps) bit remains set, which prevents the
processor from taking any traps except the *WARN,
Instruction Access Exception, Data Access Exception,
and Coprocessor Exception traps. PD, Pl, SM, and DI
also remain set.

mtsrim cps, 0x73 ; PD, PI, SM, DI, DA
Now we can use the Store Multiple instruction to store
the required number of local registers into the register
stack in memory. This instruction requires a source, a
destination, and a count.

31 15

0

0 010§]010jo0io0jlojo 1 0

CA| TE|TU | LK

1j1i1lojoj 111

T

WM| PI M DA
PD SM DI

0
TP FZ RE

11031A-06

Figure 6. Current Processor Status Register After an Interrupt or Trap

3-27

29K Family Application Notes

As explained earlier (and shown in Figure 1), the area
between RSP and RAB represents the local regis-
. ters available for allocation when a procedure is called.
Because there has been an overflow and RSP hasbeen
decremented beyond RAB, we can compute the size of
the required spilt (the count for the Store Multiple) by
subtracting RSP from RAB.
sub R_Cnt,rab, rsp ;R _Cnt = number of
_sbytes to spill

Then we use R_Cnt to adjust RFB, so that it correctly
reflects the area inthe register stack that will be mapped
to the local registers.
sub rfb,rfb,R Cnt ;move down the
. sframe bound

Before using the Load Multiple instruction, R_Cnt must
be written as a word amount into the CR field of the
Channel Control register, which is used by the proces-
sor to determine the number of loads to memory. So we
convert R_Cnt from a byte to a word amount using the
Shift Right Logical instruction.

;R_Cnt = count of
;words to spill

srl R_Cnt,R _Cnt,2

Because the CR field is zero;based, we subtract one
from R_Cnt

sub R Cnt,R Cnt, 1 ;correct for storem
and then use the Move to Special Register instruction
to write it to the CR field. ’
mtsr

cr,R Cnt ;set up count for

;storem

The local registers that have to be spilled are those cor-
responding to register-stack locations between RSP
and RAB, because they are the local registers that must
be occupied by the new activation record. So the in-
struction source will be /r0, which corresponds to RSP.
The instruction’s destination will be the register-stack
location pointed to by the previously modified RFB, be-
cause that is the register-stack location at the correct
512-byte offset from RSP.

storem 0, 0, 1r0, rfb ;spill from the
;allocated area

Then we set RAB to point to the top of stack, because
that is now the lowest stack address currently cached in
local registers.

add rab, rsp, 0 ;move down the
;jallocate bound

We set CPS to the value 0x473. This sets the FZ bit,
which must be set before we restore PC0 and PC1. PD,
PI, SM, DI, and DA remain set.

mtsrim cps,0x473 ;FZ, PD, PI, SM,
;DI, DA

Then the two PCs are restored and the IRET (Interrupt
Return) instruction restores the previous contents of
CPS fromthe Old Processor Status Register, unfreezes
the processor, and begins fetching from PCO and PCH1.

mtsr pc0, R_TmpPCO ;restore the PCs
mtsr pcl, R _TmpPCl
iret

3-28

Implementation of an Am29000 Stack Cache

EPILOGUE

When recurse has called itself 86 times, it returns and
executes an Epilogue. The EPILOGUE macro is shown
in Appendix A-9, EPILOGUE Macro.

EPILOGUE's first instruction de-allocates the proce-
dure’s activation record by adding ALLOC_CNT to RSP.
This is followed by a NOP, because a change in the
value of RSP must be separated by at least one cycle
from an instruction that references a local register (in
this case, the instruction JMPI, whose operand raddris
Ir0).

add rsp, rsp, (ALLOC_CNT << 2)
nop
Jmpi raddr

Before the Jump Indirect instruction finishes executing,
the next instruction, ASLEU, is executed. This instruc-
tion asserts that the caller's FP, now restored because
the caller's RSP has beenrestored, is less thanorequat
to RFB. If the assertion is false (which means that FP is
pointing to an unmapped, previously spilled register-
stack location), an underflow trap occurs, and control is
transferred to the trap handler routine, FillHandler,
pointed to by the vector V_FILL. The trap handler will
move the contents of locations in the register stack
to the local registers and adjust RAB and RFB, as
described in the Underflow Trap Handler section.
asleu V_FILL, fp, rfb
At the end of the Epilogue, the parameters are setto an
illegal value. This ensures that if they are used again
before they are explicitly set, an assembly-time error will
be reported.
.set IN_PRM, (1024) ;illegal, to
;cause
;err on ref
;illegal, to
scause
;err on ref
;illegal, to
;cause
;err on ref
.set ALLOC_CNT, (1024) ;illegal, to
;cause

.set LOC_REG, (1024)

.set OUT_PRM, (1024)

;err on ref

The expansion of EPILOGUE for recurse() is shown in
Appendix A-10, Epilogue Expansion for Recurse().

UNDERFLOW TRAP HANDLER

On the 22nd return of recurse() to itself, an underflow
trap occurs. The code that services this trap is shown in
Appendix A-11, Undertlow Trap Handler, and is dis-
cussed below.

The two old PCs are saved in temporary registers
declared in the SpillHandler routine.

mfsr
mfsr

R_TmpPCO, pcO
R _TmpPCl, pcl

;save the PCs

The CPS (Current Processor Status Register) is set to
the value 0x73. This clears the FZ bit, so that the trap
handler can execute a Load Multiple instruction. The DA
bit remains set, which prevents the processor from tak-
ing any traps except the *WARN, Instruction Access
Exception, Data Access Exception, and Coprocessor
Exception traps. PD, PI, SM, and DI also remain set.

mtsrim cps, 0x73 ;PD, PI, SM, DI, DA

We will use the Load Multiple instruction to load loca-
tions in the register stack into the local registers. The
Load Multiple instruction requires a source, a destina-
tion, and a count.

Clearly, the source for the Load Multiple instruction is
the location pointed to by RFB, since RFB points to the
first location in the register stack that was previously
spilled from the local registers.

The destination of the Load Multiple instruction will, of
course, be the local register corresponding to RFB.
Local registers may be specified as instruction oper-
ands in one of two ways: using a local register number
(inthe range from 0 to 127), or using the absolute regis-
ter number (in the range 126 to 255) in an indirect
Pointer Register. With the first method, the localregister
number is computed as a positive word offset of RSP.
This option is not available to us because the trap han-
dler has no way of knowing the offset from RSP (that is,
the local register number) corresponding to RFB.

So we will convert the address in RFB to an absolute
local register number, put this number in Indirect Pointer
A (because the destination operand uses Indirect
Pointer A), and then specify Global Register 0 (which
indicates an indirect pointer access) as the destination
register in the Load Multiple instruction.

To convert the address in RFB to an absolute local reg-
ister number, we OR it with 512. This sets bit 9, which

3-29

29K Family Application Notes

selects a local register; bits 2-8 give the absolute local
register number.
const R_Cnt,512 ;make local reg
;ip

or R Cnt,R _Cnt,rfb ;from rfb
Thenwe usethe Move To Special Register instructionto
put this value in the Indirect Pointer A Register.

mtsx ipé, R _Cnt ;set up indirect
;ptr

;for loadm

Recalling that the underflow trap was signaled because
FP is pointing to an unmapped and previously spilled
register stack location at a higher memory address than
RFB, we can compute the number of local registers to fill
by subtracting RFB from FP.
sub R Cnt, fp, rfb ;R Cnt = # of

;bytes to fill

We use the just-computed value to adjust RAB, so that
it correctly points to the new lower bound of the regis-
ter stack mapped to local registers. We perform this
operation now because it requires a byte amount, and
R_Cnt will be converted to a word amount in the next
instruction.

add rab, rab, R Cnt ;move up the
;allocate bound

Before use of the Load Multiple instruction, the count
must be written as a word amount into the CR field
of the Channel Control Register. Hence, we convert
R_Cnt from a byte to a word amount using the Shift
Right instruction.

srl R Cnt,R Cnt,2 ;R Cnt = number of
;words to f£ill

Because the CR field is zero-based, we subtract one
from R_Cnt

sub R Cnt, R Cnt,1 ;correct for loadm
and then use the Move to Special Register instruction to
write it to the CR field.

mtsr

cr, R Cnt ;set up count for

;loadm

Now we use the Load Multiple instruction to transfer the
contents of the register stack in memory to the local reg-
isters, specifying RFB as the address in the register
stack from which to load, and grO(Indirect Pointer A) as
the local register number at which to begin the fill.
loadm 0,0,gr0, rfb ;£i11 area freed
After the registers have been filled, we update RFB so
that it correctly points to the upper bound of the register
stack that is currently cached.

add rfb, fp, 0 ;move up frame bound
We set CPS to the value 0x473. This sets the FZ bit,
which must be set before we restore PC0 and PC1. PD,
Pl, SM, DI, and DA remain set.

mtsrim cps,0x473 ;F2, PD, PI, SM,
;DI, DA

Then the two PCs are restored and the IRET (Interrupt
Return) instruction restores the previous contents of
CPS, unfreezes the processor; and begins fetching from
PCO0 and PC1.

mtsr pc0,R_TmpPCO ;restore the PCs
mtsr pcl, R _TmpPCl
iret

3-30

Implementation of an Am29000 Stack Cache

APPENDIX A:
PARTIAL LISTINGS EXTRACTED FROM EXAMPLE PROGRAM

A-1. REGISTER DECLARATIONS

; Global registers

.equ SYS_TMP, 80 ; system temp registers

.reg rsp, grl ; local register stack pointer
.reg msp, grl2s ; memory stack pointer

.reg rab, grl2é6 ; register allocate bound

.reg rfb, grl27 ; register free bound

; Local compiler registers
; (only valid if frame has been established)

.reg fp, 1rl ; frame pointer

.reg raddr, 1lx0 ; return address
; Vectors

.equ V_SPILL, 64

.equ V_FILL, 65

3-31

29K Family Application Notes

A-2. START CODE

.include
.equ
.text

start:

.reg
.reg
const
add
const
const
const

; set correct mode
mtsrim
mtsrim
mtsrim

; connect up spill
const
consth
const
sll
store

“regdcl.h”
TOP_STK, (0x5000 & ~7)
.global start

tmpl, %% (SYS_TMP + 0)
tmp2, %%(SYS_TMP + 1)
rsp, (TOP_STK-8)
rsp,rsp, 0

rab, (TOP_STK-512)

fp, TOP_STK

rfb, TOP_STK

cps, 0x72
cfg, 0x10
vab, 0

handler

tmpl, SpillHandler
tmpl, SpillHandler
tmp2,V_SPILL
tmp2, tmp2, 2
0,0,tmpl, tmp2

; connect up fill handler

const
consth
const
sll
store

tmpl,FillHandler
tmpl,FillHandler
tmp2,V_FILL
tmp2, tmp2,2
0,0,tmpl, tmp2

; call main program

call
nop
halt

raddr,main

create double word aligned value

set stack ptr

set shadow rsp

set reg alloc bound
set frame ptr

set reg free bound

pD, PI, SM, DI
VF

compute vect addr
write spill vector

compute vect addr
write £ill vector

halt after successful completion

3-32

Implementation of an Am29000 Stack Cache

A-3. CODE FOR MAIN()

.include “regdcl.h”
.include “macros.h”
.global main

; main()

R

; recurse(l,42);
;)

main:
PROLOGUE 0,0,2

; name outgoing args

.reg M out_n, %%(OUT_PRM + 0)
.reg M out_m, %%(OUT_PRM + 1)

; recurse(1l,42)

const M out_m, 42
call ' raddr, recurse
const M out_n, 1
EPILOGUE

;

invoke macro 0 ic, 0 loc, 2 og

3-33

29K Family Application Notes

A-4. CODE FOR RECURSE()

.global

; recurse(n,m)
|

; int i,3;

recurse

; if (n > B85) return;

:

; i=n+1;
; recurse(i,m);

;)

recurse:
PROLOGUE

; name ic args
.reg
.reg

; name locals

.reg
.reg

2,2,2

R_in_n, %%(IN_PRM + 0)
R _in_m, %%(IN_PRM + 1)

R i, %%(LOC_REG + 0)
R_j, %%(LOC_REG + 1)

; name outgoing args

.reg
.reg

R out_n, %%(OUT_PRM + 0)
R _out_m, %%(OUT_PRM + 1)

; name temporary register

.reg

~

cpgt
jmpt

; i=n+1
add

; recurse(i,m)
add
.call
add

rec_01:
EPILOGUE

R_tmp, 1r0

if (n > 85) return

R_tmp, R _in n, 85
R_tmp,rec_01

R i, R in n,. 1

R _out_m, R in m, 0
raddr, recurse
R out_n, R i, 0

;

invoke macro 2 ic, 2 loc, 2 og

3-34

Implementation of an Am29000 Stack Cache

A-5. PROLOGUE MACRO

mac

i
’
;
;

Parameters:

ro PROLOGUE

INCNT

input parameter count

LOCCNT 1local register count
OUTCNT output parameter count

.set
.set
.set

.endif

.if (LOCCNT)

.set

.endif

.if (OUTCNT)

.set

.endif

sub
asgeu
add

.endm

ALLOC_CNT, ((2 + OUTCNT + LOCCNT + 1) & ~1)
SIZE_CNT, (ALLOC_CNT + 2 + INCNT)
IN PRM, (2 + ALLOC_CNT + 0x80)

LOC_REG, (2 + OUTCNT + 0x80)

OUT_PRM, (2 + 0x80)

rsp, rsp, (ALLOC CNT << 2)
V_SPILL, rsp, rab
fp, rsp, (SIZE_CNT << 2)

A-6. PROLOGUE EXPANSION FOR MAIN()

main:

PROLOGUE
.set
.set
.set
sub
asgeu
add

0,0,2 ; invoke macro
ALLOC_CNT, ((2 + 2 + 0 + 1) & ~1)

SIZE_CNT, (ALLOC_CNT + 2+ 0)

OUT_PRM, (2 + 0x80)

rsp, rsp, (ALLOC_CNT << 2)

V_SPILL, rsp, rab

fp, rsp, (SIZE _CNT << 2)

3-35

29K Family Application Notes

A-7. PROLOGUE EXPANSION FOR RECURSE()

recurse:
PROLOGUE 2,2,2

; invoke macro

.set ALLOC_CNT, ((2 + 2 + 2 + 1) & ~1)
.set SIZE_CNT, (ALLOC_CNT + 2 + 2)
.set IN_PRM, (2 + ALLOC_CNT + 0x80)
.set LOC_REG, (2 + 2 + 0x80)

.set OUT_PRM, (2 + 0x80)

sub rsp, rsp, (ALLOC CNT << 2)

asgeu V_SPILL, rsp, rab

add fp, rsp, (SIZE_CNT << 2)

A-8. OVERFLOW TRAP HANDLER

.reg R Cnt, %%(SYS_TMP + 0)

.reg R_TmpPCO, 3% (SYS_TMP + 1)

.reg R_TmpPC1, %% (SYS_TMP + 2)

.global SpillHandler
SpillHandler:

; temp for count (shared)
; temp for PCO
; temp for PCl

; This routine handles a false assertion in the standard prologue.

; In: rab > rsp
H 1rl <= rfb
; rfb == rab + 512

~

Out: rab == rsp
1rl <= rfb
rfb = rab + 512

e v

mfsr R_TmpPCO, pcO
mfsr R_TmpPCl, pcl
mtsrim cps, 0x73

sub R Cnt, rab, rsp
sub rfb, rfb, R Cnt
srl R Cnt, R Cnt, 2
sub R Cnt, R Cnt, 1
ntsr cr, R_Cnt
storem 0, 0, 1r0, rfb
add rab, rsp, 0
mtsrim cps, 0x473

mtsr pc0, R_TmpPCO
mtsr pcl, R_TmpPCl
iret

(requiring an allocation)

(just enough allocated)

; save the PCs

; PD, PI, SM, DI, DA

; R Cnt = # of bytes to spill

; move down the frame bound

; R _Cnt = count of words to spill
; correct for storem

; set up count for storem

; spill from the allocated area

; move down the allocate bound

; Fz, PD, PI, SM, DI, DA

; restore the PCs

3-36

Implementation of ah Am29000 Stack Cache

A-9. EPILOGUE MACRO

; macro EPILOGUE
.macro EPILOGUE

add rsp, rsp, (ALLOC_CNT << 2)
nop
jmpi raddr
asleu V_FILL, fp, rfb
.else
jmpi raddr
nop
.endif
.set IN_PRM, (1024)
.set LOC_REG, (1024)
.set OUT_PRM, (1024)
.set ALLOC_CNT, (1024)
.endm

A-10. EPILOGUE EXPANSION FOR RECURSE()

EPILOGUE

add rsp, rsp, (ALLOC_CNT << 2)
nop

jmpi raddr

asleu V_FILL, fp, rfb

S e s

~

illegal,
illegal,
illegal,
illegal,

to
to
to
to

cause
cause
cause
cause

err
err
err
err

on
on
on
on

ref
ref
ref
ref

3-37

29K Family Application Notes

A-11, UNDERFLOW TRAP HANDLER

.global

FillHandler:

FillHandler

;This routine handles a false assertion in the standard epilogue.

’

(requiring de-allocation)

;In: 1rl > rfb

; rsp >= rab

; rfb == rab + 512

;Out: 1rl == rfb (just enough freed)

; rsp >= rab

; rfb = rab + 512
mfsr R_TmpPCO, pcO ; save the PCs
mfsr R_TmpPCl, pcl
mtsrim cps, 0x73 ; PD, PI, SM, DI, DA
const R Cnt, 512 ; make local reg ip
or R Cnt, R Cnt, rfb ; from rfb
mtsr ipa, R Cnt ; set up indirect ptr for loadm
sub R _Cnt, 1lrl, rfb ; R Cnt = # of bytes to fill
add rab, rab, R Cnt ; move up the allocate bound
srl R Cnt, R Cnt, 2 ; R Cnt = number of words to
sub R Cnt, R Cnt, 1 ; correct for loadm
ntsr cr, R _Cnt ; set up count for loadm
loadm 0, 0, gr0, rfb ; £ill area freed
add rfb, 1lrl, 0 ; move up frame bound
mtsrim cps, 0x473 ; Fz, pD, PI, SM, DI, DA
mtsr pc0, R_TmpPCO ; restore the PCs
mtsx pcl, R_TmpPCl
iret

3-38

Implementation of an Am29000 Stack Cache

APPENDIX B:

COMPLETE LISTING OF EXAMPLE PROGRAM
.include ”regdcl.h”
.equ TOP_STK, (0x5000 & ~7)
.text

start:

.global start

.reg tmpl, (SYS_TMP + 0)
.reg tmp2, (SYS_TMP + 1)
const rsp, (TOP_STK-8)
const rab, (TOP_STK-512)
const fp, TOP_STK

const rfb, TOP_STK

;set correct mode

mtsrim cps, 0x72
mtsrim cfg, 0x10
mtsrim vab, 0

;connect up spill handler

const tmpl, SpillHandler
consth tmpl, SpillHandler
const tmp2,V_SPILL

s11 tmp2,tmp2, 2
store 0,0,tmpl, tmp2

;connect up fill handler

const tmpl,FillHandler
consth tmpl,FillHandler
const tmp2,V_FILL

sll tmp2, tmp2, 2
store 0,0,tmpl, tmp2

;call main program
call raddr,main
nop

halt

;create double word
;aligned value

;set stack ptr
;set reg alloc bound
;set frame ptr
;set reg free bound

;PD, PI, SM, DI
;VE

;compute vect addr
;jwrite spill vector

;compute vect addr
;write fill vector

;halt after successful completion

;The routines below handle overflow and underflow conditions.
;The temps which they use are given below.

.reg R_Cnt, (SYS_TMP + 0)
.reg R_TmpPCO, (SYS_TMP + 1)
.reg R _TmpPCl, (SYS_TMP + 2)

stemp for count (shared)
;temp for PCO
;temp for PC1

3-39

29K Family Application Notes

.global SpillHandler
SpillHandler:
;This routine handles a failed assertion in the standard prologue
;In:rab > rsp(requiring an allocation)
;fp <= rfb
;rfb == rab + 512

;jOut:rab == rsp(just enough allocated)
;fp <= rfb
;rfb == rab + 512

mfsr R_TmpPCO, pcO ;save the PCs

mfsr R_TmpPCl, pcl

mtsrim cps, 0x73 ;PD, PI, SM, DI, DA

sub R _Cnt, rab, rsp ;R _Cnt = # of bytes to spill
sub rfb, rfb, R Cnt ;move down the frame bound

srl R Cnt, R Cnt, 2 ;R_Cnt = count of words to spill
sub R Cnt, R Cnt, 1 ;correct for storem

mtsr cr, R Cnt ;set up count for storem
storem 0, 0, 1xr0, rfb ;spill from the allocated area
add rab, rsp, 0 ;move down the allocate bound
mtsrim cps, 0x473 ;Fz, PD, PI, SM, DI, DA

mtsr pc0, R_TmpPCO ;jrestore the PCs

mtsr pcl, R_TmpPCl

iret

.global FillHandler
FillHandler:

;This routine handles a failed assertion in the standard epilogue
;In:fp > rfb(requiring de-allocation)

;rsp >= rab

;rfb == rab + 512

;Out:fp == rfb(just enough freed)
;rsp >= rab
;rfb == rab + 512

mfsr R_TmpPCO, pcO ;save the PCs

mfsr R_TmpPCl, pcl

mtsrim cps, 0x73 ;PD, PI, SM, DI, DA

const R _Cnt, 512 ;make local reg ip

or R Cnt, R Cnt, rfb ;from rfb

mtsr ipa, R Cnt ;set up indirect ptr for loadm

3-40

Implementation of an Am29000 Stack Cache

sub
add
srl
sub
mtsr
load
add

mtsrim

mtsr
mtsr

iret

R Cnt, fp, rfb
rab, rab, R Cnt
R_Cnt, R Cnt, 2
R Cnt, R Cnt, 1
cr, R _Cnt

m0, 0, gxr0, rfb
rfb, fp, 0

cps, 0x473

pcl, R_TmpPCO
pcl, R _TmpPCl

;R_Cnt = # of bytes to fill
;move up the allocate bound
;R_Cnt = number of words to fill
;correct for loadm

;set up count for loadm

;£i11 area freed

;move up frame bound

;¥z, pD, PI, SM, DI, DA

;restore the PCs

3-41

Introduction to the Am29000
Development Tools

Application Note

by Doug Kern and Douglas Walton

INTRODUCTION

The development of a microprocessor-based system is
a complicated and detailed undertaking that requires
skilled personnel and efficient test equipment. Because
of the sophistication of modern microprocessing sys-
tems, they usually cannot be flawlessly designed on the
first iteration, and nearly always require extensive
debugging and testing time. Experienced developers
know that few designs function perfectly at power-up.
Faults occur due to erroneous logic, poor assembly, or
defective parts, so some debugging is virtually always
necessary. Therefore, every effort should be made to
plan the debugging and testing process before the first
prototype is built. Without advance planning, the
designer may find that the circuit either cannot be suc-
cessfully debugged, or that the necessary debug time is
prohibitive.

Planners should keep in mind that testing and debug-
ging continues throughout the life of the product.
Because different phases in the product life cycle have
differentcharacteristics, the requirements for each must
be considered. The major phases of the product life
cycle are development, production (pilot, limited, and
large-scale), and field service.

Apartfromthe skill of the personnel, the efficiency of test
equipment is a critical area that affects the testing time
in every phase. Outdated or ineffective equipment will
slow down eventhe most highly trained personnel. More
importantly, expensive, state-of-the-art test equipment
will be wasted if its use is not preplanned. Careful con-
sideration must be given to the type of equipment
needed to service the product, as well as its cost and
how it will be disbursed to the field.

AMD offers a comprehensive array of development
tools that allow development teams to effectively test
and debug Am29000™-based systems throughout the
life cycle of the product. This document discusses those
Am29000 development tools, and provides information
for gauging their usefulness in specific applications
with respect to cost, capabilities, and target design
requirements.

Am29000 DEVELOPMENT TOOLS

The Am29000 development tools covered in this docu-
ment are those used for debugging and testing

Publication # Rev. Amendment Issue Date:
12908 A /0 11/89

actual system hardware. They normally are used with a
prototype or production system to determine the cause
of failure, and are distinguished from the 29K™ tools
used to prepare programs for execution on a target
system (see the 29K Tool Chain section).

Figure 1 shows the relationship of these development
tools to the application and each other. The components
are described below:

ADAPT29K—Advanced Development and Prototyping
Tool. ADAPT29K™ is a standalone system that inter-
faces to the application like an in-circuit emulator. It pro-
vides a wide range of debugging functions without
intruding on the application’s execution.

MON29K—Target Resident Monitor. MON29K™ is a
monitor program that executes on the target Am29000.
It provides many of the same debugging functions as the
ADAPT29K, even though it is a software product.

XRAY29K—Source-Level Debugger. XRAY29K™ is a
source-level debugging program. it supplies an interac-
tive, windowed environment for debugging Am29000
applications using MON29K or ADAPT29K.

Probe Interface. The Hewlett-Packard® probe interface
provides an interface between the Am29000 and an HP
1650 or 16500 logic analyzer. When using a suitable
logic analyzer, the probe interface allows the tracing of
Am23000 signals with a 10-ns sample time and disas-
sembly of Am29000 instructions.

© 1989 Advanced Micro Devices, Inc.

3-42

Introduction to the Am29000 Development Tools

PC Used with
MON29K

Logic Analyzer

Target
System

|
ol
PC Controlling
ADAPT29K
Host
Computer
System

ADAPT29K

11014A-01

Figure 1. The Am29000 Development Tools

THE 29K TOOL CHAIN

The Am29000 development tools discussed in this
document are a subset of the 23K tool chain, which are
compatible resources provided by AMD for developing
Am29000-based systems. Only the tools used for
debugging are described in this document; other com-
ponents of the 29K tool chain are needed to create the
executable object modules that run on an Am29000-
based system.

An object module can be obtained from the set of
programs shown in Figure 2. Detailed information on
using the tools to create an executable object module is
contained in the following documents:

ASM29K Documentation Set. It provides complete
information on the installation and use of the ASM29K™
assembler, linker, and librarian manager. It also
includes documentation on the Am29000 utilities.

HighC29K Documentation Set. It covers how the
HighC29K™ C compiler for the Am29000 is used.

3-43

29K Family Application Notes

Cor
Assembly
Language

Source File

.C (C sourca file)

or
.S (assembly-language source file)

HighC29K
Compiler

ASM29K
Assembler

.0 (relocatable object module)

ASM29K
Linker

COFF2HEX

PROM
Programmer

.OUT (absolute object module)

Binary to ASCII
BTOA

.ASC (ASCl! object module)

ADAPT29K or
MON28K Target

11014A-02

Flgure 2. The 29K Tool Chain

3-44

Introduction to the Am29000 Development Tools

REFERENCE MATERIALS

This document covers only information concerning criti-
cal requirements to consider during development plan-
ning. Detailed usage of each tool is not covered.
Additional information can be found in the following
documents:

ADAPT29K User's Manual. It provides detailed informa-
tion on the ADAPT29K including installation, com-
mands, theory of operation, and target design
requirements.

MON29K Documentation Set. It provides detailed infor-
mation on the MON29K including installation, com-
mands, theory of operation, and target design
requirements.

XRAY29K Documentation Set. This set of documents
includes an installation guide, user's manual, and refer-
ence guide for XRAY29K, the high-level/assembly-
language debugger.

Hewlett-Packard Probe Interface Data Sheet. It gives a
description and electrical specifications for the probe in-
terface.

These materials can be obtained by writing to:

Advanced Micro Devices, inc.
901 Thompson Place

P.O. Box 3453

Sunnyvale, CA 94088-3453

or by calling 1-800-222-9323.

For questions that cannot be resolved with the current
literature, further technical support can be obtained by
writing or calling:

29K Support Products Engineering
Mail Stop 561

5900 E. Ben White Bivd.

Austin, TX 78741

(800) 2929-AMD (US)
0-800-89-1131 (UK)
0-031-11-1129 (Japan)

HOW TO USE THIS DOCUMENT

This document discusses the Am29000 development
environment. However, different readers have different
requirements and initial levels of knowledge. The layout
of this document should help readers locate the desired
information while avoiding redundant or known material.
In this document, special emphasis is placed on
answering the questions:

1. What is the development tool?
2. Where does it fit in the 29K tool chain?

3. What capabilities does the development tool have?

4. What requirements must be met to effectively use
the development tool with the target system?

The“"Summary of the Tools” section summarizes the ad-
vantages and disadvantages of each development tool.
Their compatibility requirements also are summarized.

The “Standalone Execution Board” section details the
Standalone Execution Board (STEB) manufactured by
STEP Engineering. The STEB is not actually a develop-
menttool, but an example of an Am29000 system that is
compatible with all the development tools. The section
highlights important areas of the development environ-
ment, demonstrating how the STEB was designed to
comply with the compatibility requirements of the devel-
opment tools.

Appendix A contains logic diagrams for the Standalone
Execution Board. These should be used in conjunction
withthe discussionin the “Standalone Execution Board”
section to show how the STEB was designed to comply
with the compatibility requirements of the development
tools.

ADAPT29K ADVANCED DEVELOPMENT
AND PROTOTYPING TOOL

The ADAPT29K is a standalone unit used for non-intru-
sive supervision and monitoring of the target circuit,
much like an in-circuit emulator. Completely self-
contained, it has its own processor, memory, /O, and
power supply. It is connected to the target by a cable
inserted between the Am29000 and its socket. When
the target is running, the ADAPT29K monitors bus activ-
ity. When the target is halted, the ADAPT29K can use
the target Am23000 to modify memory, provide proces-
sor status, or perform other debugging functions.
Figure 3 shows the ADAPT29K.

Either an ASClIterminal or a host computercanbe used
to control the ADAPT29K. The commands have a
format similar to the DEBUG program on the IBM® PC.
When using an engineering workstation (running a
terminal emulator program), screen logging facilities,
file storage with uploading and downloading, and batch
file support are available. Also, XRAY29K (see the
“XRAY29K Source-Level Debugger” section) can be
run on a mainframe or workstation, providing source-
level debugging support. See Figure 4.

3-45

29K Family Application Notes

Terminal
Port

On/Off Switch

Host Computer Port —l

Cable Assembly

°‘IIIIIIIIIIIIIIIIII
fnmimn

T
IBENEIRN]

T
Diagnostic —l Reset

Indicators Clock
Indicator
<€— Line Drivers

~t— |Interface Connector

Figure 3. The ADAPT29K

Loop test socket P/O
diagnostic self-test
feature (located inside
the unit)

11014A-03

[==|

~

Communications L

Host Computer DTE RS232

Modem
ink l]
Modem
Port DCE RS232 Port
ADAPT29K

System

Target

Figure 4. Connections to the ADAPT29K

PC or Terminal

11014A-04

3-46

Introduction to the Am29000 Development Tools

One major advantage of the ADAPT29K is that, as a
separate unit running on a separate processor from the
target, hardware control signals can be asserted to gain
control over the processor, regardless of the state of
the program executing on the target. This allows the
ADAPT29K to be used for debugging a systemthat can-
not yet run its program. This type of debugging support
is often useful when testing a prototype for the first time.

FEATURES

The ADAPT29K has powerful debugging capabilities
that are important when bringing up a new design. For
example, itis often necessary to inspect or alter memory
contents, force test conditions, and patch in code
sections. By using the ADAPT29K, the developer gains
these capabilities for supervising the processor execu-
tion, thus greatly facilitating the initial debugging and
development of Am29000-based applications.

Display and Modification of Memory

Using the ADAPT29K, all Am29000 memory spaces
- can be accessed. This includes instruction ROM,
instruction/data RAM, Am29000 internal registers
(global, local, and special), and coprocessor registers.
Target data can be displayed or modified. The contents
of a register or ranges of memory locations can be
moved or filled; individual bits of special registers may
be set separately. Table 1 shows the ADAPT29K com-
mands available for managing memory.

Table 1. ADAPT29K Memory Display and
Modification Commands

Command Description
D Display registers/memory
F Fill registers/memory
1 Input from a port
M Move memory
(o] Output to a port
S Set registers/memory
X Display key registers
XC Display/set coprocessor registers
XpP Display/set protected registers
XT Display/set TLB registers

XU Display/set unprotected registers

Memory operations can be performedin byte, half-word,
word, floating-point, or double-precision format. For
example, to display /r4 through /r11 as words, enter:

dw LR4,LR11

Or, to display addresses FO to FF in instruction/data
RAM, enter:

db 10000i, 1001fi

Figure 5 shows the results of these operations.

DW LR4,LR11
LRO04
LROO8
#

DB 10000I,1001FI

61006200 63006400 65006600 67006800
69006200 6b006c00 6d006e00 6£007000

a.b.c.d.e.f.g.h.
i.j.k.l.m.n.o.p.

000100001 61 00 62 00 63 00 64 00 65 00 66 00 67 00 68 00 a.b.c.d.e.f.g.h.
000100101 69 00 6a 00 6b 00 6c 00 6d 00 6e 00 6£ 00 70 00 i.j.k.l.m.n.o.p.
#

11014A-05

Figure 5. ADAPT29K Memory Displays

3-47

29K Family Application Notes

Several ADAPT29K commands make displaying of
common memory groups easier. Frequently, when
debugging specific areas of an application, the same
data areas will need to be displayed repeatedly. For
example, when testing a TLB-miss trap handler, it may
be necessary to stop program execution after reloading
the TLB to determine if the proper entry has been
updated. The TLB entries can be displayed easily using
the XT command, as shown in Figure 6.

Likewise, the processor status information contained in
the special protected registers can be displayed using
the XP command, as shown in Figure 7.

Often, the best time to examine memory locations is
immediately after program execution has halted. A
substantial amount of repetitive key entry can be elimi-
nated by using the E command, which defines a
command list that executes whenever the Am29000
halts. For example, to automatically perform the same
operations shown in Figure 5 every time the Am29000
halts, the execution list could be defined as:

E DW LR4,LR11;DB 10000I,1001FI

The next time execution halts, the local registers Ir4
through /r8 will be displayed, followed by a display of
memory locations 000000F0 through 000000FF, just as
it would have occurred if the commands had been
entered individually.

XT
LINE SET 1ST REG 0: VTAG VE SR SW SE UR UW UE TID 1: RPN PGM U F
00 0 TRO0OO 00000 0 0 O O O O O 00 000000 0 0 0
00 1 TRO64 00000 0 0 0 O O O O 00 000000 0 0 0
01 o0 TR002 00000 0 0 0 0O O O O 00 000000 0 0 O
01 1 TRO66 00000 0 0 0 O O O O 00 000000 0 0 O
02 0 TR0O04 00000 0 0 0 O O O O 00 000000 0 0 0
02 1 TR068 00000 0 0 0 0 O O O 00 000000 0 0 O
03 0 TROO06 00000 0 0 O O O O O 00 000000 0 0 0
03 1 TRO70 00000 0 0 0 O 0O O O 00 000000 0 0 O
#
11014A-06
Figure 6. TLB Entries Display

xp

CA IP TE TP TU FZ LK RE WM PD PI SM IM DI DA
cpS: 0 0 0 60 0 00O O 0 0 0 0 0 0 O
oPs: 0 0 0 0 0 O 0O 0 0 O 0 O 0 0 O
VAB CFG: PRL VF RV BO CP CD
0000 00 0 0 0 0 O

CHA CHD CHC: CE CNTL CR LS ML ST LA TF TR NN CV

00000000 00000000 0 00 000 0 O O O 000 O
RBP: BF BE BD BC BB BA B9 B7 B6 B5 B4 B3 B2 Bl BO

06 0 0 000 6 00 0 0 0 0 0 0

TCV TR: OV IN IE TRV PCO PC1 PC2 MMU: PS PID LRU
000000 0 0 000000 00000000 00000000 00000000 0 00 0
#
11014A-07

Figure 7. Protected Register Display

3-48

Introduction to the Am29000 Development Tools

Execution Control

The ADAPT29K can completely control target execu-
tion. Processing may be at full speed, or the target may
be single-stepped, or it can be run until a breakpoint is
encountered. Table 2 shows the ADAPT29K com-
mands that control program execution.

Table 2. ADAPT29K Execution Control Commands

Command Description

Table 3. ADAPT29K Debugging Commands

Command Description

Assemble in memory
Jam an instruction

List memory

Pulse the reset line

Run interface diagnostics
Display trace buffer

NSETrc»

Breakpoint display, set, and reset
Check execution state

End execution command list

Go (start program execution)

Kill program execution

Trace (single step) instructions

- XoOomOw

Two types of breakpoints are available: “non-sticky” and
“sticky.” Non-sticky breakpoints are temporary break-
points set as optional parameters of the G (Start
Program Execution) command. They are reset when
program execution stops. Fixed, or “sticky,” breakpoints
are set by using the B command. They remain in effect
until they are expressly removed.

Debugging Support

Because the ADAPT29K was designed to aid debug-
ging, it has several unique features that aid intesting the
target. The testing aids include running memory
diagnostics, assertion of repetitive signals, pulsinginter-
face lines, and forced execution of Am29000 instruc-
tions. The commands are shown in Table 3.

The ADAPT29K’s J command forces the processor to
execute a user-specified Am29000 instruction. Issuing
the P command pulses the processor reset line, initiat-
ing a hardware restart. Options of the W command
specify various diagnostics to be executed, including a
target memory test over a specified range of addresses;
it also can be used to generate repetitive read and write
signals for easy triggering of an oscilloscope.

Bus Tracing

Areal-time bus trace facility is supported. Whenever the
target Am29000 is executing, the ADAPT29K traces
most CPU pins and stores their states in a 4096 entry
ring buffer. All Am29000 signals are traced, except
INCLK, SYSCLK, CNTLO, CNTL1, *TEST, and
*RESET.

The state condition of the traced signals at each bus
cycle is numbered sequentially and stored as an entry
inthe trace buffer. It may later be displayed to the termi-
nal or host using the Z command shown in Table 3. A
range of entries may be displayed in any of three for-
mats. One (Figure 8) shows the disassembled instruc-
tions. Another (Figure 9) shows the states of the traced
control signals. The remaining display is a combination
of both figures.

z 13

Line Address Data Instruction

- 13 ROM RD 00009ef0 (none) STORE 0,0x0,GR116,LR6
- 12 ROM RD 00009ef4 (none) LOAD 0,0x0, LR2, LR10
- 11 ROM RD 00009ef8 (none) ADD LR3,LR11,0x0

- 10 ROM RD 00009efc (none) CALL LRO, .-0xCEO

- 9 DATA WR 00103fbc 00000000 (none)

- 8 DATA RD 00104528 0010442c (none)

#

11014A-08

Figure 8. Bus Trace Display

3-49

29K Family Application Notes

zc 13
) | | |
*x X *| | * |
B B B| | LM |*
R G I IR S 0P OIC
E R NJ| I/ / CGPID
Line Q T VIADDRESS |W U K M T|A
- 13 11 1]00009%9e£f0)]1 110 01
- 12 11 1/00009%f4]1 110 021
- 1 11 1(00009%9ef811 110 0|1
- 10, 11 1]00009fcil 110 0]1
- 9 11 1(100103fbc|0 1 1 0 01
- 8 11 1(100104528]1 11 0 011
#

oo L |

|* I I * % Il* DD * % Dl* * %
*ITIRB*IIBIDRB*DDBIWITS
PIRERPREARERPREAIANRT
EIEQEIDRCIEQEDDRCIRTARA
NIQTQAYREKIQTQAYRIKINRPT
1101 010111201 1111j1 £ 37
1101012011112 011111j1 £37
1401 010111201121 111 £ 37
1101010111011 11111€£37
1171111110011 011|1f37
111711111100 11011|1£f31

11014A-09

Figure 9. Control Signal Trace Display

Assembly/Disassembly

The ADAPT29K has a built-in, in-line assembler/disas-
sembler that allows instruction memory examination
and alteration using Am29000 mnemonics rather than
hex values. The syntax corresponds to the ASM29K
macro-assembler.

Serial Ports

The ADAPT29K has two serial ports. One is adata com-
munications equipment (DCE) port; the other is a data
terminal equipment port (DTE). Both ports conform to
EIA convention R$232. Generally, a user gives com-
mands to the ADAPT29K from an ASCII terminal or
engineering workstation connected to the DCE port.
(See Table 4 for a list of the commands.) A source-level
debugger, such as XRAY29K (see the “XRAY29K
Source-Level Debugger” section) running on a remote
host, would use the DTE port.

Either port may be used to upload or download pro-
grams to the target. In this way, a user can control the
ADAPT29K from an ASCII terminal while downloading
programs from a remote host connected to the DTE
port. Both Tektronix® Hex and Motorola® S3 formats
are accepted. The ports can be connected together,
enabling the terminal device to communicate with the
remote host.

Table 4. ADAPT29K Serial Port Commands

Command Description

N Change the “normal character”

(used to connect DCE and DTE ports)
Enter remote mode

Save memory to a file

Load a file to memory

<<

On-Line Help

On-line help is available for all commands. A command
summary can be obtained by entering:

H <CR>

Specific help on anindividual command canbe obtained
by entering H followed by the letter of the command. All
command explanations show the complete command
syntax and give a short description of how the command
functions.

HOW THE ADAPT29K WORKS

The ADAPT29K runs on a different processor than the
target. it performs all operations on the target by control-
ling the target Am29000. A buffered cable connects the
ADAPT29K to the target's Am29000 socket. Figure 10
shows the signals carried on the cable. Note that
although the ADAPT29K traces the address bus, it can-
not drive it, and, consequently, cannot provide an over-
lay memory. It uses the target Am29000 to set up all
memory addresses before it can access them.

Execution Control

The execution state of the target Am29000 is controlled
by using the CNTLO and CNTL1 signals. By asserting
different combinations of the two signals, the Am29000
can be placed in one of four states: RUN, HALT, STEP,
and LOAD TEST INSTRUCTION. How these states
affect the processor is explained in detail in the
Am23000 User’s Manual, order #10620.

3-50

Introduction to the Am29000 Development Tools

The LOAD TEST INSTRUCTION state should be noted
due to its importance to the ADAPT29K. Because the
LOAD TEST INSTRUCTION state interrupts normal
sequential processing and permits a sequence of
instructions to be loaded into the processor’s instruction
stream, the ADAPT29K, using the LOAD TEST
INSTRUCTION STATE, can force the processor to
perform operations on the target.

Memory Access

Due to the high speed of the Am29000, the ADAPT29K,
unlike some in-circuit emulators, does not provide any
overlay memory. To maintain real access times, the
processor must be kept as physically close to its mem-
ory as possible. There is no time available for the propa-
gation delay that would be experienced in accessing
memory across the interface cable to the ADAPT29K.

ADAPT29K

Target

Data Bus 0-31

N

CNTL,-CNTL,

STAT,-STAT,

m
-—‘

A

=/
D
O
<

O

D

Instruction Bus 0-31

All Am29000 Signals

N vowvw U N\/

(except INCLK, SYSCLK, CNTL,,
CNTL,, TEST, RESET)

/!
A

11014A-10

Figure 10. The ADAPT29K-to-Target Interface

3-51

29K Family Application Notes

All target code and data is stored on the target. When
the ADAPT29K is commanded to display a data object,
it places the target Am29000 in the LOAD TEST
INSTRUCTION state. Then a sequence of instructions
is inserted to store the present Am29000 state, setupa
new memory address, load the data into an Am29000
register, store the data to the ADAPT29K, and restore
the Am28000 state.

This method imposes certain requirements. Because
data is transferred between the ADAPT29K and the
target over the data bus, the target memory must be
protected from corruption. To prevent inadvertent
changes to the target memory, it must be disabled from
respondingwhenthe ADAPT29K andthe target proces-
sor are transferring data. There are two ways of doing
this: (1) the memory can be disabled by a low state on
the PIN169 alignment pin (pin D4), or (2) the target
memory can be disabled when an 06 hex is decoded on
the OPT=-OPTo pins.

When the contents of instruction ROM must be
displayed, the ADAPT29K must instruct the processor
to read instruction ROM as data. Hence, a hardware
path must exist for data stored in the instruction ROM
space {on the instruction bus) to be loaded into an
Am29000 register from the data bus.

Similarly, when the ADAPT29K is used to download a
program, the code will be written word-by-word to the
target Am29000, which then writes the instructions into
proper memory space. Suppose, for example, code is to
be written into the instruction/data RAM. Because the
ADAPT29K has no means for virtual translation of
addresses, it will use Store instructions to write the code
into the absolute address in the instruction/data space.
When the Am29000 goes to execute the code, it will ex-
pect to fetch its instructions over the instruction bus.

This requires that there be a hardware path from the
data bus to the instruction bus and a one-to-one corre-
spondence between addresses onthe data bus andthe
addresses on the instruction bus. This occurs because
the instruction is stored at an address on the data bus,
but is fetched via the instruction bus. In other words, in-
structions fetched from an address in the instruction
RAM space via the instruction bus must produce the
exact information as would be retrieved from the same
address in the data RAM space via the data bus.

Breakpoints

Because the Am29000 is one of the fastest commercial
processors available, there is no practical way to read
each address on the address bus and compare it
against a breakpoint table to determine if a break should
occur, as is done in an in-circuit emulator. The method
used by the ADAPT29K is to swap a halt instruction into

memory at the location of the breakpoint. When the
executing processor encounters the breakpoint, it halts.
Then, the ADAPT29K, upon detecting the halt, com-
pares the halt address with the breakpoint table and
determines if there is a match. If there is, it swaps the
original instruction back into memory and informs the
operator that a breakpoint has occurred.

This method of setting breakpoints also contributes to
the requirement for a one-to-one translation of ad-
dresses between the data bus and the instruction bus.
Forexample, when the ADAPT29K sets a breakpoint in
the instruction ROM space, it does so by usingthe target
Am29000 to read the original instruction, then writes the
halt into the address location. This is performed as a
data movement operation, using the bi-directional path
to the instruction bus discussed in the Memory Access
section. Forthe breakpointto be effective, the executing
program must encounter the breakpoint at the same ad-
dress at which it was stored.

TARGET DESIGN REQUIREMENTS

Throughout the preceding discussion, it should be clear
that the ADAPT29K only interfaces to the target via the
target Am29000, and uses only the target memory for
storage of the application program. This places certain
hardware requirements on the application. These are
listed below. For a specific example, see the Standalone
Execution Board section.

1. The physical device in the instruction ROM space
must be a RAM device if code is to be downloaded
to the instruction ROM space, or if breakpoints will
be set in the instruction ROM space.

2. Abi-directional path must exist between the instruc-
tion and data buses.

3. There must be a one-to-one translation between
instruction bus addresses and data bus addresses.

4. The ADAPT29K must be able to disable the target
memory using a low signalon the PIN169 alignment
pin (D4), or when OPTo—OPT2 are 06 hex.

5. Physical clearance must be provided for the con-
nection of the interface cable at its proper orienta-
tion.

6. Signals driven by the ADAPT29K (see Table 5)
must be open-collector or tri-state.

3-52

Introduction to the Am29000 Development Tools

Table 5. Am29000 Signals Driven by the

ADAPT29K

Pin Confliguration
Alignment pin (Input with pull-up resistor)'?
Da1-Do (Tri-state)
lai—lo (Tri-state)
DERR (input with pull-up resistor)’
RESET (Open coll. pull-up with 1 K ohm

resistor)

DRDY (pull-up resistor)’
STAT-STATe (Input)
TEST (Open collector)?

1. Pull-up resistors should be 330 to 1000 ohms.

. This is an optional configuration. Itis used if memory will be
disabled by the alignment pin (PIN169).

. Note that TEST is active longer than RESET. Since all outputs
will be in a high-impedance state, it may be prudent to pull up all
Am28000 outputs to avoid ambiguous inputs (to other devices).

n

w

MON29K TARGET RESIDENT
MONITOR

MON23K is a target-resident monitor that has function-
ality similar to the ADAPT29K monitor. MON29K
provides many important debugging capabilities, includ-
ing memory display and alteration, code uploading and
downloading, and assembly and disassembly. How-
ever, unlike the ADAPT29K, MON23K is an entirely soft-
ware product. It resides completely inthe target memory
and executes on the target Am29000 (see Figure 11).

MON29K has /O driver routines to handle two serial
ports. Either port can be used to receive commands,
although the hardware must be supplied by the target.
With the proper hardware, MON29K can receive com-
mands from an ASCII terminal or a remote host. It also
can act as the interface between XRAY29K and the
target. MON29K is supplied in C source code form so
the I/O drivers and service routines can be modified to fit
the particular hardware environment.

Since it is entirely software, MON29K can be perma-
nently embedded in the product. It takes only 256K of
address space in instruction ROM; thus, it can remain
with the application and be used to diagnose problems
at all stages of the product life cycle, from development
to field support.

gl 11

Modem

Communications Link ll

Host Computer

PG or Terminal

System

MON29K
Installed

DTE RS232 Port

DCE RS232 Port

11014A-11

Figure 11. MON29K System Connections

3-53

29K Family Application Notes

FEATURES

MON28K provides powerful testing capabilities. Many
of MON29K's features are, in fact, the same as the
ADAPT29K. These include:

e Display and alteration of memory, /O ports, and
registers. Using MON29K, target data can be
displayed, set, or altered. All Am239000 memory
spaces may be accessed, including: Am29000 inter-
nal registers (global, local, and special), coprocessor
registers, instruction/data RAM, or instruction ROM.

In-line assembly and disassembly. MON29K comes
with a built-in, in-line assembler/disassembler.
Am29000 instruction mnemonics can be converted to
machine codes and stored at a specified location, or
ranges of addresses may be disassembled and
displayed in mnemonic form.

Uploading and downloading of programs. MON29K
can use two serial ports, assuming they are provided
by the target hardware. One port is a data communi-
cations equipment (DCE) port; the other is a data
terminal equipment port (DTE). Files may be
uploaded or downloaded in Motorola or Tektronix
formats. Also, XRAY29K can communicate with
MON28K through one of the ports.

Execution Control. MON29K can control target exe-
cution. It can initiate full-speed execution, or single-
step the processor.

L]

Sel/Reset Breakpoints. Both permanent and tempo-
rary breakpoints are supported.

On-line help. On-line help that shows the complete
syntax is available for all commands.

MON29K Commands

Many of the MON29K .commands (and consequently
the features) are identical to those of the ADAPT29K.
The MON239K commands, all of which are implemented
in ADAPT29K, are listed in Table 6.

Table 6. MON29K Commands

Command Description

A Assemble in memory

Breakpoint display, set, and reset
Check execution state

Display registers/memory

End execution command list

Fill registers/memory

Go (start program execution)
Input from a port

List memory

Move memory

Change the “normal character”
Qutput to a port

Enter remote mode

Set registers/memory

Trace (single-step) instructions
Save memory to a file

Display key registers

Display/set co-processor registers
Display/set protected registers
Display/set TLB registers
Display/set unprotected registers
Load a file to memory

<EREB5X<—AUVIOZZr-0TMMOOD

Differences Between MON29K and ADAPT29K

Because MON23K runs on the target processor, not as
a separate unit, it has limitations that the ADAPT29K
does not have. In particular, MON29K has no K (Kill), S
(Jam), Z (Trace), or W (interface diagnostics) com-
mands.

MON28K is not able to assert a kill command because
when the application is running, the application controls
the processor. Clearly, when MON29K is not in control
of the processor, it has no means of evaluating serial
input and taking 29K polled the serial I/O device, but
such continuous polling would hinder real-time execu-
tion. Instead, to allow programs to be forcefully termi-
nated, MON29K can be configured to respond to
interrupt-driven serial I/O. When MON29K is initialized
to respond to interrupt-driven serial /O, it intercepts a
CTRL-C and passes control to a handler that recovers
the processor to MON29K. This technique is effective in
most cases, except if the application program has
reached a HALT instruction. Then, the system must be
reset. Usage of interrupt-driven serial /O is determined
as an option of the Q command (not present on the
ADAPT29K).

3-54

Introduction to the Am29000 Development Tools

TARGET DESIGN REQUIREMENTS

MON29K does place some requirements on the target
design. They are listed below. For a sample implemen-
tation of the compatibility requirements, see the Stand-
alone Execution Board section.

1. The physical part in the instruction ROM space
must be a RAM device if the code will be down-
loaded to the instruction ROM space, or if break-
points will be set in the instruction ROM space.

2. The Am29000 cannot write on the instruction bus,
so a bi-directional path must exist between instruc-
tion and data buses.

3. Instruction bus addresses must produce the same
data as data bus addresses.

4. Asatarget-resident monitor, MON29K doestake up
some of the target memory; thus, sufficient memory
must be provided for MON29K. An application using
MON23K must have 256 Kbytes of memory in the
instruction ROM space for the program, and a 64-
Kbyte workspace in instruction/data RAM. Both
spaces must begin at address 0 (Or and 0d).

5. If program control must be recoveredfromthe appli-
cation before it ends or returns control normally,
accommodations must be made to use interrupt-
driven serial I/0. When interrupt-driven serial I/O is
used, a MON29K interrupt routine will handle a
CTRL-Cbyterminating the application program and
returning control to MON29K.

6. MON29K expects the serial I/O driver to be an 8530
serial communications controller. Using a different
1/O driver will require modifications to be made to
MON29K.

7. AMD cannot anticipate every possible scenario in

which the Am29000 will be introduced, and it is

possible that MON29K will require some modifica-
tions to the I/O drivers and service routines before it
can runon the target. Although binary code is avail-
able from AMD, MON23K is supplied in source code
form. Of course, any changes will have to be com-
piled using a C compiler that produces object mod-
ules for the Am23000.

XRAY29K SOURCE-LEVEL
DEBUGGER

XRAY29K, the high-level/lassembly-level debugger, isa
program that provides an interactive, windowed en-
vironment for debugging Am29000-based systems.
Using XRAY29K, program statements may be read in
source language, and data objects may be modified and
changed by referencing symbol names. Thus, target op-

erations can be performed using source-level
constructs, rather than machine codes and numeric
addresses. To further clarify the target environment,
XRAY29K’s multi-window interface simultaneously
displays user-selected program information.

Commands are issued to XRAY29K using a compre-
hensive debugger command language. The language
supports a wide range of functions, including setting
breakpoints, single-stepping, and examining or altering
any C- or assembly-language variables. The language
syntax is very similarto C, and also supports debugging
commands, creation of symbols during a debugging
session, and convenient specification of address
ranges.

XRAY29K resides on a host system and communicates
with the target system through either the ADAPT29K or
MON29K. Frequently, the host systemis an engineering
workstation attached to the ADAPT29K, as shown in
Figure 12. Inthat system, XRAY29K provides a comfort-
able user-interface, while operations are asserted on
the target by the ADAPT29K. Alternately, XRAY29K
could reside on a mainframe and communicate with a
target running MON29K. The user interface could then
be done via an ASCII terminal.

FEATURES

XRAY29K supports source-level debugging in either of
two modes: high-level or assembly-level. In high-level
mode, an application can be debugged using C-
language expressions and statements. In this way, C
variables and expressions replace numeric addresses
for memory access, and the code can be viewed by line
number or procedure name.

In assembly-level mode, an application can be
debugged using assembly-language statements. The
assembly-level mode additionally allows machine-level
register and status bit manipulation.

Commands are given to XRAY29K using its powerful
debugger language, thus gaining access to XRAY29K'’s
full range of debugging services. The services include:

e Setling and examination of memory and register
contents using the declared format and the variable
name.

» Simple and complex breakpoints that can be set and
removed in either C-language or assembly-language
source code.

 Single-step and full-speed program execution.
* Assembly and disassembly of object code.
» Simulated /O and interrupts.

o Execution time measurement.

3-55

29K Family Application Notes

DCE RS232 Port

- XRAY29K
=] l «§—— runningon

. ADAPT29K

Target

the PC-

PC or Terminal

11014A-12

Figure 12. XRAY29K System Connections

The commands for manipulating memory and registers
are shown in Table 7.

Table 7. XRAY29K Memory and
Register Commands

Table 9. XRAY29K Display Commands

Command. Description

compare Compare two blocks of memory

copy Copy a memory block

fill Fill a memory block with values

search Search a memory block for a value

setmem Change the values of memory
locations

setreg Change a register’s contents

test Examine memory area for invalid
values

Commands for controlling program execution are listed
in Table 8; other display commands are listed in Table 9.

Table 8. XRAY29K Breakpoint and
Execution Commands

Command Description

breakinstruction Set an instruction breakpoint

clear Clear a breakpoint
go Start or continue program execution
gostep Execute macro after each
. instruction step)
step Execute a number of instructions or
lines
stepnocall Step, but execute through
procedures

Command Description

disassemble Display disassembled memory

dump Display memory contents

expand Display a procedure’s local
variables

find Search for a string

fopen Open a file or device for writing

fprintf Print formatted output to a viewport -

list Display C source code

monitor Monitor variables

next Find string’s next occurrence

nomonitor Discontinue monitoring variables

printf Print formatted output to command
viewport

printvalue Print a variable’s value

Windowed Information Display

XRAY29K shows all critical programinformation at once
in multi-windowed displays. The contents of the run-
time stack, the selected general-purpose registers, the
current source lines being executed, or virtually any
other program information, can be checked at a glance,
without the need to constantly request each piece of
information individually.

Information is grouped into screens, which are com-
posed of one or more windows of specific data called
viewports. There are three predefined screens: high-
level, assembly-level, and standard 1/O. Distributed
among these screens are the 17 pre-defined viewport
listed in Table 10. '

3-56

Introduction to the Am29000 Development Tools

Figure 13 shows the high-level mode screen display. It Figure 14 shows the assembly-level mode screen

has four viewports: data, trace, code, and command. display. It has five viewports: data, stack, disassembled
This screen is displayed when an object module gener- code, registers (Am29000), and command. This screen
ated by a C source program is executed. is displayed when an object module generated by an

assembly-language program is executed.

Table 10. XRAY29K Predefined Viewports

Viewport Description

Command(2) Debugger commands are submitted to XRAY29K from this viewport. There is a command view-
port for both high-level and assembly-leve! modes.

Code(2) Displays source code in high-level mode or disassembled instructions in assembly-level mode.
Data(2) Displays monitored variable expressions in high-level and assembly-level mode.

Trace Shows the procedure calling chain (high-level mode only).

Stack Shows stack contents beginning from the stack pointer (assembly-level mode only).

Register Displays current values of Am29000 registers (assembly-level mode only).

Status Line(2) Used for debugger command information such as CPU type, current module name, and current
operation. This viewport is present in both high-level and assembly-level modes.
Standard I/O Shows interactive information being received from the std.in or sent to the std.out.

Break Shows breakpoint information such as number, address, module name. Temporarily overlays top
of screen when breakpoint is encountered.
Error Appears when an error occurs to indicate type and source of error.
Help Shows on-line help information when requested.
Log Displays logged keystrokes.
Journal Shows all previous commands and their results.
DATA 3 TRACE 4
1 1.000018C4!?22222\\<unknown>
2 0. 00010004:CRTO_S\\start
3
4
5
6

P CODE M R

1 /* sievex.c -- scaled down sieve with maxprime 2 instead of 8091 */
2 /* Eratosthenes Sieve prime number calculation */
3
4 #define maxiter 1
5 #define maxprime_ 2 9
6
7 extern void printi\(\);
8 extern void prints\(\);
9
10 extern char output;
Command 29000 MODULE: CRTO_S BREAK #: 0 HELP=F5 V# 1.0
COMMAND 1
Note: in startup routine. Press F9 to go to main.
> host
>
11014A-13

Figure 13. The Standard High-Level-Mode Screen

3-57

29K Family Application Notes

DATA 12 STACK =— 14 =
1 LRS =00000000
2 LR4 =00000000
3 LR3 =00000000
4 LR2 =00018000
5 LR1 =00080000
126->LRO =000018C4

CODE 11 REGISTERS —————== 13 =1
00010004 25010110 SUB grl,grl, 0x10 cha=000019FC vab=0000 mu =301
00010008 S5E40017E ASGEU 0x40,grl,grl2é chd=00000000 o09m0060 leue00

0001000C 15810118 ADD 1rl,grl,0x18 b3

chc=00008116 cps=0060 alu=000
q =00000000 cfg=01-11 bp =00

pc0=00010008 rbp=003F fc =00

pcl=00010004 tmc=FF62 cr =00

pc2=00010004 tmr=0FFFF62

00010010 0300838C CONST 1r3,0x8c
00010014 02008301 CONSTH 1r3,0x10000
00010018 03008240 CONST 1r2,0x40
0001001C 03017921 CONST grl2l,0x121
00010020 72450101 ASNEQ 0x45,grl,grl
00010024 030083B0 CONST 1r3,0xb0
00010028 02008301 CONSTH 1r3,0x10000
0001002C 03008241 CONST 1r2,0x41l

gr0 =00000000 grl =0007FFF8
gr64=00000B84 gr96 =00000210
gr65=00000000 gr97 =00000000

Command 29000 MODULE: CRTO_S BREAK #: O HELP=F5 V# 1.0
COMMAND 10 9

auto halt at address 0x00010004
Note: in startup routine. Press F9 to go to main.'

>
11014A-14
Figure 14. The Standard Assembly-Level Mode Screen

The standard I/0 screen has one regular viewport: the Table 11. XRAY29K Viewport Commands
standard /O viewport, although the breakpoint, error, -
and help viewports also will appear. The standard /O =~ Command Description
screen is used when interactive input is requested from X . -
the standard input device, or when output is directed to vactive Activate a wewpon.
the standard output device. vclear Clear data from a_vuewppﬂ

vclose Remove user-defined viewport or
The viewport commands, shownin Table 11, control the screen
way information is displayed on the screen. By using the veolor Select viewport colors
viewport commands, a viewport's size, color, and cursor vmacro Attach a macro to a viewport
position can be changed. Viewports can be added or vopen Create a screen or viewport or change
deleted, and custom screens and viewports can be size
defined. . . .

vsetc Set a viewport's cursor position

zoom Increase or decrease a viewport's size

Utility Functions

In addition to its powerful features for execution control
and display of system information, XRAY29K provides
several utility features. These features ease debugging
by streamlining the routine operations. The services
include command keys, macros, and command files.

Command Keys

The most frequently used XRAY29K functions have
been assigned to a key combination referred to as a

3-58

Introduction to the Am29000 Development Tools

“command key.” By using command keys, common
debugger commands can be entered with the minimum
number of keystrokes, often only one key or a CTRL-key
combination.

Macros

XRAY29K has a powerful, multifaceted macro facility.
Because a macro may contain complex user command
procedures, which are executed by entering the macro
name on the command line, the facility can be used for
several purposes. Table 12 shows the debugging
language’s macro-related commands.

Table 13. Symbol Commands

Command Description

add Create a symbol

delete Delete a symbol from the symbol
table

printsymbols Display symbol, type, and address

scope Specify current module and proce-

dure scope

Table 14. Miscellaneous Utility Commands

Table 12. Macro Commands Command Description
Command Description cexpression Calculate an expression’s value
define Create a macro ﬁnlo ggt |'ncludelgnle te;rrlor handling
show Display the macro source ne P ISP a,y on-iine help screen .
include Read in and process a command file
. o log Record debugger commands and

Macros can be invoked when a breakpoint is encoun- errors in a file
tered. Powerful conditional and looping statements in mode Select debugger mode (high-level or
the command language allow the macro to evaluate assembly-level)
program or register variables, and alter program flow : . . .
depending on their condition. Hence, macros can be option get debgggclert9pt|ons for this session
used to establish very complex breakpoints that take ~ Pause ause simulation
specific action, depending on their environment. reset Simulate processor reset

. restart Reset the program starting address
Macros also can be attached to user-defined viewports. startup Save the default start-up options

When the associated window is opened, the macro will
execute. This type of macro can write specific data into
the window, which is useful for monitoring environ-
mental information.

Command/Batch Files

XRAY29K can process command files. A command file
contains one or more debugger commands that can be
processed by XRAY29K automatically, without the need
for user interaction. This is also called batch-mode
operation. Command files can be used to recreate a
debugging session, easily implement automated test
procedures, and eliminate reentering of frequently used
command sequences.

Other XRAY29K Utility Functions

XRAY29K possesses several other utility functions.
These include services for manipulating symbols,
evaluating expressions, setting display and recording
modes, and controlling the session. Table 13 lists
the symbol commands, Table 14 lists the miscella-
neous utility commands, and Table 15 lists the session
commands.

Table 15. Session Command

Command Description

host Enter the host operating system envi-
ronment

load Load an object module for debugging

quit End a debugging session

TARGET DESIGN REQUIREMENTS

XRAY29K itself places no restrictions on the target
hardware design. However, being strictly a software
product, XRAY29K needs a hardware connection to
the target. For debugging Am29000-based systems,
XRAY29K must be used in conjunction with either
ADAPT29K or MONZ29K; the target design require-
ments for those tools apply.

3-59

29K Family Application Notes

XRAY29K requires a host system. Versions of
XRAY29K currently exist for UNIX and DOS environ-
ments.

XRAY29K works only with object files that have been
compiledin such away that they contain debugger infor-
mation regarding line numbers, etc. Thus, to use
XRAY29K, either the ASM29K macro-assembler or
HighC29K cross-compiler must be used, as well as the
ASM29K linker. These are explained in the “29K Tool
Chain” section.

Am29000 PROBE INTERFACE

The Am29000 probe interface provides a non-intrusive,
low-capacitance connection to an Am29000. Inserted
between the processor and its socket, the probe inter-
face makes the Am29000 pins available for convenient

attachment to a logic analyzer or other test equipment.
Figure 15 shows the probe interface.

The software available withthe probe interface supplies
configuration information about the Am29000 pins and
instruction mnemonics to either an HP 1650 or 16500
logic analyzer for display formatting. When the display is
formatted, the logic analyzer will disassemble instruc-
tions into mnemonics and display processor, bus, and
error status, as well as data bus activity. Figure 16
shows how the probe interface is connected between
the logic analyzer and the target.

Although the probe interface was designed for the HP
1650 or 16500 logic analyzer, any type of test equip-
ment can be attached to it. The following discussion
assumes a connection to an HP 1650 or 16500 Ioglc
analyzer, unless otherwise stated.

11014A-15

Figure 15. The Probe Interface

3-60

Introduction to the Am29000 Development Tools

Logic Analyzer

Probe
Interface

Am29000-Based
System

11014A-18

Figure 16. Connection of the Probe Interface

FEATURES

The probe interface can add important event-trigger-
ing and high-speed (10 ns) resolution capabilities,
including:

» Convenient connection to the target.
« L ow-capacitance probing.

« Completed status information, including identification
of burst, pipeline, and simple accesses.

« Status reporting of bus conditions, such as slave
accesses, wait states, and co-processor transfers.

» User-configurable setup and hold parameters allow
triggering on a specific target condition.

« Monitoring of all Am28000 signals except INCLK.

The probe interface comes with the disassembler,
configuration files, and a user’s manual.

DISPLAYS

Figure 17 shows data bus information, as would be
shown on an HP 16500 logic analyzer. Figures 18 and
19 show signal state and timing screens and the disas-
sembly screen for the 16500 analyzer.

TARGET DESIGN REQUIREMENTS

Because the probe interface only monitors Am239000
signals, there are no particular target compatibility
requirements except for sufficient clearance to install
the probe interface. Most applications will not be
affected by low-capacitance, high-impedance connec-
tion; however, see the probe interface data sheet for
electrical and physical specitications.

Apart from supporting the physical size and electrical
specifications of the connection, a logic analyzer is
needed. The logic analyzer should have 80 to 160 state
channels. Some termination adapters also are needed,

. depending on the number of state channels on the logic

analyzer.

3-61

29K Family Application Notes

(State/Timing C) (Listing 1) (Cancel) (Group Run ’

Oft

L AM29000 Data Bus

Label> STAT R/W
Base> | data access type bus status Hex " Symbol
-5 0x25788902 simple acc. read C36B RD
-4 data wait C76B -
-3 data wait C76B —
) data wait C76B -
-1 data wait C76B —
0 0x4B79780E simple acc. read C36B RD
1 data wait c76B -
data wait C76B -
3 data wait C76B —_
4 data wait C76B -
5 0xAC007915 simple acc. read C36B RD
6 data wait C76B —_
7 data wait c76B -
8 data wait C76B -
9 ' data wait Cc76B -
10 0X257D7D24 Simple acc. read c36B RD 11014A-17
Figure 17. HP 16500 Data Bus Information Display

‘ State/Timing 8) ‘ Waveform 1) ‘ Cancel)‘ Group RuD

(' secmute Oﬁ) (a) (meQ)

:Tng ° xj :T"g ° oj
/IREQ I | I | | | l I | |
/IBREQ I I'__l I’I I | '

oy [T [[1 1L
oo |1 LIUL 1 LT
STATO0-2 _I—_—J |———| I—I I—-' |_| I | | |
/BGRT L | ! | 1 1 | 1 11014A-18

Figure 18. HP 16500 Signal and Timing Display

3-62

Introduction to the Am29000 Development Tools

29K INST — State Listing

Markers off
Label > ADDR AM29000 Disassembly STAT
Base > Hex mnemonics Hex
-0247 000018A0 CONSTH GR85.0x00FF *cont. brst E747
-0246 000018A0 MTST TMC.GR85 *cont. brst E747
-0245 000018A0 CONSTH GR85.0x01ff *cont. brst E747
-0244 000018A0 MTST TMR.GR85 *cont. brst E747
-0243 000018A0 CONSTN GR84,-0x0001 *cont. brst E747
-0242 -000018A0 IRET *cont. brst E747
-0241 - 000018A0 ASNEQ 68,SP, SP *cont. brst E747
000018A0 JMP -0x00004+PC *cont. brst E747
-0239 000018A0 IBUS = 70400101 *int ret E7SF
-0238 00004000 IBUS = C67A0B0O wait state 64D6
-0237 00004000 IBUS = CE000B50 wait state 61D6
-0236 00004000 IBUS = CE000B50 wait state 61D6
-0235 00004000 IBUS = CE000BS50 wait state 61D6
-0234 00004000 suB Sp,sp, 0x10 brst init 6146
-0233 00004000 ASGEU 64,SP,GR126 cont. brst 6147 11014A-19

Figure 19. HP 16500 Disassembly Listing

SUMMARY OF THE TOOLS

Fromthe sections on ADAPT29K, MON29K, XRAY29K,
and the probe interface, it should be clear that a com-
prehensive range of tools exists for developing
Am29000-based systems. Each of the available tools
has unique characteristics that make it more advanta-
geous in particular situations. Depending onthe charac-
teristics of the application, one or all of the tools may be
needed. This section summarizes the information
presented in the previous sections with emphasis on
highlighting what conditions are most appropriate for a
particular tool or tool combination, and what compatibil-
ity requirements are placed on the target as a result of
the tool selection.

SELECTION GUIDE

In the development phase of virtually any Am23000-
based system, either the ADAPT29K or MON29K will be
needed. ltis possible to debug a microprocessor system
with only a logic analyzer and a PROM programmer, but
this method s not very practical when compared against
the following ADAPT29K and MON29K features:

« Memory display and modification, including special
registers.

¢ Uploading and downloading of programs.
¢ Execution control, including setting breakpoints and
single-stepping.

Apart from the advantages gained from MON29K and
the ADAPT29K, their performance canbe augmentedin

certain situations if they are combined with XRAY29K
and/or the probe interface with a logic analyzer. The
following questions highlight the critical target charac-
teristics that suggest the optimum tool selection.

How much memory does the target have?

Perhaps the most crucial factor in deciding whether the
ADAPT29K or MON29K is most appropriate depends
on the size of the available target memory. This deter-
mines whether or not MON23K can be used. Because
MONZ29K is target resident, it is necessary that the
target have at least 256 Kbytes of space in instruction
ROM, and 64 Kbytes of instruction/data RAM for
MON29K’s workspace. An application without this
memory space will not be able to use MON29K, and will
have to use the ADAPT29K.

For systems with sufficient memory, MON29K,
ADAPT29K, or both may be used. While both have
excellentdebugging features, the ADAPT29K has some
features MON23K does not, including:

« Can halt a failing program

» Provides a bus trace facility

« Can force execution of an Am29000 instruction
* Provides memory diagnostics

« Can be used with a target that cannot run its
program

3-63

29K Family Application Notes

It should be noted that in most cases (see the Differ-
ences Between MON29K and ADAPT29K section),
MON29K can halt a crashed program if an interrupt-
driven serial /0 is provided on the target, and the target
still is responding to interrupts.

How many units will be produced?

The number of units to be produced determines the
volume over which the development and servicing costs
can be defrayed. The ADAPT29K, while more powerful
than MON239K, costs more and will raise the amount
of nonrecurring charges that must be recovered. Of
course, the difference will be insignificant for the advan-
tages gained in large volumes. In fact, it may be advis-
able to use the ADAPT29K when the product is in
development and final test, using MON29K for field
service.

How and where will servicing be performed?

Servicing can be performed on-site or at service cen-
ters. Often this depends on the size, function, and value
of the application system. If the system is moved to a
service centerfor repair, the ADAPT29K will provide the
most capabilities, particularly when coupled with the
probe interface and XRAY29K.

However, the ADAPT29K may be too bulky to perform
maintenance on-site. MON29K can be embedded inthe
application and used to diagnose faults via a portable
ASClI terminal or PC (which could run XRAY29K).

How complex is the program?

If the program is complex, XRAY29K should be consid-
ered. Debugging complex programs using hex values
and physical addresses can be very time consuming
and error prone, especially programs containing many
modules. Often, XRAY29K’s windowed interface and
source-level debugging language will greatly reduce
time spent tracking down errors encountered in address
calculations, decimal to hex conversions, or just looking
up values in a listing.

SUMMARY OF COMPATIBILITY REQUIREMENTS

Once a combination of tools has been selected, it is
important to ensure that they will be compatible with the
target system. The following lists summarize the com-
patibility requirements for each tool. More detailed
explanations can be found in the specific sections
related to the particular tool.

ADAPT29K
1. The target must support RAM in instruction ROM.

2. Abi-directional path must exist betweenthe instruc-
tion and data buses.

3. There must be a one-to-one translation of
addresses between buses.

4. Target memory must be disabled either by a low
signal on the alignment pin (D4), or when OPT>—
OPT; are 06 hex.

5. There must be physical clearance for the connec-
tion of the interface cable at the proper orientation.

6. Thesignals drivenby the ADAPT29K must be open-
collector or three-state.

MON29K
1. The target must support RAM in instruction ROM.

2. Abi-directional path must exist betweenthe instruc-
tion and data buses.

3. There must be a one-to-one translation of
addresses between buses.

4. The system memory must include 256 Kbytes in
instruction ROM beginning at Address 0 to store the
MON29K program, and 64 Kbytes of instruction/
data RAM at Address 0 for MON29K's workspace.

5. If program control must be recovered from the
application without it ending or retuming control
normally, accommodations must be made to use
interrupt-driven serial I/O.

6. The I/O drivers may have to be modified.

XRAY29K

1. Requires a host system, such as an engineering
workstation.

2. Requires MON29K or ADAPT29K.

Probe Interface

1. Requires a logic analyzer (an HP 1650 or 16500 is
recommended).

2. Requires termination adapters.

3. There must be sufficient physical clearance to allow
the probe to be attached to the target.

3.64

Introduction to the Am29000 Development Tools

A COMPATIBILITY EXAMPLE:
STANDALONE EXECUTION BOARD

The Standalone Execution Board (STEB) is an excellent
example of compatibility with all the development tools.
It is a complete Am29000-based system that can run
many types of programs, including the software pack-
ages MON29K and VRTX32/29000®.

The STEB can also be used with the ADAPT29K and/or
the HP probe interface. STEB also can be used as an

execution vehicle for application software or a compari-
son system for isolating hardware faults. :

This section focuses on how the STEB's design
achieves compatibility with the development tools. The
major areas of the STEB are discussed, with emphasis
on how each area contributes to compatibility. See
Figure 20 for a block diagram of the STEB.

P
SW2 [Buffer]

9513A Timer
| e K> o]

RS232
DCE Port

N,

System
Address

RS232
DCE Port

Bus

il

Am29027
aritvmetic K | pata

Accelerator Bus

ROM
Buffered Space
Address | ———)| EPROM
Bus Bank #0
Bank #1

Swap
|suite K

Instruction/
Data RAM

Space
OV ——
Bank #1
Bank #2

Bank #3 o 11014A-20

Figure 20. Block Diagram of the STEB

3-65

29K Family Application Notes

FUNCTIONAL DESCRIPTION

Mounted on a single card, the STEB contains an
Am29000 with memory, I/0, and system timing
_resources. See Appendix A for schematic diagrams,
Sheets 1 through 12. In addition to the Am29000 (U51
on Sheet2), the STEB supports the Am29027 arithmetic
accelerator (U10 on Sheet 3). The Am29027 is capable
of high-speed, single-precision and double-precision
arithmetic using fixed and floating-point numbers. It can
be operated in pipelined or non-pipelined (flow-through)
mode, depending on system capability and require-
ments. The pipelined mode maximizes the overall
execution time for scalar operations.

System timing can be provided by one of two methods.
The Am29000 itself can generate the system clock,
which is output on the SYSCLK pin; or circuitry on the
board (U8, U9 on Sheet 4) can generate an external
clock signalthat can be appliedto the SYSCLK pin of the
processor. Clock selection is done by jumpers.

Memory is supported in both the instruction ROM and
instruction/data RAM spaces. By using dip switch (SW3
on Sheet 7), between 0-7 wait states may be selected.
Each space has its own wait-state generator, and may
be configured separately, depending on the access
speed of the installed memory devices.

A 9513A timing controller is installed at U55-58, and
U64 on Sheet 10. The 9513A supports up to five 16-bit
counters. Address decoding for various timer functions
is provided by a PAL (U56 on Sheet 10). The clock
source can be fromthe Am29000, a hardware oscillator,
or a crystal oscillator. :

Power to the STEB is provided by a series-regulated
power supply that provides a regulated +12 VDC and
+5 VDC to the board. Connectors are furnished for at-
tachment to the type of power supply used with PCs.

CIRCUIT AREAS CONTRIBUTING TO
COMPATIBILITY

In the following section, circuit sections related to
compatibility issues are described. The circuit sections
are referenced by their locations on the STEB, as
indicated in Figure 21.

ADAPT29K and MON29K Compatibility

Because the ADAPT29K and MON29K are very similar
to each other, several STEB design aspects simultane-
ously address their compatibility requirements. These
include the type of memory supported, and the bus
architecture for accessing memory.

SW3

Buffered B
Address B
Bus [

N Am29000 7
Processor [

Wait State | i

DREQ =1

_ | | prear,-DREQT.=00
DB orT.opT,-001

q{ RW=0

o Data
Bus

Instruction
Bus

Instruction/Data
RAM Space
Bank #0
Bank #1
Bank #2

Bank #3 L

11014A-21
Flgure 21. Data Read from Instruction/Data RAM

3-66

Introduction to the Am29000 Development Tools

Support for RAM Devices in the Instruction ROM
Space

The STEB supports RAM in the instruction ROM (U25,
U32 on Sheet 5) space and the instruction/data RAM
(U33-U43 on Sheets 6 and 7) space. The instruction
ROM space has a maximum capacity of 1024 Kbytes
and uses 27010 EPROMs. The instruction/data RAM
space has a maximum capacity of 512 Kbytes and uses
32-Kbyte x 8 static RAMs.

Instructions may be executed from either space. So that
programs can be downloaded via the ADAPT29K or
MON28K, the instruction ROM area can be constructed
from 32-Kbyte x 8 static RAMs. However, the maximum
memory size using RAM is limited to 256 Kbytes.

Swap Buftfer

On the STEB, a swap butfer provides the necessary
bi-directional path between the data bus and the instruc-
tion bus (U11-U14 on Sheet 2). The swap buffer is
created from four 74ALS245 octal bus transceivers.
Transfer direction and timing are controlled by the
transceiver's ENA and A—B inputs. By decoding the
DREQT-DREQTo, IREQT, OPT-OPTo, DREQ, and
IREQ signals (U17, U18, U49 on Sheet 4) and applying

the result to the transceiver, the STEB channels data
between the buses at the appropriate time.

The swap buffer is not required in many straightforward
operations. For example, when assembling/disassem-
bling instructions or reading/writing other data into the
instruction/data RAM space, data is written directly to
the instruction/data RAM space over the data bus. Like-
wise, a standard instruction fetch from the instruction
ROM space does not require the swap buffer, as instruc-
tions may be loaded directly into the processor’s instruc-
tion pre-fetch buffer from the instruction bus.

However, when disassembling instructions in the
instruction ROM space, the instructions must be read as
data, which makes the swap buffers necessary. The
configuration of the IREQT bits causes an instruction
to be accessed from the instruction ROM, gated onto
the data bus, and read into the processor. Note the
combination of control signals indicated on the side of
the figure. They are used to select the path for data
movement.

Similarly, when instructions are fetched from the in-
struction/data RAM, they must be transferred to the in-
struction bus from the data bus. The direction of data
movement is shown by the darkened path in Figure 22.

Wait State
Sw3 |

Buffered
Address
Bus §

ROM
Space
EPROM
or RAM
Bank #0
Bank #1

Am23000
Processor

DREQ = 0

IREQT = 0
OPT,~OPT, = XXX
RW=X

Instruction Data
Bus Bus

Swap
Buffers

Figure 22. Instruction Fetch from Instruction/Data RAM

Instruction/Data
RAM Space
Bank #0
Bank #1
Bank #2
Bank #3

11014A-22

3-67

29K Family Application Notes

One-To-One Address Translation

Note that addresses in both memory spaces have a
one-to-one translation. This means that when a data ob-
ject is stored at a given address in the instruction/data
RAM space, the exact same data object willbe retrieved
when the same address is asserted by an instruction
fetch to the instruction/data RAM space. This is an
important requirement for assuring compatibility with
the ADAPT29K and MON28K because when they are
downloading programs, they store instructions as data
over the data bus. Neither tool has the capability to
translate a virtual address, so when the program is
executed it must find its instructions at their absolute
addresses.

ADAPT29K Compatibllity

In addition to the elements discussed in the ADAPT29K
and MON29K Compatibility section, certain considera-
tions were added to the STEB's design strictly for the
ADAPT29K. These include tri-stating the control lines
driven by the ADAPT29K and disabling memory during
data transfers to and from the ADAPT29K.

Tri-Stated Coﬁtrol Lines

The STEB must relinquish some control lines to the
ADAPT29K when it is operating. Therefore, these lines
are tri-stated or open-collector, as was described in
Table 7, thus preventing contention that they may cause
unpredictable results.

Whenthe ADAPT29K is not connected to the target, the
CNTLo and CNTL: lines are pulled high to ensure that
the processor is in a normal mode of operation. When
the ADAPT29K is connected to the target, it isolates the
CNTL—-CNTLoe signals from the board. Any use of those
signals by the application will be inhibited.

Memory Disable

The STEB supports both methods of disabling memory
for ADAPT29K accesses. Via a jumper selection, the
STEB can be configured to either decode an 06 hex on
the OPT bits or disable memory when the alignment pin
is low.

When Jumper JP7 (on Sheet 7) has pins 1 and 2
connected togetherit causes the SEL_OP signal to PAL
U20 (on Sheet 7) to be high. The ROM/RAM decode
circuit (composed of U15,U20, U21, and U24 on Sheets
6 and 7) then decodes the OPT2-OPTo pins to deter-
mine whether or not memory should be enabled.

Memory is disabled by a low state on the alignment pin
(D4) when jumper JP7 is used to connect pins 2 and 3
together. The low condition is decoded by the ROM/

RAM decode circuit, which then disables memory.
When the ADAPT29K is not installed, the alignment pin
is pulled high to prevent inadvertent and/or intermittent
memory disables.

MON29K Compatiblility

Apart from the requirements mentioned in the
“ADAPT29K and MON29K Compatibility” section,
MON29K needs at least one, and preferably two, serial
port(s) to communicate with the host/operator. It also
needs sufficient memory to contain the software.

Serlal Ports

The serial ports are provided by the 8530 serial commu-
nications controller (SCC) and support circuits located
at U1, U2, and U5-U7 (on Sheet 8). The SCC is a dual-
channel, multi-protocoldata communications peripheral
designed for use with 8-bit and 16-bit microprocessors.
The interrupt request line INT can be wired to provide
a trap or interrupt to the processor for MON29K.
Dip switches on the board are used to select port
characteristics.

Because the 8530 is a dual-port device, it supports both
the DTE and DCE RS232 ports on the STEB. The ports
are standard RS232 ASCll ports. The DCE canbe used
to communicate with an ASCII terminal or PC running a
terminal emulator; the DTE port can communicate witha
remote host such as a UNIX machine.

Because the C language does not differentiate between
address spaces, the serial ports must be memory-
mapped into the Am29000 data space. This require-
ment allows C code to be used in place of assembly
language.

Sufficient Memory Space

Sufficient memory is provided on the STEB for
MON29K. There is also room for additional application
programs inthe ROM space. The space normally is con-
figured with MON29K in EPROMs (Bank 0), and RAM in
the remaining banks. MON29K then could be used to
download an application into the RAM in the instruction
ROM space.

MON29K also uses 64 Kbytes of workspace in RAM.
This is provided for, with additional space available for
use by the application program.

Built-In Probe Interface

The STEB includes built-in probe interface connectors.
Thus, test equipment like the HP1650 or 16500 logic
analyzer can be connected directly to the STEB, elimi-
nating the requirement for a separate probe interface.

3-68

Introduction to the Am29000 Development Tools

Appendix A: STEB Schematic Diagrams

PU1
é———DB.S
RS
2K
P10
L e
+12V I
T e 5
_Lcs oo
——0.22UF “T™47UF
vee o
'tL CIO 'tl_]
47UF P11
o —
=L - >
c12 t._ c18
To.zzur 4TUF
=

3-69

29K Family Application Notes

e
e A.Fﬁ’.:_a y
01353Y . [N
_ 1
T. -
[T
(o:g1)sna™1a %001 W” €
Yy HOEN
{0:2)sn8"10
He's < SRR EETREERARREAAS S camesmoe
e a u - lhﬁmﬁﬁmﬁ i] «
0c1¢)sng7ve PR
ke 13 7% v
. : e s 5 # N
=) o e
e
o .:.:. = L g LN i i
'y 's"is)sna vs 2 ") 26 2 '
b LLL = 8 13 o
(z:s 1e)snavs N VSPes L J
[. an
N [ERDIIED LEVE: Y
2 :w: _:man.z o . youmdy tin _
N (0:18)sna"vs . wonrdhr TR
(0:1)sna"vs 18 °5 [e
i mw 98 9 s
£x 58 $ n
L « ¥ ¥]
] %Y H § .
ia 128 2 .
13 it hit] IR
18 YETes L t
28
A a8 N
LU el 3 op0szNY ¥ n sin —
YT Taw I fo5 oS s
Xl Hﬁx» s "% o .
[T 2 H M 3
B T I V& N
'
N Rt z .
ﬁ. Il !
j,”
T i
HETH BN
EH— 1n
T\ =
e F N T «
NN 5N 18 ©% o
Vi FITN 0 9
S T
1 N
e 7
TYesIeL
xm<mm ™ m"
ey et 24 .
2o ey Sezzzs 22 mmn an I
RRzmwm NOITY]
. D D 1 N
1 pJ3
11
oo |a{e |~ » o {t e fu 934 3
s
e HOL SN0 SHOLSNOL T -
P Nwm MMMMM 248 vm._: N_:M__:m“pm“up , (0 -:”u__”hL(J A
1 o
$232882 ATReRiN
=
<J 211t
394 FUND

Introduction to the Am29000 Development Tools

o~
a.
-
v s .\'ﬁ\. mealItozass ‘j— =IRRRR ..\.{\..\..\,\.\
= 3
- » & T - e
::F s13834 32:55 e e i i b e e e L e B e e R e e G e i e R i L L B e i i i S
in |21d0 L.00ax
Hiirdo
sin (04d0 "
- §
::? 3 gd "
i 4 m—
o A ~ E "
"
" : ~ ﬂH i
; S —:
S o a—
H = i
i7 < ="
" A
| ' ;
" :
': t—n‘ﬂ i
H —A:
H A"
v i) !
*
2 ' ‘
'/ .o
./ L I>OO>
N EZllwC
31] o |
TZTO
obl| wLlhbbl - mbEERE PRERRERRE
xXao.e| O F r F o3
g A Y
g | s we = n n R bk -]
s :)
s L3
g = o] E
@ - @
Y o | =PPPP]]
— a] -
s % =§;:§ a
'] - NN N ~N

37

INGT4S

usa

kH
-
~N
I_WEe
S, :
2 >-SAsus(r:0)
oPT1
0PT2
2 o

R_¥W
2 OD————

| i

>

$IPCLK2

Voo

7Y,

NN e

IRDYe

00

IREQs
[

ROMCEY

ROMCEQ
O

BA(15:13)

Verot > 6,7
YEATOS 1> 6,7
BYTE WR YEAZee £ 67
1618 7 O 61
— 21 INCLK
2 eyl 2,12
, i ey 1 J4E2 SIPCLK4
H {314 s L s, 1
1 "
hy ¢ o J4F32
e, i o steaka
s 0
uteo 05C.32. 000MHZ 3 ""C"::_ N ue
1 a1t o J4F32
our)® >—'|- 4t 1 " SIPCLK2
] 1 "p" %; z)
| o 1w
o ars2
) 1 19 SIPCLKY
L t]ie UB 1 v
. = SIPCLKD
: S L LY S
vee 14F04 2,3,12
SEE NOTE ¢
J] CLKOPT
| |t . AN
‘Lgfzzur ‘Lg.zzzur
¥ee
[ROM BANK 0 ———— T ROM BANK 1 |
a4 i
T
rib'-rn II'I' ”rrz % pa ! I LB EEps 2 BB ps
ROM1P28
ROMIP27
ROMIPY
RONOP2S
Roworay 0
Rowors
NOTE :
A USE JPY THRU JP6 TO SELECT RAM OR ROM. C.JP8
DIRECTION RAM/ROM .
570 1 27256
5 10 2 27517
5703 32K X 8 ¢ = DEFAULT
570 4 8K X 8

B. ON THE SAME BLOCK ALL JUMPERS SHOULD POINT TO THE SAME DIRECTION.

sajoN uojieajiddy Ajjwed M6g

Introduction to the Am23000 Development Tools

1.8US(31:

Q4:>z.n

ROM BANK 0

N eceavasn

ROM BANK 1

AM27C512

*

2533333 %
Saacaaaa

nena-o .
e onran—a wWn

TECTTILLNLISELS S

AM27C512

¥

33033535
aadaaaaa

nean-o
<<TTaeTTeTeIY

AM27C512

*

A sccasnen

u27

oramrnen
85933993
Sa8aaaaa

AM27C512

-
-3

Fiflerencance

27512, 27256 EPRON

8K X 8 RAM

AM27C512

*

\ c-ossceen

u2e

ovnmenon
3593000
Soasacaa

* AM27C512

ROMS CAN BE 270190,
OR 32K X 8 RAM ,

fifeareavance

AM27C512

%

* SEE NOTE 2

B eamtnoe
3a33333a
a8aaaaca

wennro
Sl anrenenn-o
Pt e b

* AM27C512

>
w2
o=
SZ35

wrnu-o -
2Tt Canrontnn—o W
TTTCETTTTLLIILLS GBS

Bats 2 " RPS PIN 10

NOTES
. ADDITIONAL PIN COMNECTIONS FOR 27010 (128K X 8 EPROM):

vee

1

ROMOP26

ROMCEY
ROM1P1
ROM1P2T
RON1P28

-BAL2:0)

[
>
>

© ©

4
4
4

3-73

29K Family Application Notes

DI_BUS(31:0

° o
g E 3
5[2EE38EEE b G EeEEEEE obm |
5 30° Pt 5 30 b
H ornme 2 —
3 loranrnonealIYnY 2 lozunznenea2synt
o
oY P Ty o|&
y x| o
H
S =
B
A M
-2
K 2 K 2le
PN e o s e z |
- 58335855 30~y e - 55838858 39-pry = -le
& LR ety - (] - |2]%
o - 32" Pz s 307t ==
§ loraunsnemoaS 02T E Ebatacbiing : *|e
x RANRARARERNARY s lofe
= = E = A -
< 5 [le
x
@ - N |- : <=
= © lo|o
N -
= x = |l
o« < - o |~
‘aa] s ole
z .77
H E S &=~
3 RIS
. - ety)_J > 23122
“ 252282882 ¢ = 22222222 390 PR ="
o A ¥pY o " [%]z w® wle]e
- 397 PF o 397 P s °
2| omnime] - s 5|~
S locaornereaSIot o |~ |
H 3
pymprpmrpnpyn ra— &
b
2
. ~ i
- <4 -] o @
o e 2 ~ —EEE v o=
S| 28888353 a0t S| 8888388 A £
o aoypid o Ay o
& 32" pi H 39" 0+ @
-~ et ~ O ecmw r
% |orymyneneaSIe: 2 loramenenee2IYnT

€53

a
]
MEHEE .
FEEE o~
R s
ey 2
+ - -
e-mmvtmares 2opaznsees
-
o~
S =4
3
s
~ prhweo
SPEFEEEIRRESR (W
b Y3
3
' b ..;og’_l,
2o wmenonoa I —
Sonasacan

b »
~ [eo =
> w
= 33 w
- . <
z s i 5
Ed g J S . 2
- s = > H ©
] M & 4
= & d |
“ N a - >
o~ +~ = ~ - -

3-74

GL-E

D_DRDYe

s
EN_DRDYs RESETs N
: =g N oREan =)
DDRDY SA_BUS31 2
16L8 IREQe 2
or11 —F1 1REQT
——————
e i ﬂ;;'— " : RAM BANK 2
» YT H :“E |‘—‘—G 55257P_12 55257P_12 55257P_12 55257P_12
r 1 P14 po—{ —~18] !
ZBE*EI' s P13 " (— . v —4 . (—
2 i ATEIL i H7 o1 : o1}t A H o1l
V20 :/—((H ' gz‘ 9 [/ 2 " .] 02 "
Y o4 H o4 " H7 o1 i N Za—n o
. 08 . 0| 1 Tt 05 " . - 03! n
e 7= {% N : ENA
L DoR2t2e : osfl¥ B pte 1op 0 o Lo 8 o .//:f: o 108 "
¢ 2 see TaBLE llﬁ M 1§ amu) ::T/—‘Z':‘ ;..m " . i = "
A g R ki PR |y
4 CoSIRSLKL = X?I‘"‘X 404 .q U4t q u42 :{ U43
vee 2 = a5 =
U4s U4s
745163 : .
4
‘ §5257P_12 55257P_12 5§5257P_12 §5257pP_12
A 1 1 Al
.] . 9 -
=% = =z =
) o1lty 117 103 . 3 o1ii) ' - 101
W 02 4 W 102 117 02| [} o 102 n
= % it 7] 1% N
— H W s H "
7 2 (e = a1 = o8 H 7= = A Hue
7 o1 . 7 m 107 1y (L orff by a2 101 M
. 1 ° 08 o ’ — 108] . 19 08 . 108 "
:‘./__,/!,_ ! i ::V_.q/'_ v " A " "
R wp RS ../Tn: fige s WA
L4 9 s ',
. (Y7 U4S [Ty U4T [2
A g‘ 5 U D 3 —
iy
o~ BA12:0)) A . J/
o e c \ U _A_|or_sus(3r:0) e
€S2
e RAM BANK 3
s B BANK
§ &>
1.0
s >
WEAQOs
¢ L/&V[AOB'
N > WEA1Be
: o ¥EAd
P17 NOTE.
RAMS CAN BE 32K X 8 RAM OR 8K X & RAM

ERCENRSCI

51001 judwdoloaed 00062 WY 24} O} UOJIONPOIIU]

29K Family Application Notes

1SOH 01

TYNIWY3L 0L

=<J ¢

DUIEY
—J ¢t
X040
W o
“AQ¥0° L
—J ¢
X800
FEC T D M
DUTETAS
¥sn y
oan.:z. - T I Tedls
B 1 4 LR
' < N o S
= TN SONmITT A va, | CIRATLD
THHOLSY "2 : . [E I (AL
T > 143 1 FRA A
1 haue b 1 AT
e L T 9191 T
oxt] 1135 AQ¥Q EIIRA RN
Mg " -
fou 03tif w1100 204 .
suy 3 . _
i B X}
s1d Dist) ZHWSY 2250 (2:6°18)8n87YS
usa glro vij <
8871
"
as T “
1 w. en A
13 YOI 9y10 e8IXLY P H
[33 +8S1Y eVIXiW .
€ 80 X134 '
5] /e i .
$31 20 asy mmmklmm H
{2 *3NASNIVIND [E
Hi1 10y i1
A
(324} i —
= (] +1N1908
T 10 .
g Y =
H 0
H
g HEY v
482 cor5 Wi f
I3
TR 204
plaelip 01
¢ 6871 31238
- —<
._: - (0:2)sng0 n (0:¢)sng1a
o) g :
DR NS
vjeoszIte g))
bsls :]
B L NS
88¥1 g

v
¥SesSaveL

3-76

Introduction to the Am28000 Development Tools

LSIO —{>38
16L8 7415273 yee
i LED_4
2 C>-2REQ P2 —3p 1 1BTRI
3 2 TRzl T
) Fﬂ—’g % 2& PR
: $ L—80 sq
A-BUS(31.5. 4) ' =3 7 ’_‘gg i ok
I S Fo CLK 5 -
e e Ral [3 % 1D1R1$ 4
" T Hiime
DREQTO u62 TRIR—
2 o RREaTt =
RESET
:
EEmnnnssE vee
DIPSWS e {1 74aLs24sa
18 o1ls I 18
2 [T N
i3 oifr Fimimm\4
14 5 h 3
i ot HREENS
' 7
i = HEEY
swe |T| uss
PUT
1 >
DIPSWE i3 T4ALS245A
187 '\; l !
1 ¥ rr"i}
} L L H
! L N
i "' Zo u
! a2 ! q
W !T' us1

DI_BUS(15:0)

3-77

29K Family Application Notes

20Y¥L 30IS ¥3IAI0S ¥ SI NOILD3INNOD SIHL ILON ¢

-\/u]
- —<J
S~ (07551809710
[
it |
350
S /
¢ THRDLSY 7 - (o:s1)08
NS
—"A, gy
ATV eaw YEPZSIVEL
b ¢ penL
LUS ard9tams H) JL0N * -
8
p—A A
LLL) gt m. H_H
5 1dgy
M sad Y g T
1014 X
sd¥
YV ' — 3 H X s
i HH
MO gt 1he' 358 J ..::ouwAu !
1 SESENY =
EETY
+00
3
X1
o]
. y i
2 Sy i
E e i
i3 * t o
< i iy . i
X017HOH 0k 1¥91
AIQ XD
L
ssn Ly
8 < sss 7
RS =
vid 2
! - DUEh ¢
Lid o N
. 014 g
< et el d u
yusL
ol
L \

¢
{2y s 1n)sneys

3-78

Introduction to the Am29000 Development Tools

+12v
4

<gslralk

.

1 e

190 H 2

10 THNTER.

1 0
2

H s
2

o

3-79

29K Family Application Notes

e L
a- a ©
T .y Y a.
T
|s
'
ol
ol | Fp o | x| ofo! g
o s ~bolelemiioltok] e ofe! o il
SEBERER E': 3| CECERRRERE a3
a o
sf < £ g 2
=E BEE o S £
NN NN NN N NN N NN * VN2 22222cic - OO NI NI N DV e
o~
a.
I R 0 O Y o i 5|
™
[
LT o o
IC &
I =)
I
St enremem
—~ s
< =
= - "
2 b3 ©
pr >
g g s
- - <
-) P

5 -
>
2 o

3-80

Preparing PROMs Using the
Am29000 Development Tools
Application Note

by Manoj Desai and Doug Walton

INTRODUCTION

Source code for a given application must be converted
to executable Am29000™ object code andtransferredto
the appropriate storage media before it can be executed
in a real system. Usually several utilities are involved;
these include:

« Assemblers

o Compilers

e Linkers

« Format translators (optional, depending on the desti-
nation media)

. This application note shows how an example programin
source code form is made into object code and down-
loaded to a target board with the ADAPT29K™
Advanced Development and Prototyping Tool, or pro-
grammed into PROMs.

THE 29K TOOL CHAIN

The 29K™ tool chain is used to produce the executable
object module. The tool chainis an integrated set of pro-

jion# Rev. Issue Date:

11966 A /0 11/89

grams that includes compilers, assemblers, linkers, and
format translators. These programs perform the opera-
tions necessary to translate the source code into a
machine-readable format. The components of the 29K
tool chain are:

¢ HighC29K™ Compiler

~ ASM29K™ Assembler

o ASM29K Linker

o COFF2HEX (COFF to hexadecimal translator)
« ROMCOFF

o BTOA (binary to ASCII translator)

Figure 1 shows the relationship of the 29K tool chain
elements to each other. In the following discussion,
familiarity with these tools is assumed. Consult the
appropriate reference manuals for more details.

The 29K tool chain can be run under UNIX®, SunOS®, or
DOS, but it must be installed properly on the host sys-
tem before the following example can be performed.
The host in the following discussion is assumed to be an
IBM® AT® or compatible.

© 1989 Advanced Micro Devices, Inc.

3-81

29K Family Application Notes

Cor
Assembly
Language

Source File

.C (C source file)
or
.S (assembly-language source file)

HighC29K
Compiler

ASM29K
Assembler

.O (relocatable object module)

ASM29K
Linker

PROM
Programmer

COFF2HEX | :

.OUT (absolute object module)

Binary to ASCII
BTOA

.ASC (ASCII object module)

ADAPT29K or
MON29K Target

11966A-01

Figure 1. The 29K Tool Chain

3-82

Preparing PROMSs Using the Am29000 Development Tools

SUGGESTED REFERENCE MATERIALS

Consultthe following reference materials for more infor-
mation on the topics covered in this application note.

e Am29000 Streamlined Instruction Processor User's
Manual, order #10620. It contains details regarding
the instruction set and register organization of the
Am23000.

Am29000 Streamlined Instruction Processor Data
Sheet, order #09075. It embodies a great deal of
information about the Am23000, including: distinctive
characteristics, general description, simplified system
diagram, connection diagram, pin designations and
descriptions, functional description, absolute maxi-
mum ratings, operational ranges, DC characteristics,
switching characteristics and wave-forms, and physi-
cal dimensions.

ADAPT29K User's Manual. It provides detailed infor-
mation on the ADAPT29K, including installation,
commands, theory of operation, and target design
requirements.

ASM29K Documentation Set. It provides complete
information on the installation and use of the ASM29K
assembler, linker, and librarian manager. This
includes information on using the ROMCOFF and
COFF2HEX utilities.

e HighC29K Documentation Set. It covers how the
Am23000 C compiler is used.

These materials can be obtained by writing to:

Advanced Micro Devices, Inc.
901 Thompson Place

P.O. Box 3453

Sunnyvale, CA 94088-3453

or by calling (800) 222-9323.

For questions that cannot be resolved with the current
literature, further technical support can be obtained by
writing or calling:

29K Support Products Engineering
Mail Stop 561

5900 E. Ben White Blvd.

Austin, TX 78741

(800) 2929-AMD (US)
0-800-89-1131 (UK)
0-031-11-1129 (Japan)

THE EXAMPLE SYSTEM

The example system used for illustration in this docu-
ment consists of a generic hardware environment and a
small software program. The only function of this self-
contained standalone system is to test a block of mem-
ory. This section describes how the example system
works.

SOFTWARE

The software is a small program that initializes its oper-
ating environment and then continuously tests memory.
Itis comprised of aboot module and a C-language mod-
ule. Aflow chart for the complete application is shownin
Figure 2.

The main portions of the program are contained in two
source files: smplboot.s and cprog.c. The smplboot.s
module is an assembly-language boot program that
receives control on power up. The C-language program
cprog.c performs the memory test.

The tasks performed by smplboot.s are: (1) estab-
lish the execution environment, (2) set up a block of
initialized data in instruction/data RAM (using a rou-
tine generated by the ROMCOFF utility), (3) call the
main program cprog.c, and (4) evaluate the results of
the memory test. If the test fails, smplboot.s halts the
processor.

The cprog.c program tests a 32K byte block of RAM,
using a simple binary write and read test. Then, cprog.c
checks the validity of the initialized data section in
instruction/data RAM. After each successful comple-
tion, aflagis returned to smplboot.s, which increments
a counter. If a test fails, cprog.c returns the address of
the failing memory location. A memory map of the appli-
cation is shown in Figure 3.

Three additional files (traps.s, r29k.s, and scregs.def)
contain the supporting procedures and declarations. All
of the files in the application are listed in Appendices A
through E. To actually perform the example, the files
must be entered onto the host system.

HARDWARE ENVIRONMENT

The application runs on the Standalone Execution
Board (STEB), manufactured by STEP Engineering.
Figure 4 shows a block diagram of the STEB, which
contains an Am29000, some RAM and ROM, and two
serial ports (provided by an 8530 serial communications
controller).

A few important features of the STEB should be noted.
First, data can be passed between the instruction and
data buses via a bi-directional swap buffer. The swap
buffer permits code to be downloaded into the instruc-
tion RAM area via the ADAPT29K. It also allows data
objects inthe instruction ROM space to be read as data.

Second, the instruction ROM space can contain RAM
devices or ROM devices. RAM devices should be
installed when working with the ADAPT29K (see
Appendix F), so that code can be downloaded into the
instruction ROM space.

3-83

29K Family Application Notes

Initialize
Am29000

'

Transcribe
Initialized Data

'

Call Mem Test

-

Write Pattern
and Check

!

Check Initialized
Data

Return

U

Figure 2. Flow Chart of the Example Application

11966A-02

3-84

Preparing PROMs Using the Am23000 Development Tools

Instruction ROM Instruction/Data RAM
Am29000 VAT 0x0
Example Workspace 0x400
Code 0x420
Initialized Data
0x500
Tested Space
32K
0x8500
Empty
MStack
2K
RStack
2K
11966A-03

Figure 3. Memory Map of the Example Application

3-85

29K Family Application Notes

9513A
Timer Counter

RS232
DCE Port

System
Address
Bus

)

~ Buffer

RS232
DCE Port |

)

8530 SCC “h

)

Am29027
Arithmetic

Data

|

Accelerator Bus

Osc (clock)
Circuitry

[Buffer

Wait State
SW3

ROM Space
Buffered EPROM or

Address :> RAM
Bus | Bank #0

Bank #1

Am29000
Processor

Reset
Circuitry

¢

EEk=
Buffers

Instruction/
Data RAM
Space
Bank #0
Bank #1
Bank #2
Bank #3

>

Figure 4. Block Diagram of the STEB

11014A-04

PREPARING AN EXECUTABLE
OBJECT MODULE

Preparing the executable object module involves sev-
eral steps. Typically, the steps are repeated frequently

because errors must be corrected and revisions mustbe
made. The process can be automated by placing the

commands in a DOS batch file. Listing 1 shows the
batch file sc.bat, which is used in the example applica-
tion. Following the listing, each step is explained.

3-86

Preparing PROMs Using the Am29000 Development Tools
Listing 1. The Batch File sc.bat

Qecho off
eChO KKK A KA A A KA A A AR KA KA KA AAK A A AR AKRAAAR IR A A AR AR AR AR Ak Ak khkkh kX

echo “Compiling cprog.c and Assembling the .s files”

echo A KK A A KA A A A KA KA K AR A A KRR KR KA KA KAARA A AR KR AR KR AR A AAKRRKR KR AR A AR kA KAk k%
hc29 -¢ -w cprog.c > cprog.e

hc29 -S -Hasm cprog.c > cprog.e

as29 -1 > smplboot.lst -o smplboot.o smplboot.s

as29 -1 > traps.lst -o traps.o traps.s

as29 -1 > r29K.lst -o r29k.o r29k.s

echo % %k %k %k K Kk Kk ok ok ok ok Kk %k ok k kR Kk ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok k ko ke kK ok ko ok ke ok ok ok ok ok ok ok

echo “Linking object files with libraries and generating”

echo “executable object module for ROMCOFF”
echo KKK KK KKK A KA KA KKK AR K AR KRR A KRR KA KRR KRARKRARA KA AR AR A Ak Ak Ak kkkkhkhkkk

1d29 -c stepl.cmd -o stepl.out -f tx -m > outlink.map

echo Je ok Kk Kk kK A K Kk gk R ok Kk kR K Ak ok ok ok ok ok Sk ok sk ok ok ok ok ke ok ke ke ke ke ke K ke ke kK ok K ok ok ke ke ke ok

echo “Using ROMCOFF”

echo % kK ok kK kK ke ok ok ok ko k ke ok gk ke ke ke ke ok ok ke ok 3k Sk A ok %k ok ok ok ok ok ok e sk ok ok ok ok e ok ok ok ke ok ok ok ok ok ok ok ok

c:\29k\bin\romcoff -tlb stepl.out rom.o

echo AR KKK A KK KA A A AR A AR A A A KR K KR KAK KA A KA IR AKRKAR KRN AR A KA KR AA Rk k kA kkkk

echo “Linking object files with libraries and generating”

echo “final executable object module”
echo KA KK A A KA A AR AR AR A A A A A A AR A AR AR IR AR AKRA KR AR AN AR AR AR R A AR AR Rk Rk)

as29 -1 > smplboot.lst ~DRAMINIT -o smplboot.o smplboot.s
1d29 -c stepZ2.cmd -o step2.out -f tx -m > step2.map

echo KA KA A A KRR A A AR AR A A AR AR A KRR KA AR AKRARA KRR A AR KAA AR AR KA ARk AR Rk XX

echo “Converting executable object code to downloadable format”
echo KA KKK A KA A A A KK KA A KA KA AR A AR AR AN AR AR ARKNA KRR A AKRKAKRAAKRAARA AR A AKX X

c:\29k\bin\btoa step2s.out sc.a

echo Kk kK Kk ek ke ok koK ke sk ok ok ok ok ok k ke ok ke ok ok gk ok ke ok sk ok ke ke ok ok ke ok kb e ok ok ok ke ke ok ok ke ok

echo “Converting executable into PROM-programmable format”
eChO KKK AR KKK A A A A A AR A KR A A A AR A RA AR A AR A A AR KR AR A A AR AR AN AR ARk AN Ak hkhk
coff2hex -c t -m -p 27512 stepZe.out > step2.e

echo on

I’OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOQOOOOOOOOOOOOOOOO
rOOO

COMPILING CPROG.C AND ASSEMBLING
THE .S FILES

The first group of operations in the batch file obtains
relocatable object modules from the source files. The
C-language source file cprog.c is compiled by invoking
the HighC29K compiler with the command line:

hc29 -c¢ —-w cprog.c

HighC29K replaces the symbolic instructions in the
source file with equivalent machine-code routines. Then
a relocatable object file (cprog.o) is produced, as
shown in Figure 5.

The parameter —w suppresses warning messages, limit-
ing the output to containing only errors; the —c parame-
ter instructs the assembler to produce the object file.
Note that a second compilation is performed with the
-Hasm flag on. This produces an assembly listing (.s
file) only.

Next, the ASM29K assembler is used to assemble the
modules smplboot.s, traps.s, and r29k.s. This in-
volves replacing assembly-language symbolic instruc-
tions in the source file with the corresponding machine
instruction code. To assemble smplboot.s and obtaina

3-87

29K Family Application Notes

relocatable object file, the following command line can
be entered:

as29 -1 > smplboot.lst -o
smplboot.o smplboot.s

A relocatable object file (smplboot.o) and a listing file
(smplboot.Ist) are produced from the assembly. All
assembly-time errors are directed to the std.out. The
operation is shown in Figure 6. The same operation is
done on traps.s and r29k.s.

Linking

Once the relocatable object files have been made, they
must be linked (i.e., assigned physical addresses). This
is done using the ASM29K linker, which allows one or
more object files from either the assembler or the

} Same line.

compiler to be linked together into a single executable
object file.

The object modules are linked by entering the command
line:

1d29 -c stepl.cmd -o stepl. out})
-f tx -m > outlink.map Same line.
Using the command file step1.cmd (see Listing 2), the
files smplboot.o, r29K.o, and traps.o are linked with
cprog.o into a single, non-relocatable object file called
sc.out. Areference towhere each module was placed is
put in the map file step1.map. Any error messages are
sentto the std.out. The linking process produces a map
file that lists the local symbol table, external symbols,
and the cross-reference. This type of output is a good
reference to the entire application program.

HighC29K Compiler }

N—

'

11966A-05

Figure 5. Compiling cprog.c

3-88

Preparing PROMs Using the Am29000 Development Tools

-
—

smplboot.s

ASM29K
Assembler

i
———]

smplboot.o

smplboot.Ist

11966A-06

Figure 6. Assembling smplboot.s

Listing 2. The Linker Command File step1.cmd

ORDER .text=0x0

ORDER .bss=0x100400

ORDER .data=0x100420

PUBLIC _MSTACK=0x1f7fc

PUBLIC _RSTACK=0x1fffc

load smplboot.o,r29k.o,traps.o
load cprog.o

load c:\29k\1lib\libmw.lib

l>()OO(>OOOOOOOO<J

])00000000000001

TRANSFERRING CODE FROM ROM TO RAM:
ROMCOFF

The smplboot.sfile contains a section of initialized data
that must be loaded into instruction/data RAM and
tested by the application program. This could be accom-
plished by writing many lines of const, consth, and
storem instructions into the smplboot.s file. Another
method is to use the ROMCOFF utility.

The ROMCOFF utility transforms user-specified sec-
tions of an Am238000 program into a stream of instruc-

tions that will perform the transcription. From a fully
linked, executable Am23000 program, the ROMCOFF
utility generates a COFF output file containing in-
itializers that will establish the image of an executable
COFF input file in instruction/data RAM. The output file
contains one section, RI_text, within which is one rou-
tine, RAMInit. The output file can then be linked with
other relocatable modules that will remain in Instruction
ROM, to produce a single non-relocatable module for
programming PROMs.

3-89

29K Family Application Notes

ROMCOFF can be used to transcribe entire sections of
code into instruction/data RAM. Then, once the applica-
tion’s boot program has finished preparing the environ-
ment, it transfers control to the transcribed program in
instruction/data RAM. This allows the code to be
executed out of high-speed RAM devices, which are
frequently more cost effective than high-speed PROMs.
See Figure 7.

Inthe example program, only a section of initialized data
in smplboot.s is transferred to RAM. ROMCOFF
creates a relocatable object module thattranscribes the
data sections to RAM when the following command line
is entered:

romcoff -tlb stepl.out rom.o

The linked output file step1.out is made into the file
rom.o. Only the data section is output, because of the
ROMCOFF options -tib, which specify that the text,
literal, and bss sections should be ignored.

The output from ROMCOFF (rom.0) contains only code
to transcribe data sections. It must be re-linked with the

object files to produce a final absolute object module.
First, the code in smplboot.s, which contains a call to
the RI_text section, must be assembled to include the
conditional assembly statements.

To assemble smplboot.s so that it will contain the call,
enter:

as29 -1 > smplboot.lst -DRAMINIT] Same
-0 smplboot.o smplboot.s line.

The -D option defines RAMInit so that conditional as-
sembly statements in the source file will be assembled.
The statements include a definition of RAMInit, and a
call to it. Then, all of the object modules can be linked

with rom.o as follows:

1d29 -c step2.cmd -o step2.out Same
-f tx -m > step2.map line.

A second linker command file is used because rom.o
must identified to the linker (see Listing 3).

Instruction ROM

Boot

or

Instruction/Data RAM

e Main
Initialize
Environment

Main

Transcribe Code
to RAM

Call Main

Execute
Application

11966A-07

Figure 7. Using ROMCOFF .

3-90

Preparing PROMs Using the Am29000 Development Tools

Listing 3. The Linker Command File step2.cmd

ORDER .text=0x0,RI_text
ORDER .bss=0x100400
ORDER .data=0x100420
PUBLIC _MSTACK=0x1f7fc
PUBLIC _RSTACK=0x1lfffc
load smplboot.o

load rom.o

load r29%k.o,traps.o

load cprog.o

load c:\29k\1lib\libmw.1lib

LOOOOOOOOOOOOOOOOOOOOOOO

rOOOOOOOOOOOO000000000001

DOWNLOADING TO THE ADAPT29K

Once the final executable object module is created, the
example program can be downloaded to the target
system and tested using the ADAPT29K.

USING BTOA

The BTOA utility creates an ASCIl COFF output from
the input file. Although the ADAPT29K can handle
Tektronics® or Motorola® hex files, using the BTOA util-
ity to make the ASCII hex file has several advantages.

Most importantly, BTOA encodes the input file into
(7-bit) ASCll using a compact base-5 scheme that limits
file expansionto only 25 percent, as opposed to 150 per-
cent for standard hex formats. Hence, the resulting out-
put file is smaller, and consequently quicker to transfer.
Also, BTOA maintains the ASCII COFF format, rather
than converting it to absolute addresses.

As shown in the sc.bat batch file, BTOA produces the
output file sc.a and is invoked by:

btoa step2s.out sc.a

00000000R 6400200
00000004R 03fb41ff
00000008R 90404041
0000000cR ce000240
00000010R 03004000
00000014R ce000040
00000018R 0300403f
0000001cR ce000740

MFSR GR64,CPS

CONST GR65, 0xFBFF

AND GR64,GR64,GR65

MTSR CPS,GR64

CONST GR64, 0x0

MTSR VAB, GR64

CONST GR64, 0x3F

MTSR RBP,GR64 11966A-08

Figure 8. List Memory Display

3-91

29K Family Application Notes

Listing 4. Results of “End Execution” Command List

o

S > da 400,420

o 00000400 00000000 00000000 00000000 00000000
S 00000410 00000000 00000000 00000000 00000000
o 00000420 00000000

°

00000000

TESTING THE EXAMPLE PROGRAM WITH THE
ADAPT29K

Once the object module has been translated using the
BTOA utility, it can be downloaded to the target using
ADAPT29K. For use with ADAPT29K, the STEB should
be configured as indicated in Appendix F.

To download the file, communication must be estab- .

lished with the ADAPT29K. On a PC, this is done by
invoking the terminal emulator program (for example,
CrossTalk®), establishing communication with the
ADAPT29K, and entering (note that # is the ADAPT29K
monitor prompt):

va ¢,0r

The Y (load a file to memory) command prepares the
ADAPT29K to receive an ASCll-encoded file from the
DCE port. Then, the emulator must be instructed to
transmit the file' (for example, se sc.a when using
CrossTalk). After the code has been downloaded, and

the next prompt has appeared, the contents of the
instruction ROM can be verified by entering:

$# 1 Or

The ADAPT29K should respond to the L (list memory)
command with the display shown in Figure 8. The loca-
tions starting at 0x400 in instruction/data RAM contain
the status of the test and number of successful loops,
respectively. Which location actually contains which
variable is a decision made by the linker, and must be
determined by inspection.

To check these locations automatically when the execu-
tion stops, set up an “end execution” command list by
entering:

e d 400,420;

The listis executed on entry. it should appear as shown
in Listing 4.

GRO80
GRO88
GR0O96
GR104
GR112
GR120

00000000
00000000
00104a1l8
00000000
00000000
fEEfELESE

00000000
00000000
00000000
00000000
00000000
80000000

00000000
00000000
00000000
00000000
00000000
00000000

LR0OOO
LROO8
LRO16
LRO24
LR032
LR0O40
LRO48
LRO56

00000928
00000000
00000000
00000000
00000000
00000000
00000000
00000000

0001fffc
00000000
00000000
00000000
00000000
00000000
00000000
00000000

00100414
00000000
00000000
00000000
00000000
00000000
00000000
00000000

GROO1
0001ffed
(R249)

IPC
00
(GR000)

IPA
00
(GR000)

IPB
00
(GR00O)

Figure 9. Key Registers Display

00000000
00000000
00000000
00000000
00000000
00000000

00108414
00000000
00000000
00000000
00000000
00000000
00000000
00000000

Q

00000000 0

00000000
00000000
00000000
00000000
80000020
00000000

00000000
00000000
00000000
00000000
00009549
0001f7fc

00000000
00000000
00000000
00000000
00100400
00000£f£f

00000000
00000000
00000000
00000000
00000095
06050101

000000£0
00000000
00000000
00000000
00000000
00000000
00000000
00000000

0001fffc
00000000
00000000
00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

ALU: DF VN Z C BP FC CR
0000 O 00 00

11966A-09

3-92

Preparing PROMSs Using the Am29000 Development Tools

Prior to starting the test, itis a good practice to reset the
system by using the P reset command:

p reset

To verify the condition of the system before execution,
the X (Display Key Registers) command is entered as:

x

This will result in a display as shown in Figure 9. The
special-purpose protected registers can be checked
using the XP (display protected registers) command.
The display appears as shown in Figure 10.

To execute the program starting from address 0 in
instruction ROM, the G (go—start execution) command
is used:

g Or

During execution, the status of the program can be
checked by invoking the previously defined “end execu-
tion” command list. ‘

Enter:
e

The display will be similar to that shown in Figure 11.
The precise display in any given situation, particularly
the loop count stored in location 40CD is dependent
on the exact time elapsed between the start execution
and the entry of the E command. At anothertime, it may
appear as shown in Figure 12.

The state of the processor can be checked using the C
(check execution state command):

c
When the processor is running, ADAPT29K displays:
Am29000 is Running.

xp

CA IP TE TP TU FZ LK RE WM PD PI SM

CPS: 0 0 0 0 0 1 0 1
OoPS: O 0 0 0 0 1 0 1

IM DI DA
1 1 1 0 1 1
1 1 1 0 1 1

VAB CFG: PRL VF RV BO CP CD

0000 01 1 0 0 1

CHA CHD CHC: CE CNTL CR LS ML ST LA TF TR NN CV
00104al4 00000000 0 00 1 0 0 0 0 79 1 0O

RBP: BF BE BD BC BB BA B9 B8 B7 B6 B5 B4 B3 B2 Bl B0

00 0 0 0 0 0 0 0 0 1

TCV TR: OV IN IE TRV PCO
000000 1 1 0 - 000000 00000a34
#

11 1 1
PC1 PC2 MMU: PS PID LRU
00000230 00000a2c 0 00 0

11966A-10

Figure 10. Protected Registers Display

3-93

29K Family Application Notes

> d 400,420
00000400 009595d9 00000000 00108414 0000002d uvveennnnn.
00000410 00100414 00000000 00000000 00000000 cou....
00000420 00000000
11966A-11
Figure 11. Check Status Display
> d 400,420
00000400 009595d9 00000000 00108414 000000el
00000410 00100414 fEfffFffFff EEELFFFEf EEEEEEFE . ovvnnvnnnnnnn.
00000420 fEEFEFEE
#
11966A-12

Figure 12. Second Check Status Display

PREPARING PROMs

Once the absolute object file has been prepared, it must
be transferred to the media from which the code will be
executed. Often, this medium is a PROM set. Most
PROM programmers require their input to be in an
ASCII hex format, so atranslation normally is performed
before sending the program to the PROM programmer.

MAKING HEX FILES: COFF2HEX

The COFF2HEX utility produces a 32-bit ASCII hex file
in either the Motorola S3 or Tektronics Extended format.
Both of these formats are accepted by most PROM
programmers, as well as the ADAPT29K. Note that the
ADAPT29K requires the file to be one module, rather
than being divided into separate modules by part size
(see the options of the COFF2HEX utility).

In sc.bat, COFF2HEX is invoked by entering:

coff2hex ~c t -m ~-p 27512
step2e.out > sccoff.e

This produces 8-bit wide modules that will fit into a
27512 EPROM (-p option). The format is Motorola S3
{(—m option), and will include only the text sections (—c t
option).

The resulting file(s) will be named a.a00, a.a08, a.a16,
and a.a24, indicating which bytes of the word they
represent. If the file is larger than the capacity of the part
size specified, additional sets of four will be generated
with filenames a.b00, a.b08, a.b16, a.b24, and so on,
with further sets having a corresponding nomenclature.
Once generated, the files can then be transmitted to a
PROM programmer.

} Same line.

PROGRAMMING THE PROMS

A PROM programmer is used to “burn” the binary object
file into PROM devices. Many types of PROM program-
mers are available. The Data I/O Unisite® PROM
programmer is used in the following example.

Assuming an object module had been created as
described in the first part of this document (and a set
of Motorola S3 modules were obtained using
COFF2HEX), the following procedure could be used to
create a PROM set.-

1. Turn on the PROM programmer. Make sure the
algorithm disk is properly inserted in the lower front
slot.

2. Once the power-up sequence and diagnostics have
completed, a screen should appear on the attached
terminal. If there is no terminal, or the screen does .
not appear, refer to the set-up section of the user's
manual for the PROM programmer.

3. Make sure a host system is attached. In this exam-
ple, the use of a PC is assumed. At the PC, set the
COM1 serial port of the PC to 9600 baud, no parity,
8-bit bytes, and one stop-bit by entering: mode

. com1:96,n,8,1. On the PROM programmer, select
“Configure System,” followed by “Edit,” and then
“Serial I/0." Make sure the remote port parameters
are set properly.

4. The program will be placed in AMD 27512 PROMs.
To inform the PROM programmer, choose “Select
Device,” “3" (AMD), and “25” (27512).

3-94

Preparing PROMs Using the Am29000 Development Tools

5. It is a good idea to clear the PROM programmer’s
memory before downloading data. This ensures
that the PROMs do not become programmed with
leftover data from a previous operation, which may
cause troublesome errors. To clear the memory,
select “Fill Memory.” Enter 00 to 7FFFF as the
address range, and FF as the data.

. The PROM programmer must know the format of
the incoming data. Select “Transfer Data,” followed
by “Format Select.” Enter “95" for Motorola S3
Record.

. Select “Load Device" on the programmer. On the
PC, enter:

copy a.a00 coml:
This causes the lowest 8 bits of the application to be

transmitted to the PROM programmer, which will
load the data into its memory.

8. Properly insert a PROM into the ZIF socket on the

PROM programmer and engage the locking mecha-
nism. Select “Program Device” option on the PROM
programmer.

). Once the PROM has been burned, remove it and

label it with the program name, range of bits,
version, and date. Then, repeat steps 7-9 using the
files a.a08 through a.a24. If a larger program is
used, it may be necessary to repeat steps 7-9 using
modules a.b00, a.b08, a.b16, a.b24, and so on.

3-95

29K Family Application Notes

APPENDIX A: smplboot.s

.extern r29k_init
.extern _main
.extern V_SPILL,V_FILL Linker definable V_SPILL and V_FILL vector numbers
.extern spill, £fill spill and fill procedure

; assembly module

;

;

;
.extern _RSTACK, _MSTACK ; Link time definable stack pointer assignments

H

C module

.equ ROM_TH, 0x2 Spill and fill trap interface do truly reside in ROM space
.equ RSC_SIZE, 0x200 Default reg_stack_cache usage=512
.equ TBM_SIZE,0x20000 32K*4=128kb of Inst/RAM size
.include “scregs.def” ’
.data
.word (201170
.comm mtp_count, 4
text
.ifdef RAMINIT ; if RAMINIT Flag on
.extern RAMInit ; make RAMInit available
.endif
.global start
start:
mfsr tmp0,CPS ; Read CPS
const tmpl, OXFBFF ; Clear F2Z bit
and tmp0, tmp0, tmpl
mtsr CPS, tmp0 ; Update CPS .
const tmp0, 0 ; Set VAB pointing to LOW memory
mtsr VAB, tmp0 .
const tmp0, O0x11 ; Set VF=1, i.e., Vector table scheme and CD=1,
; i.e., Branch Target Cache is disabled
mtsr CFG, tmp0
const tmp2, 0 ; Write Data pattern = 0x00000000
const tmpC, 0 ; Low memory address
consth tmpl, TBM SIZE ; High memory address
sub tmpl, tmpl, tmp0 ; Get address difference
srl tmpl, tmpl, 2 ; Get word count from diff value
sub tmpl, tmpl, 2 ; adjustments for jmpfdec instr
mem 00: ; £ill TB_memory with all zeros
store 0,0,tmp2, tmpl
jmpfdec tmpl, mem 00
add tmp0, tmp0, 4
const tmp0, 256-2 ; Total of 256 vector table entries
const tmpl, i11trap+0x2 : ROM based illegal trap handlers
consth tmpl,illtrap ; address, by default
const tmp2,0
vtd_init: ; fill vector table with default
store 0,0,tmpl, tmp2 ; trap handlers
jmpfdec tmp0, vtd_init
add tmp2, tmp2, 4
const tmp0, spilltrap+ROM TH ; get spill trap entry point
censth tmp0, spilltrap
const tmpl,V_SPILL ; get spill trap vector number
sll tmpl, tmpl, 2 ; generate vect number location
store 0,0,tmp0, tmpl ; store address of trap handler into vector table
const tmp0, filltrap+ROM_TH ; get fill trap entry point
consth tmp0, filltrap
const tmpl,V_FILL ; get fill trap vector number
sll tmpl, tmpl, 2 ; generate vect number location
store 0,0,tmp0, tmpl ; store address of trap handler into vector table
const rfb, RSTACK ; Set RFB
consth rfb, RSTACK
const tmp0, RSC_SIZE ; 0x200=512 bytes ie 128%*4
sub rab, rfb, tmp0 ; Set RAB=RFB-512
sub rsp,rfb, 0x8 ; Set RSP=RFB-8
const msp, MSTACK ; Set MSP
consth msp, MSTACK .
add 1rl, rfb,0 ; Set 1lrl to RFB
const tmp0, r29k_init
consth tmp0, r29k_init
calli 1r0, tmp0 ; call procedure to init 29K registers
nop
.ifdef RAMINIT ; if RAMINIT on,

3-96

Preparing PROMs Uslﬂ the Am29000 Development Tools

.endif
nop
const
consth
mtsrim
mtsrim
mtsr
add
mtsr
xor
iret
exec:
const
consth
calli
nop
sll
sll
sll
const
consth
load
cpeq
jmpt
nop
halt
again:
add
store
sll
sll
sll
jmp
nop
spilltrap:
mfsr
const
consth
mtsr
add
mtsr
iret
filltrap:
mfsr
const
consth
mtsr
add
mtsr
iret
illtrap:
halt
.end

tmp0, RAMInit
tmp0, RAMInit
gr96, tmp0

tmp0, exec
tmp0, exec

OPS, 0x172

CPsS, 0x573

PC1, tmp0

tmp0, tmp0, 4
PCO, tmp0

tmp0, tmp0, tmp0

1r0,_main
1x0,_main
1r0,1r0

gr97,9r64,0
gr98,9r65,0
gr99,9ré6,0
gr64,mtp_count
gré4,mtp_count
0,0,9r65,9r64
gr67,g9r96,0
gr67,again

gr65,9r65,1
0,0,9r65,9r64
gr64,gr97,0
gr65,9r98,0
gr66,gr9%,0
exec

tpc,PCl

tmp0, spill
tmp0,spill

PC1, tmp0

tav, tmp0, tmp0+4
PCO, tmp0

tpec,PCl

tmp0, £i11

tmp0, fill

PC1, tmp0

tav, tmp0, tmp0+4
PCO, tmpl

LTSRN N~ ~

~

~ e

Neove N e v ~ ~ ~ LYY

~ e e e o

e -~ ~ v

set up RAMInit call

and do the call

make sure code takes same
number of locations

regardless of RAMINIT condition

in case we did calli
get target application task address

RE=1, PI=1, PD=1, SM=1 and DI=1
Set Target application Task address

Any additional regs clean up
Give control to application via IRET

get C-callable routine entry point
make the call

Save user global registers gré64
through gré66

get address of memory test pass
count recorder

get current count so far

check for memory test pass?

true then run test again

false halt further memory testing
bump mtp_count by 1

update in memory also

Restore user global registers gr64
through gré6

run the memory test once again

save return address in tpc

get spill procedure entry point

£ill Am29000 pipeline target address
£i1l Am29000 pipeline with target address+4
save return address in tpc

get fill procedure entry point

fi111 Am29000 pipeline target address

fi11 Am29000 pipeline with target address+4

3-97

29K Family Application Notes

APPENDIX B: cprog.c

#define MT_PASSED 0
#define SOLID_ONES -1
#define SOLID_ZEROS 0
#define MT_BLK_SIZE 32768

#define WORD_SIZE 4
#define INIT_DATA 170
#define MEM BLOCK 1056

#define NIT_DATA_BASE 1280
#define INIT DATA_SIZE 15

*mt_sts;
lm_addr,hm_addr;
initdata;
*mem_test () ;

main()

{

int
int

Im_addr = INIT_DATA_BASE;

hm_addr = INIT_DATA_BASE+MT_BLK_SIZE/WORD_SIZE;
initdata = MEM BLOCK;

mt_sts = mem_test (lm_addr,hm_addr, initdata);

*mem_test (low,high, initd)
*low, *high, *initd;

int *addr;

/* Solid Ones test */
for (addr=low; addr<=high; addr++)
*addr = SOLID_ONES;
for (addr=1ow; addr<=high; addr++)
if(*addr != SOLID_ONES)
return (addr) ;

/* Solid Zeros test */
for (addr=low; addr<=high; addr++)
*addr = SOLID_ZEROS;
for (addr=low; addr<§high: addr++)
if (*addr != SOLID_ZEROS)
return (addr);

for (addr=initd;addr<in itd+INIT_DATA_SIZE;addr+)
if(*addr != INIT_DATA)
return (addr);
return (MT_PASSED) ;

3-98

Preparing PROMSs Using the Am29000 Development Tools

APPENDIX C: r29k.s

.macro I29kGPR,gpr_nu

xor gpr_nu,gpr_nu,gpr_nu
.endm
.macro I29kSPR, spr_nu
mtsrim spr_nu, 0
.endm
.macro I29kMPR, tlbr_nu
const gr65,tlbr_nu
mttlb gré5,9ré6
.endm
.text
.global r29k_init
r29k_init:
I29kGPR gré? ; Set GR67-GR127 to known state = 0

I29kGPR gré8
I29kGPR gr69
I29kGPR gr70
I29kGPR gr7l
I29kGPR gr12
I29kGPR gri3
I29kGPR gr74
I29kGPR gr75
I29kGPR gr76
I29kGPR gr17
I29kGPR gr78
I29kGPR gr79
I29kGPR gr8o
I29kGPR gr8l
I29kGPR gr82
I29kGPR gr83
129kGPR gr84
I29kGPR gr85s
I29kGPR gr8é
129kGPR gr8?
I29kGPR gr88
I29XxGPR gr89
I29kGPR gr90
I29kGPR gr9l
I29kGPR gr92
I29kGPR gr93
I29kGPR gro4
I29kGPR gr95
I29kGPR gr96
I29kGPR gr97
I29kGPR gr98
I29kGPR gr99
I29kGPR grl00
I29kGPR gril01
I29kGPR - grl02
I29kGPR grl03
129kGPR grl04
I29kGPR grl0s
I29kGPR grl0é
I29kGPR grl07
I29kGPR grl08
I29kGPR grl09
I29kGPR grllo
I29kGPR grlll
I29kGPR grll2
I29kGPR grll3
I29kGPR grll4
I29kGPR grlls
I29kGPR grille
I29kGPR gril?
I29kGPR grlls
I29kGPR grll9
I29kGPR grl20
I29kGPR grl2l

3-99

29K Family Application Notes

I29kGPR
I29kGPR
I29kGPR
I29kGPR
I29kGPR
I29kGPR
I29kGPR
I29kGPR
I29kGPR
I29kGPR
I29kGPR
I29kGPR
I29kGPR
I29kGPR
I29kGPR
I29kGPR
I29kGPR
I29kGPR
I29kGPR
I29kGPR
I29kGPR
I29kGPR
I29kGPR
I29kGPR
I29kGPR
I29kGPR
I29kGPR
I29kGPR
I29kGPR
I29kGPR
I29kGPR
I29kGPR
I29kGPR
I29kGPR
I29kGPR
I29kGPR
I129kGPR
I29kGPR
I29kGPR
I29kGPR
I29kGPR
I29kGPR
I29kGPR
I29kGPR
I29kGPR
I29kGPR
I29kGPR
I29kGPR
I29kGPR
I29kGPR
I29kGPR
129kGPR
I29kGPR
TI29kGPR
I29kGPR
I29kGPR
I29kGPR
I29kGPR
I29kGPR
I29kGPR
I29kGPR
I29kGPR
I29kGPR
I29kGPR
I29kGPR
I29kGPR
I29kGPR
I29kGPR
I29kGPR
I29kGPR

grl22
grl23
grl24
1r2
1r3
ir4
1rs
1ré
1r7
1r8
1r9
1rl0
1rll
1rl2
1r13
1r14
1rls
1rlé
1rl7
1rls
1rl9
1r20
1lr21
1r22
1r23
1r24
1r25
1r26
1r27
1r28
1r29
1r30
1r31
1r32
1r33
1r34
1r35
1r36
1r37
1r3s
1r39
1r40
1r4l
1r42
1r43
1r44
1r4s
1r4e
1r4?
1r48
1r49
1r50
1r51
1r52
1r53
1r54
1r55
1r56
1r57
1r58
1r59
1r60
1r6l
1ré62
1ré63
lré4
1ré5
1ré6
1rée7
1r68

;

Set 1r2-1rl27 to known state

0

3-100

Preparing PROMSs Using the Am29000 Development Tools

I29kGPR 1re9
I29kGPR 1r70
I29kGPR 1r71
I29kGPR 1r72
I29kGPR 1r73
I29kGPR 174
I29kGPR 1r75
I29kGPR 1r76
I29kGPR 1r77
I29kGPR 1r78
I29kGPR 1r79
I29kGPR 1r8o
I29kGPR 1r8l
I29kGPR 1r82
I29kGPR 1r83
I29kGPR 1r84
I29kGPR 1r8s
I29kGPR 1r86
I29kGPR 1r87
I29kGPR 1r88
I29kGPR 1r89
I29kGPR 1r90
I29kGPR 1r91
I29kGPR 1r92
I129kGPR 1r93
I29kGPR 1r94
I29kGPR 1r95
I29kGPR 1r96
I29kGPR 1r97
I29kGPR 1r98
I29kGPR 1r99
I29kGPR 1r100
I29kGPR 1ri01
I29kGPR 1r102
I29kGPR 1rio3
I29kGPR 1r104
I29kGPR 1rl05
I29kGPR 1ri0e6
I29kGPR 1rl07?
I29kGPR 1r108
I29kGPR 1rl09
I29kGPR 1r110
I29kGPR 1rll1
I29kGPR 1r112
I29kGPR 1r113
I29kGPR 1rll4
I29kGPR 1rl1s
I29kGPR 1rllé
I29kGPR 1r11?
I29kGPR 1ri1ls
I129kGPR 1rl19
I29kGPR 1r120
I29kGPR 1r121
I29kGPR 1r122
I29kGPR 1r123
I29kGPR 1r124
I29kGPR 1rl25
I29kGPR 1rl26
I29kGPR 1r127
; Set spl,sp4-sp? to known state = 0
I29kSPR OPS ; Set spl3 and spld4 to known state =
I29kSPR CHA '
I129kSPR CHD
I29kSPR CHC
I29kSPR RBP
I29kSPR T™C
I29kSPR TMR
I29%kSPR MMU
I29kSPR LRU
I29kSPR IPC ; Set spl28-135 to known state = 0

0

3-101

29K Family Application Notes

I29kSPR
I29kSPR
I29kSPR
I29kSPR
I29kSPR
I29kSPR
I29kSPR
const

I29kMPR
I29kMPR
I29kMPR
I29kMPR
I29kMPR
I29kMPR
I29kMPR
I29kMPR
I29kMPR
I29kMPR
I29kMPR
I29kMPR
I29kMPR
I29kMPR
I29kMPR
I29kMPR
I29kMPR
I29kMPR
I29kMPR
I29kMPR
I29kMPR
I29kMPR
I29kMPR
I29kMPR
129kMPR
I29kMPR
I29kMPR
I29kMPR
I29kMPR
I29kMPR
I29kMPR
I29kMPR
I29kMPR
I29kMPR
I29kMPR
I29kMPR
I29kMPR
I29kMPR
I29kMPR
I29kMPR
I29kMPR
I29kMPR
I29kMPR
I129kMPR
I29kMPR
I29kMPR
I29kMPR
I29kMPR
I29kMPR
I29kMPR
I29kMPR
I29kMPR
I29kMPR
I29kMPR
I29kMPR
I29kMPR
I29kMPR
I29kMPR
I29kMPR
I29kMPR
I29kMPR
I29kMPR

IPA
IPB
Q
ALU
BP
FC

; Set tr0-trl27 to known state = 0

3-102

Preparing PROMs Using the Am29000 Development Tools

I29kMPR 62
I29kMPR 63
I29kMPR 64
I29kMPR 65
I29kMPR 66
I29kMPR 67
I29kMPR 68
I29kMPR 69
129kMPR 70
129kMPR 71
I29kMPR 72
I29kMPR 73
I29kMPR 74
129kMPR 75
I29kMPR 76
129kMPR 77
I29kMPR 78
I29kMPR 79
I29kMPR 80
I29kMPR 81
I29kMPR 82
I29kMPR 83
I29kMPR 84
129kMPR 85
I29kMPR 86
I29kMPR 87
I29kMPR 88
129kMPR 89
I29kMPR 90
I29kMPR 91
I29kMPR 92
I29kMPR 93
I29kMPR 94
I20kMPR 95
I29kMPR 96
129kMPR 97 4
I29kMPR 98
I29kMPR 99
129kMPR 100
I29kMPR 101
I29kMPR 102
I29kMPR 103
I29kMPR 104
129kMPR 105
I129kMPR 106
I29kMPR 107
I29kMPR 108
129kMPR 109
129kMPR 110
I29kMPR 111
I29kMPR 112
I29kMPR 113
T29kMPR 114
129kMPR 115
129kMPR 116
I29kMPR 117
I29kMPR 118
129kMPR 119
I29kMPR 120
129kMPR 121
I29kMPR 122
I29kMPR 123
I29kMPR 124
I29kMPR 125
I29kMPR 126
129kMPR 127

jmpi 1r0 ; return to caller
const gr65,0
.end

3-103

29K Family Application Notes

APPENDIX D: traps.s

TRAPS.S

.text
.global spill,fill
-include “scregs.def”

Spill and fill process

spill:
sub tav, rab, rsp ; compute spill: lower bound - sp
sub rfb, rfb, tav ; adjust rfb pointer
srl tav,tav, 2 ; shift to get number of words
sub tav,tav,1 ; count is one less
mtsr CR,tav ; set Count Remaining register
storem 0,0,1r0,rfb ; spill
s1l rfb, rab, 0 ; adjust rfb pointer
jmpi tpc ; return to “caller”
sll rab, rsp,0 ; adjust rab

fill:
const tav, 0x80¢<2 ; local register bit
or tav, tav, rfb ;7 in rfb for IPA
mtsr IPA, tav ; IPA gets starting register number
sub tav, lrl, rfb ; compute number of bytes to fill
add rab, rab, tav 2 push up the allocate bound
srl tav,tav,2 ; change byte count to word count
sub tav,tav, 1l ; make count zero-based
mtsr CR, tav ; set Count Remaining register
s1l tav, rfb,0 ; save old rfb
sll rfb,1r1,0 ; push up the free bound
jmpi tpc ; return to “caller”
loadm 0,0,9r0,tav ;s fill
.end

3-104

Preparing PROMs Using the Am29000 Development Tools

APPENDIX E: scregs.def

.reg
.reg
.reqg
.reg
.reg
.reg
.reg
.reg
.reg

rsp,grl

msp,grl2s
rab,grl2é
rfb,grl27
tpec,grl2l
tav,grl22
tmp0,gré4
tmpl, greé5
tmp2,9ré66

~e e v s

~

register stack pointer

memory stack pointer

register allocate bound

register free bound

trap handler argument/temp

trap handler return address/temp
temp registers allocations

3-105

29K Famlly Application Notes
APPENDIX F: CONFIGURATION OF THE

STEB
P13 Daughter Board P12 Daughter 'Board
J1 scc 5. 4 ROM Memory Size Jumpers
e | [L n e s b dhdhdh o
| VN Y 3
123 LA JP6 JP5 JP4 JP3 JP2 JP1
SW1 : :
J2 SW JP8 P5 P8 P9 * ROM SPACE
T RS-
DTE 232 LAl eal LAl P4
Target Memory Disable
— 123 LA
sw2 — Jr7
LEDs —
RS-1 | warr
232 Am29000
T sws
P11
| Ue4
Power 20
1o Am29027
SW4
21
Interrupts
Power & Traps
9513A
P7 P8
us2
LA| LA e !
ROM RAM
Size Size

** RAM Space Bank #2
** RAM Space Bank #3

** RAM Space Bank 0

Footnotes: * ROM Space Bank 0
** RAM Space Bank 1

* ROM SPACE BANK 1

Note: The STEB uses PROMSs (can be MON29K) in ROM space bank 0; otherwise can
have RAMs in ROM space bank 0 for downloading programs using ADAPT29K. ’ 11966A-13

Figure 13. Configuration of the STEB

3-106

Programming Standalone Am29000 Systems a

Application Note

by Jim Gibbons and Doug Walton

INTRODUCTION

Advanced Micro Devices is developing a complete line
of Am29000™ simulators, hardware-target execution
vehicles, and high-level language development tools for
the Am29000 32-bit Streamlined Instruction Processor.
These products are designed to support end-users who
are building embedded system applications based on
the Am29000 processor. For these users, often there is
no existing operating system or kernelfor their hardware
design.

A standalone program runs independently of an operat-
ing system or other supporting software. As opposed to
aprogramthat runs under an operating system, a stand-
alone program is concerned about the characteristics of
the hardware environment. It controls hardware devices
and must be aware of the system architecture. Conse-
quently, the needed executive functions that would be
performed by an operating system must be designed
into the application program.

HOW TO USE THIS APPLICATION NOTE

This document covers some important issues in pro-
gramming a standalone Am29000 system. Its purpose
is not to explain every possible implementation of the
Am29000, but to present a basic framework from which
to start development.

Many sample sections of code are shown. Most are
taken from the STARTUP files provided on the
ASM29K™ software and are listed in the appendices.
These files can be consulted for a complete example of
the boot-up and initialization process. Be aware that the
range of possible applications in which the Am23000
can be used is extensive, and it would be impossible to
provide code that will work in every situation. The code
samples have been tested in simple, limited applica-
tions, and should be used as a guideline, not as a
finished solution.

The Effects of Memory Organization section discusses
how the memory organization of an Am29000 system
affects the design of a standalone program.
Attention is given to the location from which code is
executed and how it is accessed.

F # Rev. A Issue Date:
11025 A /0 11/89

The Am29000 Calling-Convention section summarizes
the Am29000 run-time model. Writing good Am29000
assembly-language programs requires knowledge of
the run-time model. Code samples used in this applica-
tion note follow the convention established by the run-
time model. Understanding the convention eases
understanding the examples.

The Writing the Start-up Program section explains how
an example startup program works. Each task done in
the process is discussed, from configuring the Am29000
through calling _main.

SUGGESTED REFERENCE MATERIALS

This application note covers fundamental design issues
involved in implementing a standalone Am29000 sys-
tem. However, designing a standalone systemis acom-
plex task involving many areas. Knowledge of the
Am29000 is necessary, as well as the subjects covered
in the following reference materials.

Am29000 Streamlined Instruction Processor User's
Manual, order #10620. It contains details regarding the
instruction set and register organization of the
Am29000.

Am238000 Streamlined Instruction Processor Data
Sheet, order #09075. It embodies a great deal of infor-
mation about the Am238000, including distinctive char-
acteristics, general description, simplified system
diagram, connection diagram, pin designations and
descriptions, functional description, absolute maxi-
mum ratings, operational ranges, DC characteristics,
switching characteristics and waveforms, and physical
dimensions.

Am29000 Memory Design Handbook, order #10623.
It discusses in detail the tradeoffs in designing an
Am29000 memory system. Completely covers four
different approaches to optimizing access speed versus
cost and memory size.

Implementation of an Am29000 Stack Cache Applica-
tion Note. It describes in detail how a stack cache would
be used in a simple application. :

© 1989 Advanced Micro Devices, Inc.

3-107

29K Family Application Notes

These materials can be obtained by writing to:

Advanced Micro Devices, Inc.
901 Thompson Place

P.O. Box 3453

Sunnyvale, CA 94088-3453

or by calling (800) 222-9323.

- For questions that cannot be resolved with the current
literature, further technical support can be obtained by
writing or calling:

29K Support Products Engineering

Mail Stop 561

5900 E. Ben White Bivd.

Austin, TX 78741

(800) 2929-AMD (US)

0-800-89-1131 (UK)

0-031-11-1129 (Japan)

THE EFFECTS OF MEMORY
ORGANIZATION

The organization of memory determines some of the
duties that software must perform. The physical charac-
teristics of the memory design have an impact on the
system responsibilities in a standalone environment.
Where the various types of memory are located and how
they are accessed must be considered.

While many types of memory organization are possible
in an Am29000 system, this discussion covers only a
couple of the more widely known methods. The empha-
sis is not on describing all of the possibilities, but on
showing how the duties of the standalone program
change depending on how the system memory is
arranged. For more information on the advantages and
disadvantages of various Am29000 memory schemes,
see the Am29000 Memory Design Handbook.

MEMORY SPACES

The Am28000 uses a three-bus Harvard architecture,
which allows for many different types of memory organi-
zation. As shown in Figure 1, the Am29000 buses
include the address bus, the data bus, and the instruc-
tion bus. All are 32 bits wide, but only the data bus is
bidirectional. The address bus is output-only; the
instruction bus is input-only. Using the buses and some
control signals, the Am29000 supports five separate
memory spaces. The available spaces are register, 1/0,
instruction ROM, coprocessor, and instruction/data
RAM.

In any given system, the application program will reside
and execute in some memory area(s), and will execute
from some area(s). The areas canbe the same, but they
also can be different. Sometimes, the application
program will need to be transcribed from one space into
another before execution.

When code is transferred from one memory area to
another, itis usually done so that a higher rate of execu-
tion can be achieved. Because the Am29000 is very
fast, it can be limited by the access time of memory. Yet,
high-speed PROMs are very expensive. Oftenitis more
cost-effective to transcribe the code from slow PROMs
to high-speed RAMs before execution.

BUS ARCHITECTURE

Bus architecture influences how data and instructions
are transferred from one memory space to another. The
Am29000 system in Figure 1 has separate Instruction
ROM and instruction/data RAM areas. Code could be
transcribed into the instruction RAM area from the
instruction ROM using a series of const and consth
instructions, but a problem would be evident: the
Am29000 fetches the instructions from the instruction
bus, regardiess of the memory space in which the
instructions reside. With the system in Figure 1, code
transcribed to RAM cannot be executed because there
is no access to the instruction bus.

One method of resolving this problem is to establish a
pathbetweenthe data bus andthe instructionbus. Such
apath can be provided through a swap buffer, as shown
in Figure 2. The swap buffer is bidirectional, which al-
lows data or instructions on one bus to be moved to the
other.

A different solution is used on AMD’s PC Execution
Board (PCEB29K™), where fixed storage for data and
programs Is onthe host PC. When code isto be run, it is
loaded into video DRAM (VDRAM) installed in the
instruction/data RAM space. The dual-ported VORAM
has its shifter output connected to the Am29000 instruc-
tion bus and its data bus connected to the Am29000
data bus. In this way, the same physical address space
exists on both buses, and data canbe read or written via
either the instruction bus or the data bus (see Figure 3).

3-108

Programming Standalone Am238000 Systems

Data Bus g
Instruction 1
Bus Instructi
v nstruction
Am29000 et ROM RAM 1/0 Controller

Address Bus] b

11025A-01
Figure 1. A Typical Am23000 System
Data Bus i 3
Instruction Bus
Am29000 Swap Buffer :
Instruction ROM Instruction/Data

Address Bus y

11025A-02

Flgure 2. An Am29000 System with Swap Buffers

3-109

29K Family Application Notes

§ . Data Bus b

Instruction Bus VDRAM
Am29000 Array
Instruction
ROM
S Address Bus]

11025A-03

Figure 3. An Am29000 System with VDRAM

Am29000 CALLING CONVENTIONS

To enhance code readability and accuracy, the
Am29000 run-time model convention is used. This con-
vention defines standards for register declarations, pa-
rameters passing, spill and {ill routines, and othertopics.

There are many good reasons for using the Am29000
run-time model. First, it allows assembly-language
programs to interface with C programs compiled by
the HighC29K™ compiler. Second, it makes programs
easier to understand, particularly for other developers
making modifications or complementary products.
Third, it has been tested thoroughly in many different
environments. Using it fromthe start will likely save time
later in the development process.

This section is @ summary of the Am29000 run-time
model. Because the code samples in the “Writing the

Start-up Program" section follow the convention estab-
lished by the run-time model, understanding it will make
the code samples clearer. See also the Am29000
Streamlined Instruction Processor User's Manual.

DECLARATIONS

Afile containing the declarations outlined in the conven-
tion normally is called into each module that uses the
definitions. A declarations file can be called into an
assembly-language source file by inserting a statement
(usually at or near the top of the file) like:

.include “romdcl.h”

In this example, a declarations file named romdcl.h
would be used with the program. For convenience, the
declarations required to understand the code sectionsin
this document are summarized in Table 1.

3-110

Programming Standalone Am29000 Systems

THE Am29000 RUN-TIME STORAGE
ORGANIZATION

In a high-level language that supports nested function
calls (such as C), specific information related to each
function invocation often Is stored on a run-time stack.
The Am239000 run-time stack is actually two stacks. One
is the register stack; the other is the memory stack.

Both stacks start at an arbitrary high address in memory
and grow downward as function calls nest deeper. The
“bottom” of the stack is the high address where the stack
starts; the “top” of the stack is where the last stack item
was placed, or the address of the lowest valid location.

Table 1. Summary of Am29000 Register Names

Protected Special Purpose Reglster Names

vab 0 Vector Area Base Address
ops 1 Old Processor Status
cps 2 Current Pracessor Status
cfg 3 Configuration Register
cha 4 Channel Address

chd 5 Channel Data

che 6 Channel Control

rop 7 Register Bank Protect
tme 8 Timer Counter

tmr 9 Timer Reload

pco 10 Program Counter 0

pci 11 Program Counter 1

pc2 12 Program Counter 2

mmu 13 MMU Configuration

Iru 14 LRU Recommendation

Unprotected Speclal Purpose Reglster Names

ipc 128 Indirect Pointer C

ipa 129 Indirect Pointer A

ipb 130 Indirect Pointer B

q 131 q

alu 132 ALU Status

bp 133 Byte Pointer

fc 134 Funnel Shift Count

cr. 135 Load/Store Count Remaining

The register stack contains dynamically allocated infor-
mation pertaining to the local state of a given function
call, such as incoming arguments, local variables, and
outgoing arguments being passed to another function.
These function-specific data are organized into a series
of overlapping structures called activation records or
stack frames. A function is active when invoked, and
each active function has an activation record some-
where onthe register stack. When a function is entered,
a new activation record, or register stack frame, is
created; when the function is exited, its activation record
is removed. An activation record is shown in Figure 4.

An important characteristic of activation records is that,
because the outgoing arguments of a calling function
(“caller”) are the incoming arguments of the called func-
tion (“callee”), the callee’s stack frame overlaps with the
caller's stack frame. Consequently, except for the first
activation record on the stack, the incoming arguments
of the callee are identical to the outgoing arguments
from the caller for each nested function. Figure 5 shows
how activation records overlap on the register stack.

Because the Am29000 has alarge, pointer-addressable
internal local registerfile, it is possible to cache a portion
of the register stack in local registers (see Figure 6).
Where the next byte is placed is determined by rsp (the
register stack pointer). The global register GR1 is
assigned as the rsp because it can point to the current
stack positionin external memory, while bits 2-9 identify
the current /r0. Activation records are allocated by
subtracting the size of the frame needed from rsp, thus
allocating a new block of local registers unique to this
function invocation.

3111

29K Family Application Notes

*

Incoming Args

Size

Caller's Lr1

Caller's Lr0

Memory Frame Pointer

Locals

RSize

Outgoing Args

Callee's Lr1

Callee's Lr0

v

11025A-04

Figure 4. An Activation Record

Caching the register stack introduces the operations
described below:

Spill. The portion of the register stack cached in local
registers cannot exceed 128; if it does, the oldest argu-

ments are spilled to external memory. A spill occurs |

when rsp becomes less than rab (the register allocate
bound).

Prologue. A prologue routine is an assembly-language
macro that, given the number of incoming arguments,

outgoing arguments, and local arguments, will allocate
a register stack frame for the function.

Epilogue. An epilogue routine is an assembly-language
macro that deallocates the register stack frame and
causes a jump to the return address.

Fill. When controlis being returned to calling functions, a
previously spilled activation record may not exist in the
local register file. Then the register file needs to be filled
from the register stack in external memory. A fill occurs
when rspis higher than rfb (the register free bound).

3-112

Programming Standalone Am29000 Systems

Procedure A

A

Incoming Args

Caller's Lr1

Caller's Lr0

Memory Frame Pointer

Locals

Procedure C

Outgoing Args

Calleag’s Lr1

Callee's Lr0

Procedure B

v

11025A-05
Flgure 5. The Reglster Stack
~ Reglster Stack
b Spilled
Activation
Local Register File Records
Used
. Locations
. Ir (fp) >
L]
Ir2 Current
Activation
Irt Record
Iro
grt (rsp)
r27
° Unused
* Locations
L]
rab \
11025A-06

Flgure 6. The Stack Cube

3-113

29K Famlly Application Notes

WRITING THE START-UP PROGRAM

System initialization Is one of the most critical duties
performed by software Iin the standalone system.
Devices must be configured, memory set up, and traps
and vectors defined. In short, an execution environment
must be prepared for the application program. If this is
not done properly, the main application program will not
function properly, and could contain difficult-to-find
errors. So careful attention must be givento the routines
that initialize the system.

This section discusses writing an assembly-language
module that will establish the execution environment for
a C application program. To demonstrate this, an exam-
ple program is developed in a step-by-step fashion.

The example application is designed to run on an
Am29000 system similar to the system shown in
Figure 7. The systemprovides a generic Am29000 envi-
ronment with instruction/data RAM (VDRAM), instruc-
tion ROM, and a dual-port 8530 serial communications
controller (SCC). The dual-port VDORAM allows instruc-
tions to be read from RAM.

The example program consists of three assembly-
language modules and a declarations file. The assem-
bly-language module START.S (listed in Appendix B) is
startup code that establishes the environment for a
C-language program. The assembly-language module
BOOT.S (listed in Appendix A) transfers the START.S
and the C-language application code to RAM, as shown
by the black arrows in Figure 7. BOOT.S then passes
control to START.S. The final assembly-language pro-
gram is TEST.S (listed in Appendix C). TEST.S simu-

lates a C-language application and tests whether the
startup has been properly performed. The declarations
file (ROMDCL.H) and the linker command file
(TEST.LD) are listed In Appendices D and E, respec-
tively.

MAKING A BOOT.S MODULE TO
TRANSCRIBE CODE

BOOT.S receives control first. It establishes serial
communications, tests RAM, and transcribes the appli-
cation code into RAM. The sequence performed by
BOOT.S is: :

1. Configure the Am29000.
. Establish a register stack frame.
. Initialize serial I/O for error reporting.
. Test RAM.
. Set pointers to invalid trap handler.

. Call RAMInit (made by ROMCOFF) to transcribe
code.

7. Transfer control to START.S.

oS W

Step 1— Configuring the Am29000

BOOT.S first configures the Am29000’s current proces-
sor status register (cps) to a known state by executing
the instruction:

mtsrim cps,0x173 ;RE,PD,PI,SM,DI,DA

This instruction enables instruction fetching from ROM
(RE=1), sets address translation for data and instruc-

8 Data Bus 9
VDRAM
i Array
Instruct
nstruction Bus 8530 SCC
Am29000 L d
Instruction
ROM
N\
é Address Bus 9
11025A-07

Figure 7. Example Am29000 System

3-114

Programming Standalone Am29000 Systems

tions off (PD,Pl = 1), turns on supervisor mode (SM=1),
and disables all interrupts and traps (DI,DA=1).

Step 2—Establishing a Simple Register Stack
Frame

BOOT.S calls several procedures, so it establishes a
Register Stack Frame. However, control will not return
to BOOT.S after calling _main. Therefore, it only needs
to use a limited stack frame. The frame is set up with:

const rfb, 512 ;set up temp reg
frame

const rab, 0

sub rsp, rfb, 16 ;enough for p0 and
pl

add 1lrl, rfb, 0

Step 3—Initlallzing I/0 Devices

An l/O device isinitialized early, so that it can be used to
transmit error messages. The 8530 serial communica-
tions controller is initialized using the routine shown in
Listing 1.

Listing 1. Initializing 1/O Devices

SerlInit:
.reg SI_CtAd, %%(TEMP_REG + 0)
.reg SI_CtVl, %%(TEMP_REG + 1)
const SI_CtAd, SscCCCntlAd
consth SI_CtAd, SCCCntlAd
const sI_ctvi, 9
store 0, 0, SI_Ctvl, SI_Ctad
const SI_CtVl, 0xcO
store 0, 0, SI_cCtVl, SI_Ctad
const SI_CtVl, 4
store 0, 0, SI_CtVl, SI_CtAd
const SI_CtVl, 0x44
store 0, 0, SI_ctvl, SI_Ctad
const sI_ctvl, 3
store 0, 0, SI_cCtVvl, SI_CtaAd
const SI_CtVl, 0xc0
store 0, 0, SI_CtVl, SI_Ctad
const SI_Ctvl, 5)
store 0, 0, SI_ctvl, SI_Ctad
const SI_CtVl, 0x60
store 0, 0, SI_CtVvl, SI_CtAd
const SI_Ctvl, 9
store 0, 0, SI_CtVl, SI_CtAd
const SI_CtVvl, 0x0
store 0, 0, SI_Ctvl, SI_Ctad
const SI_ctvl, 10 .
store 0, 0, SI_Ctvl, SI_Ctad
const SI_CtVl, 0x0
store 0, 0, SI_Ctvl, SI_CtAd
const SI_CtVl, 11
store 0, 0, SI_CtVl, SI_CtAd
const SI_CtVl, 0x56
store 0, 0, SI_ctvl, SI_CtAd
const SI_CtVvl, 12
store 0, 0, SI_CtVvl, SI_CtAd
const SI_CtVl, 0x6
store 0, 0, SI_CtVvl, SI_CtAd

;control port address
;jcontrol port value
;reset the port

;x16, 1 stop, no parity
;8 bits receive

;8 bits xmit

;Int. disabled
;s NRZ

;Tx & Rx BRG out

;9600 baud

3-115

29K Family Application Notes

const
store
const
store
const
store
const
store
const
store
const
store
const
store
const
store
const
store
const
store

EPILOGUE

Listing 1. Initlalizing 1/0 Devices (continued)

sI_Ctvl, 13

0, 0, SI_Ctvl,

SI_CtVl, 0x0

0, 0, SI_CtVl,

sI_Ctvl, 14

0, 0, SI_ctvl,

SI_CtVl, 0x0

0, 0, SI_CtVl,

sI_Ctvl, 14

0, 0, SI_Ctvl,

SI_CtVl, Ox1

0, 0, SI_CtVl,

sI_Cctvl, 3

0, 0, sI_Ctvl,

SI_CtVl, Oxecl

0, 0, SI_Ctvl,

SI_Ctvl, 5

0, 0, sI_Ctvl,
SI_CtVl, Oxea

0, 0, SI_cCtvl,

SI_Ctad
SI_Ctad
SI_CtAd
SI_ctad
SI_Ctad
SI_CtAd
SI_Ctad
SI_ctad
SI_CtAd

SI_CtAd

;9600 baud

;BRG in RTxC

:éRG on

;Rx enable

;Tx enable

Step 4—Testing RAM

The RAM is tested before code is transferred to it.
BOOT.S calls a single test, an address pattern test.
Other tests are included in the source listing shown in
Appendix A. The test used by BOOT.S is shown in

Listing 2.

Step 5—Setting the Vector Table Entrles to the
Invalld Trap Handler

START.S will set up the vector table, but BOOT.S
guards against abnormal ends by making all of the
vector table entries point to an invalid trap handler in
ROM. This is done with the following routine, which is
called from the main loop, as shown in Listing 3.

.sbttl

FUNCTION

RAMAddr, 2, O,

Listing 2. Testing RAM
“RAM Address Pattern Test”

3

; This routine will run a two-pass test on RAM. It will be controlled by input values

; specifying the base address and the count of locations o be tested. In the first

; pass, the data will be set equal to the address.

In the second pass, the data

; will be set equal to the complement of the address.

; In:

H Qut:

.reg
.reg
.reg
.reg
.reg
.reg
.reg
.reg

(see below)

{see below)

RA_StrtAdd, %% (IN_PRM + 0)
RA_WrdCnt, %% (IN_PRM + 1)
RA_TmpCnt, %% (TEMP_REG + 0)

RA_StrtPat, %% (TEMP_REG
RA_Ptrnlnc, %% (TEMP_REG
RA_NxtAdd, %% (OUT_PRM +

RA_WrtPat,

%% (OUT_PRM +

RA_RedPat, %% (OUT_PRM +

;starting address
;count of words
;total test word count

+ 1) ;starting pattern

+ 2) ;ptrn increment value
0) ;jerror address

1) ;pattern written

2) ;pattern read

3-116

Programming Standalone Am238000 Systems

RA_2:

RA_ERR:

RA_EXIT:

.reg
add
const

Listing 2. Testing RAM (continued)

RA_Fail, %% (RET_VAL + 0)
RA_StrtPat, RA_StrtAdd, 0
RA_PtrnlInc, 4

;£il1l memory with pattern

add
sub
add

store
add
jmpfdec
add

RA_NxtAdd, RA_StrtAdd, 0
RA_TmpCnt, RA WrdCnt, 2
RA _WrtPat, RA_StrtPat, 0

0, 0, RA_WrtPat, RA_NxtAdd
RA_WrtPat, RA_WrtPat, RA_Ptrnlnc
RA_TmpCnt, RA_2

RA_NxtAdd, RA_NxtAdd, 4

;check memory for pattern

add
sub
add

lcad
cpneq
jmpt
nop
add
jmpfdec
add

RA_NxtAdd, RA_StrtAdd, 0
RA_TmpCnt, RA WrdCnt, 2
RA_WrtPat, RA_StrtPat, 0

CD, DATA_CTL, RA_RedPat, RA_NxtAdd
RA_Fail, RA_RedPat, RA WrtPat
RA Fail, RA_ERR

RA WrtPat, RA WrtPat, RA_Ptrnlnc
RA_TmpCnt, RA_3
RA_NxtAdd, RA_NxtAdd, 4

;invert ptrn for next pass

nor
cpneq
jmpt
subr
jmp
nop

call
nop
const
consth

EPILOGUE

RA_StrtPat, RA StrtPat, 0
RA_Fail, RA_StrtPat, RA StrtAdd
RA_Fail, RA_1

RA_PtrnlInc, RA Ptrnlnc, O
RA_EXIT

1x0, RAMErr

RA_Fail, TRUE
RA_Fail, TRUE

;TRUE for fail
;start with address

;get start address
;for jmpfdec
;set the pattern

;next test mem addr

;get start address
;for jmpfdec
;set the pattern

serr if neq

;next test mem address

sinvert initial

;negate inc value

;set after call

3-117

29K Family Application Notes

Listing 3. Setting Vector Table Entries

“VWector Initialization”
VectInit, O

.sbttl
LEAF

; This routine initializes the vector table and vab.
; are set to point to the invalid trap handler in ROM.

All vectors

VI_Vect,

.reg %% (TEMP_REG + 0) ivector value
.reg VI_VectSt, %%(TEMP_REG + 1) ;vector storage address
.reg VI_VectCnt, $%%(TEMP_REG + 2) ;vector count register
mtsrim vab, 0
mfsr VI_VectSt, vab
const VI_Vect, (InvalidTrapHandler | 2)
consth VI _Vect, InvalidTrapHandler
const VI_VectCnt, (256 - 2) ; for jmpfdec
VI_Loop: .
store 0, 0, VI_VectSt, VI Vect ;store the vector
jmpfdec VI_VectCnt, VI_Loop
add VI_VectSt, VI_VectSt, 4
EPILOGUE)

Step 6—Transcribing Code to RAM

BOOT.S transcribes START.S and the C-language
application (simulated by TEST.S) into instruction/data
RAM by calling RAMInit.

RAMInit is a routine that is created by the ROMCOFF
utility. When an executable Am29000 object file is sub-
mitted to ROMCOFF, the utility generates a relocatable
object file of type RI_Text that (when called) establishes
an image of the executable module in instruction/data
RAM. BOOT.S transfers START.S and the C-language
application to RAM by calling the RAMInit routine cre-
ated by ROMCOFF.

RAMInit is called by:

call RI_Ret,RAMInit ;initialize RAM

Note that when RAMInit is called, the return address is
not stored In a local register (such as /r0), and that
RAMInit is called just before transferring control to

_main. To transcribe data to RAM, RAMInit will create a
stream of const and consth instructions that will load up
the local registers starting from /r0. Then it will insert a
store multiple command to transfer the data into mem-
ory. Consequently, any data in local registers will be
overwritten.

Step 7—Calling START.S

As BOOT.S does not intend to have control returned to
it, it calls START.S by simulating a return from interrupt.
This is accomplished by setting the freeze (FRZ) bit ON
in the old processor status (ops) and current processor
status registers (cps), putting the starting address of
START.S in PCO, and performing a return frominterrupt
(see Listing 4).

The Main Loop of BOOT.S:

When all of the preceding steps are put together, the
main loop appears as shown in Listing 5.

Listing 4. Calling START.S

mtsrim ops, 0x473
mtsrim cps, 0x473
const 1r0, TextBas
consth 1r0, TextBas
mtsr pecl, 1x0
add 1r0, 1lr0, 4
mtsr pcO, 1r0
iretinv

;¥2, PD, PI, SM, DI, DA
;Fz, PD, PI, SM, DI, DA
; (using lr0 as temp)

;go to inst space, TextBas

3-118

Programming Standalone Am29000 Systems

Listing 5. Main Loop of BOOT.S

Boot:
.reg RI_Ret, %%(TEMP_REG + 0)
mtsrim cps, 0x173
const rfb, 512
const rab, 0
sub rsp, rfb, 16
add .1rl, rfb, 0
call 1r0, SerlInit
nop
const pl, (RAM_SIZE >> 2)

consth pl, (RAM SIZE >> 2)
call 1r0, RAMAddr
const p0, 0

call 1r0, VectInit
nop

call RI_Ret, RAMInit
mtsrim ops, 0x473
mtsrim cps, 0x473
const 1r0, TextBas
consth 1r0, TextBas
mtsr pcl, 1r0

add 1r0, 1rx0, 4
mtsr pcO, 1lr0

;RAMInit return
;RE, PD, PI, SM, DI, DA
;set up temp reg frame

;enough for p0 and pl
sinitialize an 8530 to report errors
;test full RAM size

;call a RAM address test

;test from addr 0 (input parm) to RAM test
;to RAM test

sroutine to initialize traps to

;invalid trap handler
;initialize RAM —-- from ROMCOFF

;FZ2, PD, PI, SM, DI, DA

;Fz, pPD, PI, SM, DI, DA

; (using 1r0 as temp)

CREATING THE EXECUTION ENVIRONMENT
WITH START.S

The START.S file is used to prepare the execution
environment for the application program (simulated by
TEST.S). Although a given application certainly will
have varied requirements in different hardware environ-
ments, the tasks that will be performed by START.S are
needed to establish virtually any operating environment
on the Am29000. These are:

1. Configure the Am29000.

2. Allocate the register and memory stacks.

3. Initialize vector table and trap handlers.

4. Initialize the TLB by marking all entries invalid.
5. Call “main.” '

Step 1—Configuring the Am29000

Code similar to that shown below can be used to set the
contents of the cfg so that the vector area is a table of
pointers (VF=1) and the Branch Target Cache™ is
disabled (CD=1). Also, the cps register is set so that
physical addressing is used for both instructions and
data (PD =1,Pl=1), allinterrupts and traps are disabled
(DI = 1), and supervisor mode is ON (SM = 1). The timer
(tmr) Is also set to 0 to avoid unwanted timer interrupts:

mtsrim tmr, 0
mtsrim cfg, (VFICD)
mtsrim cps, (PD|PI|SM|DI)

The setting of the VF bit has determined the structure of
the vector area table. The vector area is a user-
managed table in external instruction/data memory that
starts at the address held in the vector area base (VAB)
register. The vector area can have one of two different
structures, as determined by the VF bit of the configura-
tion register.

If VF =1, then the vector area is organized as a list of
256 pointers to interrupt/trap handlers. If VF = 0,thenthe
vector area is arranged as 256 64-instruction blocks,
each corresponding to a given call. Each fixed block
then contains the corresponding interrupt or trap
handler. Figure 8 shows the two structures.

When the Am23000 receives an interrupt or trap, the
location of the appropriate handler is determined by the
vector area (VA). Each interrupt and trap has a vector
number between 0 and 255 that corresponds to an entry
in the vector area. Of the vector numbers, 0 to 63 are
reserved for system and floating-point operations. The
assigned vector numbers are given in the Am29000
User's Manual.

If the table is a list of pointers, control will be passed to
the address at VAB + (vector number * 4). Multiplication
by 4 adjusts the vector number to words. If the vector
table is composed of handlers, control will be passed to
a handler starting at VAB + (vector number * 64 * 4),
where the vector number is adjusted to words and multi-
plied by the number of instructions per block (fixed) (see
Table 2). :

3-118

29K Famlly Application Notes

Table 2. The Location of a Pointer in the VAT should be done early in the main loop, as START.S will

- call some supporting assembly-language routines. The

CFG:VF ISR Address= register stack frame can be established by the code
shown in Listing 6.

1 VAB + (vector number * 4)

0 VAB + (vector number * 256) Arguments that overflow the register stack will have to
be placed in the memory stack (see Figure 8). The
current position inthe memory stack is pointed to by the

'S:tep 2—Allocating Register and Memory Stack memory stack pointer (msp).
rames »

A full register stack frame is established by START.S, The stack can be established by:

because it will call the application program (_main). const msp, MStkTop

Further, contro! could be passed back to the START.S consth msp, MStkTop
return address (which then initiates a “warm start”). This

Listing 6. Allocating Register and Memory Stack Frames

const rfb, RStkTop ;RStkTop is set to the

consth rfb, RStkTop ;desired address in the declarations file
const rab, (RStkTop - 512) ;128*4, maximum

consth rab, (RStkTop - 512) ;part that can

add 1lrl, rfb, 0 :be cached

sub rsp, rfb, 16 ;adjusts for 1lr0, lrl, arge, and argv

Vi\B Handler VAB
(Vector Number * 256)
I - Handler)
o——73—P» Handler I
. L)
L] L]
. . VAB
+
(Vector Number * 4)
Handler . |
. |
CFG:VF=0 CFG:VF=1 11025A-08

Figure 8. The Two Structures of the Vector Area

3-120

Programming Standalohe Am29000 Systems

Step 3—lniflallzing the Vector Area and Vectors

Although the organization of the vector area is deter-
mined by the configuration register, the table and point-
ers still must be initialized. In the following example, the
vector initialization code is kept compact, while permit-
ting easy expansion of the vector set, by using atable in

the .data section. Each entry in the table has two words.
The firstis the vector number; the second is the handler
address (see Listing 7).

When the vector area base (vab) is supplied to the
routine shown in Listing 8, it initializes the handlers.

Listing 7. Initializing the Vector Area and Vectors

.data ;switch to .data for table
VectInitTable:
.word V_SupInstTLB, SupInstTLBHandler
.word V_SupDataTLB, SupDataTLBHandler
.word V_MULTIPLY, MultiplyHandler
.word V_DIVIDE, DivideHandler
.word V_MULTIPLU, MultipluHandler
.word V_DIVIDU, DividuHandler
-word V_SPILL, SpillHandler
.word V_FILL, FillHandler
.word V_Timer, TimerHandler
.equ VINIT_CNT, ((. - VectInitTable) / 8)
.text ;switch back to .text for code
Listing 8. Initializing Vector Handlers
VectInit:
.reg VI_Vect, %% (TMP_REG + 0) ;vector value
.reg VI_St, %% (TMP_REG + 1) ;vector storage address
.reg VI_Cnt, %% (TMP_REG + 2) jvector count
.reg VI_Base, %% (TMP_REG + 3) ;vector base
.reqg VI_TbPt, %% (TMP_REG + 4) ;vector base
nfsr VI_Base, vab
const VI_Cnt, (VINIT_CNT - 2) ;for jmpfdec
const VI_TbPt, VectInitTable
consth VI_TbPt, VectInitTable
VI_Loop:
load 0, 0, VI_st, VI_TbPt ;get the vector
add VI_TbPt, VI_TbPt, 4
sll VI _st, VI_st, 2 ;convert to address
add VI_st, VI_st, VI_Base
load 0, 0, VI _Vect, VI_TbPt ;get the handler
add VI_TbPt, VI_TbPt, 4
jmpfdec VI_Cnt, VI_Loop
store 0, 0, VI_Vect, VI_St
jmp raddr
nop

3121

29K Family Application Notes

Step 4—lInitializing the Translation Look-Aside
Butfer (TLB)

Whenthe Am29000 is first powered-up, the TLB will not
have valid entries. To prevent erroneous TLB misses,
the entries should be marked invalid by the start-up
sequence before control is passed to the application
program. This can be done with an assembly-language
sequence (see Listing 9).

Step 5—Calling “main”

Once the proper environment has been established for
the application program, the main C program must be
called. Thisis done by placing the address of the starting
instruction in registers and performing a call. When the
jump is “short,” or less than 256 words, a call can be
done directly. However, the jump often will be farther,
and calli must be used in conjunction with an address
stored in registers, as shown below:

const raddr, _main ;store lower 16 bits
consth raddr, _main ;store upper 16 bits

Notice that raddr signifies the return address, usually
Ir0, by convention. Once the call is made, the return
address of the caller has replaced the target location, in
the event there is a return from _main.

The START.S Main Loop

The complete START.S main loop, as developed in the
previous sections, is shown in Listing 10. The routine
receives control after being transcribed to RAM; once
there, it initializes the vector handlers, clears the BSS
area, initializes the TLBs, and establishes initial stack
pointers and an initial register frame. Lastly, it invokes
_main. Note that, in the event _main returns, a warm
start is performed.

calli raddr, raddr ;call indirect
Listing 9. Initializing the TLB
.reg TI_Reg, %% (TEMP_REG + 0) ;the TLB register number
.reg TI_Val, %% (TEMP_REG + 1) ;the TLB value (0)
.reg TI_Cnt, %% (TEMP_REG + 2) ;the TLB register count
const TI_Reg, ©
const TI_Val, ©
const TI_Cnt, (TLB CNT - 2) ; for jmpfdec
TI_Loop:
mttlb TI_Reg, TI_Val
jmpfdec TI_Cnt, TI_Loop
add TI_Reg, TI_Reg, 1

3-122

Programming Standalone Am29000 Systems

Start:

argv

vectors

mtsrim
mtsrim
mtsrim
const
consth
const
consth
add
sub

const
consth
call

nop
call
nop
mtsrim
const
const
call
nop
mtsrim
mtsrim
mtsrim
mtsrim
mtsrim
mtsrim
iretinv

cps,
mmu,
cfgl
rfb,
rfb,
rab,
rab,
1lrl,
rsp,

msp,
msp,
1ro0,

1ro,

cps,
1r2,
1r3,
1r0,

cps,
ops,
cfg,
che,
pel,
pcO,

Listing 10. START.S Main Loop

0x73

MMU_PsS

0x10

RStkTop
RStkTop
(RStkTop - 512)
(RStkTop - 512)
rfb, 0

rfb, 16

MStkTop
MStkTop
VectInit

TLBInit

0x10
0

0
_main

0x473
0x173

;set PD, PI, SM, DI, DA
;PID= 0

;VE

;set up stack pointers

;make room for 1lr0, 1lrl, argc,

;routine to install handled

;routine to mark TLBs invalid

;SM
;arge = 0
jargv = O

;set FZ, PD, PI, SM, DI, DA
;set RE, PD, PI, SM, DI, DA
;cache disabled

;contents invalid

;cold start address

3-123

29K Family Application Notes

APPENDIX A: boot.s

.title “ROM Boot Code”

;

; Copyright 1988, Advanced Micro Devices
; Written by Gibbons and Associates, Inc.

This module is intended to receive control at address 0. It handles a hardware
reset or a simulation of that event in a “warm start” situation.

Its purpose 1s to provide sufficient initializations for the operation of a program
in RAM data/instruction space. The initializations must include the transcription
of the program and its initialized data. The code and initialized data are stored
in ROM prior to transcription.

To provide for orderly operation, C linkages are used. It is known that the register
; stack will never overflow. When certain calamities occur (e.g., invalid

; traps), the registers will be re-initialized to allow the use of subroutines in

; this module. There is no intention of ever returning under these circumstances.

; Some of the routines in this module have a rather tedious implementation because
they do not assume the validity of RAM or the readability of ROM. This is
considered appropriate since it assures the validity of error handling.

This module provides no global addresses for external use. It is not intended to
be called. It is best thought of as bootstrap code.

Some tests which are not actually used are included here for use in environments
that may allow them.

e e e Ne N Se Ne ne e

The external addresses named below are required.

.extern RAMInit ;romcoff generated

This module needs the addresses for the control and data ports of the SCC. These
are declared below.

.equ SCCCnt1Ad, OxXf££££££0 ;control port address
.equ SCCDhataAd, Oxfffffff4 ;data port address

This module assumes that RAM begins at data address 0 and has the size declared
; below.

.equ RAM SIZE, 0x40000 ;256K bytes
.include “romdcl.h”

.eject

.sbttl “Section Declarations”

This module has only one section, which is called “rom.” It receives control at
reset,i.e., it is an absolute segment based at address O (in ROM space). -

.sect rom, text,absolute 0
.use rom

3-124 .

Programming Standalone Am29000 Systems

RomBase:

.eject
.sbttl

LEAF

baud.

In: (nothing}

; Out: (nothing)

.reg
.reg
const
consth
const
store
const
store
const
store
const
store
const
store
const
store
const
store
const
store
const
store
const
store
const
store
const
store
const
store
const
store
const
store
const
store
const
store
const
store

Boot

;the warn entry

;Could be a report routine

“SCC Routines”

SerInit,0

SI_CtAd, %% (TEMP_REG + 0)
SI_CtVl, %% (TEMP_REG + 1)

SI_CtAd,sCCCntlAd
SI_CtAd, SCCCntlAd
SI_Ctvl, 9
0,0,SI_CtVl,SI_CtAd
SI_CtVl, 0xc0
0,0,SI_CtVl,SI_CtAd
SI_CtVl, 4
0,0,SI_CtVl,SI_CtAd
SI_CtVl, 0x44
0,0,5I_CtVl,SI_CtAd
SI_Ctvl,3
0,0,SI_Ctvl,SI_CtAd
SI_CtV1,0xc0
0,0,SI_CtVl,SI_CtAd
SI_CtVl,5
0,0,SI_CtVl,SI_CtAd
SI_CtV1, 0x60
0,0,SI_CtVl,SI_CtAd
sI_Ctvl1,9
0,0,SI_CtVl,SI_CtAd
SI_CtVl, 0x0
0,0,SI_CtVl,sI_CtAd
SI_ctvl,10
0,0,SI_CtVl,SI_CtAd
SI_CtVl, 0x0
0,0,SI_CtVl,SI_CtAd
SI_Ctvl,11
0,0,SI_CtVl,SI_CtAd
SI_CtVl1,0x56
0,0,SI_CtVl,SI_CtAd
SI_Ctvl,12
0,0,SI_CtVl,SI_CtAd
SI_ctVvl,O0x6
0,0,SI_CtVl,SI_CtAd
sI_Ctvl,13
0,0,SI_CtVvl,SI_CtAd
SI_CtVl,0x0
0,0,SI_CtVl,SI_CtAd

;the RESET entry

This routine initializes the serial port for non-interrupt driven access at 9600

! ;control port address

;control port value

;reset the port

;x16,1 stop,no parity

;8 bits receive

;8 bits xmit

;Int. disabled

;NRZ

;Tx & Rx BRG out

;9600 baud

;9600 baud

3-125

29K Family Application Notes

‘const SI_CtVl,14

store 0,0,SI_CtVl,SI_CtAd
const SI_CtVl,0x0

store 0,0,SI_CtVl,SI_CtAd
const SI_CtVl, 14

store 0,0,8I_CtVl,SI_CtAd
const §I_CtVl,0x1

store 0,0,SI_CtVl,SI _CtAd
const SI_CtVl,3

store 0,0,SI_CtVl,SI_CtAd
const SI_CtVl,0xcl

store 0,0,SI_CtVl,SI_CtAd
const SI_CtVl,5

store 0,0,8I_CtVl,SI_CtAd
const SI_CtV1,0Oxea

store 0,0,SI_CtVl,SI_CtAd
EPILOGUE

LEAF SerXmt, 1

This routine transmits a single character via the SCC.
the SCC to become ready.

; In: (see below)
; Out: (nothing)
.reg SX_Char, $% (IN_PRM + 0)
.reg SX_Ad, %% (TEMP_REG + 0)
.reg SX_V1,%%(TEMP_REG + 1)
const SX_Ad, SCCCntlAd
consth SX_Ad, SCCCntlAd
SX_Wait:.
load 0,0,8X _V1,S8X Ad
and SX_V1,8X_V1,0x4
cpeq SX_V1,8X V1,0
jmpf SX_V1,SX_Wait
nop
const SX_Ad, SCCDhataAd
consth SX_Ad, sCCDataAd
store 0,0,S8X_Char,SX_Ad
EPILOGUE
LEAF SerRcv, 0

; This routine waits for a receive character to become ready,

; that character.

; In: (nothing)

; Out: {see below)
.reg SR_Ad, %% (TEMP_REG + 0)
.reg SR_Char, %% (RET_VAL + 0)
const SR_Ad, SCCCnt1Ad
consth SR_Ad, SCCCntl1Ad

;BRG in RTxC

;BRG on

;Rx enable

;Tx enable

It will wait (forever)

;character
s;port address
;port value

;get the status
;check tx buf empty

;send the character

;port address
;character (stat tmp)

for

then reads and returns

3-126

Programming Standalone Am29000 Systems

SR_Wait:
load 0,0,SR_Char,SR_Ad
and SR_Char, SR_Char, 0x1
cpeq SR_Char, SR Char,0
jmpf SR_Char, SR_Wait
nop
const SR_Ad, SCCDataAd
consth SR_Ad, SCCDataAd
load 0,0,SR_Char,SR_Ad
and SR_Char, SR_Char, Oxff
EPILOGUE
LEAF SerChk, 0

R

This routine checks to determine if a receive character is ready at the serial

;get the status
;check rcv buf ready

;fetch the character

port. It will return -1 if a character is ready and 0 if it is not.

In: (nothing)

Out: (see below)
.reg SC_Ad, %% (TEMP_REG + 0)
.reg SC_Rdy, %% (RET_VAL + 0)
const SC_Ad,SCCCntlAd
consth SC_Ad, sCCCntlAd
load 0,0,SC_Rdy, SC_Ad
and SC_Rdy, SC_Rdy, 0x1
cpeq SC_Rdy, SC_Rdy, 0
sra SC_Rdy, SC_Rdy, 31
EPILOGUE
.eject

.sbttl “Error Message Routines”

FUNCTION SendErr,0,0,1

This routine sends the text “Error - ”

.reg SE_Char, $% (OUT_PRM + 0)
call 1r0, SerXmt
const SE_Char,'E’
call 1r0, SerXmt
const SE_Char, ‘¢’
call 1r0,SerXmt
const SE_Char,'r’
call 1r0,SerXmt
const SE Char, ‘o’
call 1r0, SerXmt
const SE_Char, ‘'’
call 1x0, SerXmt
const SE_Char,’
call 1x0, SerXmt
const SE_Char, ' -’
call 1r0, SerXmt
const SE_Char,’ '
EPILOGUE

FUNCTION SendNL, 0,0,1

;port address
;character

;get the status
;check rcv buf ready

;convert to 0 or -1

soutput character
;send a “E”

;send a “r”

;send a “r”

;send a “o”

;send a “r”

”on

;send a

w_»

;send a

w o

;send a

3-127

29K Family Application Notes

;

; This routine sends a CR-LF sequence.

;

.reg SN_Char, $% (OUT_PRM + 0)
call 1r0,SerXmt

const SE_Char, 0x0d

call 1r0,SerXmt

const SE_Char, 0x0a

EPILOGUE

FUNCTION SendWord, 1,1,1

; This routine sends a 32-bit word in ASCII hex

SW_0:

SW_1:

.reg SW_Word, %% (IN_PRM + 0)
.reg SW_shift, %% (LOC_REG + 0)
.reg SW_T_Flag,%% (TEMP_REG + 0)
.reg SW_Char, %% (OUT_PRM + 0)
const SW_shift, 28

srl SW_Char,SW_Word,SW_Shift
and SW_Char, SW_Char, Oxf

cplt SW_T_Flag,SW_Char,10
jmpt . SW_T_Flag,SW_1

add SW_Char, SW_Char, 0x30
add SW_Char, SW_Char, 0x27
call 1r0, SerXmt

nop

subs . SW_shift,SW_Shift,4

cpge SW_T_Flag,SW_Shift,0
jmpt SW_T_Flag,SW_0

nop '

EPILOGUE

T I R R

; This routine reports RAM errors with the message,
;

FUNCTION RAMErr,3,0,1

;send a “CR”

;send a “LF”

;the word to send
;shift factor

;character to send
;right shift factor

;isolate nibble
;check decimal

;convert to ASCII digit
;convert to ASCII letter
;send the character
;next digit shift fact

;check if done
;continue if not

“Error - RAM at aaaaaaaa write bbbbbbbb read ccceccec\n”

.reg RE_ErrAdd, 3% (IN_PRM + .0)

.reg RE_WrtPat,%%(IN_PRM + 1)
.reg RE RedPat, %% (IN_PRM + 2)
.reg RE_Char, $% (OUT_PRM + 0)
.reg RE_Word, %% (OUT_PRM + 0)
call 1r0,SendErr

nop

call 1r0, SerXmt

const RE_Char, 'R’

call 1r0, SerXmt

const RE_Char,’A’

call 1x0, SerXmt

const RE_Char,'M’

call 1xr0, SerXmt

const RE_Char,’ '

call 1r0, SerXmt

const RE_Char,'A’

;send “Error - ”

;send a “R”
;send a “A”
;send a “M”
" on

;send a

;send a “A”

3-128

Programming Standalone Am29000 Systems

call
const
call
const
call
add
call
const
call
const
call
const
call
const
call
const
call
const
call
const
call
add
call
const
call
const
call
const
call
const
call
const
call
const
call
add
call
nop

EPILOGUE

FUNCTION

1r0,SerXmt

RE_Chax,'T' ; send
1r0, SerXmt

RE_Char,’ ' ;send
1r0, SendWord ;send
RE_Word,RE_ErrAdd, 0

1r0,SerXmt

RE Char,' ;send
1r0, SerXmt

RE_Char, 'w’ ; send
1r0,SerXmt

RE_Char,’r’ ;send
1r0, SerXmt

RE_Cha:,'i' ;send
1r0, SerXmt

RE_Char,'t’ ;send
1r0,SerXmt

RE_Char, ‘e’ ;send
1r0, SerXmt

RE_Char,’ ’ ; send
1r0, SendWord ;send
RE Word,RE WrtPat,0

1r0, SerXmt

RE_Char,’ ' ; send
1r0, SerXmt

RE_Char,’R’ ; send
1r0, SerXmt

RE_Char, ‘e’ ; send
1r0,SerXmt

RE_Char,‘a’ ; send
1r0,SerXmt

RE_Char,’d' ;send
1r0,SerXmt

RE_Char,’ ’ ’ ; send
1r0, SendWord ; send
RE_Word,RE_RedPat, 0

1r0, SendNL ;send

ROMErr,1,0,1

This routine reports a ROM sum error with the message,
“Error -~ ROM sum aaaaaaaa\n”

.reg
.reg
.reg
call
nop
call
const
call
const
call
const
call
‘const
call
const

ROM_Sum, $% (IN_PRM + 0)
ROM_Char, %% (OUT_PRM + 0)
ROM_Word, %% (OUT_PRM + 0)

1r0,SendErr ;send
1r0, SerXmt
ROM_Char, ‘R’ ; send
1r0, SerXmt
ROM_Char, ‘0O’ ;send
1r0,SerXmt
ROM_Char, "M’ ; send
1r0, SerXmt
ROM_Char,’ ;send
1r0, SerXmt
ROM_Char, ‘s’ ; send

a “T”
a” "
error
a” "
a “w”
a “r”
a “i”
a “t”
a “e”
a””

address

good pattern

a

a

wR”

wa

e’
wa”

wg#

I

bad pattern

a new line

“Error - ”

a

wR#

wo”

wM#

" o

war
s

3-129

29K Family Application Notes

call
const
call
const
call
const
call
const
call
const
call
add
call
nop
EPILOGUE

FUNCTION

1r0, SerXmt
ROM_Char, "u’
1r0, SerXmt
ROM_Char, ‘m’
1r0, SerXmt
ROM_Char, " '
1x0, SerXmt
ROM_Char, "=’
1r0,SerXmt
ROM_Char,’ '’
1r0, SendWord

ROM_Word, ROM_Sum, 0

1r0, SendNL

SizeErr,0,0,1

;send

;send

;send

; send

; send

;s send
; send

; This routine reports insufficient RAM size with the message

.reg
call
nop
call
const
call
const
call
const
call
const
call
const
call
const
call
const
call
const
call
nop
EPILOGUE

FUNCTION

“Error - RAM size\n”

SIZ_Char, %% (OUT_PRM + 0)

1r0,SendErr

1r0, SerXmt
SIZ_Char, 'R’
1r0, SerXmt
SIZ_Char, 'A’
1r0,SerXmt
SIZ_Char, ‘M’
1r0, SerXmt
SIZ_Char,’ '
1r0, SerXmt
SI1Z_Char,’s’
1r0, SerXmt
SIZ_Char,'i’
1r0,SerXmt
SIZ_Char, 'z’
1r0, SerXmt
SI1Z_Char,'e’
1r0, SendNL

TrapErr,0,0,1

;send

;send
; send
;send
; send
;send
;send
; send

;send
; send

; This routine reports insufficient RAM size with the message
; “Error - Invalid trap\n”

.reg
call
nop
call
const
call
const
call
const
call

TE_Char, %% (OUT_PRM + 0)

1r0,SendErr

1x0, SerXmt
TE_Char, ' 1*
1r0, SerXmt
TE_Char,’'n’
1r0,SerXmt
TE_Char, v’
1r0, SerXmt

;send

;send

; send

; send

w_rr
a “=

ROM check sum
a new line

“Error - ”

a “R”

a “A”

a “M”

a “s”

a “i”

a “z”

N\

a new line

“Error - ”

a “1”

a “n”

a “v”

3-130

Programming Standalone Am29000 Systems

const
call
const
call
const
call
const
call
const
call
const
call
const
call
const
call
const
call
nop
EPILOGUE

TE_Char,'a’
1x0, SerXmt
TE Char,’l’
1r0, SerXmt
TE_Char,’i’
1xr0,SerXmt
TE Char,’d’
1r0,SerXmt
TE_Char,’ '
1r0, SerXmt
TE_Char,'t’
1r0, SerXmt
TE Char,’'r’
1r0,SerXmt
TE Char,’a’
1r0, SerXmt
TE_Char, ‘p’
1r0,SendNL

I I R I I IR I

.eject
.sbttl

FUNCTION

; This routine is used to ensure that the ROM is “intacted” correctly by using
the checksum checking method.

.reg
.reg
.reg
.reg
.reg
xor

sub

RS _1:
load
add
jmpfdec
add

cpneq
Jmpf
nop

RS_ERR:
call
nop
const
consth

In: (see below)

Out: (see below)

“ROM Checksum Test”

ROMSum, 2,0,1

RS_StrtAdd, $% (IN_PRM + 0)
RS_WrdCnt, %% (IN_PRM + 1)
RS_Sumep,%%(TEMP_REG + 0)
RS_ChkSum, %% (OUT_PRM + 0)

RS _Fail, %% (RET_VAL + 0)
RS_ChkSum,RS_ChkSum,RS_ChkSum
RS_WrdCnt,RS_WrdCnt, 2

CD,ROM_CTL, RS_SumTmp, RS_StrtAdd
RS_ChkSum,RS_ChkSum, RS_SumTmp
RS_WrdCnt,RS_1

RS_StrtAdd, RS_StrtAdd, 4

RS Fail,RS_ChkSum, 0
RS_Fail,RS_EXIT

1r0,ROMErr

;0/P para —- ChkSum
RS Fail, TRUE
RS_Fail, TRUE

;send a “a”
;send a “1”
;send a “i”
;send a “d”
;send a ” "

;send a “t”

;send a “r”

won

;send a “a

;send a “p”
;send a new line

;start address
;word count

;TRUE for fail
;clear ChkSum
; for jmpfdec

;add to ChkSum
;next ROM addr

;1f ChkSum == 0 then
;RS_PASS else RS_ERR

;call ROMErr routine

;TRUE for test fail

3-131

29K Family Application Notes

RS_EXIT:
EPILOGUE

.sbttl “RAM 01 Test”
FUNCTION RAMO1,2,0,3

This routine tests the RAM by the following method set all RAM area to O then check
for 0. set all RAM area to 1 then check for 1.

In: (see below)
Out: (see below)

.reg RO1_StrtAdd, 3% (IN_PRM + 0) ;starting address
.reg RO1_WrdCnt, %% (IN_PRM + 1) scount of words
.reg RO1_TmpCnt, %% (TEMP_REG + 0) ;counter
.reg RO1_NxtAdd, %% (OUT_PRM + 0) ;error addres
.reg RO1_WrtPat, %% (OUT_PRM + 1) ;pattern written
.reg RO1_RedPat, %% (OUT_PRM + 2) ;pattern read
.reg RO1_Fail, % (RET_VAL + 0) ;TRUE for fail
Xor ROl WrtPat,ROl_WrtPat,RO0l_WrtPat ;0 to start

RO1_0: ;set 0's or 1's
add RO1_NxtAdd,RO1_StrtAdd, 0 ;get strt RAM addr
sub RO1_TmpCnt,R01_WrdCnt, 2 ;for jmpfdec

RO1_1:
store CD, DATA_CTL,RO1_WrtPat,RO1_NxtAdd
jmpfdec RO1_TmpCnt,RO1_1
add RO1_NxtAdd, RO1_NxtAdd,WRD_SIZ

' ;check for 0’'s or 1's

add RO1_NxtAdd,R01_StrtAdd, 0 ;get strt RAM addr
sub RO1_TmpCnt,R01_WrdCnt, 2 ; for jmpfdec

RO1_2:
load CD,DATA_CTL,R01_RedPat,RO1_NxtAdd
cpneq RO1_Fail,RO1_RedPat,R0Ol_WrtPat ;err if neq
jmpt RO1_Fail,R01_ERR
nop
jmpfdec RO1_TmpCnt,R01_2
add RO1_NxtAdd,RO1_NxtAdd,WRD_SIZ
cpeq RO1_Fail,RO1_WrtPat,0 ;if WrtPat = 0 then
jmpt RO1_Fail,R01_0 ;RO1_0 else done
nor RO1_WrtPat, hOl_thPat ,RO1_WrtPat ;invert ptrn
jmp RO1_EXIT ;pass 0 and 1 test
nop) -

RO1_ERR: ;O0/P Parms —— NxtAdd,WrtPat,RedPat
call 1r0,RAMErxr ’
nop
const RO1_Fail, TRUE ;TRUE for test fail
consth RO1_Fail, TRUE

RO1_EXIT:
EPILOGUE
.eject
.sbttl “RAM Checker Pattern Test”

3-132

Programming Standalone Am29000 Systems

FUNCTION RAMChkr, 2,0,3

; This routine will run a two-pass checkerboard on RAM.

It will be controlled by

; input values specifying the base address and the count of locations to be tested.

; In: (see below)
; Out: (see below)
.reg RC_StrtAdd, $% (IN_PRM + 0)
.reg RC_WrdCnt, %% (IN_PRM + 1)
.reg RC_TmpCnt, %% (TEMP_REG + 0)
.reg RC_StrtPat, $% (TEMP_REG + 1)
.reg RC_NxtAdd, %% (OUT_PRM + 0)
.reg RC_WrtPat, %% (OUT_PRM + 1)
.reg RC_RedPat, %% (OUT_PRM + 2)
.reg RC_Fail, %% (RET_VAL + 0)
const RC_StrtPat, CHKPAT_a$
consth RC_StrtPat, CHKPAT_a5
RC_1:
add RC_NxtAdd,RC_StrtAdd, 0
sub RC_TmpCnt,RC_WrdCnt, 2
add RC_WrtPat,RC_StrtPat, 0
RC_2:
store 0,0,RC_WrtPat,RC_NxtAdd
R_LEFT RC_WrtPat
Jjmpfdec RC_TmpCnt,RC_2
add RC_NxtAdd,RC_NxtAdd, 4
add RC_NxtAdd,RC_StrtAdd, 0
sub RC_TmpCnt,RC_WrdCnt, 2
add RC_WrtPat,RC_StrtPat, 0
RC_3:
load CD,DATA_CTL,RC_RedPat,RC_NxtAdd
cpneq RC_Fail,RC_RedPat,RC_WrtPat
jmpt RC_Fail,RC_ERR
nop
R_LEFT RC_WrtPat
jmpfdec RC_TmpCnt,RC_3
add RC NxtAdd,RC_NxtAdd, 4
nor RC_StrtPat,RC_StrtPat,0
jmpt RC_StrtPat,RC_EXIT
nop
jmp RC_1
nop
RC_ERR:
call 1x0,RAMErr
nop
const RC_Fail, TRUE
consth RC_Fail, TRUE
RC_EXIT:
EPILOGUE

Foe e cees e e eanan s s s easreesssacens

;starting address
;count of words

;total test word count
;starting pattern
;error address
;pattern written
;pattern read

;TRUE for fail

;start with ab

;£i11 memory with pattern
;get start address

; for jmpfdec

;set the pattern

;rotate ptrn left

;next test mem addr

; check memory for pattern
;get start address

;for jmpfdec

;set the pattern

;err if neg

;rotate ptrn left

;next test mem addr

; invert ptrn for next pass
;invert initial

;done if msb =1

;try with inverted

;set after call

3-133

29K Family Application Notes

.eject
.sbttl “RAM Address Pattern Test”

FUNCTION RAMAddr,2,0,3

This routine will run a two-pass test on RAM. It will be controlled by input values
specifying the base address and the count of locations to be tested. In the first
pass,the data will be set equal to the address. In the second pass, the data will
be set equal to the complement of the address.

In: (see below)

; Out: (see below)

;
.reg RA_StrtAdd, %% (IN_PRM + 0) ;starting address
.reg RA_WrdCnt, %% (IN_PRM + 1) ;count of words
.reg RA_TmpCnt, $% (TEMP_REG + 0) ;total test word count
.reg RA_StrtPat, %% (TEMP_REG + 1) ;starting pattern
.reg RA_PtrnlInc, %% (TEMP_REG + 2) ;ptrn increment value
.reg RA_NxtAdd, %% (OUT_PRM + 0) ;error address
.reg RA_WrtPat, %% (OUT_PRM + 1) ;pattern written
.reg RA_RedPat, %% (OUT_PRM + 2) ;pattern read
.reg RA Fail, %% (RET_VAL + 0) ;TRUE for fail
add RA_StrtPat,RA_StrtaAdd, 0 ;start with address
const RA_Ptrnlnc, 4

RA_1: ;£ill memory with pattern
add RA_NxtAdd,RA_StrtAdd, 0 ;get start address
sub RA_TmpCnt,RA_WrdCnt,2 ; for jmpfdec
add RA WrtPat,RA StrtPat,0 ;set the pattern

RA_2:
store 0,0,RA_WrtPat,RA_NxtAdd
add RA_WrtPat,RA_WrtPat,RA_PtrnInc
jmpfdec RA_TmpCnt,RA_2
add RA_NxtAdd,RA_ NxtAdd, 4 ;next test mem addr

; check memory for pattern

add RA_NxtAdd,RA_StrtAdd, 0 ;get start address

sub RA_TmpCnt,RA_WrdCnt,2 ; for jmpfdec

add RA_WrtPat,RA_StrtPat,0 ;set the pattern
RA_3:

load CD,DATA_CTL,RA_RedPat ,RA_NxtAdd

cpneq RA_Fail,RA RedPat,RA WrtPat ;err if neq

jmpt RA_Fail,RA_ERR

nop

add RA WrtPat,RA WrtPat,RA PtrnInc

jmpfdec RA_TmpCnt,RA_3

add RA_NxtAdd,RA_NxtAdd,4 ;next test mem addr

; invert ptrn for next pass

nor RA_StrtPat,RA_StrtPat,0 ;sinvert initial

cpneq RA Fail,RA_StrtPat,RA StrtAdd

jmpt RA_Fail ,RA 1

subr RA PtrnlInc,RA_PtrnlInc,0 ;negate inc value

Jjmp RA_EXIT

nop

3-134

Programming Standalone Am29000 Systems

RA_ERR:
call 1xr0,RAMErr
nop
const RA_Fail,TRUE ;set after call
consth RA Fail, TRUE
RA_EXIT:
EPILOGUE
.eject
.sbttl “Invalid Trap Handler”
InvalidTrapHandler:

E

NN e s

This routine receives control when an invalid trap occurs. It will reinitialize
a register frame for use in error reporting. It then reports the fact that an
invalid trap has occurred. Reporting of specific trap numbers could be achieved,
but at considerable cost in size. The use of an instrument such as the ADAPT29K™
is recommended for invalid trap identification. If that is not practical, this
handler (or some other) could be extended to report numbers. It would require 2K
bytes of additional code (jmp/const for each of 256 vectors).

mtsrim cps, 0x173 ;RE,PD,PI,SM,DI,DA
const rfb, 512 ;set up temp reg frame
const rab,0

sub rsp,rfb,8 ;room for linkage

call 1r0,SerlInit ;ready to report errors
add 1rl,rfb,0 ;small frame required
call 1r0, TrapErr ;show trap error

nop

halt

nop

.eject

.sbttl “WVWector Initialization”

LEAF VectInit, O

This routine initializes the vector table and vab. All vectors
are set to point to the invalid trap handler in ROM.

.reg VI_Vect, %% (TEMP_REG + 0) ;vector value
.reg VI_VectSt, %% (TEMP_REG + 1) ;vector storage address
.reg VI_VectCnt, %% (TEMP_REG + 2) ;vector count register
mtsrim vab, 0
mfsr VI_VectSt, vab
const VI_Vect, (InvalidTrapHandler | 2)
consth VI_Vect,InvalidTrapHandler
const VI_VectCnt, (256 - 2) ; for jmpfdec
VI_Loop:
store 0,0,VI_VectSt,VI_Vect ;store the vector
jmpfdec VI_VectCnt,VI_Loop
add VI_VectSt,VI_VectSt,4
EPILOGUE

3-135

29K Family Application Notes

.eject
.sbttl

Boot:

;
;
’

e v

;

This routine receives control upon a hardware reset.

“Boot”

Its purpose

is to establish the execution environment for the main program. This involves
transcriptions of data and possibly code.
take the form of executing code since the ROM may not be readable.

.reg
mtsrim
const
const
sub
add
call
nop
const
consth
call
const
call
nop
call
mtsrim
mtsrim
const
consth
mtsr
add
mtsr
‘iretinv

end of boot.s

RI_Ret, %% (TEMP_REG + 0)
cps, 0x173

rfb,512

rab,0

rsp,xrfb,16

1lrl,rfb,0

1r0,SerInit

pl, (RAM_SIZE >> 2)
pl, (RAM_SIZE >> 2)
1r0, RAMAddr

p0,0

1r0,VectlInit

RI_Ret,RAMInit
ops,0x473
cps,0x473

1r0, TextBas
1r0, TextBas
pcl,1x0
1r0,1r0,4
pcO,1r0

;go to inst space,TextBas

The transcriptions may

;RAMInit return
/RE,PD,PI,SM,DI,DA
;set up temp reg frame

;enough for p0 and pl
;ready to report errors
s;test full RAM size
;just use one test
;test from address zero
;invalid traps
sinitialize RAM
;F2,PD,PI,SM,DI,DA

;Fz,PD,PI,SM,DI,DA
; (using 1lr0 as temp)

3-

136

Programming Standalone Am29000 Systems

APPENDIX B: start.s

oS e e se e

.title “Start and Other Assembly-language Routines”

Copyright 1988, Advanced Micro Devices, Inc.
Written by Gibbons and Associates, Inc.
HISTORY:

1.3 29 July 88 E M Greenawalt SPR 0001
Fixed shift count on line 1034

This module provides initializations and trap handling for a program written in C
and operating in a stand alone environment. It is designed for compatibility with
the ADAPT29K and various Am29000 monitors.

In this module, the first 16 system registers (gré4-gr79) are available for use as
system statics. They are not used in any of the routines in this file. Their
values are not saved and restored in the C interrupt handler interrupts, so they
are truly static.

The second 16 system registers (gr80-gr95) are used as temporary registers by trap
handlers, etc., in this module. No such trap handler is itself interruptable. No
presumption is made about the preservation of values in these registers by any

program.
.extern _main ithe C main routine
.global V_SPILL ;the spill/fill vectors
.global V_FILL

NOTE: The equates below define the padding in the vector
section (to a full page), and constants related to
the page size. The register and memory stack size
are also declared.

When operating with a monitor, the VECT PAD may need to be increased.

.equ PS,3 ;page size designation
.equ RPN_SHIFT, (10 + PS)

.equ PAGE_SIZE, (1 << RPN_SHIFT)

.equ MMU_PS, (PS << 8)

.equ RPN_MASK, (~ (PAGE_SIZE - 1))

.equ VECT_PAD, (PAGE_SIZE - 0x400)

.equ RSTK_SIZE,PAGE_SIZE

.equ MSTK_SIZE,PAGE_SIZE

.include “romdecl.h”

NOTE: The equates below define traps for divide by zero
and divide overflow. They are not standard. They
are not handled here.

.equ V_DIVO, 80 ;divide by zero
.equ V_DIVoV, 81 ;divide overflow
.eject

.sbttl “Section Declarations”

3-137

29K Family Application Notes

;
7
;
;
;
;
;
7
;
;
;
;
;
;

Sections will be ordered in memory as shown below.

vectors (at 0)
rstack (register stack)
mstack (memory stack)

.data
.bss
.text

endsect (dummy for establishing bounds)

Vectors will be initialized by start-~up code with pointers to an invalid trap

handler in ROM.

The initialization code will explicitly intercept those vectors

that will be handled.

.sect
.sect
.sect
.sect

vectors,bss
rstack, bss
mstack, bss
endsect, bss

The declarations that follow suggest the order of the segments, provide base

names for each,

and allocate sizes for the vectors and stacks.

Jump instructions are also provided at the base of the .text section for ease
in linkage to the Start routine and the special routine which provides for
ADAPT29K initializations.

.use

.block

.block

.use
RStkBase:

.block
RStkTop:

.use
MStkBase:

.block
MStkTop:

.data
DataBase:

.bss
BSSBase:

.text
TextBase:

jmp

nop

jmp

nop

.use

vectors
(4 * 256)
VECT_PAD
rstack

RSTK_SIZE

mstack

MSTK_SIZE

;base of init data

;base of BSS data

;base of .text

Start ;allows easy linkage to Start
;for bootstrap code

AdaptInit ;makes AdaptInit easier to find

endsect

3-138

Programming Standalone Am29000 Systems

EndBase: ;marks end of .text
.block 4 ;dummy to assure existence
.text ;switch back to text
.eject
.sbttl “Timer read/write functions”
.global _GetTmCnt
.global _SetTmCnt
.global _GetTmR1d '
‘global _SetTmR1ld
LEAF _GetTmCnt, 0

e Ne e o Se Se Se se v

This routine returns the timer/counter register value. All the fields are returned;
i.e., no mask is applied.

In: (nothing)
Out: (see below)
.reg GTC Val, %% (RET_VAL + 0) jtimer reg value
mfsr GTC _Val,tmc
EPILOGUE
LEAF _SetTmCnt,1

This routine sets the timer/counter register value. All the fields are set;
i.e., no mask is applied.

In: (see below)
Out: (nothing)
.reg STC_Val, %% (IN_PRM + 0) ;timer reg value
mtsr tmc, STC_Val
EPILOGUE
LEAF _GetTmR1d, 0

This routine gets the current contents of the timer reload register. No masks
are applied.

In: (nothing)
Out: (see below)
.reg GTR_Val, %% (RET_VAL + 0) ;timer reload value
mfsr GTR_Val, tmr
EPILOGUE
LEAF _SetTmR1d,1

This routine sets the timer/counter reload value. All the fields are set;
i.e., no mask is applied.

In: (see below)

3-139

29K Family Application Notes

; Out: (nothing)
’ .reg STR_Val, %% (IN_PRM + 0) ;timer reload value
mtsr tmr, STR_Val
EPILOGUE
.eject
.sbttl “32-bit Time Extensions”

L T R T

The routines below extend the timer counter to 32 bits via a trap handler. The
32-bit value may be initialized and read by C-callable routines declared as
globals. The trap handler is also included. Note that the caller of the C routines
must be running in supervisor mode. :

.global _ClrTm32
.global _GetTm32
.bss ;switch to declare bss
TimeUpper:
.block 4 ;reserve a word for extension
.text ;switch back
LEAF _ClrTm32,0

e e Ne Ne se we

Se s s e s

This routine clears the 32-bit extended counter by setting the tmec, tmr and
software extension value. The timer interrupt is also enabled in tmr.

In: (nothing)
Out: (nothing) (timer initialized to zero)
Temp: (see below)
.reg CTVal, %% (TEMP_REG + 0) stimer reg value
.reg CTUpPt, %% (TEMP_REG + 1) ;upper pointer
const CTVal, Oxffffff ;for tc and TimeUpper
consth CTVal,Oxffffff
mtsr tme, CTVal ;should keep it busy
consth CTVal,Ox1ffffff ;set ie
mtsr tmr,CTVal
const CTUpPt, TimeUpper
consth CTUpPt, TimeUpper
const CTVal, O ;no extension
store 0,0,CTVal,CTUpPt
EPILOGUE

B R R R R R I I i e S A IR I

LEAF _GetTm32,0

This routine returns a 32-bit clock counter. The clock counter is implemented

by extending the hardware counter in software and negating the value before it is
returned. The negation causes the returned value to be an up counter of the time
since the counter was last reset. The low-level timer access routines may be used
in initializations to assure a desired starting value.

The software extension to 32 bits introduces a coordination problem in reading
the counter’s value. This is resolved by reading the upper 8 bits both before
and after the TC value. If the TC value is greater than 2**23, the second upper
value read is presumed to be correct. Lengthy interruptions of this routine

(> 2**21 clocks) could cause errors.

In: (nothing)

3-140

Programming Standalone Am29000 Systems

; Out: (see below)
; Temp: (see below)
.reg TUpPt, $% (TEMP_REG + 0) ;upper time pointer
.reg TUprl, $% (TEMP_REG + 1) jupper time bits - 1lst read
.reg TUpr2, $% (TEMP_REG + 2) ;upper time bits - 2nd read
.reg TLwr, %% (TEMP_REG + 3) ;lower time bits - from cntr
.reg TChk, %% (TEMP_REG + 4) ;temp to check high bit
.reg T32,%%(RET_VAL + 0) ;32-bit time value
const TUpPt, TimeUpper ;get upper 8 bits of timer
consth TUpPt, TimeUpper
load 0,0,TUprl, TUpPt
add TUprl,TUprl, 0 ;hold till load complete
mfsr TLwr, tmc
load 0,0, TUpxr2, TUpPt ;get upper 8 bits again
s1l TChk, TLwr, 8 ;is upper TC bit set?
jmpf TChk, GT_Exit ;if not, use lst read
or T32,TLwr, TUprl ;poss ovfl before 2nd read
or T32,T32,TUpr2 ;poss ovfl after 1lst read
GT_Exit:
subr T32,T32,0 ;negate to count up from zero
EPILOGUE
TimerHandler:

This routine handles the timer trap. The timer trap will occur at intervals in the
range of a second (depending on the actual clock speed). The extension to 32 bits
makes the timer somewhat more useful for common benchmarks. A different scheme
would be required for longer intervals.

.reg THTr, %% (SYS_TEMP + 0) ;temp for tmr (shared)
.reg THUpPt, %% (SYS_TEMP + 0) ;pointer to upper 8 bits
.reg THUpV], %% (SYS_TEMP + 1) ;upper 8-bit value

mfsr THTr, tmr

sll THTr, THTZ, 7 ;clear out upper tmr bits
srl THTr, THTr, 7 :leaving ie alone

mtsr tmr, THTx

const THUpPt, TimeUpper ;decrement the upper bits
consth THUpPt, TimeUpper

load 0,0, THUpV1, THUpPt

srl THUpV1, THUpV1, 24

sub THUpV1, THUpV1, 1

sl THUpV1, THUpV], 24

store 0,0, THUpV]1, THUpPt

iret ;done

.eject

.sbttl “C Interrupt Handler Interface”

.global CIntf

CIntf:

; This routine is used to call a C routine that will handle an interrupt. In order

; to accomplish this, the context of the current program must be saved prior to the

; call and restored after the call. It is relatively expensive. In many

; instances, it may be best to write the interrupt handlers in assembly-language. Note

3-141

29K Family Application Notes

that assembly-language handlers will have the system statics available to retain
state information. Note also that system statics are not saved and restored here.
; They are “static.”

~

This routine receives as inputs the address of the C routine and the vector number.
It passes the vector number to the C routine as its only parameter. An initial
stack of 16 registers (including inputs) is provided to the C routine.

In: (SYS_TEMP + 0) C routine address
(SYS_TEMP + 1) ’ vector number

Out: (nothing)

Temp: (SYS_TEMP 2-~13) used to hold specials

(see below)

Se e Se Se Ne Se o Se e Se Se e s

.reg CI_Rout, %% (SYS_TEMP + 0) ;the C routine

.reqg CI_Vect,%%(SYS TEMP + 1) ;the vector

.reg CI_Stk, %% (SYS_TEMP + 14) ;stack check value

.reg CI_Frm, %% (SYS_TEMP + 14) ;frame size (shared)

mfsr st2,ops ;save specials temps

mfsr st3,cha

mfsr st4,chd

mfsr st5,che

mfsr st6,pcO

mfsr st7,pcl

mfsr st8,ipc

mfsr st9,ipa

mfsr st10, ipb

mfsr stll,q

mfsr stl2,alu

add stl3,rsp, 0 .

mtsrim cps, 0x73 ;PD,PI,SM,DI,DA

sub msp,msp, ((64 — 16) * 4) s;allocate space for globals

const CI_Stk,MstkBase ;check for overflow

consth CI_Stk,MStkBase

asge V_DataTLBProt,msp,CI_Stk ;simulate Prot (no return on fail)

store 0,0,gr80, msp ;flush for CPU bug

mtsr im CR, ((64 - 16) ~ 1)

storem 0,0,9r80,msp ;save the globals

add rfb,rsp,0 ;move down the frame

const CI_Frm,512 ;beneath rsp

sub rab,rfb,CI_Frm

add rsp,rab, (13 * 4) ;set rsp in 16 reg frame

sub msp,msp, (16 * 4). ;save the frame

mtsr im CR, (16 - 1)

storem 0,0, rab,msp

add 1xl,rfb,0 ;require remaining locals

add p0,CI_Vect, 0 ;vector is output parm O

calli 1x0,CI_Rout ;call the handler

mtsrim cps, 0x13 ;with prot and no ints (no good
; for more complex TLB schemes)

mtsrim cps, 0x73 © ;ready to reload

sub rab, rsp, (13 * 4) ;reload locals in frame

mtsrim CR, (16 - 1)

loadm 0,0, rab, msp

add msp,msp, (16 * 4)

mtsrim CR, ((64 - 16) - 1) ;reload globkals

loadm 0,0,9r64,msp

add msp,msp, { (64 - 16) * 4)

mtsr ops,st2 ;restore specials

3-142

Programming Standalone Am29000 Systems

mtsr
mtsr
mtsr
mtsx
mtsr
mtsr
mtsr
mtsr
mtsr
mtsr
add

iret

cha,st3
chd, st4
che, stS
pcO,st6
pcl,st?
ipc,st8
ipa,st9
ipb,stl0
q,stll
alu,stl2
rsp,stl3,0
sreturn from int

T R I I I I

.eject
.sbttl

MultiplyHandler:

This trap handler performs the (signed) operation:

“Multiply and Divide Handlers”

DEST//Q <- SRCA * SRCB.

IPC, IPA, and IPB are set by the MULTIPLY instruction prior to the invocation of

In: IpPC
IPA

; this trap handler.
; IPB

Out: DEST//Q

Temp: (see below)

.reg
mtsr
mfsr
mtsr
mul
mul
mul
mul
mul
mul
mul
mal
mul
mul
mul
mul
mal
mul
mul
mul
mul
mul
mul
mul
mul
mul
mul
mul
mul

DEST
SRCA
SRCB

IPB = IPC

MH_IP, %% (SYS_TEMP + 0)
q,9x0

MH IP,ipc
ipb,MH_IP
gr0,gr0,0
gr0,gr0,gr0
gr0,gr0,gr0
gr0,gr0,gr0
gr0,qr0,gr0
gr0,gr0,gr0
gr0,9r0,gr0
gr0,gr0,gr0
gr0,gr0,gr0
gr0,gr0,gr0
gr0,gr0,gr0
gr0,gr0,gr0
gr0,gr0,gr0
gr0,gr0,gr0
gr0,gr0,gr0
gr0,gr0,gr0
gr0,gr0,gr0
gr0,9x0,gx0
gr0,gr0,gr0
gr0,gr0,gro0
gr0,gr0,gr0
gr0,qgr0,qgr0
gr0,gr0,gr0
gr0,gr0,gr0
gr0,gr0,gro0

‘(unimportant side effect)

;temp for move operation
;SRCB (multiplier) to Q
;use a system temp to set
; ipb = ipc

sstep 1. (no initial prod)
;step 2.

;step 3.

;step 4.

;step 5.

;step 6.

;step 7.

;step 8.

;step 9.

;step 10.

;step 11.

;step 12.

;step 13.

;step 14.

;step 15.

;step 16.

;step 17.

;step 18.

;step 19.

;step 20.

;step 21.

;step 22.

;step 23.

;step 24.

;step 25.

3-143

29K Family Application Notes

mul gr0,q9rx0,gx0 ;step 26.
mul gr0,gr0,gr0 ;step 27.
mul gr0,qr0,gx0 ;step 28.
mul gr0,gr0,gr0 ;step 29.
mul gr0,gr0,gr0 ;step 30.
mul gr0,gr0,gro0 ;step 31.
mull gr0,gr0,gr0 ;step 32.
iret ;done

This trap handler performs the (unsigned) operation
DEST//Q <- SRCA * SRCB.

IPC,IPA,and IPB are set by the MULTIPLU instruction prior to
the invocation of this trap handler.

In: IPC DEST

IPA SRCA -
IPB SRCB

Out: DEST//Q
IPB = IPC (unimportant side effect)

Se Mo Se e e N Ne o Ne e e e Se ose e N N

Temp: (see below)
.reg MU_IP,%%(SYS_TEMP + 0) ;temp for move operation
mtsr q,gr0 ;SRCB (multiplier) to Q
mfsx MU_IP,ipc ;use a system temp to set
mtsr ipb,MU_IP ; ipb = ipc
mulu gr0,gr0,0 ;step 1. (no initial prod)
mulu gr0,gr0,gr0 . ;step 2.
mulu gr0,gr0,gro0 ;step 3.
mulu gr0,gr0,gr0 ;step 4.
mulu gr0,gr0,gr0 ;step 5.
mulu gr0,gr0,gr0 ;step 6.
mulu gr0,gr0,gr0 ;step 7.
mulu gr0,gr0,gr0 ;step 8.
mulu gr0,gr0,gr0 ;step 9.
mulu gr0,gr0,gr0 ;step 10.
mulu gr0,gr0,gro0 ;step 11.
mulu gr0,gr0,gro0 . ;step 12.
mulu gr0,gr0,gr0 ;step 13.
mulu gr0,gr0,gr0 ;step 14.
mulu gr0,gr0,gr0 ;step 15.
mulu gr0,gr0,gr0 . ;step 16.
mulu v gr0,gr0,gr0 ;step 17.
mulu gr0,gr0,gr0 ;step 18.
mulu gr0,gr0,gr0 ;step 19.
mulu gr0,gr0,gr0 ;step 20.
mulu gr0,qgr0,gr0 ;step 21.
mulu gr0,gr0,gr0 ;step 22.
mulu gr0,gr0,gr0 ;step 23.
mulu gr0,qr0,gr0 ;step 24.
mulu gr0,gr0,g9r0 ;step 25.
mulu gr0,gr0,gr0 ;step 26.
mulu gr0,gr0,gr0 ;step 27.
mulu gr0,qr0,gr0 ;step 28.
mulu gr0,gr0,9r0 ;step 29.
mulu gr0,gr0,gr0 ;step 30.
mulu gr0,gr0,gr0 ;step 31.
mulu qr0,qr0,gro0 ;step 32.
iret ;done

3-144

Programming Standalone Am29000 Systems

DivideHandler:

This trap handler performs the (signed) operation:
DEST <~ (SRCA//Q) / SRCB

e ve e e

IPC,IPA,and IPB are set by the DIVIDE instruction prior to
the invocation of this trap handler.

;In: IPC _ DEST
; IPA SRCA
H IPB SRCB
; Q
;
; Out: DEST
; Temp: (see below)
.reg D_Rmdr, $% (SYS_TEMP + 0) ;shift area and remainder
.reg D_Dvsr, $% (SYS_TEMP + 1) ;divisor
.reg D_Sign, %% (SYS_TEMP + 2) ;0 for positive
.reg D_DvdHi, %% (SYS_TEMP + 3) ;dividend high
.reg D_DvdLo, $% (SYS_TEMP + 4) ‘sdividend low
.reg D_Quot, %% (SYS_TEMP + 5)
.reg D_Ovfl, 3% (SYS_TEMP + 6)
.reg D_MnNg, %% (SYS_TEMP + 7) ;most negative integer
add D_DvdHi,gr0,0 ;SRCA is dividend high
mfsx D_Dvdlo, q ;Q is dividend low
sub D_Dvsr,D_Dvsr,0 ;divisor is in SRCB
add D_Dvsr,D_Dvsr,gr0 ;any easier access?
asneq V_DIV0,D_Dvsr,0 ;check for divisor zero
DividendCheck:
jmpf D_DvdHi,DivisorCheck
const D_Sign,FALSE
cpeq D _Sign,D_Sign,0 ;toggle flag
subr D_DvdLo,D_DvdLo, 0 ;negate dividend
subrc D_DvdHi,D_DvdHi, 0
DivisorCheck:
- jmpf D Dvsr,DivideOp
nop
cpeq D_Sign,D_Sign,0 ;toggle flag
subr D_Dvsr,D_Dvsr,0 ;negate divisor
DivideOp:
mtsr q,D_DvdLo ;dividend low to gq
div0 D_Rmdr,D_DvdHi :D_Rmdr becomes shift high
div D_Rmdr,D_Rmdr,D_Dvsr ;step 1.
div D_Rmdr,D Rmdr,D Dvsr ;step 2.
div D_Rmdr,D_Rmdr,D Dvsr ;step 3.
div D_Rmdr,D Rmdr,D Dvsr ;step 4.
div D_Rmdr,D Rmdr,D_Dvsr ;step 5.
div D_Rmdr,D_Rmdr,D Dvsr ;step 6.
div D_Rmdr,D_Rmdr,D_Dvsr ;step 7.
div D_Rmdr,D_Rmdr,D Dvsr ;step 8.
div D_Rmdr,D_Rmdr,D_Dvsr ;step 9.
div D_Rmdr,D_Rmdr,D_Dvsr ;step 10.
div D_Rmdr,D_Rmdr,D Dvsr ;step 11.
div D_Rmdr,D_Rmdr,D Dvsr ;step 12.

3-145

29K Family Application Notes

div D_Rmdr,D Rmdr,D Dvsr
div D_Rmdr,D_Rmdr,D_Dvsr
div D_Rmdr,D_Rmdr,D_Dvsr
div D_Rmdr,D Rmdr,D_Dvsr
div D_Rmdr,D_Rmdr,D_Dvsr
div D_Rmdr,D_Rmdr,D_Dvsr
div D_Rmdr,D_Rmdr,D_Dvsr
div D_Rmdr,D_Rmdr,D_Dvsr
div D_Rmdr,D_Rmdr,D_Dvsr
div D_Bmdr,D_Rmdf,D_Dvsr
div D_Rmdr,D Rmdr,D_Dvsr
div D_Rmdr,D Rmdr,D_Dvsr
div D_Rmdr,D_Rmdr,D_Dvsr
div D_Rmdr,D_Rmdr,D_Dvsr
div D_Rmdr,D_Rmdr,D_Dvsr
div D_Rmdr,D_Rmdr,D_Dvsr
div D_Rmdr,D_Rmdr,D_Dvsr
div D_Rmdr,D Rmdr,D Dvsr
div D_Rmdr,D_Rmdr,D_Dvsr
; divrem D_Rmdr,D_Rmdr,D_Dvsr
mfsr D_Quot,q
cplt D _Ovfl,D Quot,0
jmpf D_Sign,DivideCorrect
cpeq D_MnNg,D_MnNg,D;MnNg
cpeq D_Ovfl,D_MnNg,D_Quot
cpneq D_Ovfl,D Ovfl,D_Sign
DivideCorrect:
jmpf D_Sign,DivideExit
aseq V_DIVOV,D_Ovfl, 0
subr D_Quot,D_Quot,0
H subr D_Rmdr,D_Rmdr, 0
DivideExit:
add gr0,D_Quot, 0
iret ;done
DividuHandler:

DEST <- (SRCA//Q) / SRCB

This trap handler performs the (unsigned) operation:

;step 13.

;step 14.

;step 15.

;step 16.

;step 17.

;step 18.

;step 19.

;step 20.

;step 21.

;step 22.

;step 23.

;step 24.

;step 25.

;step 26.

;step 27.

;step 28.

;step 29.

;step 30.

;step 31.
;don’t need remainder
;get quotient out of q
;check overflow

;set most neg
;check for most neg
;allow if to be neg

;done if positive
strap on overflow
;negate quotient
;don’t need remainder

;set DEST

; IPC,IPA,and IPB are set by the DIVIDU instruction prior to

; the invocation of this trap handler.

; In: IpC DEST

; IPA SRCA

H IPB SRCB

H Q

; Out: DEST

; Temp: (see below)

;
.reg DU_Rmdr, $% (SYS_TEMP + 0)
add DU_Rmdr,gr0,0
divo DU_Rmdr,DU_Rmdr
div DU_Rmdr,DU_Rmdr,gr0
div DU_Rmdr, DU_Rmdr, gr0
div DU_Rmdr,DU_Rmdr,gr0

;shift area and remainder

;SRCA to DU_Rmdr

;DU_Rmdr becomes shift high

;step 1.
;step 2.
;step 3.

3-146

Programming Standalone Am29000 Systems

: divrem
mfsr
iret

DU_Rmdr,DU_Rmdr, gr0
DU_Rmdr, DU _Rmdr, gr0
DU_Rmdr,DU_Rmdr,gr0
DU_Rmdr, DU_Rmdr, gr0
DU_Rmdr,DU_Rmdr,gr0
DU_Rmdr,DU_Rmdr,gr0
DU_Rmdr, DU_Rmdr,gr0
DU_Rmdr, DU Rmdr, gr0
DU_Rmdr,DU_Rmdr, gr0
DU_Rmdr,DU_Rmdr,gr0
DU_Rmdr,DU_Rmdr,gr0
DU_Rmdr,DU_Rmdr, gr0
DU_Rmdr,DU_Rmdr, gr0
DU_Rmdr,DU_Rmdr,gr0

DU_Rmdr,DU_Rmdr, gz0 -

DU_Rmdr,DU_Rmdr, gr0
DU_Rmdr, DU_Rmdr,gr0
DU_Rmdr,DU_Rmdr,gr0
DU_Rmdr,DU_Rmdr, gr0
DU_Rmdr,DU_Rmdr,gr0
DU_Rmdr,DU_Rmdr,gr0
DU_Rmdr,DU_Rmdr,gr0
DU_Rmdr,DU_Rmdr,gr0
DU_Rmdr, DU_Rmdr,gr0
DU_Rmdr,DU_Rmdr,gr0
DU_Rmdr,DU_Rmdr,gr0
DU_Rmdr,DU_Rmdr,gr0
DU_Rmdr,DU_Rmdr, gr0
DU_Rmdr,DU_Rmdr,gr0
gr0,q

;done

;step
;step
;step
;step
;step
;step
; step
;step
;step
;step
; step
;step
; st.ep
;step
;step
;step
;step
;step
;step
;step
;step
;step
;step
;step
;step
;step
; step
;step

4.
5.
6.

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.

;don’t need remainder

;quotient to (ipc)

“Spill and Fill Handlers”

The routines below handle the allocation and free assertions

;
; in subroutine prologues and epilogues.
i

are given below.

.reg
.reg
.reg
.reg

SpillHandler:

‘

R_Cnt, %% (SYS_TEMP + 0)
R_Bnd, %% (SYS_TEMP + 0)

R_TmpPCO, %% (SYS_TEMP + 1)
R_TmpPCl, %% (SYS_TEMP + 2)

The temps they use

;temp for count (shared)
;temp for boundary
;temp for PCO

;temp for PCl

; This routine handles a false assertion in the standard prologue

; In: rab > rsp (requiring an allocation}
; 1rl <= rfb
; rfb == rab + 512
; Out: rab == rsp (just enough allocated)
: 1rl <= rfb
H rfb = rab + 512
mfsr R_TmpPCO, pcO ;save the PCs
mfsr R_TmpPCl, pcl
mtsrim cps,0x73 ;PD,PI,SM,DI,DA
sub R_Cnt,rab, rsp ;R_Cht = # of bytes to spill
sub rfb,rfb,R_Cnt ;move down the frame bound

3-147

29K Family Application Notes

store 0,0,1r0,rfb ;flush for storem bug
srl R_Cnt,R_Cnt,2 ;R Cnt = count of words to spill
sub R_Cnt,R_Cnt,1 scorrect for storem
mtsr cr,R Cnt ;set up count for storem
storem 0,0,1x0, rfb ;spill from the allocated area
add rab, rsp, 0 ;move down the allocate bound
const R_Bnd,RStkBase ;check for possible overflow
consth R_Bnd,RStkBase
asge V_DataTLBProt,rab,R_Bnd ;simulate TLB prot

;NOTE: no return on fail
mtsrim cps,0x473 ;FZ,PD,PI,SM,DI,DA
mtsr pc0,R_TmpPCO ;restore the PCs
mtsr pcl,R_TmpPCl
iret

FillHandler:

This routine handles a false assertion in the standard epilogue.

; In: 1rl > rfb (requiring deallocation)

H rsp >= rab

; rfb == rab + 512

; Out: 1lrl == rfb (just enough freed)

H rsp >= rab

H rfb = rab + 512
mfsr R_TmpPCO, pc0 ;save the PCs
mfsr R_TmpPCl, pcl
mtsrim cps, 0x73 ;PD,PI,SM,DI,DA
const R_Bnd,RStkTop ;check for possible underflow
consth R_Bnd,RStkTop
asle V_DataTLBProt,rfb,R Bnd ;simulate TLB prot

;NOTE: no return on fail

const R _Cnt,512 ;make local reg ip
or R_Cnt,R_Cnt, rfb ; from rfb
mtsy ipa,R _Cnt ;set up indirect ptr for loadm
sub R_Cnt,1lrl, rfb ;R _Cnt = # of bytes to fill
add rab, rab,R Cnt ;move up the allocate bound
srl R _Cnt,R_Cnt,2 ;R Cnt = number of words to fill
sub R Cnt,R_Cnt,1 ;correct for loadm
mtsr cr,R Cnt ;set up count for loadm
loadm 0,0,9r0, rfb ;f£ill area freed
add rfb,1rl,0 ;move up frame bound
mtsrim cps, 0x473 ;¥Z2,PD,PI,SM,DI,DA
mtsr pc0,R_TmpPCO ;i restore the PCs
mtsr pcl,R_TmpPCl
iret
.eject
.sbttl “TLB Miss Handler”

The routines below provide one-for-one TLBs, i.e., the virtual address is set equal
to the physical address. A central routine is used to do the actual TLB update.

Some enhancement would be appropriate to allow I/0 access as data,; i.e.,
memory-mapped I/O. Speed improvements could be realized (four instructions) by the
allocation and initialization of system registers for the bounds.

e e Se Ne Se N N

The temp registers used are indicated below.

3-148

Programming Standalone Am29000 Systems

.reg TH_Ad, %% (SYS_TEMP + 0)
.reg TH_Ac, %% (SYS_TEMP + 1)
.reg TH_Bnd, $% (SYS_TEMP + 2)
.reg TH_Reg, %% (SYS_TEMP + 3)
.reg TH_WdO, %% (SYS_TEMP + 4)
.reg TH_Wdl, %% (SYS_TEMP + 5)

;the miss address

s;the required privileges
;access bound

;TLB register number
;TLB word 0 value

;TLB word 1 value

This routine handles supervisor instruction TLB misses.

An attempted access out of range is treated as an instruction

TLB protection violation.

mfsr TH_Ad, pcl

const TH_Bnd, TextBase

consth TH_Bnd, TextBase

asge V_InstTLBProt,TH Ad,TH_Bnd

const TH_Bnd,EndBase

consth TH_Bnd, EndBase

aslt V_InstTLBProt,TH_Ad, TH_Bnd

jmp TLBHandler

const TH Ac,0x4800
SupDataTLBHandler:

;

;

;

This routine handles the supervisor data TLB misses.

;NOTE: no return on fail

;NOTE: no- return on fail

;VE, SE

It should

be enhanced to allow I/O access as well as data access.

mfsr TH_Ad, cha

const TH_Ac, 0x7000

const TH_Bnd, MStkBase

consth TH_Bnd, MStkBase

asge V_DataTLBProt,TH_Ad,TH_Bnd

const TH_Bnd, TextBase

consth TH_Bnd, TextBase

aslt V_InstTLBProt,TH_Ad, TH_Bnd
TLBHandler:

Se N e Ne o Se N N N N s s

;VE, SR, SW

;NOTE: no return on fail

;NOTE: no return on fail
(drop through to TLB handler)

This routine handles TLB updates once it has been determined

that the update is appropriate.-

;shift for vtag
;establish addr fields

;establish access

NOTE: This routine presumes an 8K-byte page size.
In: TH_Ad the address where access is required
TH_Ac the access that is required.

lru the recommended TLB for replacement
Qut : (1xu) provides access to TH_Ad

constn TH_Wd1l, RPN_MASK

sll1 TH_WdO, TH_Wd1,5

and TH_Wdl,TH_Wdl,TH Ad

and TH_WdO0, TH_WdO, TH_Ad

or TH_WdO0, TH_WdO, TH_Ac

mfsr TH_Reg, lru

;set the TLB entry

3-149

29K Family Application Notes

mttlb
add
mttlb
iret

.eject
.sbttl

LEAF TLBInit, 0

In: (nothing)

Out: (nothing)

Ne o Se e e e Se Nk s v ve S

.reg
.reg
.reg
const
const
const

TI_Loop:
mttlb
jmpfdec
add
EPILOGUE

.data

VectInitTable:

.word
.word
.word
.word
.word
.word
.word
.word
.word
' .equ
.text

Temps: (see below)

TH_Reg, TH_WdO
TH_Reg, TH_Reg,1
TH_Reg, TH_Wd1l

“TLB Initialization”

This routine is used to initialize the TLBs.

It clears all the TLB registers, thus marking all entries invalid.

TI_Reg, %% (TEMP_REG + 0) ;the TLB register number
TI_Val, %% (TEMP_REG + 1) ;the TLB value (0)
TI_Cnt, %% (TEMP_REG + 2) ;the TLB register count
TI_Reg,0

TI_Val,0

TI_Cnt, (TLB_CNT - 2) ; for jmpfdec

TI_Reg,TI_Val
TI_Cnt,TI_Loop
TI_Reg,TI_Reg,1l

“Vector Initialization”

In order that the vector initialization code might be compact

and that the set of vectors initialized might be easily expanded,
a table in .data is used. Each entry in the table has two words.
The first word is the number of the vector to be initialized. The
second word is the address of the handler.

;switch to .data for table

V_SupInstTLB, SupInstTLBHandler
V_SupDataTLB, SupDataTLBHandler
V_MULTIPLY,MultiplyHandler
V_DIVIDE, DivideHandler
V_MULTIPLU,MultipluHandler
V_DIVIDU,DividuHandler
V_SPILL,SpillHandler
V_FILL,FillHandler
V_Timer, TimerHandler
VINIT_CNT, ((. - VectInitTable) / 8)
;switch back to .text for

code

3-150

Programming Standalone Am29000 Systems

VectInit:

e e e Se o Se ve o Se owe s

This routine initialzes the vectors for which handlers exist.

In:

Out:

Temp:

VI_Loop:

vab

(vectors initialized)

.reg VI_Vect, %% (TEMP_REG + 0)
.reg VI_St,%%(TEMP_REG + 1)
.reg . VI_Cnt, %% (TEMP_REG + 2)
.reg VI_Base, % (TEMP_REG + 3)
.reg VI_TbPt, %% (TEMP_REG + 4)
mfsr VI_Base,vab

const VI_Cnt, (VINIT_CNT - 2)
const VI_TbPt,VectInitTable
consth VI_TbPt,VectInitTable
load 0,0,vIi_st,VI_TbPt

add VI_TbPt,VI_TbPt, 4

sll VI_st,VI_st,2

add VI_St,VI_St,VI_Base

load 0,0,VI_Vect,VI_TbPt

add VI_TbPt,VI_TbPt,4
jmpfdec VI_Cnt,VI_Loop

store 0,0,VI_Vect,VI_St

jmpi 1r0

nop

.eject

.sbttl “ADAPT29K Initializations”

AdaptInit:

Ne o Ne N Ne S Nu o Se e ohe e Se N s N s

vector area base

(see below)
;vector value
;vector storage address
;vector count
;vector base

;vector base

;for jmpfdec

;get the vector
;convert to address (fixed v1.3)

;get the handler

This routine is for use in situations where the bootstrap process
occurred. Instead, the ADAPT29K has been used to load
the program. Initializations of the vectors,
required.

has not

As an aid to fault identification, the vector
with pointers to the words immediately following the vectors. These
words are initialized with HALT instructions.

halts executes,
of the halt.

to be identified.

CAUTION!

etc., will be

table is initialized

When one of these

the ADAPT29K will report the event and the address
This will allow the invalid trap that has occurred

;vector value

svector storage address
;vector count register
;halt instruction register
;PD,PI,SM,DI,DA

; just beyond vectors

This requires that the vector pad be at least 1024.
.reqg AI Vect,%%(TEMP_REG + 0)
.reg AI_St,%% (TEMP_REG + 1)
.reg AI_Cnt, $% (TEMP_REG + 2)
.reg AI_Halt, %% (TEMP_REG + 3)
mtsrim cps,0x73
mtsrim vab, 0
mfsr AI_sSt,vab
const AT Vect, 1024
const AI Halt,0x89000000

3-151

29K Family Application Notes

consth AI_Halt,0x89000000

const AI_Cnt, (256 - 2) ;for jmpfdec
Al_Loop:

store 0,0,AI_St,AI Vect ;store the vector

add AI_St,AI_St,.4

store 0,0,AI_Vect,AI_Halt ;store the HALT

jmpfdec AI_Cnt,AI_Loop

add AI_Vect,AI_Vect,4

jmp Start

nop

.eject

.sbttl “Start”
Start:

This routine receives control after any required bootstrap processes. It will
initialize the vectors which are actually handled, clear the BSS area, initialize
the TLBs, and establish initial stack pointers and an initial register frame.

It will then invoke _main.

In the event that _main returns, this routine will perform a warm start.

e seove .

; In: vab | indicates vector area
; Out: (nothing) .

mtsrim cps,0x73 ;PD,PI,SM,DI,DA
mtsrim mmu, MMU_PS) ;jorder # =0

" mtsrim cfg, 0x10 ;VE
const rfb,RStkTop ;set up stack pointers
consth rfb,RStkTop
const rab, (RStkTop - 512)
consth rab, (RStkTop - 512)
add 1rl,rfb,0
sub . rsp,rfb,16 ;1r0,1rl, argc,argv
const msp, MStkTop
consth msp, MStkTop
call 1r0,VectInit ;install handled vectors

' nop
call 1rx0,TLBInit ;establish TLBs invalid
nop))
call 1r0,_ClrTm32) jclear and enable timer
nop ; (leave to _main 22?)

mtsrim cps, 0x10 : :SM
const 1r2,0 sargec = 0
const 1r3,0 . ;argv = 0
call 1r0,_main

- nop

mtsrim cps,0x473 ;¥Fz,PD,PI,SM,DI,DA
mtsrim ops,0x173 ;RE,PD,PI,SM,DI,DA
mtsrim cfg,1 ;cache disabled
mtsrim che, 0 ;contents invalid
mtsrim pcl, 0 ;cold start address
mtsrim pcO,4
iretinv

;
I I R I I R T I I S I I T I T TP P Y

; end of start.s

3-152

Programming Standalone Am29000 Systems

APPENDIX C: test.s

.title “Test of Assembly-language Utilities”

; Copyright 1988, Advanced Micro Devices, Inc.
; Written by Gibbons and Associates, Inc.

.include “romdcl.h”

.extern _GetTm32

.data

.word OxDEADBEEF ;just to test
.bss

.block 1024 ;verify zeros
.text

.eject

.sbttl “Multiply/Divide Test”

LEAF _MultDiv,0

This routine gives a test of the multiply and divide trap
handlers by the simple expedient of performing one of each.
Using the debugger, it can be forced to loop, etc.

e v N

; In: (nothing)
; Out: (nothing)
; Temp: (see below)
.reg MD_Mpd, %% (TEMP_REG + 0) ;multiplicand
.reg MD Mpr, % (TEMP_REG + 1) ;multiplier
.reg MD PrlLo, $% (TEMP_REG + 2) ;product low
.reg MD_PrHi, $% (TEMP_REG + 3) ;product high
.reg MD Mlp, $% (TEMP_REG + 4) ;BOOLEAN for looping
.reg MD_DvdHi, %% (TEMP_REG + 0) ;dividend high
.reg MD_DvdLo, %% (TEMP_REG + 1) ;dividend low
.reg MD_Dvsr, %% (TEMP_REG + 2) ;divisor
.reg MD_Quot, %% (TEMP_REG + 3) ;quotient
.reg MD_D1p, %% (TEMP_REG + 4) ;BOOLEAN for looping
const MD Mlp, 0 ;FALSE
const MD_Mpd, 3 ; (full 32-bit for patching}
consth MD Mpd, 3
const MD_Mpr, 5
consth MD Mpr,5
M Loop:
multiply MD_PrHi,MD_Mpd, MD_Mpr
mfsx MD_Prlo,q
jmpt MD Mlp,M Loop
nop
const MD Dlp,0Q ; FALSE
const MD_DvdHi, 0 ; (full setting for patch)
consth MD_DvdHi, O
const MD DvdLo, 15
consth MD_DvdLo, 15
const MD Dvsr,3
consth MD_Dvsr, 3
D_Loop:
mtsr q,MD_DvdLo
divide MD_Quot,MD_DvdHi,MD_Dvsr
jmpt MD_Dlp,D_Loop

3-153

29K Family Application Notes

e Se ve Se e e e e N

nop
EPILOGUE

.eject

.sbttl “Spill/Fill Test”

FUNCTION _Recurse,1,29,1 ;ALLOC_CNT = 32

This routine is a simple recursive do-nothing that is used to test
spill/fill.

It accepts a count as its input, decrements that count, and, if the
result is zero or greater, calls itself with the now decremented
count. Each instance of the routine allocates 32 new registers.
Thus the total register requirement is 32 * (InCnt + 1) where InCnt
is the input count.

In: (see below)
Out: (nothing in final return)

Temp: (allocated but not used)

.reg R_InCnt, %% (IN_PRM + 0)
.reg R_OutCnt, %% (OUT_PRM + 0)
sub R_OutCnt,R _InCnt,1
jmpt. R_OutCnt,R_Exit '
nop
call 1r0,_Recurse
nop
R _Exit:
EPILOGUE
.eject
.sbttl “C Interrupt Interface Test”
.extern CIntf
LEAF _Trap70,1

This “C” routine handles trap 70. It increments the value of a global
system register so that its effect may easily be seen.

In: (see below)

Out: st0 incremented
stl set to input parameter value
.reg T70_V,%%(IN_PRM + 0) ;the vector
add st0,st0,1
add st1l,T70_V,0
EPILOGUE

Trap70:

;

This is the assembly-language routine that should get control on

3-154

Programming Standalone Am29000 Systems

Se e e Se e e e e

e e s N

;

R R R T I S

;

trap 70.
_Trap70, the “C” routine above.
to this routine.

In: {(nothing)
Qut: (nothing)
.reg T70_Rout, %% (SYS_TEMP + 0)
.reg T70_Vect, %% (SYS_TEMP + 1)
const T70_Rout,_Trap70
consth T70_Rout,_Trap70
jmp CIntf
const T70_Vect, 70
.eject
.sbttl “ _main”
.global _main
FUNCTION _main,2,2,1

This routine plays the role of a C main routine.

is coded in assembly language to ease testing with

an absolute debugger.

.reg argc, $% (IN_PRM + 0)
.reg argv, $% (IN_PRM + 1)
.reg StTm, $% (LOC_REG + 0)
.reg EndTm, $% (LOC_REG + 1)
call 1r0, GetTm32

nop

add StTm,v0,0

call 1r0,_MultDiv

nop

call 1r0,_Recurse

const p0, 15

asneq 70,grl,grl

call 1r0, GetTm32

nop

add EndTm,v0,0

EPILOGUE

end of test.s

It invokes CIntf in such a way as to give control to
Note that control never returns
CIntf performs the iret.

It

;argec (= 0)

;argv (= NULL)

;start time

send time

;should return start time

;save the result
;test multiply/divide

;test spill/fill
;require 1024 registers
;force trap 70

;should return end time

;save the result

3-155

29K Family Application Notes

APPENDIX D: roimdcl.h

.eject
.sbttl “Register, constant, and Macro Declarations”

; Copyright 1988, Advanced Micro Devices
Written by Gibbons and Associates, Inc.

Global registers

Se v ove se e

.reg rsp,grl ;local reg. var. stack pointer
.equ SYS_TEMP, 64 ;system temp registers
.reg st0,gré64
.reg stl,greés
.reg st2,gré66
.reg st3,gr67
.reg st4,grés
.reg st5,gr69
.reg st6,gr70
.reg st7,gr71
.reg st8,gr72
.reg st9,gr73
.reg st10,g9r74
.reg stll,gr75
.reg stl2,g9r76
.reg stl13,gr77
.reg stl4,gr78
.reg st15,9r79
.equ SYS_STAT, 80 ;system static registers
.reg ss0,gr80
.reg ssl,gr8l
.reg ss2,gr82
.reg ss3,gr83
.reg ss4,gr84
.reg ss5,gr85
.reg ss6,gr86
.reg ss7,gr87
.reg ss8,gr88
.reg ss9,gr89
.reg ssl1l0,gr90
.reg ssll,gr9l
.reg ssl2,qr92
.reg ss13,gr93
.reg ssl4,gr94
.reg ss15,9r95
.equ RET_VAL, 96 ;return registers
.reg v0,gr96
.reg vl,gr97
.reg v2,9r98
.reg v3,gr99
.reg vd4,grlo0
.reg v5,grlol
.reg v6,grl02
.reg v7,g9rl03
.reg v8,grl04
.reg v9,grlos
.reg v10,grl06
.reg v1ll,grl0?7
.reg v12,grl08
.reg v1l3,grl09
.reg vl4,grllo

3-156

Programming Standalone Am239000 Systems

.reg
.equ
.reg
.reg
.reg
.reg
.reg
.reg
.reg
.reg
.reg
.reg
.reg
.reg
.reg
.reg
.reg
.reg
.equ
.reg
.reg
.reg
.reg
.equ
-reg
.reg
.reg
.reg
.reg
.reg
.reg
.reg
.reg

v15,grlll

TEMP_REG, 96 ;temp registers
t0,gr9é

tl,qgr97

t2,gr98

t3,9r99

t4,grlo0

t5,grlol

t6,g9r102

t7,grl03

't8,grl04

t9,grl0s

t10,grl06

t11l,g9rl07

tl2,grl08

t13,9rl09

tl4,q9rll1o0

t15,grlll

RES_REG, 112 ;reserved (for user)
r0,grll2

rl,grll3

r2,grll4

r3,grlls

TEMP_EXT, 116 ;temp extension (and shared)
x0,grllé '
x1,9rll?7

x2,9rll8

x3,grll9

x4,9rl120

x5,grl21l

x6,grl22

x7,9rl23

x8,grli24

Global registers with special calling convention uses

.reg
.reg
.reg
.reg
.reg
.reg
.reg

tav,grl2l : ;trap handler argument {(also x6)
tpc,grl22 ;trap handler return (also x7)
1srp,grl23 ;large return pointer (also x8)
slp,grl24 ;static link pointer (alsc x9)
msp,grl2s ;memory stack pointer

rab,grl2é ;register alloc bound

rfb,grl27 ;register frame bound

Local compiler registers - output parameters, etc.
(only valid if frame has been established)

.reg
.reg
.reg
.reg
.reg
.reg
.reg
.reg
.reg
.reg
.reg
.reg
.reg
.reg

pl5,1rl7 ;parameter registers
pl4,1rlé
pl3,1rl5
pl2,1rl4
pll,1rl13
pl0,1rl2
p9,1rll
p8,1rl0
p7,1r9
p6,1r8
p5,1x7
p4,1lré6
p3,1x5
p2,1r4

3-157

29K Family Application Notes

.reg pl,1lr3
.reg p0,1r2
; TLB register count
.equ TLB_CNT, 128
.eject

constants for general use

.equ
.equ
.equ
.equ

WRD_SIZ,4 ;word size

TRUE, 0x80000000 ;logical true —-- bit 31
FALSE, 0x00000000 ;logical false —— 0
CHKPAT_a5,0xa5a5abad ;check pattern

constants for data

~e v s

access control

.equ
.equ
.equ
.equ
.equ
.equ
.equ
.equ
.equ
.equ
.equ
.equ
.equ

.eject

CE, Obl ;co—processor enable
CD, 0b0 ;co-processor disable
AS, 0b1000000 ;set for I/O

PA, 0b0100000 ;set for physical ad
SB, 0b0010000 ;set for set BP

UA, 0b0001000 . ;set for user access
ROM_OPT, 0b100 ;OPT values for acc

DATA_OPT, 0b000
INST_OPT, 0b00O

ROM_CTL, (PA + ROM_OPT) ;jcontrol field
DATA_CTL, (PA + DATA_OPT)

INST _CTL, (PA + INST_OPT)

I0-CTL, (AS + PA + DATA_OPT)

defined vectors

S e

.equ
.equ
.equ
.equ
.equ
.equ
.equ
.equ
.equ
.equ
.equ
.equ
.equ
.equ
.equ
.equ
.equ
.equ
.equ
.equ
.equ
.equ
; 22 - 31 reserved
.equ

V_IllegalOp,0
V_Unaligned,1
V_OutOfRange, 2
V_NoCoProc, 3
V_CoProcExcept, 4
V_ProtViol, 5
V_InstAccExcept, 6
V_DataAccExcept,?
V_UserInstTLB,8
V_UserDataTLB, 9
V_SuplInstTLB, 10
V_SupDataTLB, 11
V_InstTLBProt,12
V_DataTLBProt, 13
V_Timer,14
V_Trace,15
V_INTRO, 16
V_INTR1,17
V_INTR2,18
V_INTR3,19
V_TRAPO, 20
V_TRAP1, 21

V_MULTIPLY, 32

3-158

Programming Standalone Am29000 Systems

;

;

;

‘

.equ V_DIVIDE, 33
.equ V_MULTIPLU, 34
.equ V_DIVIDU, 35
.equ V_CONVERT, 36
37 - 41 reserved
.equ V_FEQ,42
.equ V_DEQ, 43)
.equ V_FGT, 44
.equ V_DGT,45
.equ V_FGE, 46
.equ V_DGE, 47
.equ V_FADD, 48
.equ V_DADD, 49
.equ V_FSUB, 50
.equ V_DSUB, 51
.equ V_FMUL, 52
.equ V_DMUL, 53
.equ V_FDIV, 54
.equ vV_DDIV, 55
56 — 63 reserved
.equ V_SPILL, 64
.equ V_FILL, 65
.equ V_BSDCALL, 66
.equ V_SYSVCALL, 67
.equ V_BRKPNT, 68
.equ V_EPI_O0S, 69
.eject
.macro R_LEFT, REGVAR

Rotate left

Parameters: REGVAR register to rotate
add REGVAR, REGVAR, REGVAR ;shift left by 1 bit,C = MSB
addc REGVAR, REGVAR, 0 ;add C to LSB
.endm
.macro FUNCTION, NAME, INCNT, LOCCNT, OUTCNT

Introduces a non-leaf routine.

This macro defines the standard tag word before the function,
then establishes the statement label with the function’s name

and finally allocates a register stack frame. It may not be used
if a memory stack frame is required.

Note also that the size of the register stack frame is limited.
Neither this nor the lack of a memory frame is considered to be
a severe restriction in an assembly-language environment. The
assembler will report errors if the requested frame is too large
for this macro.

It may be good practice to allocate an even number of both output
registers and local registers. This will help in maintaining
double word alignment within these groups. The macro will assure
double word alignment of the stack frame as a whole, as required
for correct linkage.

3-159

29K Family Application Notes

; Paramters:

.set
.set
.set
Wif
.set
.endif
if
.set
.endif
Jif
.set
.endif
.word

NAME :
sub
asgeu
-+ add
.endm

NAME the function name
INCNT ' input parameter count
LOCCNT local register count
OUTCNT output parameter count

ALLOC_CNT, ((2 + OUTCNT + LOCCNT) << 2)
PAD_CNT, (ALLOC_CNT & 4)

ALLOC_CNT, (ALLOC_CNT + PAD_CNT)

(INCNT)

IN_PRM, (4 + OUTCNT + PAD_CNT + LOCCNT + 0x80)

(LOCCNT)
LOC_REG, (2 + OUTCNT + PAD_CNT + 0x80)

(OUTCNT)
OUT_PRM, (2 + 0x80)

((2 + OUTCNT + LOCCNT) << 16)
rsp, rsp,ALLOC_CNT

V_SPILL, rsp, rab
1rl,rsp, ((4 + OUTCNT + LOCCNT + INCNT) << 2)

7 s esece s estsestes et s s s eses e ass o anoee

.macro

Paramters:

.if
.set

.endif

.set
.word

NAME :
.endm

LEAF, NAME, INCNT

Introduces a leaf routine

This macro defines the standard tag word before the function,
then establishes the statement label with the function’s name.

NAME the function name
INCNT input parameter count
(INCNT)

IN_PRM, (2 + 0x80)

ALLOC_CNT, 0
0

7 se et srcsecses st esessssass e s

.macro

Jdf
add
nop
jmpi
asleu
.else
jmpi
nop

.endif

.set
.set

EPILOGUE

Deallocates register stack frame (only and only if necessary).

(ALLOC_CNT)
rsp, rsp,ALLOC_CNT

1r0 .
V_FILL,1rl, rfb

1x0
IN_PRM, (1024) ;iilegal,to cause err on ref
LOC_REG, (1024) ;illegal,to cause err on ref

3-160

Programming Standalone Am29000 Systems

;

.set
.set
endm

Initial values for macro set variables

.set
.set
.set
.set

end of romdecl.h

OUT_PRM, (1024)
ALLOC_CNT, (1024)

IN_PRM, (1024)
LOC_REG, (1024)
OUT_PRM, (1024)
ALLOC_CNT, (1024)

;illegal, to
;illegal, to

to guard against misuse
sillegal,to
;illegal, to
sillegal, to
;illegal, to

cause
cause

cause
cause
cause
cause

err
err

err
err
err
err

on
on

on
on
on

ref
ref

ref
ref
ref
ref

3-161

29K Family Application Notes

APPENDIX E: test.ld

test.ld Linker Directives
see test.s and start.s for descriptions of sections

;
;
;
H

load test.o,start.o
order vectors=0,rstack,mstack,.bss, .data, .text,endsect

3-162

Host Interface (HIF) v1.0 Specmcatlon

Application Note

by E. M. Greenawalt

PREFACE

This document describes HIF (v1.0), the Am23000 Ar-
chitectural Host Interface, and explains how to use it.
HIF is the software standard that defines the interface
between the user’s high-level language program and
the Am29000 processor. The document is written for
experienced programmers and assumes a working
knowledge of the Am23000 microprocessor.

INTRODUCTION

Advanced Micro Devices is developing a complete line
of Am29000™ simulators, hardware target execution
vehicles, and high-level language development tools for
the Am29000 32-bit Streamlined Instruction Processor.
These products are designed to support end-users who
are building embedded system applications based on
the Am29000 processor. For these users, often there is
no existing operating system or kernel for their hardware
design.

Before AMD could create development tools for the
Am29000, a standard set of kernel services had to be
defined that would interface a user-application program,

written in a high-level language, to a host operating sys-
tem or an Am239000 processor.

HIF, the host interface, is the software specification that
defines this standard set of kernel services. Figure
NO TAG shows the level where HIF resides. As implied
by the figure, HIF does not describe any particular im-
plementation; but rather each simulator, hardware vehi-
cle, and high-level language implements HIF in its own
way. The kernel services provide the minimum function-
ality needed to interface high-level language library
functions to the user’s operating system code.

Using HIF, program modules written in any of the lan-
guages available for the Am23000 can be combined,
and the resulting program can run, without change, on
any Am29000 simulator or hardware execution vehicle.
Future AMD products will also use HIF, and AMD is
actively encouraging third-party vendor support.

AMD is indebted to Embedded Performance, Incorpo-
rated (EPI), who originally developed the HIF concepts
and then graciously placed them in the public domain.

Am29000

User's application program
High-level language library

Host interface (HIF)

Operating system kernel

Figure 1. HIF Interface

Publication# Rev. Amendment

11014 A /0

Issue Date:
11/89

© 1989 Advanced Micro Devices, Inc.

3-163

29K Family Application Notes

HiF APPLICATIONS

The HIF specification has broad applications; currently it
provides the interface between the user's high-level
language program and the following hardware and
software products:

* Am29000 Architectural Simulator. This software prod-
uct provides the means to simulate the operation of
the Am29000 in a specified system environment. It
provides detailed performance statistics by modeling
the internal architecture of the Am29000, as well as
system memory configurations and timing. The HIF
specification is implemented to provide the interface
between the user's program and the host operating
system.

PC Execution Board (PCEB2SK ™). This hardware/
software product contains an Am29000 processor
and memory and is an add-in board to 1BM®
PC-based systems. Part of the HIF specification is
implemented on the board with another part imple-
mented onthe PC, to interface withthe DOS operating
system.

Standalone Execution Board (STEB). This hardware
product from STEP Engineering is intended to be an
evaluation vehicle for the Am29000 and, optionally,
Am29027™ Arithmetic Accelerator devices. The en-
tire HIF specification is implemented on this board,
which contains a resident monitor to implement the
necessary kernel services.

Because HIF is a general-purpose standard, it can be
used to interface any high-level language to the
Am29000. User programs need not be written entirely in
a high-level language; they may incorporate assembly-
language functions when maximized performance isthe
primary concern.

HIF USERS

There are three categories of end-users who need to
know the details of the host interface:

» Those using AMD-supplied hardware execution vehi-
cles or simulators. This document defines the low-
level mechanisms of HIF. With this information and
the design concepts presented herein, end-users can
extend the HIF environment to meet the needed
degree of software functionality and sophistication.

» Those developing a custom kernel operating system
for an Am239000 design. These users need access to
AMD’s high-level and assembly-language develop-
ment tools. This document provides the information
required to build a HIF-conforming kernel that uses
the high-level language development tools directly.
With this information, end-users can extend and

customize the operating system code without interfer-
ing with the basic capabilities of the HIF.

e Those who are using the AMD-supplied high-level
language development tools, but who must conform
to another kernel operating system interface. There is
sufficient information in this document to enable users
to modify the development tools to properly interface
with the target kernel's specifications.

HIF CONCEPTS

Programmers developing software in a high-level
language do not work directly with the processor.
Instead, they think in terms of a virtual machine ideally
suited to the computational paradigm of the language.
For instance, the C-language virtual machine has
operations such as fprintf() and strcpy(), and the
FORTRAN machine has operations such as alog and
sqrt.

In actual practice, these virtual machines are imple-
mented by libraries of object code that perform
language-specific operations. As long as programmers
use only the functions of the language’s implied virtual
machine, the programs will be portable across a broad
range of implementations of the language.

However, computer systems generally provide another
virtual machine to the world: one that is defined by the
operating system software. This virtual machine
requires system calls to perform the services that are
implemented within the operating system code. Typical
services are: process management, file system
management, device management, and memory
management.

The high-level language virtual - machine usually
consists of: (1) functions that can be implemented
entirely within library routines, and (2) functions that
require the services of the operating system. The func-
tions of the first group (usually defined as the standard
library for that language) are independent of the operat-
ing system virtual machine on which they are imple-
mented. The functions of the second group must be
coded in terms of the operating system virtual machine.
In other words, they must make system calls.

Itis oftenusefulfor end-users to also make systemcalis,
even though this practice makes their programs less
portable. This requirement can be accommodated by
augmenting the language library with glue routines that
specifically invoke the system calls, while providing the
end user with suitable high-level syntax and semantics.
(For detailed information on the glue routines for the
C compiler, see the HighC29K Reference Manual,
“Appendix A, Host Interface Definition.”)

3-164

Host Interface v1.0 Specification

Given the above discussion, the required task is to cre-

ate high-level language development tools that can be-

used easily and efficiently on a variety of execution vehi-
cles. This task can be broken down into the following
steps:

o Define an operating system virtual machine that
provides sufficient functionality to support the funda-
mental requirements of each high-level language, but
not so much as to require a massive development
effort to create.

Add appropriate glue routines to the standard libraries
of the language so that the libraries are defined in
terms of the operating system virtual machine.

Implement the operating system’s virtual machine
services on the various execution vehicles. For
hardware vehicles, the virtual machine is imple-
mented by a kernel, typically contained in a resident
monitor software program. For simulation vehicles,
the virtual machine is implemented by code internal to
the simulator and by code simulated by the simulator.

For the Am29000 hardware and software support prod-
ucts, HIF consists of the following operahng system
virtual machine definitions:

o A carefully defined, efficient system call mechanism.
Accessing an HIF kernel service requires a transition
from user mode to supervisor mode on the processor.
This requires a specific mechanism, such as a trap
handler, to be invoked.

s A set of services that support the primitive require-
ments of C, FORTRAN, and Pascal. Most of the
services are defined according to UNIX® operating
system interface specifications.

« A specification of the environment created by the
kernel. This involves the definition of storage alloca-
tion and register initializations implemented by the
kernel.

IMPLEMENTATION TYPES

Implementations of the HIF specification take two fun-
damental forms: self-hosted and embedded. Examples
of each of these are provided in the Standalone Execu-
tion Board (STEB) manufactured by STEP Engineering
and AMD's PC Execution Board (PCEB29K).

The STEB is a single-board computer that incorporates
an Am29000 processor, an optional Am29027 arithme-
tic accelerator, program and data memory, serial ports,
and timer-counter resources. The HIF implementation
for this board consists of a resident monitor program that
is downloaded into low-memory locations, and which
implements the kernel services described in the “HIF
Service Routine” section of this document. This is a self-
hosted implementation.

In contrast to the STEB, the PCEB29K is an add-in
board for 1BM PC-compatible computers that incorpo-
rates an Am29000 processor, program and data mem-
ory, serial ports, and timer-counter resources. The HIF
implementation for this board consists of two portions of
code. One performs some of the kernel services on the
board and the other performs some of the kernel serv-
ices through the auspices of the DOS operating system.
Inthe sense that the HIF is grafted onto the existing host
operating system, itis called an embedded implementa-
tion. The architectural and instruction simulators are
also embedded implementations because they share
the HIF implementation between custom code and
existing host-computer operating-system code.

There is no preference for either type of implementation
as long as the services and features of the HIF specifica-
tion are fully implemented in the target environment.
With the standard interfaces that a HIF implementation
presents, application programs written for one environ-
ment will run equally well in another.

HIF SERVICES PREVIEW

Table 1 lists the services defined by the HIF interface.
Most are similar or identical to equivalent UNIX operat-
ing system calls. The titles given in column one are not
the names that actually exist in a particular library but,
instead, are the generic names of the services, for the
purpose of this overview.

3-165

29K Family Application Notes

Table 1. HIF Services

Name Description Page
clock Returns the elapsed processor time, in milliseconds 28
close Closes a file 14
cycles Returns processor cycle counts 29
exit Terminates a program 10
getargs Returns an argument address 27
getenv Gets the environment 23
getpsize Returns the memory page size 26
Iseek Sets a file position 17
open Opens a file 1
read Reads a buffer of data from a file 15
remove Removes (deletes) a file 19
rename Renames a file 20
sysalloc Allocates memory space 24
sysfree Frees allocated memory space 25
setvec Sets user trap addresses 30
time Returns number of seconds since Jan. 1, 1970 22
tmpname Returns a temporary file name 21
write Writes a buffer of data to afile 16

INTENDED AUDIENCE

This document is intended for systems designers and

programmers who have a working knowledge of the

Am29000 and its supporting peripheral hardware. It

does not cover CPU design, the Am29000 instruction

set, or any other hardware detail. Those topics are

adequately covered in the reference documents listed
below.

ABOUT THIS DOCUMENT

The contents of each section and appendix of this
document are described below:

Section 1: Introduction—discusses the important
concepts underlying the host interface
definition and previews the services that

form the basis of the HIF specification.

Section 2: System Call Mechanism—describes the
mechanism used to make calls on the
HIF services, and includes information
on register usage for passing parame-

ters and receiving results.

Section3: Service Routine Descriptions—de-
scribes each of the services defined in
HIF and shows details of the code
sequences, including examples, for in-

voking the services.

Section 4: Process Environment—describes the

standard memory allocation and register

initializations performed by the HIF-
conforming kernel prior to execution of a
user program.

HIF Quick Reference—lists all of the
services and service parameters used in
this document, in quick reference form.

Appendix A:

Appendix B: Error Messages—lists the error codes

that HIF-conforming services may
return.

REFERENCE DOCUMENTS

The user should have access to the following AMD
documents:

* Am29000 Streamlined Instruction Processor Users
Manual, order #10620

o ADAPT29K User’s Manual
o MONZ29K User's Manual
o MONZ29K Installation and Customization Manual

e Am29000 Execution Board and Monitor User's
Manual

o ASM29K Utilities Manual from the ASM29K docu-
mentation set

* HighC29K Reference Manual from the HighC29K
documentation set

3-166

Host Interface v1.0 Specification

DOCUMENTATION CONVENTIONS

This specification assumes some familiarity with the
UNIX operating system and the C language. In the fol-
lowing sections, the conventions presented in the sub-
sections below are assumed.

Numeric Values

All numeric values are presumed to be expressed in
decimal notation, unless otherwise stated. Hexadecimal
values are prefaced by the characters “0x.” Any value
not prefaced by “Ox” is defined to be a decimal number.
For example:

Decimal number
Hexadecimal number

100092
0x100092

The first number, above, is a decimal value by impli-
cation, because it has not been prefaced by “Ox.” The
second constant includes the explicit “0x” prefix, desig-
nating it as a hexadecimal value.

Character Strings

Inthe documentation, frequent mention is made of char-
acter strings that hold file names, path names, and en-
vironment variable names. In all cases, the HIF
Specification requires that strings be constructed as a
sequence of ASCII characters terminated by a NULL
byte (an 8-bit character composed of all zero bits). This
is the form in which strings are represented in the C
language. Thus, the space reserved for a string must be
one byte longer than the length of the string, to accom-
modate the NULL byte.

Languages such as Pascal, which require “counted”
strings (that is, a single 8-bit byte in the first character of
the string that specifies the number of bytes that follow),
are required to convert these to NULL-terminated form
before calling the HIF kernel services. In addition,
languages other than C may need to convert strings
passed back from the HIF kemel services to a com-
patible internal form. All returned strings are in NULL-
terminated form.

SYSTEM CALL MECHANISM

System calls on Am29000-based systems are accom-
plished through invocation of a specific software trap.
The Am29000 traps are roughly equivalent to software
interrupts on other CPUs. System call traps are invoked
through execution of an appropriate assert instruction
whose assertion is FALSE at the time the instruction is
executed.

Execution of an ASEQ, ASGE, ASGEU, ASGT,
ASGTU, ASLE, ASLEU, ASLT, ASLTU, or ASNEQ

instruction, where the result of the assertion is FALSE,
will cause the trap specified in the instruction to be
taken.

Once the trap is invoked, the Am29000 accesses a trap
vector containing up to 256 separate trap handler
addresses; or it may directly invoke a trap handler rou-
tine, depending on the implementation of the operating
system trapping mechanism and the state of the Vector
Fetch (VF) bitin the processor’s Configuration Register.
In most implementations, a table of vectors is used.
However, the operating system software may imple-
ment direct trap execution for the increased efficiency it
offers even though it requires the reservation of a much
greater amount of system memory, but bypasses the
need for vector table lookup.

When a trap is taken, the normal program execution
sequence is interrupted and the trap handler is invoked.
At this point, the current program’s context is contained
in Am29000 CPU registers. No saving or restoring of
registers is performed by the processor when a trap
occurs. HIF services are required to preserve the
following registers and restore their contents before
returning to the application program:

¢ All local registers
» Global registers gr1, gr112, gr115, and gr125

» Globalregisters gr126and gr127should be preserved
according to AMD calling conventions. Their values
may differ upon return from a HIF service, butthe span
between their values will remain the same.

The HIF services may modify the contents of certain
registers without first saving their values, namely:
gr121, gr96, and gr97; although, the application pro-
gram should not count on gr9é6through gr111to be un-
touched by current and future HIF kernel services.

HIF SERVICE INVOCATION

Before invoking a HIF service, the service number and
any input parameters to be passed must be loaded into
Am29000 general registers. Both local and global regis-
ters are used for various HIF services, as shown in the
HIF Quick Reference table in Appendix A of this docu-
ment. Details for invoking specific services are con-
tained in the Service Routine Descriptions section.

Service Number

Every HIF system service is identified by a unique num-
ber. Service numbers 0-127 and 256-383 are
reserved for use by AMD and should not be used for
user-supplied extensions.

3-167

29K Family Application Notes

const 1r2,input_file ;
consth 1r2,input_file ;
const 1r3,0_RDONLY ;
const grl2l,17 . ;
asneq 69,grl,grl H
const 1r2,input_file ;
consth 1r2, input_file ;
const 1r3,0. RDONLY ;
const grl2l,17 H
asneq ~69,9rl,grl H

set input file

pathname address

set open mode

service number = 17 (open)
force trap 69 (system call)
set input file

pathname address

set open mode

service number = 17 (open)
force trap 69 (system call)

The service number must be loaded into global register
gr121, the trap-handler argument register. Gr121 is a
temporary register and its value is not preserved over a
system call, nor will its value be preserved over any trap
invoked by the running program.

Input Parameters

Any input parameters to be passed must be placed in
local registers Ir2 through Ir17. Input parameters are
passed to HIF services using the parameter passing
mechanism specified in the Am29000 calling conven-
tions documentation (Am29000 Streamlined Instruction
Processor User’s Manual, order #10620).

Invoking a HIF Service

The HIF services are accessed by forcing trap 69 to
occur, after the service number and parameters (if any)
are loaded in the designated registers. Trap handler 69
executes the service in supervisor mode.

Returned Values

Most services return values, usually a single integer
value (number of bytes read or written, number of clock
ticks, size of a memory block, etc.), or a pointer (address
of a file descriptor, address of a memory block, etc.).
These values are returned in register gr96, per standard
high-level language calling conventions.

If a service returns multiple values, the additional values
are returned in gr97, gr98, and so forth. If the service
fails to perform the requested task, the values contained
in gr96 and succeeding registers are not guaranteed to
be valid.

See the documentation that accompanies your
language processor for additional details on Am29000
high-level language calling conventions.

Status Reporting

Inallcases, uponreturn froma HIF service, global regis-
ter gr121 contains either a TRUE value (0x80000000),
or a positive non-zero integer error code indicating the
reason for failure. Pre-defined error codes are listed in

Appendix B of this document for existing HIF implemen-
tations.

" HIF does not specify these error codes. They may be
completely defined by an implementation, except for
cases in which there is a corresponding, existing, UNIX
error code. In these cases, the UNIX error code is
expected to be used.

Example Assembly Code

The code fragment above shows how the definitions are
implemented in Am23000 assembly-language to invoke
the open HIF service to open a file:

In this example, local register /Ir2 is loaded with the
address of the filename constant; local register I3
contains the code: O_RDONLY, indicating that the file is
to be opened for read-only access. The service number
(17) is loaded into global register gr127 and the service
is executed by asserting that register gr1 is not equalto
itself. Since this is FALSE, the trap is invoked.

USER-MODE TRAPS

When a trap is invoked, the Am29000 switches from
user mode to supervisor mode to execute the trap
handler code. Most traps are properly executed in this
mode, including the kernel services that implement the
HIF specification. However, a few traps, such as the
spillAfill handlers, are intended to execute in user mode.
In these cases, the trap handler code is not part of the
kernel, but is supplied by the particular high-level
language product library and is linked with the user’s
application program.

In order to use a consistent trap handling mechanism,
and to support the individual language products’ meth-
odologies for user-mode traps, a HIF service called
setvec, is called with the address of the user-mode trap
handler code for each of the traps handled in this way.

Once the user-mode handler addresses have been sup-
plied, and the corresponding trap is invoked, the operat-
ing-system kernel receives control in supervisor mode.
It then reinstates user mode and invokes the appropri-
ate language library trap handler to complete the

3-168

Host Interface v1.0 Specification

required operation. This bouncing from user mode to
supervisor mode and backto user mode is referredto as
a“trampoline” effect. When the trap handler’s execution
is complete, it returns directly to the user’s application
program, rather than back through the kernel.

The register stack spill/fill handlers are appropriate
examples of code that is intended to execute in user
mode. When a user’s application program calls a func-
tion that requires a large number of local registers to

execute, some currently unused registers may have to .

be written to main memory to free enough of the on-chip
registers. In this case, the registers are spilled to mem-
ory via the spill-trap handler. When the function
completes execution and intends to return to its caller,
the spilled registers may have to be restored by calling

the fill-trap handler. Since register stack management is
unique for each application environment, individual spill/
fill handlers are provided with each of the high-level
language products.

HIF SERVICE ROUTINES

The HIF service routine calls currently defined are listed
by decimal service number in Table 2 below and
described in detail in the following pages.

Service numbers 0 through 127 and 256 through 383
are reserved by AMD and should not be used for user-
supplied extensions. Table 3 describes the parameter
names used in the service descriptions.

Table 2. HIF Service Calls

Number Title Description Page

1 exit Terminate a program 10
17 open Open a file 1"
18 close Close afile 14
19 read Read a buffer of data from a file 15
20 write Write a buffer of data to afile 16
21 Iseek Seek file byte 17
22 remove Remove a file 19
23 rename Rename a file 20
33 tmpnam Return a temporary name 21
49 time Return seconds 22
65 getenv Get environment 23
257 sysalloc Allocate memory space 24
258 sysfree Free memory space 25
259 getpsize Return memory page size 26
260 getargs Return base address 27
273 clock Return milliseconds 28
274 cycles Return processor cycles 29
289 setvec Set user trap address 30

3-169

29K Family Application Notes

Table 3. Service Call Parameters

Parameter Description

addrptr A pointer to an allocated memory area, command-line-argument array, pathname buffer, or NULL-
terminated environment variable name string.

baseaddr The base address of command-line-argument vector.)

bufiptr A pointer to buffer area which data is to be read from or written to during the execution of I/O services.

count The number of bytes actually read from a file or written to afile.

cycles The number of processor cycles returned.

errcode The error code returned by the service, usually the same as the codes returned in the UNIX variable
errno. See Appendix B, Table 8, starting at page 35, for a list of HIF error codes.

exitcode The exit code of the application program.

filename A pointer to a NULL-terminated ASCII string containing the directory path of a temporary filename.

fileno The file descriptor, a small integer number. Descriptors 0, 1, and 2 are guaranteed to exist and
correspond to open files on program entry (0 is UNIX equivalent of stdin and is opened for input, 1 is
UNIX stdout and is opened for output, 2 is UNIX stderr and is opened for output). The fileno is
returned when an open call is successful.

funaddr A pointer to the address of a service.

mode A series of option flags whose values represent the operation to be performed.

msecs Milliseconds.

name A pointer to a NULL-terminated ASCI! string that contains an environment variable name.

nbytes The number of data bytes requested to be read from or written to afile, or number of bytes to allocate
from the heap.

newfile A pointer to a NULL-terminated ASCII string that contains the directory path of a new filename.

offset The number of bytes from a specified position (orig) in a file.

oldfile A pointer to NULL-terminated ASCII string that contains the directory path of the old filename.

orig A value of 0, 1, or 2 that refers to the beginning, current position, or the position of the end of a file.

pagesize The memory page size in bytes returned.

pathname A pointer to a NULL-terminated ASCII string that contains the directory path of a filename.

pflag The UNIX file access permission codes.

retval The return value that indicates success or failure.
secs The seconds count returned.

trapno The trap number.

where The current position in a specified file.

Each service description on the pages that follow
contains a concise explanation of the purpose of the
service, the input and result register contents, and
example assembly-language code to invoke the serv-
ice. In all cases, operating system kernel services that
meet the HIF specifications are invoked by forcing the
software trap 69 to occur. The service number is always
contained in general register gr121 and parameters
are passed, if necessary, in local registers, beginning
with Ir2.

When the service returns, general register gr121 is
required to report the success or failure of the service. If
successful, gr121 is expected to contain a TRUE
boolean value (a 1 bitin the most significant bit position).
If the service is not successful, a positive non-zero error
code is returned in gr1217. If the service returns results,
the first result is held in gr96, the second in gr97, and so
forth.

HIF implementations are required to return an error
code when a requested operation is not possible. The
codes from 0 to 255 are reserved for compatibility with
current and future error return standards. The currently
assigned codes and their meanings are listed in Appen-
dix B, Table 8, startingon page 35. If a HIF implementa-
tion returns an error code in the range of 0 to 255, it
must carry the identical meaning to the corresponding
error code in this table. Error code values larger than
255 are available for implementation-specific errors.

In the examples, references are made to error handlers
that are not part of the example code. These are
assumed to be contained in the larger part of the user's
code and are not supplied as part of the HIF specifica-
tion. The JMPF instructions have been provided to show
that interface glue routines should incorporate this error
testing philosophy inorderto be robust. in practice, error
handling may be relegated to a single routine, or may be

3-170

Host Interface v1.0 Specification

vested in individual sections of either in-line code, or as
callable services by the glue routines.

Since HIF implementations may exist over a wide spec-
trum of systems, the capabilities of the HIF may vary
from one system to the next. In the simplest case, the
HIF implementation in an embedded Am239000 system,
such as a printer controller, may contain no external file
system. In this event, the input/output facilities specified
in the kernel service descriptions need not be imple-
mented. In more common cases, where the HIF will ex-
ist on systems that have full operating system
capabilities, such as DOS or UNIX, it is assumed that all

of the features of the HIF will be implemented. The serv-
ice descriptions in this document provide a set of stan-
dard interfaces for commonly implemented operating
system interfaces. If individual features are imple-
mented, the interfaces are expected to follow the guide-
lines in this specification.

Descriptions of the individual services follow on the
remaining pages of this section. They are listed in
numeric sequence by service number. Appendix A, HIF
Quick Reference, allows easy location of a service by its
number.

3-171

29K Family Application Notes

Service 1—exit

Description

This service terminates the current program and returns
a value to the system kernel, indicating the reason for
termination. By convention, a zero passed in /r2
indicates normal termination, while any non-zero value

Terminate a Program

indicates an abnormal termination condition. There are
no returned values inregisters grd6and gr121 since this
service does not return.

Register Usage
Type Regs Contents Description
Calling: gri21 1 (0x1) Service number
Ir2 exitcode User-supplied exit code
Returns: gr9é undefined This service call does not return
gri21 undefined This service call does not return
Example Call
const 1r2, 1 ; exit code =1
const grl2l,1 ; service =1
asneq 69,grl,grl ; call the operating system

In the above example, the operating system kernel is
being called with service code 1 and an exit code of 1,
which is interpreted according to the specifications of
the individual operating system. The value of the exit
code is not defined as part of the HIF specification.

Ingeneral, however, an exit code of zero (0) specifies a
normal program termination condition, while a non-zero

code specifies an abnormal termination resulting from
detection of an error condition within the program.

Programs can terminate normally by falling through the
curly brace at the end of the main function in a
C-language program. Other languages may require an
explicit call to the kernel's exit service.

3-172

Host Interface v1.0 Specification

Service 17—open

Description

This service opens a named file in a requested mode.
Files must be explicitly opened before any read, write,
close, or other file positioning accesses can be accom-
plished. The open service, if successful, returns an

Open a File

integer token that is used to referto the file in all subse-
quent service requests. In many high-level languages,
the returned token is referred to as a “file descriptor.”

Register Usage
Type Regs Contents Description
Calling: gri21 17 (Ox11) Service number
Ir2 pathname A pointer to a filename
Ir3 mode See parameter descriptions below
Ir4 ptlag See parameter descriptions below
Returns: gro6 fileno Success: 2 (file descriptor)
Failure: < 0
gri21 0x80000000 Logical TRUE, service successful
errcode Error number, service not successful

(implementation dependent)

Parameter Descriptions

Pathname is a pointer to a zero-terminated string that
contains the full path and name of the file being
opened.” Individual operating systems have different
means to specify this information. With hierarchical file
systems, individual directory levels are separated with
special characters that can not be part of a valid file-
name or directory name. In UNIX-compatible file
systems, directory names are separated by forward
slash characters “/* (e.g., “/usr/jack/files/myfile”); where

“usr,” “jack,” and “files" are succeedingly lower directory
levels, beginning at the root directory of the file system.
The name “myfile” is the filename to be opened at the
specified level. The individual characteristics of files and
pathnames are determined by the specifications of a
particular operating system implementation.

Mode is composed of a set of flags, whose mnemonics
and associated values are listed in Table 4.

Table 4. Open Service Parameters

Name Value Description

O_RDONLY 0x0000 Open for read only access

O_WRONLY 0x0001 Open for write only access

O_RDWR 0x0002 Open for read and write access
O_APPEND 0x0008 Always append when writing
O_NDELAY 0x0010 No delay

O_CREAT 0x0200 Create file if it does not exist

O_TRUNC 0x0400 If the file exists, truncate it to zero length
O_EXCL 0x0800 Fail if writing and the file exists
O_FORM 0x4000 Open in text format

The O_RDONLY mode provides the means to open a
file and guarantee that subsequent accesses to that file
will be limited to read operations. The operating system
implementation will determine how errors are reported

for unauthorized operations. The file pointer is
positioned at the beginning of the file, unless the
O_APPEND mode is also selected.

* The HIF specification intentionally refrains from defining the constituents of a legal pathname, or any intrinsic characteristics of the implemented

file system. In this regard, the onl{

routine returns a small integer va

requirement of a HIF-conforming kemel is that when the open service is successfully performed, that the
ue that can be used in subsequent input/output service calls to refer to the opened file.

3173

29K Family Application Notes

The O_WRONLY mode provides the means to open a
file and guarantee that subsequent accesses to that file
will be limited to write operations. The operating system
implementation will determine how errors are reported
for unauthorized operations. The file pointer is
positioned at the beginning of the file, unless the
O_APPEND mode is also selected.

The O_RDWR mode provides the means to open a file
for subsequent read and write accesses. The file
pointer is positioned at the beginning of the file, unless
the O_APPEND mode is also selected.

If O_APPEND mode is selected, the file pointer is
positioned to the end of the file at the conclusion of a
successful open operation, so that data written to the
file is added following the existing file contents.

Ordinarily, a file must already exist in order to be
opened. If the O_CREAT mode is selected, files that do
not currently exist are created; otherwise, the open
function will return an error condition in gr121.

If a file being opened already exists and the O_TRUNC
modeis selected, the original contents of the file are dis-
carded and the file pointer is placed at the beginning of
the (empty) file. If the file does not already exist, the HIF
service routine should return an error value in gr121,
unless O_CREAT mode is also selected.

The O_EXCL mode provides a method for refusing to
openthe fileifthe O_WRONLY or O_RDWR modes are
selected and the file already exists. In this case, the
kernel service routine should return an error code in
gri21.

O_FORM mode indicates that the file is to be opened as
atextfile, rather than a binary file. The nominal standard
input, output, and error files (file descriptors 0, 1, and 2)
are assumed to be open intext mode priorto commenc-
ing execution of the user's program.

When opening a FIFO (interprocess communication
file) with O_RDONLY or O_WRONLY set, the following
conditions apply:

o If O_NDELAY is set (i.e., equal to 0x0010):
- A read-only open will return without delay.

~ A write-only open will return an error if no process
currently has the file open for reading.

o If O_NDELAY is clear (i.e., equal to 0x0000):

— Aread-only open will block until a process opens a
file for writing.

~ Awrite-only open will block until a process opens a
file for reading.

When opening a file associated with a communication
line (e.g., a remote modem or terminal connection), the
following conditions apply:

o If O_NDELAY is set, the open will return without
waiting for the carrier detect condition to be TRUE.

o |f O_NDELAY is clear, the open will block until the
carrier is found to be present.

The optional pflag parameter specifies the access
permissions associated with a file; it is only required
when O_CREAT is also specified (i.e., create a new file
if it does not already exist). If the file already exists, pflag
is ignored. This parameter specifies UNIX-style file
access permission codes (r, w, and xfor read, write, and
execute, respectively) for the file’s owner, the work
group, and otherusers. If the parameteris missing, pflag
will be set to —1 (all accesses allowed). See the UNIX
operating system documentation for additional
information on this topic.

3-174

Host Interface v1.0 Specification

Example Call

path: .ascii ”“/usr/jack/files/myfile\0”
.set mode, O_RDWR|O_CREAT |O_FORM
.set permit, 0x180

fd: .word 0 ;
const 1r2,path ; address of pathname
consth 1r2,path H
const 1r3,mode ; open mode settings
const 1r4,permit ; permissions
const grl21,17 ; service = 17 (open)
asneq 69,9rl,grl ; perform 0S call
jmpf grl2l,open_err ; jump if error on open
const grl20, fd ; set address of
consth grl20, fd ; file descriptor
store 0,0,9r96,grl120 ; store file descriptor

In the above example, the file is being opened in read/
write text mode. The UNIX permissions of the owner are
set to allow reading and writing, but not execution, and
all other permissions are denied. As indicated above in
the parameter descriptions, the file permissions are only
used if the file does not already exist. When the open
service retumns, the program jumps to the open_err
error handler if the open was not successful; otherwise,
the file descriptor returned by the service is stored for
future use in read, write, Iseek, remove, rename, or
close service calls.

As described in the introduction to these services, the
HIF can be implemented to several degrees of elabora-
tion, depending on the underlying system hardware,
and whether the operating system is able to provide the
full set of kernel services. In the least capable instance
(i.e., astandalone board with a serial port), it is likely that
only the O_RDONLY, O_WRONLY and O_RDWR
modes will be supported. In more capable systems, the
additional modes should be implemented, if possible.

3-175

29K Family Application Notes

Service 18—close

Description

This service closes the open file associated with the file
descriptor passed in Ir2. Closing all files is automatic on
program exit (see exit), but since there is animplemen-

Register Usage

Close a File

tation-defined limit on the number of open files per pro-
cess, an explicit close service call is necessary for
programs that deal with many files.

Type Regs Contents Description
Calling: gri21 18 (0x12) Service number
Ir2 fileno . File descriptor
Returns: groé retval Success: = 0
Failure: < 0
gri21 0x80000000 Logical TRUE, service successful
errcode Error number, service not successful

(implementation dependent)

Example Call

fd: .word 0
const gr96, fd ; set address of
consth gr96,fd ; file descriptor
load 0,0,1r2,9r9%6 ; get file descriptor
const grl21,18 ; service = 18
asneq 69,grl,grl ; and call the 0S
jmpf grl2l,clos_erx ; handle close error
nop H

The above example illustrates loading a previously
stored file descriptor (fd, in this case) and calling the
kernel's close service to close the file associated with
that descriptor. If an error occurs when attempting to

close thefile, the kernelwill return an error code in gr121
(the content of that register will not be TRUE) and the
program will jump to an error handler; otherwise,
program execution will continue.

3-176

Host Interface v1.0 Specification

Service 19—read

Description

This service reads a number of bytes from a previously
opened file (identified by a smallinteger file descriptorin
Ir2that was returned by the open service) into memory
starting at the address given by the buffer pointerin /3.
Lr4 contains the number of bytes to be read. The num-

Register Usage

Read a Buffer of Data from a File

ber of bytes actually read is returned in gr96. Zero is
returnedin gr96if the file is already positioned at its end-
of-file. If an error is detected, a small positive integer is
returned in gr121, indicating the nature of the error.

Type Regs Contents Description
Calling: gri21 19 (0x13) Service number
Ir2 fileno File descriptor
Ir3 buffptr A pointer to buffer area
Ir4 nbytes Number of bytes to be read
Returns: groé count Success: > 0 (number of bytes actually read)
EOF: =0
Failure: < 0
gri21 0x80000000 Logical TRUE, service successful
errcode Error number, service not successful
(implementation dependent)
Example Call
fd: .word 0
.set BUFSIZE, 256
buf: .block BUFSIZE
num: .word 0
const gr96, fd ; set address of
consth gr96, fd ; file descriptor
load 0,0,1r2,gr96 .; get file descriptor
const 1r3,buf ; set buffer address
consth 1r3,buf H
const 1lr4,BUFSIZE ; specify buffer size
const grl21,19 ; service = 19
asneq 69,grl,grl ; call the 0OS
Jmpf grl2l,rd err ; handle read errors
const grl20, num ; set address of
consth ~ grl20,num ; ‘num’ argument
store 0,0,9r96,g9rl20 ; store bytes read

The above example requests the HIF to return BUFSIZE

bytes fromthe file descriptor contained inthe variable fd.
If the callis successful, gr121 will contain a TRUE value

and grg96 will contain the number of bytes actually read.
If the service fails, gr121 will contain the error code.

3177

29K Family Application Notes

-Service 20—write

Description

This service writes a number of bytes from memory
{starting at the address given by the pointer in /r3) into
the file specified by the small positive integer file
descriptor that was returned by the open service when
the file was opened for writing. Lr4 contains the number

Write a Buffer of Data to a File

of bytes to be written. The number of bytes actually
written is returned in gra6. If an error is detected, gr121
will contain a small positive integer on return from the
service, indicating the nature of the error.

Register Usage
Type Regs Contents Description
Calling: gri21 20 (0x14) Service number
Ir2 fileno File descriptor
I3 buffptr A pointer to the buffer area
Ir4 nbytes Number of bytes to be written
Returns: gro6 count Success: = Ir4
Failure: 0<gr96<ird4
Extreme: < 0
.gri21 0x80000000 Logical TRUE, service successful
errcode Error number, service not successful
(implementation dependent)
Example Call
fd: .word 0
.set BUFSIZE, 256
buf: .block BUFSIZE
num: .word 0
const gr96, £fd ; set address of
consth gr96, £d ; file descriptor
load 0,0,1r2,9gr96 ; get file descriptor
const 1x3,buf ; set buffer address
consth 1r3, buf ;
const lr4,BUFSIZE ; specify buffer size
const grl21,20 ; service = 20
asneq 69,grl,grl ; call the 0S
jmpf grl2l,wr_err ; handle write errors
const grl20,num ; set address of
consth grl20,num ; “num” variable
store 0,0,gr96,grl20 ; store bytes written

The example, above, writes BUFSIZE bytes from the
buffer located at buf to the file associated with the
descriptor stored in fd. If errors are detected during
execution of the service, the value returnedin gr121 will

be FALSE. In this case, the wr_err error handler will be
invoked. The number of bytes actually written is stored
in the variable num.

3-178

Host Interface v1.0 Specification

Service 21—Iseek

Description

This service positions the file associated with the file
descriptor in Ir2, “offsef’ number of bytes from the posi-
tion of the file referred to by the orig parameter. Lr3
contains the number of bytes offset and /r4 contains the
value for orig. The parameter orig is defined as:

0 = Beginning of the file
1 = Current position of the file
2 = End of the file

Seek a File Byte

The Iseek service can be used to reposition the file
pointer anywhere in a file. The offset parameter may
either be positive or negative. However, it is considered
an errorto attempt to seek infront of the beginning of the

file.

Register Usage
Type Regs Contents Description
Calling: gri21 21 (0x15) Service number
Ir2 fileno File descriptor
ir3 offset Number of bytes offset from orig
Ir4 orig A code number indicating the point within
the file from which the offset is counted
Returns: gro6 where Success: 2 0 (current position in the file)

Failure: < 0

gri21 0x80000000

Logical TRUE, service successful

errcode Error number, service not successful
(implementation dependent)

Example Call

£d: .word 6 ;
orig: .word 0 ;
off: .woxrd 23 ;

const gr96, fd ;

consth gr96, fd ;
ioad 0,0,1r2,gr9%6 ;
const gr96,o0ff ;
consth gr96,o0ff ;
load 0,0,1r3,gr9%6 ;
const gr96,orig ;
consth gr96,orig ;
load 0,0,1r4,9r96 ;
const grl21l,21 ;
asneq 69,grl,grl H
jmpf grl2l,seek_err ;
nop ;

file descriptor = 6
origin = start of file
offset = 23 bytes

set address of

file descriptor

get file descriptor
set address of
offset argument

get offset

set address of
origin argument

get origin

service = 21

call the 0OS

seek error if false

The above example shows how a file can be positioned
to a particular byte address by specifying the orig, which
is the starting point from which the file position is
adjusted, and the offset, which is the number of bytes
from the orig to move the file pointer. In this case, the

file identified by file descriptor 6 is being repositioned
to byte 23, measured from the beginning of the file

(orig = 0).

3-179

29K Family Application Notes

The file descriptor, offset, and orig values are loaded
frompreset constants and Iseek is called to perform the
file positioning operation. If .an error occurs when
attempting to reposition the file, the value returned in

gri121 is not TRUE, containing an error code that indi-
cates the reason for the error. Upon return, gr9é also
contains the file position measured from the beginning
of the file. In this case, this value is not stored.

3-180

Host Interface v1.0 Specification

Service 22—remove

Description

This service deletes a file from the file system. Lr2
contains a pointer to the pathname of the file. The path
must point to an existing file, and the referenced file

Register Usage

Remove a File

should not be currently open. The behavior of the
remove service is undefined if the file is open.

Type Regs Contents Description
Calling: griat - 22 (0x16) Service number
ir2 pathname A pointer to string that contains the

pathname of the file

Returns: gra6 retval Success: = 0
Failure: < 0
gri21 0x80000000 Logical TRUE, service successful
errcode Error number, service not successful

(implementation dependent)

Example Call

path: .ascii ”/usr/jack/files/myfile\0”

const 1r2,path ;
coristh 1r2,path ;
const grl21,22 ;

asneq 69,grl,grl ;
jmpf grl2l,rem err H
nop

set address of file
pathname.

service = 22

call the 0§

jump if error

Inthe above example, a file with a UNIX-style pathname
stored in the string named path is being removed. The
address (pointer) to the string is put into /r2 and the
kernel service 22 is called to remove the file. If the file

does not exist, or if it has not previously been closed, an
error code will be returned in gr121; otherwise, the value
in gr121 will be TRUE.

3-181

29K Family Application Notes

Service 23—rename Rename a File

Description

This service moves a file to a new location within the file the same, except for the filename, the file is said to have
system. Lr2 contains a pointer to the file's old pathname been renamed. The file identified by the old pathname
and Ir3 contains a pointer to the file’s new pathname. must already exist, or an error code will be returned and
When all components of the old and new pathnames are the rename operation will not be performed.

Register Usage

Type Regs Contents Description
Calling: gri2i 23 (0x17) Service number

Ir2 oldfile A pointer to string containing the old pathname of the file

Ir3 newfile A pointer to string containing the new pathname of the file
Returns: groé retval Success: = 0

Failure: < 0
gri21 0x80000000 Logical TRUE, service successful
errcode Error number, service not successful
(implementation dependent)

Example Call
old: .ascii ”"fusx/fred/payroll/report\0”
new: .ascii ”/usr/fred/history/june89\0”

const lr2,0ld ; set address of old pathname

consth lr2,o0ld)

const 1r3,new ; set address of new pathname

consth 1r3,new

const grl21,23 ; service = 23 (rename)

asneq 69,grl,grl ; call the 0S

Jmpf grl2l,ren_err ; jump if rename error

nop

The above example moves a file from its old path
(renaming it in the process) to its new pathname loca-
tion. The file will no longer be found at the old location.

3-182

Host Interface v1.0 Specification

Service 33—tmpnam

Description

This service generates a string that can be used as a
temporary file pathname. A different name is generated
eachtime itis called. Generally, the name is guaranteed
not to duplicate any existing filename. The argument
passed in /r2 should be a valid pointer to a buffer that is
large enough to contain the constructed file name. HIF
implementations are required to allocate a minimum of
128 bytes for this purpose.

If the argument in /r2 contains a NULL pointer, the HIF
service routine should treat this as an error condition

Register Usage

Return Temporary Name

and return a non-zero error number in global register
gri2t.

The HIF specification sets no standards for the format or
content of legal pathnames; these are determined by
individual operating system requirements. However,
each implementation should undertake to construct a
valid filename that is also unique.

Type Regs Contents " Description
. Calling: gri21 33 (0x21) Service number
Ir2 addrptr A pointer to buffer into which the filename is to be stored
Returns: gra6é filename Success: pointer to the temporary filename string. This will be

the same as /r2 on entry unless an error occurred

Failure: = 0 (NULL pointer)

gri2i 0x80000000 Logical TRUE, service successful
errcode Error number, service not successful
(implementation dependent)

Example Call

fbuf: .block 21 ; buffer size = 21 bytes
const 1r2, fbuf ; set buffer pointer
consth 1r2, fbuf ;

const grl21,33 ;
asneq 69,grl,grl ;
jmp £ grl2l,tmp_err H
nop

service = 33
call the OS
jump if error

Inthe above example, the tmpnam service is called with
a pointer to fbuf, which has been allocated to hold a
name thatisupto 21 bytesinlength. if the service is able
to construct a valid name, the filename will be stored in

fbufwhen the service returns. If the content of gr121 on
return is not TRUE, the program fragment jumps to
tmp_err to handle the error condition.

3-183

29K Family Application Notes

Service 49—time Return Seconds Since 1970

Description

This service returns, in register gr96, the number of will have access to a counter whose contents can be
seconds elapsed since midnight, January 1, 1970, as an preloaded that measures time, with at least a one-
integer 32-bit value. Itis assumed that the kernel service second resolution, for this purpose.

Register Usage

Type Regs Contents Description
Calling: gr121 49 (0x31) Service number
Returns: groé secs Success: # 0 (time in seconds)
Failure: =10
gri21 0x80000000 Logical TRUE, service successful
errcode Error number, service not successful

(implementation dependent)

Example Call

secs: .word 0
const grl2l,49 ; service = 49
asneq 69,grl,grl ; call the 0OS
jmpf grl2l,tim err ; jump if error
const grl20, secs ; set the address
consth grl20, secs ; for storing ‘secs’
store 0,0,gr9%6,grl20 ; store the seconds

In the above example, the kernel service time is being variable; otherwise, the program jumps to tim_err to
called. If the value returned in gr121 is TRUE, the determine the cause of the error.
number of seconds returned in gr96is stored in the secs

3-184

Host Interface v1.0 Specification

Service 65—getenv

Description

This service searches the system environment for a
string associated with a specified symbol. Lr2contains a
pointer to the symbol name. If the symbol name is found,
a pointer to the string associated with it is returned in
gr96; otherwise, a NULL pointer is returned.

In UNIX-hosted systems, the setenv command allows
auserto associate a symbol with an arbitrary string. For
example, the command

setenv TERM vt100

defines the string “vt100” to be associated with the sym-
bol named TERM. Application programs can use this
association to determine the type of terminal connected

Register Usage

Get Environment

to the system, and, therefore, use the correct set of
codes when outputting information to the user’s screen.
To access the string, getenv should be called with /r2
pointing to a string containing the TERM symbol name.
The address returned in gr96 will point to the corre-
sponding “vt100” string if TERM is found. In UNIX-
hosted systems, entering a different setenv command
lets the user select a different terminal name without
requiring recompilation of the application program.

Operating system implementations that do not include
provisions for environment variables should always
return a NULL value in. gr96 when this service is
requested. .

Type Regs Contents Description
Calling: gri21 65 (0x41) Service number
Ir2 name A pointer to the symbol name
Returns: groé addrptr Success: pointer to }hé symbo! name string

Failure:
Logical TRUE, service successful

gri21 0x80000000

= 0 (NULL pointer)

errcode Error number, service not successful
(implementation dependent)
Example Call
mysym: .ascii “MYSYMBOL\0”
strptr: .word 0
const 1r2,mysym ; set address of symbol
consth 1r2, mysym ; to be located in environment
const grl2l, 65 ; service = 65
asneq 69,9rl,grl ; call the 0S8
jmpf grl2l,env_err ; Jjump if error
const grl20,strptr ; set address of
consth grl20,strptr ; string pointer
store 0,0,9r96,grl20 ; store string pointer

The above example program calls the operating system
getenv service to access a string associated with the
environment variable MYSYMBOL. If the symbol is
found, a pointer to the string associated with the symbol

-is returned in gr96. If the call is not successful (i.e.,
* gr121 holds a FALSE boolean value upon return), the
program jumps to env_eir to handle the error condition.

3-185

29K Family Application Notes

Service 257—sysalloc

Description

This service allocates a specified number of éontiguous
bytes from the operating-system-maintained heap and

returns a pointer to the base of the allocated block. Lr2

contains the number of bytes requested. If the storage is

Register Usage

Allocate Memory Space

successfully allocated, gr9é contains a pointer to the
block; otherwise, gr121 contains an eror code indicat-
ing the reason for failure of the call.

Type Regs Contents Description
Calling: gri21 257 (0x101) Service number
Ir2 nbytes Number of bytes requested
Returns: gro6 ' addrptr Success: pointer to allocated bytes,
Failure: = 0 (NULL pointer)
gri21 0x80000000 Logical TRUE, service successful
errcode Error number, service not successful
(implementation dependent)
Example Call
blkptr: .word 0
const 1x2, 1200 ; request 1200 bytes
const grl21,257 ; service = 257
asneq 69,grl,grl ; call the OS
jmpf grl2l,alloc_err ; jump if error
const grl20,blkptr ; set address to store
consth grl20,blkptr ; pointer
store 0,0,gr9%96,grl20 ; store the pointer

The above example requests a block of 1200 contigu-
ous bytes fromthe system heap. If the callis successful,
the program stores the pointer returned in gr96 into a

local variable called blkptr. If gr121 contains a boolean
FALSE value when the service returns, the program
jumps to alloc_err to handle the error condition.

3-186

Host Interface v1.0 Specification

Service 258—sysfree

Description

This service returns memory to the system starting at
the address specified in Ir2. Lr3 contains the number of
bytes to be released. The pointer passed to the sysfree
service in /r2 and the byte count passed in /r3 must
match the address returned by a previous sysalloc
service request for the identical number of bytes. No

Free Memory Space

dynamic memory allocation structure is implied by this
service. High-level language library functions such as
malloc() and free() for the C language are required to
manage random dynamic memory block allocation and
deallocation, using the sysalloc and sysfree kernel
functions as their basis.

Register Usage
Type Regs Contents Description
Calling: gri21 258 (0x102) Service number
Ir2 addrptr Starting address of area returned
I3 nbytes Number of bytes to release
Returns: gre6é retval Success: = 0
Failure: < 0
gri21 0x80000000 Logical TRUE, service successful
errcode Error number, service not successful
(implementation dependent)
Example Call
blkptr: .word 0
const grl20,blkptr ; set address of previously
consth grl20,blkptr ; block pointer
load 0,0,1r2,grl20 ; fetch pointer to block
const 1r3,1200 ; set number of bytes to release
const grl21,258 ; service = 258
asneq 69,grl,grl ; call the 0s
Jmpf grl2l, free err ; Jjump if error
nop ;

The above example calls sysfree to deallocate 1200
bytes of contiguous memory, beginning at the address
stored in the blkptrvariable. If the call is successful, the

program continues; otherwise, if the return value in
gri121 is FALSE, the program jumps to free_err to
handie the error condition.

3-187

29K Family Application Notes

Service 259—getpsize

Description

Return Memory Page Size

This service returns, in register gr96, the page size, in
bytes, used by the memory systemof the HIF implemen-

tation.

Register Usage

Type Regs Contents Description
Calling: gri2i 259 (0x103) Service number
Returns: gra6 pagesize Success: memory page size, one of the following:
1024, 2048, 4096, and 8192
Failure: < 0
gri2i 0x80000000 Logical TRUE, service successful
errcode Error number, service not successful
(implementation dependent)
Example Call
pagsiz: .word 0
const grl21,259 ; service = 259
asneq 69,grl,grl ; call the 0S
jmpf grl2l,pag_err ; jump if error
const grl20,pagsiz ; set address to
consth grl20,pagsiz ; store the page size
store 0,0,9r9%6,grl120 ; store it!
The above example calls the operating systemkernelto into the pagsiz variable; otherwise, a boolean FALSE is
returnthe page size used by the virtual memory system. returned in gr121. In this case, the program will jump to

If the call was successful, gr121 will contain a boolean pag_err to handle the error condition.
TRUE result and the program will store the value in groé

3-188

Host Interface v1.0 Specification

Service 260—getargs

Description

This service returns the base address of the command-
line-argument vector argv in register gr96, as con-
structed by the operating system kernel when an
application program is invoked.

Arguments are stored by the operating system as a
series of NULL-terminated character strings. A pointer
containing the address of each string is stored in an

Return Base Address

array whose base address (referred to as argv) is
returned by the getargs HIF.service. The last entry in
the array contains a NULL pointer (an address consist-
ing of all zero bits). The number of arguments can be
computed by counting the number of pointers in the
array, using the fact that the NULL pointer terminates
the list.

Register Usage

Type Regs Contents Description

Calling: gri21 260 (0x104) Service number

Returns: graé baseaddr Success: base address of argv
Failure: = 0 (NULL pointer)

gri21 0x80000000 Logical TRUE, service successful
errcode Error number, service not successful

(implementation dependent)

Example Call

argptr: .word 0

const grl21,260 ;
asneq 69,grl,grl ;
Jmpf grl2l,bas_err ;
const grl20,argptr ;
consth grl20,argptr ;
store 0,0,9r96,gr120 H

service = 260

call the OS

jump if error

set address where base
pointer is to be stored
store the pointer

The above example calls operating system service 260
to access the command-line-argument vector address.
If the service executes without error, the program
continues by storing the argument vector address inthe

variable basptr. If gr121 contains a boolean FALSE
value upon return, the program jumps to bas_err to
handle the error condition.

3-189

29K Family Application Notes

Service 273—clock

Description

This service returns the elapsed processor time in milli-
seconds. Operating systeminitialization procedures set
this value to zero on startup. Successive calls to this

Register Usage

Return Time in Milliseconds

service return times that can be arithmetically sub-
tracted to accurately measure time intervals.

Type Regs Contents Description
Calling: gri21 273 (0x111) Service number
Returns: gr9é msecs Success: # 0 (time in milliseconds)
Failure: =0
gri2i 0x80000000 Logical TRUE, service successful
errcode Error number, service not successful
(implementation dependent)
Example Call
time: .word 0
const gr121,273 ; service = 273
asneq 69,grl,grl ; call the 0§
jmpf grl2l,clk_err ; jump if error
const grl20,time ; set the address where
consth grl20,time ; time is to be stored
store 0,0,9r96,gr120 ; store the time in ms.

The above example calls the operating systemkernelto
getthe current value of the system clock in milliseconds.
Onreturn, if gr121 contains a boolean FALSE value, the

program jumps to clk_errto handle the error; otherwise,
the time in milliseconds is stored in the variable time.

3-190

Host Interface v1.0 Specification

Service 274—cycles

Description

This service returns an ascending positive number in
registers gr96 and gr97that is the number of processor
cycles that have elapsed since the last hardware
RESET was applied to the CPU. It provides a mecha-
nism for user programs to access the contents of the
internal Am29000 timer counter register. The cycle

Register Usage

Return Processor Cycles

count can be multiplied by the speed of the processor
clock to convert it to a time value. Gr97 will contain the
most significant bits of the cycle count, while gr9é will
contain the least significant bits. HIF implementations of
this service are required to provide a cycle count with a
minimum of 56 bits of precision.

Type Regs Contents Description
Calling: gri21 274 (0x112) Service number
Returns: gro6 cycles Success: Bits 0-31 of processor cycles
Failure: = 0 (in both gr96 and gr97)
gro7 cycles Success: Bits 32-55 of processor cycles
Failure: = 0 (in both grg6 and gr97)
gri21 0x80000000 Logical TRUE, service successful
errcode Error number, service not successful

(implementation dependent)

Example Call
cycles: .word 0 ; MSBs of cycles
.word 0 ; LSBs of cycles
const grl21l,274 ; service = 274
asneq 69,grl,grl ; call the 0S
jmpf grl2l,cyc_err ; Jump if error
const grl20,cycles ; set the address where the
consth grl20,cycles ; count is to be stored
store 0,0,9r97,grl20 ; store the MSBs,
add grl20,grl20,4 ; increment the address,

store 0,0,9r96,grl20 ;

then store the LSBs of cycles.

The above example program fragment calls the operat-
ing system service 274 to access the number of CPU
cycles that have elapsed since it was powered on. The
cycle count (in gr96 and gr97) is stored in the two words

addressed by the variable cycles if the service call is
successful. If gr121contains aboolean FALSE value on
exit, the program jumps to cyc_err to handle the error
condition.

3-191

29K Family Application Notes

Setrvice 289—setvec

Description

Set User Trap Address

This service sets the address for user-level trap handler register gr96. The method used to invoke these traps in
services that implement the local register stack spill and user mode is described on page 6 of this specification, in
fill traps. It returns an indication of success or failure in the “User-Mode Traps” section.

Register Usage

Type Regs Contents Description
Calling: gri21 289 (0x121) Service number

r2 trapno trap number

Ir3 funaddr address of user trap handler
Returns: groé retval Success: = 0

Failure: < 0
gri21 0x80000000 Logical TRUE, service successful
errcode Error number, service not successful
(implementation dependent)

Example Call
trpadr: .word 0

const 1r2,64 ; trap number = 64

const 1r3,t64_hnd ; set address of

consth 1r3,t64_hnd ; trap-64 handler

const grl21,289 ; service = 289

asneq 69,grl,grl ; call the OS

jrmpf grl2l,vec_err ; jump if error

const grl20, trpadr ; set address where to

consth grl20, trpadr ; store the trap address

store 0,0,gr96,grl120 ; and store it!

The above example calls the setvec service to pass the TRUE result, the program continues by storing the trap
address to be used forthe trap 64 trap handler routine. If address returned in gr96; otherwise, the program jumps
the service returns with gr127 containing a boolean to vec_err to handle the error condition.

3-192

Host Interface v1.0 Specification

PROCESS ENVIRONMENT

There are standard memory and register initializations
that must be performed by a HIF-conforming kernel
before eniry to a user program. In C-language
programs, this is usually performed by the module crt0.
This module receives control when an application
program is invoked, and executes prior to invocation of
the user's main function. Other high-level languages
have similar modules.

STARTUP INITIALIZATION

Initialization procedures must establish appropriate
values for the general registers mentioned below. In
addition, file descriptors for the standard input and out-
put devices must be opened.

Register Stack Pointer (gr1)

The register stack pointer (RSP) register contains the
main memory address in which the local register Irowill
be saved, and from which it will be restored. The content
of ASPis compared to the content of RAB to determine
when it is necessary to spill part of the local register
stack to memory. On startup, the values in RAB, RSP
and RFBshould be initialized to prevent a spill trap from
occurring on entry to the crt0 code, as shown by the
following relation:

(RAB + 256) RSP RFB

This provides the crt0 code with at least 64 registers on
entry, which should be a sufficient number to accom-
plish its purpose.

Memory Stack Pointer (gr125)

The memory stack pointer (MSP) register points to the
top of the memory stack, or the lowest-addressed entry
on the memory stack. This register must be preserved
(or, more conventionally, restored).

Register Allocate Bound (gr126)

The register allocate bound (RAB) register contains the
register stack address of the lowest-addressed word
contained within the register file. RAB is referenced in
the prolog of most user program functions to determine
whether aregister spill operation is necessary to accom-
modate the local register requirements of the called
function.

Register Free Bound (gr127)

The register free bound (RFB) register contains the
register stack address of the lowest-addressed word not
containedwithinthe registerfile (and greaterthan RAB).
RFB is referenced in the epilog of most user program
functions to determine whether aregisterfilloperationis
necessary to restore previously spilled registers needed
by the function’s caller.

Open File Descriptors

File descriptor 0 (corresponding to the standard input
device) must be opened for text mode input. File
descriptors 1 and 2 (corresponding to standard output
and standard error devices) must be opened for text
mode output prior to entry to the user’s program.

PROGRAM TERMINATION

The only valid way for an applicationto terminate execu-
tion is by calling the exit service. Most high-level
languages provide this capability, even if the program-
mer does not explicitly invoke a corresponding library
function.

TRAP HANDLERS

The trap vector entries shown in Table 5 must be
installed, and corresponding handlers must be
provided.

3-193

29K Family Application Notes

Table 5. Trap Handler Vectors

Trap Description

32 MULTIPLY

33 DIVIDE

34 MULTIPLU

35 DIVIDU

36 CONVERT

42 FEQ

43 DEQ

44 FGT

45 DGT

46 FGE

47 DGE

48 FADD

49 DADD

50 FSUB

51 DSuB

52 FMUL

53 DMUL

54 FDIV

55 DDIV

64 Spill (Set up by the user's task through a setvec call)
65 Fill (Set up by the user’s task through a setvec call)
69 " HIF System Call

Note: The Spill (64) and Fill (65) traps are returned to the user’s code to perform the trap handling functions in user
mode, as described in the “User Mode Traps” section.

3-194

Host Interface v1.0 Specification

APPENDIX A: HIF QUICK REFERENCE

Table 6 lists the HIF service calls, calling parameters,
and the returned values. If a column entry is blank, it

Table 6. HIF Service Calls

means the register is not used or is undefined. Table 7
describes the parameters given in Table 6.

Service Calling Parameters Returned Values

Title GR121 LR2 LR3 LR4 GR96 GR97 GR121
exit 1 exitcode

open 17 pathname mode pilag fileno errcode
close 18 fileno retval errcode
read 19 fileno buffptr nbytes count errcode
write 20 fileno buffptr nbytes count errcode
Iseek 21 fileno offset orig where errcode
remove 22 pathname retval errcode
rename 23 oldfile newfile retval errcode
tmpnam 33 addmptr filename errcode
time 49 secs errcode
getenv 65 name addmptr errcode
sysalloc 257 nbytes addmtr errcode
sysfree 258 addrptr nbytes retval errcode
getpsize | 259 pagesize errcode
getargs 260 baseaddr errcode
clock 273 msecs errcode
cycles 274 LSBscycles MSBscycles errcode
setvec 289 trapno funaddr retval errcode

3-195

29K Family Application Notes

Table 7. Service Call Parameters

Parameter Description

addrptr A pointer to an allocated memory area, a command-line-argument array, a pathname buffer, or a
NULL-terminated environment variable name string.

baseaddr The base address of the command-line-argument vector.

buffptr A pointer to the buffer area where data is to be read from or written to during the execution of I/0
services.

count The number of bytes actually read from file or written to a file.

cycles The number of processor cycles (returned value).

errcode The error code returned by the service. These are usually the same as the codes returned inthe UNIX
errno variable. See Appendix B, Table 8, for a list of HIF error codes.

exitcode The exit code of the application program.

filename A pointer to a NULL-terminated ASCII string that contains the directory path of atemporary filename.

fileno The file descriptor which is a smallinteger number. File descriptors 0, 1, and 2 are guaranteed to exist
and correspond to open files on program entry (0 refers to the UNIX equivalent of stdin and is opened
for input; 1 refers to the UNIX stdout, and is opened for output; 2 refers to the UNIX stderr, and is
opened for output).

funaddr A pointer to the address of a function.

mode A series of option flags whose values represent the operation to be performed.

msecs Milliseconds.

name A pointer to a NULL-terminated ASCII string that contains an environment variable name.

nbytes The number of data bytes requested to be read from or written to a file, or the number of bytes to
allocate from the heap.

newfile A pointer to a NULL-terminated ASCII string that contains the directory path of a new filename.

offset The number of bytes from a specified position (orig) in a file.

oldfile A pointer to NULL-terminated ASCII string that contains the directory path of the old filename.

orig Avalueof 0, 1, or 2 that refers to the beginning, the current position, or the position of the end of a file.

pagesize The memory page size in bytes (returned val). '

pathname A pointer to a NULL-terminated ASCII string that contains the directory path of a filename.

pflag The UNIX file access permission codes.

retval The return value that indicates success or failure.

secs The seconds count returned.

trapno The trap number.

where The current position in a specified file.

3-196

Host interface v1.0 Specification

APPENDIX B: ERROR NUMBERS

HIF implementations are required to return error codes Table 8. If a HIF implementation returns an error code in
when a requested operation is not possible. The codes the range of 0 to 255, it must carry the identical meaning
from O to 255 are reserved for compatibility with current to the corresponding error code in this table. Error code
and future error return standards. The currently values largerthan 255 are available forimplementation-
assigned codes and their meanings are shown in specific errors.

Table 8. HIF Error Numbers Assigned

Number Error Name Description
0 Not used.
1 EPERM Not owner
This error indicates an attempt to modify afile in some way forbidden except to
its owner.
2 ENOENT No such file or directory

This error occurs when a file name is specified and the file should exist but
does not, or when one of the directories in a pathname does not exist.

3 ESRCH No such process
The process or process group whose number was given does not exist, or any
such process is already dead.

4 EINTR Interrupted system call
This errorindicates that an asynchronous signal (such as interrupt or quit) that
the user has elected to catch occurred during a system call.

5 EIO 110 error .
Some physical /O error occurred during a read or write. This error may in
some cases occur on a call following the one to which it actually applies.

6 ENXIO No such device or address

I/0 on a special file refers to a sub-device that does not exist or is beyond the
limits of the device.

7 E2BIG Arg list is too long
An argument list longer than 5120 bytes is presented to execve.
8 ENOEXEC Exec format error

Arequestis made to execute afile that, although it has the appropriate permis-
sions, does not start with a valid magic number.
9 EBADF Bad file number
Either afile descriptor refers to no openfile, or aread (write) request is made to
a file that is open only for writing (reading).
10 ECHILD No children
Wait and the process has no living or unwaited-for children.

11 EAGAIN No more processes
In a fork, the system’s process table is full, or the user is not allowed to create
any more processes.

12 ENOMEM Not enough memory

During an execve or break, a program asks for more memory than the system
is able to supply or else a process size limit would be exceeded.

3-197

29K Family Application Notes

Table 8. HIF Error Numbers Assigned (continued)

Number Error Name Description
13 EACCESS Permission denied
’ An attempt was made to access a file in a way forbidden by the protection
system.
14 EFAULT Bad address
The system encountered a hardware fault in attempting to access the argu-
ments of a system call. ‘
15 ENOTBLK Block device required
A plain file was mentioned where a block device was required, such as in
mount.
16 EBUSY Device busy }
An attempt was made to mount a device that was already mounted, or an
attempt was made to dismount a device on which there is an active file (open
file, current directory, mounted-on file, or active text segment).
17 EEXIST File exists
An existing file was mentioned in an inappropriate context, e.g., link.
18 EXDEV Cross-device link
A hard link to a file on another device was attempted.
19 ENODEV No such device
An attempt was made to apply aninappropriate system callto adevice, e.g., to
read a write-only device, or the device is not configured by the system.
20 ENOTDIR Not a directory '
A non-directory was specified where a directory is required, for example, in a
. path name or as an argument to chdir.
21 EISDIR Is a directory
An attempt to write on a directory.
22 EINVAL Invalid argument
) This error occurs when some invalid argument for the call is specified. For
example, dismounting a non-mounted device, mentioning an unknown signal
in signal, or specifying some other argument that is inappropriate for the call.
23 ENFILE File table overflow
The system’s table of open files is full, and temporarily no more open requests
can be accepted.
24 EMFILE Too many open files
The configuration limit on the number of simultaneously open files has been
exceeded.
25 ENOTTY Not a typewriter
Thefile mentioned in stty or gtty is not a terminal or one of the other devices to
which these calls apply.
26 ETXTBSY Text file busy
The referenced text file is busy and the current request can not be honored.
27 EFBIG File too large

The size of a file exceeded the maximum limit.

3-198

Host Interface v1.0 Specification

Number

Table 8. HIF Error Numbers Assigned (continued)

Error Name

Desctription

28

29

30

31

32

33

34

35

36

37

38

39

40

4

ENOSPC

ESPIPE

EROFS

EMLINK

EPIPE

EDOM

ERANGE

EWOULDBLOCK

EINPROGRESS

EALREADY

ENOTSOCK

EDESTADDRREQ

EMSGSIZE

EPROTOTYPE

No space left on device

A write to an ordinary file, the creation of a directory or symbolic link, or the
creation of a directory entry failed because no more disk blocks are available
on the file system.

lllegal seek

A seek was issued to a socket or pipe. This error may also be issued for other
non-seekable devices.

Read-only file system

An attempt to modify a file or directory was made on a device mounted read-
only.

Too many links

An attempt was made to establish a new link to the requesled file and the limit
of simultaneous links has been exceeded.

Broken pipe

A write on a pipe or socket was attempted for which there is no process to read
the data. This condition normally generates a signal; the error is returned if the
signal is caught or ignored.

Argument too large

The argument of a function in the math package is out of the domain of the
function.

Result too large

The value of afunction inthe math package is unrepresentable within machine
precision.

Operation would block

An operation that would cause a process to block was attempted on an object
in non-blocking mode.

Operation now in progress

Anoperationthattakes alongtime to complete was attempted on a non-block-
ing object.

Operation already in progress

An operation was attempted on a non-blocking object that already had an
operation in progress.

Socket-operation on non-socket

A socket-oriented operation was attempted on a non-socket device.

Destination address required
A required address was omitted from an operation on a socket.

Message too long

A message sent on a socket was larger than the internal message bufter or
some other network limit.

Protocol wrong type for socket

A protocol was specified that does not support the semantics of the socket type
requested.

3-199

29K Family Application Notes

Error Name

Table 8. HIF Error Numbers Assigned (continued)

Number Description

42 ENOPROTOOPT Option not supported by protocol
A bad option or level was specified when accessing socket options.

43 EPROTONOSUPPORT Protocol not supported

' ’ The protocol has not been configured into the system, or no implementation for

it exists.

44 ESOCKTNOSUPPORT Socket type not supported
The support for the socket type has not been conhgured into the system, or no
-implementation for it exists.

45 EOPNOTSUPP Operation not supported on socket

o For example, trying to accept a connection on a datagram socket.

46 EPFNOSUPPORT Protocol family not supported

The protocol family has not been configured into the system or no implementa-
) . tion for it exists.
47 EAFNOSUPPORT Address family not supported by protocol family
: An address was used that is incompatible with the requested protocol.
48 EADDRINUSE Address already in use
’ _ Only one usage of each address is normally permitted.

49 EADDRNOTAVAIL Cannot assign requested address
This normally results from an attempt to create a socket with an address noton
this machine.

50 ENETDOWN Network is down
A socket operation encountered a dead network.

51 ENETUNREACH Network is unreachable
A socket operation was attempted to an unreachable network.

52 ENETRESET Network dropped connection on reset

. The host you were connected to crashed and rebooted.

53 ECONNABORTED Software caused connection abort
A conhnection abort was caused internal to your host machine. .

54 ECONNRESET Connection reset by peer
Aconnectionwas forcibly closed by a peer. This normally results from a loss of
the connection on the remote socket due to a timeout or a reboot.

55 ENOBUFS No butfer space available
An operation on a socket or pipe was not performed because the system
lacked sufficient buffer space or because a queue was full.

56 EISCONN Socket is alreéady connected

A connect request was made on an already connected socket; or a sendto or
sendmsg request on a connected socket specified a destination when already
connected. .

3-200

Host Interface v1.0 Specification

Table 8. HIF Error Numbers Assigned (continued)

Number Error Name Description

57 ENOTCONN Socket is not connected
A request to send or receive data was disallowed because the socket was not
connected and (when sending on a datagram socket) no address was
supplied.

58 ESHUTDOWN Cannot send after socket shutdown
A request to send data was disallowed because the socket had already been
shut down with a previous shutdown call.

59 ETOOMANYREFS Too many references; cannot splice.

60 ETIMEDOUT Connection timed out
A connect or send request failed because the connected party did not properly
respond after a period of time. (The timeout period is dependent on the
communication protocol.)

61 ECONNREFUSED Connection refused
No connection could be made because the target machine actively refused it.
This usually results from trying to connect to a service that is inactive on the
foreign host.

62 ELOOP Too many levels of symbolic links
A pathname lookup involved more than the maximum limit of symbolic links.

63 ENAMETOOLONG File name too long
A component of apathname exceeded the maximum name length, or an entire
pathname exceeded the maximum path length.

64 EHOSTDOWN Host is down
A socket operation failed because the destination host was down.

65 EHOSTUNREACH Host is unreachable
A socket operation was attempted to an unreachable host.

66 ENOTEMPTY Directory not empty
A non-empty directory was supplied to a remove directory or rename call.

67 EPROCLIM Too many processes
The limit of the total number of processes has been reached. No new
processes can be created.

68 EUSERS Too many users
The limit of the total number of users has been reached. No new users may
access the system.

69 EDQUOT Disk quota exceeded
A write to an ordinary file, the creation of a directory or symbolic link, or the
creation of a directory entry failed because the user’s quota of disk blocks was
exhausted; or the allocation of an inode for a newly created file failed because
the user’s quota of inodes was exhausted.

70 EVDBAD RVD related disk error

3-201

Table of Contents

CHAPTER 4

General Information

Related Literature
Package Outlines

Related Literature

CHAPTER 4
RELATED LITERATURE

Additional Support Literature

The following is a list of AMD 29K Family literature that can be ordered from your local AMD Sales Representative
or the Literature Distribution Center at (800) 222-9323, extension 5000; inside California, call (408) 743-5000.
Technical and marketing information concerning the 29K Family also can be obtained by calling the 29K Hotline at
(800) 2929-AMD.

Order No. Title

09548 Am29000 Article Reprint Brochure

10344 Am29000 Family Overview Brochure
10345 29K Support Products Brochure’

10620 Am29000 User’'s Manual

10621 Am29000 Performance Analysis Brochure
10623 Am29000 Memory Design Handbook
11426 Fusion 29K Catalog

11852 Am29027 Handbook

General Information

PACKAGE OUTLINES*

BOTTOM VIEW
028
w0 e
17%0
075 x 45° REF. 1800 BSC
(REFERENCE CORNER) |
BCDEFGN,‘IKLl‘N PR T ﬂ .
— b oovooocoobocovo oo d) ECR .
21l00R00000HPOOOODECOCT !
1loee000009p0000BO00C
«lovoo i [oe¥e}
sleoo | oo :
slooco ' oco
wel 7@ 00 | D200
1700
sleoco 1 [eleXe}
B 1@ — - ~—— - e e
0wl OO0 H ©00
[l NeeNe) | o000 200
2{0Q0 | 000 o
nleoce 1 [efaRe] —
TN EeNcXe] : [oNoNe) [==—
| OO [cNcRoRecRsNeNoNeN ===
®¥l0OOOOO0OPOEOOED00G| =
1110 00n000000C0000989 ———e=q] |
1 N L R —
—_JL | 100 BSC —=l (= 200
030 » 45" REFERENCE 080 .
{3 PLACES) 280
108
FLLJSEE [S

PID £ 073228

*For reference only.

*For reference only. All dimensions are measured in inches. BSC is an ANSI standard for Basic Space Centering.

4-4

Package Outlines

cQ164
5 1.665
= 1.710
1.140
1.165
1.000
BSC
.500
“ BSC
‘ 250
TMIN
1.665 1.140
1.710 1.165
.006
.01
025
MAX [=
Y
TOP VIEW
004 008
.008 06
.080 ‘ ¥
105 —t-
} 010)
MAX .004
.008

13092A

4-5

Notes

Notes)

Notes

Notes

Sales Offices

North American

ALABAMA

ARIZONA

........... (205) 882-9122

CALIFORNIA,

(602) 242-4400

Culver City

Newport Beach

Roseville ..

..{213) 645-1524
916) 786-6700

619) 560-7030

San Diego

3714 752-6262

San Jose ..

Woodland Hills ..
CANADA, Ontario,

Kanata

..... 408) 452-0500
rereemenseesnenenenn (818) 992-4185

613) 592-0060

Wlllowdale

416) 224-5193

..(303) 741-2900

CONNECTICUT
FLORIDA,
Clearwater

-...(203) 264-7800
(813) 530-9971

Ft. Lauderdale

...(305) 776-2001

Orlando (Casselberry)cccevvrvvevriencerens

(407) 830-8100

GEORGIA (404) 449-7920
ILLINOIS,

Chicago (ltasca) (312) 773-4422

Naperville.......... (312) 505-9517
KANSAS 913) 451-3115
MARY ..(301) 796-9310
MASSACHUSETTS 617) 273-3970
MICHIG (313) 347-1522
MINNESOTA (612) 938-0001
NEW JERSEY,

Cherry Hill ..o 609) 662-2900

Parsippanyc.cecveneeinenan 201) 299-0002
NEW YORK,

Liverpool (315) 457-5400

PoughKeepsieccovviecivnicnviinnincnnicinne

Rochester ..

(914) 471-8180

NORTH CAROLINA......
OHIO,
Columbus (Westerville)
Dayton,
OREGON ..

-(7186) 272-9020
.(919) 878-8111

.(614) 891-6455
-(513) 439-0470
(503) 245-0080

PENNSYLVANIA .
?gUTH CAROLINA™.

--(215) 398-8006
~.(803) 772-6760

(512) 346-7830

(214) 934-9099

Houston

(713) 785-9001

International

BELGIUM, Bruxelles

FRANCE, Paris

..(02) 771-91-42
) 762-37-12
846-61028
(1) 49-75-10-10

o
NN

WEST GERMANY,

Hannover area............. TEL
FAX.
TLX...
Minchenccccevevenens TEL ...
FAX.
TLX.
Stuttgartccoceeeeeee . TEL.
FAX.
TLX...
HONG KONG,cccocunee TEL ...
Wanchai FAX.
TLX...
ITALY, Milanccooovurrnne TEL ..
FAX.
JAPAN,
Kanagawa........oecuneene
Tokyoccooeevivceveen . TEL .
FAX.
TLX
08saKa ..o TEL

(1) 49-75-10-13
263282F

..{0511) 736085
-(0511) 721254

[(089) 4114-0
-(089) 406390
~(0711)62 33 77

.(0711) 625187
........... 1882
[852.5.8654525
.852-5-8654335
[67955AMDAPHX
-(02) 3390541
-(02) 3533241
-(02) 3498000
..843-315286

462-47-2911
.462-47-1729
{03) 345-8241
...(03) 342-5196
J24084AMDTKOJ

AAAAA 06-243-3250
..06-243-3253

International (Continued)

KOREA, Seoul TEL 822-784-0030
FAX.. 822-784-8014

LATIN AMERICA,
Ft. Lauderdale TEL (305) 484-8600
FAX ...§305) 485-9736
TLX 554261 AMDFTL
NORWAY, Hovik TEL (03) 010156

02) 591959

9079HBCN
SINGAPORE ... 5-3481188
..65-3480161
50 AMDMMI

SWEDEN,
Stockholm.... .(08) 733 03 50
(Sundbyberg 08) 733 22 85
.11602
TAIWAN 213393

886-2-7723422
886-2-7122066

UNITED KINGDOM,

Manchester area......... .(0925) 828008
(Warrington) .(0925) 827693
..851-628524
London area 483) 740440
(Woking) -{0483) 756196
..851-859103

North American Representatives_______
CANADA

Burnaby, B.C.

DAVETEK MARKETING(604) 430-3680
CaISary Alberta

TEK MARKETING (403) 291-4984

Kanata, Onta

VITEL ELECTRONICS (613) 592-0060
Mississauga, Ontario

VITEL LECTHONICS....A.............I...I.............(416) 676-9720

Lachine, Quebec

VITEL ELECTRONICS ...(514) 636-5951

IDAHO

|LLlll'\IJ)I*ElgMOUNTAIN TECH MKTG, INC (208) 888-6071
HEARTLAND TECH MKTG, INC.. e (312) §77-9222

INDIANA

Huntington - ELECTRONIC MARKETING
CONSULTANTS, INC......oorvveeeeericrernene (317) 921-3450
Indianapolis - ELECTRONIC MARKETING

O GONSULTANTS INC. (317) 921-3450
LORENZ SALES (319) 377-4666
KANSAS

Merriam —LORENZ SALES....

...(913) 384-6556
chhna LORENZ SALES

~(316) 721-0500

KENTUCK

ELECTRONIC MARKETING

CONSULTANTS, INC...cooerrrrrcrirennierecennene (317) 921-3452
MICHIGAN

Birmingham - MIKE RAICK ASSOCIATES . (313) 644-5040

Holland - COM-TEK SALES, IN C .(616) 399-7273

Novi — COM-TEK SALES, INC.. .(313) 344-1409
MISSOURI

LORENZ SALES (314) 997-4558
NEBRASKA

IWORENZ SALES (402) 475-4660
NE

THORSON DESERT STATESccccovvevrinene (505) 293-8555
NEW YORK

East Syracuse — NYCOM, INCc.ccceune. (315) 437-8343

Woodbury - COMPONENT
OH?gNSUL ANTS, INC..ooooiiee e (516) 364-8020

Centerville - DOLFUSS ROOT & CO(513) 433-6776

Columbus - DOLFUSS ROOT & CO(614) 885-4844

Strongsville ~DOLFUSS ROOT & CO (216) 238-0300
PENNSYLVANIA

DOLFUSS ROOT & CO ..o (412) 221-4420
PUERTO RICO

COMP_REP ASSOC, INC .. (809) 746-6550
UTAH, R2 MARKETING (801) 595-0631
WASHINGTON

ELECTRA TECHNICAL SALES..................... (206) B821-7442
WISCONSIN :

HEARTLAND TECH MKTG, INCccccceee (414) 792-0920

Advanced Micro Devices reserves the right to make changes in its product without notice in order to improve design or performance characteristics. The performance
characteristics listed in this document are guaranteed by specific tests, guard banding, design and other practices common to the industry. For specific testing details,
contactyour local AMD sales representative. The company assumes no responsibility for the use of any circuits described herein.

1

Advanced Micro Devices, Inc. 901 Thompson Place, P.O. Box 3453, Sunnyvale, CA 94088, USA
Tel: (408) 732-2400 » TWX: 910-339-9280 + TELEX: 34-6306 « TOLL FREE: (800) 538-8450
APPLICATIONS HOTLINE TOLL FREE: (800) 222-9323 « (408) 749-5703

© 1989 Advanced Micro Devices, Inc.
8/9/89
Printed in USA

ADVANCED
MICRO . .
DEVICES, INC.
901 Thompson Place
- P.O. Box 3453
. Sunnyvale,
California 94088-3453
(408) 732-2400
. TWX: 910-339-9280
- "TELEX:34-6306
~. . TOLL-FREE '}
'(800) 538-8450

" APPLICATIONS
HOTLINE
. (800) 222-9323....

'ENGINEERING HOTLINE

. USA (800) 2929-AMD
' UK0-800-89-1131 .
JAPAN 0-031-11-1129

Printed in USA |
12175A

